
Editor for Wang 2200 Assembly Language 



Editor for Wang 2200 Assembly Code 

1.0 Introduction 

The EDITOR is a primative program designed to edit raw text and 
feed the text to a contiguous disk file. This file may then be 
entered as a source file to the ASSEMBLE program, which in turn, 
will convert the text to object code format. 

EDITOR was patterned after a common character oriented text 
editor, and permits short programs to be written and modified 
prior to assembly stage. 

The output of the EDITOR program is a BA style file on the 
selected disk. Note that the EDITOR is full of limitations, and 
the user is pre-warned to allow the EDITOR to have as much room 
as possible for a partition size. 

Though the EDITOR will work in almost any size partition, large 
files will not be handled correctly. However, for almost all the 
work that the author has done to date, a 5lk partition is 
adequate for execution of fairly large programs. 

It may well be advised that the structure of the program should 
be rewritten if one is to make use of this seminar. The disk 
structure is not one that is conducive to repetative editing of 
files. 

Since this is a character oriented editor, the input of commands 
should only be done once the operation is fully understood. We 
hope that this does not intimidate the novice, but is placed here 
to help, not hinder program development. 

2.0 Text Pointers 

The nature of any character Editor is to always reference the 
current location relative to the start of the text in number of 
characters. All commands to the Editor assume that the user 
knows where they are in the text buffer. 

There are a limited number of commands available to the user that 
will alter the character pointer (CP). These commands are listed 
as follows: 

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks 
No part of this document may be reproduced without the expressed 

written permission of Computer Concepts Corporation 

1 



Editor for Wang 2200 Assembly Code 

CP altering Commands 

B	 Beginning. Sets the CP to 1, which is the top of 
the text buffer, position 1. If insertions are 
done, the inserted text always precedes the CPo 

Z	 End. Sets the CP to the last position in the 
character buffer + 1. This allows text to be 
appended to the current buffer. 

EZ	 Clear. Removes all currently entered text in the 
text buffer, and sets the CP = 1. 

nL	 Line move. Moves over n of text in the 
buffer, forward or backward. A line of text is 
defined by the OD code. Therefore, this command 
will count the number of OD (CR codes) bytes to 
pass over. 23L would pass over 23 lines of code. 

nM	 Character Move. Moves over n , forward 
or backward. - 5M would move the character pointer 
backwards. l200M relocates the CP 1200 characters 
forward. 

3.0 Status Reporting 
, 

With any character editor, it is i~rative that one knows where 
..Qe. is within the Text buffer. Therefure, the following series of 
commands were enabled to report various position reports: 

H	 Reports the amount of room left in the current 
text buffer. 

Reports the current number being processed. 

Reports the current CPo 

Types the contents of the text buffer from the 
current CP to n CR codes. IT would print the 
current line. 

nP	 Prints the contents of the text buffer from the 
current CP to n CR codes on the local printer, 
device code 204. 

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks 
No part of this document may be reproduced without the expressed 

written permission of Computer Concepts Corporation 

2 



Editor for Wang 2200 Assembly Code 

4.0 Entering Text 

New text may be entered into the text buffer by positioning the 
CP to the location to be inserted, the typing the I command. All 
text following the I command will be inserted into the text 
buffer preceding the CPo The CP will then be adjusted to the 
character position the newly entered text. 

Each line of code must be preceded by the I code. Failure to do 
this will result in the editor assuming that text is really 
commands, and procede to execute this with sometimes disastrous 
results. 

To append text to the end of the buffer, first enter the Z 
command to position the CP to the end of the buffer. Successive 
I commands will then insert text at the end. 

Examples: 

BEZ Clears text buffer 
ITEST SET RO<4 Insertes the string 

TEST SET RO <"4 
at position 1. Note that 
a CR code was appended. 

BIS/ Inserts the character S 
in front of TEST. 

B1T Would report: 
STEST SET RO < 4 

5.0 Removing text from buffer 

There are several ways to remove either characters or text from 
the buffer. These are: 

nK	 Kill lines. Removes n from the current CP 
to n number of OD fCR) codes. The CP is positioned 
after the last OD code deleted. 

nD	 Delete Characters. Removes n from the 
current CPo The CP is positioned after the last 
character deleted. 

nUtext/	 Deletes characters from the current CP to the nth 
occurance of the text following the U command to 
the delimi ter, ' / ' • 

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks 
No part of this document may be reproduced without the expressed 

written permission of Computer Concepts Corporation 

3 



Editor for Wang 2200 Assembly Code 

6.0 Changing text 

There are several occasions where just changing the text is 
required. Generally, only small sections of data need to be 
changed. To change text, the C command is used. 

Coldtextlnewtextl 

To change text, type C followed by the old text string, exactly, 
that one wishes to change. Follow the old text by the delimiter, 
defaulted to 'I', and enter what the new text is supposed to be, 
again followed by the delimiter, 'I'. 

The text buffer is searched, starting at the current CP, for the 
first occurance of the old text string. When found, the text is 
first deleted, then the new text is inserted. When completed, 
the CP should point to the of the new text. 

If one is daring, one might want to change the 2nd, 3rd etc. 
occurance of a string. nColdtextlnewtextl will bypass n-l 
occurances of the the old text, and then change the nth occurance 
of the old text to the new text. 

If the old text is not found, the CP remains unchanged, and the 
message 'No Matches Found' will be displayed. 

7.0 Finding and Searching strings in text. 

Two ways are implemented to find text strings within the text 
buffer. These two commands position the CP differently, so be 
sure which one you wish to use: 

Ftextl	 Looks for the occurance of the text specified 
prior to the delimiter, and if found, positions 
the CP of the found text. 

Stextl	 Looks for the occurance of the text specified 
prior to the delimiter, and if found, positions 
the CP the found text. 

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks 
No part of this document may be reproduced without the expressed 

written permission of Computer Concepts Corporation 

4 


	Cover
	1.0 Introduction
	2.0 Text Pointers
	3.0 Status Reporting
	4.0 Entering Text
	5.0 Removing text from buffer
	6.0 Changing text
	7.0 Finding and Searching strings in text

