Machine Language Support Programs

(3]
.
o

LS NN Wwwwww N
o

w1

« ¢ o e
W O

. « e o
N~ O

N~ O

.
[

ASM menus - Program Index

Introduction
Adder

Patcher

SF key 2 - Patching Disk

Small Patches

Merge Object Files

Calculation of Data Memory Checksums
Control Memory Checksums

Symbols
Entry Phase
Dumping the Symbol Table

CREF Cross Reference File Program
CREF (Jump, JSR and Branch Instructions)
CREF:LPI

Page
Page

Page
Page
Page
Page
Page
Page

Page
Page
Page

Page
Page
Page

0

N oW

0 %

13
13
14

ASM - Support Programs

l.0 Introduction

ASM represents a significant investment in programming tools to
enable the machine language programmer to analyze, modify and
reconstruct programs on the Wang 2200 system.

Written In Basic, they utilize special atoms developed by the
author, allowing us to view internally the structure of Wang.

Initially, the menu for the programs is called ASM, and can be
loaded by ‘'LOAD RUN "ASM"'. The following screen will be

displayed:
Assenbly Language Programs for Wang - Rev 2.0 SERRRRARNANENN
#t COMPUTER ¥4
#it CONCEPTS W
Press SF key to execute SRERIHNN AN
‘1 - Editor (Create eye readable machine code)
4 2 - Assenbler (Compiles source to object code)
/'3 - Adder (Adds 4k of code to end of selected progran)
* 4 - Patcher (Merget object code into Basic or selected progran)
‘3 - Searcher (Searches selected file for Jump locations)
/6 - Dissas (Dis-Assenbles Object code files)
* 7 - Synbols (Enters symbology for use with Assenbler)
/8 - Debug (Peek and Poke internal to Operating System)

7 9 - ATOMLIST (Lists ATOMS and Sub-Verbs in 33 4iles)

710 - BREAKDN (Breaks Down Data Memory to Array)

11 - CHOM (Checksum Data Hemory)

‘12 - Sequence (Prints Bad sector Map for Winchesters)

/13 - COMPDAT (Compares Dbject files with memory)

‘14 - LDOBJECT (Loads Binary files to M and DM)

15 - CREF (Cross Reference Generator for Object Files)

*31 - START {Return back to Master Menu)

Loading of any sub-program is done by simply pressing the Special
Function key associated with that program. Of special note here
is that the BEDITOR and the ASSEMBLE program MUST be called vai
the ASM program. ASM sets up some common variables defining the
sizes of the partition we are running in.

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

1

ASM - Support Programs

2.0 ADDER

The ADDER program 1is a very simple program that just increases
the size of a Control Memory load file by 4096 locations. This

program is used to append a 4k block of space onto the end of a
normal @@ program.

By doing this, we now have 4k more of Control Memory to write our
programs in, or to enhance the storage capabilities of our
programs.

When called, we simply type the name of the original program,
followed by the disk address. Then we enter the new name for the
program, followed by the target disk address.

Adder will procede to read the source file, transferring the data
to the target file. When the entire source is transferred, ADDER
appends blocks of code that are NOP control memory instructions.
The trailer record is written, and the new sSource has an
additional 4k of code. All that is left to do is to run this new

file through PATCHER to append the correct checksums. The file
may then be loaded normally.

#33aa3x Add to End 4k Fxzazaas

Enter Original Program name : ? 324k
Enter Device Name : 310

Starting record = 13408
Ending Record = 13680
Number of Records = 273

Enter name for Output file : ? Q4P
Enter device name t B1D

Limits for F9P are:
Starting Sector Number = 1040
Ending sector 8 1384
Number of Sectors {
9000 000800 Record § 13408
6001 S000F0 Record ¥ 13409

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

2

ASM - Support Programs

3.0 PATCHER

PATCHER 1is one of the most important of the utility programs, in
that it allows us to merge an object file created by the
Assembler into a current @@ or other machine language load file.

In addition, it lets us examine and change various locations in
the file, as well as recalculating Data and Control Memory
checksums.

When first loaded, the following display is seen:

Patch Utitity MNenu Revision 3,0

‘D = Menu Listing

‘1 - Instructions for Patching

‘2 - Patch Disk

’3 - Merge Files (Data Load D@ formats)
‘4 - Load ASM meny

‘30 - Calculate Data Memory Checksums for file
‘31 - Catculate Control Memory Checksums for file
R
##e% Use NLY under guidance of CCC Field Service asa¥x #4 COMPUTER 84
#1 CONCEPTS ##
STOP Press 5.F. Key to begin HEHIIN

SF key 0 will redisplay the Menu again, while SF key 4 will
return us back to the main menu.

SF key 1 provides a crude refresh as to how to make patches.

Copyright €@ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

3

ASM - Support Programs

3.1 SF key 2 - Patching the disk

Prior to us trying to merge an object file or recalculate
checksums, we must load the paramaters of the file into PATCHER.
Pressing SF 2 requests information as to what file, and to what

disk are we going to do the modifications:

MOUNT (UNPROTECTED) DISK PLATTER TO BE PATCHED
Address of Disk Platter (FI0,RID, ...) RI0

Nane of File to be Modified: 33
R PRE-SCANNING DISK FILE =--m-~een
Loading: MVP (Multi-user) BASIC-2, Release 2.4 11/01/82- RS

Load Records for 99
1 Display Record
Data Memory 0000 to 0BFF

Control Memory 0010 to SFFF
CM End Record 0000 to 000F

Location: Data:
160010 574D4C

The abowe example shows a load of the file @€ from disk B10.
Patcher will 1look up the file in the directory, and display any
Header (TYPE) records. If no Revisions have been previously

made, PATCHER appends the - ROl message to the type record.

previous revisions have been made, PATCHER increments the Rev
level, and rewrites the first header. A scan is performed,
accumulating all load locations, and when done, this is dumped to

the CRT

Copyright @ 1983 by Camputer Caoncepts Corporation, Shawnee Mission, Ks

No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

¢

ASM - Support Programs

3.1.1 Small patches

At the end of this first scan through, PATCHER will display the
first Control Memory Address, along with the contents of that
address on the CRT.

We may end this phase, by typing END followed by three spaces and
a RETURN. If this is done, PATCHER will return to the Sub-menu,
but all paramaters for Checksumming and Merging will be saved.

We can view or modify small areas of the target program manually
by staying in display mode, and not typing END. Patcher will
normally have displayed the first address as follows:

Location Data
IC0010 576D4C

By pressing the RETURN key, the next sequential location will be
brought up. If we wish to change the data, simply type in as
many new digits as are regquired, when a RETURN key is depressed,
the new data will be stored to disk.

If we wish to view a new Control Memory location, we simply type
the Code letters 'IC', Instruction Counter, followed by the
address we wish to view:

Location Data
IC0010 IC4200
IC4200 87800F

Patcher may also view Data memory, if present in the source file.
To do this, type 'PC', Program Counter, followed by the address
we wish to view/modify.

Location Data
IC0010 PC0010
PC0010 033312
PC0013 FP46E52

Note that in the PC mode, the PC is incremented by three, while
if in the IC mode, the IC is incremented by one.

Again, to exit from this, type END followed by three spaces and a
RETURN

Since all changes are immediately done to the source file, be
sure you really want to do the changes!

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

5

ASM - Support Programs

3.2 Merge Object files

The Assembler, when so instructed, will produce Object files from
the Source files. These object files may then be merged with @@
or whatever, via this mode of operation.

You must have pre-scanned the target file by means of SF2, or an
error message will result,

If the pre-scan had been performed, Mode 3 will request the
Objects file disk address, as well as the name of the object
file. After this is done, Mode 3 reads and displays the statuses
of what it is merging. The following is a typical seguence:

Enter name of Patch file ? RED.BOO
Enter nane of disk : 310

18 Load Records
Data Memory at 0000, 2 Locations
Data Memory at 0184, 2 Locations
Data Memory at 0192, 2 Locations
Data Memory at 01BE, 2 Locations
Data Memory at 0678, é Locations
Control Memory at 13€C, S Locations
Control Memory at 1734, 1 Location
Control Memory at 17FF, | Location
Control Memory at 1090, 80 Locations

3.3 Calculation of Data Memory Checksums - SF 30

Mode 30 is used to recalcultate the Data memory checksums of the
target file. It first attempts to discern whether it is working
with 2.4 or 2.3. If it cannot identify the Basic, it will abort
the operations. If identification is established, the checksums
are recalculated, and the file updated. Again, the pre-scan,
SF2, must have been completed.

Calculate Data Memory Checksuns
VERSIDN 2.4

Checksum at 0BED is 94EE
Checksun at 0BE2 is 9DMA

Modifying file - standby please
Data Memory Checksums are written

STOP 4015

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

6

ASM - Support Programs

3.4 Control Memory Checksums SF 31

To recalculate the correct Control Memory Checksums, this mode is
required. When first invoked, it will print a small message,
meant more as a caution note than a warning.

in the checksums to be

Pressing the CONTINUE key will result

recalculated and displayed.

After each checksum block has been calculated, the 0l1d and New
checksums for that block are displayed.

STOP SF’31 Calculate Control Memory Checksums - Key CONT INUE1000
1CONTINUE

New

3C6ABET1 7880
798249908387
914308357C42
TDECBS44081F
057E8ACSCATD
EEEB4443C518

0ld

7EBE4113AFD0
1A0634D435C4
OE7BF44CBABO
7DEC8440B1F
1B3AF 3DBB&LD
EEEB4443C518

0000 14
End Progran
Free Space= 44708

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

7

ASM - Support Programs

4.0 SYMBOLS

Another most useful program 1is the SYMBOLS program. SYMBOLS
allows the user to assign symbology to control memory locations.
This of course allows us to ‘'read' instructions with far more
meaning than just bits.

The output of SYMBOLS is used by both the Dissassembler and the
CREF programs.

When first invoked, the following display is present:

Smbolic entry for Disasseabler Version 4.0 FERERERANRAONN
COMPUTER W4
#4 CONCEPTS W9
FRRRABNAARNANY
Input File Print Symbols Listing Device

SYM, 988L Y 204

Disk Sort by Address

310 Y

The author already filled in the blank areas with data, however,
if a new SYMBOL file is to be created, then typing just a return
key will get us right into the entry phase. However, most of the
time we will be playing with a previously created file.

Enter the name of the symbol file. (I generally label them as
S¥M.---). Then tell the program where it liwves. It will then ask
if you wish to print the file, and if so, sorted and to what
device the listing is to go to. Again, if we do not want to
print, type N, followed by a RETURN, and we will load the file,
then goto the entry phase.

If a file is printed, the format is shown on the next page.

Copyright €@ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Caomputer Concepts Corporation

8

ASM - Support Programs

Example of Print with Sorted Symbols

0003 HARD:RESET 0003 START:ADDRESS OBOE SF/1SRESETVECT 000F CKSMUPTOHERE 008] MASTERCLRALL
0082 MASTERCLEARPART 00BE RESET:VECTOR 0094 DOCHECKS:(MDM 0OC1 PROMSF’ISVECTOR 00C6 RESET:MSG

OOE4 BACKGROUND3 0125 BEGIN:EXECUTION 0134 FNATOM 0138 VECTOR:2:ATON 0139 ATOMRETURN
615F BETFIRSTCODE 01E2 BUMPSLMODE 01F7 HALT/STEP 021D HALT:STEP 0278 CLEARPRGCODE
627C SETO9D4=PHPL 0284 REPORTERR2 0288 REPORTERR! 02E6 ERR:A02 02E9 PRINTERROR
02F9 FORMLETTER 0306 SETK=PL 0308 ERROR 0308 PROTECT 030F ERR:ADS
0317 MATHERRORS 031C IMMEDIATE 031E ERR:A07 0339 ERR:A0S 034B RSTENDOFPROG
034D CLEARRUNMODE 037E SET:LOAD/RIN 0381 RESOLVED B39E SCAN:SPACES 03A3 RANBE(0:9)
0345 ASCI1:¢0:9) 03AF PHPLTOARID 0385 ASCI1:(A:2) 03CE SEARCH=COMMA 03CF SEARCH(ROD)
0305 SEARCHCR 8307 SEARCH(0309 SEARCH) 0308 SEARCH= 030D SEARCH’
D3DF SEARCH(CE) 03t SEARCHP 03E3 SEARCH$ 03ES SEARCH' 03E7 SEARCHF
039 SEARCHR 03EB SEARCHS 03EB SEARCH:(RD) 03ED SEARCHT 03EF SEARCH/

03F1 SEARCHE 03F3 SEARCH: D3FS SEARCH; 03F7 SEARCH(03F9 SEARCH)
0400 CONVERTA(G:F) 04063 ASCIITOHEX 040F FINDCFD) 8410 SEARCH:REM:0D 0428 SEARCH:RO
8434 COMPARE:ARD]:10 O44F WRITEATONIN 0459 SHRINK:BUFFER 0461 2NDTRY:GETATOM 0462 MAKE:ATOM
D44E NOT:ATOM 0471 SET(RO=FF) 0473 ATONIZ2E 0474 GOTHRU:ATOMLIST 0488 SETR2R3=ARG
04C5 FIND:*)" 04CD FIND:"=" 04D1 TERMINATOR:0D 0407 ERR:S)3 0409 SEARCH:END
04DF CK:TERMINATOR 04EA FINDATOM:(B2)TO (O4ED BADLIST 04F3 DEVICETH 0504 XCHANGE
06514 GETHEXBYTE 0518 ERR:S17 051D FROM:TO:ARGS 052C SEARCHLIST 857C FATOM(DB)A

4.1 Entry Phase

After the symbol table has been loaded, sorted and/or printed, we
are ready to enter new symbols, or modify currently existing
symbology. The following screen display will be present: .

Smbol Entry Phase LR
#4 COMPUTER ##
Trpe END to dump buffer to disk 84 CONCEPTS ¥4
SRERRNREANARNN
|Free Space 5752 Nunber of Symbols 804 |
Address Symbo! Tag

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

9

ASM - Support Programs

For sake of discussion, let us say that we will assign location

4001 to be label FIND:K. Type the four digit address, followed
by the label:

Symbol Entry Phase MmN
#% COMPUTER ##
Type END to dump buffer to disk #% CONCEPTS #¥
SN
[Free Space 5743 Munber o7 Sybols 807 |
Address Symbol Tag
4001 FIND:K

After the label is entered, SYMBOLS searches the array, verifying
that no duplicates exist, and will reclear the display. Now lets
try to enter address 4001 again, the following display will

result:
Symbol Entry Phase HEHTIN
4 COMPUTER M4
Type END to dump buffer to disk §i CINCEPTS ¥
RN
{ Free Space 5733 Nunber of Syabols eoa]
Address Smbol Tag "“‘““"'}
4001

Duplicate found < 4001 FIND:K! >

Options
9 - Deletes Original Symbo!
! - Change Address to last input

Change Address? (New Address or N or Options): ?

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

10

ASM - Support Programs

If we had erred, all we have to do is type return, and the EBntry
phase screen will be redisplayed. But sometimes, we do this on
purpose. Lets say that I discovered that 4001 was not really
FIND:Kl. To delete a current symbol, I would then type 4001.
SYMBOLS would report this immediately as a duplicate.

If I pressed the '@' symbol, this will delete 4001 entry.

Also, lets say that FIND:K1 was not really address 4001, but

instead 4002. I would enter 4002 as the address, followed by the
tag FIND:X1.

Again, symbols would report the duplicate, but now, I would type
the symbol '!', This changes the address tag from 4001, to the
one I just input, 4002.

Symbols cannot contain any mathematical operator within the
framework of the label. Though not important to the
dissassembler, these mathametical operators would reek holy havoc
in the Assembler. Therefore these are trapped, and a typical
error display is shown below.

Syabo! Entry Phase MRS
¥ COMPUTER ¥4
Type END to dump buffer to disk #4 CONCEPTS M
SHIMEMM R
l Free Space 5752 Nunber of Synbols 80&‘
Address Symbol Tag
4000 LUV Y)

Sybo! contains mathematical evaluator of + ,Please Re-enter

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

11

ASM - Support Programs

Also, the first character of a symbol cannot contain any numeric,
or special code functions. The Assembler takes unkindly to that
type of label. Therefore, we hawve another type of error display
that checks these:

Smbol Entry Phase SN
COMPUTER
Type END to dump buffer to disk 8 CONCEPTS ##
HHHN AN
Uru Space 5752 Nunber of Symbols 804
Address Smbo?! Tag
4000 2ZFINBK

Smbol cannot start with $701234547890%. Data, Re-enter please

4.2 Dumping the Symbol table

When completely done editing the current symbol table, type END
to the prampt for new address. The SYMBOLS program will display
the closing screen, and request information about how to dump the
data. In almost all cases, I recommend that you allow the full
array size to be dumped. This normally gives us roam for about
1500 symbols.

Dump Symbol Buffer to Disk HAR N
M CONPUTER 4
CONCEPTS #4
HIIN
File Name Disk Address Full Array Size
SYM. 38BL 810 Y

Records Required = 42
Current file SYN.3BBL has 66 records

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

12

ASM - Support Programs

5.0 CREF Cross Reference File Program

The Cross Reference File programs is yet another tool to allow us
to break apart the code of the Wang 2200 system. These two
programs, CREF and CREF:LPI, have seperate functions.

The initial CREF:MENU is displayed:

AR
#4 COMPUTER ¥4
Cross Reference Menu #% CONCEPTS ##
]

SF’0 Cross Reference LP] Instructions
SF’{ Cross Reference MMP JSR and Branch Instructions
SF’2 Return to ASM nenu

5.1 CREF

The main CREF program allows us to accumulate all Jump, JSR and
Branch instruction target addresses, and display these on the
output devices.

By defining what paramaters we wish, we can display all
subroutines, and how many times they are called, and by whom.
This eases the burden of finding out if areas are used by other
rouines, and greatly simplifies our attempt at cracking code.

We also may enter a Symbol table into CREF. When the dump is
proceeding, the addresses, and our symbology will be printed.

CREF uses the area outside of the catalo on disk to store the
matrix table. As many accesses to the disk are normally
reguired, we recommend that the disk not be a floppy.

The following page shows a typical screen for the CREF program:

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

13

ASM - Support Programs

TR
#% COMPUTER ¥
CONCEPTS #¥
Hinstinn

Cross Reference Object Files

File Name Start Address End Address Min Accesses
9 0000 4FFF i
810

Symbol File Jump Enable JSR Enable Branch Enable
SYM. 824 Y Y Y
310

)= Address {= Address CREF 4ile nane Listing
0000 4FFF {None> 204

310

Zeroing Reference Area 14234 to 14555

The start address defined in the above screen references the
target file. In the abowe example, we want to start at location
0000. However, we could set this to any valid address within the
file. Coampilation of the targets would start at that location.

The end address defines the ending control memory location. The
search for JMP, JSR and Branch instructions will cease at that
address.

Minimum accesses simply means that the display, at the end of the
scan, will only display those locations that have been accessed
by that many or more times. When breaking bran new code, I also
set this number to about 6. The list of numbers produced will
allow me to gquickly make some intelligence about the program.

The symbol file entry is optional. However, entering a symbol
file makes for a clearer CREF listing.

The next three gquestions, Jump Enable, JSR Enable and Branch
Enable, allows us to custamize what type of CREFwe are looking
for. If we were just interested in sub-routines, then we would
only answer 'Y' to the JSR Enable. Only JSR instructions would
be accumulated.

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

14

ASM - Support Programs

The mext two gquestions defines the limits of our targets.
will enter a specific number that means if the JSR, JMP or BRANCH
instruction, vectors us to a address less than address 1,
greater than address 2, not to include these in the accumulation.

We

or

We also have the capability to Sawve the accumulation file.
Normally I do not. Finally, answer where you want the dump.

Again, most of the time we print to the 204 device.

CREF zeroes

out the reference matrix, and starts the accumulation progress.

After a 1long period of time, the printout should appear.

is a sample of the CREF output.

Cross Reference (M 0000 to 4FFF File 93 Accesses) 0 Page !
00Ct 8083 00BE

80D RESET:MS6 0oco

90E1 000F

0DE4 RESETCO:0UT 0081 0098 00CE

B0ED BACKGROUNDI 01EC 0209 021F 18F8 1ADC

00EF BACKGROUND2 0095 00D0 0144 ©149 020F 02E0 D2E1 DAA2 1A26 1C0B 1C14 ICIC 26FF 4892
00F1 BACKGROUND3 0085 0210 0292 02E2 02F6 1A23 27EC

00F8 00Fé

BOFE 00FB

00FF 90FD

8110 pI0E

0117 0115

0124 0118

0128 0125 0126

0120 Di2A 0128

0130 BEGIN:EXECUTIN 27TA

BI3F FNATOM 014F 03F2 023C 0241 0243 0244 0246 0249 D31E 1847 1CSF 1D95 3EAY 4717
0143 VECTOR:2:ATON 0141 0149

0144 ATOMRETURN 015E 0140 0141 03A0 0342 0344 0348

0145 0137

B14E 023D

0150 013D

0151 m

015F 015D

0147 0152

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed
written permission of Camputer Concepts Corporation

15

Below

ASM - Support Programs

5.2 CREF:LPI

The CREF:LPI program is similar to the CREF program, except only
LPI instructions are referenced.

?his aids us in determining Data Memory location references, and
in assisting us in determining Control Memory List functions.

Since the output is identical to CREF, only the CREF:LPI screen
is shown below.

HHan
#4 COMPUTER 89
#8 CONCEPTS #
NN

Cross Reference Dbject Files - LPI Instruction

File Name Start Address End Address Nin Accesses
9 0000 4FFF {
Bi0
Syabo! File LPI Instructions are Enabled
S, 324
310
)= Address (= Address CREF file name Listing
0060 4FFF {None) 204
310

Zeroing Reference Area 14234 to 14555

Copyright @ 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Camputer Concepts Corporation

16

	Cover
	Index
	1.0 Introduction
	2.0 ADDER
	3.0 PATCHER
	3.1 SF key 2 - Patching the disk
	3.1.1 Small patches

	3.2 Merge Object Files
	3.3 Calculation of Data Memory Checksums - SF 30
	3.4 Control Memory Checksums SF 31

	4.0 SYMBOLS
	4.1 Entry Phase
	4.2 Dumping the Symbol Table

	5.0 CREF Cross Reference File Program
	5.1 CREF
	5.2 CREF:LPI

