WANG LABORATORIES
{CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 256
TELEPHONE {416) 449-2175
Telex: 069-66546

WANG EUROPE, S.A.
Buurtweg 13

9412 Ortergem

Belgium

TELEPHONE 053/704514
Telex: 26077

WANG DO BRASIL
COMPUTADORES LTDA.
Rua Barao de Lucena No. 32
Botafogo ZC-01 20,000

Rio de Janeiro RJ

Brasil

TELEPHONE 226-4326
Telex: 2123296

WANG COMPUTERS

(SO. AFRICA) PTY.LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

Republic of South Africa
TELEPHONE (011) 48-6123

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 851-4111
TWX 710-343-6769

Telex: 94-7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

S$-171 36 Solna,

Sweden

TELEPHONE 08-826814
Telex: 11498

WANG NEDERLAND B.V.
Damstraat 2

Utrecht, Netherlands

(030) 93-09-47

Telex: 47579

WANG PACIFIC LTD.

902-3 Wong House

26-30, Des Voeux Road, West
Hong Kong

TELEPHONE 5-435229
Telex: 74879

WANG INDUSTRIAL CO., LTD.
110-118 Kuang-Fu N. Road
Taipei, Taiwan

TELEPHONE 784181-3

Telex: 21713

WANG GESELLSCHAFT M.B.H.
Farmanekgasse 12-14

A-1190 Vienna, Austria
TELEPHONE 36.32.80

Telex: 74640

WANG S.A/AG.
Markusstrasse 20

CH-8042 Zurich 6
Switzerland

TELEPHONE 41.1.26.6866
Telex: 59151

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065

Australia

TELEPHONE 439-3511

Telex: 25469

WANG ELECTRONICS LTD.
1 Olympic Way, 4th Fioor
Wembley Park,

Middlesex, England
TELEPHONE 01/903/6755
Telex: 923498

WANG FRANCE S.A.R.L.
Tour Gallieni, 1

78/80 Ave. Galtieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 68958F

WANG LABORATORIES GMBH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE {0611) 252061
Telex: 04-16246

WANG COMPUTER SERVICES
836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94-7421

24 Mill Street
Arlington, Massachusetts 02174
TELEPHONE (617) 648-8550

LABORATORIES, INC.

7

WANG

836 NORYH STREET. TEWKSBURY. MASSACHUSETTS 01876,
TEL. (617) 851.411 TWX 710 343.6769. TELEX 94.7421

Printed in U.S.A.

700-3030C
10-75-10M

Price $2.50

BASIC

}

GUIDE

LANGUAGE

POCKET

(WANG)

T

~ SYSTEM 2200

BASIC
LANGUAGE

POCKET GUIDE

© Wang Laboratories, Inc., 1975

LABORATORIES, INC.

(U‘ uANG)836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876,

TEL. (617) 851-41M, TWX 710 343-6769, TELEX 94-7421

\

HOW TO USE THIS POCKET GUIDE

This pocket guide has been written as a companion
to the Wang Hardware Pocket Guide. The material in
this guide is restricted to the salient features of
BASIC available on Wang systems. For more infor-
mation on BASIC, refer to the Wang BASIC Ref-
erence Manual; for elementary descriptions of BASIC
and its use for programming, see the BASIC Pro-
gramming Manual.

TABLE OF CONTENTS
TABLE OF CONTENTS (Continued)

Page

INTRODUCTION . . . e s Page
No 'Mickey-Mouse’ Symbols e e oo Numeric Functions 14
Numerics to 13 Digits; Magnitude User-Defined Functions 15
107°%tw010°° . . . | Variables 15
Variables and Functions both Numenc Numeric Scalar Varlable Names 15
and Alphanumeric . . . | Alphanumeric Scalar Variable Names . . 15
Automatic Formatting of Recorded | Arrays 15
Output 2 Numeric Array Varrables 16
Optional Automatic Formattmg of , Alphanumeric Array Variables 16
Printed Output 2 4 Array Variables 16
User Control of Storage for Varlables L. 2 Array Names 16
Programs Recorded Can be Named and Array Designators 16

Protected 3 Length of Alpha Scalars and Array
Variables Can be Interrogated durlng Elements 16
Program Execution 3 BASIC STATEMENTS 17
Bit and Byte Manipulations 3 COM (common) 17
Powerful Single Statements Perform COMCLEAR 17
Many Operations . 4 CONVERT 17
Immediate Mode . 5 DATA17
Multi-Statement Lines . 5 DEFFN17
Programming Mode . 6 DEFFN" 18
Debugging and Editing . 7 DIM (dimension} 18
NONPROGRAMMABLECOMMANDS 9 END 18
CLEAR . 9 FOR.19
CONTINUE 9 GosuB.19
HALT/STEP 9 Ggosus”19
LIST . 9 GoOTO9
RENUMBER . 10 HEXPRINT 19
RESET Key or Button . 10 IFENDTHEN 20
Special Function Keys . 10 IF...THEN 20
STATEMENT NUMBER Key 10 % (lmage) 20
NUMERICS AND ALPHANUMERICS 11 INPUT 20
Arithmetic Expressions 11 KEYIN 20
Arithmetic Operators 11 LET 20
Relational Symbols . 11 | NEXT 2
Assignment Symbol . 11 ON -02
Alphanumeric Literals . 12 ON ERROR...GOTO 21
Hexadecimal Function (HEX) 12 PRINT2
Alphanumeric Functions 12 TAB2
String Function (STR) . 12 PRINTUSING 22
Length Function (LEN) 13 READ 22
NUM 13 REM. 22
POS . 13 RESTORE 22

RETURN 22
i

TABLE OF CONTENTS (Continued)

RETURN CLEAR
SELECT

STOP

TRACE .

TRACE OFF .
DATA MANIPULATION .
ADD .

ADDC . .

AND, OR, XOR .

BIN

BOOL

INIT .

NUM Function

PACK

POS Function .

ROTATE

UNPACK

VAL Function .
MATRIX STATEMENTS .
MAT + (addition)

MAT CON {(constant)

MAT = {equivalence)

MAT IDN (identity)

MAT INPUT

MAT INV ,d . .
MAT = {multiplication)
MAT PRINT

MAT READ ..
MAT REDIM (redimension)
MAT (} * (scalar multiplication)
MAT - (subtraction)

MAT TRN (transpose) .
MAT ZER (zero) . .o
GENERAL 1/O STATEMENTS .
$GIO

$IF ON .

$TRAN . .
$PACK and $SUNPACK

SORT STATEMENTS .

MAT CONVERT .
MAT COPY
MAT MERGE .
iv

22
23
23
23
23
24
24
24
24
25
25
25
26
26
26
26
26
27
28
28
28
28
28
28
29
29
29
29
29
29
29
30
30
31
31
31
31
31
32
32
32
32

TABLE OF CONTENTS (Continued)

MAT MOVE
MAT SEARCH
MAT SORT .
TAPE CASSETTE DRIVES
BACKSPACE .
DATALOAD .
DATALOAD BT .
DATARESAVE
DATASAVE
DATASAVE BT .
LOAD (command)
LOAD (statement)
REWIND
SKIP . .
SAVE (command)

PUNCHED TAPE READER .
DATALOAD .
DATALOAD BT .
LOAD (command)
LOAD (statement)

TELETYPE
DATALOAD .
DATALOAD BT .
DATASAVE
DATASAVE BT .
LOAD (command)
LOAD (statement)
SAVE (command)

CARD READERS
INPUT ..
CONSOLE UNPUT .
DATALOAD .
DATALOAD BT .
LOAD

PLOTTERS
PLOT

DISK UNITS .

COPY .
DATALOAD BA .
DATALOAD DC .
DATALOAD DC OPEN
DATASAVE BA .
DATASAVE DA .

32

32
32
33

33
33
33
33
34
34
34
34
35
35
35

36
36
36
36
36
37
37
37
37
37
38
38
38
39
39
39
39
39
39
40
40
41
41
41
41
41
41
41

TABLE OF CONTENTS (Continued)

DATASAVE DC .
DATASAVE DC CLOSE
DATASAVE DC OPEN
DBACKSPACE
DSKIP
LIMITS .
LIST DC ..
LOAD DA (command) .
LOAD DA (statement) .
LOAD DC (command) .
LOAD DC (statement) .
MOVE
MOVE END .
SAVE DA (command) .
SAVE DC (command)
SCRATCH .
SCRATCH DISK .
VERIFY .
PRINTING OUTPUT DEVICES .
PRINT
PRINTUSING
HEXPRINT
SELECT CO .
NINE-TRACK TAPE DRIVE
$GIO
DIGITIZER
INPUT
DATALOAD
DATALOAD BT .
KEYIN .
MAT INPUT ..
INTERFACE CONTROLLERS .
INPUT
KEYIN . .
DATALOAD BT .
MAT INPUT
$GIO (input)
PRINT .
DATASAVE BT .
PRINTUSING
$GIO (output)

vi

42
42
42
42
42
43
43
43
43
43
43
43
44
44
a4
44
44
44
45
45
45

45

45
46
46
48
48
48
48
48
48
49
49
49
49
50
50
50
50
50
50

TABLE OF CONTENTS (Continued)
TC CONTROLLER .

INPUT

KEYIN .

$GI1O (input)

PRINT

$GIO (output)
ERROR MESSAGES

vir

51
51
51
51
51
51
52

INTRODUCTION

The BASIC language which has been developed at
Wang Laboratories, Inc. as the mechanism for sup-
porting its System 2200 hardware has many unique
features. Starting as an outgrowth of the computer
language developed at Dartmouth College, Wang
BASIC has become a sophisticated and powerful tool
for the knowledgeable programmer. The fundamentals
of BASIC can be learned so rapidly that even novice
programmers soon become experts.

NO ‘MICKEY-MOUSE’ SYMBOLS

Wang BASIC uses English-language words through-
out; there are no ‘mickey-mouse’ symbols to learn
and use. BASIC statements are therefore easy to
remember and coding is simplified. When it is
necessary to edit or debug Wang BASIC programs,
the Edit features and Wang BASIC itself are tools
that are easy to learn and manipuiate. Part of the
BASIC substructure contains close to one hundred
user-oriented error-messages or diagnostics which are
automatically displayed on the video display CRT
whenever a programming Or processing error Occurs.

NUMERICS TO 13 DIGITS; MAGNITUDE 10729
TO 10%9,

Numeric values up to 13 digits long can be stored
to full precision in the system. A value potentially
larger {for example, as the result of a computation)
is converted internally to exponential {floating point)
format. In this format, values between 10799 and
1099 can be stored, with mantissas to 13 digits.

VARIABLES AND FUNCTIONS BOTH NUMERIC
AND ALPHANUMERIC

Wang BASIC provides the facility to use numeric
and alphanumeric variables; input and output data
can contain values and words. Printed output can
contain report titles names, etc., directly program-
mable in a single output statement. The usual math
functions are part of the system and operate on

1

numeric variables (SIN, COS, LOG, exponentiation,
etc.). Alphanumeric functions to operate on alpha
variables are also available as part of the system.
For example, STR, LEN are alpha functions which
can examine a substring of the values stored in alpha
variables {STR), or count the number of characters
in the variable (LEN).

AUTOMATIC FORMATTING OF RECORDED
OUTPUT

Whether recorded output is to be stored on tape
cassette or disk, the system automatically formats the
output recording for the user. The user need only
specify {in a SAVE or DATASAVE statement, for
example) what is to be stored; the system auto-
matically organizes the material in the appropriate
fashion, and records the data with control codes to
specify what it is. When it is time to extract the
recorded information and store it again in memory,
the system automatically performs the reverse oper-
ation {for example, when a LOAD or DATALOAD
statement is executed).

OPTIONAL AUTOMATIC FORMATTING OF
PRINTED OQUTPUT

The PRINT statement automatically formats any
printed output, whether numeric or alphanumeric.
when explicit columnar formatting is needed, the
PRINTUSING statement can be used.

USER CONTROL OF STORAGE FOR VARIABLES

To conserve memory, the user can restrict the
storage space allocated for a particular variable. For
example, when an alphanumeric variable or an
element of an alpha array is used, the system allocates
16 bytes of storage for it. If the user knows that it
will never be larger than 5 bytes, say, the variable can
be so defined, by using a DIM or COM statement as
follows: A$5 or A$(10)5, depending on whether the

variable is a scalar or an array. Numeric values
{normally requiring 8 bytes of storage) can be packed
into alpha variables using less than 8 bytes/value
if less than 13 digits of mantissa are needed. PACK or
$PACK does the job. (PACK, not available on a
2200A, is available on a 2200S or WCS/10 with the
Advanced Programming Statements. $PACK is avail-
able as one of the General 1/0 Instruction Set and
in a WCS/20 or WCS/30.)

PROGRAMS RECORDED CAN BE NAMED AND
PROTECTED

English names which are easy to use and remember
can be used to distinguish programs recorded on disk
or tape cassette. The name is automatically recorded
in a label on the output medium and automatically
interrogated when later recalled.

Programs can be protected from accidental over-
writing by mechanical protect tabs on tape cassette

or diskette.

VARIABLES CAN BE INTERROGATED DURING
PROGRAM EXECUTION

Immediate Mode can be used to perform com-
putations or PRINT any program variable when a
program has been temporarily halted. The variable
then contains some current value, not always its
final value. This is an invaluable and convenient
debugging tool.

BIT AND BYTE MANIPULATIONS

A variety of manipulations can be performed on
variables and individual bytes with a group of state-
ments available on the more advanced systems {not
on 2200A; on a 2200S, WCS/10 only with Advanced
Programming Statements). With these statements,
logical operations (AND, OR, XOR, BOOL) and
binary addition can be performed {ADD), a variable
or all elements of an array can be set to any binary-
bit configuration (INIT), the number of bytes in an
alpha variable that represent a numeric value can be

counted (NUM), a numeric value can be placed in an
alpha variable (and vice versa) (PACK and UNPACK),
the position of a byte that satisfies a specific relation
can be found (POS), the individual bits of a byte can
be rotated (ROTATE), numeric variables can be
changed to alphanumeric (and vice versa) (CON-
VERT), a character byte can be converted to a
floating point number (VAL), and the integer value
of an expression can be converted to a character
byte (BIN}.

These many statements have innumerable appli-
cations in more advanced programming schemes and
greatly facilitate data manipulations.

POWERFUL SINGLE STATEMENTS PERFORM
MANY OPERATIONS

Operations which require whole programs or
routines on most systems are executed with certain
single statements.

A random number generator is called with the
RND statement; it puts out a random number
between 0 and 1 whenever it is called.

User functions can be defined with the DEFFN
statement. Once defined, such a function, no matter
how complex, can be used repeatedly in the program
with a single FN call.

In the more advanced systems {not on 2200A,
B, C, S or WCS/10 without certain options) a number
of additional statements are available. They include
the following features.

Matrix inversion in a single statement (MAT INV)
eliminates the need for an entire routine to perform
this complex computation.

Input for all elements of an array (MAT INPUT)
eliminates the need for nested FOR/NEXT loops.

Matrix transposition in a single statement (MAT
TRN) also eliminates all need for loops to perform
this operation.

Microcoded array search, copy and sort statements
(MAT SEARCH, MAT COPY, MAT SORT) perform
exceptionally rapid array manipulations and can be
used for a variety of applications. In each case, a
single statement activates the operation or operations
for an entire array, no matter how large.

Programmabile 1/0 control for non-standard devices
can be effected with $GIO. This makes it possible
not only for a large variety of devices to be con-
nected to a Wang CPU, but also for such devices to
be operated under program control. Rapid code trans-
lation is accomplished with the $TRAN statement.

IMMEDIATE MODE

In the IMMEDIATE MODE, a Wang System can
immediately execute one-line calculator problems. A
user can enter a line of statements without a state-
ment number and the line is executed immediately.
In the IMMEDIATE MODE a user can also examine
the values of variables during program execution or
when it has been halted.

EXAMPLES OF IMMEDIATE MODE
CALCULATIONS
(1) Print the results of 17.3 raised to the 1.6 power.

PRINT 17.31 1.6 EXEC
95.691588717"

(2) Display the current values of the variables A, B,
and C.

PRINT A; B;C
24,921 '37.2 95.61

MULTI-STATEMENT LINES
The ability to place several statements on a single
line makes the IMMEDIATE MODE a very powerful
calculating device. Statements are separated by colons.

FOR1=1TO 10:PRINT.I,LOG(}) :NEXT | . EXEC

Ten values of | and LOG 1 are printed immediately.

PROGRAMMING MODE

LINE NUMBERS - a line number must be assigned
to each program line as it is entered. When the program
is run, the System executes the lines in numerical
order. When writing a program, it is not necessary to
enter lines in numeric sequence.

BRANCHING - Unconditional branching is done
with the GOTO statement. Conditional branching is
done with the |F statement.

Subroutine transfers can be made in two ways:

(1) GOSUB XXXX

Where XXXX is any valid line number representing
the first statement in the subroutine.

(2) GOSUB’XX (expression, expression, . . .)

Note: XX = 00 to 255
The transfer is made to the corresponding
DEFFN'XX statement; if arguments are
specified, they are transferred to the sub-
routine.

or

A subroutine with an entry point defined
by a special function key can be executed
by depressing one of the 32 special function
keys after keying in values for the optional
arguments.

DEBUGGING AND EDITING

The System contains powerful editing and de-
bugging features:

(1) The CRT is capable of displaying up to 15
lines of program statements at a time (see
LIST, LIST S).

(2) Programs or sections of programs can be re-
numbered using a single RENUMBER state-
ment.

1170 X =10
21718 = X + SIN (30)
:172 IF'§ <50 THEN 170
:RENUMBER 170, 200
:LIST

:200 X-=10

:210 S=X+SIN(30)

:220 IF S < 50 THEN 200

{3} An entire line is deleted by entering the line
number followed by EXEC

:50 PRINT ""ABCD”
:50 EXEC {deletes line 50)

{4) A line can be replaced by entering its line
number with different contents.

:50 PRINT “ABC”
:50 PRINT “ABCD"”

(5) A line can be inserted by entering a new line
number between two existing line numbers.

:100 X=10
1110 Z=X+Y
:105 Y=15

(6) A programmable TRACE displays all program
transfers and all variables that receive new
values when a program is run (see TRACE,
TRACE OFF).

{(7)

(8)

(10)

{1

An error pointer displays the location of an
error. Error 05 illustrates missing right paren-
theses.

10 PRINT SIN(21
1ERR 05

HALT/STEP — The HALT/STEP key stops
program execution after completion of the
current statement. Variables can be examined
by using PRINT statements in the Immediate
Mode. The program can be executed one state-
ment at a time by depressing the HALT/STEP
key; each statement is executed and displayed.
Normal program execution can be continued
by depressing the CONTINUE and EXEC
keys.

The current line being entered is deleted by
pressing the LINE ERASE key.

CHARACTER DELETION — Single keystroke
entries can be deleted by touching the BACK-
SPACE (<) key if the line has not yet been
entered into memory.

EDIT MODE — Edit Mode can be entered by
pressing the Edit Key; an asterisk (*) replaces
the usual colon at the beginning of the line.
Once in Edit Mode, the usual Special Function
Keys can be used to recall aline from memory,
to insert or delete characters, to erase the end
of a line and to move the cursor along the
current line. Four keys are provided to move
the cursor in one-character (<, =) or five
character (----—, or <—--) increments. This elim-
inates rekeying an entire line when changes must
be made. Once a line has been corrected and
entered, the system automatically drops out of
Edit and the Special Function Keys revert to

their former use.
Edit Mode is obtained on a 2200A or B as

an option {(OP-3) and is standard on all other
systems.

NON-PROGRAMMABLE COMMANDS

BASIC commands provide the user with ameans of
controlling the system effectively. Commands are
used primarily to instruct the system to perform
actions on BASIC programs, such as listing, loading,
renumbering.

BASIC commands are entered one line at a time.
They differ from BASIC statements becuase they are
not preceded by line numbers, and only one command
can be entered on each line. All the BASIC commands
are executed immediately and not stored in memory.

CLEAR
Removes all program text and or variables from

memory.

CLEAR V — Removes all variables (both
common and noncommon) from memory.

CLEAR N — Removes all non-common variables
from memory, names, attributes, and values of
common variables are not changed.

CLEAR P 120, 150 — Removes specified pro-
gram text from memory.

CONTINUE
Continues program execution after execution has
been halted by a STOP verb or use of the HALT/

STEP key.

HALT/STEP

Halts program execution after the completion of
the current statement. Subsequently, each time
HALT/STEP is touched, the next program statement
is displayed and executed.

LIST
Prints or displays program text in line number

sequence.
LIST S — Lists program text in increments of

fifteen lines on the CRT.
(Depress EXEC for each successive 15 lines.)

LIST 30,50 — Lists the current program starting
at line 30 and ending at line 50.

LIST 50 — Lists program line 50.

RENUMBER
Renumbers all or a portion of a program.

RENUMBER 100, 150, 5 — Changes statement
number 100 to 150, and renumbers remaining
program lines in increments of 5.

RESET KEY OR BUTTON

Immediately stops program listing or execution,
clears the CRT and returns control to the user. The
program text is not lost, and all program variables
are maintained with the current values.

RUN — Starts program execution; all non-
common variables are initialized.

RUN 30 — Starts program execution at the
specified statement,; variables are not re-ini-
tialized.

SPECIAL FUNCTION KEYS

The Special Function Keys can be defined as entry
points for user-defined subroutines, or as. character
strings for program text entry. Depressing a specified
function key causes the corresponding DEFFN’ sub-
routine or DEFFN’ text entry statement to be
executed.

STATEMENT NUMBER KEY
Sets the number of the line about to be entered
equal to the highest current line number + 10.

10

NUMERICS AND ALPHANUMERICS
ARITHMETIC EXPRESSIONS

An expression is an algebraic formula consisting
of any valid combination of numbers, numeric scalar
or numeric array variables, and/or numeric functions
and operators.

Examples:
16.5
4+ A+ SIN (30)
J
FN2 (X)/(B 1 2 - 3)
LOG (9)
1x(J-TAN (2.8})

ARITHMETIC OPERATORS

Symbol Sample Formula Explanation
1 A1B Raise A to the
power of B
* A*B Multiply B by A
/ A/B Divide A by B
+ A+B Add B to A
- A-B Subtract B from A
RELATIONAL SYMBOLS
Symbol Sample Relation Explanation
= A=8B Aisequal to B
< A<B A isless than B
<= A<=B A is less than or
equal to B
> A>B A is greater than B
>= A>=B A is greater than or
equal to B
<> A<>B A is not equal to B

ASSIGNMENT SYMBOL
Symbol Sample Relation Explanation
= A=25 Assign the value 2.5
to the variable A

11

ALPHANUMERIC LITERALS

Alphanumeric literals are character strings enclosed
by double quotation marks. They are used in PRINT
statements to provide alphanumeric output for label-
ing purposes and in LET and IF statements to set or
compare alpha variable values. Literals enclosed in
single quotes also are permissible to provide lower-
case alphanumeric output.

100 PRINT ““ANSWER=";A
510 PRINT “M"; ’R’;"’S"; ‘MITH’

HEXADECIMAL FUNCTION (HEX)

The HEX function is a form of literal that enables
use of any 8-bit codes in BASIC programs. Each
character is indicated by two hexadecimal digits
{0-9, A-F). The HEX function can be used wherever
literals enclosed in double quotes can be used.

100 PRINT HEX(0C)
200 IF A$ >HEX(3132) THEN 50

ALPHANUMERIC FUNCTIONS

Four functions are available to operate on alpha
scalars and arrays:

STRING FUNCTION (STR)

Wang BASIC provides a function which permits
the user to extract, examine, compare or replace a
specified portion of an alphanumeric variable. The
STR function operates on alphanumeric variables,
and can be used in any BASIC statement where alpha-
numeric variables are permissible.

Assuming B$ = “ABCDEFGH?”, the statement

10 A$ =STR(B$,2,4) sets A$ equal to the
substring “BCDE”

20 STRI(CS, 1,4} = B$ The first four bytes of
C$ receive the first
four characters of BS.

LENGTH FUNCTION (LEN)

This function is used to determine the length of
the specified alphanumeric variable; that is, the
number of characters it contains excluding trailing
spaces.

210 X= LEN(A$)

NUM (not on 2200A on WCS/10 or. 2200S only
with Advanced Programming Statements)

Determines the number of sequential ASCII char
acters in the alpha variable that represent a valid
numeric value. includes trailing spaces in the count.

20 X = NUM (A$)
40 X = NUM (STR (AS, 7, 3))

POS (not on 2200A, on WCS/10 or 2200s only with
Advanced Programming Statements)

Finds the position of the first character in the
specified alphanumeric value that satisfies the speci-
fied relation.

10 X = POS (A = “8")
20 Y = POS {STR(BS$,-1,10) <> 7E)

13

NUMERIC FUNCTIONS

System-defined math functions are:

Find the sine® of the ex-
pression
Find the cosine™ of the
expression
Find the tangent® of the
expression
ARC SIN (expression) Find the arcsine® of the
expression
ARC COS (expression) Find the arccosine® of the
expression
ARC TAN (expression) Find the arctangent® of
the expression
Find e to the power of the
expression
Find the natural logarithm
of the expression
Find the absolute value of
the expression
Find the square root of
the expression
Produce a random number
between 0 and 1
Reduce the expression to
an integer by finding great-
est integer < expression;
if zero, set equal to zero.
Assign the value 1 to any
positive number, 0 to zero
and -1 to any negative
number
#P1 Assign the value 7
(3.14159265359)
*Arguments of trigonometric functions are nor-
mally assumed to be radians. Degrees, radians or
gradians can be chosen by executing a SELECT
statement.
SELECT R EXEC (select RADIANS as argument)
SELECT D EXEC (select DEGREES as argument)
SELECT G EXEC (select GRADS as argument)

SIN (expression)
COS (expression)

TAN (expression)

EXP (expression)
LOG (expression)
ABS (expression)
SQR (expression)
RND (expression)

INT (expression)

SGN {expression)

14

USER-DEFINED FUNCTIONS

These functions allow the programmer to define
his own functions in a program.

The function is identified by the letters FN fol-
lowed by a single letter or digit, and an expression or
dummy variable enclosed in parentheses. The function
is defined in a DEFFN statement.

:100 DEFFNA (X)}=X+1
1110 Z=3+FNA(5)12+R

VARIABLES
Both numeric and alphanumeric variables can be
used in Wang Systems. Variables can either be scalars
{not subscripted) or arrays (subscripted in one or two
dimensions). Certain system-defined functions operate
on numeric variables {SIN, COS, etc.), while others
operate on alpha variables (STR, LEN, etc.).

NUMERIC SCALAR VARIABLE NAMES

Scalar (nonsubscripted) variables: single letter op-
tionally followed by a single digit; e.g., A or A1 but
not AA or 1A.

ALPHANUMERIC SCALAR VARIABLE NAMES

Same specifications as those for numeric scalar
variable names except the name is followed by a
dollar sign ($); e.g., AS,A1$.

ARRAYS

Both one- and two-dimensional numeric and alpha-
numeric arrays can be referenced in Wang BASIC.
All arrays must appear in dimension (DIM) or com-
mon (COM) statements prior to being referenced. The
maximum value for any array dimension is 255; array
subscripts can be any valid BASIC expression with a
truncated value greater than or = to 1 and less
than 256. An array cannot contain more than 4,095
elements.

100 DIM:A(100,12), D$(255)
100. COM A${10),B(4,6)

15

NUMERIC ARRAY VARIABLES

Single letter (optionally followed by a single diqit)
followed by one or two expressions (separated by
commas) enclosed in parentheses. The truncated value
of the expressions must be = 1 and less than 256.

A(3,4), F3(X,J); B(3)

ALPHANUMERIC ARRAY VARIABLES

Single letter (optionally followed by a single
digit) followed by one or two expressions followed
by adollar sign ($); e.g., A$(1), B1$(2,3)

ARRAY NAMES

The name of a numeric array is the letter (and
optional digit} which refers to an array defined in a
DIM or COM statement; e.g., A, F3.

The name of an alpha array is the letter {and
optional digit} and dollar sign which refers to an
array defined in a DIM or COM statement; e.q.,
AS, B2S.

ARRAY DESIGNATORS
Array designators are array names followed by
empty parentheses; e.g., A(), A1$(), B$(), A1().

LENGTH OF ALPHA SCALARS
AND ARRAY ELEMENTS
The length of each alpha scalar or element of an
alpha array is 16 bytes, unless specifically dimen-
sioned otherwise. Dimensions of from 1 to 64 bytes
can be specified for any alpha scalar or all the
elements of an alpha array by following the scalar or
array name in a COM or DIM statement with a length.

10 COM A$40, B$(2,4)10, C$64
20 DIM B1$(255)1, C$54, F$(10,2)64

16

BASIC STATEMENTS

coM

Stores information in common memory for use in
a subsequent program. Array variables are dimen-
sioned by COM and alphanumeric variables can have
their length specified.

40 COM Y,A(2,3),B$20

COM CLEAR (not on 2200A or B, only on 2200S or
WCS/10 with OP-24)

Defines previously common variables as non-
common variables or defines previously non-com-
mon varjables as common variables.

10 COM CLEAR {‘'un-commons’ previously
k common variables)
110.COM A ,B.X,Y(10) {‘commons’ variables)
220 COM CLEAR X . - (redefines X.and Y as
: : non-common)

CONVERT (not on 2200A)
Converts alpha to numeric variables, or numeric
expressions to alpha variables.

CONVERT X TO-AS$, (###4#)
CONVERT A$ TON

DATA
Provides values to be used by the variables in
READ statements.

50 DATA 4,3,5,6,"NAME"*

DEFFN

Defines user functions of a single variable. The
function definition can be any formula entered on
one program line. The variable in parentheses is a
dummy variable which can have the same name as
another variable in the program without affecting
its value.

10 DEFFN Y{X)=2+X13.2+5xSIN(X)

17

DEFFN’

Defines the beginning of a subroutine within a
program executed either by manually depressing the
indicated Special Function Key or under program
control by using the GOSUB’ statement. Optionally,
values can be passed to the subroutine.

100 DEFFN’ 1 (X,Y)
110 Z=3+(X+3.5)12+2(Y+6.4)12
120 RETURN

This special function subroutine would be entered
by keying the values for X and Y separated by a
comma and then depressing Special Function Key 01,
or by a program call such as:

200 GOSUB’ 01 (P,R)

The DEFFN’ statement also can be used to define
the Special Function Keys for customized text entry.

10.DEFFN’ 2 “REWIND”

When Special Function Key 02 is depressed,
REWIND appears on the CRT as if it were keyed in.
Any 8-bit code can be entered via special function
keys using the HEX function in a DEFFN’ statement,

100 DEFFN’ 3 HEX(5F)
200 DEFFN’ 5 HEX(2C4B2F)

DiM (dimension)

Reserves space for one- or two-dimensional arrays.
The DIM statement also can be used to set the
maximum length of alphanumeric variables.

50 DIM A$32, B$(5,2) 24
20 DIM 1 (45),J(10,10)

END
END is an optional statement. It displays the
amount of free space left in memory.

900 END

18

FOR
Specifies the beginning of a loop.

200 FOR1=1TO 10
210 FORR=2TO 10 STEP 2
220 FOR X =100 TO 500 STEP 10

240 NEXT X
250 NEXT R
260 NEXT 1

GOSUB
Specifies a transfer to the first line of a subroutine.

10 GOSUB 30

GOSUB’

Transfers execution to the subroutine beginning
with a corresponding DEFFN' statement. Arguments
can be passed with a GOSUB’ statement.

100 GOSUB’ 07 (A,B$)

500 DEFFN’ 07 (1,J$)

GOTO
Transfers program execution to the specified pro-

gram line number.
50 GOTO 10

1¥ GOTO is entered as an Immediate Mode state-
ment, it transfers execution to the specified line and
halts before that line is executed. The program then
can be executed from that point by touching
HALT/STEP, or CONTINUE.

HEXPRINT (not on 2200A)
Prints the value of the alpha variable or of the
elements of the alpha array in hexadecimal no»tation.

10 HEXPRINT A$
20 HEXPRINT B$()

19

IF END THEN

Tests to see if the end of the current data file has
been encountered and transfers to the indicated line
number if it has been encountered (for use with
tape cassette or disk data files).

110 IF END THEN 130

IF . . . THEN

If the specified relation is true, execution is trans-
ferred to the indicated line number. If the relation is
false, execution passes to the next sequential state-
ment.

40 IF A<BTHEN 35
50 IF A > C THEN 100

% (tmage)

This statement is used in conjunction with a
PRINTUSING statement to provide an image line for
formatted output. The IMAGE statement contains
text to be printed and format specifications used to
format parameters contained in the PRINTUSING
statement. The image is reused until all PRINTUSING
arguments are processed.

% AMOUNT: $## ###. 44

INPUT

Allows the user to supply data via the keyboard
during the running of a program already stored in
memory.

40.INPUT “VALUE OF AB",AB

KEYIN (not on 2200A)

This statement checks if there is a character ready
to come in from the input device buffer and, if one is
ready, it reads the character and stores it in the
alpha variable. It permits customized input routines
to be written.

10 KEYIN A$,100,200

LET
Assigns values to the variable or variables specified.
This verb can be omitted.

20

110 LET J=3
10 X,Y,2=5.3
50 N$(1,3) = “CLASS #10”

NEXT
The NEXT statement signifies the end of a loop
begun by a FOR statement.

30 FOR X=N TO SQR (N13)

100 NEXT X

ON (not on 2200A)
The ON statement is a conditional GOTO or

GOSUB statement.

10 ON | GOTO 10,15,100,900
If 121 GOTO 10, If I=2 GOTO 15, etc. -
200 ON J-3 GOSUB 30,15,73,106

" If J=4 GOSUB 30,

If J=5 GOSUB 15, etc.

ON ERROR ... GOTO (not on 2200A or B; only on
22008, WCS/10 with 0P-24)

Bypasses usual system error messages and branches
to a specified statement number. Error code and
erring statement number are saved.

800 ON ERROR E$, N$ GO TO 900
900 REM ERROR RECOVERY ROUTINE

PRINT
Prints the values of specified numbers, variables,
and expressions in zoned or packed format. Comma

" separators specify zoned format; semi-colons, packed

format.

150 PRINT 13E=4, B, 3+AxX
175 PRINT J:K(1,2):K(2,2)

TAB (PRINT Function)

Position of printed output information can be
controlled by using the TAB() parameter. Cursor or
output head is positioned at specified column.

21

300 PRINT X;TAB(X + 20}, "

PRINTUSING

PRINTUSING operates in conjunction with a ref-
erenced Image statement. Parameters in the PRINT-
USING statement are formatted in the print line as
directed by the Image statement.

100 PRINTUSING 101,A$,B
101 % ITEM NO. #### COSTS $ ## ###.4#

READ

The READ statement assigns the values contained
in DATA statements to READ statement variables,
in sequential order.

100 READ A,L$,‘F(3,1)

REM
The REM statement is used to insert comments or
explanatory remarks in a program.

200 REM PRICING SUBROUTINE
201 REM ANY DATA

RESTORE
The RESTORE statement allows the repeated use
of DATA statement values by READ statements.
RESTORE n sets a pointer to the nth data value.
A subsequent READ statement reads data beginning
with this value.

100 RESTORE
100 RESTORE 11

(start with first value)

RETURN
Returns processing to the statement following the
last executed GOSUB statement.

270 RETURN

RETURN CLEAR (not on 2200A or B)

Clears return address information generated by
last subroutine call executed. A dummy RETURN
statement; it eliminates chance of ERR 02, and is

particularly useful to avoid returning to keyboard.

22

(start with eleventh value)

input when entering a program with a Special Func-

tion Key.

200 RETURN CLEAR
SELECT
The SELECT statement is used to select 1/O
devices for specified operations; to select degree,
radian, or gradian arguments for trigonometric func-
tions; and to insert timed pauses into the execution of
a program whenever a CR/LF is output.

90 SELECT PRINT 215 (80)
Assign device address 215 for PRINT, PRINT-
USING or HEXPRINT with line length of 80.
100 SELECT CO 005, Cl 001
Assign device address 005 for Console Output,
001 for Console Input.
120 SELECT D
Select degrees as the argument for trig functions.
130 SELECT P1
Select 1/6 sec pause after each line for Console
Output, Print.

STOP

Causes program execution to terminate. A message
can be displayed when STOP is executed.

1050 STOP “MOUNT SCRATCH TAPE"
TRACE
Provides for tracing of all or a portion of a BASIC
program.

100 TRACE

TRACE OFF
Turns off TRACE mode.

150 TRACE OFF

TRACE or TRACE OFF can be used either as
Immediate Mode statements or program statements.
This allows all or a segment of a program to be traced,
either during execution or when stepping through it.
Trace output appears on the CRT and also can be
printed with the device currently selected for Console
Output operations.

23

DATA MANIPULATION

Not on 2200A; available on 2200S or WCS/10 only
with Advanced Programming Statements.

ADD
Immediate
Add, in binary, the value specified by two hexa-
decimal digits to every character in the specified
alphanumeric variable.

100. ADD (A$,FF)

String-to-String

Add, in binary, on a sequential character by char-
acter basis, the characters specified in the second
alphanumeric variable to the characters specified
by the first. Addition takes place right adjusted.
High order characters of short strings are assumed
to be zero.

200 ADD (A$(1),B$)
250 ADD (STR(A$,2,3),C$)

ADDC
Immediate
Add, in binary, the value specified by the two
hexadecimal digits to the value of the specified
alphanumeric variable. (Carry is propagated be-
tween characters.)

100 ADD C (A$, 3A)

String-to-String

Add, in binary, the entire value contained in the
second alphanumeric variable to that of the first.
Carry is propagated between characters. The addi-
tion is right adjusted. The high order portion of a
shorter variable is assumed to be zero.

10 ADD C (A$,B$)
20 ADD C (C$(1), STR(D$,5,4))

AND, OR, XOR
Immediate
A binary logical AND, OR or exclusive OR is
formed with the value specified by the two hex

24

digits and each character in the alphanumeric
variable; the result is stored in the variable.

10 AND (A$, 7A)
20 OR (B$(1), 3E) :
30 XOR (STR(C$,4,6),80)

String-to-String

A binary logical AND, OR or exclusive OR is
formed sequentially character by character with
the characters of the first and second alphanumeric
variables starting with the first characters in each
variable. The result is stored in the first variable.

10 AND (A$,B$)

20 OR (A$,B$(3,4))

30 XOR (STR(C$,2,4),D$)
BIN

This statement converts the integer value of the

expression following the = sign, to a 1-byte binary
number and sets the first character of the specified
alphanumeric variable equal to that value. BIN is the
inverse of the function VAL. The maximum value is
255 (HEX FF).

10 BIN (A$) =64 ~ 2«X - -
BOOL
Immediate
Performs any of sixteen specifiable logical Boolean
operations with the two specified hexadecimal
digits and each character in the specified alpha-
numeric variables; stores the result in the variable.

10 BOOL 1 (C$,F0O)
20 BOOL 7 (8%,3A)

String-to-String

Performs any of sixteen specifiable logical Boolean
operations between the characters of the first and
second alphanumeric variables on a character by
character basis starting with the first character of
each variable. Results are stored in the first
variable.

10 BOOL E (A$,B$)
20 BOOL 6 (STR(A$,4,8),B$)

25

INIT

Sets each character of the specified alphanumeric
variable or array to the value indicated by two hexa-
decimal digits, a character in quotes, or the first
character in a specified variable or array.

100 INIT(00) A$,BS(), C$
110 INIT (“B”) F$
: 120 INIT (B$)F$()
NUM Function
Determines the number of sequential ASCII char-
acters in the alpha variable that represent a valid
numeric variable. Includes trailing spaces in the count.

20-X =NUM (A$)
40 X = NUM (STR (A$,7,3))

PACK

Packs numeric variables or arrays into alpha-
numeric variables or arrays, reducing the storage
requirement for numeric data where only a few sig-
nificant digits are required.

10 BACK (+##.#4##)A$ FROM B
20 PACK (##4##) A$ FROM X()

POS Function

Finds the position of the firstcharacter in the spec-
ified alphanumeric value that satisfies the specified
relation.

10 X'=POS (A$="%")
20 Y = POS (STR(B$,1,10)} < > 7E]}
ROTATE
Rotates the bits of each character in the specified

alphanumeric variable to the left from one to seven
places; the high order bits replace the low order bits.

10:ROTATE (A$,4)

UNPACK
This statement is used to unpack numeric data
that was packed by a PACK statement.

10 UNPACK (####) A$ TO X,Y,Z
20 UNPACK (+##.##) A$() TO X()

26

VAL Function
Converts the binary value of the first character of
the alpha variable to a floating point number.

10 X = VAL (A$)
20 Y = VAL (STR (B$,N,1})

27

MATRIX STATEMENTS

Fourteen matrix staternents are available to the
user in several system configurations. The statements
are standard features on any 2200T, WCS/20 or
WCS/30; can be obtained as Option 1 on a 22008 or
C; and can be obtained as Option 21 on any 2200S
or WCS/10. Option 21 is included in Options 22,
23 and 24.

These matrix statements permit the user certain
input, output and computational operations on entire
arrays with single program statements. Computations
are performed according to the rules of linear algebra.

The fourteen matrix statements are:
MAT + (addition)
Adds two numeric arrays of the same dimensions.

100 MATA=A+D

VIAT CON (constant)
Sets all elements of a numeric array to one (1); the
constant matrix. The matrix can be redimensioned.

100-MAT A = CON
200 MAT B = CON (5,7)

MAT = {equivalence)
Replaces each element of one numeric array with
the corresponding element of another numeric
array.

100 MAT A= B

MAT IDN (identity)
Sets a numeric array to the identity matrix
(diagonal elements = 1, all other elements = 0);
the array can be redimensioned.

100 MAT-A=1IDN -
200 MAT B = IDN(5,5)

MAT INPUT
Permits the user to input elements for an entire
array without the use of FOR/NEXT loops.
Arrays can be numeric or alphanumeric and can be
redimensioned.

28

100 MAT INPUT A, B(2), C(2,4)
200 MAT INPUT A$(4)3, C$
MAT INV, d (inverse)
Inverts a numeric matrix using the Gauss-Jordan

Elimination Method. The determinant can be op-
tionally obtained (d).

100 MAT B = INV{A}), D
- 200 MAT C = INV(B)

MAT x (multiplication)
Stores the product of two numeric arrays.

100 MAT A=E % F

MAT PRINT
Outputs arrays row by row in zoned or packed
format. Arrays can be numeric or alphanumeric.

100 MAT PRINT Z$;
200 MAT PRINT A, BS

MAT READ
Permits values from DATA statements to be
placed in array elements automatically without
usina FOR/NEXT |oops. Numeric or alpha arrays
can be used, and the arrays can be redimensioned.

100-MAT READ A, B(2,3)
200 MAT READ C(2), D$(4)6

MAT REDIM (redimension)
Redimensions the arrays specified.

100 MAT REDIMA(4,5)
200 MAT REDIMB$(14)3

MAT () « (scalar multiplication)
Stores the product of an expression and each
element of an array in another numeric array.

100- MAT C = (SIN{X)):A
200 MAT B = {5)xA

MAT - (subtraction)
Subtracts numeric matrices of the same dimension.

100 MATC=A-B

29

MAT TRN (transpose)
Transposes a numeric array; the array can be
redimensioned automatically.

100 MAT C = TRN(A)

MAT ZER
Sets all elements of a numeric array to zero; the

matrix can be redimensioned.

100 MAT C = ZER (5,2)

30

GENERAL I/O STATEMENTS

General |/O Statements are standard features of
any 2200T, WCS/20, or WCS/30 and can be obtained
as an option on certain other configurations; as Op-
tion 2 on a 2200B or C; as Option 23 on a 2200S or
WCS/10 and as part of Option 24.

These statements provide certain 1/O control
functions particularly useful for the programmable
operation of non-Wang peripherals. The statements
are:

$GIO

This is a generalized 1/O statement designed to
perform data input and output as well as /O control
operations with a programmable signal sequence.

100 $GIO (6CFA 4400 A206 8607,B%) AS$()

$IF ON

This statement tests the ready/busy condition of
an 1/O device and can execute a conditional branch
to a specified |line number.

$IF ON #3,200

$TRAN

This statement facilitates high-speed character-
code translations or specific character replacement
via a table stored in an alphanumeric variable or array.

100 $TRAN (A$, BS) 2F

$PACK and $SUNPACK

These are complementary statements that either
pack numeric or alphanumeric values into a record
or unpack such values from a record. A variety of
formats can be used and the operation can be defined
by field width or delimiters.

100 $PACK (D=X$) B$() FROM A,B,C
200 SUNPACK (F=A$).B$() TO X,Y,Z,D$

31

SORT STATEMENTS

Six Sort Statements can be obtained in several
configurations to provide rapid array search, copy
and sort capabilities. The statements are:

MAT CONVERT
Converts numeric to alpha data and puts values in
sort format, pre-processed to optimize sort operations.

MAT CONVERT N() TO A$() (1,5)

MAT COPY
Transfers data byte-by-byte from a portion of an
alpha array to another alpha array.

MAT COPY-— A$() TO B$() <5,10>

MAT MERGE
Performs a segment of a sort/merge operation by
combining several pre-sorted arrays.

MAT MERGE A$() TOW1${ J, W2$(), L$()

MAT MOVE

Moves data from one array to another according
to the subscripts in the locator array. The locator
array must be generated by a MAT SORT or MAT
MERGE statement and a specific field within each
element of an alpha array can be moved.

MAT MOVE A$() (3,2); L$(1) TO A28(1)

MAT SEARCH

Scans the input array for substrings of characters
that satisfy the relation defined and stores the
locations of each such substring in the locator array.

MAT SEARCH A${), <B$.TO L$() STEP 2

MAT SEARCH AS$() <S,N>,>STR (0$%$,3,5) TO S$()

MAT SORT

Takes the elements of the input array and creates
a locator array of subscripts according to ascending
order.

MAT SORT G$() TOWS$(), G15()

32

TAPE CASSETTE DRIVES

BASIC logic to support tape cassette drives is avail-
able on all systems.

BACKSPACE

Backspaces the specified tape cassette any number
of logical records or complete files or backspaces to
the beginning of the current data file.

500 BACKSPACE #1,3
100 BACKSPACE/108B, 4F
550 BACKSPACE BEG

DATALOAD

Reads one logical record from the designated tape
and assigns the data values read to the variables and/
or arrays in the argument list. Data files also can be
searched out by name.

10. DATALOAD #2,A(), B, Z$()
100 DATALOAD “NAME 2"
200 DATALOAD/10C, A, B; C$, E()

DATALOAD BT {not on 2200A, not on 22008 or
WcCSs/10)*

This statement reads the next block of 100 or
256 bytes from cassette tape and stores the infor-
mation in the specified alphanumeric array, ignoring
recording control information.

100 DATALOAD BT A$()
200 DATALOAD BT (N=100) C${)

DATARESAVE

The DATARESAVE statement allows the user to
update (rewrite) records, in place; both data and the
header records of an existing data file can be re-
written.

100 DATARESAVE OPEN “NAME 2"
200 DATARESAVE B(), X$
300 DATARESAVE/10B, A, B, C$, D$

*can be obtained on WCS/10 or 2200S with OP-22,
23 or 24.

33

DATASAVE

The DATASAVE statement causes the values of
variables, expressions and array elements to be
recorded sequentially onto the specified tape as a
logical record. Data files can be opened, named
{by writing a header record), and closed (by writing
a trailer record).

10 DATASAVE OPEN “NAME""
10 DATASAVE END

10 DATASAVE #2,N$,B,K()
10 DATASAVE A,B,C$,E()

DATASAVE BT (not on 2200A, 22008 or WCS/10)*

This statement records a block of data (100 or
256 bytes) on cassette tape with no control infor-
mation (if N is not specified, 256 is assumed).

DATASAVE BT A1$()
DATASAVE BT (N=100) B$()

LOAD (command)

Loads the program file currently positioned in
the tape drive into the System or searches the tape for
the named program and loads it.

LOAD — Loads current program file from
cassette.

LOAD “NAME’ — Searches tape for the
designated program file and loads it.

LOAD/10B, “NAME"

LOAD (statement)

The LOAD statement is used to chain programs or
subroutines from cassette tapes.

When executed in a program, LOAD stops pro-
gram execution, deletes all or part of the current
program, clears non-common variables, loads the new
program or program segments and starts execution
at the new program.

*can be obtained on WCS/10 or 2200S with OP-22,
23 or 24,

34

400 LOAD
500 LOAD “NAME" 60,350
600 LOAD /10B, 200

REWIND
Rewinds the cassette in the specified drive.

100 REWIND
200 REWIND /108
300 REWIND #4

SKIP

Allows the user to skip any number of program
and data files, or logical data records, on the cassette
in the specified drive. The user can also skip to the
end of the current data file.

100 SKIP 3F

500 SKIP 4

350 SKIP END
400 SKIP /10B, 4F
500 SKIP #2,6

SAVE (command)
Records an entire program or a specified portion
of a program onto tape cassette as a program file.

SAVE “INDEX"

35

PUNCHED TAPE READER

(Not on 2200A; available on 2200S or WCS/10 only
with Options 22, 23 or 24.

DATALOAD

This statement reads values from punched paper
tape and sequentially assigns those values to the
variables in the argument list. Numeric information
must be ASCI1 characters in legal format. Values must
be separated by CR/LF characters.

DATALOAD X, Y, A$, B$

DATALOAD BT

This statement reads paper tapes in any format
forwards or backwards and stores the characters that
are read in the alpha variable or alpha array designator
specified. The tape is read until a specified stop
character is encountered, or the alpha variable or
array is full, or the number of characters specified
by N are read, whichever occurs first. All eight
channels of the paper tape are read.

DATALOAD BT (N=100) A${)
DATALOAD BT {S=FE) B$

LOAD {(command)

The LOAD command with the tape reader address
specified, causes the program punched on the paper
tape to be loaded and appended to the current pro-
gram in memory. The program must be punched in
- ASCII characters.

LOAD /618

LOAD (statement)
The LOAD statement is used to chain programs or

subroutines recorded on punched tape.

100 LOAD
500 LOAD /618, “NATL" 60,350

36

TELETYPE

(Not supported on 2200A; available on 2200S or
WCS/10 only with Options 22, 23 or 24.)

DATALOAD

This statement reads values from the Teletype®
paper tape and sequentially assigns those values to
the variables in the argument list. Tape must be
punched in format produced by DATASAVE state-
ment.

 DATALOAD X,Y,A$,B$

DATALOAD BT

This statement reads a paper tape and stores the
characters read in the alpha scalar variable or alpha
array specified. This command facilitates the reading
of paper tape in any code or format. Reading is
terminated when the array is full or a specified char-
acter is read (N} or a specified stop code is read (S).

DATALOAD BT (N=30) A$() =
DATALOAD BT (N=40, S=FA) #3, B$

DATASAVE

This statement causes the values specified in the
argument list to be punched on paper tape. Numeric
values are written in a form identical to that resulting
from a PRINT statement.

DATASAVE #3, OPEN “T FILE”
DATASAVE X,Y,A$ '

DATASAVE BT

This statement punches the values of an alpha
variable or alpha array onto a paper tape with no
control information (i.e., no CR/LF RUBOUT RUB-
OUT separating values). Trailing spaces in alpha values
are punched.

DATASAVE BT #2, A$()

® Registered Trademark, Teletype Corporation

37

LOAD (command)

When the LOAD command is entered, the program
punched on the paper tape is loaded and appended to
the current program in memory.

LOAD /41D

LOAD (statement)
The LOAD statement is used to chain programs
or subroutines from the Teletype paper tape reader.

100 LOAD /41D
140 SELECT TAPE 41D
150 LOAD 70,300

SAVE (command)

The SAVE command causes BASIC programs (or
portions of BASIC programs) to be punched on
paper tape.

SAVE /41D,100,200

38

CARD READERS

INPUT

This statement allows the user to supply input
data via the Mark Sense or Punched Card Reader
during the running of a program already stored in
memory.,

110 SELECT INPUT 517
120 INPUT A,B2 C(3)

CONSOLE INPUT

When the Card Reader is selected as the Console
Input device, programs and commands can be en-
tered from the card reader as if entered from the
keyboard.

:SELECT C1 517

DATALOAD*

This statement reads values from a card and
sequentially assigns those values to the variables in
the argument list.

DATALOAD A; B$()

DATALOAD BT*

This statement reads 8-bit characters in any code
format from a card and stores the characters read in
the alpha variable or alpha array designated.

100 DATALOAD BT (N=40) A$()

LOAD
This statement loads programs from the card
reader.

:LOAD /517

*Not available on 2200A; supported on 2200S or
WCS/10 only with OP-22, 23 or 24,

39

PLOTTERS

(Not supported on 2200A; available on 2200S or
WCS/10 only with Option 22, 23 or 24.)

PLOT]

This statement moves the plotting pen or typing
element from its current position to a specified
position on the plotting surface. Movement can be
specified in increments (Ax, Ay). Movement can be
made with the pen up or the pen down. When literals
or alpha variables are used, they represent labels to be
plotted. Multiple plot arguments are legal.

10 PLOT <10, 20, HEX(FB)> .

20 PLOT <X,Y, “VALUE">, <40, 60, “ ">
30 PLOT 10 <X)Y, “="> ;

40 PLOT <X,Y,U>

50 PLOT <10, 20, D>

60-PLOT<,, > '

40

DISK UNITS

(Not supported on 2200A; available on 2200S or
WCS/10 only with Option 24.)

COPY
This statement copies the specified sectors from
one platter to the other.

COPY RF (100,4070)

DATALOAD BA
Loads unformatted data blocks of one sector
{256 bytes) from disk into an alphanumeric array.

100 DATALOAD BA R(X Y)cs$ ()

DATALOAD DC

Used to read logical data records from a cataloged
disk file and to assign the values read to the variables
and/or arrays in the argument list sequentially.

"DATALOAD DC #2, A() J$

DATALOAD DC OPEN

Used to open data files that have previously been
cataloged on disk and to assign the pertinent disk
address to the specified file number (i.e., #1, #2,
#3 etc.; if not specified, #0 is assumed).

DATALOAD DC OPEN F#2, “HEADER"

DATASAVE BA

Saves unformatted data on disk in blocks equiv-
alent to one sector (256 bytes) from an .alpha-
numeric array.

100 DATASAVE BA F(N,N)AS()

DATASAVE DA
This statement writes a logical data record con-
taining all the data in the argument list onto the disk.

The absolute sector addressing mode is used.

200 DATASAVE DA R (1000,S)A$,B() -
300 DATASAVE DA F(B,C) END

41

DATASAVE DC

Causes one logical record, comprised of all the
data in the argument list to be written onto disk
starting at the current sector address associated with
the specified file number in the Device Table. The
record is written in as many files as is required. It is
also used to write an end-of-file record (END).

30 DATASAVE DC- #2, B$ X{)

40 -DATASAVE DC #4, END
DATASAVE DC CLOSE

Used to close any single data file or all data files

which are currently open and assigned to file num-
bers (#0, #1, #2, etc.). It in effect, clears this infor-
mation stored in the file numbers to protect against
subsequent erroneous references.

304 DATASAVE DC CLOSE #2

500 DATASAVE DC CLOSE ALL
DATASAVE DC OPEN

Used to reserve space for new cataloged files in

the Catalog Area, to enter the file name and ap-
propriate system information in the Catalog Index,
and to assign pertinent disk addresses to the specified
file number. It is also used to reserve space for tem-
porary work files outside the Catalog Area or to
rename scratch files.

100 DATASAVE DCOPEN T #2,300"F|L2f'
200 DATASAVE-DC OPEN-R TEMP, 900, 1000
300 DATASAVE DC OPEN F #4, “TABLE1”

DBACKSPACE

Used to backspace over logical records or sectors
within a cataloged disk file or backspace to the
beginning of the file (BEG).

100 DBACKSPACE BEG
DSKIP

Used to skip over logical records or sectors in a
cataloged disk file or to skip to the present end of
file (END).

DSKIP #3,4
DSKIP 4+XS
DSKIP END

42

LIMITS
Obtains the beginning and ending sector address
and current sector address used for a cataloged file.

LIST DC

This statement displays or prints out a listing of
the information contained in the Catalog Index.
Listing occurs on the device currently selected for
LIST.

LISTDC F

LOAD DA (command)
Used in loading BASIC programs from disk in
absolute sector addressing mode.

LOAD DA R (100,S)
LOAD DA T #2, (X,B)

LOAD DA (statement)
Used to chain programs or subroutines from disk
in absolute sector addressing mode.

110 LOAD DA F(X.S)
125 LOAD DA T #3, (4500,8)100,700

LOAD DC (command)

For use in loading cataloged BASIC program files
from the disk. This causes the system to locate the
named program file in the catalog and to append it
to the program text currently in memory.

LOAD DC F“MAPROGIO”

LOAD DC (statement)
This statement is used to chain programs and
subroutines from disk.
110 LOAD DC F “NXTAM"
50 LOAD DC T.#2 “SUB-1"" 50,700

MOVE

This statement is used to copy the entire catalog
area from one platter to another, deleting all scratched
files from the catalog and relocating the active files.

MOVE FR
MOVE RF

43

MOVE END
MOVE END F = 3000
Used to increase or decrease the size of the
Catalog Area on a disk.

SAVE DA (command)
Used to save programs or program segments on
disk in the absolute sector addressing mode.

SAVE DA F{100,S)
SAVE DA R(S,8)300,700 -

SAVE DC (command)

Causes a BASIC program or a portion of a pro-
gram to be named and recorded on the designated
disk. Optionally, additional sectors can be specified
for program files.

SAVE DC R “DGMENT”

SCRATCH

Used to set the status of the named disk files to a
scratched condition. The files can be renamed and
reused or will be removed when the catalog is
transferred with a MOVE command.

SCRATCH F “NAM”,“PASIV”

SCRATCH DISK

Reserves space for the Catalog Index and Catalog
Area on the disk prior to saving any program files or
data files on the disk. This is generally done only
once to an initialized disk platter for catalog oper-
ations.

SCRATCH DISK F LS=2, END 50

VERIFY

This statement reads each specified sector from the
designated disk platter to insure that information has
been written conrrectly to these sectors.

_VERIFY F (0,90)

44

PRINTING OUTPUT DEVICES

All printing output devices produce printed out-
put from the following statements when the devices
have been initially addressed (SELECTed) with a
SELECT statement.

PRINT

Produces printed output on the output device in
zoned or packed format.

OPHING ABEEC D)=« = 1n s
20 PRINT “X="; Xx75, "Y="; Y100

PRINTUSING
Produces printed output formatted as indicated in
the referenced Image (%) statement.

100 PRINTUSING 101,A$,B
101% \TEM #HEHHAHHHE COST S, st 4

HEXPRINT {not on 2200A)

Produces printed output in hexadecimal form.
Alpha scalars or alpha array elements can be output
either one value per line or as a continuous string
of hex codes.

10 HEXPRINT A$; BS$()
- 20 HEXPRINT A$, BS$()

SELECT CO

Selects the output device to print all console out-
put {(CO); any characters keyed in on the keyboard,
Immediate Mode PRINT or HEXPRINT statements,
literals from INPUT statements, INPUT question
mark, Ready-status colon, error codes, TRACE out-
put, STEP mode output.

SELECT CO 215 .

45

NINE-TRACK TAPE DRIVE

An interface medium between a Wang system and
a large scale computer (such as an IBM 360) or a
backup medium for Wang disk units, the nine-track
tape drive must have access to 12K user RAM and
General 1/0O statements. These statements cannot be
obtained on a 2200A, must be added to a 2200B or
C with OP-2 and to a 2200S or WCS/10 with OP-23
or 24. Wang supported utilities to operate this unit
are available.

$GIO
Provides a programmable [/O signal sequence to
activate and control the unit.

$GI10- REWIND /07B {6CF5.4400 8607, A$)
Tape operation sequences developed at Wang for
operation of this unit are:

$GIO BSF /07B (6CF3 4400 8607, A$)
Backspaces one file to Tape Mark or BOT.

$G10 BSR /07B (6CF 14400 8607, A$)
Backspaces one block (record) or to BOT.

$G10 BSW (6CF0 4400 8607, A$)
Backspaces one block and positions tape for
writing.

$GIO CLEAN (6CF7.4400 8607, AS$)
Backspaces tape over tape cleaner up to five
times and repositions tape to reread.

$GIO FSF (6CF4 4400 8607, AS)
Spaces tape forward to next Tape Mark or EOF.

$GIO FSR (6CF2 4400 8607,:A$)
Spaces tape forward one block (record).

$G10 READ (6CFB 4400 C222 8607, AS$) B$()
Reads a record (block).

$GI0- REREAD (6CF8 4400 C222 8607, A$) B$()

Backspaces one block and rereads the block just
read; corrects single track errors.

46

$G10 REWIND (6CF5 4400 8607, A$)
Rewinds to load point (BOT).

$GIO0 WEOF (6CF9 4400 8607, A$)
Writes a Tape Mark (EOF).

$G10 WGAP:(6CF6 4400 8607, A$)
Passes over 3.5 in. of tape to bypass a bad spot.

$GIO WRITE (6CFA 4400 A206 8607, A$) B$()
Write a block (record).

When neither an address (e.g., 07B) nor a file
number (e.g., #1) is specified, the device address
currently selected for TAPE is used.

47

DIGITIZER

Five BASIC statements can be used to receive
data from the Digitizer and store it in memory. The
Digitizer must be selected or addressed with the
appropriate SELECT statement.

INPUT
Accepts individual points from the Digitizer.
SELECT iINPUT 65A
INPUT A, B, A$
DATALOAD*

Reads values into scalars or arrays. An alpha

scalar or array element must contain at least 11 bytes.

SELECT TAPE 65A
DIM A{100)
. "DATALOAD A()
DATALOAD BT*
Reads points into a variable or array.

SELECT TAPE 65A

DIM A (100) 12

DATALOAD BT /65A, A$()
KEYIN (not on 2200A)

Polls the digitizer to determine if it is ready to
transmit; if so, reads in the first character and
branches to the referenced line number. The second
line number is not used but must appear.

SELECT INPUT 65A

KEYIN A$, 100, 100
MAT INPUT (not on 2200A; on 2200B, C with
OP-1; on 2200S, WCS/10 with OP-21)

Inputs moderately large amounts of data at
relatively high speed; permits more efficient oper-
ation for large amounts of data than INPUT or
KEYIN.

DIM A$ (100) 11
SELECT INPUT 65A
MAT INPUT A$

*not on 2200A, on 2200S or WCS/10 only with
Advanced Programming Statement.

48

INTERFACE CONTROLLERS

These controllers have been designed to interface
non-Wang devices to Wang systems. They can be ob-
tained as input-only or input/output devices. The
BASIC statements which activate the controllers are
governed by the function of the device; an input-only
device cannot use output-type statements. A con-
troller must be selected or addressed with the ap-
propriate SELECT statement.

SELECT INPUT 25A

When a device is used for INPUT, several statements
can be used to activate it.

INPUT

Enables the controller for input of data to fill the
variables specified. Each value must be terminated by
an ASCII carriage return.

INPUT A, B, C, C$

KEYIN (not on 2200A)

Can be used to obtain single character input (any
8-bit code) and optimize scanning operations for
several devices because of the capability to test
‘ready’ condition.

DIM A$1
KEYIN A$, 50, 60 -

DATALOAD BT*

Can be used with some external devices to obtain
consecutive character input. Data rate significantly
faster than INPUT. Can receive any 8-bit code; input
is terminated by count or special character.

10:DIM A$ (5) 60
20 SELECT TAPE 23A
30 DATALOAD BT (N=300) A${)

*Not on 2200A, on 2200S or WCS/10 only with
Advanced Programming Statements.

49

MAT INPUT (not on 2200A; on 2200B or C with
OP-1; on 2200S, WCS/10 with OP-21, 22, 23 or 24)
Enables device to receive high-speed input of
alphanumeric data. Terminates one or more data
elements with ASC!I carriage return.
DIM A$(20)
MAT INPUT A$
$GIO {(not on 2200A; on 2200B or C with OP-2; on
22008, WCS/10 with OP-23 or 24)
Enables multi-readouts from 1/0 controllers with
a programmable signal sequence. Provides great flexi-
bility by controlling specific 1/0 operations.
DIM X$ (20) 12, A$10
$GIO/25A (C640, RS$) X$()
As an output device, a controller is activated by
several output-type statements.
PRINT
Can output literals, data, hex codes.

PRINT HEX(22); A$, N “METER DATA”

DATASAVE BT (not on 2200A on 2200S, WCS/10
only with Advanced Programming Statements)

Outputs 8-bit data from any specified alpha-
numeric scalar or array.

DIM A$ (100)5
DATASAVE BT #5, A$()

PRINTUSING

Outputs data from any specified scalar or array
in the format specified in the referenced Image (%)
statement.

100 PRINTUSING 101,>“ANIPS”;A :

10T %HEH# SR
$GIO (not on 2200A; on 2200B, C with OP-2; on
22008, WCS/10 with OP-23 or 24)

Enables an 1/O controller to be used for rapid
data output with a programmable signal sequence.

10 DIM- R$10, D${20)60
100 $GIO WRITE /62B (6C01 4400 A206 8601,
R$) DS$()

50

TC CONTROLLER

The TC Controller is used to facilitate asyn-
chronous transmissions between a Wang CPU and
some other system, either over a telephone line or
over a direct line hook-up. Each TC unit must
initially be accessed with the appropriate SELECT
statement.

SELECT 'INPUT 219 (for input)
SELECT PRINT 21D (for output)
Statements which are normally used for input (re-

ception) operations.
INPUT
Accepts data for scalars or array elements.

*-SELECT INPUT 219
INPUT A$, N, C$(1)
KEYIN (not on 2200A}
Accepts data one character at a time.

SELECT INPUT 219

DIM R$1

KEYIN R$, 100, 700
$GIO (not on 2200A; on 2200B, C with OP-2;
on 22008, WCS/10 with OP-23 or 24)

Enables the TC controller to accept data stream

input from specified input device.

DIM B$10, €$(10)

$GIO INPUT/219 (FDO1, B$) C$()
The PRINT statement can be used for output
(transmission) operations.

PRINT
Accepts data for scalars or array elements.

10 SELECT PRINT 21D
20 PRINT-T$

$GI0 (not on 2200A; on 2200B, C with OP-2; on
2200S, WCS/10 with OP-23 or 24)

Enables controller to receive character and echo
it to specified output device.

10 DIM B$10, £8(20) 60
20 $GI10 TC OUTPUT/21D (A403, B$) C$()

51

ERR 01
ERR 02
ERR 03
ERR 04
ERR 05
ERR 06
ERR 07
ERR 08
ERR 09
ERR 10
ERR 11

ERR 12
ERR 13
ERR 14
ERR 15
ERR 16
ERR 17
ERR 18
ERR 19
ERR 20
ERR 21
ERR 22
ERR 23
ERR 24

ERR 25
ERR 27
ERR 28
ERR 29
ERR 30
ERR 31
ERR 33
ERR 34
ERR 35
ERR 36
ERR 37
ERR 38
ERR 39

ERROR MESSAGES

TEXT OVERFLOW

TABLE OVERFLOW

MATH ERROR

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

MISSING EQUALS SIGN

MISSING QUOTATION MARKS

UNDEFINED FN FUNCTION

ILLEGAL FN USAGE

INCOMPLETE STATEMENT

MISSING LINE NUMBER OR
CONTINUE ILLEGAL

MISSING STATEMENT TEXT

MISSING OR ILLEGAL INTEGER

MISSING RELATION OPERATOR

MISSING EXPRESSION

MISSING SCALAR

MISSING ARRAY

ILLEGAL VALUE

MISSING NUMBER

ILLEGAL NUMBER FORMAT

MISSING LETTER OR DIGIT

UNDEFINED ARRAY VARIABLE

NO PROGRAM STATEMENTS

ILLEGAL IMMEDIATE MODE
STATEMENT

ILLEGAL FOR/NEXT USAGE

INSUFFICIENT DATA

DATA REFERENCE BEYOND LIMITS

ILLEGAL DATA FORMAT

ILLEGAL COMMON ASSIGNMENT

ILLEGAL LINE NUMBER

MISSING HEX DIGIT

TAPE READ ERROR

MISSING COMMA OR SEMICOLON

ILLEGAL IMAGE STATEMENT

STATEMENT NOT IMAGE STATEMENT

ILLEGAL FLOATING POINT FORMAT

MISSING LITERAL STRING

52

ERR 40
ERR 41
ERR 42
ERR 43
ERR 44
ERR 45
ERR 46

ERR 47

ERR 48
ERR 49
ERR 50
ERR 51
ERR 52

ERR 53
ERR 54
ERR 55
ERR 56
ERR 57
ERR 58
ERR 59
ERR 60
ERR 61
ERR 62
ERR 63
ERR 64
ERR 65
ERR 66
ERR 67
ERR 68
ERR 71
ERR 72
ERR 73
ERR 74
ERR 75

ERR 76

ERR 77

MISSING ALPHANUMERIC VARIABLE

ILLEGAL STR{ ARGUMENTS

FILE NAME TOO LONG

WRONG VARIABLE TYPE

PROGRAM PROTECTED

STATEMENT LINE TOO LONG

NEW STARTING STATEMENT
NUMBER TOO LOW

ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

UNDEFINED KEYBOARD FUNCTION

END OF TAPE

PROTECTED TAPE

ILLEGAL STATEMENT

EXPECTED DATA (NONHEADER)
RECORD

ILLEGAL USE OF HEX FUNCTION

ILLEGAL PLOT ARGUMENT

ILLEGAL BT ARGUMENT

NUMBER EXCEEDS IMAGE FORMAT

VALUE NOT BETWEEN 0 AND 32767

EXPECTED DATA RECORD

ILLEGAL ALPHA VARIABLE

ARRAY TOO SMALL

DISK HARDWARE ERROR

FILE FULL

MISSING ALPHA ARRAY DESIGNATOR

SECTOR NOT ON DISK

DISK HARDWARE MALFUNCTION

FORMAT KEY ENGAGED

DISK FORMAT ERROR

LRC ERROR

CANNOT FIND SECTOR

CYCLIC READ ERROR

ILLEGAL ALTERING OF A FILE

CATALOG END ERROR

COMMAND ONLY (NOT
PROGRAMMABLE)

MISSING <OR > (PLOT
ENCLOSURES)

STARTING SECTOR > ENDING
SECTOR)

53

ERR 78
ERR 79
ERR 80
ERR 81

ERR 82
ERR 83
ERR 84

ERR 85
ERR 86
ERR 87
ERR 88
ERR 89
ERR 90

ERR 91
ERR 92

ERR 93
ERR 94
ERR 95
ERR 96
ERR 97
ERR 98
ERR =1
ERR =2
ERR =3

SYSTEM

FILE NOT SCRATCHED

FILE ALREADY CATALOGED

FILE NOT IN CATALOG '

/XXX DEVICE SPECIFICATION
ILLEGAL

NO END OF FILE i

DISK HARDWARE FAILURE

NOT ENOUGH MEMORY FOR MOVE
OR COPY

READ AFTER WRITE ERROR

FILE NOT OPEN

COMMON VARIABLE REQUIRED

LIBRARY INDEX FULL

MATRIX NOT SQUARE

MATRIX OPERANDS NOT
"COMPATIBLE

ILLEGAL MATRIX OPERAND

ILLEGAL REDIMENSIONING OF
ARRAY

SINGULAR MATRIX

MISSING ASTERISK

ILLEGAL MICROCOMMAND

MISSING ARG 3 BUFFER

VARIABLE OR ARRAY TOO SMALL

ILLEGAL ARRAY DELIMITERS

MISSING NUMERIC ARRAY NAME

ARRAY TOO LARGE

ILLEGAL DIMENSIONS

ERROR! Unrecoverable machine error or

programmer faux pas (no execution phase).

54

