2200

2200/VS Local Communications Option
Programmer’s Reference Guide

CoFTWARE

2 2.00/Vs

TERM/V Disk REV: 2:00
2TOuNS

Accees Sub Disk REV 2:00
NS ConTaph[McopE JoL:z2s% REV 2.00 DISKY

VS ConTROL|MCobE vol: 2258 REV 2.00 DiSK 2

13\-208\AQ
T21-Q012 R
135-9333 4

T35 - 701\

il
30K

3 LoV,
30\

2200

2200/VS

Local Communications
Option Programmer’s
Reference Guide

2nd Edition — May 1991

Copyright © Wang Laboratories, Inc., 1986, 1991
All rights reserved.

715-0562A

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVE., LOWELL, MA 01851, TEL. (508) 459-5000, TELEX 172108

Disclaimer of Warranties and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual.
However, nothing contained herein modifies or alters in any way the standard terms and
conditions of the Wang purchase, lease, or license agreement by which the product was
acquired, nor increases in any way Wang’s liability to the customer. In no event shall
Wang or its subsidiaries be liable for incidental or consequential damages in connection
with or arising from the use of the product, the accompanying manual, or any related
materials.

Software Notice

All Wang Program Products (software) are licensed to customers in accordance with the
terms and conditions of the Wang Standard Software License. No title or ownership of

Wang software is transferred, and any use of the software beyond the terms of the afore-
said license, without the written authorization of Wang, is prohibited.

Warning

This equipment generates, uses, and can radiate radio frequency energy and, if not installed
and used in accordance with the instructions manual, may cause interference to radio
communications. It has been tested and found to comply with the limits for a Class A
computing device, pursuant to Subpart J of Part 15 of FCC rules, which are designed to
provide reasonable protection against such interference when operated in a commercial
environment. Operation of this equipment in a residential area is likely to cause interfer-
ence, in which case the user, at his own expense, will be required to take whatever meas-
ures may be required to correct the interference.

Restricted Rights Legend

Use, duplication or disclosure by the Government of this technical data is subject to re-
strictions stated in paragraph (A) (15) of the Rights in Technical Data and Computer
Software clause at 48-CFR-252-227-7013.

PREFACE

CHAPTER 1
1.1
1.2
CHAPTER 2
2.1
2.2

N NNV
.
oo W

CHAPTER 3

www
.
R N

CONTENTS

INTRODUCTION

overview ® 6 0.9 0 92 000000 OO L NN OCES O ON PN ENEIETESEECEYE 1
2200/VS LCO Filing Services ...csecessesesessevoncoscnssas 1

2200 VDISK ACCESS

Introduction ...eeeveecrtiirrivenssssccncccecansnsosnsessassees 2-1
USing VDISKS ceveeeosoasaassessscssossossssesccncncnnoane 2-2

Using VDISK With Existing 2200 Programs ...eeeeeesceeee 2-2

Submitting Programs That Access VDISKceensveeccss 2=3
VDISK Performance Considerations ...cceceeceeccccacsecees 2-4
Improving VDISK PerfOrmanceseeessscesssssesscsseas 2=5
Moving Existing 2200 Files to VDISK .i.ceevecvccsccsocses 2-6

NATIVE DMS ACCESS

Introductioneceeeeeccssnoscnosrssssosscssossssssassess 3-1
Brief Description of the DMS Access Subroutines 3-2
How To Use the DMS Access Subroutinesceeeceeveecsces. 3-4
DMS Access Programming Requirements and
Performance Considerationsccceeeeeeeesecceees 3=5
Submitting Programs That Access Native DMS Files 3-6
General Notes on the DMS Access Subroutineseeeesees 3-6
Variables Reserved by the DMS Access Subroutines 3-6
Using Variables or Literals for Input Parameters 3-8
Moving Files From the 2200 to the VSccecvecrvssnees 3-9
Moving Files From the VS to the 2200cce0ceeeesseses. 3-10
Sample ProgramsS ..ceesecssscsssacsesssosvotsoscnccnss cees 3-10

CONTENTS (continued)

CHAPTER 4 DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

4.1 INtroduction .cceeseccescsssosscsossoscsssorssscsssessescaes &

4,2 Notes on the General Form Section .c.ceeecsccscsscescescss &
GENERAL OPEN tcvveeccccsccccsascoscsscscosnssssssssssseecce 4-—
GENERAL CLOSE tv:cccecscsoscascsssasssscsossscsessossess &
CONSECUTIVE READ .uevevesveescocsoscssescscsosssssscscssaes &
CONSECUTIVE WRITE ..ccccvecocccocccocnsscsssosasscnsssssce &
CONSECUTIVE REWRITE ..vcccecececcsescccccscsossoscsnsococcse 4-11
CONSECUTIVE SKIP .ccccvcccee cecsscccs eevessssesaccssecs 4-13
CONSECUTIVE LOCK .seeeveoctsovacscsorsassensasccssccscssccss 4-14
CONSECUTIVE UNLOCK .ciceievcvevscscscoscacossassnssocases 4-16
INDEXED READ ..ciiceesooccncacscscscsscsasssoassansonsese 4-17
INDEXED READ NEXT ..ctivecececccoscscccscocscsssscssassecess 4-19
INDEXED WRITE ¢e¢veesanoocoocosccsasscoscsnascssscsasasessses 4-20
INDEXED REWRITEcccceeee - A
INDEXED DELETE «.vccoosoccocncscssossssnsssassanccsssces 4-22
INDEXED FIND .cvocevectoccoscocscssssoscsseasssscassssnss 4-23
INDEXED LOCK tceteesosrsococccesccsccsscsssossscsccscncse . 4-25
INDEXED UNLOCK ¢ceevecees I 1)
RELATIVE READ ¢.cceeoccovcaccoocnsscsssosssssssccasasasnss 4-28
RELATIVE WRITE cvceeonceccacsscrsossssosssscasasosssssoss 4-31
RELATIVE REWRITE .(..ccceccecscescssccassosnssonnnsnsessss 4-33
RELATIVE DELETE ..cicctveccacsccacsoscocscssosssossnssoass 4=35
BLOCK READ ..ccovseraosocscacocsscscscssssnoassosseassoass 4=-36
BLOCK WRITE .ccecisosocsscccccoocsassossscsscsnsscsssssoces 4-37
CREATE FILE cecetscesscsssseasosanssscssessssnsansscsees 4-38
DELETE FILE .c.cccccecceccocssocccsscsococcccsosossasssases 4-41
RENAME FILE .ccesccccsccecoccsscossosssocsasssssssaccscece 4-42
GET FILE ATTRIBUTES ¢cccccecenccassoscccsscossccosasees 4-44

APPENDIX A ADDITIONAL INFORMATION

INtroduction .c.eecesesccscscccnsoncosscosocsocosssossososcs
Return COAES c.ceveescessrssavsssensossssssssosessscssosscss
Extended File Sharing (EFS) Header ...eeeccecerccccccsene
Error ClaSSeS sececcescccccossccssoscssosssssssssssssscs
Error COdeS .eeececccscocsossscssossoossccccsscsocsosssscscs
File Attribute Informationceceeececccscassoseasasess
Attribute Structure for General Opencccooecsveses
Attribute Structure for Get File Attributes A-1
Attribute Structure for General File Attributes A-11
Attribute Structure for Alternate Key File
Attributes .cececeecccsssessasessassssssoasssssesesnss A-13
A.5 Create File Informationceeeececssscscssscsccscscsess A-1l4
Create File ParametersS ..cccececcccccscscsssossnsesasess A-14
Alternate Key Structurecccececeeccesceccsccasecsss A=16

A.
A.
A

>
.
" wN e
((R
CWVwOUNBNEFH

> > ? > >y

INDEX

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table

[} LI S B |
DN B WNENRFEWN -

3’??7??9#‘0“”

TABLES

DMS Access Subroutines ...ciceeeosesenscsccscsssssocacsascs
DMS Catalog Functionscccceeececvctosstossssscscssnnssoe
Variables Used by the DMS Access Subroutines ...cccceeecees
CONSECUTIVE READ Status Information ...ecececcecsccccssscscs
RELATIVE READ Status Information ...cceececescsscccsoscscnss
Return COAeS ..ceecsesscccccsssosacoscosssostssssancssssasasas
EFS Header ..ciccceccroocccccccotocscsscssscsssossossccsssnsescse
Error ClaSSe@S seececsessccsscscsessscscaccccscscossscsssssssssssse
Error CodeS c.ceeessesscccscrsssscsscssssosssnsorsssesssasnssos
GENERAL OPEN - File Attribute Information Structure
GET FILE ATTRIBUTES - File Attribute Information

SErUCLULE ttcveecesososssssosscasscosososssossncssssoosnesns
General File Attribute Dataccceccscccscccccsctscscctscns
Alternate Key File Attribute Data ..ccccecseesssancncscnnns
Create Input Parametercccieeeccececccscsscccscsssancsss
Alternate Key Input Parameterccceccecescsccccccosonne

|
~N

o> W ww
[}
w»

>
i
[\S I |

77?'{7
O U WN O NN

A-10
A-11
A-13
A-14
A-16

PREFACE

The Wang 2200/VS Local Communications Option (LCO) enables Wang 2200
users to emulate up to four VS workstations and store and access files
on a connected VS system. This guide provides information on
programming requirements for accessing the Wang 2200/VS LCO filing
services. The primary audience for this document is the Wang 2200
programmer. Experience with programming on a Wang 2200 system is
recommended for all users.

Chapter 1 provides background information on the Wang 2200/VS LCO and
serves as an introduction to the guide.

Chapter 2 explains programming requirements for accessing VDISK files
(2200 disk image files) stored on a VS system.

Chapter 3 explains programming requirements for accessing native DMS
files stored on a VS,

Chapter 4 explains the functions of the DMS access subroutines.

Appendix A contains additional information on return codes, the
Extended File Sharing header, file attribute information, and the
create and alt-key parameters.

Additional information on the Wang 2200/VS LCO is available in the
following Wang publications:

2200/VS Local Communications Options User’s Guide (715-0564)
2200 BASIC-2 Disk Reference Manual (700-4081)

2200 BASIC-2 Error Codes Booklet (700-7170)

2200 BASIC-2 Language Reference Manual (700-4080)

2200 Introductory Guide (700-4613)

VS Data Management System Reference (800-1124-01)

VS File Management Utilities Reference

® & 6 ¢ ¢ 0 o

vii

CHAPTER 1
INTRODUCTION

11

1.2

OVERVIEW

The 2200/VS Local Communications Option (LCO) is a data communications
hardware (the 2258 controller) and software option that enables a Wang
2200MVP, -LVP, or Micro-VP system to communicate with a Wang VS
computer system. The 2200/VS LCO enables you to perform the following
functions:

® Log on to the VS and run VS application programs that do not
require the downloading of microcode to a VS workstation.

¢ Run 2200 application programs that store data to and retrieve data
from 2200 disk-image files (VDISKs) stored on the VS system.

® Run 2200 application programs that store data to and retrieve data
from native VS Data Management System (DMS) files by using
subroutines provided with the 2200/VS LCO package.

This programmer's reference guide explains the programming
requirements for accessing VDISKs and native DMS files stored on the
VS system with new and existing programs. For more information on
using VS Workstation Emulation and Filing Services utilities, refer to
the 2200/VS Local Communications Option User's Guide.

2200/VS LCO FILING SERVICES

The Filing Services utilities of the 2200/VS LCO package enables a
2200 user to access (create, read, and write) VS DMS files through
existing and new 2200 BASIC-2 application programs. The VS DMS files
are stored on an attached VS system. The VS Data Management System
manages all disk file space, and services all file I/0 requests on the
VS system.

Introduction 1-1

The 2200/VS LCO enables you to store and access information on a VS
system in the following forms:

° VDISK
] Native VS DMS files

VDISKs are 2200 disk-image files that are stored on a VS system
connected to a 2200 system through the 2200/VS LCO. A VDISK acts like
a disk platter to the attached 2200 and enables you to access
information stored at the VDISK address as records, files, or sectors.

You create VDISKs on the VS using utilities provided with the 2200/VS
LCO software. VDISKs can be shared with other 2200 systems equipped
with the 2200/VS LCO package. VDISKs can also be accessed by the VS
system. However, you would have to alter the VS application programs
to use the files stored on VDISK. How you access VDISKs from an
attached 2200 is explained in Chapter 2 of this quide.

Native VS DMS files are formatted by the VS DMS. DMS filing services
supports several different file types, including: consecutive,
relative, and indexed files. Native DMS files can be accessed both by
VS application programs and by other 2200 systems attached to the VS
and equipped with the 2200/VS LCO package.

To access native DMS files you must use the DMS access subroutines
included with the 2200/VS LCO package. How you access Native DMS
files is explained in Chapter 3 of this guide.

1-2 Introduction

CHAPTER 2
2200 VDISK ACCESS

2.1

INTRODUCTION

Using the 2200/VS LCO package to access information stored on an
attached VS system through a VDISK is just like using any other 2200
disk facility.

First you must create the VDISKs and assign them disk addresses using
the Filing Services utilities that come with the 2200/VS LCO
software. For more information on the VDISK Filing Services
utilities, refer to the 2200/VS Local Communications Options User's
Guide.

Once you create a 2200 VDISK on the VS, you can use it like any other
formatted disk with existing or new 2200 BASIC-2 application programs
to write data to and read data from the VDISK.

VDISKs can be opened in Exclusive, Read Only, or Shared mode. 1In
Exclusive mode, VDISKs can only be used by the 2200 system they were
opened on. In Shared mode they can be shared with other 2200 systems
that are equipped with the 2200/VS LCO package. Read-Only mode is a
form of Shared mode, except that the VDISKs are write protected.

"VDISKS can also be accessed by VS application programs; however, it is

not recommended.

When the VDISKs are opened, any user on an attached 2200 can run an
application program and access the disks. The 2258 controller
responds to the disk address it receives from the application program
and passes filing requests to the VS Filing Services program. When
the application program is finished processing, you can then run
another 2200 application program.

2200 VDISK Access 2-1

2.2

2.2.1

USING VDISKS

You can use VDISKs with both new and existing BASIC-2 application
programs. To access VDISKs, you must know which ones- are available.
You can use the View VDISK function (included in the 2200/VS LCO File
Services utilities) to view a list of available VDISKs. Once you
know which VDISKs are available, you can alter existing programs

(if necessary) or create new ones to access the VDISKs.

Using VDISK With Existing 2200 Programs

Using VDISKs with existing 2200 BASIC-2 programs should require little
or no change to the application programs, except in the following
cases:

. If the disk address is hard-coded in the BASIC-2 application
program,

¢ If the BASIC-2 application program and its data file share the
same disk address.

. If the program contains a disk address verification program that
does not recognize the VDISK addressing scheme.

What To Do When the Disk Address Is Hard-Coded

If the disk address is hard-coded in the application program, you can
go through the program and change all references to the disk address
to the new VDISK address.

For example, if the disk address was hard-coded in the program as
follows:

10 SELECT #5 320

You could go through the program and change every occurrence of 320 to
an existing VDISK address. You can write the example above as follows:

10 SELECT #5 D31

In 'this example, 320 is changed to D31, specifying a valid VDISK
address.

You can also substitute a variable for the disk address and have the
program request the address from the user at runtime. You can then
assign to the variable the value received from the user.

2-2 2200 VDISK Access

What To Do When the Program and Data Files Share the Same Disk

When the program and data files are stored on the same disk, it
may not be advisable to use VDISK for performance reasons (refer to
Section 2.3).

However, if the data file is sufficiently large to warrant the use of
VDISK, you can follow the suggestions in the previous section and
hard-code the changes or request the user to input the disk address.
In this case, it would be advisable to separate the application
program from the data file and store only the data files on the VDISK.

For more information, refer to the appropriate BASIC-2 reference and
disk manuals.

What To Do When Verification Procedures Do Not Recognize the Address

If a program contains a disk verification routine that does not
recognize the disk addressing scheme used for VDISK, update the
verification routine to allow valid VDISK addresses. The valid ranges
of addresses for VDISK are as follows:

¢ DX0 through DXF
L DY0 through DYF

The possible values for X are 1, 2, or 3. You set the value for X in
the 2258 controller itself. The value of Y is dependent on the value
you assigned to X as follows:

] If X is 1, then Y must be 5.

. If X is 2, then Y must be 6.

L If X is 3, then Y must be 7.

For more information on how to set the address, refer to the 2200/VS
Local Communications Options User's Guide.

2.2.2 Submitting Programs That Access VDISK

Before you can access a file stored on VDISK, you must make certain
that the following procedures have been implemented:

¢ The VDISK has been created using the VDISK utilities.

® The 2200 is actively connected to the VS (the attach procedure has
been run).

® The program you submit has or requests a valid VDISK address.

2200 VDISK Access 2-3

23

For more information on how to create VDISKs and how to run the attach
program, refer to the 2200/VS Local Communications Options User's
Guide. Once you have implemented these procedures, you can submit
programs to access VDISK.

VDISK PERFORMANCE CONSIDERATIONS

VDISK performance is strongly affected by the following components of
the 2200/VS LCO software package:

L 2258 firmware
e VS serial I/0 processor

2258 Firmware

The 2258 firmware can handle up to four separate tasks; however, only
one of these tasks can be assigned to VS Filing Services. The method
for attaching to VS Filing Services is described in the 2200/VS Local
Communications Options User's Guide. Once the VS Filing Services task
is active, all 2200 partitions (up to 16) can invoke VS Filing
Services through the task.

It is important to remember that the 2258 controller can receive
requests from any of the 16 possible 2200 partitions and that these
requests are handled similarly to 2200 disk requests. As a result,
the more requests that are channeled to the VS through a single 2258
controller, the slower the response time experienced by each
individual partition. '

VS Serial 1/0 Processor

The VS serial I/0 processor (SIOP) handles requests in a serial
manner, one request at a time. Each file request requires both a
transmission to the SIOP and a response from the SIOP. Since the SIOP
handles these requests in a serial manner and since the 2258
controller must handle requests for all partitions, VDISK performance
can be adversely affected by the number of requests being processed at
any given time.

VDISK performance can also be adversely affected by opening VDISKs in
Shared mode. Since VDISKs are actually VS files, response time can be
reduced by the additional overhead in the VS system associated with
shared files.

When you open VDISKs in Exclusive mode, the disks are open to all
partitions on the same 2200. You should only open VDISKs in Shared
mode when the VDISK must be shared with another 2200 or when it must
be accessed through another 2258 controller on the same 2200.

2-4

2200 VDISK Access

24

As the number of VDISKs opened in Shared mode increases, disk commands
execute more slowly. When a disk command is executed, the 2258
firmware uses VS DMS commands to lock each VDISK opened in Shared
mode. The VDISKs are locked to prevent other 2258 controllers from
accessing the VDISK.

If there are many VDISKs open in Shared mode, the locking procedure
can add significantly to the processing time required to execute each
disk command.

IMPROVING VDISK PERFORMANCE

To improve, VDISK performance, you can implement the following
recommendations::

¢ Use VDISK only to store large data files for data-intensive
programs and for backup storage of program files.

° Do not load programs off VDISK, particularly programs that use
program overlays.

® Do not use VDISK to store program-required files, such as screen
or message files.

L] Avoid opening VDISKs in Shared mode. However, if you must use
VDISKs in Shared mode, you may improve performance by bracketing
each string of disk commands with a $OPEN and a $CLOSE to reduce
processing by the 2258 controller for files opened in Shared mode.

L In large systems or where heavy use of the 2258 data link is
expected, using multiple 2258 controllers for VDISK access might
increase throughput proportionally. By adding additional 2258
controllers to a single system you can off-load some of the
traffic to the additional controllers.

Note that because of the 2200 disk addressing scheme you are
limited to a maximum of three 2258 controllers on a single system
for VDISK purposes. You can, however, add additional 2258
controllers either for native DMS access or add more terminals for
VS Workstation Emulation. Adding additional 2258 controllers
might also improve VDISK performance in large systems.

2200 VDISK Access 2-5

® The 2258 controllers support utilities enable you to define
multiple VDISK maps that assign 2200 platter addresses to an
equivalent number of 2200 disk image files. In certain cases you
may improve performance by picking a specific VDISK map for a
particular application. Once the application is run, you can then
return the VDISK map to your normal processing configuration.
However, it is recommended that you maintain one VDISK map
throughout each session whenever possible. -

2.5 MOVING EXISTING 2200 FILES TO VDISK

To move existing 2200 files to VDISK, use the Move Files utility. You
access the Move Files utility from the System Utilities menu. For
more information on how to use the Move Files utility, refer to the
2200 Introductory Guide.

2-6 2200 VDISK Access

CHAPTER 3
NATIVE DMS ACCESS

3.1

INTRODUCTION

The 2200/VS LCO package enables you to create and access files on the
attached VS system directly from your BASIC-2 application programs.

To create and access native DMS files using the 2200/VS LCO, you must
use the DMS access subroutines that come with the 2200 package. Files
created in this manner are referred to as native DMS files because
they are managed by the VS DMS.

Native DMS files can be accessed by BASIC-2 application programs on
any 2200 system attached to the VS and equipped with the 2200/VS LCO
package. Native DMS files can also be accessed by VS application
programs.

The 2200 LCO software supports the following DMS file types:
consecutive, indexed, and relative.

Consecutive

Consecutive file types allow you to access records sequentially and
read records on disk directly by record sequence number. Records can
only be added at the end of the file and cannot be deleted. This
structure is appropriate for most data entry and batch update
applications. Consecutive files are supported for all types of 1/0
devices and are used for specialized purposes, such as printer files
and system-maintained journals.

indexed

Indexed file types allow you to access records through a key field
that contains unique data values. Indexed files can only be created
and stored on disk storage devices. This structure supports

sequential record retrieval, and rapid nonsequential retrieval of
single records from disk files by key value. You can add, update, or
delete records by specifying the primary key value of the desired
record. DMS supports both primary key and alternate key indexed files.

Native DMS Access 3-1

Relative

Relative files contain sequential, fixed length record slots and can
only be created and accessed on disk storage devices. Relative files
allow you to access records either sequentially or directly by record
sequence number. You can add, update, or delete records within a
relative file. However, you must preallocate space for adding
records. Deleting records does not reduce the size of the file. You
should choose a relative file structure if speed of access and ability
to modify and delete existing records is a major consideration.
Relative files are not supported on the VS-50 or VS-80 computers.

Note: Relative files cannot be opened in Shared mode.

For more information about DMS file structures, refer to the VS Data
Management System Reference.

3.2 BRIEF DESCRIPTION OF THE DMS ACCESS SUBROUTINES

Table 3-1 lists the DMS access subroutines available, provides a
description of each subroutine, and lists the subroutine's
corresponding function number.

Table 3-1. DMS Access Subroutines

FPunction
Function Description Number
GENERAL OPEN Opens any DMS file '101
GENERAL CLOSE Closes any DMS file *102
CONSECUTIVE READ Reads a consecutive record '103
CONSECUTIVE WRITE Writes a consecutive record '104
CONSECUTIVE REWRITE Rewrites a consecutive record '105
CONSECUTIVE SKIP Skips a specified number of '106
) consecutive records
CONSECUTIVE LOCK Locks a consecutive file *107

{continued)

3-2 Native DMS Access

Table 3-1.

DMS Access Subroutines (continued)

Function

Function Description Number

CONSECUTIVE UNLOCK Unlocks a consecutive file '108

INDEXED READ Reads an indexed file *109

INDEXED READ NEXT Reads the next record in an '110
indexed file

INDEXED WRITE Writes to an indexed file '111

INDEXED REWRITE Rewrites an indexed record 112
to a file

INDEXED DELETE Deletes an indexed record *113
from a file

INDEXED FIND Finds a specified indexed ‘114
record in an indexed file

INDEXED LOCK Locks an indexed file *115

INDEXED UNLOCK Unlocks an indexed file ‘116

RELATIVE READ Reads a record form a *117
relative file

RELATIVE WRITE Writes a record to a ‘118
relative file

RELATIVE REWRITE Rewrites a record to a *119
relative file

RELATIVE DELETE Deletes a relative record *'120
from a relative file

BLOCK READ Reads a block of data ‘121
from a block file

BLOCK WRITE Writes a block of data 1122
to a block file

Native DMS Access 3-3

The DMS access

subroutines also provide functions for creating,

deleting, and renaming files and for getting file attributes. These
subroutines are called the DMS catalog functions. Table 3-2 provides a
brief description of these functions. :

Table 3-2. DMS Catalog Functionms

Function
Function Description Number
CREATE FILE Creates a DMS file '200
|
DELETE FILE Deletes a DMS file '201
RENAME FILE Renames a DMS file *202
GET FILE ATTRIBUTES Retrieves the value of one *203
or more attributes groups
associated with the opened
file

Refer to Chapter 4 of this guide for a detailed description of the DMS
access subroutines and DMS catalog functions listed above.

33 HOW TO USE THE DMS ACCESS SUBROUTINES

The DMS access

VSACESSO

VSA;ESSI
VSACESS2
VSACESS3
VSACESS4

VSACESS9

subroutines are stored in the following files that are

included with the 2200/VS LCO software:

This file contains the GENERAL OPEN and GENERAL CLOSE
subroutines. This file also includes the subroutine
used to communicate all requests to the 2200 LCO
controller.

This file contains all the subroutines that deal with
consecutive DMS files.

This file contains all the subroutines that deal with
indexed DMS files.

This file contains all the subroutines that deal with
relative DMS files.

This file contains all the subroutines that enable you
to access DMS files in block mode.

This file contains the DMS catalog functions.

3-4 Native DMS Access

34

To use the DMS access subroutines, perform the following steps:

1. Copy the files containing the required DMS access subroutines into
your BASIC-2 application program. Usually you are required to
copy VSACESSO and one other file into your program to open and
close files and to handle all other file processing.

Note: When you copy the DMS access subroutines into your program,
be certain they do not overlay lines of code in your program.

2. Once you have copied the DMS access subroutines into your program,
you access the subroutines by writing a GOSUB ' to the specific
function you want to perform,

For example, if you are working with existing consecutive files,
you copy VSACESSO and VSACESS1 into your program. The subroutines
in VSACESSO allow you to open and close. The subroutines in
VSACESS1 allow you to perform other functions, such as reading and
writing to and from the file.

The following statement is an example of how you code a GOSUB ' to
perform a GENERAL OPEN:

0100 GOSUB '101 (N$, T$, M$)

The variables (N$§, T$, and M$§) pass the name and organization of
the file, and the mode the file is to be opened in to the
subroutine.

DMS ACCESS PROGRAMMING REQUIREMENTS AND PERFORMANCE
CONSIDERATIONS

To use the DMS access subroutines, you must copy the required files
into your program.

To save space, copy only the files required by the program. For
example, if your program uses only existing indexed files, you need
only to copy in VSACESSO and VSACESS2. If your program uses more than
one file type, you have to copy more modules into your program.

If your program also creates, renames, or deletes files, you also have
to copy in the DMS catalog functions VSACESS9.

Native DMS Access 3-5

3.4.1

3.5

3.5.1

Once you have copied the DMS access subroutines into your program,
you can save the program with the SR parameter. Saving the program
with the SR parameter removes the REM statements from the program,
thus saving you partition space.

Submitting Programs That Access Native DMS Files

Before you can access a native DMS file, you must make certain that
the following procedures have been implemented:

e The 2200 is actively connected to the VS (that the attach
procedure has been run).

e The program contains the required DMS access subroutines.

For more information on how to run the attach program, refer to the
2200/VS Local Communications Options User’s Guide. Once you have
implemented these procedures, you can submit programs from the 2200
to access native DMS files stored on the VS.

GENERAL NOTES ON THE DMS ACCESS SUBROUTINES

This section provides background on and general information common
to all the DMS access subroutines.

Variables Reserved by the DMS Access Subroutines

All the variables used by the DMS access subroutines start with the
letter V. If you have any variables in your programs that begin
with the letter V, you can either change the variable in your
program or change the variable in the DMS access subroutine.

Table 3-3 lists the variables used by the DMS access subroutines and
provides a brief explanation of their purpose.

3-6 Native DMS Access

Table 3-3. Variables Used by the DMS Access Subroutines

Variable Length
Name Description (in bytes)
V'L Holds the file name. 32
Vo Is a work variable for the 8

CONSECUTIVE SKIP subroutine.
Holds the number of records
to be skipped.

vos Holds the return code. 2
Return codes are explained
in Appendix A.

Vi Is a work variable. 8

V1§ Holds the file organization 1
identifier.

v2 Is a work variable. 8

v2s$ Holds the open mode identifier. 1

v3 Holds the key position 8
for indexed files.

V3§ Holds the hold option 1
identifier.

N4 Holds the key path for indexed 8
files.

vas Holds the alternate mask for 2

indexed files.

Vs Holds the key length for 8
indexed files.

vV5$ Holds the search criteria for 2
the INDEXED FIND subroutine.

V6 Holds the time out value in 8
seconds for hold option.

vV6s$ Holds the key value for indexed 6
files.

(continued)

Native DMS Access 3-7

Table 3-3. Variables Used by the DMS Access
Subroutines (continued)

Variable Length

Name Description (in bytes)
v7 Holds the number of records to 8
read.
v7$ Holds the Extended File Sharing 32
(EFS) header.
\'£:H Is a work scalar variable. 16
v8s() Is a work array. 256
vV9s Holds the file identifier 2
! number.
‘ Vos() Is the data buffer array for 4096
reading in information form
the file.

3.5.2 Using Variables or Literals for Input Parameters

The DMS access subroutines enable you to pass input parameters in the
form of variables or literals. For example, a GOSUB ' to perform a
CONSECUTIVE WRITE can be written as follows:

3000 DIM H1$32,D$§50,H$2

3005 H$=V9$: V9$ is the file identifier received from the OPEN
3010 H1$ = V7$:REM V7§ is the EFS header received from the OPEN
3020 D$ = "This statement is written to the file as a record."
3030 GOSUB '104 (H$, Hl1§$, D$)

This statement can also be written with a literal for D$ as follows:

" 3000 GOSUB '104 (H$, V78, "This is written to the file as one
record.")

In this example, a literal is used for the data buffer parameter.

3-8 wNative DMS Access

3.6

Note: In the example above, the DMS access subroutine variable (V7$),
which stores the External File Sharing (EFS) information, is used to
specify this information in the GOSUB ' call to the CONSECUTIVE WRITE
subroutine. You can only use the DMS access subroutines variables
within your GOSUB ‘' statements if your program has only one file open
at a time. Otherwise, you must assign the values stored in the DMS
access subroutine variables to other variables within your program,
and pass the appropriate variables to the DMS access subroutines.

MOVING FILES FROM THE 2200 TO THE VS

To use the 2200/VS LCO software package to move files from the 2200 to
the VS, you need to write a utility program to perform the following
tasks:

1. Open the 2200 file.

2. Create the file on the VS, if the file does not exist on the VS,
To create a file on the VS, you can include the CREATE FILE
subroutine in your utility program or you can use the CREATE
utility provided on the VS. For more information, refer to the
detailed description of the CREATE FILE subroutine in Chapter 4 of
this guide.

Use the GENERAL OPEN (GOSUB '101) DMS access subroutine, to open
the file, if the file already exists on the VS,

3. Read a record from the 2200 file using 2200 disk access statements.

4. Write a record to the VS using the appropriate DMS access
subroutine.

5. Repeat steps 3 and 4 until all the records are written to the VS
file.

6. Close the VS file using the GENERAL CLOSE DMS access subroutine
(GOSUB '102).

7. Close the 2200 file.

Once you write the utility program, you must follow the procedures for
submitting programs to access DMS files provided in this chapter.

Native DMS Access 3-9

3.7

3.8

MOVING FILES FROM THE VS TO THE 2200

To use the 2200/VS LCO software package to move files from the VS to
the 2200, you need to write a utility program to perform the following
tasks:

1. Open the DMS file on the VS using the GENERAL OPEN (GOSUB '101)
DMS access subroutine.

2, Read the file using the appropriate DMS access subroutine (either
consecutive, indexed, relative, or block).

3. Use the DATA SAVE DC OPEN statement, if the file does not exist on
the 2200 system.

Use the DATA LOAD DC OPEN statement, if the file already exists on
the 2200 system.

4. Write the file to the 2200 using the familiar 2200 BASIC-2
statements.

Once you have written the utility program, you must follow the
procedures for submitting programs to access DMS files provided in
this chapter.

SAMPLE PROGRAMS

There are three sample programs included on the VSACCESS diskette
shipped with the 2200/VS LCO software package. The sample programs
use the DMS access subroutines to create, access and write records to
and from native DMS files. Each program deals with a different file
type, either consecutive, relative, or indexed. The following list
provides the name of the files containing the sample programs:

TESTCON1 -- Deals with consecutive files
TESTREL1 -- Deals with relative files
TESTIDX1 -- Deals with indexed files

Once you have the software installed, you can display these files on
your terminal, or print them out, to get a better idea of how to use
the DMS access subroutines.

3-10 Native DMS Access

CHAPTER 4
DMS ACCESS SUBROUTINES

4.1 INTRODUCTION

This section provides a detailed description of the DMS Access
Subroutines. The description of each subroutine includes the
following information:

General Form -- This section shows the general format of the GOSUB'
statement used and includes a description of the required input
parameters.

Purpose -- This section explains the function the subroutine
performs.

Returns -- This section explains information returned by the
subroutine.

Example -- This section provides an example of how the subroutine is
used.

General Notes -- This section is also included for certain
subroutines to provide additional information.

DMS Access Subroutines 4-~1

4.2 NOTES ON THE GENERAL FORM SECTION
In the General Form section, these basic rules of syntax are followed.

1. Symbols must be included in your BASIC-2 statements exactly as
they appear in the General Form of the statement:

Uppercase letters A through Z
Comma ’

Double quotation marks "
Parentheses 0

Pound sign #

Slash /

2. Lowercase letters and words in the General Form of a statement
represent items whose values must be assigned by the
programmer. For example, if the lowercase word "name" appears
in a General Form, the programmer must substitute a specific
file name (such as "PROGl"), or an alphanumeric variable
containing the name, in the actual statement. Similarly, where
the lowercase letter n appears, the programmer must substitute
an actual file number (from 0 to 64) or a variable containing a
file number.

3. All information that appears between parentheses must be
included in the GOSUB' statements.

4. Blanks (spaces) are used to improve readability and are
meaningless.

5. The sequence that the terms are listed in must be followed.

Note: The 2258 interface subroutine, '199 uses the device table
designator #3. The user should include the statement, "SELECT
#3/(communications address plus 3)" in the program accessing DMS
subroutines. Refer to page 2-6 of the 2200/VS Local Communication
Option User's Guide for further information.

4-2 DMS Access Subroutines

GENERAL OPEN

General Form
GOSUB '101 (file-name , org , mode)

where

file-name is the name of the file. The file name can include
the //SYSTEM/VOLUME/LIBRARY/FILENAME. The file name
can also be written as ///VOLUME/LIBRARY/FILENAME.
The SYSTEM, LIBRARY, and FILENAME can each be up to -
8 characters in length. The VOLUME can be up to
6 characters in length.

org is the organization of the file. The valid file
organization parameters and their meanings follow:

Consecutive file
Indexed file
Relative file

Block Access Method

® ¢ 0o 0
W™ HO
I B |

mode is the mode the file is opened in. The valid mode
parameters and their meanings follow:

¢ R - Read-only access
® S - Shared access

¢ X - Exclusive access
¢ E - Extended access

Purpose
The GENERAL OPEN ('101) subroutine enables you to open any DMS file.
The subroutine enables you to specify the file name, including the
system, the volume, the library, and actual name of the file. The
library, volume, and file name are required; the system name is
optional. The GENERAL OPEN subroutine also enables you to specify the
file type (Indexed, Consecutive, or Relative) and the access mode
(Read-Only, Shared, Exclusive, or Extended.)

Notes: Relative files cannot be opened in Shared mode.

If the mode specified is ‘"Shared” for a consecutive file, the file is
opened in "“"Shared I/0"” mode.

DMS Access Subroutines 4-3

Returns
The

.

GENERAL OPEN subroutine returns the following information:
V0$ is the return code. Refer to Appendix A for more information.

V1l is the length of valid data in V9$() array (the file data
field).

V7§ is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

V9% is the file identifier assigned to the file.

V9$() is an array of 64 or 75 bytes that contains file attribute
information. Refer to Appendix A for more information.

Example (GENERAL OPEN)

10
20
30
40
50
60

DIM N$32,T$1,M$1 .
N$="//SYSNAM/ANYVOL/ANYLIB/FILENAME": T$="1I", M$="S"
GOSUB '101 (N§, T$, M$)

IF VO$=HEX(FF) THEN 60

STOP "ERROR IN OPEN"

H$=VO$: REM V9$ is the file identifier

In this example, variables are used to represent the name, org, and

mode

10
20
30
40
50

parameters. This example could have been written as follows:

GOSUB '101 ('"///ANYVOL/ANYLIB/FILENAME","I", "S")
IF VO$=HEX(FF) THEN 40

STOP "ERROR IN OPEN"

REM Good general open. Continue processing.
H$=V9$: REM V9§ is the file identifier

In the examples above, the specified files are opened. In the second
example, the system name is replaced with a slash (/).

4-4 DMS Access Subroutines

GENERAL CLOSE

General Form

GOSUB ‘102 (file-id , efs)
where
file-id is an alphanumeric variable that represents the file

identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS

Purpose
The

header information for the specified file.

GENERAL CLOSE ('102) subroutine enables you to close any DMS file

that had been previously opened for I/0 functions. You must specify

the

file identifier assigned to the file.

Attempting to close a file that was not previously opened by an OPEN
statement causes a recoverable program error at runtime.

Returns
The

L4

L]

Example (GE
10
20
30
40
50
60

In t
iden

GENERAL CLOSE subroutine returns the following information:
V0$ is the return code. Refer to Appendix A for more information.

V1l is the length of valid data in V9$() array (the file data
field).

V7$ is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

V9$() is an array containing 3 bytes and should be HEX(00).

NERAL CLOSE) .

H1$=V7$:REM V7$ is the EFS header.
H$=V98: REM V9§ is the file identifier
GOSUB '102 (H$,H1§)

IF VO$=HEX(FF) THEN 60

STOP "ERROR IN CLOSE"

his example, a variable (H$) is used to represent the file
tifier and the EFS information (H1S$).

DMS Access Subroutines 4-5

CONSECUTIVE READ

General Form
GOSUB '103 (file-id , efs , hold , time)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
information for the specified file.

hold indicates the hold option and can be either "H", which
holds the record for exclusive processing, or " ",
which allows other programs to access the record.

time is the amount of time in seconds the system waits if

the record is being held by another user. The time
parameter must be zero, unless the file is opened in
Shared mode. Specifying a value of zero indicates
that the system waits indefinitely.

Purpose
The CONSECUTIVE READ ('103) subroutine enables you to read the next
consecutive record in a specified file. The file must have previously
been opened.

Returns
The CONSECUTIVE READ subroutine returns the following information:

® VO$ is the return code. Refer to Appendix A for more information.

¢ V7% is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

® V9$() contains eight bytes of status information and the data read
from the file. Refer to the CONSECUTIVE READ General Notes
section for more information.

4-6 DMS Access Subroutines

General Notes
In the CONSECUTIVE READ subroutine, the V9$() array is used to store
status information and the data read from the file. The first eight
bytes of the array are used to store the status-information.
Table 4-1 describes the status information.

Table 4-1. CONSECUTIVE READ Status Information

Byte(s) Description

01 Contains internal processing information.
This value should always be equal to Ol.

02 and 03 Contain the number of records read.

04 and 05 Contain the number of bytes in the byte
block.

06 Contains the data block ID. This value

should always be equal to 01.

07 and 08 Contains the number of bytes read. The
value of these two bytes can be up to 64K.

The remaining bytes of the array (starting at the ninth byte) are
used to store the data read from the file. If you know the length
of the records read, you know how many bytes of V9$() are used to
store the data. If you do not know the length of the records in
the file, or the file contains variable length records, you can
use the VAL function on the 7th and 8th bytes of the V9$() array
to get the length of the data read. Refer to the following
example for more information.

The V9$() array is originally dimensioned to hold 4,096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

DMS Access Subroutines

4-7

Example (CONSECUTIVE READ)
10 DIM C1$5,N1$30,B1$3,W$8
20 H$=V9$:H1$=V7$:T=25
30 WH=HEX(AO05A01EA0035205)
40 GOSUB '103 (H$, H1l§, "H", T)
40 IF VO$=HEX(FF) THEN 60 ELSE 50
50 STOP "ERROR IN READ"
60 $UNPACK (F=W$) STR(VIS$(),9,VAL(STR(VI$(),7,2),2)) TO
C1$,N1$,B1$,Al

In this example, the next consecutive record is read. If the record
is being held by another user, the system waits 25 seconds before an
error occurs.

In line 60 the VAL function is used on the seventh and eighth bytes
of the V9§() array to determine the number of bytes read.

4-8 DMS Access Subroutines

CONSECUTIVE WRITE

General Form
GOSUB '104 (file-id , efs , data)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the file indicated by V9$ (the
file identifier).

data can be either an alphanumeric literal or an array

designator. If a literal string is used, the
information must be enclosed in double quotation marks.

Purpose
The CONSECUTIVE WRITE (°'104) subroutine enables you to write the next
sequential record to a specified consecutive file.
To write the information contained in more than one variable to a file
at one time, you can use the $PACK statement (or some other
appropriate BASIC-2 statement) to pack the information into a single
variable.

Returns
The CONSECUTIVE WRITE subroutine returns the following information:

® VO0$ is the return code. Refer to Appendix A for more information.

® V7§ is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

® V9$() contains the following five bytes of status information:

- Byte 01 contains intermnal status information. This value
should always be equal to 01.

- Bytes 02 and 03 contain the number of bytes written.

- Bytes 04 and 05 contain the number of bytes in the byte block
and should be HEX(0000).

DMS Access Subroutines 4-9

Example (CONSECUTIVE WRITE)

10
20
30
40
50
60
70
80

In this example, the data held in the variable D§ is written to the

file

Note:

DIM C1$5, N1$30, B1$3, W$8, D$43, H$2, H1$32
H$=VI$:H1$=V7$

W$=HEX(AO005A01EA0035205)

$PACK (F=W$) D$ FROM Cl1l$, N1$, Bl$, Al
GOSUB '104 (H$, H1$, DS)

IF VO$=HEX(FF) THEN 80

STOP "ERROR IN WRITE"

specified by HS.

Since 2200 will not be able to compute the length of a variable
length record with trailing spaces, the users should implicitly pass
the length of the record to the CONSECUTIVE WRITE subroutine by ending

the record with a non-space dummy character.

4-10 DMS Access Subroutines

CONSECUTIVE REWRITE

General Form
GOSUB '105 (file-id , efs , len , data)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS -
header information for the file indicated by V9% (the
file identifier).

len indicates the length of the record to be rewritten.
The value of the len parameter must match the record
length exactly, including trailing spaces.

data can be either an alphanumeric literal or an array

designator. If a literal string is used the
information must be enclosed in double quotation marks.

Purpose
The CONSECUTIVE REWRITE ('105) subroutine enables you to overwrite an
existing record in a consecutive file. The record must have been

previously read with the HOLD option.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement to pack the information into a single variable or some other
appropriate BASIC-2 statement.

Returns
The CONSECUTIVE REWRITE subroutine returns the following information:

® VO0$ is the return code. Refer to Appendix A for more information.

. V73 is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

DMS Access Subroutines 4-11

V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
that should be equal to HEX(0000).

Example (CONSECUTIVE REWRITE)

10
20
30
40
50
60
70

DIM C1%5, N1$30, B1$3, W$8, D$43, H$2, H1$32
W$=HEX(AO05A01EA0035205)

$PACK (F=W$) D$ FROM C1$, N1§, B1l§, Al
GOSUB '105 (H$, H1$, 43, D§)

IF V0§ = HEX(FF) THEN 70

STOP "ERROR IN REWRITE"

4-12 DMS Access Subroutines

CONSECUTIVE SKIP

General Forma
GOSUB '106 (file-id , efs , nnnnnnnn)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

nanannnn is the number of records to skip; nnnnnnnn must be

between 232 = _232

Purpose
The CONSECUTIVE SKIP ('106) subroutine positions a consecutive file
forward or backward a given number of records in the file. For
example, if the first record of a file has been read, a SKIP value of
2 causes the next record read to be record 4. A SKIP value of -1
causes the same record to be reread by the next CONSECUTIVE READ
('103). A SKIP value of 0 is ignored.

Returns
The CONSECUTIVE SKIP subroutine returns the following information:

® V0§ is the return code. Refer to Appendix A for more information.

] V78 is the EFS header information for the file indicated by V9$
(the file identifier). Refer to Appendix A for more information.

® V93() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
that should be equal to HEX(0000).

Example (CONSECUTIVE SKIP)
10 GOSUB '106 (H$, H1$, 30)
20 IF VO$=HEX(FF) THEN 50:STOP "ERROR IN SKIP"

In this example, the next 30 records in the specified file are skipped.

DMS Access Subroutines 4-13

CONSECUTIVE LOCK

General Form
GOSUB '107 (file-id , efs , mode)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

mode is the mode the file is opened in. The following lists

the valid mode parameters and their meanings:

Read-only access
Shared access

Exclusive access
Extended access

o 0o 00
X nx
1o

Purpose
The CONSECUTIVE LOCK ('107) subroutine enables you to have exclusive
rights to a consecutive file. No other program can access the file
until you unlock the file.

Returns
The CONSECUTIVE LOCK subroutine returns the following information:

e VO0$ is the return code. Refer to Appendix A for more information.

®¢ V7% is the EFS header information for the file indicated by V9§$
(the file identifier). Refer to Appendix A for more information.

®¢ V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that
should be equal to HEX(00).

Bytes 02 and 03 contain the number of bytes in the byte block
that should be equal to HEX(0000).

4-14 DMS Access Subroutines

Example (CONSECUTIVE LOCK)
10 H$=V9$
20 GOSUB '107 (H$, H1$, "X")
30 IF VO$=HEX(FF) THEN 50
40 STOP "ERROR IN LOCK"
50 REM File was locked successfully. Continue processing.

In this example, the "X" indicates the specified file is held for
exclusive use. H1$ identifies the EFS header information.

Notes: The file LOCK is of limited use to users of the 2200/VS Local
Communication Option accessing VS/DMS files. The VS/DMS functions are
available to users of 2200 through the 2200 Server running as a
foreground task on one of the VS workstation emulation windows. Since
all users of 2200, attached to a particular 2258 controller, send
their VS/DMS requests to this server, which in turn passes the
requests to VS/DMS task, the VS fails to recognise that the DMS
requests are from different users of 2200.

However, once a VS/DMS file is locked by a user on 2200 through one of
the 2200 workstations, the file will not be available to other users
logged on to VS until the file is unlocked. But the file can be
shared for ""dirty” read by other users on the VS as well as 2200.

DMS Access Subroutines 4-15

| CONSECUTIVE UNLOCK

‘ General Form
GOSUB '108 (file-id , efs)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS

header information for the specified file.

Purpose
The CONSECUTIVE UNLOCK ('108) subroutine enables you to release a file
from exclusive use so that other programs can access the file.

Returns
The CONSECUTIVE UNLOCK subroutine returns the following information:

® V0§ is the return code. Refer to Appendix A for more information.

® V78 is the EFS header information for the file indicated by V93
(the file identifier). Refer to Appendix A for more information.

® V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
that should be equal to HEX(0000).

Example (CONSECUTIVE UNLOCK)
10 H$=VI$
20 GOSUB '108 (H$, H1$)
30 IF VO$=HEX(FF) THEN 50
40 STOP "ERROR IN UNLOCK"
50 REM Unlock was successful. Continue processing.

‘ In this example, the specified file is released from exclusive use.

4-16 DMS Access Subroutines

INDEXED READ

General Form
GOSUB '109 (file-id , efs , hold , time , key , length , value)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

hold indicates the hold option and can be either "H", which
holds the record for exclusive processing or " ", which
allows other programs to access the record.

time is the amount of time in seconds the system waits if the
record is being held by another user. Specifying a value
of zero (0) indicates that the system waits indefinitely.
Nonzero values should be used only when the file is
opened in Shared mode.

key is the key path, either the primary (0) or alternate key
(1-16).

length is a numeric variable or expression that specifies the
length of the key.

value is an alphanumeric variable or literal that indicates the

value of the key.

Purpose
The INDEXED READ ('109) subroutine enables you to read an indexed
file. The file must have previously been opened. You can use either
a primary or alternate key. For more information, see the following
General Notes section.

Returns
The INDEXED READ subroutine returns the following information:

VO$ is the return code. Refer to Appendix A for more information.
V1 contains the length of data read (in bytes) in the V9§() array.
V4§ is the alternate key mask.

V9$() the data read from the file.

DMS Access Subroutines 4-17

General Notes
DMS allows a primary key and up to 16 alternate keys. In the INDEXED
READ subroutine, the primary key is indicated by a 0 and the alternate
keys are indicated by the numbers 1 through 16. An example of each is
provided in the following example section.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

Ezample (INDEXED READ)
10 DIM C18$5, N1$30, B1$3, W$8
20 W$=HEX(AO005A01EA0035205)
30 C1s="00001"
40 GOSUB '109 (H$, H1$, "H", 0, 0, 5, C1l$)
50 IF VO$=HEX(FF) THEN 70
60 STOP "ERROR IN INDEXED READ"
70 REM Successful indexed read. Continue processing
80 $UNPACK (F=W$) STR(V9$().1,V1l) to K$,6N1§,B1$,Al

In this example, the path is identified as the primary key by the zero
(0) in the key parameter position. The key length is identified as 5
characters in length, and the value of the key is equal to the value
of C1§. Note also that the hold option is used.

The following example shows how to indicate an alternate key.

10 DIM C1$5, N1$30, B1l$3, W$8

20 W$=HEX(AOO05A01EA0035205)

30 C1$="00001"

40 GOSUB '109 (H$, H1$, "H", 0, 4, 5, C1$)

50 IF VO$=HEX(FF) THEN 70

60 STOP “ERROR IN INDEXED READ"

70 REM Successful indexed read. Continue processing
80 $UNPACK (F=W$) STR(V9$(),1,V1l) to K$,N13,Bl$,Al

In this example, the path is identified as the fourth alternate key by
the four (4) in the key parameter position. The other parameter
values remain the same.

4-18 DMS Access Subroutines

INDEXED READ NEXT

General Form
GOSUB '110 (file-id , efs , hold , time)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

hold indicates the hold option and can be either "H", which
holds the record for exclusive processing or " ", which
allows other programs to access the record.

time is the amount of time in seconds the system waits if

the record is being held by another user. Nonzero
values should only be used when the file is opened in
Shared mode.

Purpose
The INDEXED READ NEXT ('110) subroutine enables you to read an indexed

file sequentially. The file must have previously been opened.

Returns
The INDEXED READ NEXT subroutine returns the following information:

V0§ is the return code. Refer to Appendix A for more information.
V1l contains the length of data read (in bytes) in V9$() array.

V4§ is the alternate key mask.

V9$() is the data read from the file.

Example (INDEXED READ NEXT)
10 DIM C1$5,N1$30,B1$3,W$8,K1$1,K285
20 W$=HEX(AO05A01EA0035205)
30 GOSUB '110 (H$, H1$, "H", 25)
40 IF VO$=HEX(FF) THEN 60
50 STOP "ERROR IN READ NEXT"
60 REM Successful READ NEXT. Continue processing
70 ...

In this example, the next record in the file indicated by H$ is read.
If the record is being held by another user, the program waits 25
seconds before generating an error return code.

DMS Access Subroutines 4-19

INDEXED WRITE

General Form
GOSUB '111 (file-id , efs , alt , data)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

alt represents the alternate key mask.

data can be an alphanumeric, an array designator, or a

literal., If a literal string is used, the information
must be enclosed in double quotation marks.

Purpose
The INDEXED WRITE ('111) subroutine enables you to write a keyed
record to an indexed file.

To write the information contained in more than one variable to a file
at one time using the WRITE subroutine, you can use the $PACK
statement (or some other appropriate BASIC-2 statement) to pack the
information into a single variable.

Returns
The INDEXED WRITE subroutine returns the following information:

. V0$ is the return code. Refer to Appendix A for more information.

Example (INDEXED WRITE)
10 DIM N1$30,B1$3,W$8,K1$1,K$5
20 W§=HEX(AO005A01EA0035205)
30 PACK (F=W$) D$§ FROM Cl$, N1§, Bl$, AlS
40 GOSUB 'l111 (H$, H1$, H2$, D$)
40 IF VO$=HEX(FF) THEN 60
50 STOP "ERROR IN INDEXED READ"
60 REM Good indexed read. Continue processing.

Note: Since 2200 will not be able to compute the length of a variable
length record with trailing spaces, the users should implicitly pass
the length of the record to the INDEXED WRITE subroutine by ending the
record with a non-space dummy character.

4-20 DMS Access Subroutines

INDEXED REWRITE

General Form

GOSUB '112 (file-id , efs , alt , len , data)

where

file-id

efs

alt

len

data

Purpose

is an alphanumeric variable that represents the file
identifier assigned to the file.

is an alphanumeric variable that represents the EFS
header information for the specified file.

represents the alternate key mask.

indicates the length of the record to be rewritten. The
value of the len parameter must match the record length
exactly, including trailing spaces.

can be an alphanumeric variable, an array designator, or
a literal. If a literal string is used, the information
must be enclosed in double quotation marks.

The INDEXED REWRITE ('112) subroutine enables you to overwrite an
existing record in an indexed file. The rewritten record size is the
same as that of the existing record.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement (or some other appropriate BASIC-2 statement) to pack the
information into a single variable.

Returns

The INDEXED REWRITE subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.

General Notes

A record can be rewritten only if the record is read with the hold
option equal to "H".

Example (INDEXED REWRITE)
10 DIM C1$5,N1$30,B$3,W$8,D$43
20 W$=HEX(AO005A01EA0035205)
30 $PACK (F = W§) D$ FROM C1$, N1§, Bl§, Al
40 GOSUB '112 (H$, H1$, H2$, 43, D$)
50 IF VO$=HEX(FF) THEN 70

60 STOP
70 ¢ o0

“ERROR IN INDEXED REWRITE"

DMS Access Subroutines 4-21

INDEXED DELETE

General Form
GOSUB '113 (file-id , efs)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS

header information for the specified file.

Purpose
The INDEXED DELETE ('113) subroutine enables you to delete a specific
record from an indexed file.

Returns
The INDEXED DELETE subroutine returns the following information:

® V0§ is the return code. Refer to Appendix A for more information.

General Notes
A record can be deleted only if the record is read with the hold
option equal to "H".

Example (INDEXED DELETE)
10 GOSUB '113 (H$, H1$)
20 IF VO0$ = HEX(FF) THEN 40
30 STOP "ERROR IN INDEXED DELETE"
40 REM Indexed delete successful. Continue processing.

In this example, H$ identifies the file that the INDEXED DELETE
subroutine operates on.

4-22 DMS Access Subroutines

INDEXED FIND

General Form
GOSUB '114 (file-id , efs , select , post , path , length , value)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

select represents the selection criteria. The following values
are valid entries for this parameter:
¢ "8080" indicates equal to
® "2080" represents greater than
® "6080" indicates greater than or equal to

post indicates the starting position of the key in the record.

path indicates either primary (0) or alternate key (1-16) path
number.

length is a variable or numeric expression that specifies the
length of the key.

value is a variable or an alpha or numeric expression that

indicates the value of the key.

Purpose
The INDEXED FIND ('l14) subroutine enables you to read an indexed file
based on a comparison expressed in the select input parameter to the

primary or alternate key.

Returns
The INDEXED FIND subroutine returns the following information:

® V03 is the return code. Refer to Appendix A for more information.
e V1 contains the length of data read (in bytes) in the V9§() array.
® V43 is the alternate key mask.

® V9$() is the data read from the file.

DMS Access Subroutines 4-23

Example (INDEXED FIND)
10 DIM H$2,H1$32,H3$2,K$5
20 K$="00003":REM KEY VALUE
30 K1=12:REM KEY POSITION
40 K2=5:REM KEY LENGTH
50 K3=0:REM KEY PATH
60 H3$=HEX(2080):REM FIND CRITERIA = GREATER THAN
70 REM FIND RECORD WITH A KEY VALUE GREATER THAN "00003"
80 GOSUB '114(H$, H1$, H3$, K1, K2, K3, K$)
90 IF VO$=HEX(FF) THEN 90
100 STOP "ERROR IN INDEXED FIND"
110 REM GOOD INDEXED FIND. CONTINUE PROCESSING."
120 ...

In this example, the selection criterion is set to greater than
(2080). This value indicates that the next record read will have a
primary key value greater than the value of C1$.

4-24 DMS Access Subroutines

INDEXED LOCK

General Form
GOSUB '115 (file-id , efs , post , key , length , value)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

post represents the position in the record where the key
starts.

key is the key path, either the primary (0) or alternate
key (1-16).

length is a numeric variable or literal that specifies the
length of the key.

value is an alphanumeric variable or an alphanumeric literal

that indicates the value of the key.

Purpose
The INDEXED LOCK ('115) subroutine enables you to to have exclusive
rights to an indexed file. No other program can access the file until
you unlock the file.

You can use either the primary or alternate key. Refer to the General
Notes section for more information.

Returns
The INDEXED LOCK subroutine returns the following information:

¢ V03 is the return code. Refer to Appendix A for more information.

General Notes
DMS allows a primary key and up to 16 alternate keys. In the INDEXED
READ subroutine, the primary key is indicated by a 0, the alternate
keys are indicated by the numbers 1 through 16.

DMS Access Subroutines 4-25

Example (INDEXED LOCK)
10 H$ = V9§
20 GOSUB '115 (H$, H1$, P, K, L, K1§)
30 IF VO$=HEX(FF) THEN 50
40 STOP "ERROR IN LOCK"
50 REM Indexed file lock successful. Continue processing.
60 ...

Notes: The file LOCK is of limited use to users of 2200/VS Local
Communication Option accessing VS/DMS files. The VS/DMS functions are
available to users of 2200 through 2200 Server running as a foreground
task on one of the VS workstation emulation windows. Since all users
of 2200, attached to a particular 2258 controller, send their VS/DMS
requests to this server, which in turn passes the requests to VS/DMS
task, the VS fails to recognise that the DMS requests are from
different users of 2200.

However, once a VS/DMS file is locked by a user on 2200 through one of
the 2200 workstations, the file will not be available to other users
logged on to the VS untill the file is unlocked. But the file can be
shared for "dirty" read by other users on the VS as well as 2200.

4-26 DMS Access Subroutines

INDEXED UNLOCK

General Form
GOSUB '116 (file-id , efs)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS

header information for the specified file.

Purpose
The INDEXED UNLOCK ('116) subroutine enables you to release an indexed
file so that other programs can access the file.

Returns
The INDEXED UNLOCK subroutine returns the following information:

e V0§ is the return code. Refer to Appendix A for more information.

Example (INDEXED UNLOCK)
10 H§ = V9§
20 GOSUB '116 (H$, H1§$)
30 IF VO$=HEX(FF) THEN 50
40 STOP "ERROR IN UNLOCK"
50 REM Indexed file unlock successful. Continue processing.
60 ...

DMS Access Subroutines 4-27

RELATIVE READ

General Form
GOSUB '117 (file-id , efs , hold , rec-num , number)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
information for the specified file.

hold indicates the hold option and can be either "H", which
holds the record for exclusive processing or " ",
which allows other programs to access the record.

rec-num is the relative number of the record to be read.

number is a numeric variable or expression indicating the

number of relative records to be read.

Purpose
The RELATIVE READ ('117) subroutine enables you to read a specified
record in a relative file. The file must have previously been opened.

Returns
The RELATIVE READ subroutine returns the following information:

e VO0$ is the return code. Refer to Appendix A for more information.

® V7$ is the EFS header information for the file indicated by V9%
(the file identifier). Refer to Appendix A for more information.

® V9$() contains eight bytes of status information and the data read
from the file. Refer to the General Notes section for more
information.

4-28 DMS Access Subroutines

General Notes
In the RELATIVE READ subroutine, the V9$() array is used to store
status information and the data read from the file. The first
eight bytes of the array are used to store the status information.
Table 4-2 describes the status information.

Table 4-2. RELATIVE READ Status Information

Byte(s) Description

01 Contains the number of words in the word
block. This value should always be equal
to HEX(01).

02 and 03 Contain the number of records read.

04 and 05 Contain the number of bytes in the byte
block.

06 Contains the data block ID. This value

should always be equal to 0O1l.

07 and 08 Contains the number of bytes read. The
value of these two bytes can be up to 64K.

The remaining bytes of the array (starting at the ninth byte) are
used to store the data read from the file. If you know the length
of the records read, you know how many bytes of V9§ are used to
store the data. If you do not know the length of the records in the
file, or the file contains variable length records, you can use the
VAL function on the seventh and eighth bytes of the V9$() array to
get the length of the data read. Refer to the following example for
more information.

The V9$§() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

DMS Access Subroutines 4-29

Example (RELATIVE READ)

10
15
20
30
40
50
60
70

DIM C1$5,N1$30,B1$3,W$8,H$2,H1$32

H$=V9$

W$=HEX(A005A01EA0035205)

GOSUB '117 (H$, H1$, “"H", 125, 1)

IF VO$=HEX(FF) THEN 60

STOP "ERROR IN RELATIVE READ"

REM Good relative read. Continue processing.
SUNPACK (F=W$) Q$() to C1$,N1$,B1S$,Al

In this example, the 125th record of the specified file is

read.

4-30 DMS Access Subroutines

RELATIVE WRITE

General Form
GOSUB '118 (file-id , efs , number , data)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
information for the specified file.

number is a numeric variable or expression indicating the
number of relative records to be read.

data can be an alphanumeric variable, an array designator,

or a literal. If a literal string is used, the
information must be enclosed in double quotation marks.

Purpose
The RELATIVE WRITE (°'118) subroutine enables you to write the next
record to a specified relative file.

To write the information contained in more than one variable to a file

/o~ at one time, you can use the $PACK statement (or some other
appropriate BASIC-2 statement) to pack the information into a single
variable.

Returns

The RELATIVE WRITE subroutine returns the following information:
® V0§ is the return code. Refer to Appendix A for more information.

e V7% is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

® V9$() contains the following five bytes of status information:

- Byte 0l contains the number of words in the word block. This
value should always be equal to HEX(01l).

- Bytes 02 and 03 contain the number of bytes written.

- Bytes 04 and 05 contain the number of bytes in the byte block
and should be HEX(0000).

DMS Access Subroutines 4-31

Example (RELATIVE WRITE)

10
20

DIM C1$5,N1$30,B1$3,W$8,D$41,H$2,H1$32
W$=HEX(AO005A01EA0035205)

30$PACK (F=W$) D$ FROM C1$,N1$,Bl$,Al

40
50
60
70
80

GOSUB '118 (H$, H1$, 1, D$)

IF VO$=HEX(FF) THEN 70

STOP "ERROR IN RELATIVE WRITE"

REM Good relative write. Continue processing.

In this example, the value of D$ is written to the file as one

record.

4-32 DMS Access Subroutines

RELATIVE REWRITE

General Form
GOSUB '119 (file-id , efs , number , len , data)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

number represents the number of the relative record to be
rewritten.

len indicates the length of the record to be rewritten. The
value of the len parameter must match the record length
exactly, including trailing spaces.

data can be an alphanumeric variable, an array designator, or

a literal. If a literal string is used, the information
must be enclosed in double quotation marks.

Purpose
The RELATIVE REWRITE ('119) subroutine enables you to overwrite an
existing record in a relative file. The record must have been
previously read with the HOLD option.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement to pack the information into a single variable or some other
appropriate BASIC-2 statement.

Returns .
The RELATIVE REWRITE subroutine returns the following information:

® V0§ is the return code. Refer to Appendix A for more information.

e V7§ is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

® V9%() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block and
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes written and should
be equal to HEX(0000).

DMS Access Subroutines 4-33

Example (RELATIVE REWRITE)
- 10 DIM C1$5,N1$30,B1$3,W$8,D$43,H$2,H1$32
20 W$=HEX(A005A01EA0035205)
30 $PACK (F=W$) D$ FROM C1l$,N1$,Bl$,Al
40 GOSUB '104 (H$, H1$, 5, 43, D$)
50 IF VO$=HEX(FF) THEN 70
60 STOP "ERROR IN REWRITE"
70 REM Good relative rewrite. Continue processing.
80 ...

In this example, the fifth relative record of the specified file is
rewritten to the file.

t 4-34 DMS Access Subroutines

RELATIVE DELETE

General Form
GOSUB '120 (file-id , efs , number)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file,

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

number represents the number of the relative record to be

deleted.

Purpose
The RELATIVE DELETE ('120) subroutine enables you to delete a specific
record from a relative file.

Returns
The RELATIVE DELETE subroutine returns the following information:

¢ VO0$ is the return code. Refer to Appendix A for more information.

¢ V7% is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

¢ V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block and
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes written and should
be equal to HEX(0000).

Example (RELATIVE DELETE)
10 H§ = V9$:H1$ = V7§
20 GOSUB '120 (H$, H1$, 5)
30 IF VO$=HEX(FF) THEN 50
40 STOP "ERROR IN DELETE"
50 REM Good relative record delete. Continue processing.
60 ...

In this example, H$ indicates the file that the fifth relative record
is deleted from.

DMS Access Subroutines 4-35

BLOCK READ

General Form

GOSUB '121 (file-id , efs , block-num)

where

file-id

efs

block-num

Purpose

is an alphanumeric variable that represents the file
identifier assigned to the file.

is an alphanumeric variable that represents the EFS
header information for the specified file.

represents the block number of the block to be read.

The BLOCK READ ('121) subroutine enables you to read a 2K block of
information from a consecutive, indexed, or relative file.

Returns

The BLOCK READ subroutine returns the following information:

° V0$ is the return code. Refer to Appendix A for more information.

® V9$() contains the data read from the file. This array is 2048

bytes long.

General Notes

To use the BLOCK READ the file organization must be specified as Block
Access Method when the file is opened. The file cannot be opened in

Shared mode.

Example (BLOCK READ)

Each block read contains 2048 bytes of data.

10 H$ = VI9§:H1$ = V7$:Bl=5

20 GOSUB '121 (H$, H1$, Bl):REM Read block number 5.
30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN BLOCK READ"

50 REM Good block read. Continue processing.

60 ...

In this example, block number five of the specified file is read.

4-36 DMS Access Subroutines

BLOCK WRITE

General Form
GOSUB '122 (file-id , efs , block-num , data)

where

file-id is an alphanumeric variable that represents the file
identifier assigned to the file.

efs is an alphanumeric variable that represents the EFS
header information for the specified file.

block-num represents the block number of the block to be written.

data can be either an alphanumeric literal or an array

designator. If a literal string is used, the
information must be enclosed in double quotation marks.

Purpose
The BLOCK WRITE (‘'122) subroutine enables you to write a 2K block of
information to a consecutive, indexed, or relative file.

Returns
The BLOCK WRITE subroutine returns the following information:

e V0§ is the return code. Refer to Appendix A for more information.

General Notes
To use the BLOCK READ the file organization must indicate Block Access
Method when the file is opened. Each block contains 2048 bytes of
data. When you use the BLOCK WRITE subroutine, you want to write
approximately 2048 bytes of data to the file.

FExample (BLOCK WRITE)
10 H§ = V9$:H1$ = V7$:Bl=5
20 GOSUB '122 (H$, H1$, Bl, D$):REM Write block number 5.
30 IF VOS$=HEX(FF) THEN 50
40 STOP "ERROR IN BLOCK WRITE"
50 REM Good block write. Continue processing.
60 ...

In this example, block number five is written to the specified file.

DMS Access Subroutines 4-37

CREATE FILE

General Form

GOSUB '200 (file-name , org , mode , opt-flag , create , alt-key)

where

file-name

org

mode

opt-flag

create

alt-key

represents the name of the f£ile. The file name can
include the //SYSTEM/VOLUME/LIBRARY/FILENAME. The
file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

is the organization of the file. The following lists
the valid file organization parameters and their
meanings:

Consecutive file
Indexed file
Relative file

Block Access Method

e & o 0
W o - O
[

is the mode the file is opened in. The following lists
the valid mode parameters and their meanings:

Read only access
Shared access

Exclusive access
Extended access

® o 00
mXno
[

indicates whether the file is to be created as follows:

® C - Created
¢ T - Temporary
® 0 - Created and opened

specifies the attribute data for the file. Refer to
the following General Notes section for more
information.

specifies the alternate key information if required.
Refer to the following General Notes section for more
information. ‘

4-38 DMS Access Subroutines

Purpose
The CREATE FILE ('200) subroutine enables you to create a DMS file.
The subroutine enables you to specify the file name, including the
system, the library, and actual name of the file. The 1library,
volume, and file name are required; the system name is optional. The
CREATE FILE subroutine also enables you to specify the file type
(indexed, consecutive, or relative,) and the access mode (Read-Only,
Shared, Exclusive, or Extended).

Returns
The CREATE FILE subroutine returns the following information:

® V0§ is the return code. Refer to Appendix A for more information.

. V7$ is the EFS header information for the file indicated by V9$
(the file identifier). Refer to Appendix A for more information.

® V93$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
that should be equal to HEX(0000).

General Notes
You can use the VS CREATE utility to create and maintain data files.
Through CREATE you can add, delete, modify, or examine data in the
data files created using the utility. For more information on the
CREATE utility, refer to the VS File Management Utilities Reference.

The create input parameter requires 40 bytes of information for
consecutive, indexed, and relative files. If the file being created
is an indexed file with one or more alternate keys, an additional
eight bytes of information is required for each alternate key. This
information is passed to the subroutine in the alt-key input parameter.

If the file being created does not contain an alternate key, the
alt-key parameter should be set to spaces and must still be passed to
the subroutine.

For more information on the contents of the create and alt-key
parameters, refer to Appendix A.

DMS Access Subroutines 4-39

Example (CREATE FILE)

10
20
30
40
50
60
70
80
90

In

DIM N$32, T$1l, Ml, A40, Al§S
N$="//SYSTEM/ANYVOL/ANYLIB/FILENAME"

T$="I"

M$=IOSCI

GOSUB '200 (N$, T$, M$, "O", A$§, Al$)

IF VO$=HEX(FF) THEN 80

STOP "ERROR IN CREATE"

REM Good file create. Continue processing.

this example, variables are used to represent the name,

organization, mode, file attributes, and alternate key attribute data
parameters. The opt-flag parameter value of "0" indicates that the
file is created and opened.

4-40 DMS Access Subroutines

DELETE FILE

General Form
GOSUB '201 (file-name)

where

file-name represents the name of the file. The file name can
include the //SYSTEM/VOLUME/LIBRARY/FILENAME. The
file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

Purpose
The DELETE FILE ('201) subroutine enables you to delete any DMS file.

Returns
The DELETE FILE subroutine returns the following information:

¢ V0$ is the return code. Refer to Appendix A for more information.
e V1 is the length of valid data in the V9§() array.

¢ V7% is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

e V9§() contains three bytes of internal status information and
should be equal to three HEX zeros (HEX(000000)).

Example (DELETE FILE)
10 DIM N$32
20 N$="///ANYVOL/ANYLIB/FILENAME"
30 GOSUB '201 (N$)
40 IF VOS=HEX(FF) THEN 60
50 STOP "ERROR IN DELETE FILE"
60 REM File successfully deleted. Continue processing.
70 ...

In this example, the file specified by N§$ (///ANYVOL/ANYLIB/FILENAME)
is deleted from the system.

DMS Access Subroutines 4-41

RENAME FILE

General Form
GOSUB '202 (old-name , new-name)

Purpose

where

old-name

new-name

represents the name of the file as it currently exists
on the system. The file name can include the
//SYSTEM/VOLUME/LIBRARY/FILENAME. The file name can
also be written as ///VOLUME/LIBRARY/FILENAME. The
SYSTEM, LIBRARY, and FILENAME can be up to 8 characters
in length. The VOLUME can be up to 6 characters in
length.

represents the name of the file as it will be known to
the system after the subroutine executes. The file
name can include the //SYSTEM/VOLUME/LIBRARY/FILENAME.
The file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

The RENAME FILE ('202) subroutine enables you to rename any DMS file.

Returns

The RENAME FILE subroutine returns the following information:

V0§ is the return code. Refer to Appendix A for more information.

V1l is the length of valid data in the V9$() array.

V78 is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

V9$() contains three bytes of internal status information and
should be equal to three HEX zeros (HEX(000000)).

4-42 DMS Access Subroutines

Example (RENAME FILE)

10
20
30
40
50
60
80
70

DIM 0#32, N$32
0$="///0LDVOL/OLDLIB/OLDNAME"
N§="'///NEWVOL/NEWLIB/NEWNAME"
GOSUB '202 (0%, N§$)

IF VO$=HEX(FF) THEN 70

STOP "ERROR IN RENAME FILE"
REM File successfully renamed.

Continue processing.

In this example, the file specified by N$ (///ANYVOL/ANYLIB/FILENAME)
is deleted from the system.

DMS Access Subroutines 4-43

GET FILE ATTRIBUTES

General Form
GOSUB '203 (file-name)

Purpose

where

file-name represents the name of the file. The file name can

include the //SYSTEM/VOLUME/LIBRARY/FILENAME. The
file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

The GET FILE ATTRIBUTES ('203) subroutine emables you to retrieve the
value of one or more attributes associated with the specified file.
The file must be opened first.

Returns

The GET FILE ATTRIBUTES subroutine returns the following information:

V0$ is the return code. Refer to Appendix A for more information.

V1l is the length of valid data in V9$() array.

V7% is the EFS header information for the file indicated by V9§
(the file identifier). Refer to Appendix A for more information.

V9$() contains the file attribute information returned. Refer to
Appendix A for an explanation of the attributes returned.

Example (GET FILE ATTRIBUTES)

10
20
30
40
50
60
70

DIM N$32

N$="///ANYVOL/ANYLIB/FILENAME"

GOSUB '203 (N§)

IF VO$=HEX(FF) THEN 60

STOP "ERROR IN GET FILE ATTRIBUTES"

REM Good read on file attributes. Continue processing.

In this example, the file attributes for the file
///ANYVOL/ANYLIB/FILENAME are returned and held in the V9$() array.

4-44 DMS Access Subroutines

APPENDIX A
ADDITIONAL INFORMATION

A1l INTRODUCTION
This appendix contains the following additional information on:
. The return codes

® The file attributes returned by subroutines, GENERAL OPEN and
GET FILE ATTRIBUTE

L The create and alternate key input parameters for the CREATE FILE
subroutine

A.2 RETURN CODES

The return codes generated by the DMS Access Subroutines are in HEX
format. Table A-1l lists and explains the return codes generated by the
DMS Access Subroutines.

The EFS header explained in Section A.3 provides additional
information on the error.

Additional Information A-1

Table A-1. Return Codes

Return Code
Decimal Hex Description Recovery Action
00 00 Syntax error Check your program for
possible syntax error.
90 5A 2258 firmware error Ensure the 2200/VS LCO
task is operational
and the DMS task has
been assigned.
165 A5 Error in SMB block Refer to Table A-3.
255 FF Successful Always check EFS
header for any
possible error.

A3 EXTENDED FILE SHARING (EFS) HEADER
The DMS access subroutines use the Extended File Sharing (EFS)
protocol to control file information. The EFS header is 32 bytes

long. The DMS access subroutines store the EFS header in variable V78§.

Table A-2 describes the EFS header in detail.

A-2 Additional Information

Table A-2. EFS Header

Initial Value

Byte(s) Description (in HEX)

01 through 04 Contain header identification. FF534D42

05 Mandatory:; values other than FF
HEX(FF) indicate error.

06 Returns error class; refer to 000
the section on Error Classes
in this Appendix for further
information.

07 DMS Access Subroutines store (Initialized
the extended command code in by subroutine
this byte. invoked.)

08 and 09 Returns two-byte error code; 0000
refer to the section on Error
Codes for further information.

10 Reserved for future use. 00

11 through 22
23 and 24
25 and 26
27 and 28

29 and 30

31 and 32

Reserved for future use.
Mandatory.

Reserved for future use.
Reserved for future use.

These bytes are updated by the
GENERAL OPEN subroutine with

the User Identification number.

Reserved for future use.

All zeroes

FFFF

0000

0000

0000

0000

Additional Information

A.3.1 Error Classes

The error class indicates which DMS Server task was invoked when the
error occurred. Table A-3 lists and explains the values returned for

the error classes.

Table A-3. Error Classes
Error Class
Decimal HEX Explanation/Indication
07 07 Reserved for 2200SRV
08 08 Catalog server
09 09 File server
10 oA WITA server
11 0B Print server
12 (1] QLI server
13 (0))] QLI:FORMATER server
14 OE QUEUE:JOB server
15 OF DMPACK server
20 14 User server

A-4 2additional Information

A.3.2 Error Codes

The error codes explain why the error has occurred. Table A-4
describes the error codes returned.

Table A-4. Error Codes

Error Codes

Decimal Hex Description

000 0000 . Successful execution of requested
function.

001 0001 Invalid function specified to the server.

002 0002 File not found or there is a duplicate
file.

003 0003 Library not found.

004 0004 Too many files have been opened.

005 0005 The user has insufficient access rights.

006 0006 Invalid handle has been supplied.

007 0007 Server processing error.

008 0008 Insufficient space allocated to perform

the function.

009 0009 VTOC error.

010 000A The parameters passed are invalid for the
function.

011 000B Invalid file format.

012 000C Open access mode specified is invalid.

013 000D Disk space or extents error.

014 000E Invalid function has been specified for
I/0 mode.

(continued)

Additional Information A-5

Table A-4. Error Codes (continued)

Error Codes

Decimal Hex Description

015 000F Volume required is not mounted.

016 0010 Delete errors encountered.

017 0011 Invalid device specified.

018 0012 NODATA Read attempted on a file opened in
Shared mode.

019 0013 Invalid function attempted on a Relative
file or Write attempted on a Read-Only
file.

020 0014 The file already exists.

021 0015 File possession conflict.

022 0016 Invalid key size specified.

023 0017 Invalid key value specified.

024 0018 Boundary wviolation has occurred.

025 0019 End of file.

026 001a Invalid attempt to REWRITE a compressed
record.

028 o001cC Invalid alternate key specified.

029 001D Invalid function specified for alternate
indexed file.

030 001E Permanent I/0 error has occurred.

031 001F Undefined position specified for READ NEXT
function.

(continued)

A-6 Additional Information

Table A-4. Error Codes {(continued)

Error Codes

Decimal Hex Description

032 0020 Disk problems encountered.

033 0021 Recovery problems encountered.

034 0022 File organization needs to be specified.

036 0024 Invalid WRITE issued to Relative or
Read-Only file.

037 0025 Invalid function for a file opened in
Shared mode.

038 0026 Invalid function for a file opened in
non-Shared mode.

039 0027 Invalid function for PAM access method.

040 0028 The requested device is in use.

041 0029 The requested device is detached.

042 002A Access denied.

043 002B Invalid function sequence for Delete, BAM
access method, and REWRITE on consecutive
file.

044 002C START WAIT has been issued when no I/O0 is
pending.

045 002D No wait was issued for previous I/0.

046 002E Timeout on a shared resource wait.

047 002F Indexed file is requested but FDR
indicates it is not an indexed file.

048 0030 Relative files may not be compressed.

(continued)

Additional Information A-7

Table A-4. Error Codes (continued)

Error Codes

Decimal Hex Description

049 0031 The file is locked by another task.

051 0033 Read/Write issued to a file temporarily
locked.

052 0034 Invalid name.

054 0036 File is already open.

055 0037 OPEN in EXTENDED mode is invalid for
indexed file, but the file may be created.

056 0038 The file cannot be closed.

057 0039 The record count is not updated during
Close.

059 003B There is no space on SHARED block.

081 0051 The server is paused.

096 0060 Severe DMS errors encountered.

098 0062 Task problems encountered; restart the
task indicated by error class.

099 0063 Nonspecific file system error encountered.

100 0064 The system name cannot be parsed.

102 0066 Length inconsistency, VS returned fewer
bytes than expected.

A-8 Additional Information

A4 FILE ATTRIBUTE INFORMATION

This section describes the file attribute information returned by the
subroutine, GENERAL OPEN ('10l1) or GET FILE ATTRIBUTES ('203).

A.4.1 Attribute Structure for General Open
The structure of the file attribute information returned by GENERAL

OPEN ('10l1) is shown in Table A-5.

Table A-5. GENERAL OPEN - File Attribute Information Structure

Byte(s) Description Remarks

01 and 02 Count of data bytes

03 Mandatory data block identification HEX(01)

04 and 05 Size of this data block

06 through 144 General file attribute data Refer to

Table A-7

145 Mandatory data block identification HEX(01)

146 and 147 Size of this data block

148 onwards Alternate key file attribute data Refer to
(8 bytes of information for each Table A-8
alternate key defined for the file)

Notes: Add a displacement of 6 bytes to the General File Attribute
Data described in Table A-7.

Add a displacement of 148 bytes to the Alternate Key File Attribute
Data described in Table A-8.

Additional Information A-9

A.4.2 Attribute Structure for Get File Attributes

The structure of the file attribute information returned by GET FILE
ATTRIBUTES ('203) is shown in Table A-6.

Table A-6. GET FILE ATTRIBUTES - File Attribute
Information Structure

Byte(s) Description Remarks

01 Mandatory word counter HEX(00)

02 and 03 Count of data bytes

04 Mandatory data block identification HEX(01)

05 and 06 Size of this data block

07 through 145 General file attribute data Refer to
Table A-7

Note: Add a displacement of 5 bytes to the General File Attribute
Data described in Table A-7.

A-10

Additional Information

A.4.3 Attribute Structure for General File Attributes

Table A-7 describes the general file attribute data returned by
GENERAL OPEN ('101) as well as GET FILE ATTRIBUTES ('203).

Table A-7. Gemeral File Attribute Data

Byte(s) Description

01 The file organization: C for Consecutive, I for
Indexed, A for alternate indexed, P for print, W
for WP, O for object, R for Relative or B for
Block.

02 The record type: F for fixed length records or V
for variable length records.

03 The compression flag: Y indicates the file is
compressed and N indicates the file is not
compressed.

04 The file class: A-Z, #, $ or @.

05 through 08 The number of records in the file,

09 through 12 The size of the record.

13 through 16 The number of extents of disk space allocated.

17 through 20 The number of blocks used.

21 through 24 The number of blocks allocated for the file.

25 through 32 The identification of the creator of the file.

33 through 38 The date of creation (YYMMDD) of the file.

39 through 44 The date of modification (YYMMDD) of the file.

45 through 50 The date of expiration (YYMMDD) of the file.

51 Whether WP prologue sector is present; Y for yes
N for no.

52 and 53 The position of primary key for the indexed file.
This value is HEX(0000) for non-indexed file.

(continued)

Additional Information

A-11

Table A-7. General File Attribute Data (continued)
Byte(s) Description
54 and 55 The length of the primary key for the indexed

56 and 57

58 and 59

60 through 85

86 through 111

112 through 137

138 and 139

file. This value is HEX(0000) for a non-indexed
file.

The number of alternate keys for the indexed file.
An indexed file can have 1 to 16 alternate keys.
This value is HEX(0000) for a non-indexed file.

The alternate key mask for the indexed file. This
value is HEX(0000) for a non-indexed file.

Write access (W) for the different file classes
(A-2).

Read access (R) for the different file classes
(A-2).

Execute access (E) for the different file classes
(A-Z) .

Number of records in the last block.

A-12 Aadditional Information

A.4.4 Attribute Structure for Alternate Key File Attributes

Table A-8 describes the alternate key file attribute data returned by
GENERAL OPEN ('101) subroutine.

Table A-8. Alternate Key File Attribute Data

Byte(s) Description

01 Y indicates records with duplicate alternate key
values are allowed. N indicates duplicates are
not
allowed.

02 Y indicates the alternate key is compressed.

N indicates the alternate key is not compressed.

03 and 04 The ordinal number of the alternate key ranges
from 1 to 16.

05 and 06 The starting position of the alternate key.

07 and 08 The length in bytes of the alternate key.

Additional Information A-13

A5 CREATE FILE INFORMATION

This section describes the information required for the create input
parameter and the alternate key input parameter for the CREATE FILE

('200) subroutine.

A.5.1 Create File Parameters

The create input parameter for the CREATE FILE ('200) requires
41 bytes of information. Table A-9 describes the create input

parameter.
Table A-9. Create Input Parameter

Byte(s) Description

01 The file organization: C for Consecutive, I for
Indexed, R for Relative or B for Block.

02 The record type: F for fixed length records or V
for variable length records.

03 The file class: A-Z, #, $ or Q.

04 The compression flag: Y indicates the file is to
be compressed and N indicates the file is not to
be compressed.

05 through 08 The approximate number of records in the file.

09 through 12 The size of the record.

13 through 16 The number of blocks to be allocated for the file.

17 through 20 The size of the block.

21 through 26 The date of expiration (YYMMDD) of the file.

27 Whether WP prologue sector is present; Y for yes
N for no.

28 and 29 The position of primary key for the indexed file.
This value is HEX(0000) for non-indexed file.

30 and 31 The length of the primary key for the indexed
file. This value is HEX(0000) for non-indexed
file.

(continued)

A-14 Additional Information

/A\

Table A-9. Create Input Parameter (continued)

Byte(s) Description

32 and 33 The number of alternate keys for the indexed file.
An indexed file can have 1 to 16 alternate keys.
This value is HEX(0000) for a non-indexed file.

34 Whether to take the created space. N indicates
no.
35 For print files only; otherwise HEX(00).

Indicates print form number. Print form numbers
are established by the user site operations.

36 and 37 For print files only; otherwise HEX(0000).
Indicates printer device number. Printer device
numbers are established by the user site
operations.

38 For print files only; otherwise HEX(00).
Indicates print class. Print classes are
established by the user site operations.

39 For print files only; otherwise HEX(00).
Indicates number of copies to be printed.

40 For print files only; otherwise HEX(00).
Indicates the status; either R for release or H
for hold.

41 For print files only; otherwise HEX(00).
Indicates the disposition; either R for release or
H for hold.

Additional Information A-15

A.5.2 Alternate Key Structure

! An additional 8 bytes of information for each alternate key is
required for the alt-key input parameter of the CREATE FILE ('200)
subroutine. Table A-10 describes the alternate key input parameter
for indexed files with alternate keys.

Table A-10. Alternate Key Input Parameter

Byte(s) Description

01 Y indicates records with duplicate alternate key
values are allowed. N indicates duplicates are
not allowed.

02 Y indicates the alternate key is to be compressed.
N indicates the alternate key is not to be
compressed.

03 and 04 The ordinal number of the alternate key ranges

from 1 to 16.
05 and 06 The starting position of the alternate key.

07 and 08 The length in bytes of the alternate key.

A-16 Additional Information

INDEX

B DMS access subroutines, 3-2 to 3-4,
4-1 to 4-44
BLOCK READ, 3-3, 4-36 general notes on, 3-6
BLOCK WRITE, 3-3, 4-37 using, 3-4 to 3-5, 4-1, 4-2
using literals with, 3-8
C using variables with, 3-8
variables reserved for, 3-6 to 3-8
Consecutive file, 3-1 DMS files, 1-2
CONSECUTIVE LOCK, 3-2, 4-14, 4-15 access, 1-2, 3-1 to 3-10
CONSECUTIVE READ, 3-2, 4-6 to 4-8 file types, 3-1, 3-2
CONSECUTIVE REWRITE, 3-2, 4-11, 4-12
CONSECUTIVE SKIP, 3-2, 4-13 E
CONSECUTIVE UNLOCK, 3-3, 4-16
CONSECUTIVE WRITE, 3-2, 4-9, 4-10 EFS, see Extended File Sharing
CREATE FILE, 3-4, 4-38 to 4-40, Header
A-14 to A-16 error classes, A-4
error codes, A-5 to A-8
D Exclusive mode, 2-1
Extended File Sharing Header, A-2,
Data Management System (DMS), 1-1, A-3
4-17, 4-32
DELETE FILE, 3-4, 4-41 F
Disk address
modifying the, 2-2 File attribute, A-9 to A-13
not recognized, 2-3 Filing services utility, 1-1
DMS, see Data Management System
DMS access, 3-1 G
catalog functions, 3-4
performance considerations, 3-5, GENERAL CLOSE, 3-2, 4-5
3-6 GENERAL OPEN, 3-2, 4-3, 4-4, A-8
programming requirements, 3-5 to A-11
3-6 GET FILE ATTRIBUTES, 3-4, 4-44,
sample programs, 3-10 A-9 to A-12
submitting programs, 3-6 GOSUB ‘101, 3-2, 4-3, 4-4, A-8 to
A-11

Index-1

INDEX (continued)

GOSUB '102, 3-2, 4-5

GOSUB '103, 3-2, 4-6 to 4-8
GOSUB '104, 3-2, 4-9, 4-10

GOsuB '105, 3-2, 4-11, 4-12
GOSUB '106, 3-2, 4-13

GOsuB '107, 3-2, 4-14, 4-15
GOSUB '108, 3-3, 4-16

GOsSUB '109, 3-3, 4-17, 4-18
GOSUB '110, 3-3, 4-19

GOSUB '111, 3-3, 4-20

GOSuUB '112, 3-3, 4-21

GOSUB '113, 3-3, 4-22

GOSuUB '114, 3-3, 4-23, 4-24
GOSUB 'l115, 3-3, 4-25, 4-26
GOSUB '116, 3-3, 4-27

GOSUB '117, 3-3, 4-28 to 4-30
GOSUB '118, 3-3, 4-31, 4-32
GOSUB ‘119, 3-3, 4-33, 4-34
GOSUB '120, 3-3, 4-35
GOSUB '121, 3-3, 4-36
GOSUB '122, 3-3, 4-37
GOSUB '200, 3-4, 4-38 to 4-40
A-14 to A-16
GOSUB '201, 3-4, 4-41
GOSUB '202, 3-4, 4-42, 4-43
GOSUB '203, 3-4, 4-44
A-9 to A-12

INDEXED DELETE, 3-3, 4-22
Indexed file, 3-1

INDEXED FIND, 3-3, 4-23, 4-24
INDEXED LOCK, 3-3, 4-25, 4-26
INDEXED READ, 3-3, 4-18
INDEXED READ NEXT, 3-3, 4-19
INDEXED REWRITE, 3-3, 4-21
INDEXED UNLOCK, 3-3, 4-27
INDEXED WRITE, 3-3, 4-20

L

Local Communications Option (LCO),
1-1, 4-17, 4-32

M

Moving files
DMS, 3-9, 3-10
VDISK, 2-6

N

Native DMS, 1-2, 3-1
access, 3-1
files, 1-2

P

Performance
VDISK, 2-3, 2-4, 2-5
DMS, 3-5

R

Read Only mode, 2-1

Relative file, 3-2

RELATIVE DELETE, 3-3, 4-35
RELATIVE READ, 3-3, 4-28 to 4-30
RELATIVE REWRITE, 3-3, 4-33, 4-34
RELATIVE WRITE, 3-3, 4-31, 4-32
RENAME FILE, 3-4, 4-42, 4-43
Return codes, A-1, A-2

S

Sample programs, 3-10
Shared mode, 2-1
Submitting programs
DMS, 3-6
VDISK, 2-3

v

VDISK, 1-2, 2-1
accessing, 2-1
creating, 2-1
improving performance, 2-4, 2-5
mode, 2-1
moving files to, 2-6
performance considerations, 2-3
to 2-5
using, 2-2, 2-3

Index-2

|

To Order by Phone, Call:
1-(800) TEL-WANG

ORDER FORM FOR WANG MANUALS AND DOCUMENTATION

Customer Number

Bill To
Ship To
Customer Contact Phone
Date Purchase Order Number
Taxable [] Yes [No Tax Exemption No.
Salesperson Empl. No. RDB No.
Document Number Description Qty. Unit Price Total Price
Subtotal
Less Applicable Discount
Authorized Signature Date
. X) Subtotal
Check this box if you would like a free copy of the \
Wang Express Software & Literature Catalog Local Sales Tax
(711-0888). Total Amount

Ordering Instructions

1. If you have 8urchased supplies from Wang before, and 7. If you wish credit for this order to be give to a Wang sales-
know your Customer Number, please write it here. person, please complete.

2. Provide appropriate Billing Address and Shipping Address. 8. Show part numbers, description and quantity for each product

3. Please provide a phone number and name, should it be ordered.
necessary for Wang to contact you about your order. 9. Pricing extensions and totaling can be completed at your

4. Your purchase order number and date. option: Wang will refigure these prices and add freight on

5. Show whether order is taxable or not. your invoice.

6. If tax exempt, please provide your exemption number. 10. Signature of authorized buyer and date.

Wang Terms and Conditions

1. TAXES - Prices are exclusive of all sales, use, and like 3. PAYMENT ~ Terms are net 30 days from the date of invoice.
taxes. Unless otherwise stated by the customer, partial shipments
2. DELIVERY - Delivery will be F.O.B. Wang plant. The will generate partial invoices.
customer will be billed for freight charges, and unless the 4. PRICES — The prices shown are subject to change without
customer specifies otherwise, all shipments will go best notice. Individual document Erices may be found in the
way surface as determined by Wang. Wang shall not Wang Express Software & Literature Catalog (711-0888).
assume any liability in connection with the shipment, nor 5. LIMITATION OF LIABILITY — In no event shall Wang be
shall the carrier be construed to be an agent of Wang. If liable for loss of data or for special, incidental, or consequen-
the customer requests that Wang arrange for insurance, tial damages in connection with or arising out of the use of
the customer will be billed for the insurance charges or information contained in any manuals or documentation
furnished hereunder.

Printed in U.S.A. 14-3141B 4-90

*
Cut along
dotted line
4
Fold here
| NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES
-]
]
BUSINESS REPLY MAIL ———
FIRST CLASS PERMIT NO. 16 LOWELL, MA
POSTAGE WILL BE PAID BY ADDRESSEE ET——
... -]
.|
WANG EXPRESS MS 017-110 EE———
WANG LABORATORIES INC =

1005 PAWTUCKET BOULEVARD
LOWELL MA 01854-9984

Fold here

Customer Comment Form Publication Number__715-0562A

Title 2200/VS LOCAL COMMUNICATIONS OPTION PROGRAMMER’S REF. GD.

Help Us Help You . . .

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed?
Only you can tell us! Your comments and suggestions will help us improve our technical communications. Please take a few

minutes to let us know how you feel.

How did you receive this publication?

it or Sal
[ueeortorsaies [pornynow

Wang Supplies

D Division D Other

I_—_I From another
user

D Enclosed with
equipment

How did you use this publication?
|_—_| Introduction to D Aid to advanced
the subject knowledge

D Classroom text Guide to operating
{student) instructions

]
I:I Classroom I_—_I As a reference
]

text (teacher) manual

|:| Self-study Other

text

Please rate the quality of this publication in each of the following areas.

Technical Accuracy

Does the system work the way the manual says it does?
Readability

Is the manual easy to read and understand?
Clarity

Are the instructions easy to follow?
Examples

Were they helpful, realistic? Were there enough of them?
Organization

Was it logical? Was it easy to find what you needed to know?

Hlustrations
Were they clear and useful?
Physical Attractiveness
What did you think of the printing, binding, etc?

EXCELLENT GOOD FAIR

O 0O 0O

g

O0000

O0000
Oo0o00o0a
0000000

o O

Were there any terms or concepts that were not defined properly? O vy O N 1 so, what were they?

After reading this document do you feel that you will be able to operate the equipment/software? [Yes (I No [Yes, with

What errors or faults did you find in the manual? (Please include page numbers)

practice

Do you have any other comments or suggestions?

Name

Title

Dept./Mail Stop

Company

Thank you for your help.

Street
City
State/Country
Zip Code Telephone

All comments and suggestions become the property of Wang Laboratories, Inc. 6-80

Fold here

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY ADDRESSEE

TECHNICAL PUBLICATIONS MS 012-260
WANG LABORATORIES INC

ONE INDUSTRIAL AVENUE

LOWELL MA 01851-9971

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Fold here

~
. ~

Cut along
dotted line

\ 4

Corporate Headquarters

Wang Laboratories, Inc.
1 Industrial Avenue
Lowell

MA 01851

US.A.

Tel: (508) 459-5000
Eui‘ope

Wang Belgium N.V./S.A.
Zweefvliegtuigstraat 10 Rue du Planeur
Brussel 1130 Bruxelles

Tel: (02) 244.22.11

Wang Deutschland GmbH
Lyoner Strafie 26
Postfach 710570
6000 Frankfurt am Main 71

Tel: 069/66750

Wang Espaiia S.A.
Autopista Aeropuerto
Barajas KM 13
28042 Madrid

Tel: (91) 337-1100

Wang France S.A.

Tour Galliéni 1

78/80, Av. Galliéni

93174 BAGNOLET CEDEX

Tel: (1)48.97.06.06

Wang Ireland Ltd.
Harcourt Centre
Harcourt Street
Dublin 21

Tel: 01-757-931

Wang Italia SPA

Centro Terziario

Strada Statale Padana Superoire
Milano

Tel: (02) 250-4021

Wang Nederland B.V.
P.O.Box 4
4100 AA Culemborg

Tel: (03) 450-70911

Wang Osterreich GmbH
Linke Wienzeile 234
A-1150 Wien

Tel: (0222) 85 85 33

Wang (Schweiz) AG
TalackerstraB3e 7
8152 Glattbrugg/Ziirich

Tel: (01) 829-7111

Wang (Suisse) SA

Air Center Blandonnet

16, Chemin des Cloquelicote
1214 Vernier-Genéve

Tel: 022-41-36-00

Wang Svenska AB
Box 1196
S-171 23 Solna

Tel: 08-705 85 C0

Wang (UK) Ltd.
1000 Great West Road
Brentford

Middlesex TW8 9HL

Tel: 01 568 4444

Americas

Wang Canada Ltd.
66 Leek Crescent
Richmond Hills
Ontario L4B 1J7

Tel: (416) 764-1999

Wang De Mexico, S.A. De C.V.
Avenida Paseo De La Reforma, 295
3er Piso, CP 06500

Mexico, D.F.

Tel: (525) 207-5111

Computadoras Wang De Panama S.A.
Apartado 6425, Zona 5

Samuel Lewis y Gerardo Ortega
Panama 5

Tel: (507) 635-566

Wang Computadoras, Inc. (Puerto Rico)
Metro Office Park

Call Box 2106

Caparra Heights

Puerto Rico 00922

Tel: (809) 793-9264
Wang Laboratories (U.S.A.) Inc.
| Industrial Avenue

Lowell
MA 01851

Tel: (508) 459-5000

Asia/Pacific

Wang Australia Pty. Ltd.
Northside Gardens

168 Walker Street

North Sydney

N.S.W. 2060

Tel: (61) 2-925-5678

Wang Computer China Ltd.
Office 1, 23/F, CITIC Bldg.

19 Jianguomenwai Street
Beijing

Tel: (86) 1-500-2255 Rm. 2310

Wang Pacific (Hong Kong) Ltd.
31/F Hennessy Centre

500 Hennessy Road

Hong Kong

Tel: (852) 805-7333

Wang Computer (Japan) Ltd.

Hazama Building 14F

5-8 Kita Aoyama 2-Chome

Minato-Ku /‘ ™

Tokyo
Tel: (81) 3-478-2870

Wang Computer Korea Ltd.
46/47th Floor, DLI 63 Bidg.
60, Yoida-Dong
Youngdeungpo-ku

Seoul 150

Tel: (82) 2-784-6111

Wang New Zealand Ltd.
Wang Terraces

9 City Road

Auckland

Tel: (64) 9-796-372

Wang Computers (Singapore) (Pte) Ltd.
101 Thomson Road 12-00

12-00 United Square

Singapore 1130

Tel: (65) 250-9595

Wang Industrial Co. (Taiwan) Ltd.
8/F 56 Tun Hwa N. Road

Taipei

Tel: (886) 2-721-6121

ONE INDUSTRIAL AVENUE., LOWELL, MA 01851
TEL. (508) 459-5000, TELEX 172108

Printedin U.S.A. 715-05624 5-91

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction
	Chapter 2: 2200 VDISK Access
	Chapter 3: Native DMS Access
	Chapter 4: DMS Access Subroutines
	Appendix A: Additional Information
	Index

