MODEL 2252A
SCANNING INPUT
INTERFACE CONTROLLER

USER MANUAL

2200

??m?» _-.u a‘i_--i g'_‘n_-
?g?‘;ttni!:i; ’

L 12 KRR ST VI
Laa2 2) SOOIURNRINN - = - [

P

o

2252A

Scanning Input
Interface
- Controller

(BCD 1t010 DIGIT PARALLEL)

User Manual

g AAAAAAAAAAAA ., INC.
L ELL, MASSACHUS! S 018561, TEL. (617) 8561-4111 X 710 343-68769, TELEX 94-7421

Discla

imer of Warranties and Limitation of

Liabilities
The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein

modifies

or alters in any way the standard terms and conditions of

the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use
of this manual or any programs contained herein.

Wang Laboratories, Inc., assumes no responsibility for wiring

the male

connector, furnished with this interface controller board,

to any non-Wang equipment. In no event shall Wang Laboratories,

. Inc., or its subsidiaries be liable for any damages in connection
with or arising from the wiring or operation of non-Wang equip-
ment interfaced to a Wang system.

(WANG)

LABORATORIES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 861-4111, TWX 710 3436769, TELEX 94-7421

PREFACE

Information regarding the installation
and operation of the Model 2252A Scanning
Input Interface Controller are provided in
this manual.

Chapter 1 discusses the special features
of the Model 2252A controller and describes
how digital meters and instruments are
interfaced to a Wang System 2200.

Chapter 2 discusses programming tech-
niques for operation of the Model 2252A
controller.

Readers of this manual, particularly
Chapter 2, should be familiar with the System
2200 and its BASIC language. Anyone not
already familiar with the System 2200 should
read the BASIC Programming Manual provided
with each system before proceeding with
Chapter 2, and should use the Reference
Manual as a supplement to this manual.

iii

TABLE OF CONTENTS

CHAPTER 1 MODEL 2252A FEATURES

General Description00 ..
Connector Pin Assignments
Signal Descriptions . . . v v v v v v v v e e e e e ..
Logic-Level-Selection Switches
Mumber-of-Digits Switches
Single and Multi-Unit Device Addresses

PROGRAMMING TECHMIQUES

—t e ol —) —
. . . e e .
g LWMNOD—O

CHAPTER

Introduction « & ¢ i i i e e e e e e e e .
Device Selection ¢ ¢ ¢ ¢ v v v v v v v v ..
‘Fixed and Floating Point Input
Error Detection for Illegal BCD Input
Suppressing the CRT INPUT-Data-Echo
Program Control of Input Errors
Discrete Binary Input ¢ v o v ..
Scanning Operations ¢« ¢ ¢ ¢ ¢ v e 0 4 0 e ..
Multi-Readouts via Single BASIC Statements
2.81 The DATALOAD BT Statement
2.82 The MAT INPUT Statement
2.33 The $GIO Statement« ¢ . . o v v o ..

ONOOITRAWN—O

APPENDIX A Device Addresses for System 2200 Peripherals
APPENDIX B Device Selection for System 2200 Operations
APPENDIX C ASCII Character Set . . « ¢ v ¢ v v ¢ ¢ 4 ¢ v o 0 v o
APPENDIX D Specifications ¢ ¢ ¢ v v v v v v v v v e ..
APPENDIX E Setting the Model 2252A Address Switch
APPENDIX F Schematic Diagram for the Model 2252A Interface
INDEX o i e e et et e e e e e e e e e e e e e e e e e e e
EQUIPMENT MAINTENANCE . & & & ¢ v v v v o o v o o o o o o o o o v s
CUSTOMER COMMENT FORM . & & v ¢ 4 v ¢ 4 v ¢ o o o o o o o & e e e

iv

Last Page

(D

Table 1-1.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Figure 1-1.
Figure 1-2a.
Figure 1-2b.
Figure 1-3.
Figure 1-4.
Figure 2-1.
Figure 2-2.
Figure 2-3.

LIST OF TABLES

Model 2252A Connector Pin Assignments
Sample Scale Factors for Fixed Point Readouts
Legal and I11egal Readout Codes for INPUT Statements

with Numeric Arguments « « ¢ « o o« o e e e e e
Bit and Byte Manipulation Statements and Functions
Best-Case Times in Milliseconds Per Readout

LIST OF FIGURES

Timing Diagram, A1l Switches Up « . « « o o ..
Typical Input Circuit o v v v o v v v oo oo e
Typical Output Circuit « o o v o v v v v v v o v e
Logic-Level-Selection Switches. « .« o o o ..
Number-of-Digits Switches« o . oo oo
Sample System 2200/Model 2252A Configurations
Binary Input Schematic for Examples 2-7 and 2-8
Binary Input Schematic for Example 2-9

Page

18

21
25
31

Example
Example

Example

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

PPN e e ed = O 0N OO D w N —

WN—O0OWoONOOTPWN—O-.

RPN PPN DN N nN NN

LIST OF EXAMPLES

Requesting Readouts from Two Instruments
Separating Exponential Digits Wired as Least

Significant Digits inaReadout
Separating Exponential Digits Wired as Most

Significant Digits inaReadout
Suppressing the CRT INPUT Data Echo
Processing Input Errors00 ..
Isolating and Testing a Particular Bit in Discrete Data . . .
Converting a Binary Value to its Decimal System Equivalent. .
A Variation of Example 2-7 ¢ . . . o . ..
Reducing Execution Time for Binary to Decimal Conversion. . .

. Scanning with a KEYIN Statement
. A Variation of Example 2-10

Scanning with a $IF ON Statement

. Multi-readouts via a DATALOAD BT Statement
. Specifying N in a DATALOAD BT Statement
. Specifying S in a DATALOAD BT Statement
. Multi-readouts via a MAT INPUT Statement
. Direct Storage in a Numeric Array « . . « « . .

Suppressing the CRT MAT INPUT Data Echo
Redimensioning an Array in a MAT INPUT Statement

. Multi-readouts via a $GI0 Statement

Specifying the Number of Readouts Using an Array Modifier . .

. Specifying a Termination Code for a $GI0 Operation
. Separating Readout Data via a $UNPACK Statement

vi

CHAPTER 1
MODEL 2252A FEATURES

1.0 GENERAL DESCRIPTION

The Wang Model 2252A Scanning Input Interface Controller
(BCD 1-To-10-Digit-Parallel) is a controller board which plugs into one of the
I/0 slots in any System 2200 Central Processing Unit (CPU) chassis. A 50-pin
female Amphenol connector on the faceplate of the controller board facilitates
direct connection of a device or instrument to the System 2200.

A 50-pin male Amphenol connector is supplied with the controller board.
Responsibility for wiring the male connector to the cable from a non-Wang device
is not assumed by Wang Laboratories.

The Model 2252A input-only interface 1is directly compatible with most
digital meters for on-line applications. The interface can accept readouts with
a sign (+ or -) and up to ten decimal digits (O through 9) in standard BCD
(Binary Coded Decimal) 8-4-2-1 notation; that is, four bits per decimal digit.
Alternatively, the interface can accept up to forty-one discrete binary bits.

Four push button switches on the faceplate of the Model 2252A controller
board can be set to indicate the exact number of BCD digits, any number from 1
to 10 digits (or the number of 4-bit groups of discrete binary data) to be
strobed into the CPU for each readout. The sign bit is strobed into the CPU
regardless of the setting on the "number-of-digits" push buttons.

The sign and BCD digits (or the discrete binary data) in each readout are
accepted 1in parallel at typical TTL/DTL* voltage levels. Acceptable levels for
low signals from a device are between 0 and + 0.4 volts d.c.; acceptable levels
for high signals from a device are between + 2.4 and 5.0 volts d.c.

Digital instrument designers do not use a standard convention when letting
a pair of voltage levels ("low" and "high") represent a two-state condition such
as "true" or "false", or logic "0" or 1logic "1". Some designers let a
low-signal denote logic "0" and a high-signal denote logic "1"; other designers
reverse the definition. However, six push button switches (IS, SIGN, DATA,
EXEC, TRANS, and EOT) on the faceplate of the Model 2252A controller board
provide a logic-level-selection capability which makes a wide range of digital
instruments compatible with the System 2200. Logic level selection is available
for the following signals:

1. input strobes or 1level transitions from the interfaced device,
indicating availability of a readout,

2. the sign bit in a readout,

*TTL = transistor-transistor-logic, DTL = diode-transistor-logic

3. the data bits in a readout,
4. 'execute" signals from the interface, requesting a readout,

5. "transfer-in-progress" (busy) signals from the interface, indicating
the current readout should not be changed,

6. '"end-of-transfer" output strobes from the interface, indicating
termination of data transfer to the CPU for the current readout.

During data transfer, a code converter in the interface converts the sign
bit in a readout into an equivalent eight-bit ASCII code, where a plus is
converted to a HEX(2B) code and a minus sign to a HEX(2D) code. Also, the code
converter converts each four-bit code corresponding to one BCD digit into an
equivalent eight-bit (two hexadecimal digit) ASCII code used by the System 2200.
In the System 2200 BASIC Tlanguage, the decimal digits O through 9 are
represented by the codes HEX(30) through HEX(39), respectively. Therefore, a
four-bit code representing one BCD digit determines the Tlow-order hexadecimal
digit of its equivalent ASCII code; the interface automatically supplies the
high-order hexadecimal digit - - a hex three.

A parallel-to-series converter in the interface transfers the sign and
decimal digits in a vreadout into the CPU, one-byte-at-a-time, in sequential
order. First the sign byte is transferred. Then beginning with the most
significant digit, each successive digit in a readout is transferred to the CPU
until the total number of transferred digits equals the setting on the
number-of-digits push buttons. Finally, the interface transfers a
carriage-return character; that is, a HEX(OD) byte, denoting termination of data
transfer for the current readout.

To keep the design of the Model 2252A interface as simple as possible,
information from an instrument is read into the CPU as an integer. However,
both fixed and floating point readouts from interfaced instruments can be
processed using programming techniques presented in Chapter 2.

Several BASIC language statements can be used to program input operations
via a Model 2252A interface:

1. INPUT, available in all standard CPU's including the System 2200
A,B,C,S and T.

2. DATALOAD BT (device type=6), available in the standard System 2200
B, C and T, and in the System 2200S with Option 22, 23 or 24.

3. MAT INPUT, available in the standard System 2200T, in the System
2200 B and C with Option 1, and in the System 2200S with Option 21,
22, 23 of 24.

4. $GI0, available in the standard System 2200T, in the System 2200 B
and C with Option 2, and the System 2200S with Option 23 or 24.

D

)

)

Unless the performance characteristics of a particular interfaced
device restrict data transfer rates to the System 2200, up to 100 readings
per second can be received using INPUT and MAT INPUT statements; up to
800 readings per second can be received using DATALOAD BT statements; up to
1000 readings per second can be received using $GIO0 statements.

Other BASIC language statements can be used to scan an on-line
device interfaced via a Model 2252A controller. Statements for scanning
operations are: :

1. KEYIN, available in the standard System 2200 B,C,S and T.

2. $IF ON, available in the standard System 2200T, in the System 2200 B
and C with Option 2, and in the System 2200S with Option 23 or 24.

During a scanning operation, the Model 2252A interface is enabled
and, immediately thereafter, produces an "execute" signal level requesting a
readout. The level remains in effect until an input strobe or level
transition from the interfaced device indicates a readout is available.
Meanwhile, if a readout is not available, the interface is disabled and
program execution advances to the next statement. Therefore, a program
can be designed to test periodically for receipt of a readout while a scanning
mode of operation is in effect.

Still other BASIC language statements can be used to process data
received via a Model 2252A interface. Several very powerful bit/byte
manipulation statements (not available in the System 2200A) are available in
the standard System 2200 B,C and T, and in the System 2200S with Option 22, 23
or 24. The statements simplify programming requirements for on-line
applications involving the processing of discrete binary data. Also, the data
conversion statements $TRAN, $PACK, and $UNPACK simplify programming
requirements when processing discrete binary data; these statements are
available in the standard System 2200T, in the System 2200 B and C with Option
2, and in the System 2200S with Option 23 or 24.

For many on-line applications, a System 2200A with a Model 2252A
interface is adequate for the collection and subsequent processing of BCD
data; however, a System 2200A is not recommended for applications requiring
the processing of discrete binary data. Neither Option 1, the Matrix ROM
(Read Only Memory) nor Option 2, the General I/0 ROM are available for the
Systﬁm 2200A. Also, the KEYIN statement is not included in the System
2200A.

1.1 CONNECTOR PIN ASSIGNMENTS

The information included in this section 1is essential for anyone
planning to wire the Model 2252A male connector to the cable from a
non-Wang device or instrument. Other readers may wish to omit this section.

Functional assignments for the 50 pins in the Model 2252A
Amphenol connector are listed in Table 1-1. An open pin connection for any
input circuit is equivalent to a high-level signal for that circuit.

Table 1-1.

Model 2252A Connector Pin Assignments*

Pin 8-4-2-1 Pin 8-4-2-1

Number Function Position Number Function Position

01 Do (most 1 37 D7 (eighth 1

02 significant 2 38 significant 2

03 digit) 4 39 digit) 4

04 8 40 8

19 D1 (second 1 M Dg (ninth 1

20 significant 2 42 significant 2

21 _digit) 4 43 digit) 4
22 8 a4 8

05 D2 (third 1 45 Dg (tenth 1

06 significant 2 46 significant 2

07 digit) 4 47 digit) 4

08 8 48 8

23 D3 (fourth 1 17 Sign hit

24 significant 2

25 digit) 4 18 Input strobe

26 8 31 Execute signal

09 Dy (fifth 1 49 Transfer-in-

10 significant 2 progress

11 digit) 4 50 EOT output

12 8 strobe

27 D5 (sixth 1 32 Prime strobe

28 significant 2 33 +

29 digit) 4 3! - 0 volts

30 8

13 Dg (seventh 1 35 + 5 volts

14 significant 2

15 digit) 4 36 Chassis

16 8 ground

*A11 Togic is BCD 8-4-2-1 TTL compatible, positive true.

pins are at high Tlevel.
37 through 48 can be used for input of up to 41 discrete data bits rather than

BCD data.

Open

input circuit

Pins 01 through 16, Pin 17, Pins 19 through 30, and Pins

The layout of the 50-pin Model 2252A connector for the System 2200 is
compatible with the 36-pin connectors for the Model 705 and 605 microinterfaces
used with the Wang 700 Series and 600 Series calculators. The functions
assigned to Pins 01 through 36 in the Model 2252A connector are identical to the
functions assigned to pins with the same numbers in either the Model 705 or the
Model 605 connector. Therefore, if desired, an instrument formerly interfaced
to a 700 or 600 Series calculator can be interfaced to the System 2200 by
removing the 36-pin male connector and wiring the 50-pin Model 2252A connector
to the instrument cable.

NOTE:

1. The Model 2252A interface can function properly if Pins
37 through 48 for input of three BCD digits (not
included in the 36-pin Model 605 and 705 connectors) are
tied to the + 0 volt circuits on Pins 32, 33, and 34, or
the number-of-digits switches are set for input of seven
or less BCD diqits (see Section 1.4).

2. Pins 49 and 50 in the Model 2252A connector can be Tleft
unconnected if the control signals available on these
pins. (Transfer-in-progress and EOT) cannot be utilized

g%ooa particular device being interfaced to the System

1,2 SIGNAL DESCRIPTIONS

Like Section 1.1, the information in this section is included for readers
who plan to wire the Model 2252A male connector to the cable from a non-Wang
device or instrument. Other readers may wish to omit this section.

Pin 17 Sign Bit - - One circuit is provided for the sign bit in each
readout (or input of one discrete binary bit). A.logic "1" signal
level on Pin 17 1dis interpreted as a plus sign; logic "0" is
interpreted as a minus sign. When the sign bit is transferred to
the CPU, the code converter on the Model 2252A interface converts
a logic "1" signal level into the eight-bit ASCII code HEX(2B) for
a plus sign. The code converter converts a logic "0" signal level
on Pin 17 into the ASCII code HEX(2D) for a minus sign. The Up/
Down position of the SIGN switch on the controller faceplate
determines the signal level definition for the Pin 17 circuit (see
Section 1.3).

Pins 01-16 Input Data - - Forty parallel circuits are provided for up to ten
19-30 BCD digits (each represented by the 8-4-2-1 bit-positions
37-48 specified in Table 1-1), or up to forty discrete binary bits per

readout. When a readout is transferred to the CPU, the data bits
are processed 4-bits at a time, sequentially, beginning with the
bits representing the most significant BCD digit (see Table 1-1).
The code converter on the interface converts each four-bit code
into an eight-bit (two hexadecimal digit) ASCII code by supplying
a hexadecimal three (0011)2 code as the high-order hexdigit and
letting the incoming -4-bit code determine the low-order hex-
digit. Conversion and transfer of the next sequential 4-bit group
in a readout ceases when the number of processed groups equals the
setting on the number-of-digits push buttons on the controller
faceplate (see Section 1.4). The Up/Down position of the DATA
switch on the controller faceplate determines the signal level
definition for all forty input data pins (see Section 1.3).

5

Pin 31

Pin 18

Pin 49

Execute Signal - - The outgoing "initiation" or "request" level on
Pin 31 is set to logic "1", when the Model 2252A interface (and
the System 2200) is ready to receive an input strobe (or level
transition) from the interfaced device. The Tlevel is reset to
logic "0" five microseconds after an input strobe (or level
transition) is received from the interfaced device. In general,

for many interfaced instruments, a logic "1" Tlevel on .Pin 31
requests a data readout or initiates a settling condition in the
interfaced instrument. However, if an-instrument is not designed
to generate input strobes, Pin 31 can be tied directly to Pin 18
so the "execute" signal effectively causes the Model 2252A
interface to begin an immediate transfer of data. The Up/Down
position of the EXEC switch on the controller faceplate determines
the) signal level definition for the signal on Pin 31 (see Section
1.3). ,

NOTE:

Upon request, a Wang Service Representative can modify
the Execute signal circuit on a Model 2252A interface
controller to produce the following timing change. 1In
the standard sequence, the Execute level is reset to
Togic "0" (not requesting) five microseconds after re-
ceipt of an input strobe; in the modified sequence,
the Execute level is not reset to logic "0" until
transfer of a readout to the CPU is completed. Such a
change may be needed for devices designed to utilize a
single signal level for two purposes: (1) as "request
to send data", and (2) as "transfer-in-progress, indi-
cating the current readout should not be changed ".

Input Strobe - - A2 ps minimum pulse width input strobe or Tevel
transition from the interfaced device must be received on Pin 18
to initiate data transfer to the CPU via the Model 2252A
controller, or Pin 31 rust be tied to Pin 18 if the interfaced
device is not designed to generate dinput strobes. The Up/Down
position of the IS switch on the controller faceplate determines
whether the leading edge of the strobe or 1level transition is
low-to-high or vice versa (see Section 1.3).

Transfer-in-progress Signal - - The outgoing "ready/busy" signal
level on Pin 49 14s set to logic "1" (busy, transferring) five
microseconds after the Model 2252A 1interface receives an input
strobe (or Tlevel transition) via Pin 18 and remains at the logic
"1" Tevel until all data in the readout has been transferred;
then, the Tevel is reset to logic "0" (ready, not transferring).
If an interfaced instrument is designed to sense the level on Pin
49, a Tlogic "1" indicates data transfer is in progress and the
current readout should remain unchanged; a Tlogic "0" dindicates
data transfer 1is not in progress and the readout can be changed.
The Up/Down position of the TRANS switch on the controller
faceplate determines the signal definition for the signal on Pin
49,

6

B

Pin 50

Pin 32

EOT (End of Transfer) Output Strobe - - A 6.5us pulse width output
strobe is provided on Pin 50 at the time the Model 2252A interface
transfers an ASCII HEX(0D) byte to the CPU denoting termination of
the current readout transfer sequence. The Up/Down position of
the EOT switch on the controller faceplate determines whether the
leading edge of the strobe is low-to-high or vice versa (see
Section 1.3).

Prime Output Strobe - - A 5us pulse width output strobe is gen-
erated when the RESET button on a Wang keyboard is depressed to
interrupt processing and return system control to the operator.
Generally, the signal is utilized by a device as a reset/initial-
ization signal.

In Figure 1-1, a timing diagram is shown for the control signals Execute,

Input Strobe,

Transfer-in-progress, and End of Transfer. Several assumptions

are indicated for the timing diagram.

IS

TRANS

EQT

EXEC ——

) __Jz——Optional*

« - —' I_

Je S5us =

545 >

I
!
!
I
!
|
|

I
)
I] «

F—S.usﬁd—z 4ms ——-»I

r-685~|<—— ~ 5ms ___.‘

Typical timing using an INPUT statement,
assuming 10 BCD digits per readout.

*Upon request, a Wang Service Pepresentative
can modify the EXEC circuit for applications
requiring an extended duration signal not
reset until data transfer is completed.

Figqure 1-1. Timing Diagram, All Switches Up

Typical I/0 circuits for the Model 2252A Scanning Input Interface
Controller are shown in Figures 1-2a and 1-2t. Aﬁ§

165V

s 3"
S
o o——-——/ S

Gate
(Internal) 2

Figure 1-2a. Typical Input Circuit

+5V

+5V 1K

SIGNAL
§ 2K [y O our

Fioure 1-2b. Typical Output Circuit

1.3 LOGIC-LEVEL-SELECTION SWITCHES

Six "logic level selection" switches are located on the Model 2252A
controller board faceplate (see Figure 1-3). The push button switches are
provided because digital instrument designers do not use a standard convention
when letting a pair of voltage levels ?"low" and "high") represent a two-state
condition such as "true" or "false", "on" or "off", and logic "0" or logic "1".
Some designers let a low-signal denote logic "0" and a high-signal denote logic
"1": other designers reverse the definition.

—
2 <
. 3 i S = d
n o X @£ o L wary = o
L » Wk W o >5z " N < ©02
wEx o
o 3 .
@ 38,—:. S A
TR =
. NeNwoN < oYas o=
- == 2

Figure 1-3. Logic-Level-Selection Switches

The proper Up/Down setting for each logic-level-selection switch on a
Model 2252A controller board depends upon the function of a particular switch
relative to the manufacturer's specifications for the particular device or
instrument plugged into the controller,

NOTE:

1. Responsibility for setting the six logic-level-selection
switches on the Model 2252A controller board should be
assumed by the person who wires the Model 2252A male
connector to the cable from a device being interfaced to
the System 2200.

2. Once properly set, changes in the Up/Down positions of
the six Tlogic-level-selection switches should be
unnecessary until a different instrument is plugged into
the Model 2252A interface.

qude]ines for setting the logic-level-selection switches are given now.
The guidelines may be omitted by any reader not responsible for setting the

switches.

[sten

| l DATA

l:l EXEC

The SIGN switch controls the signal 1level definition for the
sign-bit (Pin 17) in each readout from the interfaced device. For
processing by the System 2200, a plus (+) sign should be
represented by logic "1" and a minus (-g sign by logic "0". Check
?h?] manufacturer's specifications; then set the SIGN switch as
ollows: ‘

UP: If {+ (Togic "1")
- (Togic "0")

is the high-level signal, and
is the low-level signal.

is the high-level signal, and

1
0
0
1") is the low-level signal.

DOWN: 1 ¢- ilogic "o")
+ (logic "1")

The DATA switch controls the signal level definition for the up to
forty data bits in each readout from the interfaced device. Check
the manufacturer's specifications; then set the DATA switch as
follows: '

up: If flogic "1" is the high-level signal, and
logic "0" is the low-level signal.

DOWN: If { Togic "0" is the high-level signal, and
Togic "1" is the Tow-level signal.

The EXEC (Execute) switch controls the signal level definition for
the outgoing logic "1" (request or initiation) Tevel on Pin 3]
of the connector. If the interfaced device requires a "request"
level to initiate a readout or a settling condition, check the
manufacturer's specifications; then set the EXEC switch as
follows:

UP: If a low-to-high leading edge transition represents a
"request" signal. .

DOWN : '}fa hiéh-to-]ow leading edge transition represents a
request" signal.

NOTE:

If Pin 31 has been tied to Pin 18
because the interfaced device cannot
utilize the Execute (request) signal,
the EXEC switch can be set UP or DOWN
(but then the IS switch must be set
identically).

10

~.-

[

[:::] IS

[:I TRANS

The IS (Input Strobe) switch controls the definition of the input
strobe (or the level transition) sent from the interfaced device
to Pin 18 of the connector to initiate data transfer to the System
2200. If the device has an input strobe capability, check the
manufacturer's specifications; then set the IS switch as follows:

UpP: If the leading edge of the strobe or level transition
is low-to-high, as shown.
- - - +2.5 vdc (min)
—2 1S —»

1 (min) | _ _ +0.4 vdc (max)

DOWN: If the leading edge of the strobe or level transition
is high-to-low, as shown.

%#.s N i +2.5 vdc (min)

min)

— - +0.4 vdc (max)

NOTE:

If the interfaced device does not have
an input strobe capability and Pin 31
has been tied to Pin 18, the IS switch
must be set the same as the EXEC switch;
that is, both UP, or both DOWN.

The TRANS (Transfer-in-progress, busy) switch controls the signal
level definition of the outgoing signal on Pin 49. The level is
set to logic "1" (transferring, busy) five microseconds after the
interface receives an input strobe (or level transition) via Pin
18. A logic "1" indicates data transfer is in progress and the
current readout should remain unchanged. A logic "0" indicates
data transfer is not in progress and the readout can be changed.
If the interfaced device can utilize such a signal, check the
manufacturer's specifications; then set the TRANS switch as
follows:

UP: If {logic "1" is the high-level signal, and
logic "0" is the low-level signal.

DOWN: If {logic "0" is the high-level signal, and
logic "1" is the low-level signal.

11

[:::] EOT The EOT (End of Transfer) switch controls the definition of the
6.5 microsecond output strobe on Pin 50. The strobe indicates
transfer of the current readout is complete. If the interfaced
device can utilize such a strobe, check the manufacturer's
specifications; then set the EQT switch as follows:

UP: If the leading edge of the EOT strobe should be

Tow-to-high, as shown.
- — — + 5 vdc (max)

6. 5us —H
b= =~ 0 vdc (min)

DOWN: If the Teading edge of the EOT strobe should be
high-to-low, as shown.

— — + 5 vdc (max)
— — 0 vdc (min)
1.4 NUMBER-OF-DIGITS SWITCHES

Four "number of digits" switches are located on the Model 2252A controller
board faceplace (see Figure 1-4). The switches are 1labeled 1, 2, 4, and 8,
respectively. The switches can be set to indicate the exact number of BCD
digits, any number from 1 to 10, to he strobed into the CPU for each readout.
Also, for applications involving input of discrete binary data, the switches can
be set to indicate the number of groups of discrete binary data (with 4-bits per

group).

P |

(0,>9=10)

Figure 1-4. MNumber-of-Digits Switches

The labels on the number-of-digits switches are similar to position
coefficients by which 4-bit binary numbers can be converted into decimal
numbers. If a switch is Up, its position coefficient is multiplied by "zero";
if a switch is Down, its position coefficient is multiplied by "one". Now, if
the position coefficients for all NDown switches are summed, the sum can range
from a minimum value of zero to a maximum value of fifteen; however, a zero
sum or a sum greater than nine is converted automatically to the value ten by
the interface. For example, if the number-of-digits to be strobed into the CPU
;gr each readout is five, set the switches as follows: Down (4 and 1), Up (8 and

12

é@%

~. -

NOTE:

1. Responsibility for setting the four number-of-digits
switches on the Model 2252A controller board should be
assumed by the person who wires the Model 2252A male
connector to the cable from a device being interfaced to
the System 2200. ‘

2. Once properly set, changes in the Up/Down positions of
the four number-of-digits switches should be unnecessary
until a different instrument is plugged into the Model
2252A interface.

The number-of-digits selectivity feature of the Model 2252A interface "
provides the following advantages:

1. Wiring of unused BCD digit input circuits to a logic "0" level is not
necessary.

2. Less time is required to transfer a readout to the CPU (approximately
0.5 milliseconds per BCD digit during INPUT statement execution).

3. Less memory is required when storing multireadouts 1in alphameric
arrays during execution of DATALOAD BT, MAT INPUT, or $GIO statements.

If the setting on the number-of-digits switches is zero or a value greater
than nine, ten BCD digits are read by the interface (in addition to the sign
bit). The sign bit is read first; then, the BCD digits are read in the
sequential order Dg, D1, D2, . . . , Dg. Do corresponds to the input circuits
on Pins 1 through 4 in the connector. D; corresponds to the circuits on Pins 19
through 22. The correspondence.for each BCD digit is defined in Table 1-1.

If the setting on the number-of-digits switches is "k", where 1sk<10, the
following BCD digits are read sequentially (after reading the sign bit); Dy

Dl, Dz, e o o) Dk_lo

1.5 SINGLE AND MULTI-UNIT DEVICE ADDRESSES

For program goqtro] of I/0 operations, the System 2200 utilizes a
three-hexadecimal-digit (12-bit) device addressing procedure with codes of the
form xyy, where

X represents the Device Type, and

yy represents the Preset Address of a specific controller board (or one
channel of a dual-channel board).

Dgring execution of a particular I/0 operation, the x-digit (that is, the
four h1gh-order bits in a 12-bit address code) determines which microcode
programming routines are used by the system. The yy-digits (that is, the eight
Tow-order bits in a 12-bit address code) determine which I/0 device controller
in the CPU chassis is enabled for execution of an operation.

13

The correct yy-digits for a particular I/0 controller board correspond to
the setting (the ON-OFF configuration) of an 8-pole address switch on the
printed circuit (PC) board. The address switch is set before,a board is shipped
from the factory or when a board is installed in the CPU (see Appendix E). Care
must be exercised, when an address switch is set, to ensure address uniqueness
with respect to other boards installed in the same CPU chassis. Address
settings should conform to the list of standard addresses recommended by Wang
Laboratories (see Appendix A). '

An address switch is neither visible nor accessible after a controller
board 1is mounted in the CPU chassis of a System 2200 configuration. However,
after an address switch on a PC board is set, a label showing the device address
(or addresses, in the case of a dual-channel board) is attached to the faceplate
of the controller board. Because the System 2200 BASIC 1language syntax for
address codes requires a three-hexdigit address code, device address labels
always show three-hexadecimal-digit codes which include a "standard" device type
digit as well as the two hexdigits corresponding to the preset address of the
particular board. :

The device type digit in the address code shown on a controller board

label is not always appropriate for every I/0 operation to be performed by the
controller board. Sometimes a different device type code must be used. If so,
the recommended device type code for a particular operation is given usually
with the general form of the I/0 operation, or in a discussion of programming
techniques for a particular controller board. On the other hand, the preset
address digits in the address code shown on a controller board label must not be
changed unless the address switch on the controller board is reset by a Wang
Service Representative,

In Appendix A, the six standard address codes reserved for Model 2252A
units are shown. The address codes are 25A, 25B, 25C, 25D, 25E, and 25F. In
System 2200 configurations with only one Model 2252A interface, the device
address of the interface should be 25A (that is, the preset address of the
controller should be 5A). 1In a dual-unit configuration, the device address. of
one Model 2252A unit should be 25A and the address of the other unit should be
25B. If a third Model 2252A interface is added to a System 2200 configuration,
the address of the third interface should be 25C.

Usually, instructions for reading and setting a Model 2252A address switch
are unnecessary. However, if the person responsible for wiring the Model 2252A
male connector to the cable from a non-Wang device needs to check the address
switch on a Model 2252A interface, Appendix E contains instructions for setting
the Model 2252A address switch.

14

'd

'

CHAPTER 2
PROGRAMMING TECHNIQUES

2.0 INTRODUCTION

Some programming techniques for Model 2252A applications are presented in
this chapter. However, if the chapter is to be completely meaningful, a reader -
must be familiar with the System 2200 BASIC 1language and with general
programming techniques for the system.

2.1 DEVICE SELECTION

When the System 2200 is Master Initialized (that is, power is turned off
and then on again), the "primary devices" are selected automatically for classes
(groups) of input/output operations identified by the I/0-class parameters CI
(console input), INPUT, CO (console output), PRINT, LIST, TAPE, DISK, and PLOT.
To be a primary device, a device must be plugged into a controller board whose
address is o?e of the five default addresses for the System 2200 (001, 005, 10A,
310, and 413).

For example, after Master Initialization, the keyboard controller with
address 001 is selected automatically (that is, by default) for execution of all
operations included in the I/0 classes denoted by two parameters (CI and INPUT).
Similarly, the CRT Executive Display controller with address 005 is selected
automatically for execution of all operations included in the I/0 classes
denoted by three parameters (CO, PRINT, and LIST). .

See Appendix B of this manual. There, the primary devices are listed in
Table B-1. The 1I/0 operations and class parameters for the System 2200 are
jdentified in Chart B-1. Also, the general format of the SELECT statement is
discussed since SELECT statements are used to assign addresses of nonprimary
devices to I/0-class parameters. A study of Chart B-1 shows that some
I/0-classes are identified by a parameter which is the same as the name of one
operation included in the class (see INPUT, PRINT, LIST, and PLOT).

Any device or instrument interfaced to the System 2200 via a Model 2252A
Scanning Input Interface Controller is not a primary device; that is, the Model
2252A controller is not selected by default for execution of any operation after
the system is Master Initialized. Before a Model 2252A interface can be
accessed by the system for execution of a particular operation, one of the
following conditions must exist:

1. the address of the interface (for example, 25A) must be specified in
the particular BASIC Tlanguage statement being executed (if the
statement syntax permits an address specification?, or

2. the address of the interface must be the last address assigned, by a

SELECT statement, to the I/0-class parameter governing the particular
operation.

15

For example, upon execution, the statement
SELECT INPUT 25A

assigns the address 25A to the I/0-class parameter INPUT which governs ° device
selection for execution of INPUT, KEYIN, and MAT INPUT statements.

Three sample System 2200/Model 2252A configurations are shown in Figure
2-1. Two configurations contain one Model 2252A interface; the third
configuration contains two Model 2252A interfaces.

Now, assume the digital voltmeter in the dual-unit configuration is
connected to the System 2200 via a Model 2252A interface with address 25A, and
the digital clock is connected to the system via an interface with address 25B.
Additionally, assume the following:

’

1. the system has just been Master Initialized,
2. a program stored on a tape cassette has been loaded into memory, and
3. the command RUN EXECUTE has been entered via the keyboard.
Furthermore, assume the first statement in the program now in memory is:
10 INPUT X

If so, the system recognizes the default address 001 (the keyboard) as the
device to access for data input requested by the INPUT statement in Line 10.
Consequently, a question mark appears on the CRT to indicate the system is
awaiting input via the keyboard controller. However, if the program's objective
is] obtaining a readout from the digital clock, the program should begin as
follows: -

10 SELECT INPUT 25B
20 INPUT X

(See Example 2-1 for an illustration of how readouts are obtained from two
instruments.) -

16

DIGITAL MODEL 22524 SYSTEM MODEL 2201
——— - ——
COUNTER INTERFACE 2200 > OuTRUT
WRITER
10 Channel DIGITAL MODEL 22524 MODEL 2212
VOLTMETER [INTERFAcE [SYSTEM2200 —3 "0 rreR
DIGITAL MODEL 22524
VOLTMETER [™ INTERFACE \
DIGITAL : MODEL 2252A " SYSTEM MODEL 2201
cLock > INTERFACE [2200 > OUTPUT
WRITER
MODEL 2242 /
DISK

Figure 2-1. Sample System 2200/Model 2252A Configurations

Example 2-1. Requesting Readouts from Two Instruments

The following program uses a J-loop to request 50 readouts from an
instrument connected to the System 2200 via an interface with address 25A.
After each readout is received, the accumulated sum of the readouts is
calculated; then the Tloop-counter, the corresponding readout, and the current
sum are printed. After the last readout is received, the program requests one
readout from an instrument connected to the system via an interface with address
25B. Finally, the program reassigns the primary devices to the I/0-class
parameters INPUT and PRINT.

Program Sequence Comments
10 S=0 Set sum to zero.
20 SELECT INPUT 25A, PRINT 211 Select interface 25A and the Output Writer.
30 FOR J=1 TO 50 Set up loop for 50 readouts.
40 INPUT X Request one readout.
50 S=S+X Accumulate sum of readouts.
60 PRINT "J="3J,"X=";X,"S="3;S Print loop-counter, readout, and sum.
70 NEXT J Continue loop.
80 SELECT INPUT 25B Select interface 25B.
90 INPUT Y Request one readout.
100 PRINT "Y="3;Y Print the readout.

110 SELECT INPUT 001, PRINT 005 Reselect keyboard & CRT.
' 17

NOTE: -

As a general programming practice, before a program
terminates, primary devices should be reassigned to any
I/0-class parameters to which nonprimary devices have been
assigned. Otherwise, a particular nonprimary device
currently selected for an I/0-class parameter may be
inappropriate for the logic of another program, if the next
program is run without first Master Initializing the system.

2.2 FIXED AND FLOATING POINT INPUT

To keep the Model 2252A logic as simple as possible, a decimal point
character 1is not hardwired in the interface; data from an instrument is read
into the CPU as an integer. Since an instrument usually is connected
permanently to one interface, programming techniques similar to those presented
in this section can be used to transform integer input into the appropriate
fixed or floating point format.

After fixed point data is read into the system as an integer, the decimal
point can be inserted in the data by using a scale factor in one program step.
Table 2-1 shows several different fixed point formats in the 1left column. In
the right column of the table, a two-line program sequence is shown for each
fixed point format. Assuming the interface controller has been selected in an
earlier step, a readout is requested by Line 50, and the integer value is stored
in the numeric variable Y. Then, the decimal point is inserted in the value by
Line 60. '

Table 2-1. Sample Scale Factors for Fixed Point Readouts
Fixed Point Format* Program Sequence
SXXXXXXXXX . X 50 INPUT Y

60 Y = .1*Y
S XXXXXXXX « XX 50 INPUT Y

60 Y = .0T*Y
SXXXXX . XXXXX 50 INPUT Y

60 Y = Y*IE-5
S « XXXXXXXXXX 50 INPUT Y

60 Y = Y*1E-10

* s = sign; x = any BCD digit (where the number of digits read into the system
depends upon the setting on the number-of-digits switches); the decimal point is
not read into the system.

18

™

Numbers whose common notation consists of a fixed point quantity
multiplied by an integral power of ten (e.g., 1.5923 x 108 or .15923 x 107) are
said to be in "scientific notation" if the decimal point appears after the first
non-zero digit, and to be in "normalized notation" if the decimal point appears
in front of the first non-zero digit. Similarly, the floating point
representation of a number consists of two sets of digits: (1) the significant
digits (non-zero first digit) in the number and (2) the exponential digits. The
representation is said to be in normalized format if the implied decimal point
js at the extreme left of the significant digits. For example, the normalized
floating point format for the above numbers is 15923+07.

For Model 2252A applications, floating point formats can be read into the
system as an dinteger. Then programming techniques similar to those shown in
Examples 2-2 and 2-3 can be used to separate the exponential and significant
digits in the data. However, scale factors (needed for separation of the two
types of digits) cannot be chosen until after answers to the following questions
are supplied by the person who wired the Model 2252A connector to the cable from
the interfaced device:

1. What is the setting on the number-of-digits switches on the interface
(that is, how many digits are transferred to the CPU per readout)?
The answer can be any number from 1 to 10.

2. How many digits in each readout represent the exponent? The answer
depends upon the design of the interfaced device.

3. 1Is an additional scale factor implied in each readout? The answer
depends upon the design of the interfaced device.

4. 1Is the connector wired to receive the exponential digits in the
leftmost (most significant; positions of the integer readout, or the
rightmost (least significant) positions?

The following assumptions are made in Examples 2-2 and 2-3:

1. The setting on the number-of-digits switches is 8.

2. Each readout contains two exponential digits (therefore, six
significant digits).

3. There is no built-in scale factor in the readouts.

4. 1In Example 2-2, the exponential digits are the rightmost digits in the
readout; in Example 2-3, the exponential digits are the leftmost
digits in the readout.

5. The sample readout used in the examples 1is equivalent to the

normalized value .756029 X 10% which is read into the system as
75602904 in Example 2-2, and as 04756029 in Example 2-3.

19

Example 2-2. SeparatingAExponential Digits Wired as Least Significant
Readout Digits ,

Program Sequence Comments
10 SELECT INPUT 25A Select interface 25A for input.
20 INPUT X Request a readout (e.g., 75602904).
30 X1 = X*.01 Insert a decimal point between the significant
and the exponential digits (X1 = 756029.04).
40 X2 = INT(X1) Separate the significant digits (X2 = 756029).
50 X3 = (X1-X2)*100 Separate the exponential digits

[X3 = (756029.04 - 756029)*100 = 4].

Additional program logic cén be written, using the significant digits now stored
in X2, and the exponent stored in X3.

Example 2-3; Separating Exponential Digits Wired as Most Significant
Readout Digits

Program Sequence Comments
10 SELECT INPUT 25A Select interface 25A for input.
20 INPUT X Request a readout (e.g., 04756029).
30- X1 = X*1E-6 Insert a decimal point between the

significant and the exponential digits
(X1 = 4.756029).
INT(X1) Separate the exponential digits (X3 = 4).
(X1-X3)*1E6 Separate the significant digits
[X2 = (4.756029-4)*106 =756029].

40 X3
50 X2

As in Example 2-2, the significant digits are stored in X2, and the exponent is
stored in X3. Additional program logic can be written, as required, for a
particular application.

2.3 ERROR DETECTION FOR ILLEGAL BCD INPUT

Only ten of the sixteen unique 4-bit codes shown in Table 2-2 are legal

input when data 1is read into the System 2200 via a Model 2252A interface

during execution of an INPUT statement with a numeric argument; for example,

100 INPUT X
250 INPUT Y5

20

g”“

-

Table 2-2. Legal and I11egal Readout Codes for INPUT Statements with
Numeric Arguments

8-4-2-1 Equivalent Equivalent
Codes BCD-digit Hexdigit
0000 0 0
(0001 1 1
0010 2 2
0011 3 3
Legal) 0100 4 4
0101 5 5
0110 6 6
0111 7 7
\1000 8 8
1001 9 9
1010 None A
1011 None B
I1legal {1100 None C
1101 None D
1110 None E
1111 None F

The INPUT statement processing procedure includes one event not found in
other input operations. When each byte is transferred to the CPU buffer from
the controller board currently selected for INPUT-class operations, an "echo" of
the byte is sent to the CRT display (unless another device has been selected for
CO-class operations).

Once a carriage-return character is transferred to the CPU buffer, the
system begins processing the data. A special event occurs if data is to be
stored in a numeric variable location - - a test for legal characters is made
before storing the data. If an illegal character is encountered (see Table
2-2), transfer of the buffered data is not made; an error message is sent to the
C0 (console output) device. The message appears on the line below the data
echo. Next, the system requests additional data, repeatedly if necessary, until
legal data is received for storage.

On the other hand, if data is to be stored in an alphameric variable (as
required for applications involving discrete binary data), no test is made
before storing the data - - all sixteen codes in Table 2-2 are legal for INPUT
statements with alphameric arguments. However, even though no automatic error
detection occurs in the processing procedure, an error detection procedure can
be programmed to check data for numeric validity after its storage in an
alphameric variable. See Section 2.5.

21

2.4 SUPPRESSING THE CRT INPUT-DATA-ECHO

When data is received by the System 2200 during execution of an INPUT
statement, an echo of the data appears automatically as output on the device
currently selected for console output (CO-class) operations. The echo usually
gggears on the CRT screen since the default address for CO-class operations is

The INPUT-data-echo can be suppressed, if desired. For example, if an
application requires the CRT display to remain undisturbed while readouts are
being received from an interfaced device, use a programming technique similar to
the one in Example 2-4.

Select the address of the Model 2252A interface for console output
operations immediately before each single INPUT statement appearing in a program
or immediately before each multi-readout INPUT-statement-loop (i.e., a Toop
containing only an INPUT operation, as illustrated in Example 2-4). Then, the
INPUT-data-echo is sent to the interface rather than the CRT; but,.because the
interface is an input-only device, the echo characters are ignored. However,
the CRT must be reselected for console output operations immediately after each
single INPUT statement appearing in a program or immediately after each
multi-readout INPUT-statement-loop appearing in a program. Reselection of the
CRT for console output operations is necessary because some system operations
included in the CO-parameter category can cause trouble if implemented via a
Model 2252A interface controller which has been left selected while additional
program logic is being executed.

Alternatively, select the address of the Line Printer (usually 215) or the
Output Writer (usually 211) for console operations, thereby obtaining a hard
copy of the INPUT-data-echo.

Example 2-4. Suppressing the CRT INPUT-data-echo

Program Sequence Comments
10 DIM Y(100) Dimension the Y-array for 100 elements.
20 SELECT INPUT 25A Select interface 25A for INPUT-class
. operations.
86 SELECT CO 25A Send echo to interface during INPUT Toop.
90 FOR J=1 TO 100 Set up the J-loop for 100 readouts.
100 INPUT Y(J) Requ?it a readout for the Jth element
of Y().
110 NEXT J Continue the Tloop.
120 SELECT CO 005 Reselect CRT for CO-operations.
260 SELECT INPUT 001 Reselect the keyboard.

22

NOTE:

Do not attempt to send the INPUT-data-echo to any device
controller address not dincluded in the CPU chassis of the
system being used. If a nonexistent address is assigned to
the CO-parameter in a SELECT statement, the system locks out
when the statement is executed. To regain control, the
operator must Master Initialize the system, thereby clearing
all memory.

2.5 PROGRAM CONTROL OF INPUT ERRORS

: Program control of erroneous BCD input is possible using NUM functions and
CONVERT statements. The NUM function and the CONVERT statement are available in
the System 2200 B, C, S and T (but not in the System 2200A).

Briefly, a NUM function determines the number of valid numeric bytes,
including sign bytes, stored in a specified alphameric variable. The NUM
function can be included in an IF...THEN statement to test a specified
condition.

A CONVERT statement converts the numeric value stored in a specified
alphameric variable from the ASCII format (that is, 8-bits per decimal digit and
per sign) to the System 2200 internal numeric format (that is, 4-bits per
decimal digit and 1 bit per sign) and then stores the result in a specified
numeric variable.

In Example 2-5. an INPUT statement with an alphameric argument is used to
request a readout (Line 110). The readout stored in the alphameric variable is
tested for numeric validity (Line 120) by comparing the number of valid numeric
bytes in X$ with the total number of bytes in X$ (determined by the LEN
function). The LEN (length) function is very useful for Model 2252A
applications since it calculates the total number of bytes in a specified

variable, thereby removing the necessity to specify the number of bytes.

After the test is made in Line 120, a conditional branch to Line 200 is
made if X$ contains any non-numeric data. No illustrative programming logic is
given for Line 200; however, processing of erroneous values might consist of
printing operations or counting operations. If X$ contains only numeric data,
no branch is made to Line 200; program execution proceeds from Line 120 to Line
130, where the system is instructed to convert the data for storage in the
numeric ‘variable X.

23

Example 2-5. Processing Input Errors

Program Sequence Comments
100 SELECT INPUT 25A Select the Model 2252A interface for
input.
110 INPUT X$ Request a readout and store in X$.

120 IF NUM(X$) <LEN(X$) THEN 200 If X$ contains any non-numeric bytes,
branch to the logic for processing
input errors.

130 CONVERT X$ TO X Convert the readout to an internal

. numeric value and store in X.

]éO GOTO 300 Continue execution at Line 300.
200 REM PROCESS ERROR Remark indicating start of error
. : processing logic.

360 SELECT INPUT 001 Reselect keyboard.
A substantially longer program sequence is needed to accomplish the same

results if a System 2200A is used since the NUM function and.the CONVERT
statement used in Example 2-5 are not available in the System 2200A.

2.6 DISCRETE BINARY INPUT

Up to 41 discrete binary bits can be supplied, in parallel, to the Model
2252A interface for storage in an alphameric variable (or array element)
specified in an INPUT statement. With an alphameric argument, the automatic
error detection procedure discussed in Section 2.3 is bypassed, thereby ensuring
the acceptability of any set of contiguous binary bits.

Discrete binary input is read by the interface in the sequential order
described in Section 1.4 and converted into ASCII codes as described in Section
1.2. "For example, a discrete bit received via Pin 17 of the interface connector
is transferred to the CPU as the low-order bit in a HEX(2B) or HEX(2D) code
which 1is stored as the first byte in the specified alphameric variable. Four
discrete bits received via Pins 1 through 4 become the 1-2-4-8 Tlow-order bits,
respectively, in a HEX(3h) code; that is, the discrete bits determine the
low-order hexdigit h. The resulting 8-bit code is stored as the second byte in
the alphameric variable. Similarly, four discrete bits received via Pins 19
through 22 are converted to another HEX(3h) code and stored as the third byte in
the alphameric variable. The conversion and transfer procedure continues until
the number of 4-bit-groups of discrete binary data equals the setting on the
number-of-digits switches.

After discrete binary input is stored in memory, the data can be processed
by straightforward programming techniques such as those illustrated in Examples
2-6 through 2-9. Usually, programming logic for discrete binary applications
can be simplified by using one or more bit and byte manipulation statements or
functions shown in Table 2-3. The table indicates statement/function
availability with respect to four System 2200 CPU models. Also, the data
conversion statements $TRAN, $PACK, and $UNPACK in the General I/0 ROM (Read
Only Memory) can be used to process discrete binary data.

24

Table 2-3. Bit and Byte Manipulation Statements/Functions
(Availability denoted by "x")

Statement/ 22008, 2200S with
Function 2200A | C & T 2200S | Opt. 22, 23 or 24

ADD
AND,OR, XOR
BIN

BOOL
CONVERT
HEXPRINT
INIT

NUM

PACK

POS

ROTATE
UNPACK i
VAL |

5 X X X X X X X X X X XX
X X X X X X X X X X X XX

Example 2-6. Isolating and Testing a Particular Bit in Discrete Data

Assume a Model 2252A interface with address 25B is supplied with 13
bits in parallel, on input circuits corresponding to the sign bit and the BCD
digits denoted by Dy, Dy and D, in Table 1-1, The following program
sequence stores the 3ata in the varjable Y$ and then tests the data to
determine whether the low-order bit corresponding to D, is equal to i

Program Sequence Comments
10 DIM Y$4, B$1 Dimension Y$ and B$.
20 SELECT INPUT 25B Select the interface.
30 INPUT Y$ Request a readout and store in Y§.
40 B$ = STR(Y$,3,1) Store the 3rd byte of Y$ in BS.
50 AND(B$,01) Replace the seven high-order bits in B$ by zeroes.

60 IF B$ = HEX(01) THEN 150 Test for low-order bit = 1.

Now, consider the following application. A Model 2252A interface
is supplied with a readout representing a sign and a 16-bit binary value.
Receive and store the readout; then convert the binary value to an
equivalent decimal system value.

Programming techniques for such an application are presented in

Examples 2-7 through 2-9. Example 2-9 requires less execution time than
Examples 2-7 and 2-8. ‘

25

By assumption, in Examples 2-7 and 2-8, the Model 2252A connector is wired
to receive a sign bit and a 16-bit binary value as shown in Figure 2-2.
Therefore, to convert the binary value to its decimal equivalent, first convert
each group of four binary bits to a hexdigit and then evaluate a polynomial 1in
powers of 16. Setting, ho = the equivalent hexdigit for Do, h; = the hexdigit
for D;, h, = the hexdigit for D,, and h; = the hexdigit for D; , then the
algorithm for the absolute value of the decimal number is

X =‘3i‘, (16)33n, = (16)3h. + (16)%h. + 16h, + h
“5 i 0 1 2" "3

e

See Lines 60 through 90 in Example 2-7 and Lines 50 through 80 in Example 2-8
for some programming techniques utilizing the algorithm.

16] 15 b14 131 12 11 b10 91 8

~
(o))
(S,
»
w
N

N &+ ™M N H N H O & 0 I~ O
Pins 4~ o© © © o a8 & & H © o o

05
26
25
24

Figure 2-2. Binary Input Schematic for Examples 2-7 and 2-8

Example 2-7. Converting a Binary Value to its Decimal System Equivalent

Program Sequence Comments
10 DIM X$5, B$1 Dimension variables X$ and BS$.
20 SELECT INPUT 25A Select the interface.
30 INPUT X$ Request a readout.
40 B$ = STR(X$,1,1) Save the sign.
50 AND(X$,0F) Replace the four high-order bits in each
byte by zeroes.
60 X = VAL(STR(X$,5,1,)) Let X = floating point value (f.p.v.) of
the fifth byte of X$.
70 X = X+16*VAL(STR(X$,4,1)) Add 16 times the f.p.v. of the fourth
byte of X$.
80 X = X+256*VAL(STR(X$,3,1)) Add 256 times the f.p.v. of the third
] byte of X$.
90 X = X+4096*VAL(STR(X$,2,1)) Add 4096 times the f.p.v. of the second
byte of X$.
100 IF B$ = "+" THEN 120 If sign positive, go to Line 120
110 X = -X Correct the sign.

120 REM NEXT LOGIC

26

<¢§

)

(3

Example 2-8. A Variation of Example 2-7
Program Sequence Comments

10 DIM X$5

20 SELECT INPUT 25A

30 INPUT X$

40 AND(X$,0F)

50 X=20

60 FORJ =2T0 5 Set up J-loop to evaluate the floating
~ point value.

70 X = 16*X + VAL(STR(X$,J,1))

80 NEXT J

90 X = X*(12-VAL(X$)) Multiply by plus or minus one.

In Line 90 of Example 2-8, the function VAL(X$) calculates the floating
point equivalent of the first byte of X$. In Line 40, the first byte of X$ is
replaced by HEX(0B) or HEX(OD), depending on the original input. Therefore,
12-VAL(X$) is equal to plus one for (0B);g or minus one for (0D);s. See Example
2-9 for a more rapid conversion method.

Example 2-9. Reducing Execution Time for Binary to Decimal Conversion

By wiring the Model 2252A connector to receive a sign bit and a 16-bit
binary value as shown in Figure 2-3, and using the ROTATE statement, less
execution time is required for binary to decimal conversion than the time
required for execution of the methods in Examples 2-7 and 2-8. By comparison
with Figure 2-2, observe that the 4 highest-order bits are received on the D
input circuits, and the 4 lowest-order bits are received on the D; input circuitd
in both diagrams; the bits corresponding to hexdigit h; are received on the D,
circuits, and the bits corresponding to hexdigit h, are received on the D,
circuits in Figure 2-3 (in contrast to the wiring in Figure 2-2).

S — |)0 Pl Dl Plg— D2 — et 03 —
- h,)i h2 »a h1 >l h3 —>
Sign
bit b16 blS bl4 b13 b8 b7 b6 b5 b12 bll blO b9 b4 b3 b2 bl
Pins & ¥ 8 ¥ 5 8§ 5 &8 2 8 5 8 8 g & I &
Figure 2-3. Binary Input Schematic for Example 2-9
Program Sequence Comments
" 10 DIM X$5 -
20 SELECT INPUT 25
30 INPUT X$ xs (28] or (200 [Gh) [30)); [O3hy)y6 | B0y)y
40 AND(X$,OF) xs [(0B);q ox (OD),¢ | (Oh)) g [(OR,), ¢ [(ORy)yq | (ON,))
50 ROTATE(STR(X$,2,%),4) 4o xs [(o8), or (00) [(n o) tn0) Jeon) [on)
60 OR(STR(X$,2,2),S R(X$s) (08, o () [ngn) Jenn) Jeon Teony) o

2,5))
70 X = 256*VAL(STR(X$,2,1))+ AL(STR(X$,3,]))“

80 X = x*(12-VAL(x§))

27

2.7 SCANNING OPERATIONS

The scanning feature of the Model 2252A interface can offer advantages
for applications involving devices or instruments with 1long settling or
response times.

Programming techniques for scanning operations wutilize one of
the following BASIC language statements:

1. KEYIN, avéi]ab]e in the standard System 2200 B, C, Sand T.

2. $IF ON, available in the standard System 2200T, in the System 2200 B
and C with Option 2, and in the System 2200S with Option 23 or 24.

Neither statement is available in a System 2200A configuration.

In -a typical scanning operation, a KEYIN or a $IF ON statement 1is used
periodically to test the data-ready-condition of a Model 2252A interface.
Between tests, other program logic can be executed or other devices scanned.

The scanning mode is initiated the first time a KEYIN or $IF ON statement
is executed and remains in effect until data is received, regardless of how many
times one particular statement 1is executed or several such statements are
executed.

The general form of the KEYIN statement is:
KEYIN alpha-variable, 1ine-number, 1ine-number

According to the statement syntax, an alphameric variable (or array element)
and two Tine numbers must be specified. For Model 2252A applications, the
1ine numbers should be identical.

No address code can be specified in a KEYIN statement. During KEYIN
execution, the system enables the device currently selected for INPUT-class
operatiors, or the default device (the keyboard with address 001). Therefore,
to -scan an interfaced device with a KEYIN statement, the address of the
interface controller must be assigned to the SELECT statement parameter INPUT,
as shown in Examples 2-10 and 2-11.

When a Model 2252A interface is enabled for a KEYIN operation, the
interface sets the Execute signal level on Pin 31 to logic "1" to indicate the
system is ready to receive input from the interfaced device; the "request" level
on Pin 31 remains set until input is received (see Section 1.2). Then, the CPU
tests the data-ready-condition on the interface board and implements one of the
following procedures:

1. If a data-not-ready-condition 1is sensed, the interface is
disabled. Program execution advances to the next program
statement. (The "request" 1level remains in effect ° on the

interface board, and one readout can be received while the board
is disabled.)

2. If a data-ready-condition is sensed, the interface reads the sign
bit (the 1input signal on Pin 17), converts the bit to a HEX(2B) or
HEX(2D) byte, and transfers the byte to the CPU. The sign byte is
stored as the first byte in the specified alphameric argument,
and program execution branches to the first specified 1ine number.

28

when a data-ready-condition exists during a KEYIN scanning operation, the
sign of a readout is received separately since only one byte is processed by a
KEYIN statement. However, an INPUT statement can be used to receive the
‘remaining information in the readout, as shown in Examples 2-10 and 2-11.

The general form of the $IF ON statement is:

$IF ON | #n, 1ine-number
[XXX,

Though optional, address specification in a $IF ON statement is recommended.
(If neither an absolute nor indirect address is specified, the system enables
the controller board currently selected for TAPE-class operations.) One 1line
number must be specified in an actual statement.

when a Model 2252A interface is enabled for a $IF ON operation, the CPU
tests the interface data-ready-condition. If a not-ready condition is sensed,
program execution advances to the next program statement. If a ready condition
is dsensed, program execution branches to the specified Tine number. No data is
read.

Use of a $IF ON statement is shown in Example 2-12.

Example 2-10. Scanning with a KEYIN Statement

Program Sequence Comments
10 DIM X$11 Dimension X$ (one more than no.-of-digits
setting, assumed here to be 10).
20 SELECT INPUT 25A Select interface 25A for INPUT-class
operations.
30 KEYIN X$, 100, 100 On 1st pass, initiate scanning mode.

On subsequent passes, test data ready/not-ready.
If ready, store readout sign as Ist byte in

X$, and branch to Line 100 to receive

remaining bytes.

40 REM OTHER LOGIC If not-ready in Line 30, begin other logic.
96 GOTO 30 Return to scanning operation.

100 INPUT STR(X$,2,10) Receive and store rest of readout.

110 CONVERT X$ TO X Convert to numeric value.

120 REM BEGIN NEXT LOGIC

29

Example 2-11. A Variation of Example 2-10

Program Sequence .Comments
10 DIM X$1 Dimension X$ (one byte).
20 SELECT INPUT 25A Select interface 25A.
30 KEYIN X$, 100, 100 (See Line 30 in Example 2-10.)
40 REM OTHER LOGIC If not-ready, begin other logic.
96 GOTO 30 Return to scanning operation.
100 INPUT X Receive readout without sign and store in X.
110 IF X$ = "+" THEN 130 * If sign positive, skip to Line 130.
120 X = -X Insert correct sign in X.

130 REM BEGIN NEXT LOGIC

Example 2-12. Scanning with a $IF ON Statement

Program Sequence Comments
10 SELECT INPUT 25A Select interface 25A
20 $IF ON /25A, 100 On 1st pass, initiate scanning mode.

On subsequent passes, test data
ready/not-ready. _
If ready, branch to Line 100.

30 REM OTHER LOGIC If not ready in Line 20, begin other logic.
96 GOTO 20 Return to scanning operation.
100 INPUT X . Receive readout and store in X.

110 REM BEGIN NEXT LOGIC

2.8 MULTI-READOUTS VIA SINGLE BASIC STATEMENTS

In previous sections, INPUT statements are used to request readouts via a
Model 2252A interface; however, other BASIC language statements offer advantages
for applications requiring a block of readouts to be stored before data
processing begins. The statements are:

1. DATALOAD BT (device type = 6), available in the standard System 2200
B, C and T, and in the System 2200S with Option 22, 23 or 24.

2. MAT INPUT, available in the standard System 2200T, in the System 2200B
and C with Option 1, and in the System 2200S with Option 21, 22, 23 or
24.

3. $GI0, available in the standard System 2200T, in the System 2200 B and
- C with Option 2, and in the System 2200S with Option 23 or 24.

Each statement provides the capability to receive a block of readouts for
storage in a specified array. For DATALOAD BT and $GIO statements, the
specified array must be alphameric; for MAT INPUT statements, the specified
array can be numeric or alphameric.

30

J

In Table 2-4, "best case" comparisons are given in milliseconds per
readout for the following sample program statements:

1. INPUT with numeric arguments:
INPUT A, B, C, D, E

2. INPUT with alphameric arguments:
INPUT A$, B$, C$, DS, E$

3. MAT INPUT with numeric array:

DIM A(10)
MAT INPUT A

4. MAT INPUT with alphameric array:

DIM A$(10)11
MAT INPUT A$

5. DATALOAD BT with alphameric array:

DIM A$(10)12
DATALOAD BT /65A, A$()

6. $GIO with alphameric array:

DIM A$(10)12, B$10
$GIO /25A (€640, BS$) A$()

To each time given in Table 2-4 must be added any response time of the
instrument and any additional delays due to different programming techniques.
Also, in general, the time required to convert data stored in specified
arguments (or to save data on another peripheral) is longer than the time
required to read the data into memory initially.

Table 2-4. Best-Case Times in Milliseconds Per Readout*

Number-of-
digits 0 |7 |4 |2 1

Statement

INPUT (numeric argument) 8.6 | 7.8 6.4 |5.4]4.8
INPUT (alphameric arguments) 8.116.9 5.7 |4.9 | 4.5
MAT INPUT (numeric array) 8.2 7.1 5.9 |5.1 |4.7
MAT INPUT (alphameric array) 7.8 1 6.7 | 5.5 | 4.8 | 4.4
DATALOAD BT /65A 1.1 0.84} 0.56] 0.37} 0.28
$GI0 /25A (C640 1.0 | 0.75] 0.5 | 0.33] 0.25

fFor.devices with set@]ing times in excess of 10 milliseconds, percentage gains
]mp11ed by values in the table are overshadowed by the slowness of the
interfaced device.

31

During execution of a DATALOAD BT, MAT INPUT, or $GI0O statement, the
multi-readout transfer sequence usually terminates when the specified array has
been filled. However, under certain circumstances, data transfer can be
terminated by a special code if signal levels can be gated into the Model 2252A
connector to produce a unique non-BCD digit code. When statement execution
begins, the Model 2252A interface is enabled for the particular operation; the
controller board sets the Execute level on Pin 31 to logic "1" to dindicate the
system is ready to receive input. Five microseconds after an input strobe is
received by the interface, the Execute level 1is set to logic "0" by the
interface and remains so while transfer of the readout to the CPU is in
progress. When transfer of the current readout is complete, the CPU presents a
ready level to the interface; the interface, in turn, sets the Execute level to
logic "1" to request another readout. The process continues until sufficient
readouts are received to satisfy the array dimensions, or until a special
termination code is received, or until a predetermined number of readouts is
received.

2.81 THE DATALOAD BT STATEMENT

The general form of the DATALOAD BT statement for Model 2252A applications
is:

- . _Jhh #n, alpha-variable-2
DATALOAD BT [([N expresswn], [S"{alpha-variab]e-l}])] [/xyy,]%a]pha-array-designator

where, the components are defined as follows:

N A parametér used to denote the number of bytes to be read.

expression : A specified number, or an expression to be evaluated (and
truncated to an integer which must be> 1).

S A parameter used to denote a termination (stop) code.

hh A pair of hexdigits specifying a termination code.

alpha-variable-1 An alphameric variable whose first byte specifies a
termination code.

n An indirect address, a file number (1,2,3,4,5, or 6).

xyy An absolute address, whose Ahexdigit x must be 6 and

hexdigits yy must be the preset address of the interface
(e.g., 5A,5B,5C,5D,5E, or 5F).

alpha-variable-2 A specified alphameric variable or array element, defining
a storage location.

alpha-array- An entire array (all elements in a one or two dimensional

designator array) defining a block of storage into which consecutive

bytes are read. Elements of a two-dimensional array are
filled row-by-row. An array designator is denoted by an
array name followed by left and right parentheses; e.g.,
X$(), ¥55().

32

Note:

1. A comma must separate the N and S parameters if both are
specified; e.g., (N=1200, S=3F).

2. If an array is specified, its dimensions must be
specified previously in a DIM statement. Array
dimensions are restricted as follows:

a) bytes per element, 64 maximum,

b) elements per row, 255 maximum,

c) number of rows, 255 maximum, and

d) elements per array (i.e., number of rows
times elements per row), 4096 maximum.

3. Array dimensions must be large enough to accommodate the
specified or expected number of bytes but not 1large
enough to produce a table overflow condition.

The DATALOAD BT statement offers the following features:

1. A device address (device type = 6) can be specified, so no SELECT
statement is necessary.

2. A predetermined number of readouts can be received and stored in an
alphameric array.

3. A termination code can be specified.

During statement execution, readouts are accepted until one of the following
conditions is satisfied (whichever occurs first):

1. The specified array is filled.
2. The specified number of bytes is received.
3. The specified termination code is received.

If execution is terminated by a specified code, the interface will not
have completed its current readout transfer cycle which ends with a
carriage-return character, i.e., a HEX(OD) byte. Therefore, an additional
DATALOAD BT statement is needed to complete the cycle as shown in Example 2-15.

During execution, successive readouts are stored in successive elements of
the specified array. The data in each readout are converted by the interface to
ASCII character codes before storage, and the carriage-return character is
stored also. (The carriage-return character is not stored during execution of
an INPUT statement.) For convenience, the length of each array element should
be equal to the setting on the number-of-digits switches plus one additional
byte for the sign of the readout and one additional byte for the carriage-return
character.

Example 2-13 illustrates the use of a DATALOAD BT statement to receive 100
readouts via a Model 2252A interface, assuming the setting on the
number-of-digits switches is 10. :

33

Example 2-13. Using a DATALOAD BT Statement |

Program Sequence Comments
10 DIM X$(100)12, X(100) X$-array: 100 elements, 12 bytes/element.
20 DATALOAD BT /65A, X$() Request 100 readouts for storage in X$().
30 FORJ =1 TO 100 Set up J-loop.

40 CONVERT STR(X$(J),1,11) TO X(J) Convert each readout (excluding
carriage-return byte) to a numeric value.
50 NEXT J

Example 2-14. Specifying N in a DATALOAD BT Statement

The parameter N can be used to specify the total number of bytes to be
received in a DATALOAD BT operation. A variable or an integer can be assigned
to the parameter N. If a variable is assigned, the system calculates the value
of the variable and truncates the result to an integer. If the integer is not
greater than or equal to one, execution is terminated and an error message shown
on the CRT. A sample format to receive 20 readouts with 12 bytes per readout
(assuming a 10 BCD digit readout) is: -

10 DIM X$(100)12
20 DATALOAD BT (N=240) /65A, X$()

Example 2-15. Specifying S in a DATALOAD BT Statement

The parameter S can be used to specify a special termination code. The
technique is wuseful for applications where the number of readouts cannot be
predetermined. However, a termination signal level must be available in the
interfaced device; the signal must be gated to the Model 2252A connector and
must produce a unique non-numeric 4-bit code (see Table 2-2). In applications
not requiring a sign as part of the readout, the Pin 17 level can be utilized
for an S code. Since a logic "1" on Pin 17 produces a HEX(2B) code when a
readout 1is transferred to the CPU, set S=2B as shown in Line 20 - - if a logic
"1" from the device corresponds to a termination signal:

Program Sequence Comments
10 DIM X$(100)12, R$12 For 10 BCD digits per readout.
20 DATALOAD BT (S=2B) /65A, X$() Receive readouts until an ASCII plus is
received.

30 DATALOAD BT (S=0D) /65A, R$ Complete transfer of last readout which
terminates with a carriage return code.

Now, assume the connector on another interface (standard address 25B)
is wired to produce a hexdigit F code when a termination signal is available.
Since the code is converted to a HEX(3F) by the interface, set S=3F as shown
in Line 120 below.

Program Sequence Comments

110 DIM Y$(300)8, Z$8 For 6 BCD digits per readout.

120 DATALOAD BT (S=3F) /65B, Y$() Receive readouts until an incoming
hexdigit F is received.

130 DATALOAD BT (S=0D) /65B, Z$ Complete transfer of last readout.

34

The "stop character" (the termination code) 1is stored in the
specified alphameric array. However, as shown in the following sequence, the
POS function can be used to isolate the array element containing the
termination character while data is being converted. (Line 140 is
unnecessary; the Y-array dimension should be included in Line 110.)

140 DIM Y(300)

150 J =

160 IF POS(Y$(J) = HEX(3F)) >0 THEN 190
170 CONVERT STR(Y$(J),1,7) TO Y(J)

180 J = J+1 : IF J<= 300 THEN 160

190 REM CONVERSION LOGIC COMPLETE

2.82 THE MAT INPUT STATEMENT

The syntax and features of the MAT INPUT statement are presented in
detail in the Matrix Statements Reference Manual.

The MAT INPUT statement is similar to the INPUT statement with respect
to a data echo feature. During execution of MAT INPUT statements, an echo of
each received byte is sent to the device currently selected for CO (console
output) operations.

The MAT INPUT statement is unlike the INPUT statement with respect
to specification of an argument 1list. For an INPUT statement, acceptable
arguments are limited to numeric or alphameric variables, including
specific array elements; an array designator is not acceptable. For a MAT
INPUT statement, the system automatically interprets each specified argument
as an array (array designator notation is implied but not used) -
- the syntax requires specification of numeric or alphameric array names
without the left and right parenthesis used in the standard array
designator notation. (A DIM statement must supply the dimensions of each
array included in a MAT INPUT statement.) See Examples 2-16 through 2-19.

When compared with the DATALOAD BT statement, the MAT INPUT
statement offers an advantage for numeric-only multi-readout applications
since readouts can be received and stored directly in specified numeric
arrays, thereby reducing subsequent data processing requirements. On
the = other hand, the transfer rate per readout for MAT INPUT statements is
less favorable than the rate for DATALOAD BT statements. The MAT INPUT
rate per readout is constrained by a 0.5 ms transfer rate per byte compared to
a 0.1 ms transfer rate per byte for DATALOAD BT operations. Thus,
there are trade-offs to consider when programming a particular application
if both the DATALOAD BT and the MAT INPUT statements are available.

If an alphameric array is specified in a MAT INPUT statement,
readouts received via the Model 2252A interface are stored as ASCII
characters. If a numeric array is specified, readouts are converted to the
System 2200 internal numeric format before storage.

35

The carr1age -return character supplied by the interface to denote the end
of each readout is not stored during a MAT INPUT operation (a feature similar to
the INPUT statement). To conserve storage, the length of each alphameric array
element should be equal to the setting on the number-of-digits switches plus one
additional byte for the sign of the readout. Exact length specification is not
required, however, since each array element is filled with space characters if a
readout contains less bytes than the dimension of the element.

No device address can be specified in a MAT INPUT statement. During
execution, the system enables the device currently selected for INPUT-class
operations, or the default device (the keyboard with address 001).

Example 2-16. Using a MAT INPUT Statement

The following sequence receives 36 readouts via a Model 2252A interface
with address 25A and stores the readouts in ASCII codes. Twenty readouts are
stored in X$() and sixteen readouts in Y$(). Since the carriage-return
character is not stored, the readouts can be converted as shown in Lines 40
through 60. :

10 SELECT INPUT 25A

20 DIM X$(20)11, Y$(4,4)11, X(20)
30, MAT INPUT X$, Y

40 FOR J =1 TO 20

50 CONVERT X$(J) TO X(J)

60 NEXT J

Example 2-17. Direct Storage in a Numeric Array

The following sequence receives 30 readouts and converts each readout to a
numeric format before storage.

10 SELECT INPUT 25A
20 DIM x(30)
30 MAT INPUT X

Example 2-18. Suppressing the CRT MAT INPUT Data Echo

The MAT INPUT data echo can be suppressed by the same technique used in
Example 2-4 (see Section 2. 4)

10 DIM C(30)

20 SELECT INPUT 25A, CO 25A
30 MAT INPUT C

40 SELECT INPUT 001, CO 005

36

Example 2-19. Redimensioning an Array in a MAT INPUT Statement

Another feature of MAT INPUT statements may be useful for Model
2252A applications. An array can be redimensioned in the statement.
However, a two-dimensional array cannot be redimensioned as a one-dimensional
array, and vice versa. During execution of a MAT INPUT statement, the
last specified dimensions apply unless new dimensions, enclosed 1in
parenthesis, follow the array name. See the Matrix ROM Reference Manual and
the following sequence.

10 DIM X$(10)5
20 MAT INPUT X$(4)1

In Line 20, the array X$ is redimensioned from a 10 element array with
5 bytes per element to a 4 element array with 11 bytes per element. Thus,
four readouts are received when Lineé 20 is executed. When an array is
redimensioned, the new dimensions cannot require more bytes of storage
than previously. required.

2.83 THE $GIO STATEMENT

The syntax and features of the $GI0 statement are presented in detail
in the General I/0 Instruction Set Reference Manual.

The $GI0 statement, together with the $UNPACK statement in the General
I/0 ROM, can be wused to develop some of the most time-efficient
programming techniques for receiving multi-readouts. via a Model 2252A
interface and also converting the data into the System 2200 internal numeric
format. Furthermore, for applications where each readout represents
several discrete values, the $UNPACK statement can be used subsequent to a
$GI0 or another input operation) to develop an efficient technique for
separating discrete information and simultaneously converting the data, if
required.

The $GI0 statement is unlike any other BASIC language statement.
The statement provides, within the framework of the System 2200 BASIC
language, a "general input/output" capability designed to meet the
individual signal-sequence requirements of a wide variety of 1/0
peripherals and to optimize I/0 performance for these peripherals. Signal
sequences for I/0 operations can be custom-tailored by specifying a
microcommand sequence in the $GI0O format. Specification of a microcommand
sequence is similar to machine language programming and can be made
directly or indirectly in a $GI0O statement. A single microcommand
prescribes a fundamental operation consisting of several steps; a sequence of
microcommands structures a customized operation. Each microcommand s
represented by a four hexdigit code (two bytes). The General I/0 Instruction
Set Reference Manual describes seventeen available categories of microcommands
and presents subcategories in a-set of tables. However, because of the
generality of the $GIO statement, many microcommands cannot be used for Model
2252A applications.

37

Because the Model 2252A interface controller is designed for
input-only operations, and incoming data is limited to a prescribed
format by the particular interfaced device in each application, only one
microcommand should be needed to customize a $GIO operation for a majority of
possible applications. (see Examples 2-20 through 2-23).

Though optional, specification of a device address in a $GI0 statement

is recommended. (If neither an absolute nor dindirect address is
specified, the system enables the controller board currently selected
for * TAPE-class operations.) The $GI0 syntax requires a

three-hexdigit-address even though the device type hexdigit is not utilized
during statement execution. Device type =2 1is used in Examples 2-20
through 2-22 for consistency with all operations except DATALOAD BT which
requires device type = 6 for Model 2252A applications.

Example 2-20. Multi-readouts via a $GIO Statement

The following sequence receives 20 readouts via a Model 2252A
interface (address 25A) and stores the readouts in the X$-array,
defined as a one-dimensional array with a storage capacity for 20 elements
with 12 bytes per element. (Each readout consists of a sign, 10
BCD digits, and a carriage-return.)

10 DIM X$(20)12, (X20), R$10
20 $GIO /25A (C640, R$) X$()
30 D$ = HEX(000D)

40 $UNPACK (D=D$) X$() TO X()

In Line 20, the signal sequence of the $GI0 operation is defined by
the single microcommand C640. R$ is the specified "arg-2" register (required
by the statement syntax); however, the information normally stored in an arg-2
register serves no appropriate function for the microcommand used here.
Therefore, the size of the array (total number of bytes) should be a multiple
of the number of bytes per readout. The exact number of bytes per
readout is equal to the setting on the number-of-digits switches plus two (one
for the sign and one for the carriage-return).

In Line 30, D$ is the delimiter specification variable for the
$UNPACK operation. Such a variable must contain a minimum of two bytes (any
additional bytes are ignored by the system). The first byte defines which
one of the alternative unpacking procedures is to be used during statement
execution, and the second byte defines the actual delimiter code for the
operation; for example, (OD)16 represents the carriage-return character
which serves as the delimiter "for each readout. (See the General 1I/0
Instruction Set Reference Manual for a discussion of the alternative unpacking
procedures.)

38

)

Example 2-21. Specifying the Number of Readouts Using an Array Modifier

In Example 2-20, 240 bytes are transferred to the CPU during execution
of Line 20 since the size of the X$-array is defined to be 20 elements
with 12 bytes per element, according to the dimension statement in Line 10.
However, the number of bytes to be transferred to the CPU can be specified
within a $GI0 statement by using an "alpha array modifier" as demonstrated in
Line 20 of the following sequence. (The alpha array modifier is defined
in the General I/0 Instruction Set manual.)

10 DIM Y$(40)16, Y(20), R$10

20 $GIO /25A (C640, R$) Y$() <1,240>
30 D$ = HEX(000D)

40 $UNPACK (D=D$) Y$() TO Y()

Even though the Y$-array is dimensioned with 40 elements of 16 bytes
per element, the alpha array modifier <1,240> implies that the operation in
Line 20 is to be performed for 240 bytes beginning with the first byte of
Y$(). Since the $UNPACK statement treats the array to be unpacked as a
contiguous group of characters, the length of each array element need not
match the number of bytes per readout (assumed here to be twelve).

Example 2-22. Specifying a Termination Code for a $GIO Operation

The following sequence demonstrates the use of $GI0 and $UNPACK
statements to receive and convert multi-readouts until a specified
termination code is received; namely, HEX(3C) corresponding to input of
a code (1100), on input circuits ordinarily allocated for one of the incoming
BCD digits (see Table 2-1). For simplicity, the assumption is made in
Line 10 that the interfaced device does not supply more than 100 readouts
before the non-numeric termination code is likely to occur.

Program Sequence Comments

10 DIM X$(100)12, X(100), R$10 Receive 100 readouts, maximum.

20 R$ = HEX(3C) Store termination code as first
byte of R$.

30 $GIO /25A (€600, R$) X$() Receive data until HEX(3C) is
received.

40 N = 256*VAL(STR(R$,9,1))+VAL(STR(R$,10,1)) Calculate total number of bytes

50 N = INT(N/12)*12 - received (excluding readout
containing HEX(3C) code).

60 D$ = HEX(030D) Define delimiter code (0D),q and
unpacking procedure (03);¢-

70 $UNPACK (D=D$) X$() <1, TO X() Convert received data to numeric
values.

80 R$ = HEX(OD) Redefine termination code.

90 $GIO /25A (C600,R$) F$ Complete transfer of remaining

39

In Example 2-22, Line 40 utilizes the fact that the ninth and tenth
bytes of the arg-2 register (specified as R$ in Line 30) contain the A‘%
count (stored as a two-byte binary value) of the number of bytes received -
during the $GIO operation 1in Line 30. Note that the count, defined as N,
in Lines 40 and 50 is used in the alpha array modifier of Line 70 to limit the
number of bytes to be converted.

Example 2-23. Separating Readout Data via a $UNPACK Statement

The following sequence demonstrates use of the field format specification
in a $UNPACK statement to separate parts of a readout received via a Model 2252A
interface. Assuming the number-of-digits setting on the interface is 10, Line
20 stores 12 bytes in X$(), starting with byte five. Also, -assuming the five
high-order bytes (beginning with the sign byte) are to be separated and stored
in A$, then bytes 7, 8, 9 are to be stored in B$, and the 10th and 11th bytes
are to be stored in C$, Line 30 defines the field specification variable for the
unpacking operation. (The twelfth byte, the carriage-return, is-not included in
the unpacking operation.)

Program Sequence Comments
10 DIM X$(30)1,R$10
20 $GIO /25A (C640, R$) X$()<5,12> Receive and store 12-byte readout.
30 F$ = HEX(A0050001A003A002) Define the field format.

40 $UNPACK (F=F$) X$() <5,12> TO A$,B$,C$ Separate the readout by fields.

The field format specification variable, F$, is interpreted as follows: ~éf§

A005 - 0001 A003 A002
——

-—— e e :
l L. Transfer next two ASCII bytes to the 3rd argument.
Transfer next three ASCII bytes to the 2nd argument.

+ Skip next field (length 1 byte).

- Transfer first five ASCII bytes to the 1st argument.

L]

Alternatively, the fhree fields can be converted to numeric values during
the unpacking operation by rewriting Lines 30 and 40 as follows: N

30 G$ = HEX(1005000110031002)
40 $UNPACK (F=G$) X$() <5,12> TO A,B.C

In the field specification variable G§, the specification 1005 means
"convert the first five bytes from an ASCII format to a numeric format".
Similarly, 1003 means "convert the next three bytes from an ASCII format to a
numeric format". (See the General I/0 Instruction Set manual for a discussion
of field specification codes.) - ‘

fﬁ%

40

-

APPENDIX A -- DEVICE ADDRESSES FOR SYSTEM 2200 PERIPHERALS

Device Categories

& Model Numbers Standard Addresses*
Keyboards (2215, 2222, 2223) 001, 002, 003, 004
CRTs (2216, 2216A) 005, 006, 007, 008
Cassette Drives (2217, 2218) ' 10A, 10B, 10C, 10D, 10E, 10F

Line Printers (2221, 2231, 2261, 2272) | 215, 216

Output Writer (2201) 211, 212

Plotters (2202, 2212, 2232) 413, 414

Disk Drives (2230, 2240, 2242, 2243, 310, 320, 330
2260)

Mark Sense Card Reader (2214) 517

Hopper Feed Card Readers (2234A, 2244A) | 628

Punched Tape Reader (2203) 618

I/0 Interface Controller, RS-232-C 019, 01A, 01B Input
Compatible (2207A) - 01D, 01E, O1F OQutput
Asynchronous Telecommunications 219, 21A, 21B Input
Controller (2227) 21D, 21E, 21F Output

I/0 Interface Controller, 8-Bit- 23A, 23C, 23E Input
Parallel (2250) 23B, 23D, 23F Output

BCD Input Interface Controllers 25A, 25B, 25C, 25D, 25E, 25F

(2252, 2252A)
Digitizers (2262-1, -2, -3) 25A, 25B, 25C, 25D, 25E, 25F

*Since a System 2200 configuration may include more than one device be-
longing to a particular category, more than one standard address is
listed for most categories. If a configuration has only one device in
a particular category, that device is set up with the first device
listed for the category (e.g., a single cassette drive is assigned the
address 10A). If a configuration has more than one device ‘in .a par-
ticular category, the addresses listed for the category are assigned
sequentially (e.g., two cassette drives in one configuration are as-
signed the addresses 10A and 10B). The controller board into which
a device is plugged has a label showing the assigned address. Address
uniqueness is essential for the devices in one configuration.

41

APPENDIX B -- DEVICE SELECTION FOR SYSTEM 2200 OPERATIONS

Five address codes are designated as Primary Device Addresses for the
System 2200. Whenever the system is Master Initialized (i.e., power is turned
off and then on again), each primary device becomes the default address for one
or more of the eight I/0 classes into which all System 2200 I/0 operations are
divided. See Table B-1.

‘Table B-1. Primary/Default Device Addresses

Address Primary -Address for Default Address for

Code Device Category I/0 Classes

001 Keyboards CI (Console Input)
INPUT

005 CRTs CO (Console Output)
PRINT
LIST

10A Cassette Drives TAPE

310 Disk Drives DISK

413 Plotters PLOT

In Chart B-1, most of the operations included in each I/0 class are shown.
Four of the I/0 classes are identified by a parameter which is identical to one
of t?e operations included in the class (see the classes INPUT, PRINT, LIST, and
PLOT). :

To access a nonprimary device for a particular operation, use a SELECT
statement to assign the nonprimary device address to the I/0 class parameter
which "governs" the operation. For example, the statement

SELECT PRINT 215

instructs the system to access the device with address 215 (usually a Line
Printer) for all subsequent output from execution of Program Mode PRINT and
HEXPRINT statements and all output from execution of PRINTUSING statements. (As
shown in Chart B-1, output from execution of Immediate Mode PRINT and -HEXPRINT
statements appears on the device last selected for CO-class operations.)

A single SELECT statement can be used to select two or more devices for
subsequent operations belonging to different I/0-classes. For example,

SELECT LIST 215, PRINT 211, TAPE 10C

When selecting peripheral devices, keep in mind that an I/0-class-parameter and
a three-hexdigit-address are required, and a comma must separate the devices
when selecting more than one.

42

To reselect the CRT for PRINT-class operations, use the statement

SELECT PRINT 005

or Master Initialize the system if the memory can be cleared at this point.

A SELECT statement "assigns" the specified device address to the specified
I/0 class parameter. The assignment is analogous to setting an I/0 class rotor
switch which includes the device-address-options for that class. A1l subsequent
operations belonging to the particular class are "switched" to the designated
device until the system encounters another SELECT statement which changes the
device address for the I/0 class.

Chart B-1. I/0 Class Parameters and Operations

For input as follows: For output as follows:
1) System commands. (1) Data from Immediate Mode
2) Immediate Mode statements. PRINT or HEXPRINT stmts.
3) Program text entry. 2) Literal string messages
- from INPUT statements.
3) Question marks when the
Por input as follows: system is awaiting
i I INPUT-class data.
1) Data for INPUT 4) Echo of data received for
statements. ////' INPUT or MAT INPUT stmts.
2) Data for KEYIN 5) Colons when the system is
statements. co ready for CI-class input.
3) Data for MAT INPUT INPUT 6) Error message codes.
statements. 7) STEP mode printouts.
- 8) TRACE mode printouts.
9) Other system messages.
For I/0 operations: N - -
_ - I/0 Class For output as follows:
1) BACKSPACE Parameters
2) DATALCAD ~— 1) patz from Program Mode .I
3) DATALOAD BT PRINT PRINT or HEXPRINT stmts.
4) DATARESAVE ~~ 2) Data from PRINTUSING and
5) DATASAVE TAPE associated Image stmts.
6) DATASAVE 3T |, 3) Data from MAT PRINT stuts.
7) LOAD LIST
8) REWIND For output as follows:
9) SAVE DISK ~
10) SKIP 1) Program text from
11) $GIO PLOT LIST commands.
{;z) SIF oy | 2) Disk data from
LIST DC statements.
For disk or diskette operations: For output as follows:
1) corY 12) DSKIP 1) Graphs and labels
2) DATALOAD BA 13) LIMITS from PLOT statements.
3) DATALOAD DA 14) LOAD DA -
4) DATALOAD DC 15) LOAD DC
5) DATALOAD DC OPEN 16) MOVE
6) DATASAVE BA 17) MOVE END
7) DATASAVE DA 18) SAVE DA
8) DATASAVE DC 19) SAVE DC
9) DATASAVE DC CLOSE 20) SCRATCH
10) DATASAVE DC OPEN 21) SCRATCH DISK
11) DBACKSPACE 22) VERIFY

43

APPENDIX C - ASCII CONTROL AND GRAPHIC CHARACTERS IN HEXADECIMAL AND

BINARY NOTATION

Note:

r Set--

Rubspab)

FORMATS: :
HEXADECIMAL CODES: HEX (a, a,) System 2200 Characte
’ 8-bit codes (bgb,beb
7-BIT BINARY CODES: (b, bg by b, by b, by) bg=0, b, through'b,=
THREE BITS 0 0 0 0 1 1 1 1 b, 7-BIT
(HIGH —> ¢ 0 1 1 0 0 1 1 b, BINARY
ORDER) o| 1] of 1 of 1 11" noraTion
" HEX
FIRST HEX
DIGIT—»{ O 1 2 3 4 5 6 7 a,
HIGH ORDER
{) a, |\0a by by B
{| NUL | DLE SP 0 @ P . p 0 0|0 0
SOH | DC1 ! 1 A Q a q 1 0| O 1
STX | DC2 " 2 B R b r 2 [|ojofj1{|0
ETX | DC3 # 3 Cc S c s 3|jojof1j1
EOT | DC4 S 4 D T d t 4 0| 11 0|0
c
H ENQ | NAK % 5 E U e u 5 (|0} 1]0}f1
A ACK | SYN ¢ 6 F \ f v 6 o| 1{ 1|0
R :
A BEL | ETB | (apos) 7 G w w 7 ol 1| 1|1
'g BS | CAN| 8 H X x 8 |[1{o0]|0]oO
E HT EM) 9 | Y i y 9 (|1{0]0]1
R LF SUB * J p4 i z All1lo]1]0
S
vT | ESC | + ; K [k { gl 1]0o] 1]
FF FS |icomma| < L \ | \ cl{1]1]0]0
CR | GS |G | = | M] m } pil1]1]0f1
SO RS (pcv;od) > N * n ~ E 1111110
st |us | / | ? | O [“mde]| o |DEL Flfr] 1]
Y
| | SECOND HEX FOUR BITS
CHARACTERS DIGIT (LOW
(LOW ORDER) ORDER)
LEGEND FOR ASCIl CONTROL CHARACTERS
NUL | Null DLE | Data Link Escape
SOH | Start of Heading DC1 Device Control 1
STX | Start of Text DC2 | Device Control 2
ETX End of Text DC3 | Device Control 3
EOT End of Transmission DC4 | Device Control 4
ENQ | Enquiry NAK | Negative Acknowledge
ACK | Acknowledge SYN | Synchronous Idle
BEL Bell (audible or attention signal) ETB End of Transmission Block
BS Backspace CAN | Cancel
HT Horizontal Tabulation EM End of Medium
(punched card skip) SUB | Substitute
LF Line Feed ESC Escape
vT Vertical Tabulation FS File Separator
FF Form Feed GS Group Separator
CR Carriage Return RS Record Separator
SO Shift Out us Unit Separator
S Shift In DEL | Delete

‘d

«g

APPENDIX D -- SPECIFICATIONS

Size
Heightccen.. 7 in. (17.8 cm)
Width ...ccceeeeee 13.5 in. (34.3 cm)
Depth ..ovvevennns 1.25 in. (3.2 cm)
Weight

3 1b (1.36 kg)

Power Requirements

Supplied by the CPU.
Connector _
A 50-pin female Amphenol connector is mounted on the unit. .
A 50-pin male Amphenol connector, to be wired to the cable from a device,
is supplied with the unit.
Operating Environment

50°F to 90°F (10°C to 32°C)
20% to 80% relative humidity

Switches
Internal: Device-address-switch on printed circuit board.

External: Six logic-level-selection switches to reverse signal level defi-
nitions, as required, for the following signals: (1) the input
strobe, (2) the sign bit, (3) all BCD or discrete input, (4) the
execute signal, (5) the transfer-in-progress signal, and (6) the
end-of-transfer output strobe.

Four number-of-digits switches to define the exact number of BCD
digits (or 4-bit groups of discrete data) to be processed per
readout. '

Switch-Reversible Logic Levels

High-level signals: +2.5 to 5 vdc. (High="1" if switch Up, "0" if Down.)
Low-level signals: O to +0.4 vdc. (Low="0" if switch Up, "1" if Down.)

Typical Impedance

Input: 4K ohms
Output: 1K ohms

45

SPECIFICATIONS (Continued)

Input Strobe Pulse Width

2 microseconds (minimum)
Number Code
BCD (8-4-2-1) Code
Number Size
1-t0-10 BCD digits and a sign, or up to 41 discrete bits.

Transfer Format

Parallel

Transfer Rate

Up to 100 readings per second using INPUT or MAT INPUT statements.
Up to 800 readings per second using DATALOAD BT statements.
Up to 1000 readings per second using $GIO statements.

Standard Warranty Applies

46

APPENDIX E -- SETTING THE MODEL 2252A ADDRESS SWITCH

The 8-pole address switch for the Model 2252A interface controller is
located in the lower right corner on the chip side of the printed circuit (p.c.)
board (when the board is held with the face plate horizontal and above the P.C.
board). Eight rocker-type microswitches are enclosed in a rectangular frame and
covered by a removable transparent shield. The microswitches are visible
through the shield, but the shield must be removed in order to read the labels
on the switch frame. A diagram of the switch frame is shown in Figure E-1 with
a grid added for reference purposes only.

T8
L
A

= centerline of switch

= .

RN O WOT Oy ——— numbers on switch frane
gggngm—<———%%ﬂsmP.QbMM

(reverse side)

Figure E-1. Frame for the Address Switch

Each of the eight microswitches (not shown in Figure E-1) is identified by
a position number printed on the frame. Each rocker-type microswitch pivots
about the centerline of the frame. One end of an individual microswitch Ties in
the OFF-row of the grid; the other end lies in the ON-row of the grid. When one
end of a microswitch is DOWN, the other end if UP. The microswitch is turned ON
if the end in the ON-row is DOWN.

To avoid confusion when reading the ON-OFF configuration of a switch, Took
only at the ON-row of the grid. Then translate the DOWN position as ON and the
UP position as OFF for each microswitch.

For a System 2200 equipped with one Model 2252A unit, the standard address
code is 25A. The standard address code for a second unit in a dual-unit
configuration . is 25B. These address codes are of the form xyy. The x-digit
(the device-type-digit) is not considered when setting an address switch; only
the last two hexdigits (i.e., yy) are considered. See Table E-1.

The last two hexdigits of the standard address must be converted into an
8-bit binary number. The leftmost digit in the 8-bit binary number corresponds
to the position "8" on the switch frame and the rightmost digit to position "
on the frame. When a bit in the 8-bit binary number is zero, the microswitch in
the corresponding position is turned OFF. When a bit is one, the corresponding
microswitch is turned ON (see Table E-1).

47

Table E-1. Address Switch Settings for Model 2252A Units
Standard Switch Setting 8-bit Binary Configuration For
Address (Hexadecimal) Equivalent ON-row of Switch*

25A 5A 01011010 upuDDUDU
25B 5B 01011011 ubuDDUDD
25C 5C 01011100 ubDuDDDUU
25D 5D 01011101 ubUDDDUD
25E 5E 01011110 ubuDDDDU
25F 5F 01011111 ubuDDDDD

*Each microswitch has two visible ends. Look only at the end in the ON-row
of the address-switch-frame.

The microswitch is {

OFF

43

ON if the end in the ON-row is {

DOWN (D).
up (u)

LY

i 0
rzL,]——"" 3 rLgJ_J; 2 -l s r‘a—@’ﬁ et e e %—1"’—,' r@—é‘]"s—n e
4 1] o9 5[7?55 [z?sﬁ? 12) (1] [0 a%\ 6] [15) [14 40@@7 EF‘] T .
. @
ot T B e bl Bl il Appendix F
Q¢ =g [N me [Te |02 w hgao~~m+ wi (vl n] |© ol |of |<) |n ml ¢l lnl (v Sl jol fo °
g SRR RIEREIRIEEE au EREEIEERE: &‘L&’L'&L&’ REEIBEEE
u-5,
19-13 N s Loly Lalie [ey Isla Jolo slie [leli Is]aluoly Jalie[Tel 5{@_’ bsi2[Tely JsTa Tioly ishie [Tli Tsls Tolo halia [Tolr Tele Toly liakie [Tal; Tsls Tl lslie [Telr Ts[# Tioly Jskie
7403 L 1wz 2] | k2] () (13 (U3, (B3] | (Lo Lﬁ’t_;:w' -Lz“u‘tz) La thm) | [Eleeie] | kel | Eiksiks]is
3 3 a\‘#u 3% Ya Yn| Y3 Ve Ve Y| W Ve /e% KI/s A7RTARARA a% s e Vs it A AT s e Y Wi Rﬂ//_mug‘_;x
:" LOCATION | W.L. PART MO | cay e amis
3 11-59-73,3,32 | 376-0028 7 1 i+
Re4 L6 ~0055 7 | i+
b i R4S L7,16 -0006 7 '+
'347K 18,17 -0080 8 16
Li4 -0036 7 /14
LIS 19,21,22 -0010 7 23
118,27 -0148 7 [e
r20 ~0008 8 | /6
L2324 -0002 7 114
L25 “0003 | 7 [14
A r5y A& 126,33 ~008! 7 |14
Rey 'K s 128 -0053 | & | ié
33 15T SR 13 9 -
0 +5Y ! L2 0087 8 16
“:,""L‘ cz L['4 130 “o0004 | 7 | 14
e 680 # Tidfar, | 1 L34 376-0056 7 1lme]
3He dh %312
COMPONENT |W.L. PART No.
RI-40
R41-45,59-67 [330- 3047
R46,48-50 52 -
545658 ¢8-70 | 330~ 3010
R47,51,55 330-4033
cLeS 300- 1470
c6-13 300- 1903
Ci4,15 300- 4022
c SWi-6 325~ 2222M
Rss CS SW7-10 325- 2224
b4l ,‘y_}.?,f__‘gm" Swil 325- 1508
RS* Swil_CAP | 325- 9047
K
50-1027
ot y—il)o—-—q‘ xS m:s u‘.‘ Ji 3 =
el LI5S sl g ‘L‘é anp 2,3 300 - /680
7404 7404 fus. L. (Wﬁm—{)
) “ A e 3t et |ca oo lco len [cie [co fem eis
Tl RE Ola? ou# Toref [otat Tt Tiset Tioet,
X ov
J!
B e S S i ~
7 _._1_ TAnNnn "t 1,
S0
785 Ot s 2 e 6592 R/ | [| AT TTTTITITTTTIITTTes
p——————C
87 O—L1% 3 sw3 EXECUTE
252 2 NT EQuEST) sw [sw |sw |sw sw |sw | sw [sw |sw [aw
M_O 4.7K é aT—< A T ¢|s|+(3]2]!
¢ R61 5 3 JI 10
"= reesre
B O—15iz e 5V o8, 1]l [-0%]
~ix A 97 o< E1ED |- 05+ & L L L L L
- [7ais 264 3
\ ofs—| B B8 [-os: . : e ah zl '
s O 8 oy [41 B o5
]
R63 12 4n avpll 3 |- L L L L ¥ i "
- TET ol o 02, [5] A [-Dse 16 15 14 IF) 12 i 1o ’
R6: 8 3(7 D22 — @@ L ExecutE o)t i ' f 7 , Y ,
5 47 3 1*4 Rre7 TRNE
: koS Sloa Z’ 28 suv e, {08 - L L L L L L
AB, 4.7K 2,8 02¢ 4 (8] f-tov 2 : : 2 21 20) 3 18
LI ia 118 ot | B]1BY |-2ov ol alf h N ' alr
4.7K [reLs266
Dée — —¢ SV
(Bl L L L L L
JOODEBLEEHE bte - [11] B¢ {-cH.GMD 3 8|
!! ! SHH Dﬁ—@@'—bﬂ alr o) f alr
slrelsfefafa]s oé: (3] g |- 07
tov
: oxs | - o 0 Cannannnnann
Dé+ —{ [15] 40 |- D76 - MLKJHFEDCBA,, i PNMLKJHFEOCAAD,
o6s | [1¢] (41] |- 08, COMPONENT LAYOUT
sion | [7) @2 |- bee eee rev
Acx—) @) |-Dee
1 1 1
ol + %% -Dés WANGPARTNG | 1t | oTv | NAmE TSI SecaTIon
Dia — 09, o () T v I RO
W B O S O S T (YT RN,
Ole— 2] & 0% ANCI . e D Toad e
Ote — @ - D% MATERIAL MODEL NO 22524 € C CONTROL MG ENGR
TITE
— - — SCHEMATIC LOGIBLOC 6592
03, H{[E] g |- 0% — PARALLEL INPUT 49
D32 — 4 @) }-80T [Frn Yo i ;s oreD
034 | 5] 53] |- €01 S35 LS e |2/0- 0572 | E | €592 2
ALE v ¢ o & WANG PART umatR | Si2 DRAWING rasaen arv

INDEX

Page
Acceptable Signal Levels... 1
Address Switch............. 14,47
Alphameric Argument........ 23
Amphenol Connector......... 1,4-5
ASCII Code....evvvenvnnnnn. 2,44
BASIC Statements........... 2,3,15,25,30
BCD Input.....covvivunnnn.. 2,4
Carriage-Return-Character.. 2,21,33
Code Converter............. 2,5
DATA Switch.........coc.... 1,10
DATALOAD BT Statement...... 2,32-34
Device Addresses........... 13-14,41
Device Selection........... 15-16,42
Discrete Binary Data....... 1,24-27
End-0f-Transfer Strobe..... 2,7
EOT Switch.......covven... 1,12
Error Detection............ 20
EXEC Switch.......ccvvnn... 1,10
Execute Signal............. 2,6
Exponential Digits......... 19
Fixed Point Data........... 2,18-19
Floating Point Data........ 2,18-19
I11egal BCD Input.......... 21
Input Circuits............. 5,8
INPUT Statement............ 2,16,23
INPUT-Data-Echo............ 22
Input Strobe............... 3,6
Input Transfer Rate........ 3,31
I/0 Class Parameters....... 15,43
IS Switch..vveviiriennnnnns 1,11

KEYIN Statement.......ccovun..

Legal BCD Input.......ccuuuun.
Logic-Level-Selection.........

Number-of-Digits Switches.....
Output Circuits.......vevn....

Parallel-to-Series Converter...
Pin Assignments...............
Programming Techniques........
Programming Discrete Input....

Sample Configurations.........
Scale Factors......vccvvenennn
Scanning Operations...........
SELECT Statement..............
SIGN Switch...ccvvvnennnnnen,
Signal Descriptions...........
Significant Digits............
Specifications........ccvevnnn.
Switch Settings.......cccveuts

Timing Diagram....... eeeeeens
TRANS Switch.......cooevninnnn
Transfer-in-Progress Signal....

$GI0 Statement........ccevnnn.
$IF ON Statement..............

Page
3,28

21
],9

2,30,35-37
17

1912'13
8

2
3-5
15
24-27
17
18-20
28
15-16
1,10
5-7
4,19
45-46
10-12

7
1,11
2,6

2 s 30 ,37"’40
3,28

Preventive Maintenance Information

It is recommended that your equipment be serviced annually. A
Maintenance Agreement is available to assure this servicing
automatically. If no Maintenance Agreement is acquired, any servicing
must be arranged for by the customer. A Maintenance Agreement protects
your investment and offers the following benefits:

Preventive Maintenance:

Your equipment 1is inspected annually for worn parts,
lubricated, cleaned and updated with any engineering
changes. Preventive maintenance minimizes "downtime" by
anticipating repairs before they are necessary.

Fixed Annual Cost:

When you buy a Maintenance Agreement, you issue only one
purchase order for service for an entire year and receive
one annual billing, More frequent billing can be
arranged, i1f desired.

e@“ Further information regarding Maintenance Agreements can be
acquired from your local Sales-Service Office.

NOTE

Wang Laboratornies, 1Inc., does not honor
Maintenance Agreements for, nor guarantee,
any equipment modified by the uwsen.
Damage to equipment incwired as a result
o4 such modigication 48 the financial
nesponsibility of the usen.

s

:To help us to provide you with the best manuals possible, please make your comments and suggestions
1 concerning this publication on the form below. Then detach, fold, tape closed and mail-to us. All comments
! and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
§ name and address. Your cooperation is appreciated.

0
1
|
HE 700-3625A
|
i
: TITLE OF MANUAL: 2252A SCANNING INPUT INTERFACE CONTROLLER
]
{ COMMENTS:
]
]
]
]
[]
0 _
] Fold
]
]
]
]
[}
(]
Fold

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold
FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.
BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

OGN PN S PO NOE ® DI EEE S E GhED G G S P EDENE G G D ED G D S DD G @ PSP U SID G @GP Eb @B &b &b G en e

Fold

Printed in U.S.A.
13-1019

Cut along dotted line.

J

-]

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065, Australia
TELEPHONE 439-3511

Telex: 25469

WANG GESELLSCHAFT M.B.H.
Merlingengasse 7

A-1120 Vienna, Austria
TELEPHONE 85.85.33

Telex: 74640 Wang a

WANG EUROPE S.A./N.V.
250, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/6400617
Telex: 61186

WANG DO BRASIL
COMPUTADORES LTDA.

Rua Barao de Lucena No. 32
Botafogo ZC-01 20,000

Rio de Janeiro RJ, Brasil
TELEPHONE 226-4326, 266-5364
Telex: 2123296 WANG BR

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 2S6
TELEPHONE (416) 449-2175 .
Telex: 069-66546

WANG FRANCE S.A.R.L.
Tour Gallieni, 1

78/80 Ave. Gallieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 680958 F

WANG PACIFIC LTD.

9th Floor, Lap Heng House
47-50 Gloucester Road
Hong Kong

TELEPHONE 5-274641
Telex: 74879 WANG HX

WANG COMPUTER LTD.
Shindaiso Building No. 5
2-10-7 Dogenzaka Shibuya-Ku
Tokyo 150, Japan
TELEPHONE (03) 464-0644
Telex: 2424909WCLTKO J

WANG NEDERLAND B.V.
Damstraat 2

Utrecht, Netherlands

(030) 93-09-47

Telex: 47579

WANG COMPUTER LTD.

302 Great North Road

Grey Lynn, Auckland

New Zealand

TELEPHONE Auckland 762-219
Telex: CAPENG 2826

WANG DE PANAMA (CPEC) S.A.
Apartado 6425

Calle 45E, No. 9N. Bella Vista
Panama 5, Panama

TELEPHONE 69-0855, 69-0857
Telex: 3282243

WANG COMPUTER PTE., LTD.
Suite 1801-1808, 18th Floor
Tunas Building, 114 Anson Road
Singapore 2, Republic of Singapore
TELEPHONE 2218044, 45, 46
Telex: RS 24160 WANGSIN

WANG COMPUTERS

(SO. AFRICA) PTY. LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

Republic of South Africa
TELEPHONE (011) 48-6123
Telex: 960-86297 -

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

S-171 36 Soina, Sweden
TELEPHONE 08/27 27 98
Telex: 11498

LABORATORIES, INC.

WANG S.A./A.G.
Markusstrasse 20

CH-8042 Zurich 6, Switzerland
TELEPHONE 41-1-60 50 20
Telex: 59151

WANG INDUSTRIAL CO., LTD.

7 Tun Hwa South Road

Sun Start Tun Hwa Bidg.

Taipei, Taiwan

Republic of China

TELEPHONE 7522068, 7814181-3
Telex: 21713

WANG ELECTRONICS LTD. .
Argyle House, 3rd Floor

Joel Street

Northwood Hills

Middlesex, HAGINS
TELEPHONE Northwood 28211
Telex: 923498 -

WANG LABORATORIES GmbH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

DATA CENTER DIVISION

20 South Avenue

Burlington, Massachusetts 01803
TELEPHONE (617) 272-8550

WANG COMPUTER SERVICES
One Industrial Avenue

Lowell, Massachusetts 01851
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94-7421

WANG INTERNATIONAL
TRADE, INC.

One Industrial Avenue
Lowell, Massachusetts 01851
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94-7421

.

(WANG)

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94.7421

Printed in U.S.A.
700-3625A
4-77-1M

Price: see current list

	Cover
	Preface
	Table of Contents
	Chapter 1: Model 2252A Features
	1.0 General Description
	1.1 Connector Pin Assignments
	1.2 Signal Descriptions
	1.3 Logic-Level-Selection Switches
	1.4 Number-of-Digits Switches
	1.5 Single and Multi-Unit Device Addresses

	Chapter 2: Programming Techniques
	2.0 Introduction
	2.1 Device Selection
	2.2 Fixed and Floating Point Input
	2.3 Error Detection for Illegal BCD Input
	2.4 Suppressing the CRT Input-Data-Echo
	2.5 Program Control of Input Errors
	2.6 Discrete Binary Input
	2.7 Scanning Operations
	2.8 Multi-Readouts Via Single BASIC Statements

	Appendix A: Device Addresses for System 2200 Peripherals
	Appendix B: Device Selection for System 2200 Operations
	Appendix C: ASCII Control and Graphic Characters in Hexadecimal and Binary Notation
	Appendix D: Specifications
	Appendix E: Setting the Model 2252A Address Switch
	Appendix F: Schematic Diagram for the Model 2252A Interface
	Index
	Equipment Maintenance

