e
R

=i S

s ! /

] \

DISV Y ur burunueiboidg

Programmin

BASIC

© Wang Laboratories, Inc., 1976

LABORATORIES, INC.

(i N ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769. TELEX 94-7421

PREFACE

This is a beginner's introduction to programming in BASIC on Wang 2200
computer systems. Starting at the most elementary level, it introduces the
reader to the fundamentals of BASIC, and the mechanics of creating programs on
a Wang 2200 system. It covers all the concepts and statements needed for
competent fundamental programming in BASIC, in commercial and non-commercial
environments. It presumes no prior knowledge of BASIC or of programming in
general.

The reader is urged to try out new statements and programming concepts
as they are introduced. As many as possible of the example programs should be
keyed in and executed. One should experiment with the example programs by
making changes to them, predicting the effects of the changes, and then
confirming or correcting one's knowledge based on the observed effects. As
soon as possible, one should begin to write programs that solve simplified
problems within one's particular area of interest. Only in this manner can
the concepts and capabilities introduced here become practical knowledge.

There is nothing that can be done from the keyboard that can damage a
Wang 2200 system. Cautions are included in the text when statements that
might destroy data files are introduced. Thus, the reader can feel free to
experiment at every stage of learning.

In general, the reader should follow the sequence of presentation in the
text; however, there are some suggested alternatives. Chapters 4 and 5
discuss saving programs and the elementary use of a printer, respectively.
Since they deal with these relatively more "mechanical" subjects, they have
been written so that they may be read at any time between Chapters 2 and 9.
By deferring them until the reader wishes to save a program or use a printer,
or until Chapter 9, the continuity of presentation of BASIC may be better
preserved.

Since this is intended to be an introduction to BASIC for those who will
program commercial applications as well as for those who will program
non-commerical or "technical" applications, example programs are drawn from
both areas. Sections 6-3, 6-4, 15-6, and 19-3 may be omitted by the
commercial applications programmer, if desired.

Though this volume is specifically designed for the person who wishes to
learn to program in BASIC on Wang 2200 systems, it can also serve as a general
introduction to programming in BASIC on any system. However, the reader must
be aware that the BASIC language, 1like most programming languages, has many
forms. When going from one implementation of BASIC to another, the user must
first become familiar with the idiosyncrasies of the new version.
Nevertheless, there is a common core that is a part of Wang BASIC and most
other versions of the Tlanguage. If the reader wishes to read this volume
focusing on this common core, the following sequence is suggested:

Sections 2-1, 2-2

Chapters 3, 6, 7, 8, 10, 11, 12, 13
Sections 14-1, 14-2

Chapters 15, 16, 19

At the end of each of the chapters in Part I of this volume, there is a review
of the main points of the chapter. The reader who is already familiar with
BASIC, or with another programming language, may wish to skim through Part I
reading the review sections first, then reading the text as needed.

Only the most commonly used peripheral devices are discussed in this
volume. Specifically, these include:

Keyboard

CRT Display

Printers

Cassette Tape Drives
Disk and Diskette Drives

iv

TABLE OF CONTENTS

PAGE
PART 1 THE FUNDAMENTALS OF BASIC
CHAPTER 1 INTRODUCTION TO THE EQUIPMENT IN YOUR WANG SYSTEM
1-1 The Principal Components of a Wang 2200 System. 2
1-2 Turning on Your Wang System v ¢« ¢« ¢ o « « . 5
CHAPTER 2 GETTING STARTED
2-1 Programs and Your Wang System « . v v v &« « . . 6
2-2 Two Simple Problems and Their So]ut1ons 1n BASIC e !
2-3 How to Key a Program into Memory. . . « v« v o o« o o o & 10
2-4 Using the EDIT Mode « +» v & + & & v o « e e e e e 13
2-5 ListingaProgram v v v . 4 e 4 4 . . . «...16
2-6 Executing a Program « . 4 « 4 v 4 4 e e e . oa 16
2-7 Chapter Review and EXercisesS. o« o « « « o o « o « o o . 18
CHAPTER 3 FUNDAMENTAL INSTRUCTIONS
3-1 How the Example Programs Work . . . « « o o v « o « o . 20
3-2 The LET Statement and Numeric Expressions29
3-3 The PRINT Statement v « + & v v ¢ v v v v o o 36
3-4 Line Numbers, Lines, and the GOTO Statement 47
3—5 The IF THEN Statement e o © =+ o o © o e o . 049
3-6 The INPUT Statement 3 3 . e o o o o o . 3 . o55
3-7 The REM Statement . . . ¢« & ¢ ¢ ¢ ¢ o ¢ o o o o o o o 57
CHAPTER 4 SAVING AND LOADING PROGRAMS
4-1 Introduction. e e e s 8 e s s s e o . o 59
4-2 Saving Programs on Cassette Tape. ¢« ¢« v ¢ ¢ ¢ ¢ ¢ o o 59
4-3 Saving Programs on Disk . . « ¢ ¢« ¢« ¢ 4 ¢ o o e« « .« 63
CHAPTER 5 SELECT STATEMENTS AND THE USE OF A PRINTER
5-1 Introducing Device Selection. . « « v v o« &« « o o & & 71
5-2 Using a Printer e
CHAPTER 6 FUNCTIONS
6-1 Introduction. . « v v v v v v v o v o v 0w o e 09
6-2 The Integer, Absolute Value, and Sign Functions79
6-3 m and the Random Number Function. « « « « « . . 83
6-4 The Trigonometric, Logarithmic, and Square Root
Functions e e e e e e e e e85
6-5 The DEFFN Statemento e e e e e o o o o . u86

CHAPTER 7 LOOPS

1 The Parts of @ LOOP « « « o o o ¢ ¢ ¢ o« o o o o o« o « .89
2 Controlling Loops with FOR,,.TO and NEXT,91

-3 STEP and the General Form of the FOR,..TO Statement . .95
4

Nested Loops and Branching with Loops +100
v

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

PART II
CHAPTER

8 INTRODUCTION TO ALPHANUMERICS

8-1 Alphanumeric Variables. . . & v ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o &

8-2 A Closer Look at Alphanumeric Variables

(PRINTAand DIM) . & v v ¢ v v ¢ ¢ o o o o o o o o s
8-3 INPUT and IF...THEN with Alphanumeric Variables . . .

9 DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

kaOkOtlo\OkDLO
NO O WN —

10 THE ON STATEMENT WITH GOTO

10-1 Simple Use of ON...GOTO . . « v & ¢ & o o &

10-2 Using More Complex Expressions in ON..
11 LISTS

11-1 Introducing Lists, DIM Revisited. . . .
11-2 Alphanumeric Lists. « « ¢« ¢ ¢« ¢ ¢ « o &
11-3 Lists and FOR...TO/NEXT Loops
11-4 A Note on Terminology . . « ¢ v ¢« « . .

12 SUPPLYING CONSTANTS WITH DATA, READ, AND RESTORE

12-1 Introducing DATA and READ

12-2 The RESTORE Statement &
13 INTRODUCTION TO SUBROUTINES
13-1 GOSUB and RETURN. .

13-2 RETURN CLEAR.
13-3 ON...GOSUB.

14 THE DEFFN' STATEMENT
14-1 Using DEFFN' to Mark Subroutines. . . .

]4-2 Argument PaSSingo . o o . . e o o e o o o o
14-3 Defining Special Function Keys with DEFFN'.
14-4 Defining a Special Function Key for Character

En try e o o * e e o o o o o o o o o .

GAINING PROFICIENCY

The STOP Statement and the CONTINUE Command .
Immediate Mode Operations . . « ¢ ¢ ¢ ¢« « o
The HALT/STEP Key, TRACE, SELECT P. . . .

The RENUMBER, CLEAR P, and CLEAR V Commands
Mu1t1statement Lines. « ¢ ¢ ¢« ¢« ¢ ¢ ¢ ¢ o
The END Statement . . « ¢« ¢ ¢ ¢ ¢« ¢ ¢ o &
Memory Usage by Program Text and Var1ab1es.

.GOTO .

.
LJ
.
L]

15 CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

15-1 Introducing Image and PRINTUSING., . . « . « » .
15-2 Alphanumeric Labels in the Image Statement.

L L] L4 L4

107

.108
J13

121
‘123

125

"130
1132

134
135

138

Y

143

147

.148
"152

. 154

157

162

" 168
“169

. 170
7

“174
179

186

]53 The$,+and-symb015.-.-............]88

vi

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

15-4
15-5
15-6

Alphanumeric Print Elements . .
Suppressing the CR/LF
Exponential Format.

16 MORE ABOUT ALPHANUMERICS

16-1
16-2
16-3
16-4

16-5
16-6

Hex Codes . « & ¢ ¢ ¢« « . & .
The HEX() Function.

The String Function
Initializing an Alphanumeric Variable

Character (INIT). . . . « . .
The LEN() Function.

Vice Versa. . .

17 CONTROLLING A CRT

17-1

CRT Hex Control Codes . . .

17-2 The Line Length Character Count .
17-3 Using the CRT Hex Control Codes . .

18 CONTROLLING A PRINTER

18-1

with a Specific

Converting Alphanumeric Values to Numeric Values,

e o o o

Hex Control Codes for the 2221W Printer . .
18-2 Hex Control Codes for the 2201 Output Writer.

19 TABLES (TWO-DIMENSIONAL ARRAYS)

19-1
19-3

20 AN INTRODUCTION TO DISK DATA FILES

20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-1
20-1

21

21-1
21-2
21-3
21-4
21-5
21-6

Introducing Two-Dimensional Arrays.
19-2 Using Two-Dimensional Arrays. . . .

The Matrix Statements . . .

Overview of Chapter 20.

Files and the Disk Catalog. .

Establishing and Opening Data Files
Saving Data ina File
Marking the End of Data in a File and
Loading Data from a File. . « « ¢« ¢« « « « &
Non-Sequential Access with DSKIP and DBACKSPACE .
Data Records and the Planning of Data Files

Record Access Techniques. . . .

o o o

é]osing

th

e

and

] Tl e] . .

.192
.194
.196

.197
199
-201
.204
1206

209

213
.216
.216

.220
.226

0 Mu]tig]e Open Files« « « « v « ¢ ¢ 4 o

1 The "T" Platter Parameter . . .

DATA STORAGE ON TAPE CASSETTES

Overview of Cassette Data File Operations
Marking the Beginning of a File with DATASAVE

Saving Data Records
Marking the End of a Data File,

Loading Data from a File.
The SKIP and BACKSPACE Statements

vii

OPEN. .

-286

21-7 Efficient Data Storage.

21-8 Specifying Tape Device Addresses.

21-9 Updating Cassette Data Files.

CHAPTER 22 CHAINING PROGRAM MODULES

22-1 Overview © o s s s o o o o o o
22-2 The Load Statements (LOAD and LOAD DC).

22-3 The COM and COM CLEAR Statements, ., . .

APPENDIX A ERROR MESSAGES AND THEIR SIGNIFICANCE
APPENDIX B STANDARD FLOWCHART SHAPES AND SYMBOLS
APPENDIX C TABLE OF CHARACTERS AND HEX CODES . .

APPENDIX D I/0 CLASSES AND ASSOCIATED STATEMENTS
APPENDIX E UPDATING ARRAY-BLOCKED DISK FILES |

viii

.288
297

313
<314
-315
316
317

TABLE OF EXAMPLES

Example No. Title Page
2.1 A Simple Inventory Program . . « v o« « « o o o « o o o B
2.2 Computing a Table of Factorials. « « v o v « ¢« o o « o 9
3.1 Expressions as Print ElementS. « v o« « o « o « o « o o 38
3.2 Powers of Two, ITlustrating PRINT with Trailing

SEMiCOTON v v v v v v e v e e e e e e . 44
3.3 Powers of Two, Illustrating Print with Tra111n Comma. 44
3.4 Sides of a Right Triangle, Illustration of TAB?) . 45
3.5 Using an Expression to Calculate a TAB() 46
3.6 Computing the Sum and Mean of Entered Values, a

Program with Unnecessary GOTO'S. . . o« « « « « . . . 48
3.7 Testing the Keyboard Entry in the Factorial Program. . 50
3.8 An Operator Selection Using IF...,THEN. . « « « o o o o Ol
3.9 The Inventory Program (Example 2.1) Written with an

Extra GOTO . . & ¢ ¢« ¢ o o o & 53

3.10 The Original Inventory Program (Example 2.1) 23
3.1 Adding Comments (REM's) to Example 2.1 « « o o & o o . 98
6.1 Using INT() to Obtain Quotient and Remainder 8l
6.2 Integer Quotient and Remainder Using INT(), ABS()
and SGN(). . O - 74
6.3 Defining sinh and cosh w1th aDEFFN. . . « ¢« ¢ « . . . 86
6.4 A DEFFN for Rounding to 2 Decimal Places 87
7.1 A Loop to Print Powers of TWO. v « « « « ¢« o« o o« « « « 89
7.2 Monthly Payments as Interest Varies from 5% to 12% . . 90
7.3 Powers of Two Using FOR...TO and NEXT. . « « « « . . . 91
7.4 Monthly Payment Problem with FOR,..TO and NEXT 93
7.5 Exact Duplication of NEXT Operation. . . « « « « « . o 94
7.6 ITlustration of STEP . &« & & ¢ ¢ ¢« ¢ ¢ o o o ¢« « « « » 96
7.7 Using Variables in the FOR...TO Statement. 98
7.8 Printing a Factorial Table Using FOR...TO and NEXT . . 99
7.9 I1lustration of the Fact That STEP Value Is Fixed. . . 99
7.10 An Endless FOR...TO/NEXT LOOP. &« « « « o« « « « « o« « o100
7.11 Nested Loops in the Mortgage Problem102
7.12 A Branch Out of a FOR...TO/NEXT Loop That Causes an
Error. & ¢ ¢ o ¢ 6 o o « o o o o o o e o s o e s 103
7.13 Forcing a NEXT Termination . ¢ « ¢ ¢« ¢« ¢ ¢« « o« « « « o104
7.14 Normal Termination of an Inner Loop by an Outer Loop .104
8.1 Testing Alphanumeric Values with IF...THEN115
8.2 A Simple Alphanumeric Sort . « « ¢ ¢« ¢ o ¢« o« « o « « 119
9.1 A Simple Use of the STOP Statement . . « o« « o« o« « o o121
9.2 A Program with @ Bug & « « ¢ ¢ ¢ ¢« ¢« o ¢ ¢ o o o o @ .123
9.3 Debugged Version of 9.2, « v v o o v o o o o o o - . o124
9.4 (SAME @S 922)e v o o v o o o o o o o o o o o o o o . o126
9.5 The Effect of RENUMBER . & « & v o v o o o o o o o o »130
9.6 The Effect of RENUMBER 10,200, « « o« « v ¢ o o o o o o131
9.7 Using A11 the RENUMBER Parameters. . S k<Y
9.8 Multistatement Lines Used in the Inventory Program . .133
10.1 A Program Segment with Stacked IF...THEN's 138
10.2 ON...GOTO Substituted for the Stack of IF...THEN's in
Examp]e L0 T OO I &
10.3 Testing for a Non-Integer Expression before ON...GOTO. 140
10.4 A Simple Use of SGN() with ON...GOTO 141

ix

11.1
11.2
11.3
11.4
11.5
11.6
1.7
12.1
12.2
12.3
12.4
12.5
12.6
13.1
13.2
14.1
14,2
14.3

14 5
14.6
14.7
14.8

15.1
15.2

15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10

15.11
15.12

15.13
15.14
15.15
15.16
16.1
16.2

16.3
17.1

17.2
17.3

A Six-Item Inventory Program without List Variables.
Rewriting Example 11.1 Using List Variables.
Setting Up an Inventory List . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢« ¢ « &
Adding Inventory Posting to Example 11.3
Assigning a Constant to Each Variable in a List. . .
Sorting the Values in a Numeric List
Generating a List of Random Integers
A Simple Use of DATA and READ, Calculating an Average
DATA and READ with Alphanumeric Values . « « « « « &
Multiple Variables in a READ Statement

A Simplified Withholding Tax Calculation .
ITTustration of RESTORE with Expression. .
A Program That Prints Invoice Messages . .
A Skeleton of a Program Using Subroutines. .
A Simple Use of RETURN CLEAR « « + &
A Numeric Entry Subroutine (without DEFFN'). .
Passing Control to the Numeric Entry Subroutine.
Program and Subroutine with DEFFN' and GOSUB'. . .
A Subroutine to Round X to N Decimal Places. . . .
A Program with a Special Function Subroutine That

Converts Degrees to RadianS. « « ¢« ¢ ¢ ¢ ¢ ¢ o o o @

Special Function Key Access to Independent

Calculations & ¢ ¢ ¢« v v 6 6 o e o o o o o o o o o

DEFFN' and RETURN CLEAR to Define Program Entry

PO'i nts e o o o o o * o e e o o o o o o o o o o o o .

Argument Passing with a Special Function Key

sl-‘brout.ine L] L] L] L] L] L] L] L] L] L] L] L] L] . L] L] L] L] L] L] L]
Comparison of Qutput from PRINT and PRINTUSING

PRINTUSING and an Image with Four Format
Specifications ¢ ¢« o ¢« ¢ ¢ ¢ o ¢ o o o o o o o o o

Alphanumeric Labels in the Image Statement

An Image with Several Labeled Format Specifications.

An Image Statement without a Format Specification. . .

Printing Negative Values without a Sign in the Format
A Minus Sign in a Format Specification
A Plus Sign in a Format Specification.
A Dollar Sign in a Format Specification.
PRINTUSING in the Mortgage Payment Problem of

Chapter 70 L]
Alphanumeric Print Elements. . « ¢ ¢ ¢« ¢« ¢ ¢ ¢ ¢ ¢ « &

Printing Alphanumerics with "Numeric" Format
Specifications & « ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o
Using an Image Repeatedly with a Single PRINTUSING
Suppressing a CR/LF with a Semicolon
A Semicolon at the End of a PRINTUSING Statement .
Using Exponential Format Specifications.
Right-Aligning PRINT Output. . « & ¢« ¢« ¢ ¢ ¢ &« o &
Using LEN() to Test the Number of Characters in an
Entry. « ¢ ¢« ¢« « o & e e s e o s e o o o o o
A General Purpose Input Subrout1ne e o o s s s s o o
The Inventory Program (Example 2.2) Rewritten for a
Steady Display « « « o ¢ o « o o e s e e e
Maintaining a Steady Processing Message on the CRT .
A Cursor-Positioning Subroutine. . . . « ¢« « . ¢« « &

.]93
.194

-195
-196
.207

.208
.210

217
218
"218

18.1

18.2
18.3
18.4
18.5
19.1

19.2
19.3
19.4

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
22.1

22,2

ITTustration of the Fact That Control Codes Are Output

Immediately. « « ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o o &

Expanded Print . ¢« ¢ & ¢ ¢ ¢ ¢ v ¢ ¢ ¢ o o

Using Vertical Tabs in an Invoice Program.
Invoice Forms Control on the 2201.
An Underlining Subroutine for the 2201 . .

Determining Tax Bracket and Tax lsing a List é

Table. ¢ v ¢ ¢ ¢ 6 6 ¢ ¢ ¢ o o o o o o @

t and

e o o o

°

Nested Loops Used to Process a Two-Dimensional Array
Solving a System of N Linear Equations in N Unknowns

A Subroutine That Calculates the Normalized

Determinant. . . « . ¢« ¢+ « « ¢ . & e o s o &
Creating a New File and Saving Records in It .
Adding DATA SAVE DC END to Example 20.1. . . .
Printing the Inventory File of Example 20.1.
Printing the Inventory File of Example 20.2.

Adding Records to the End of the Inventory
A Program to Update Product Records. . . .
Creating a Blocked-Record Inventory File .
Printing a Blocked File. . . « «
Accessing Records in Several Open F11es.
Operator Selection of Disk File Location
Selecting Locations for Multiple Files .
A Program That Creates a Tape Data File.
Reading and Displaying the Data File Record
Printing Selected Records from a File. . .
Array-Type Blocking of a Data File
Printing the Array-Blocked Data File . . .
Operator Selection of Tape Device Addresses
Updating the Array-Blocked Data File . . .
Using DATA RESAVE to Update a File

Program to Illustrate Memory Allocation to Common

Fiie.

S

and Non-common VariableS. . . v ¢ ¢ ¢ o o o o o
Chaining a Four-Module Program . . . « ¢« ¢« ¢« o« « &

Xi

221
222
224
227
228

233
234
240

241
248
249
252
253
256
257
264
265
273
276
277
281
284
287
292
293
296
297
299

307
311

PART |

THE
FUNDAMENTALS
OF
BASIC

CHAPTER 1
INTRODUCTION TO THE EQUIPMENT
IN YOUR WANG SYSTEM

1-1 THE PRINCIPAL COMPONENTS OF A WANG 2200 SYSTEM

At the heart of a Wang 2200 system 1is a Central Processing Unit, a
keyboard, and a CRT display. Your system may include any of the several
different models of each of these items. It may also include such additional
items as printers, tape cassette drives, disk or diskette drives, plotters,
card readers and a wide variety of other devices. The purpose of this chapter
is to introduce you to the functions of a few of these items before we begin
to discuss programming.

The Central Processing Unit

The Central Processing Unit (CPU) is at once the very heart of any Wang
system and its least conspicuous item. Figure 1.1 shows a 2200T CPU. During
program execution, the Central Processing Unit gets program instructions from
its memory, interprets and executes them, or if they involve other devices,
initiates their execution. It controls the entire system. It contains the
system memory, where programs and variables are kept during program execution.

Figure 1.1 A 2200T Central Processing Unit

INTRODUCTION TO THE EQUIPMENT IN YOUR WANG SYSTEM

By itself, the Central Processing Unit has no means of receiving
information or of communicating results. It is designed to be able to use
a wide variety of other devices for these input and output operations. Two
such devices, which are a part of almost every Wang system, are a keyboard
and a CRT display. These two items form the heart of the system from the
operator's point of view.

Keyboards

Though there are several different keyboard models, they all have the
same essential functions. They allow you to enter commands, program lines,
and data to the CPU. The Model 2223 keyboard is shown in Figure 1.2. You
should consult your Reference Manual or Introductory Manual for information
about your specific keyboard. However, a few notes which pertain to
programming are in order here.

ALPHA CONTROL

SWITCH ZONE 4 PROCESSING
SPECIAL FUNCTION AND EDIT KEYS LIGHT
A\

v
ZONE 1 ZONE 2 ZONE 3
ALPHA CHARACTERS NUMERIC ENTRY KEYS PROGRAM
AND ARITHMETIC EXECUTION
OPERATORS AND CONTROL

KEYS

Figure 1.2 The Model 2223 Keyboard
On all keyboards there is at least one key labeled

RETURN
(EXEC)

or

EXECUTE
(CR/LF)

In many operations this key has special significance. For example, when
keying in a program line, this key is used to tell the system that the 1line is
complete. In this manual the symbol (EXEC) is used to refer to this key. (If
your keyboard has two or more keys labeled RETURN(EXEC), the keys do the exact
same thing; they appear in several locations just for your convenience.)

INTRODUCTION TO THE EQUIPMENT IN YOUR WANG SYSTEM

CRT Displays

The CRT is the television screen device that sits directly behind the
keyboard, or is incorporated with the keyboard into a single console unit.
Figure 1.3 shows the Model 2216 CRT display. (CRT stands for cathode ray
tube, the technical name for the television screen tube.) The CRT provides a
very fast and easy means for the Central Processing Unit to get information to
you. The standard 2200 CRT can display 16 lines of information, each up to 64
characters wide.

Figure 1.3 The Model 2216/17 Combined CRT Display Cassette Drive

Whether your system is equipped with a separate keyboard and CRT or with
a one piece console, the keyboard and CRT work together as if they are in
direct communication with each other. Strictly speaking, this is an illusion.
There 1is no direct electronic 1ink between the keyboard and the CRT. The
keyboard and CRT, even if they are physically a single console, act as two
separate units attached to the Central Processor. It is the control function
of the Central Processing Unit which is responsible for the illusion of direct
connection.

Other Devices

Most Wang systems include other devices besides the CPU, keyboard and
CRT. For example, nearly all of them include some fast and easy means of
saving programs and data outside of the CPU memory. Usually tape cassette
drives or magnetic disk drives perform this function. These devices offer two
key features: they save programs and data in a form that allows very rapid
loading into memory, when compared to the alternative of entering it from the
keyboard, and, unlike memory, they preserve all data and programs saved on
them, even after the system power is turned off.

INTRODUCTION TO THE EQUIPMENT IN YOUR WANG SYSTEM

Another device very commonly included in a Wang system is a printer.
Printed output from the CPU 1is often called "hardcopy" output, as
distinguished from output that appears on the CRT.

1-2 TURNING ON YOUR WANG SYSTEM

Each of the devices discussed in the last section has its own power
switch, except the keyboard. However, many 2200 systems, and all the WCS
systems, have a central power switch that activates one or more devices. For
the Tocation of these switches, see your Introductory Manual.

When the power 1is turned on for the CPU, the system very quickly goes
through a procedure known as Master Initialization. Master Initialization
performs certain internal operations to prepare the processor, and then
displays on the CRT the symbol

READY

The contents of memory are lost when the CPU power is turned off.

CHAPTER 2
GETTING STARTED

2-1 PROGRAMS AND YOUR WANG SYSTEM

A program is a set of step-by-step instructions which, when carried out,
accomplishes a specific task. Though programs are often associated with
digital computers and similar devices, the concept of a program does not apply
only to computers. When you give a guest directions for driving to your home,
explain how to make an omelet, or lead a child through long division, you are
providing a kind of program. The logical process you go through in developing
these kinds of instructions is no different than that used in developing
step-by-step instructions for a computer.

Similarly, there is nothing about a computer program which requires that
it be carried out by a computer. Given enough paper, pencil, and time, any
computer program can be carried out by someone who can read the instructions
of the program. This is not to say that it is efficient to carry out computer
programs this way, just that the instructions given in a computer program are
equally effective outside of an electronic device.

This means that the careful step-by-step approach you use in everyday
problem solving also applies to solving problems with a computer. However,
the unique characteristics of a computer do have a bearing on the way you give
it instructions, and on the most practical and efficient means of getting the
job done.

One of the characteristics of a computer is that it does not inherently
understand any human language. Nevertheless, a computer can be made to act on
instructions given in a language that is well suited to the tasks the computer
can accomplish and to the various needs of its human programmers. BASIC is
such a language. As the language of your Wang system, BASIC allows you to
create instructions using familiar terms of English and elementary algebra.

Another important characteristic of a computer is that it can carry out
instructions extremely quickly. This fact, together with the observation that
many tasks involve repeating similar operations, has led to one of the now
essential concepts of a computer program: that it consists of a set of
instructions provided to the computer 1in advance of actual execution. By
first giving a computer all the instructions needed to accomplish a specific
task, and only then telling it to start executing the instructions, the
computer can work at its own tremendous speeds, repeating particular
operations as many times as necessary to get the job done.

GETTING STARTED

When you give your Wang system a program, the program goes into the
system memory located in the Central Processing Unit. Normally just one
program is in memory at a time. 01d programs, those which are not about to be
executed, are cleared out of memory before new programs are loaded in, Thus,
memory is not a storage bin, but, rather, a kind of staging area.

There are several different ways of putting a program into memory. When
a program is being entered into memory for the very first time, it wusually
must be entered via the keyboard. (New programs can also be entered via mark
sense, or punched, cards, though these devices are beyond the scope of this
manual.) Once you have keyed in your first long program, though, you will be
very glad that it does not have to be keyed in each time it is to be run.

After a new program has been keyed in, it can be preserved on any of
several different kinds of magnetic recording devices. The two principal such
devices are tape cassettes and disks. Once saved on one of these devices, a
program is always available for quick and easy loading into memory.

In Section 2-2 we introduce two simple computer tasks and the programs
that accomplish them. The remaining sections of this chapter will show you
how these programs can be keyed into memory. In Chapter 3 we take up the
question, "Why do these programs work?"

2-2 TWO SIMPLE PROBLEMS AND THEIR SOLUTIONS IN BASIC

Suppose you have a very simple inventory problem. You have one product,
coal, which you buy from a mining company and sell to end users. You always
want to know how many tons are on-hand at your yard. You want to be able to
post changes to the inventory when coal is received or sold, and you want to
be reminded to reorder coal if your inventory drops below 100 tons. When you
start using your system, your inventory stands at 42,500 tons.

Your inventory system should continuously display on the CRT an
up-to-the-minute inventory report. The report should Took Tike this:

TONS ON HAND = 25055
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

In this report 25055 is the number of tons of coal currently on-hand.
The question mark at the end of the second Tine indicates that the system is
awaiting an entry by the operator. The operator will enter a sale as a
negative value and a receipt as a positive value.

Figure 2.1 shows the output from the series of inventory transactions
that may have preceded this report. Notice that at the next-to-last report
the inventory was below 100 tons, and, therefore, the reorder message
appeared. In the last report, the inventory is above 100 tons; therefore, the
reorder message does not appear. Notice that a blank line appears between
each report.

GETTING STARTED

OPENING INVENTORY = 42500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?-6000

TONS ON HAND = 36500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? 10000

TONS ON HAND = 46500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? -46370

TONS ON HAND = 130
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? -75

TONS ON HAND = 55
REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS
NUMBER OF TONS RECEIVED (+) OR SOLD (-)? 25000

TONS ON HAND = 25055
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

Figure 2.1 Reports on a Series of Inventory Transactions

A BASIC program that produces this inventory system is shown in Example
2.1.

Example 2.1 A Simple Inventory Program

10 LET 1=42500

20 PRINT "“OPENING INVENTORY="; I

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT

60 PRINT "TONS ON HAND ="; I

70 IF I>=100 THEN 30

80 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
90 GOTO 30

Before we analyze this inventory program, let's briefly look at another
type of problem and a BASIC language program which helps solve it. Then, with
two simple programs in hand, we can see what they have in common.

Suppose you would like to know the values of all the factorials of P,
from P=0 to some upper limit which you can specify at the time of calculation.
You take the factorial function to be defined for positive integer values of
P, that is, 0,1,2,3, ... N. For any positive integer P, P factorial, written
P!, is equal to the product of all the integers up to and including P. For
example,

1X2X3X4 or 24

if P=4 then P!
p=7 1X2X3X4X5X6X7 or 5040

if

ﬁ

=

[1°]

>

O
nn

For P=0, P! is defined as 1.

GETTING STARTED

The program should ask you to enter the highest value of P for which P!
is to be calculated. It could ask you this by displaying:

COMPUTE P! FORP =1 TO P = ?
If you enter 12, for example, the result should look Tike this:

COMPUTE P! FOR P=0 TO P=? 12

=0 Pl=1

=1 Pl= 1

=2 Pl= 2

=3 Pl= 6

=4 Pl= 24

=5 Pl= 120

=6 Pl= 720

=7 Pl= 5040

=8 Pl= 40320
=9 Pl= 362880
=10 Pl= 3628800
= 11 Pl= 39916800
= 12 P!= 479001600

*kkkk DONE *kkkk

A BASIC program that produces this output is shown in Example 2.2.
Example 2.2 Computing a Table of Factorials

10 INPUT "COMPUTE P! FOR P=0 TO P=",N

20 LET F = 1

30 PRINT "P="; P, "Pl="; F
40 LET P = P+]

50 LET F = P*F

60 IF P<= N THEN 30

70 PRINT "kkkx* DONE #xxssn

Look over the two sample programs. You will notice that their lines are
numbered, and that the 1ines begin with words which are English verbs or
closely resemble them. These words are some of the keywords of the BASIC
language. (If you have a BASIC keyword keyboard, you will find that these
words appear on your keys.) Following the keywords you find, among other
things, expressions and letter variables that Took like simple algebra. You
also find phrases in quotation marks. One of the virtues of BASIC is that its
most fundamental and frequently wused instructions are composed of familiar
English words and simple expressions which closely resemble the actions they
cause,

Though not apparent from mere inspection of the programs, spaces
appearing within BASIC Tines are totally ignored by the system, unless they
appear within quotation marks. They are put into a program wherever they will
make it easier to read.

With the clue provided below and a 1ittle detective work comparing the
program and the displayed result, you may be able to get an idea of how these
BASIC programs work., The clue 1is: the system always executes the
instructions 1in the sequence of the numbers at the left (the 1line numbers)

GETTING STARTED

unless an instruction tells it to go to some other 1ine and begin executing
there. Don't try to figure out every little detail, and don't worry if the
programs seem a complete enigma. You should have plenty of questions about
them going into Chapter 3, where we will discuss each statement in detail, and
consider how the programs as a whole are made up.

Now, though, we must concentrate on how to get these programs into the

memory of your Wang system, via the keyboard. Only when they are in the
memory of your system can they be executed.

2-3 HOW TO KEY A PROGRAM INTO MEMORY

Clearing Memory

When you turn on your Wang system, its memory is completely clear of all
BASIC statements and variables. The display

READY

appears in the upper left corner of the CRT. The system is now ready to
accept a program.

If you haven't just turned on your Wang system, you should always clear
the memory before entering a new program. To do this, first depress the RESET
key. Depressing RESET stops the execution of any program, clears the screen,
and displays

READY

It does not clear memory of any BASIC statements or variables, though. To
clear memory, simply type the capital letters CLEAR. Each letter appears on
the screen as you enter it. If you make a mistake, depress the BACKSPACE key,
and re-key the correct character. Notice that as each key is depressed, the
underscore mark, — , called the "cursor", moves to the right to show the
position the next character will occupy. (If your system is equipped with a
BASIC keyword keyboard, the word CLEAR can be displayed with a single
keystroke.)

After keying CLEAR, the display should look 1ike this

READY
:CLEAR _

Now depress (EXEC). The system memory and the CRT display are cleared,
and the READY display reappears. This indicates that execution of the CLEAR
command has terminated, and the system is once again ready for a keyboard
entry. Now you can begin to enter a program.

10

GETTING STARTED

Entering Statement Lines

Look at Example 2.1, the inventory program. The eight 1ines that
comprise the program are called statement lines, and the numbers which appear
at the left of them are called statement 1ine numbers, or simply line numbers.
The words and symbols which appear to the right of the 1ine numbers make up
the statement itself. Statements in BASIC, 1ike sentences in English, are the
fundamental unit of instruction.

When you enter a program into the memory of your Wang system, you enter
it one statement 1ine at a time. You begin each statement Tine with a line
numbers then key the statement itself. Characters appear on the CRT as you
key them. After checking the line for accuracy, you enter it into memory by
depressing (EXEC). A colon and cursor then appear on the next 1line of the
CRT, signifying that another statement 1ine can be entered.

On the BASIC keyword keyboard a special key labeled STMT. NO. can be
used to generate line numbers. Whenever the display indicates with a : that
a new line can be entered, depressing STMT. NO. causes a number to appear
which is 10 greater than the highest T1ine number already in memory.
Alternatively, on any keyboard, line numbers can be created by simply keying
whatever number 1is desired. You will learn more about 1ine numbers and their
significance in Chapter 3.

Now, try entering the simple inventory program which appears in Example
2.1 and is reproduced below for your convenience.

Example 2.1 A Simple Inventory Program

10 LET 1I=42500 :

20 PRINT "OPENING INVENTORY="; I

30 INPUT “NUMBER' OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT

60 PRINT "TONS ON HAND ="; 1

70 IF I>=100 THEN 30

80 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
90 GOTO 30

NOTE :

From this point on we will not distinguish between entry
operations wusing BASIC keyword keyboards and character
only keyboards, except when some special circumstance
warrants it. If you have a BASIC keyword keyboard, you
should be aware that a single keystroke can be wused to
enter a keyword. Since on any keyboard, a keyword can
always be entered by keying it character by character, the
text is worded to reflect this type of entry.

To enter the first line of the inventory example, first be sure that the
colon and cursor are in the display (:). Now key

10 LET I = 42500 (EXEC)

11

GETTING STARTED

The display appears as
:10 LET I = 42500

indicating that you can now enter another 1line.

When you enter a 1ine, you can put spaces wherever you wish, and as long
as they are not added within quotation marks, they have no effect on the
execution of the program. If you had entered

10LETI=42500

the program would work just the way the program in Example 2.1 works. In this
text we use spaces liberally in the examples, and recommend that you do the
same in your programs.

If you notice an error in a statement 1line before depressing (EXEC),
correct it by depressing the backspace key until the erroneous character is
removed. Then, key the correct characters to finish the 1ine. If you wish to
avoid reentering the correct characters that follow the erroneous one, you can
correct the line by using the EDIT mode, discussed below.

If you make a mistake, but don't notice it until after you depress
(EXEC), there are several easy ways to correct it. To see what some of
them are, enter the next line of the inventory program leaving out the 1left
quotation mark, like this:

20 PRINT OPENING INVENTORY="; I (EXEC)

When (EXEC) is depressed, an error me%sage appears which 1looks 1ike
this:

:20 PRINT OPENING INVENTORY="; I
+ERR 10

The error message points to the location at which the system detected a
violation of BASIC language syntax. It is a warning that this statement, as
it stands, doesn't make sense to your Wang system, and therefore cannot be
executed. A table of error messages and their meanings appears in Appendix A.
However, since we simply want to show how to correct the problem, we'll leave
a detailed discussion of error reporting for later.

Line 20 may now be corrected in either of two ways. It must be
corrected because in its present form it will prevent program execution. One
way to correct it is simply to reenter the correct statement, in its entirety.
Whenever a statement line is entered with the same 1line number as a statement
line already in memory, the new line completely replaces the old. For short
program lines, replacement is an easy means of correction. However, here, as
is frequently the case, just one character needs to be inserted to correct the
line. An easier means of correction is to use the EDIT mode to recall the
1ine and make the correction to the single incorrect character.

12

GETTING STARTED

2-4 USING THE EDIT MODE

Wl

- » it " ;
2
ERASE o DELETE o s > e . 1o [RECALL = Eour 3

Figure 2.2 The EDIT Special Function Keys

To enter the EDIT mode, depress the EDIT key which Ties immediately to
the right of the Special Function keys at the top of all Wang keyboards. (See
Figure 2.2.) Notice that after EDIT is depressed, the colon on the CRT is

replaced by an asterisk. This symbol indicates that the system is in the EDIT
mode.

Continuing with the example from the last section, since the line to be
edited is in memory, it must be recalled. Key 20, the number of the 1line to
be edited, and depress the RECALL key Tlocated in the EDIT Special
Function strip. The 1ine now appears on the CRT.

*20 PRINT OPENING INVENTORY="; I _
The cursor appears to the right of the recalled 1line.

To move the cursor to the position of the missing quotation mark,
depress the «---- key. Notice that the cursor moves five positions to the
left, and that the characters remain unaffected. The ----- and ----—- keys
cause the cursor to move five character spaces in the indicated direction.
The « and =+ keys cause the cursor to move one character position.

Depress the cursor movement keys until the cursor 1is positioned under
the 0 of OPENING. This 1is the position the " should occupy. Depress the
INSERT key. The INSERT key puts a space into the cursor position, and moves
all the characters to the right one position to accommodate it. Now, key the
quotation mark from the keyboard, just as you normally would. When in the
EDIT mode, the keyboard keys function normally, that is, they cause the
entered character to appear in the line, at the cursor position. If the
cursor marks an occupied character position, the old character is replaced by
the new. In this example, the quotation mark replaces a space entered by the
INSERT key.

13

GETTING STARTED

The corrected 1ine 20 can now be entered into memory by depressing
(EXEC). The new 1line 20 replaces the old one, and with the depression of
(EXEC), the system leaves the EDIT mode. The : appears on the next CRT line,
and program lines can be entered normally.

Briefly, let's look now at the other two EDIT capabilities. The DELETE
key does the exact opposite of INSERT. It removes the character at the cursor
position and adjusts all the characters left, so that no space appears. For
example, given this erroneous line

*20 PRINT "OPENNING INVENTORY="; I
depressing DELETE produces
*20 PRINT "OPENING INVENTORY="; I

The ERASE key eliminates all characters from the cursor position to the
end of the line. Given

*20 PRINT "OPENING INVENTORY="; I
depressing ERASE produces

*20 PRINT "OPEN_

There is one more feature of Wang systems which should be mentioned 1in
connection with EDIT; for it is during editing that it is most apparent. Key
EDIT 20 RECALL to bring line 20 back up for editing

*20 PRINT "OPENING INVENTORY="; 1I_

First of all, notice that it is correct; the edited 1line replaced the
erroneous line first entered. But now, move the cursor carefully over to the
0 of OPENING. Slowly depress the « key, which causes movement one character
at a time. When the cursor reaches this position,

*20 PRINT "OPENING INVENTORY="; I

the next depression of « causes it to jump under the P of PRINT. This is true
regardless of whether PRINT was last entered with a single keystroke on a
BASIC keyword keyboard or by keying the individual characters P-R-I-N-T. The
reason for this is that your Wang system automatically reduces all BASIC
keywords to a special code that uses only as much space as a single character
in memory. When the system encounters one of these codes, it automatically
displays the entire keyword, though it keeps the code in memory. This system
greatly reduces the memory space required for your programs.

With the cursor under the P of PRINT, depress DELETE. The entire word
PRINT, and a single space following it, are deleted. This is the result of
removing the single special code for the keyword PRINT. The keyword is
interpreted as including a space at the end.

14

GETTING STARTED

However, you certainly don't want to eliminate the keyword PRINT from
the program. From this position

*20 _ "OPENING INVENTORY="; I
there are several ways of getting the line back the way you had it.

You can use the INSERT key. Depress INSERT once. PRINT is one of the
few keywords which can be entered via a single keystroke on any model
keyboard. Whenever a keyword can be entered via a single keystroke, a single
space is adequate to edit it in. From

*20 "OPENING INVENTORY="; I
depress the PRINT key. The result is
*20 PRINT_ "OPENING INVENTORY="; I

Alternatively, INSERT can be depressed five times and the letters P-R-I-N-T
keyed in character by character.

The other way to get the line back the way it was is to simply use
RECALL. Remember that, during editing, memory is not changed until (EXEC) is
depressed. This replaces the old 1line with the new. Therefore, as 1long as
the Tline number has been left intact and (EXEC) has not been depressed, the
line, as it is in memory, can be recalled by simply depressing RECALL. In our
example, from

*20 "OPENING INVENTORY="; I
simply depress RECALL to get
*20 PRINT "OPENING INVENTORY="; I

An exit from the EDIT mode by depressing (EXEC) will now leave the 1line
unaltered.

There is one other type of editing which we have not yet covered. This
is the editing of an erroneous line number.

Suppose you had accidentally entered
30 PRINT "OPENING INVENTORY="; I

You want the line number to be 20, not 30. Depress EDIT 30 RECALL to bring up
the erroneous line for editing. Move the cursor to the left until it is under
the 3 of 30. Key 2, which replaces the 3, and then (EXEC) to enter the new
1ine 20 into memory. The thing that you must remember about editing Tine
numbers is that the old line, line 30 in'this case, is still in memory, now
accompanied by line 20, which is otherwise identical to it.

15

GETTING STARTED

In this particular case, if you actually made this error, fixed it 1in
this manner, and then went on to key in the correct 1ine 30, no harm would be
done. The correct line 30 would wipe out this erroneous T1ine 30 on entry.
However, whenever you want to delete a T1ine from a program, you can simply
enter the 1ine number and follow it immediately with (EXEC). This deletes the
line.

Now, go ahead and enter the rest of the inventory program exactly as it
appears in Example 2.1. In the next section you will see how to list the
entire program on the CRT. If, while entering the program, you would like to
obtain a listing of it, read the next section.

2-5 LISTING A PROGRAM

Frequently, you will want to inspect a program or program segment. A
listing of all the program Tlines in memory can be obtained by keying LIST
(EXEC), whenever the : display is present. If you wish to clear the screen
before 1isting, depress RESET. LIST does not alter the contents of memory.

For programs Tlarger than 15 1lines (the capacity of the standard
display), you will want the 1ist to appear in segments. Keying LIST S (EXEC)
displays the first 15 lines of program text. Keying (EXEC) again displays the
next 15 Tines. The process may be repeated until the entire program has been
listed.

LIST always displays lines in line number sequence, regardless of the
sequence in which the lines were actually entered. You will frequently add a
new 1ine to a program with a Tine number that falls between two lines already
in the program. You can then list the program and see the lines in their
correct locations.

LIST, LIST S, and CLEAR are called commands because as soon as (EXEC) is
depressed, they immediately initiate the action they describe. As commands,
they are not entered into memory and cannot be preceded by a 1ine number.

By contrast, a BASIC statement can be preceded by a line number. It can
be entered into memory to form part of a program, and is not executed until
the program itself is executed. Each 1line in Examples 2.1 and 2.2 contains a
statement.

2-6 EXECUTING A PROGRAM

By now you should have completely keyed in and checked the inventory
program shown in Example 2.1. To run the program, first key RESET to clear
the screen. This is not strictly necessary, but makes it easier to see the
results of this program.

Depress RUN (EXEC) to begin program execution. The display should 1look
like this:

READY

:RUN

OPENING INVENTORY = 42500

NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

16

GETTING STARTED

The question mark indicates that the system is awaiting an operator entry.
Key 5000 (EXEC) to represent the receipt of 5000 tons of coal. The system
displays a blank 1line followed by:

TONS ON HAND = 47500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

Go on making entries and observe execution of the program. What happens
when the screen becomes filled? What happens when TONS ON HAND drops below
100 or below 07?

Depress RESET to stop program execution. To re-run the program, key RUN
(EXEC) again. Again, the display shows:

OPENING INVENTORY = 42500
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

In this program the message
OPENING INVENTORY = 42500
appears only once each time the program is executed.

The RUN Command

RUN is used to begin program execution. When you key RUN (EXEC), the
system:

1. Scans the entire program for variables, and sets aside space in
memory for them. (The inventory program uses two variables, I and
T.)

2. Sets the value of all variables to zero.
3. Checks for certain types of errors in the program.

4, If none of these errors are found, begins executing the program at
the lowest 1ine number.

Normally, RUN (EXEC) is used to begin program execution; however, it is
possible to specify, in the RUN command, the 1ine number at which execution is
to begin. For example, RUN 30 (EXEC) causes execution of the inventory
program to begin with

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

In addition to beginning execution at the specified line, if a 1ine number is
specified in the RUN command, variables are not set to zero before execution
begins. If the Towest 1ine number of a program is specified 1in the RUN
command, the effect 1is the same as a simple RUN command, except that the
variable values are unaltered.

17

GETTING STARTED

Since there are two forms of the RUN command, one with and one without a

line number, we say that the general form of the RUN command is

RUN [1ine number]

where the square brackets indicate that the 1ine number is optional.

2-7

10.

11.

CHAPTER REVIEW AND EXERCISES

Chapter Review

Before keying in a new program, memory should be cleared.
When you turn on your Wang system, memory is clear.

Memory can be cleared at any time with the CLEAR command. Key CLEAR
(EXEC) to clear memory.

After keying in a complete program line, key (EXEC) to enter it into
memory.

EDIT mode activates the EDIT Special Function keys. Depress the EDIT
key to enter EDIT mode.

In EDIT mode, a 1line can be recalled from memory for editing by
depressing the RECALL key in the EDIT Special Function strip.

In EDIT mode, the arrow keys (---- ,» , <, =---) move the cursor in the
indicated direction.,

In EDIT mode, the INSERT and DELETE keys insert a space or delete the
character at the cursor location.

In EDIT mode, the ERASE key erases all characters right of the current
cursor position.

To list a program, key LIST (EXEC). To 1list a program in 15-Tine
segments, key LIST S (EXEC).

To execute the program that is in memory, key RUN (EXEC).

Exercises

Using EDIT mode and the inventory program, put extra spaces into some
lines; take them out of others. Verify that this does not affect

program execution.

Using EDIT, take out the spaces within the quotation marks of statement
30. What happens to the display during execution?

18

GETTING STARTED

Delete line 50 from the inventory program, and run the program. What
has changed?

Key in and execute the factorial program (Example 2.2). Re-execute the
program by keying RUN (EXEC) again; use different values for P.

Execute the factorial program entering a value greater than 15. What
happens to the way P! is displayed at P=16? How many digits are in P!
when P=15?

Execute the factorial program entering a value greater than 69. Observe
the result.

19

CHAPTER 3
FUNDAMENTAL INSTRUCTIONS

3-1 HOW THE EXAMPLE PROGRAMS WORK

In this section we will reconsider the example programs first introduced
in Section 2-2. We will concentrate on what each instruction contributes to
making the program run the way it does. The later sections of this chapter
take up each instruction as a topic in itself, to see how it can be wused in
any program.

The question that we first want to take up is, "How do you go from the
problem to be solved to the solution in the form of the program?" There is no
simple, correct answer to this question. Nevertheless, there is a technique
that is frequently used to help further define the task to be accomplished,
and to put it into the step-by-step form that is required for a computer
program. This technique is called flowcharting. A flowchart shows the
operations that must be carried out to solve a problem, and displays the
sequence of these operations by means of connecting arrows. A flowchart of
the inventory problem 1is shown in Figure 3.1. Appendix B shows standard
flowchart shapes and symbols.

Look over the flowchart shown in Figure 3.1. Carefully compare it with
the original problem description of Section 2-2. The flowchart of Figure 3.1
can be readily converted to the BASIC program shown in Example 2.1. Figure
3.2 compares the flowchart with the program by showing the program statements
in matching flowchart boxes, opposite the flowchart itself.

20

FUNDAMENTAL INSTRUCTIONS

1

SET OPENING
INVENTORY
EQUAL TO 42500

DISPLAY
OPENING
INVENTORY

3
REQUEST
ENTRY OF

TRANSACTION

a OPERATOR

ADD TRANS-
ACTION AMOUNT
RY

DISPLAY NEW
INVENTORY
AMOUNT

" DISPLAY
REMINDER
MESSAGE

—>>

Figure 3.1 Flowchart of the Inventory Problem

21

FUNDAMENTAL INSTRUCTIONS

1
SET OPENING
INVENTORY
EQUAL TO 42500

DISPLAY
OPENING
INVENTORY

3
REQUEST
ENTRY OF
TRANSACTION

2 OPERATOR
_ENTERS

RADL

L ADD TRANS-

CTION AMOUNT

TO INVENTORY
TO

DISPLAY NEW
INVENTORY
AMOUNT

GREATER
THAN

" DISPLAY
REMINDER
MESSAGE

Figure 3.2 Comparison of the Program and the Problem Flowchart

YES

10
LET | = 42500

PRINT
20 “OPENING
INVENTORY=";|

NUMBER OF
TONS
RECEIVED
OR SOLD?

KEYBOARD
ENTRY INTO T

'

LETI=1+T

40

60
PRINT “TONS
ON HAND=";1

“REORDER
IMMEDIATELY

FUNDAMENTAL INSTRUCTIONS

Block 1 of Figure 3.1 says that the inventory should be set to 42500 at
the beginning. We know that the purpose of this program is to keep track of
the changing number of tons in inventory (the changes are effected in block
4); therefore we need a place to keep the inventory quantity. A place to keep
a value is called a "variable". Since the value we are concerned with is a
number, we will use a numeric variable. In BASIC, numeric variables are named
by a letter A, B, C . . .Z, or a letter and a digit together A0, Al, A2 ...BO,
B1, B2 ...Z7, 728, Z9. We use the variable I for the inventory quantity.

Block 1 of Figure 3.1 is accomplished by statement 10 of the program,
shown in Figure 3.2. Statement 10

10 LET I=42500
assigns the valve 42500 to the variable I.

Block 2 of Figure 3.1 says that the opening inventory amount should be
displayed. It should be labeled so that the operator knows what the number
represents. Block 2 is accomplished by statement 20 of the program (see
Figure 3.2).

Statement 20
20 PRINT "OPENING INVENTORY="; I

displays the characters within the quotation marks, followed by the value of
the variable I. We know that statement 10 made I equal to 42500; therefore,
statement 20 causes the following display when the program is executed:

OPENING INVENTORY= 42500

Notice that the quotation marks are not displayed during execution. They are
used in the program to indicate that the enclosed characters are to be treated
collectively as a unit. A set of characters enclosed by quotation marks is
known as an "alphanumeric literal string".

In Figure 3.1 there are two blocks with the number 3. This is to
reflect the fact that both operations are accomplished by the single BASIC
statement at line 30. Blocks 3 call for display of a message requesting input
of the transaction amount and a keyboard entry of the amount.

Statement 30
30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

displays the input message followed by a question mark. The question mark is
the BASIC symbol which is displayed whenever the system is awaiting input from
the keyboard. The system does not go past line 30 until an acceptable entry
has been made from the keyboard.

When a value is to be entered with an INPUT instruction, the instruction
must specify a variable to receive the entered value. The entered value in
this case 1is received by the variable T. Whatever value T may have had,
before statement 30, is replaced by the new value entered from the keyboard.
The old value is lost.

23

FUNDAMENTAL INSTRUCTIONS

Block 4 stipulates that the transaction amount is to be added to the
current inventory amount. The result is the new inventory amount. We know
that the current inventory amount is in I, and the transaction amount is now
in T. The new inventory is, therefore, equal to I+T. In BASIC, the form I+T
is an example of an "expression". The LET statement, which we encountered in
Step 10, can be used to assign the value of the expression I+T to a variable.
The question now is what variable should receive this new value.

At first you might say the value of I+T should be assigned to a new
variable., The variable might be 12, and the statement to accomplish the
assignment might be

40 LET 12 = I+T

Taken by itself, there is nothing wrong with this statement; it will execute
successfully. However, at this point, when writing this program, you must
look ahead to see how the program as a whole is to function. From that new
perspective the form of statement 40, shown above, is defective.

To see this, consider that the next time the inventory assumes a new
value we would need a new statement such as

LET I3 = I2+T

which adds the transaction amount to the current inventory, 12, and
assigns it to a new variable I3. For each time inventory assumes a new value,
we would have to add to the program new input, assignment, and display
statements. To effect 200 inventory transactions would, with this approach,
require a program with 1202 statements, using 201 variables. 300 transactions
could not possibly be effected; there would not be enough variable names.

The solution to this problem is fundamental to all programming. We must
construct this part of the program in such a way that we can reexecute the
same instructions whenever the operation must be performed again. This
solution is known as a loop, and is made possible by 1letting new values
replace old ones.

We said that LET assigns to a numeric variable the value of an
expression, To this we must now add the comment that the receiving variable
can itself appear in the expression. Statement 40 (Figure 3.2) illustrates
this.

40 LET I = I+T

In executing line 40, the system first evaluates the expression to the
right of the equals sign; then it assigns the result to the variable on the
left. In this case, the value of I is added to the value of T, and the result
is placed in I, thereby replacing its old value with this new result. After
execution, the old value of I is gone. I contains the new value and T is
unchanged.

By writing statement 40 in this way, the operation of updating the
inventory balance, which in this case comprises the entire program, can be
repeated with the same statements, that is, the operation can be performed
within a Toop.

24

FUNDAMENTAL INSTRUCTIONS

Block 5 calls for the display of a blank line. This is simply to make
the displayed "reports" easier to read. Statement 50

50 PRINT

accomplishes this. It is a print statement with nothing to print. The result
is a blank Tine.

Block 6 calls for the display of the new on-hand inventory amount.
Again, it should be 1labeled for identification. Statement 60 accomplishes
this with a PRINT statement that is similar to statement 20.

60 PRINT “TONS ON HAND="; I

Block 7 stipulates that the value of the on-hand inventory 1is to be
examined. If it is greater than or equal to 100 tons, then the input message
for the next transaction can be immediately displayed. However, if the
inventory is less than 100 tons, then, before the transaction input message
is displayed, the operator must be told to reorder coal.

Statement 70 does exactly what block 7 calls for, and in doing so,
introduces us to another fundamental concept of programming. We said earlier
that the system executes instructions in the sequence of the line numbers. We
have not shown how this sequence of execution can be changed by the program
itself. Statement 70

70 IF I>= 100 THEN 30

checks the condition expressed between the keywords IF ... THEN. In
expressing the condition the symbol > = means "is greater than or equal to".
If the condition is true with the current values of the variables, statement
70 alters the normal sequence of execution by telling the system that the next
instruction to be executed is at line 30. If the condition is false, in this
case if I is less than 100, then the system proceeds to the next instruction
in line number sequence.

In this case, if the condition is false, the system executes statement
80, which displays the reorder message. If the condition is true, i.e., the
inventory is greater than or equal to 100 tons, then statement 30 is executed
next. Once the transfer to 1line 30 1is effected, the normal sequence of
execution, line number to next higher line number, takes over.

The IF...THEN statement is known as a conditional branch statement,
since it causes the system to branch out of the normal sequence of execution
if a stated condition is true. If the condition is false, execution continues
with the next statement in line number sequence, as though the IF...THEN
statement had not been present in the program.

The IF...THEN statement never changes the values of the variables it
tests, regardless of the outcome of the test itself. The only thing it can do
is change the sequence of execution of the program statements.

Block 8, which is executed only if the inventory drops below 100 tons,
calls for the display of a reminder message, telling the operator that coal
should be reordered immediately. The PRINT statement at 1line 80 of the

program causes the message to be displayed.
25

FUNDAMENTAL INSTRUCTIONS

Notice that block 8 is the last block of the flow chart, and statement
80 1is the last statement shown in Figure 3.2. However, if statement 80 were
the last statement in the program (Example 2.1), then after the reorder
message was displayed the program would simply stop. The system, finding no
higher 1ine number, would cease execution and display the :_ symbol.

The return to statement 30, which is implied in the flowchart by the
returning arrows coming out of block 8, must be made explicit in the program.
After statement 80, the system must be told to make 30 the next instruction to
be executed. Statement 90

90 GOTO 30

does this. It tells the system that the next statement to be executed is at
1ine 30.

The Factorial Example

Now that we have seen how the first example works, 1let's 1look at the
second. The flowchart for the factorial problem and program is shown in
Figure 3.3.

26

1
DISPLAY

INPUT
MESSAGE

LET
1 OPER. ENTER
MAX.FROM KBO.

X

FOR P=0
LET Pi=1

bispLAY
P AND P!
WITH LABELS

4
INCREMENT
[

b ||

MULTIPLY (P-1)!
BYP
TO GET P!

INDICATE
THAT JOB IS
COMPLETE

27

FUNDAMENTAL INSTRUCTIONS

“COM-

PUTE P! FOR RO
TOP="N

F———————— =

LET F=1

30
PRINT “P=";
P, “Pl=";F

LET P =P+1

Y

LET F=P.F

Figure 3.3 Flowchart of Factorial Problem and Program

FUNDAMENTAL INSTRUCTIONS

The two blocks numbered 1 in Figure 3.3 are accomplished by the single
INPUT statement at 1line 10 of the program. The operator enters the maximum
value for which P! is to be calculated. The INPUT statement specifies that
the variable N is to receive the entered value.

Block 2 notes that for the first value of P, zero, the factorial of P is
defined as 1. Since this is true by definition rather than by calculation,
the program must simply assign these initial values for P and P!, The form
"P!" is not a legal BASIC variable, so the variable F has been chosen to
contain the value of the factorial of P. Statement 20 assigns 1 to F.

Statement 20 illustrates one of the essential stages for a 1loop. This
is the initialization stage, in which the variables affected by the loop are
set to beginning values which permit the 1loop operations to be performed
successfully.

Block 3 calls for printing the value of P and P! with 1labels. This
block begins the program's processing loop. Statement 30 prints the values of
P and F, each preceded by an appropriate label. When we look at the PRINT
statement in more detail, we will see how the commas and semicolons in
statement 30 produce the desired spacing of the output. For now, though, we
know that the values of P and F are correct for the first time through the
loop. We know this because the statement which is printed the first time
through, P=0 P!=1, is correct.

Block 4 says to add one to P. Statement 40 does this. It evaluates the
expression P+l and assigns the result to P. On the first time through,
statement 40 assigns 1 to P,

Now that P has received a new value, the program must calculate a new
value for P!, This new value of P! can be calculated by simply multiplying
the old value of P! by the new value of P. The old value of P! is in F, and
the new value of P is in P, so the expression needed is P*F. (In BASIC the
asterisk is the symbol for multiplication.) We want to assign this value to
F. To do this the LET statement, shown as statement 50, is used:

50 LET F = F * P

Before the new values of P and F are printed, we want to check to see if
P is still within the 1imit entered at statement 10. Block 6 calls for this
check; it is accomplished by statement 60.

60 IF P<= N THEN 30

Remember that N contains the maximum value for which P! is to be calculated.
Statement 60 means, "If the value of P is less than or equal to the value of
N, then 30 is the next statement line to be executed." If the relationship
expressed within the IF...THEN 1is not true, then the normal sequence of
execution prevails, and line 70 is executed next.

Until P is greater than N, statement 60 causes the program to Tloop
through statements 30, 40, and 50. Each time the loop is executed, 1ine 30
prints the values of P and F that were calculated and assigned the 1last time
through. Then statements 40 and 50 produce the next values of P and F. If
the value of P hasn't exceeded the 1imit, the loop is repeated.

28

FUNDAMENTAL INSTRUCTIONS

Since there are no statement lines beyond statement 70, execution ends,
automatically, after the "DONE" message is displayed. The :_ symbol reappears
in the display, indicating that the system is ready to accept another program
or command.

In the remaining sections of this chapter we will lTook individually at
each instruction we have encountered in these two programs.

3-2 THE LET STATEMENT AND NUMERIC EXPRESSIONS

The LET Statement

The LET statement assigns the value of an expression to one or more
numeric variables. (It can also be used with alphanumeric variables. This
use is discussed in Chapter 8.)

In the example programs, we saw the LET statement used in one of its
principal forms: assigning the value of a numeric expression to a single
numeric variable. For example,

10 LET I = 42500
and

50 LET F = P*F

As a result of each of these statements, the value of the expression to the
right of the equals sign is assigned to the variable on the left. The old
value of the variable on the 1left, whatever it may have been, is Tlost.
Variables on the right of the equals sign remain unaltered, unless they also
appear on the left.

Though the example programs did not show a LET statement with several
receiving variables, any number of variables may appear on the left to receive
the value of the expression. Variables must be separated by commas. Enter
and execute this program:

10 LET A, B, B3 =5
20 PRINT "A="; A
30 PRINT "B="; B
40 PRINT "B3=";B3

Upon execution the system displays

indicating that the value of the expression to the right of the equals sign in
statement 10 was assigned to each of the variables A, B, and B3.

29

FUNDAMENTAL INSTRUCTIONS

Statement 10 could be written as three separate LET statements:

10 LET A=5
20 LET B=5
30 LET B3=5

with the exact same effect.

The multi-assignment form of the LET statement is frequently used in
what can be called "set-up operations" within programs. For example, it may
be necessary to set several variables to 1 or some other constant before
entering a loop or routine. This can be done with a single LET statement.
Subtotals can be set to zero when necessary with a statement such as:

550 LET S1, S2, S3, S4, S5 = 0

"LET" Optional

In the "LET" statement the word "LET" is optional. If it 1is omitted,
the statement functions in the exact same way as if it had been present. In
the example programs the statements

10 LET I
40 LET I

42500
I+T

could have been written

10 1=42500
40 I=1+T

If you feel that the word "LET" contributes to the intelligibility of the
program by highlighting the receiving side of the statement, then feel free to
use 1it. Most experienced BASIC language programmers omit "LET" because it
occupies space in memory without having an intrinsic purpose. Since it is
seldom used in practice, we do not use it in forthcoming examples.

The LET statement is normally referred to as the assignment statement of
the BASIC language since its purpose is to assign a value to variables. The
general form of the assignment statement for numeric variables is:

[LET] numeric variable [,numeric variable...] = expression
The square brackets indicate that the enclosed items are optional. The
general form of this statement will be expanded in Chapter 8 to accommodate
alphanumeric variables.

Now Tet's 1look more closely at numeric quantities and numeric
expressions.

30

FUNDAMENTAL INSTRUCTIONS

Numeric Quantities

The inventory and factorial problems we looked at were both concerned
with numeric quantities: the number of tons of coal, the integers and their
factorials. Numeric quantities appeared as constants in such statements as

10 LET I = 42500
and

50 LET F

1
Numeric quantities were entered from the keyboard, as in
30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

In every case numeric quantities were stored, and updated, in numeric
variables. Since numeric quantities are so important to many programming
tasks, we want to Took at the range of legal numeric quantities 1in the Wang
2200 system.

The Wang 2200 can operate on numeric quantities as large as 10!00-1 and
as close to zero as 10-%92 . The quantities may be positive or negative.
Quantities within this range can be represented by a maximum of 13 digits, a
decimal point and sign, and a two-digit positive or negative integer exponent.

The following are legal numeric quantities in your Wang system, and may
be entered as shown. The letter E in a quantity means "times ten raised to
the power of".

EXAMPLE QUANTITY NOTE:

1) 244 Implied positive value with implied
decimal point at right.

2) +244, Same quantity as (1) but with explicit
sign and decimal.

3) -4567.12 Explicit sign and decimal,

4) -4.56712E3 Same quantity as (3), in scientific
notation.

5) -1234567.891234 13 digits, decimal point and sign.

6) -1234.567891234E3 Same quantity as (5), represented with
exponent.

7) -1.234567891234E6 Same quantity as (5), in scientific
notation.

8) 4.5E-12 Explicit sign in exponent.

31

FUNDAMENTAL INSTRUCTIONS

The following are illegal numeric quantities:

EXAMPLE QUANTITY NOTE:
1) 103.2E99 ITlegal because the value represented is

not less than 10100-7,

2) .87E-99 I11egal because the value represented is
less than 10-99,

The forms of the following quantities are illegal in your Wang 2200
System.

EXAMPLE QUANTITY NOTE:

1) 8.7E5.8 Exponent is not an integer.
2) -1.2E.5 Exponent not an integer.

3) 123456789123.45 Too many digits (14).

It should be noted that the PRINT statement does not necessarily print
quantities in the form in which they are entered. This is discussed in more
detail in the next section.

Expressions

An expression is a constant or numeric variable, or a series of
constants or numeric variables, connected by arithmetic symbols. Functions
can also be included within-an expression; they will be discussed in Chapter
6l

In the example programs we encountered expressions such as those
underlined below.

10 1 = 42500
50 F = PFF
60 P = P+1

Constants within Expressions

The expression in statement 10 of Example 2.1 is a constant. A constant
is a valid numeric quantity, represented by digits (and the symbols +-.E),
that appears in a BASIC statement without quotation marks. As its name
implies, it cannot be changed by statements in the program. Since it 1is a
kind of expression, it can be wused whenever an expression can be used.
Constants are not the only numbers which appear in programs, but the others,
line numbers and such, can easily be identified by context. Examples of
constants are shown underlined below.

10 K = 1,2E6

10 PRINT 165

10 M = 1234567891234
10 79 = -7.66E-28

32

FUNDAMENTAL INSTRUCTIONS

Note, however, that "165" as in
10 PRINT "165"

is neither a constant nor an expression. It is a 1literal string. Since a
literal string cannot be assigned to a numeric variable,

K= "165"
is not a valid BASIC statement.

Numeric Variables

A numeric variable in BASIC is designated by a letter of the alphabet A,
B, C ...Z or a letter followed by a single digit AO, Al, A2 ... A9, BO, BI

B9, CO, C1 ... Z7, 28, 79. The letters in variable designations must be
uppercase. Numeric variables are also called "scalar" numeric variables.
Variables such as A and AO are distinct. There are 286 numeric variables
available for use in BASIC.

A variable can assume the value of any 1legal numeric quantity. The
value of a variable remains unchanged during program execution, unless it is
assigned a new value by a statement in the program. The assignment statement,
LET, is one of several statements which can assign values to variables.

Arithmetic Operations

The arithmetic symbols, or operators, of BASIC are:

addition

subtraction or negation

multiplication

division (5/4 reads "5 divided by 4")

exponentiation (544 reads "5 raised to the 4th power")

>N * 1+

In an expression any number of variables and constants can be Tlinked
together by arithmetic symbols. Some simple expressions, using arithmetic
symbols, are underlined below:

10 F = F*p

10 Z = 2277

10 A3 = A3*11000*Z9*J
10 G2 = 63/22.5E8

10 D9 = D86

10 C = 3tDZ

Order of Evaluation

Expressions are evaluated left to right. For example, in the expression
A*B/C*D the product of A and B 1is divided by C; then this quotient s
multiplied by D. However for expressions with mixed arithmetic operators, the
following priorities of evaluation are observed:

First, all exponentiation (t) is performed (left to right).
Second, all multiplication and division is performed (left to right).
Third, all addition, subtraction and negation is performed (left to
right).

33

FUNDAMENTAL INSTRUCTIONS

For example, enter and execute the following program:

10 W=4

20 X,Y,Z=3
30 K=W*XtY-Z
40 PRINT K

Statement 30 first raises X to the power Y. The result, 27, is multiplied by
W to yield 108. Finally Z is subtracted from 108 to produce the value 105,
which is then assigned to K.

This normal order of evaluation can be altered through the use of
parentheses. If parentheses are included in an expression, the portion of the
expression within the parentheses is evaluated first.

Change 1ine 30 in the above example to
30 K = (W*X)tY-Z
When this program is executed, the result of line 30 is:

First W*X is evaluated, since this portion of the expression is enclosed
in parentheses. The result, 12, is raised to the power Y. From the
result of this operation Z is subtracted, yielding 1725 to be assigned
to K.

In constructing expressions, parentheses may be nested within
parentheses, with no 1limit to the number of pairs of parentheses used. The
innermost parenthetical expressions are evaluated first.

In addition to altering the sequence of evaluation, parentheses have two
other closely related uses. They can be used to make the normal sequence of
evaluation clearer to someone looking at the program listing, even if they do
not alter the sequence that would otherwise take place. For example, our
original line 30 could have been written

30 K = (Wx(X1Y))-Z
This form does not alter the sequence of execution, but it does make
it clearer.

In BASIC two arithmetic operators cannot appear next to each other.
Parentheses are used to set off terms, so that this rule is not violated. For
example,

70 K=74-4
violates BASIC language syntax and must be written
70 K=7%(-J)
Not all combinations of constants and variables connected by arithmetic

operators are valid expressions. In order for an expression te be valid, it
must be capable of being evaluated in the stipulated sequence. This means

- 34

FUNDAMENTAL INSTRUCTIONS

that at each stage of evaluation the operation to be performed must be defined
for the given values, and must yield a valid numeric quantity. For example,
the following expressions are invalid for the reason shown.

Expression Invalid Because
1. (3.4E26%4)/9.7E17 (3.4E2644) Yie]ds an invalid numeric
quantity>1010°.
2. 17/((A*B)-20) After evaluating ((A*B)-20), the system
when A=4 and B=5 - attempts to divide 17 by 0, an

undefined operation.

3. (-3)+3.5 The exponentiation (+) operation is
undefined for non-real results.

Expression 2 is invalid for some, but not all, values of the variables.
When an expression of this type appears in a program, it is your
responsibility, as the programmer, to ensure that the values assigned to the
variables at the time of evaluation yield a valid expression. If evaluated,
all of the above examples cause a math error, ERR 03, and interrupt program
execution.,

If the result of evaluating an expression, or a portion of an
expression, yields a quantity Q, in the range

-10-99 < Q < 10-?°
the value of Q is zero.

Review of Section 3-2

1. A LET statement causes the system to evaluate the expression to the
right of the equals sign, and assign the result to the variable, or
variables, on the left.

2. Multiple receiving variables are spearated by commas, e.qg.,

LET A, B, B3 = 5

3. The multiassignment form of the LET statement is often useful in
setup or clearing operations within programs, e.qg.,

s1, S2, S3, S4, S5, = 0

4, In the LET statement the word LET is optional, e.g., F=F*P is the same
as LET F=F*P.

5. The general form of the assignment statement is:

[LET] numeric variable [,numeric variable...] = expression

35

FUNDAMENTAL INSTRUCTIONS

6. Numeric quantities can contain up to 13 digits, a decimal point and
sign, and a two digit positive or negative integer exponent, e.g.,
-7.66E-28.

7. An expression is a constant, or numeric variable, or a combination
of constants or numeric variables connected by arithmetic symbols.

8. A constant is a numeric quantity, represented by digits (and the +, -,
.» E symbols), that appears 1in a BASIC statement without quotation
marks.

9. A numeric variable is designated by a letter of the alphabet A, B,
C...Z or a letter followed by a single digit AO, Al, A2...Z27, Z8, Z9.

10. The arithmetic operations, and their order of evaluation, are given by:

ORDER OF EVALUATION

Operation Symbol Order of Evaluation
(Priority)

Expressions () Computed 1st

within Parentheses

Exponentiation 4 Computed 2nd

Division {/ } Computed 3rd

Multiplication *

Subtraction - } Computed 4th

Addition +

Using the above priorities, all expressions are
evaluated left to right.

11. Two arithmetic operators (+, -, *, /,4+) cannot appear next to each
other, e.g., use K+(-J) not K+-J.

3-3 THE PRINT STATEMENT

Print Elements

In the example programs we saw the PRINT statement used several times,
and with slightly differing effects. For example,

80 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"

This PRINT statement specifies just one item to be printed. The item to be
printed in this case is enclosed by quotation marks, and is therefore known as

36

FUNDAMENTAL INSTRUCTIONS

an alphanumeric Tliteral string, or literal string, for short. Execution of
this statement printed on the display

REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS
with REORDER beginning at the left-most character position on the Tline.
Statement 20
20 PRINT "OPENING INVENTORY="; I
specified two items to be printed, and the items are different kinds of items.

"OPENING INVENTORY=" is a literal string; I 1is a numeric variable. When
statement 20 was executed, the result was

OPENING INVENTORY= 42500

Statement 20 printed the literal string followed by the value of the variable
I. Observe the significance of quotation marks by entering and executing this
program

10 T = 42500
20 PRINT "OPENING INVENTORY="; "I"

The result of executing this new line 20 is
OPENING INVENTORY=I

Statement 10 still sets the numeric variable I equal to 42500, but, in the new
statement 20, "I" is a literal string of exactly one character, not the
numeric variable I.

The items which are printed in PRINT statements such as
"OPENING INVENTORY="

"REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
I

are known as the print elements. Any number of print elements can appear in a
single PRINT statement, but they must be separated from one another by a comma
or semicolon. The significance of the comma or semicolon is discussed Tlater
in this section.

The PRINT statement at 1ine 30 of the factorial example (Example 2.2)
has 4 print elements.

30 PRINT "P="; P, "P!="; F
"P=" and "P!=" are literal strings; P and F are numeric variables.

Literal Strings as Print Elements

Literal strings are printed exactly as they appear within the quotation
marks. No spaces are added, before or after the string. Al1 spaces within
the quotation marks are printed.

37

FUNDAMENTAL INSTRUCTIONS

Execute the following program

10 PRINT “ABC"; "DEF"
20 PRINT "ABCDEF"

The display shows

:RUN
ABCDEF
ABCDEF

The first ABCDEF is produced by printing the two 1literal strings in
statement 10, one right after the other. Since spaces are not added to
literal strings, the effect of statement 10 is identical to statement 20.

Expressions as Print Elements

Any expression can serve as a print element. When an expression appears
as a PRINT element, the expression is evaluated according to the rules of
evaluation discussed in the last section. The value of the expression is then
printed. The variables in our example programs such as I, P and F are, as we
know from the last section, just one kind of expression.

To appreciate the power of using expressions as print elements, enter
and execute the following simple program which calculates the area of a
circle given the radius R, where area = nR2,

Example 3.1 Expressions as PRINT Elements

10 INPUT "RADIUS", R
20 PRINT "RADIUS="; R, "AREA="; 3.14*(R+2)

Statement 20 first prints "RADIUS=", then the value of R. The next
print element, the literal string "AREA=", is printed followed by the value of
the expression 3.14*(R+2). (3.14 1is used as an approximation of 7.)
Statement 20 causes the expression 3.14* (R42) to be evaluated. No variables
are changed by this evaluation. The result is just printed; it is not saved
anywhere.

If a calculated value is only printed, and not used elsewhere in a
program, the simplest approach is to 1let the PRINT statement perform the
calculation.

Suppose that in our inventory example we wanted to continuously display
the dollar value of the on-hand inventory. Assume that the value of a ton of
coal is 20 dollars. Statement 60 (Example 2.1) can be modified as follows to
calculate and display this value:

60 PRINT "TONS ON HAND="; I, "VALUE=$"; 20*I

38

FUNDAMENTAL INSTRUCTIONS

Statement 60 does not change the value of the variable I. A PRINT statement
never alters the value of any variable. If this statement 60 is substituted
for the old statement 60, the program display appears as:

TONS ON HAND = 4500 VALUE=$ 90000
NUMBER OF TONS RECEIVED (+) OR SOLD (-)?

Now let's see how expressions are printed with regard to spaces. Enter
the following program:

10 T = 42500
20 PRINT "OPENING INVENTORY="; I; "TONS"

We have added the literal string "TONS" to statement 20 so that any trailing
spaces, printed with the expression I, can be detected. Executing this
program produces

OPENING INVENTORY= 42500 TONS

The value of the expression is printed with a space before and after the
digits. Now change line 10 to

10 I = -42500
Execution produces
OPENING INVENTORY=-42500 TONS

which reveals that the leading space is actually just an implied plus sign.
When the value is negative, the position is occupied by the minus sign. The
space at the end still appears, however.

In summary, the value of an expression is printed preceded by a space,
if positive, or a minus sign if negative. The value is always followed by a
space.

A seven character value, such as 5600.12 (six digits and a decimal),
occupies 9 character locations. Enter and execute

10 I = 5600.12
20 PRINT I; -2*I; "&&&"
30 PRINT "ABCDEFGHIJKLMNOPQRSTUV"

The result of execution is

5600.12 -11200.24 &&&
ABCDEFGHIJKLMNOPQRSTUV

The space above the A is the implied + sign and the space above the I is
the automatic trailing space. Similarly, the space above S is the trailing
space of the value -2*I. The ampersands are printed to reveal the final
trailing space.

39

FUNDAMENTAL INSTRUCTIONS

Now that we have seen how expressions are printed, from the point of
view of spacing, Jlet's look at the way the value itself appears. The PRINT
statement prints the value of an expression in one of two forms depending on
the magnitude of the value. If the absolute value of the number being printed
(the expression) 1is greater than or equal to .1 and less than or equal to

9,999,999,999,999 (or it is zero), then the value is printed in normal form.
Normal form is

SZI7777.FFFFFFFA

where S is minus sign (-) if value <0, or blank if value = 0.
Z is an integer digit.
F is a fractional digit.
A is a space.

The decimal is in the proper position; it 1is omitted if the value is an
integer. Leading and trailing zeros are omitted.

For example, these numbers are in normal form.

212
-4593.17286
-6.1

0

12345678901.23

If the absolute value |Q| of the expression satisfies
1079 <|ql<

or
Q =1013

then the PRINT statement outputs Q in scientific notation.

Scientific notation is

SM. MMMMMMMME £ X XA
where S is a minus sign(-) if value< 0, or blank if value 2 0.
M is a mantissa digit.
E is the symbol indicating the beginning of the exponent.
+ is the sign of the exponent, always explicit.
X is an exponent digit.
A is a space.

Nine mantissa digits are printed even if some are zero. Therefore any value
printed in scientific notation by the PRINT statement occupies 16 character
positions. For example,

10 PRINT 1E13
produces

1.00000000E+13

40

FUNDAMENTAL INSTRUCTIONS

Note that the PRINT statement determines the output form, normal or
scientific, without regard to the form in which the value is input. For
example, enter and execute

10 PRINT .01; .05; .09; .1

20 PRINT 5.00/75

30 PRINT 275634*112913534

40 PRINT 2.56E8, 2.56E8 * 1.02E-2

Each PRINT statement generates one line of output. The total output is shown
below. Compare the output lines with the statements that generate them.

1.00000000E-02 5.00000000E-02 9.00000000E-02 .1
6.66666666E~02

3.11228090E+13

256000000 2611200

Semicolons and Commas between Print Elements

Semicolons and commas serve a dual function in PRINT statements. They
separate one print element from the next, and they help to control the spacing
of output.

A comma or semicolon must be used between each PRINT element. This is a
requirement of BASIC syntax. For example, this statement violates BASIC
syntax, and, upon entry, produces the error message shown:

10 PRINT "ABC" "DEF"
+ERR 10

A semicolon can be thought of as the "do-nothing" element separator. It
fulfills the syntax requirements of BASIC, but causes no additional spacing
between print elements. The only spaces that appear between print elements
separa%ed by semicolons are those that are output with the print elements
themselves.

For example, if we insert a semicolon into the above statement as
follows:

10 PRINT "ABC"; "DEF"
the result, upon execution, is:

:RUN
ABCDEF

Since there are no spaces within the print elements, no spaces appear in the
printed output.

41

FUNDAMENTAL INSTRUCTIONS

To look again at a previous example,

10 I = 5600.12
20 PRINT I; -2*I; "&&&"
30 PRINT "ABCDEFGHIJKLMNOPQRSTUV"

:RUN
5600.12 -11200.24 &&&
ABCDEFGHIJKLMNOPQRSTUV

A11 the spaces that appear in the first line of output are the implied plus
sign and the trailing spaces, output automatically as the result of printing
the expressions.

A comma can be used in a PRINT statement to cause the next print element
to be printed at the beginning of the next print zone. Each line of the CRT
is divided into 16-character zones. The standard 64 character CRT line
accommodates four such print zones.

When the system finds a comma in a PRINT statement, it outputs spaces
until it reaches the first character position of the next print zone. It then
outputs the next print element starting at this position. For example, the
following line appeared in the factorial program (Example 2.2).

30 PRINT "P="; P, "P!="3 F

Output from repeated executions of this line looked like this on the CRT:

ZONE 1 Z0NE 2
. e N

P= 0 Mpr= 1 o

P= 1 Pi= 1

p= 2 pl= 2

p= 3 Pl= 6

P= 4 Pl= 24

P= 5 Pi= 120

The comma after the second print element causes the system to space to the
right, to the beginning of the next zone.

If a comma is encountered when the output from the previous print
element has entered the right-most zone of the CRT, output from the next print
element begins at the left of zone 1 on the next line. For example,

'IO PRINT IIAII’ IIBII’ IICII’ IIDII, IIEII
:RUN
A B C D

E

42

FUNDAMENTAL INSTRUCTIONS

The letters "A" to "D" are printed in the first character position of zones 1
to 4. "E" is printed at the beginning of zone 1 of the next line, since there
is room for only four zones on a 64 character line.

Commas can be used anywhere in a print statement, and can be used in
succession. For example, if another comma is put into 1ine 30 of the
factorial example (Example 2.2) as follows:

30 PRINT "p="; P ,, "PI="; F

the result appears as:

Z0NE 1 Z0NE 2 Z0NE 3
— N —\ -\~ e — N
=0 pi= 1
= 1 PI= 1
=2 pi= 2
- 3 PI= 6
=4 Pi= 24
-5 Pi= 120

kkkkk DON E *kkkk

The second comma causes the system to output spaces up to the first
character position of zone 3.

Commas and Semicolons at the End of Print Statements

After outputting the last print element in a PRINT statement, the Wang
2200 system automatically moves the cursor to the left-most position of the
next 1ine. (The cursor defines the CRT screen-location for the next printed
character.) The 2200 system moves the cursor by issuing special cursor
control characters to the CRT. (These characters are discussed in detail in
Chapter 17.) The cursor control characters are the equivalent of a carriage
return and 1line feed on a typewriter, and therefore are known as CR/LF. For
example, execution of

10 PRINT "ABC"
20 PRINT "DEF"

produces

:RUN
ABC
DEF

"DEF" appears on the 1line below "ABC" because of the CR/LF issued
automatically after "ABC". For the same reason, each PRINT statement in the
original example programs (Examples 2.1 and 2.2) causes output to appear on a
new line,

43

FUNDAMENTAL INSTRUCTIONS

Often an automatic CR/LF is exactly what we wish to have occur after a
PRINT statement. Examples 2.1 and 2.2 illustrate this. However, sometimes we
may wish to suppress this automatic CR/LF. The automatic CR/LF can be
suppressed by putting a semicolon or comma at the end of the PRINT statement.
For example,

10 PRINT "ABC";
20 PRINT "DEF"

:RUN
ABCDEF

Here "ABC" and "DEF" are output on the same line because the semicolon at
the end of the PRINT statement suppresses the CR/LF.

Enter and execute this simple program that prints the powers of two from
2+1 through 2+20.

Example 3.2 Powers of Two, I1lustrating PRINT with Trailing Semicolon

10 N = N+1

20 PRINT 24N;

30 IF N < 20 THEN 10
40 PRINT "DONE"

The output is:

2 4 8 16 32 64 128 256 512 1024 2048 2096 8192
16384 32768 65536 131072 262144 524288 1048576 DONE

The semicolon at the end of line 20 suppresses the carriage return/line feed.
The system issues a CR/LF only when it senses that a PRINT element will
overflow the line, in this case when 2t+N is 16384, The spaces between the

values are the implied plus sign and trailing space, printed with each
expression,

If a comma appears after the 1last print element in a PRINT
statement, the cursor is moved to the beginning of the next zone,
and the CR/LF is suppressed.

Reenter the Powers of Two program as follows:

Example 3.3 Powers of Two, Illustrating PRINT with Trailing Comma
10 N=N+1
20 PRINT 24N,

30 IF N < 20 THEN 10
40 PRINT "DONE"

44

FUNDAMENTAL INSTRUCTIONS

This program produces the following output:

2 4 8 16

32 64 128 256

512 1024 2048 4096
8192 16384 32768 65536
131072 262144 524288 1048576
DONE

Each time statement 20 is executed, the value of the expression is printed at
the current cursor location, and then the cursor is moved to the beginning of
the next zone. This causes the output to appear as shown.

The TAB() Print Element

The comma element separator is convenient for organizing output into 16
character columns, but suppose that you wish to use some other column format.
For example, suppose you wish to print in three, approximately equal, columns
across the CRT. The first of these columns is to begin at CRT column 0, the
next at column 22, the next at 43. This column spacing could be accomplished
by using commas together with the proper number of spaces enclosed in
quotation marks. However, BASIC offers the TAB() print element as an easier
means of accomplishing this type of output formatting.

TAB() tells the system to output spaces until the cursor is at a
specified CRT column. Example 3.4 calculates the length of the hypotenuse of
a right triangle, based on the lengths of the sides, and outputs the three
lengths at columns 0, 22, and 43.

Example 3.4 Sides of a Right Triangle, ITlustration of TAB()

10 INPUT "LENGTH OF SIDE A", A

20 INPUT "LENGTH OF SIDE B", B

30 PRINT

40 PRINT "SIDE A"; TAB(22); "SIDE B"; TAB(43); "HYPOTENUSE"
50 PRINT A; TAB(22); B; TAB(43); (A+2+B+2)+,5

:RUN
LENGTH OF SIDE A? 5)
LENGTH OF SIDE B? 12

SIDE A SIDE B HYPOTENUSE
5 12 13

At line 40 of Example 3.4, TAB(22) appears after "SIDE A". TAB(22) is a
print element that tells the system to output spaces until the cursor is at
column 22 of the CRT. Similarly, after printing "SIDE B", TAB(43) outputs
spaces until the cursor reaches column 43. Since TAB() is a print element, an
element separator (, or ;) must be used with it. Normally, the semicolon is
used, since it 1is 1less confusing if the cursor is moved only by the TAB&),
rather than by a combination of TAB%)'S and commas. For the purpose of TAB()
CRT columns are numbered 0-63, not 1-64.

45

FUNDAMENTAL INSTRUCTIONS

TAB() tells the system to issue spaces until the specified column is
reached. Therefore, it is not possible to move the cursor left with a TAB().
If the column specified in the TAB() is to the 1left of the current -cursor
location, the TAB() simply does nothing; the cursor is not moved.

If the column specified in the TAB() is greater than the line length of
the CRT, the cursor is moved to the leftmost position on the next line. A
column specification greater than 255 produces an error.

Any expression can be used in a TAB() to specify the desired column. In
Example 3.5, the previous program (Example 3.4) has been modified to allow
entry of the desired output column width.

Example 3.5 Using an Expression to Calculate a TAB()

10 INPUT "COLUMN WIDTH", T

20 INPUT "LENGTH OF SIDE A", A

30 INPUT "LENGTH OF SIDE B", B

40 PRINT

50 PRINT "SIDE A"; TAB(T); "SIDE B"; TAB(2*T); "HYPOTENUSE"
60 PRINT A; TAB(T); B; TAB(2*T); (At2+B+2)+.5

Line 50 prints "SIDE A", and then, in order to execute the TAB()
evaluates the expression T. T has the value entered at line 10. The TAB is
executed, moving the cursor to the specified column. After "SIDE B" s
printed, the expression 2*T 1is evaluated to determine the second column
position. Only the whole number, or integer, portion of the value is used to
determine the column. Thus, an entry of 10.6 causes a TAB to column 10,
followed by a TAB to column 21 (integer portion of 21.2).

Review of Section 3-3

1. The things to be printed in PRINT statements are known as print
elements. Any number of print elements can appear in a single PRINT
statement.

2. Literal strings are printed exactly as they appear within
quotation marks. No spaces are added before or after the string.

3. When an expression is encountered in a PRINT statement, the expression
is evaluated, and the result is printed.

4. A PRINT statement never alters the value of any variable.

5. The value of an expression is printed preceded by a space if positive,
or a minus sign if negative, and followed by a space.

6. The PRINT statement prints the value of an expression in normal form or
scientific form, depending upon the value.

7. The cursor, always present on the CRT, occupies the 1location at which
the next character will be displayed.

8. The semicolon element separator tells the system, "Leave the cursor
where it is."

46

FUNDAMENTAL INSTRUCTIONS

9. After all the elements in a PRINT statement have been printed, the
system automatically issues a cursor control that is the equivalent
of a carriage vreturn and line feed on a typewriter. This automatic
function can be suppressed by specifying an element separator (, or ;)
at the end of a PRINT statement.

10. The standard CRT is divided into four print zones, each 16 characters
wide.

11. When a comma (,) element separator is encountered in a PRINT statement,
it moves the cursor to the beginning of the next zone. If the cursor is
in the 4th, or rightmost zone, the comma moves the cursor to the
beginning of zone 1 on the next Tline.

12. A comma can appear anywhere in a PRINT statement. Commas can appear one
after another to move the cursor to the 2nd or 3rd next print zone, etc.

13. The TAB() print element can be used to move the cursor to the right to a
specified column Tocation.

3-4 LINE NUMBERS, LINES, AND THE GOTO STATEMENT

So far our example programs have shown line numbers in the sequence 10,
20, 30... . Line numbers in this sequence are conventionally used in BASIC
programs, but any number in the range 0-9999 can serve as a line number. The
use of 10, 20, 30... as line numbers is a convention which makes program
debugging and modifying easier. It allows up to nine 1lines to be inserted
between two 1lines of the original program. Non-integer values such as 1.1,
22.5 may not be used for 1ine numbers. Spaces may not precede T1line numbers.
Lines may be keyed in any order. Based on the line number, the system
automatically determines the logical location of the line within the program,

In the last two sections, when we said such things as '"Any number of
print elements can appear in a single print statement," you may have wondered
if there is some unexpressed qualification to these statements. There is.
The longest statement 1ine that can be entered is one generated by 192
keystrokes. The number of characters which represent this line can exceed
192, since keywords can be entered with a single keystroke. A program Tline
with over 64 characters will, of course, continue onto a second CRT line.
This does not affect program execution.

We said earlier that the normal sequence of execution in a program is
line number sequence, from the lowest line to the next higher, etc. This
sequence of execution is "normal" in the sense that it is the sequence that
the system uses, except when an instruction is encountered that tells it to go
to some other Tlocation for its next instruction. Instructions of this kind
are called branching instructions, and the simplest of them is the GOTO
statement.

The GOTO statement appeared in our original inventory example at 1line
90.

90 GOTO 30

47

FUNDAMENTAL INSTRUCTIONS

This statement simply causes the system to find its next statement at 1line
30, rather than at the next higher 1ine number. (In the inventory
program there is no higher line number than 90, so without statement 90 the
program would end.)

After a branch has been effected, the normal sequence resumes from the
new Tlocation. Specifically, if statement 90 is executed in the inventory
program, the line number sequence of execution is 90, 30, 40, 50, 60... .

The general form of the GOTO statement is
GOTO 1ine number

The words "line number" indicate that only a 1line number may be used. A
variable may not be wused. In addition, a BASIC statement must actually be
present at the line number specified in a GOTO statement.

Though our inventory example showed the GOTO effecting a branch

"back" in a program, a branch "forward," that is, one which branches over
higher numbered lines, may also be effected.

A well organized program avoids unnecessary use of the GOTO statement by
relying upon the normal sequence of execution, insofar as 1is possible. An
obvious case of poor organization is shown at the top of Example 3.6.
Statements 20 and 110 can be eliminated by rearranging the program to rely on
the normal sequence of execution. At the bottom, the program is shown
rearranged.

Example 3.6 Computing the Sum and Mean of Entered Values, Illustrating
Unnecessary GOTO's

Before Reorganization

10 PRINT "COMPUTE AVERAGE"

20 GOTO 200

100 PRINT "NUMBER OF ITEMS="; K, "SUM="; S,, "MEAN="; S/K
110 GOTO 300

200 INPUT "ENTER VALUE (OR ZERO TO END ENTRY)", X
210 IF X=0 THEN 100.

220 K=K+1

230 S=S+X

240 GOTO 200

300 PRINT

310 GOTO 10

After Reorganization

10 PRINT "COMPUTE AVERAGE"

100 INPUT "ENTER VALUE (OR ZERO TO END ENTRY)", X

110 IF X=0 THEN 200

120 K=K+1

130 S=S+X

140 GOTO 100

200 PRINT "NUMBER OF ITEMS="; K, "SUM="; S,, "MEAN="; S/K
210 PRINT

220 GOTO 10

48

FUNDAMENTAL INSTRUCTIONS

In the next section, in which we look at the 1IF...THEN statement, we
will see how the GOTO at Tine 140 of the lower program can also be eliminated.

Review of Section 3-4

1. A line number can be any number 0-9999. Non-integer values such as 1.1,
22.5,etc. are not allowed.

2. The longest legal statement 1line is one generated by 192 keystrokes.

3. The normal sequence of execution is line number sequence.

4, Instructions that can tell the system to find its next instruction at

some location other than the next higher line number, are known as
branching instructions.

5. The simplest of the branching instructions is the unconditional branch
to a line number, the GOTO statement. Its general form is:

GOTO 1ine number

6. Once a branch has been effected, the normal sequence of execution
prevails from the new location.

7. A well organized program avoids unnecessary GOTO's.

3-5 THE IF...THEN STATEMENT

The IF...THEN statement causes a branch to a specified line if a stated
condition 1is true. If the stated condition is false, the normal sequence of
execution prevails.

The condition, which appears between the keywords "IF" and "THEN", is
stated as a relationship between two expressions. We have seen the following
IF...THEN statements in example programs; the condition portion is underlined:

70 IF I> = 100 THEN 30
60 IF P < = N THEN 30
30 IF N <20 THEN 10

The symbols such as <,< =, >=, which separate the expressions are
known as relational operators. All the relational operators and their
meanings are given below.

RELATIONAL

OPERATOR MEANING
= is equal to
> is greater than
<

is less than

<> is not equal to

is greater than or equal to
is less than or equal to

\%
nou

49

FUNDAMENTAL INSTRUCTIONS

The values of variables are never changed by an IF...THEN statement.
The statement simply tells the system to evaluate two expressions using the
current values of the variables, and compare the results obtained. If the
system finds that the results are 1in the relationship specified by the
relational operator, then the system branches to the specified 1ine number to
obtain its next instruction.

Uses of the IF...THEN Statement

In the inventory example, IF...THEN was used to decide within the
program if a reorder message should be displayed. This simple program
decision, based on a quantity calculated in the program, is a typical
elementary use of IF...THEN.

In the factorial program the statement
60 IF P<= N THEN 30

is used to decide whether the 1loop should continue, or processing is
complete.

In the program that prints the first 20 powers of two (Example 3.2) the
statement

30 IF N < 20 THEN 10
performs a task similar to statement 60 in the factorial program.

A common use of the IF...THEN statement, not yet shown, is the testing
of keyboard entries. Frequently you want to be sure that an entry is within a
certain range. If it is not, you can repeat the request.

For example, in the factorial program a negative entry 1is meaningless,
and an entry of 70 or greater produces an error at P=70 (because the value of
P! exceeds 10100), Therefore, it would be good programming practice to
restrict operator entries to the valid range 0-69. The program can be
modified as follows:

Example 3.7 Testing the Keyboard Entry in the Factorial Program

10 INPUT "COMPUTE P! FOR P=0 TO P=", N
12 IF N <0 THEN 15

13 IF N<= 69 THEN 20

15 PRINT "INVALID REENTER"

16 GOTO 10

20 LET F =1

30 PRINT "P="; P, "Pi="; F
40 LET P = P+]

50 LET F = P*F

60 IF P<= N THEN 30

70 PRINT "**%x* DONE *****n
An IF...THEN statement can also be used to test a keyboard entry that

represents a selection among alternatives. For example, we might combine into
a single program the factorial program and the print powers of two program.

50

FUNDAMENTAL INSTRUCTIONS

At the beginning of the combined program, we would want a selection routine in
which the operator can choose which of the two operations are to be performed.
Such a combined program appears in Example 3.8.

Example 3.8 An Operator Selection Using IF...THEN
10 INPUT "ENTER 1 TO CALCULATE FACTORIALS. ENTER 2 TO PRINT

POWERS OF TWO.", S
20 IF S =1 THEN 110

30 IF S = 2 THEN 1010

40 PRINT "INVALID. REENTER"
50 GOTO 10

110 INPUT "COMPUTE P! FOR P=0 TO P=", N
120 LET F = 1

130 PRINT "P="; P, "P!="; F
140 LET P = P + 1

150 LET F = F * P

160 IF P< =N THEN 130

170 GOTO 1040

1010 N = N + 1

1020 PRINT 24N;
1030 IF N < 20 THEN 1010
1040 PRINT "DONE"

The selection routine occupies 1lines 10-50, the factorial program
110-120, and the powers of two program 1010-1040. In the selection
routine, notice that if neither 20 nor 30 cause a branch, then the entry
is invalid, and the operator is prompted to reenter the selection. Also
notice that statement 170 avoids executing both programs when the first
is selected.

Thus far, in the example programs, the condition portion of the
IF...THEN statements has been a relation between simple variables or variables
and constants. While 1in practice many comparisons may be of this form, the
capability of the IF...THEN statement to compare complex expressions should
not be overlooked.

For example, suppose we wish to determine if the 1length of one 1line
segment 1is greater than another. We are given Cartesian coordinates for the
end points of the segments, and have assigned them to variables in the
following manner.

(X1,Y1) and (X2,Y2) define line segment one.
(X3,Y3) and (X4,Y4) define line segment two.

The following statement effects a branch to line 570 if the Tlength of Tline
segment one is greater than line segment two.

510 IF (X1-X2)+2+(Y1-Y2)+2D> (X3-X4)+2 +(Y3-Y4)+2 THEN 570
Another use for complex expressions in IF...THEN statements is to

exploit the logic of arithmetic to allow testing of "multiple" conditions in a
single IF...THEN statement.

51

FUNDAMENTAL INSTRUCTIONS

Suppose, for example, that somewhere in a program you wish to branch to
line 480, if any one of four variables is equal to zero. Assume the variables
are W,X,Y,Z. One way to do this would be to write four statements:

50 IF W=0 THEN 480
60 IF X=0 THEN 480
70 IF Y=0 THEN 480
80 IF Z=0 THEN 480

This sequence of statements would work perfectly, but another way would be to
write a single statement such as

50 IF W*X*Y*Z=0 THEN 480

In the new statement 50 the value of the expression W*X*Y*Z is 0 if any of the
variables are zero. The effect is the same as the four statements written
above,

The same approach can be used in a slightly more complex situation.
Suppose you want to branch to line 115 if W=95 or if X=W*2 or if Y=55. You
could write

50 IF W=95 THEN 115
60 IF X=W*2 THEN 115
70 IF Y=55 THEN 115

or, alternatively, you could write
50 IF (W-95) * (X-(W*2)) * (Y-55)=0 THEN 115

In the latter statement 50, if W is equal to 95, then the value of the
expression (W-95) 1is zero, It is easy to see that the other expressions in
parentheses (X-(W*2)) and (Y-55) are equal to zero when the conditions
expressed 1n lines 60 and 70 above are true. Since the entire expression on
the left is equal to zero if any of the terms equal zero, the effect of the
latter statement 50 is the same as statements 50, 60 and 70 above it.

Efficient Use of IF...THEN

Now that we have discussed some of the capabilities of the IF...THEN
statement itself, let's see how it can be used most efficiently.

Suppose you are writing the inventory program that we introduced in
Section 2-2. You have written the first six statements of the program:

10 LET I1=42500

20 PRINT "OPENING INVENTORY="3; I

30 INPUT "NUMBER OF TONS RECEIVED (+)" OR SOLD (-)", T
40 LET I=I+T

50 PRINT

60 PRINT "TONS ON HAND ="; I

52

FUNDAMENTAL INSTRUCTIONS

Now you Took back at the description of the problem and read "you want to be
reminded to reorder coal if your inventory drops below 100 tons." So, you
write

70 IF T < 100 THEN 90

which says exactly what the statement of the problem said. At 90 you intend
to put the PRINT statement which produces the reminder. So, now you add

80 GOTO 30
90 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
100 GOTO 30

Your program is now complete and appears as follows:

Example 3.9 The Inventory Program (Example 2.1) Written with an
Extra GOTO

10 LET I=42500

20 PRINT "OPENING INVENTORY="; I

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT

60 PRINT "TONS ON HAND ="; I

70 IF TI<7100 THEN 90

80 GOTO 30

90 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
100 GOTO 30

When I is less than 100, statement 70 causes a branch around the GOTO
statement at 1ine 80.

This program will produce the exact same results as the example program
we originally gave (Example 2.1), but the original example program displays
more skillful use of the IF...THEN statement. The two programs are identical
in 1ines 10-60. Statement 70 of the original example program is

70 IF T>= 100 THEN 30

Instead of testing for the inventory being less than 100 tons, the original
program tests for the opposite relation. If I =100 then the program need not
display the reorder message. The entire original program is:

Example 3.10 The Original Inventory Program (Example 2.1)

10 LET I1=42500

20 PRINT "OPENING INVENTORY="; I

30 INPUT “NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT

60 PRINT "TONS ON HAND ="; I

70 IF I >= 100 THEN 30

80 PRINT "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS"
90 GOTO 30

53

FUNDAMENTAL INSTRUCTIONS

Reversing the relational operator at line 70 let us utilize the normal
sequence of execution for the possibility that the reorder message should be
displayed. The GOTO statement at line 80 of Example 3.9 has thereby been
eliminated.

Sometimes efficient use of IF...THEN requires that the condition be
specified the opposite way it might normally be conceived. This condition
reversal was seen in the transition from Example 3.9 to Example 3.10 above. A
table pairing the opposite relational operators is given below:

<> and = are opposites
> <= and < are opposites
<= and > are opposites

The following program performs identically to the original factorial
example. However, it includes a GOTO that was eliminated in the original
example through more skillful use of the IF...THEN statement. Compare it to
the original example, Example 2.2.

10 INPUT "COMPUTE P! FOR P=0 TO P=", N

20 LET F = 1

30 PRINT "P="; P, "PI="; F
40 LET P = P+]

50 IF P > N THEN 80

60 LET F = P*F

70 GOTO 30

80 PRINT 'k DONE kst

If one of the possible outcomes of a test is to skip forward over
intervening statements and the other is to execute the intervening statements,
then the IF...THEN should effect the branch to the higher numbered line. For
example,

50 IF X=Y THEN 70
60 GOTO 200
70 PRINT Y
: (processing)
200 PRINT X
is better written,

50 IF X <> Y THEN 200
60 PRINT Y

200 PRINT X

Review of Section 3-5

1. The IF...THEN statement tells the system to branch to a specified
line if a stated condition is true. If the condition is false, the
normal sequence of execution prevails.

54

FUNDAMENTAL INSTRUCTIONS

2. Values in variables are never changed by an IF...THEN statement.

3. The IF...THEN statement can be used for a decision branch based on a
quantity calculated in the program. Its use in the original
inventory program is an example of this.

4, IF...THEN can be used to test for continuation of a processing loop.
The factorial program uses it in this fashion.

5. IF...THEN can be used to test the validity of an operator entry.

6. IF...THEN can be used to test an entry which represents a selection
among alternatives.

7. Complex expressions can be used in the condition portion of the
IF...THEN statement.

8. The 1logic of arithmetic can be exploited to test "multiple"
conditions in a single IF...THEN statement.

9. Skillful use of the IF...THEN statement makes use of the normal

. sequence of execution as much as possible. This eliminates

unnecessary GOTO's. The significance of the IF...THEN statement can

be reversed by substituting the opposite, or "contradictory",
relational operator.

3-6 THE INPUT STATEMENT

The INPUT statement provides an easy means for receiving data from the
keyboard during program execution.

Since ordinarily the operator should be told what data is to be entered,
the INPUT statement can contain a literal string prompt, which it will display
at the current cursor location.

In example programs, we have seen such INPUT statements as

10 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T
and

10 INPUT "ENTER 1 TO CALCULATE FACTORIALS. ENTER 2 TO

PRINT POWERS OF 2", S

Literal string prompts are optional in the INPUT statement. If the
above statements had been written,

10 INPUT T
and
10 INPUT S

the statements would not display the literal string, but otherwise they would
function as the original statements did.

The prompt, if it is used, must be followed by a comma. Commas in the
INPUT statement, unlike commas in the PRINT statement, have no effect on the
prompt location. They serve only to separate the parts of the INPUT
statement.

55

FUNDAMENTAL INSTRUCTIONS

Regardless of whether a prompt is included in an INPUT statement, a
question mark and space are always output. The question mark is a standard
signal to the operator that the system is awaiting input.

As the operator keys in characters, they are displayed at the cursor
location. Keying backspace eliminates the character at the previous cursor
location, and allows for reentry.

When the operator depresses (EXEC), the value entered is assigned to the
variable specified in the INPUT statement, and a CR/LF is issued to move the
cursor to the beginning of the next line. If anything other than a valid
numeric quantity is entered, an ERR is signalled, the question mark is
redisplayed, and the operator can again enter the value.

Multiple entries can be made with a single INPUT statement by specifying
more than one receiving variable. A statement such as

10 INPUT "ENTER EMPLOYEE NUMBER, THEN HOURS WORKED", E,H

displays the prompt followed by the question mark. The operator can then
enter two values, which will be assigned to E and H respectively.

The operator can enter the values separated by a comma and followed
by (EXEC) in this fashion:

ENTER EMPLOYEE NUMBER, THEN HOURS WORKED? 1234, 40.00 (EXEC)

Alternatively, the operator can enter the first value, key (EXEC), and then
enter the second in the same manner. If this latter form of entry is used,the
question mark is redisplayed at the left of the next line, after the first
value is entered.

Other than the maximum line length, there is no 1limit to the number of
variables that may appear in a single INPUT statement. A1l variables must be
separated by commas and only one prompt may be specified. However, INPUT
statements with many variables tend to be awkward for an operator, and promote
entry errors.

If an operator merely depresses (EXEC) in response to an INPUT
instruction, the value of the receiving variable is unaltered. However, this
response also terminates the INPUT instruction, thereby eliminating the
possibility of entering values for any remaining variables.

The general form of the INPUT statement is
INPUT ["character string",] variable [,variable...]

In addition to its primary use as a means of receiving data from the
keyboard, the INPUT statement is an excellent way of inserting a processing
interruption into a program. If printer paper, a disk, or tape must be
mounted in the middle of a program, a simple INPUT statement such as

550 INPUT "MOUNT PAPER. KEY (EXEC) TO RESUME", A9

can be used to interrupt execution. The value of A9 can be ignored, or tested
to see that no entry was in fact made. (An entry might suggest that the
operator was confused about the operation.)

56

FUNDAMENTAL INSTRUCTIONS

Review of Section 3-6

1. The INPUT statement allows a value or values to be entered from the
keyboard and assigns them to specified variables.

2. A prompt can be specified in the form of a Titeral string. The
prompt is displayed by the INPUT statement at the current cursor
location. The prompt is optional, but if it is used, it must be
followed by a comma.

3. The INPUT statement causes a question mark and space to be
displayed. This occurs after any prompt has been displayed, and is
the standard signal that the system 1is awaiting input from the
keyboard.

4. Values entered by the operator are assigned sequentially to the
variables specified in the INPUT statement.

5. Multiple receiving variables in the INPUT statement must be
separated by commas.

6. If an operator merely depresses (EXEC) in vresponse to an INPUT
instruction, the value of the variable which was to receive the
entry remains unchanged.

7. The general form of the INPUT statement is
INPUT ["character string",] variable [,variable...]

3-7 THE REM STATEMENT

The REM statement has not appeared in any of the example programs thus
far. REM 1is an abbreviation of the word "remark"; the purpose of the REM
statement is to allow you to insert into a program explanatory comments, or
remarks, about the program itself.

In effect, REM says to the system "ignore this statement". REM

statements have absolutely no effect on the execution of a program. With REM
statements inserted, our inventory program could have appeared as follows:

57

FUNDAMENTAL INSTRUCTIONS

Example 3.11

180
190

REM
REM
REM
REM
REM
REM
REM

REM

REM

Adding Comments (REM's) to Example 2.1

(EG3.11) A SIMPLE INVENTORY PROGRAM

kkdkkkkkrx VARTABLE USAGE *dkdkkkkik
INVENTORY BALANCE
T = TRANSACTION AMOUNT

Jek ke dede ke k dedekede ek ko dedekek ok de ke kokok kedkok de ko kkokdkokkkk

I =

ASSIGN OPENING BALANCE

LET 1=42500

PRINT
INPUT

"OPENING INVENTORY=";
dxkx* MAIN PROCESSING LOOP *****

I

“NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

LET

PRINT
PRINT

IF

I> =

I=1+T

"TONS ON HAND =";

100

THEN

120

DISPLAY REORDER MESSAGE.

PRINT
GOTO

"REORDER COAL IMMEDIATELY:

120

I

INVENTORY BELOW 100 TONS"

The inventory program as shown here executes in the exact same manner as

the original inventory program did.

REM comments are extremely useful, not only for someone else, who may
want to understand your program, but also for yourself, should you later have
to go back and revise sections of a program.

58

CHAPTER 4
SAVING AND LOADING PROGRAMS

4-1 INTRODUCTION

When first created, a program is normally entered into memory via the
keyboard., However, it would be extremely inconvenient to reenter it this way
each time it is to be run. Since memory is automatically cleared each time
the CPU power 1is turned off, some means of saving programs outside of the
memory of the system is a practical necessity. The two principal means in use
with Wang systems are storage on tape cassette and magnetic disk. (Systems
which are equipped with both types of device may use either or both for
program storage.)

After a program has been keyed-in the first time, it can be saved on

tape or disk for later use. Then, it is a relatively simple and quick
operation to load the program when it is needed.

4-2 SAVING PROGRAMS ON CASSETTE TAPE

Cassettes and Cassette Drives

Cassette tape is a convenient medium for saving programs. It can also
be used for saving data. (Data storage on cassette tape is discussed in
Chapter 21.) A single tape cassette can hold many programs. The exact number
depends upon the size of the programs, and whether a long (150 ft) or short
(75 ft) tape is being used. Programs are recorded one after another on the
tape. Each program is treated as a single unit called a "file".

To prevent accidental destruction of tape contents, tape cassettes are
equipped with "protect tabs." These plastic tabs are located in the bottom
corners of the cassette. If these tabs are folded inward to expose the square
holes at each end of the cassette, the cassette 1is "protected"; further
recording cannot be performed on it until the tabs are moved back to the
non-protect position. A1l the information on a protected cassette is
available for loading into the system; only recording is prevented. For
protection from dust, cassettes should be kept in their individual plastic
boxes when not in use.

To help identify programs saved on tape and to make loading of selected
programs easier, you should specify a name for each program saved on a
cassette tape. The name can be up to 8 characters long, including spaces, and
should distinguish the program from all others on the cassette. Any keyboard
characters can be used in the name. You should maintain a list of the
programs and program names stored on each cassette. The list should show the

59

SAVING AND LOADING PROGRAMS

sequence in which the programs are recorded. Notice that at line 10 of
Example 3.11 the name of the program "EG3.11" is given in a REM statement,
Putting a program name into a REM at the first program line is a good
programming practice.

If a cassette's contents are no longer of any value, a program may be
stored at the beginning of the cassette, as if the cassette were blank.
However, if any programs on a cassette are to be preserved, new programs
should be added beyond the end of the last program to be preserved.

Although up to six tape cassette drives can be used with a Wang system,
there is always one tape drive that is said to be the primary tape drive. In
this section we will discuss the program saving and Tloading procedures for
operations at this primary (or default) tape drive. For systems equipped with
a tape cassette drive in the CRT housing, this tape drive is usually
designated as the primary tape drive. Users of systems with stand-alone tape
drives only (models 2217 or 2218) will have to determine which drive is the
primary drive before proceeding with the cassette mounting operations
described below. To determine this, simply key RESET REWIND (EXEC) and
observe which drive's tape movement 1light flashes. The one that flashes s
the primary tape drive.

If, after keying a program into memory, you wish to save it on a
cassette, open the primary cassette drive door by pressing the white-door
release button located at the right of the cassette door. Slip a blank,
unprotected cassette, with its label side facing you, into place between the
brackets on the cassette drive door, as shown in Figure 4.1.

Figure 4.1 Mounting a Cassette

Once the cassette is in the cassette drive door, close the door. Then,
rewind the cassette by pressing the REWIND button on the cassette drive
housing. Rewinding, at this point, is a precautionary measure to ensure exact
positioning of the tape at the beginning of the cassette.

60

SAVING AND LOADING PROGRAMS

Saving a Program on a Cassette

With a blank cassette mounted at the primary tape device, you can save
the entire program currently in memory by keying

:SAVE "name" (EXEC)

where: name is a program identification, up to 8 characters 1long,
enclosed by quotation marks.

For example, to save the inventory program (Example 2.1), you could key

:SAVE "INVT1" (EXEC)

Upon keying (EXEC), the cassette should begin recording. During
recording the cassette drive emits audible clicks. When the SAVE operation is
complete, the clicks cease, and the colon is restored to the next line of the
CRT. The SAVE command does not alter the contents of memory.

After saving the program, the cassette can be rewound by depressing the
REWIND button on the tape drive or by keying REWIND (EXEC) on the keyboard.
(The cassette must be rewound before it can be removed from the drive.) You
should then 1label the cassette and start a Tist of the files and file names
stored on it.

If a cassette has valuable programs or data files on it, you must ensure
that the tape is positioned beyond the end of these files before giving the
system the SAVE command. If you do not do this, the system will begin saving
the new program file over an old file, thereby destroying the old file.

One way to position a tape is to tell the system to SKIP over preceding
files. This must be done in a separate operation, before the SAVE command is
executed. For example, if a tape already contains one program, i.e., one
program file, to save a second program onto the cassette you should:

1. Mount the unprotected cassette in the device.
2. Depress the rewind button.
3. Key
:SKIP 1F (EXEC)

to skip over the one file.
4, Key
:SAVE "name" (EXEC),

where "name" is the name of the new program.
5. Rewind and remove the tape cassette.

6. Add the program name and description to the 1list of files stored on
the cassette.

If two programs are already on the tape, be sure to key SKIP 2F at step
3; if three, SKIP 3F, etc.

The cassette should be stored in its plastic case after removal. The

program will remain on it unaltered, indefinitely, and may be loaded whenever
desired.

61

SAVING AND LOADING PROGRAMS

Loading a Program from a Cassette

To load a program from a cassette, mount the cassette and key

:CLEAR (EXEC)
:LOAD "name" (EXEC)

where "name" is the name of the program to be 1loaded. The CLEAR command
ensures that memory is cleared of all other programs prior to loading the new
one. When LOAD is executed, the system searches the tape for the beginning of
the named program. It then loads the entire program into memory.

For example, if the inventory program has been saved under the name
"INVT1", it can be loaded by keying

:CLEAR (EXEC)
:LOAD "INVT1" (EXEC)

Review of Section 4-2

1. Cassettes are always mounted in the cassette drives with the exposed
tape up and the label facing out.

2. A single tape cassette can hold many programs. Programs are stored
sequentially one after another on the tape.

3. You should specify a name, up to 8 characters 1long, for each program
saved on a cassette, and you should maintain a 1list of all the programs
saved on the cassette.

4. If any programs on a cassette are to be preserved, new programs should
be added beyond the end of the last program to be preserved.

5. To save a program from memory onto a cassette, first skip over the
presently saved files by executing

:SKIP xF
where x is the number of files currently stored on the cassette.
Next, save the program currently in memory by keying

:SAVE "name"

where "name" is the name of the new program, up to 8 characters in
length.

After the SAVE command has been executed, depress the rewind button on

the cassette drive and remove the cassette. SAVE does not alter the
contents of memory.

62

SAVING AND LOADING PROGRAMS

6, To load a program into memory from a cassette, mount the cassette and
key
:CLEAR (EXEC)
:LOAD "name" (EXEC)

where "name" is the name of the program to be loaded.

4-3 SAVING PROGRAMS ON DISK

There are two different kinds of disks used with Wang systems. One kind
consists of a large disk platter, about the size of a long playing phonograph
record, that is housed within a rigid disk cartridge. This kind of disk is
used on the 2230 and 2260 type disk drives. The other kind of disk more
closely resembles a 45 rpm record, is flexible, and is contained in a soft
envelope. This kind is used with the 2270 drives, and is wusually called a
"diskette". The two kinds of disks vary principally in their storage capacity
and speed of operation. They may be considered to be identical from the point
of view of programming.

NOTE:

While you are learning about disk operations, you should
not use a disk that contains important data or programs on
it. If you must use such a disk, be sure to consult with
an experienced programmer, who is familiar with the
details of your system before executing anything described
in this section, or in the disk formatting sections of the
Disk Reference Manual. If your system includes a diskette
drive, a single diskette, devoted to your use, would be a
good choice for storage of programs you write during the
course of reading this manual.

To help prevent accidental destruction of valuable diskette contents,
diskettes wused with the 2270 type drives are equipped with a mechanical
"protect" feature. When a diskette is "protected", it is possible to read
(i.e., load) programs or data from it, but it is not possible to record
programs or data onto it. A small hole in the diskette envelope, located
along the 1leading inserted edge, controls the protect feature. If this hole
is covered on both sides by a small piece of opaque tape, the diskette is
unprotected. If the hole is exposed, the diskette is protected.

Nearly every Wang system equipped with a disk drive has one disk drive
designated as the primary or "default address" disk drive. This is the disk
drive that is selected for use when the system is Master Initialized.

If your system consists of only one physical disk drive unit (which may
house more than one disk), then you may assume that this drive unit is
designated as the default drive. If your system has more than one disk drive,
you will have to determine which drive is the default drive by consulting
someone familiar with your system. The operations described in this section
take place at the primary disk drive, unless a different drive is
intentionally selected by you.

63

SAVING AND LOADING PROGRAMS

If your system is set up in such a way that it 1is 1inconvenient, or
unwise for reasons of file safety, for you to use the default disk drive, then
prior to performing any of the operations described here, you must select a
different drive. To do this, first determine from competent authority what
drive 1is appropriate for your use and what its address is. Then select this
drive for use by keying

:SELECT DISK XXX (EXEC)
where XXX is the address of the disk device to be used.
Once this disk drive has been selected, it will remain selected for the
operations described in this section until the power is turned off. Each time

the power is turned on, the SELECT command above must be executed, if a drive
other than the default drive is to be used.

Preparing a Disk for Cataloged Program Storage

Unlike a tape, a disk device provides direct access to the information
stored on it. (In this section the information we are considering consists of
programs.) By saying "direct access", we mean to highlight the fact that if
several programs have been saved on a disk, each can be 1located and Toaded
without having to search through any other programs. This principal of direct
access is illustrated in the phonograph. With a phonograph, you can move the
tone arm to any location on a record to play a selected piece. Similarly,
with a magnetic disk an arm moves a read/write head to a selected location,
rapidly skipping over other locations. This contrasts with a tape system, in
which to reach to an item in the middle of the tape, any preceding information
must pass by the heads in the sequence in which it was recorded.

When you move a phonograph tone-arm to play a specific piece in the
middle of a record, you Tlocate the beginning of the piece by observing a
reduced density of grooves at that point. Reduced groove density is your
system for identifying individual items on the phonograph record. In a disk
storage system the disk drive positions the read/write head to specific
locations; therefore, it too needs a means of identifying these locations.
The fundamental system of identification is set up by the disk drive itself,
before any information is recorded on the disk. In this system of
identification the recording on the disk takes place in concentric tracks;
each track 1is divided into a number of small chunks, known as sectors, and
each sector is assigned an identifying number, called its "address".

The process of setting up this system of addresses on a blank disk is
known as formatting the disk. Generally a disk need only be formatted once,
when it is first received. The formatting process is a function of the disk
drive, so no program is required for it.

If you have a formatted disk that you can use for saving programs, then
you can continue now with the remainder of this section. However, if you do
not have a formatted disk, read the relevant selections of the Disk Reference
Manual for instructions on how to format a disk.

64

SAVING AND LOADING PROGRAMS

The Disk Catalog

A disk need only be formatted in order to save programs on it. However,
in order to load a program from a disk which has merely been formatted, you
have to tell the system exactly where the program is located on the disk, in
terms of disk sector addresses occupied. Though this approach can be used (it
is called Direct Addressing), your Wang 2200 system is prepared to assume this
burden by means of its built-in Catalog Mode statements and commands.

Your Wang system can automatically maintain a list of files stored on a
disk. The Tist contains the file names and the locations that the files
occupy. To load a particular program, you can refer to it by name, and let
the system do the rest.

The "Tist of files stored on a disk" is known as the disk "catalog"; it
is stored and maintained on the beginning sectors of the disk. A cataloged
disk thereby carries its own index with it. The area of the disk that follows
the catalog, in which the indexed programs are stored, is called the "catalog
area",

Since in some cases a disk may contain a great many relatively short
files, while in other cases it may be occupied by just a few large files, the
proportion of the disk space to be devoted to the catalog itself, versus the
catalog area, is open to your specification. Before catalog operations can be
undertaken, the catalog and catalog areas must be defined.

CAUTION:

The operation of defining the catalog and catalog area
wipes out any previous catalog, thereby denying access to
all the information previously stored in the catalog area.
Therefore, do not establish a catalog unless you are sure
that the disk you use contains nothing important.

The SCRATCH DISK statement is used to establish, a catalog (catalog
proper and catalog area) on a disk. For our purposes we can consider the
general form of the SCRATCH DISK statement as

F
SCRATCH DISK { } [LS = expression 1,] END = expression 2
R .

In addition to the fact that a system may have more than one disk drive
unit, each unit may itself be capable of handling two disks. (One model, the
2270-3 can handle three disks, but in this section we will not discuss
procedures for using the third or rightmost disk of that unit.) The
braces in the general form of the SCRATCH DISK statement say that either F or
R must be in the statement, but not both F and R. F or R is used to specify
which disk at the selected disk drive is to be operated upon by the SCRATCH
DISK statement.

If the selected disk drive is of the 2230 or 2260 series, then F in the

SCRATCH DISK statement signifies that the fixed, lTower disk is to be operated
upon, If R is specified, the removable, upper disk is used.

65

SAVING AND LOADING PROGRAMS

In the Models 2270-2 and 2270-3, F specifies the leftmost diskette port.
For the Model 2270-2, R specifies the right gort; for the 2270-3, it specifies
the middle port. If you are using the 2270-1, you must use F

The symbol, [LS = expression 1,] is enclosed in brackets to indicate
that it 1is optional. If used it specifies the number of disk sectors to be
reserved for the catalog index. For example, in the following statement:

10 SCRATCH DISK F LS = 30, END = 1023

the LS=30 specifies that 30 sectors are to be reserved for the index. Each
sector of the catalog index holds 16 entries, except the first which holds 15.
Therefore, a catalog index with 30 sectors can hold 479 file name entries. If
the [LS = expression 1,] is omitted, 24 sectors are automatically reserved for
the catalog index. The maximum number of sectors which can be reserved for
the index is 255.

The "END = expression 2" portion of the statement must always be
included. Expression 2 specifies the sector address for the end of the
catalog area. The number specified cannot be larger than the highest sector
address for the particular disk in use. The diskettes used with the 2270
series disk drives have 1024 sectors on them, addressed as sector 0 to sector

1023. For the rigid disk drives, the sectors and sector addresses are given
below.

Disk Sectors per Lowest Sector Highest Sector

Model Disk Address Address
2230-1 2400 0 2399
2230-2 4800 0 4799
2230-3 9792 0 9791
2260 19,584 0 19,583

For some operations it may be desirable to have sectors available beyond
the end of the catalog area. All operations described in this volume,
however, take place within the catalog area.

If you have a formatted but otherwise empty disk, you can establish a
catalog on it by entering and executing a one line program such as:

10 SCRATCH DISK R END = 1023

Saving and Loading Programs on a Cataloged Disk

With a formatted, cataloged disk in hand, you are ready to begin saving
programs on the disk. A program to be saved on disk and listed in the disk
catalog must have a name. The name can be up to eight characters 1long and
must uniquely identify the program file. For example, you might want to call
the 1st inventory example (Example 2.1) "INVT1".

If the inventory program is in memory, it can be saved to a cataloged
disk by keying a line such as:

:SAVE DC F "INVT1" (EXEC)

66

SAVING AND LOADING PROGRAMS

In this command the DC specifies that it 1is a disk catalog mode
operation. The F specifies the disk location, in the manner discussed above
for the SCRATCH DISK statement; R could be used instead. The characters
enclosed in quotation marks are the name.

When (EXEC) is depressed, the program is saved in the next available
sectors 1in the catalog area, and the name of the program is entered in the
catalog index, together with the program file's starting and ending sector
addresses. Al1 of this happens very rapidly; the : reappears when the
operation is complete.

Programs can be saved without regard to where they are actually recorded
on the disk. The automatic cataloging system will ensure that they are
indexed, and recorded in previously unoccupied sectors.

To load a program which has been saved on a disk, first clear memory,
and then key a line such as:

:LOAD DC F "INVT1" (EXEC)

The significance of all the parts of this command is the same as in the
SAVE statement, except LOAD reverses the operation. The system automatically
searches the catalog index for the program name, and then 1loads the program
into memory from the specified sectors.

Listing a Disk Catalog

The contents of a disk catalog index can be 1listed on the CRT for
inspection by executing

F
:LIST DC
R

where F or R specify the disk location.
The result is a list such as this:

FIXED CATALOG

INDEX SECTORS = 00024

END CAT. AREA = 01023

CURRENT END = 00055

NAME TYPE START END USED
TEST P 00024 00028 00005
CHECK6 P 00029 00038 00010
A/P PRINT P 00039 00042 00004
BINOM P 00043 00047 00005
FACTRL P 00048 00051 00004
INVTRY P 00052 00055 00004

Figure 4.2 A Disk Catalog Listing

67

SAVING AND LOADING PROGRAMS

The INDEX SECTORS and END CAT. AREA show the number of sectors
allocated to the index and the highest sector address in the catalog area.
These are the values established by the SCRATCH DISK instruction., The CURRENT
END is the address of the 1last sector to have been filled with Tive
information. It changes whenever a new file is added. Below this appears the
list of cataloged files. The P under TYPE indicates that the named file is a
program file. Data files are indicated by a D. The START, END and USED
columns give the sector addresses of the first and last sector of the named
file and the number of sectors occupied by it.

Reusing Obsolete Files

If you try to save a program onto a disk with the same name as a program
which is already on the disk, the system will not save the program, and will
report an error (ERR 79 FILE ALREADY CATALOGED). If you wish to save a
program in place of a program already saved, either because the program you
wish to save is a new version of the old program, or because the old program
is no longer of value, you must first mark the old program as obsolete. This
is done with a SCRATCH statement. For example, if you key

:SCRATCH F "INVT1" (EXEC)

the system will mark the program file called INVT1 as ‘'scratched", which
simply means that it is obsolete. If you then LIST the catalog index, the
notation "SP" appears in the "TYPE" column, indicating that the file 1is a
scratched program file. A scratched file cannot be loaded.

CAUTION:

Do not confuse the SCRATCH statement with the SCRATCH DISK
statement. SCRATCH DISK establishes a new catalog and
catalog area, and vrenders inaccessible all files
previously saved on a disk. o

Once a file has been scratched, the space it occupies can be reused.
For example, after scratching file "INVT1", you might wish to save in its
place a new version, which you wish to name "INVT2". You can do this as

follows:
:SAVE DC F ("IqVTl") "INVT2"
%N—’—\

name of name of new
scratched file, file to replace
scratched file.

If vou wish, the name of the new file can be the same as the name of the
scratched file it replaces.

In order to replace a scratched file with a new file, there must be
enough room 1in the old file space to save the new file. If you modify a
program by adding more statements to it, you may find that it will not fit
into the space occupied by the old filel In this case you will have to create
a completely new file for it. If, when you first save a program, you
anticipate that it may have to be modified several times before it is in a

68

SAVING AND LOADING PROGRAMS

final form, you can save it on the disk and specify that extra sectors be
allocated to the file space to allow room for future modifications, For
example, this statement

:SAVE DCF(4) "INVT1"

saves the program currently in memory onto the disk in the next available
sectors, and includes 1in the file 4 extra sectors. If this file is
subsequently scratched, a program could be saved over it which would require
as much as four sectors in addition to those required by INVT1. This allows a
program to be modified and expanded, and saved back into the same area as was
occupied by it prior to modification. Any number of additional sectors may be

specified for a file, provided that the resultant file fits into the catalog
area.

Review of Section 4-3

1. Though there are two different kinds of disks and disk drives available
with Wang systems, they are identical from the point of view of
programming.

2. A disk device provides direct access to the information stored on it.

3. In a process called "formatting" the recording area of a blank disk is

divided into many small units called sectors. Each sector is assigned
an identifying number called an address.

4, Your Wang system will automatically maintain a list of files saved on a
disk together with locations occupied by each file. However, the
catalog index and catalog area must first be established on a disk with
the SCRATCH DISK instruction.

5. To save a program on a cataloged disk, the SAVE DC command is used. It
has the following general form:

F
:SAVE DC { } "name"
(R
where F or R specifies the individual disk at the selected address to be
used, and "name" is the name of the program file (up to 8 characters
enclosed in quotation marks).

6. To load a program from a cataloged disk, the LOAD DC command is used. It
has the following general form:

F
:LOAD DC { "name"
R
where F or R specifies the individual disk from the selected address

to be used, and "name" is the name given to the program
during the SAVE DC operation.

69

SAVING AND LOADING PROGRAMS

7.

A list of the contents of a disk catalog index can be obtained by
executing a LIST DC command, the general form of which is:

F
:LIST DC
R

where F or R specifies the individual disk from the selected disk
address.

A program file can be marked as obsolete (scratched) by executing a
SCRATCH statement. The SCRATCH statement has the following general
form:

F
SCRATCH { } "name"
R

where F or R specifies the individual disk at the selected address, and
"name" 1is the name of the file to be scratched.

Additional parameters can be included in the SAVE DC command to specify
that the program to be saved is to replace a scratched program already
on the disk, or to specify a number of sectors to be reserved in
addition to those required to store the program. With these additional
parameters SAVE DC is written as follows.

F
(expression) "name"

SAVE DC{
expression stating number of extra sector51

F
SAVE DC{ } ("o1d file") "new file"
F
name of scratched name for program
file to be in memory to be
replaced by "new saved.
file".

70

CHAPTER 5
SELECT STATEMENTS AND
THE USE OF APRINTER

5-1 INTRODUCING DEVICE SELECTION

In the examples we have considered thus far, whenever a PRINT statement
has been executed, the output has appeared on the CRT. If you have a printer,
you may be wondering how you can make your results appear on it instead.
Before we can answer this, we must make explicit some things that we have been
able to take for granted.

Consider your system as consisting of a central processor (CPU) and a
collection of input and output (I/0) devices. A CRT and a printer are output
devices; a keyboard an input device. Tapes and disks can act as both; they
input to the CPU, and also receive output from it. Each I/0 device in your
system has a three-character address that identifies it for the CPU. An
address is assigned to a device by your Wang Service Representative at the
time the device is installed. Thereafter, the address may be considered a
permanent characteristic of the device.

Certain BASIC statements and commands cause the CPU to send information
to an output device, or receive it from an input device. These instructions
can be called I/0 instructions. PRINT and INPUT are examples of 1I/0
statements., Similarly, LIST is a command which initiates an I/0 operation.
A11 I/0 operations are grouped into classes and, whenever the CPU 1is to
perform an I/0 operation, it first checks to see what device address has been
selected for the class of I/0 operation involved. It then performs the 1I/0
operation at the selected device address.

How have we been able to get along so far without selecting I/0 devices?
During Master Initialization (power ong, the CPU automatically selects a
device address for each class of operation. Unless you select different
device addresses yourself, the CPU will use the device address it has
selected. These addresses, which are selected by Master Initialization, are
known as the default addresses.

The default address for PRINT operations is 005, the address of the CRT,
Therefore, the PRINT statements in our programs have caused output to go to
the CRT. The LIST default address is also 005.

The SELECT Statement

To cause PRINT output to appear on a printer, you must first execute a
SELECT statement that substitutes the address of your printer for the

71

SELECT STATEMENTS AND THE USE OF A PRINTER

currently selected PRINT address. For example, you might put at the beginning
of your program

10 SELECT PRINT 215

Thereafter, when any PRINT statement is encountered, the output will appear at
address 215, (Address 215 is the normal address assigned to a 2221, 2221W,
2231W, 2231 or 2261 printer.) If, at some later point in the program, you want
PRINT output to again appear on the CRT, you can write a statement such as:

120 SELECT PRINT 005
This restores the CRT address, as the address for PRINT operations.

The SELECT statement can appear in a program with a 1line number, as
shown above, but it also can be executed as if it were a command, without a
line number. For example, if you key

tSELECT PRINT 215 (EXEC)

the address 215 is substituted for the currently selected address for PRINT
operations. This occurs immediately upon depressing (EXEC); the statement
itself is not saved in memory.

To produce a printed listing of a program, you must first select the
printer for LIST operations. To do this key

:SELECT LIST 215 (EXEC)

Now, whenever you issue a LIST command, the output will appear at address 215.
Note that the printer can be selected for LIST operations and the CRT for
PRINT operations, or vice versa. As separate classes of I/0 operations, PRINT
and LIST are totally independent.

I/0 Classes

So far we have seen two different classes of I/0 operation, LIST and
PRINT. These are referred to as '"classes of I/0 operations" because more than
one BASIC statement or command may fall into a particular class. For example,
the LIST DC command, which lists the contents of a disk catalog, causes output
at the address selected for LIST operations.

You may be wondering how many different classes of I/0 operations there
are, In addition to LIST and PRINT, there are Console Input (CI), Console
Output (CO), INPUT, DISK, TAPE, and PLOT. DISK and TAPE selection is
discussed in the chapters that deal with these operations; PLOT is outside the
scope of this manual.

The address specified for INPUT class operations is the address of the
device from which the CPU will receive data when an INPUT class statement is
executed. The default selection for INPUT operations is address 001, the
keyboard. Though other devices, such as a card reader, can be used with INPUT
statements, these devices are not discussed in this manual.

The INPUT statement always initiates two 1I/0 operations. It always
outputs a question mark in addition to receiving entered data. Furthermore,
the received data itself is output; it appears as it is keyed in. The

72

SELECT STATEMENTS AND THE USE OF A PRINTER

question mark, prompt, and entered data are output at the address currently
selected for Console Output (CO). The CRT, address 005, is the default
selection for Console Output. Therefore, the prompt, question mark, and data
from each of our example INPUT statements, have appeared on the CRT.

Console Output is a class of I/0 operation which defines the output
address for all command-generated messages (other than LIST), and for certain
BASIC statements which generate operator messages. Included in this Tlatter
category, for example, 1is the question mark of the INPUT statement; in the
former the

READY

of RESET. A complete list of CO class output is given in Appendix D.

The default address for Console Input (CI) dis 001, the keyboard.
Console Input is a class of input operations that takes place whenever the
colon (:) is displayed, such as inputting statement lines and commands.

Line Length

For Console Output, PRINT, and LIST class I/0 operations a T1line 1length
can be specified with the SELECT statement. For example, if your system is
equipped with a 2221W printer, which has a 1ine length of 132 characters, you
might wish to write a statement such as

:10 SELECT PRINT 215 (132)

This will select address 215 for PRINT operations, and specify the 1ine length
of the device as 132. The effect of specifying 132 is that during a PRINT
statement, the system will 1issue a carriage return when the next print
element will cause the total line length to exceed 132 characters. During
Master Initialization the 1line 1length is set to 64, the width of the CRT.
Unless a line length is specified in a SELECT statement, the 1ine 1length
remains at its previous value.

Summary

The general form of the SELECT statement, insofar as we have considered
it here, is

SELECT select parameter [,select parameter...]

CI device address

co device address '[(length)]

LIST device address [(length)]

PRINT device address [(length)]
where select parameter =< INPUT device address

DISK device address

TAPE device address

PLOT device address

and

length = an integer specifying the desired 1line length < 256.
73

SELECT STATEMENTS AND THE USE OF A PRINTER

Notice that a single SELECT statement can effect more than one selection. For
example, you can write

10 SELECT PRINT 215 (132), CO 215 (132)

which selects address 215 for PRINT and CO operations, with a Tine 1length of
132 characters.

NOTE:

If you select a non-existent device for CI or CO class
operations, or an invalid (non-input) device for CI, your
system becomes 1locked out. It must then be Master
Initialized, which will clear all program text and
variables.

Standard device addresses for the peripherals discussed in this manual
are given below:

1/0 DEVICE CATEGORY STANDARD ADDRESSES
KEYBOARD 001,002,003,004
CRT 005,006,007,008
TAPE CASSETTE DRIVES 10A,10B,10C,10D,10E,10F
LINE PRINTERS (Models 2221, 215,216
2231,2261,2221W)
OUTPUT WRITER (Model 2201) 211,212
DISK DRIVES 310,320,330

Normally the first address shown is assigned to the first device of that
category. For example, if a system contains only one keyboard and one CRT,
they are normally assigned addresses 001 and 005 respectively.

Selected addresses remain selected until replaced in any of three ways:

1) Another SELECT statement is executed for that class of 1/0
operations.

2) The system is Master Initialized. This reselects all the default
addresses.

3) CLEAR (EXEC) is executed. This selects the current Console Input
(CI) device for INPUT class operations, and the current Console
Output (CO) device for PRINT and LIST class operations. The other
I/0 class operations, which have been introduced in this section,
remain unchanged.

5-2 USING A PRINTER

In the last section we introduced the I1/0 addressing scheme of a Wang
2200 system. In this section we want to briefly consider some of the more
important characteristics of printers. If your system is equipped with a
Model 2221W, 2221, 2231, 2231W or 2261 printer, read the section below dealing

74

SELECT STATEMENTS AND THE USE OF A PRINTER

with the 2221W printer. A separate section is devoted to the 2201 Output
Writer.

Using The 2221W Printer

As we discussed in the last section, the 2221W printer must be selected
for output before it can be used. Normally, in a system with one printer, the
2221W is assigned address 215; therefore, to select the printer for LIST and
PRINT operations, you can execute a statement such as

:SELECT PRINT 215 (132), LIST 215 (132)

This SELECT operation readies the printer only from the programming
standpoint. Physically, paper must be mounted, the printer power must be
turned on, and the manual SELECT switch on the printer must be depressed to
ready the printer to receive output. Do not confuse the functions of the
SELECT switch on the printer with the SELECT instruction. The printer cannot
print unless the SELECT switch is on (illuminated), but its being on or off
has nothing to do with whether the address of the printer has been selected
for any class of I/0 operations. For information about physically readying
the printer for operation, see your printer reference manual. One programming
note, though: you shouldn't select a T1ine length greater than the width of
the currently mounted paper.

Once a printer is selected for LIST operations, if you enter a program
and key

:LIST (EXEC)

the program 1listing is printed on the printer, instead of appearing on the
CRT. It appears exactly as it appears on the CRT, except that a Tine of more
than 64 characters can be continued on a wider 1ine, instead of being broken.

There is one major difference between the way a 2221W type printer
outputs PRINT statements, and the way the CRT does. To appreciate this, enter
and execute the following program.

10 SELECT PRINT 005
20 N=N+1

30 PRINT 2TN;
40 IF N<20 THEN 20

the result appears as follows on the CRT.

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
16384 32768 65536 131072 262144 524288 1048576

Now change statement 10 to
10 SELECT PRINT 215 (132)
Execute the program with full-width paper mounted. Nothing is printed.
Nothing is printed because the printer doesn't print each character as

it receives it. It waits until the CPU tells it that an entire line is
complete, meanwhile keeping the characters it receives in a buffer, The

75

SELECT STATEMENTS AND THE USE OF A PRINTER

buffer is simply a place for temporarily storing characters, until the signal
to print the line is received. The signal it awaits from the CPU is a
carriage return code.

Looking back at our example, we see that since 1line 30 ends with a
semicolon (3), and the line length does not exceed 132 characters, a carriage
return is never issued by the CPU; hence, the buffer contents are never
printed.

To print the buffer, which still contains the output from this program,
add this 1ine to your program

50 PRINT
and key RUN 50 (EXEC).

Statement 50 issues a carriage return code. This code says to the
printer, "print the contents of the buffer and advance the paper one 1line".
In this case, the buffer contents had been there since the last execution of
the program. If you rerun the program with RUN (EXEC), the addition of
statement 50 will now let the program function as it should.

As a programmer it is your responsibility to ensure that the output from
a PRINT statement is actually printed. Problems are most 1likely to occur when
PRINT statements with trailing element separators are executed within a Toop,
such as in the above example. By contrast any PRINT statement without a
semicolon or comma at the end will always print the buffer.

Now change the example program to print in zone format

10 SELECT PRINT 215 (132)
20 N=N+1

30 PRINT 27N,

40 IF N<20 THEN 20

50 PRINT

The output from this appears in 8 zones across the width of the printer. Just
as with the CRT, the zones are 16 characters wide, only now there are more of
them. If Tine 50 is omitted from this program, two lines of output will be
printed, because the CPU automatically issues a carriage return when a line is
filled; however, without statement 50 to output the carriage return code, the
last line is not printed.

The 2201 Output Writer

The 2201 Output Writer must be selected for output before it can be
used. Normally in a system with just one 2201, the 2201 is assigned address
211. Therefore to select the 2201 for LIST and PRINT operations, you can
execute a statement such as:

:SELECT PRINT 211(157), LIST 211(157)

The carriage width of the 2201 is 157 characters; therefore, 157 1is the
maximum line length which should be used in a SELECT statement.

76

SELECT STATEMENTS AND THE USE OF A PRINTER

The select operation shown above readies the output writer only from the
programming standpoint. Physically, paper must be mounted, power must be
turned on, and the MANUAL/AUTO switch set to AUTO. For information about
physically readying the Output Writer to receive output, see the 2201
Reference Manual.

With the Output Writer selected for LIST operations, if you enter a
program and key

:LIST (EXEC)
your program listing is typed on the Output Writer.
The standard typing element on the 2201 1is Prestige Elite 72. The

character set of this element causes three characters to print differently on
the Output Writer than they do on the CRT.

CRT OUTPUT WRITER
< [
>]
T !

The 2201 Output Writer has a left margin control above the keyboard.
This can be used to set the left margin to any carriage position. However, if
it is set to any position other than 0, during AUTO operation the TAB()
parameter will not tab to column positions as marked on the front of the 2201.
Rather, the position of the Tleft margin barrier will function as column
position 0, and TAB() operations will be displaced accordingly.

Review of Chapter 5

1. Every input or output device in your system has a unique '"device
address". The three character device address is the device's
identification for the processor.

2. Device addresses are set by your Wang Service Representative at the time
the system is installed. Conventional device addresses are:

CRT 005

Keyboard 001

Tape Cassette Drives 10A, 10B, 10C...10F
Printer 215

Output Writer 211

Disk Drives 310, 320, 330

3. Each input or output operation must take place at a particular device
address.

4, For the purpose of determining the deyice address for an operation,
input and output operations are grouped into classes. Each class has a
device address associated with it. When the processor must execute an
input or output operation, it determines what class the operation falls

77

SELECT STATEMENTS AND THE USE OF A PRINTER

into and executes the operation at the device address associated with
that class. The I/0 classes are:

Console Input (CI) LIST
Console Output (CO) PRINT
TAPE PLOT
DISK INPUT

During Master Initialization, the processor automatically associates
device addresses with each I/0 class. At any time the user may change
the device address associated with a particular I/0 class. This is done
by means of a SELECT statement. For example,

10 SELECT LIST 215

To cause output from the PRINT statement to appear on a printer rather
than a CRT, a SELECT statement such as

SELECT PRINT 215
must be executed.
On the 2221W, 2231W, 2231, 2221, and 2261 model printers, a 1line is
printed only when a carriage return code is received, or the line is
filled. Therefore, if PRINT statements end with a comma or semicolon, a
blank PRINT statement may be needed to issue the carriage return code.

Line length can be changed by including a line length parameter in the
SELECT statement. For example,

10 SELECT PRINT 215 (132)
132 is the 1line length.

78

CHAPTER 6
FUNCTIONS

6-1 INTRODUCTION

Wang 2200 systems have a built-in capability to evaluate a variety of
mathematical functions. Each function is evaluated for a single given
quantity called its "argument". For example, the function SQR() yields the
square root of its argument. If an argument of 25 is supplied, the function

SQR(25)
is equal to 5.

Functions are not BASIC statements by themselves; rather, they can be
used within a BASIC statement wherever an expression can be used. The
argument value of the function is supplied by an expression. Therefore, a
function can appear within the argument of another function. For example,

LOG(2+TAN(A))
There is no limit to this "nesting" of functions.

Additional functions, to supplement the built-in functions, can be
created in a program by using the "define function" statement, DEFFN.

The built-in functions that find general use in both commercial and
technical applications are discussed in Section 6-2. Most of the functions
discussed in Sections 6-3 and 6-4 are principally used 1in programming
technical applications. Section 6-5 introduces the DEFFN statement, and
should be of general interest.

6-2 THE INTEGER, ABSOLUTE VALUE, AND SIGN FUNCTIONS

The Integer Function

The form of the integer function is:
INT (expression)
The INT function yields the whole number (integer) with the greatest value
less than or equal to the value of the expression. For example, INT(2.5) is

equal to 2; INT(14.76) is equal to 14. Carefully examine the results of this
program:

79

FUNCTIONS

10 PRINT "LINE 10", INT(3.5), INT(2*3.5), INT(3.5)*2
20 PRINT "LINE 20", INT (-3.6)
30 PRINT "LINE 30", INT(8)

yields
LINE 10 3 7 6
LINE 20 -4
LINE 30 8

Notice in particular that INT(-3.6) is -4 not -3.

The Absolute Value Function

The form of the Absolute Value Function is:
ABS (expression)

The ABS function yields the absolute value of the expression. Absolute value
of Q is the value of Q if Q is zero or positive, and -Q if Q is negative.

For example,
10 PRINT ABS(-4.92), ABS(4.92)
20 PRINT ABS(3*-4.2*2)
30 PRINT ABS(0)
yields
4,92 4.92

25.2
0

The Sign Function

The form of the sign function is
SGN (expression)
SGN() is defined by
If Q >0, SGN(Q) yields 1
If Q = 0, SGN(Q) yields O
If Q <0, SGN(Q) yields -1

For example,

10 PRINT SGN(~3.1416), SGN(7*8-56)
20 PRINT SGN(11370,2)

yields

80

FUNCTIONS

Some Simple Uses of INT, ABS, and SGN Functions

In your Wang system division is always carried out to the full 13 digits
of precision. Sometimes, however, you may want a whole number result
(quotient) and a remainder. For example, when dividing 19 by 3, you may want
an answer such as "6, remainder 1" rather than 6.333333333333.

The problems that require this type of result are often called problems
in "modulo arithmetic". To choose a very simple example, suppose you want to
be able to enter some number of inches, and then convert the entered number to
feet and inches. If you simply divide the entered number by 12, you will
obtain a whole number and decimal fraction, whenever the entry isn't a
multiple of 12. What you want is the whole number portion of this quotient
and a whole number remainder. The following program uses INT to recover the
integer portion of the quotient, and then uses that result to calculate the
remainder.

Example 6.1 Using INT() to Obtain Quotient and Remainder

10 REM ILLUSTRATION OF USE OF INT FUNCTION

20 REM CONVERT INCHES TO FEET/INCHES

30 INPUT "NO. OF INCHES", D

40 REM FEET = INT OF (D DIVIDED BY 12)

50 F=INT(D/12)

60 REM EXPRESSION D-(12*F) IS THE REMAINDER IN INCHES
70 PRINT F; "FEET", D-(12*F); "INCHES"

The conversion program shown in Example 6.1 requires that a non-negative
number of inches be entered.

In general, to obtain a whole number quotient, for quotients that may be
either positive or negative, a means of simply truncating the decimal fraction
is needed. INT() alone won't work. For example, if you divide 19 by -3, the
quotient 1is -6.333333333333. However, INT (-6.333333333333) equals -7,
because INT yields the 1largest integer less than or equal to the value. A
means of simply cutting off the .333... is needed regardless of whether the
value is positive or negative.

To do this truncation, take the absolute value of the quotient, Q
ABS(Q)
This yields a positive value, Then take the INT of this positive quantity
INT(ABS(Q))

Since the INT() argument is always positive, we can be sure that INT() simply
cuts off the decimal fraction. Now the original sign of Q must be restored to
the value INT(ABS(Q)). The SGN() function can be used. The expression
INT(ABS(Q)) can simply be multiplied by SGN(Q). SGN(Q) is -1 if Q is minus.
Multiplying the positive value INT(ABS(Q)) by -1 simply changes the sign. If
Q is positive, SGN(Q) equals +1; multiplying by +1 will 1leave the value
unchanged. Truncated Q, call it Q1, is as follows:

70 REM ASSIGN TRUNCATED VALUE OF Q TO Q1
80 Q1 = INT(ABS(Q))*SGN(Q)

81

FUNCTIONS

The following program illustrates our generalized results.
Example 6.2 Integer Quotient and Remainder Using INT(), ABS() and SGN()

10 REM ILLUSTRATION OF INT, ABS, AND SGN FUNCTIONS

20 REM

30 REM FOR AN ENTERED DIVIDEND AND DIVISOR

40 REM RETURNS WHOLE NUMBER QUOTIENT AND REMAINDER

50 REM SIGN OF THE DIVIDEND IS THE SIGN OF THE REMAINDER
60 REM **** D = DIVIDEND

70 REM **** DO = DIVISOR

80 REM ***x Q = QUOTIENT

90 REM **** Q1 = TRUNCATED QUOTIENT
100 REM **** R = REMAINDER

110 REM

120 REM

130 INPUT "DIVIDEND, DIVISOR", D,DO
140 Q=D/DO

150 REM TRUNCATE THE QUOTIENT
160 Q1=INT(ABS(Q))*SGN(Q)
170 REM CALCULATE REMAINDER
180 R=D-(D0*Q1)

190 REM OUTPUT RESULTS

200 PRINT

210 PRINT "DIVIDEND", D
220 PRINT "DIVISOR", DO
230 PRINT "QUOTIENT",Q1
240 PRINT "REMAINDER",R
250 PRINT "PROOF",R+Q1*DO

ABS() IN IF...THEN

In Section 3-5 we mentioned the possibility of exploiting the Tlogic of
arithmetic 1in an expression to test "multiple" conditions in an IF...THEN
statement, and gave as an example:

50 IF W*X*Y*Z = 0 THEN 480

This is the equivalent of saying "If Wor Xor Y or Z equals 0O then 480."
Suppose, though, we wanted to effect a branch only if all the variables are
zero, i.e., "If Wand X and Y and Z equal 0." With the absolute value
function and addition we can conveniently simulate the "and" connective as
follows:

50 IF ABS(W)+ABS(X)+ABS(Y)+ABS(Z)=0 THEN 480

If we want to effect a branch to 480 on the condition "J=4 and K=6*Q", we can
write the single statement

IF ABS(J-4)+ABS(K-6*Q)=0 THEN 480

82

FUNCTIONS

Suppose we want to test a variable X, to see if it 1ies within the range
-3 < X< 3, and branch to 200 if it is within this range. We could write

40 IF -3>=X THEN 60
50 IF X<3 THEN 200
60 REM OUTSIDE RANGE

200 REM WITHIN RANGE
However, using the ABS function we can perform this test in one statement:
40 IF ABS(X)< 3 THEN 200
50 REM OUTSIDE RANGE
200 REM WITHIN RANGE

We are able to test in this fashion because the midpoint of the range
lies exactly at zero. However, any continuous range can be "moved" so that
its midpoint is 0, and then tested in this manner with the ABS function.

For example, suppose the conditions are the same as above except that
the range is 1 <=X< =6, The midpoint of this range is 3.5. In either
direction from this midpoint, 2.5 units away,lies a range boundary (i.e.,
3.5 + 2.5=6, 3.5 -2.5=1). Therefore, for X-3.5 the boundaries are +2.5
and -2.5 with 0 as midpoint. Our test becomes

40 IF ABS (X =-3.5)<= 2.5 THEN 200
50 REM OUTSIDE RANGE
200 REM WITHIN RANGE

In general, if the acceptable range of X is L < X < U, then the
statement

50 IF ABS(X-(U+L)/2)<(U-L)/2 THEN 200
effects a branch to 200 if X is within the range.

6-3 n_ AND THE RANDOM NUMBER FUNCTION

The value 7, to 13 significant digits, is permanently stored in the Wang
2200 system, and may be incorporated into any expression by depressing the key
marked = or keying #PI. Regardless of how it is entered, it always appears on
the screen as #PI. For example,

10 PRINT #PI, 4*#PI
produces

3.14159265359 12.56637061436

83

FUNCTIONS

The Random Number Function

The random number function produces random values between 0 and 1. The
form of the function is:

RND(expression)

In the RND function, there are only two significant argument values, zero and
non-zero.

The RND() function may be thought of as a means for extracting a random
number between 0 and 1 from a fixed "1ist" of such numbers. Each time RND()
is executed, with any non-zero argument, the next number on the "list" is
supplied. Thus, the first time RND() is executed after Master Initialization,
with a non-zero argument, it yields the first random number in the list; the
second time it yields the second, etc. The value of the argument is
irrelevant to the value yielded by RND(). As Tong as the argument is
non-zero, RND() gets the next number in its "1ist".

If the value of the RND() argument is zero, the "zeroth" random number
is produced, the "1ist" pointer is reset, and the next non-zero argument RND()
yields the first random number in the 1ist.

The following program illustrates the operation of RND(0). The values
produced by lines 10-30 presume that RND() has not been executed after Master
Initialization.

10 PRINT RND(1)
20 PRINT RND(1)
30 PRINT RND(1)
40 PRINT RND(0)
50 PRINT RND(5)
60 PRINT RND(5)
70 PRINT RND(11

Execution produces:

.22762279975
.39869185804
.391328921446
.89459771698
.22762279975
.39869185804
.391328921446

Notice that the first three values are identical to the 1last three,
which follow RND(O). RND(O) has reset the "Tist".

RND(0) is useful in debugging programs that use RND() since it allows
the same results to be produced each time the program is run.

Using RND() to Produce Random Integers

To produce a random integer R such that

X< Rc«Y

84

FUNCTIONS

a statement of the form
100 R=INT (RND(1)*(Y+1-X)+X)

can be used. For example, statement 80 generates a random integer, R, between
1 and 50:

80 R = INT((RND(1)*49)+1)

6-4 THE TRIGONOMETRIC, LOGARITHMIC, AND SQUARE ROOT FUNCTIONS

The trigonometric, logarithmic, and square root functions are shown in
the table below.

Function Meaning
SIN(expression) Find the sine of the
expression,
COS(expression) Find the cosine of
the expression.
TAN(expression) Find the tangent of
the expression.
ARCSIN(expression) Find the arcsine of
the expression.
ARCCOS (expression) Find the arccosine of
the expression.
ARCTAN(expression) Find the arctangent
of the expression.
LOG(expression) Find the natural
logarithm of the
expression.
EXP(expression) Find the value of e

raised to the value
of the expression.

SQR(expression) Find the square root
of the expression.

For all the trigonometric functions the argument is treated as radians,
unless degrees or grads has been selected in a SELECT statement. To SELECT
degrees execute:

:SELECT D

85

FUNCTIONS

prior to calculations, or include SELECT D as a program statement before
calculations. Degree measure is then assumed for all trig functions until a
SELECT statement selects radians or grads, or the system 1is Master
Initialized.

"R" and "G" 1in a SELECT statement specify radians and grads,
respectively.

In addition to "ARCTAN", the notation ATN(expression) may also be used
to specify the arctangent function.

For any value, V, V4.5 is the equivalent of SQR(V); however, SQR(V)
executes in slightly less time, and is more readable.

6-5 THE DEFFN STATEMENT

The "define function", DEFFN, statement allows you to define, within a
program, additional functions of one variable beyond those discussed in the
preceding sections. Defined functions may be used anywhere in the program,
exactly the way the built-in functions are used.

For example, you might want to define the functions, hyperbolic sine,
sinh, and hyperbolic cosine, cosh. This can be done as follows:

Example 6.3 Defining SINH and COSH with a DEFFN

1010 REM DEFINE HYPERBOLIC SINE (SINH)
1020 DEFFN S(X) = (EXP(X) - EXP(-X))/2
1030 REM DEFINE HYPERBOLIC COSINE (COSH)
1040 DEFFN C(X) = (EXP(X) + EXP(-X))/2

The letter that follows the keyword "DEFFN", "S" and "C" in the example,
is the name you give to the function. Any letter or digit can serve as a
function. name. To use a defined function in the program in which it appears,
you refer to it by name. For example, FNC(8) would be the hyperbolic cosine,
as defined at 1ine 1040 above, at the argument value 8. FNS(25) is the
hyperbolic sine of 25, defined at 1line 1020. In each case the ITletter
following "FN" is the name of the function.

When the system encounters an FN reference to a defined function, it
first evaluates the argument (any expression may be used), then finds the
proper DEFFN and uses the argument value as the value of the dummy variable in
the DEFFN. In the above example, the dummy variable is X.

The DEFFN statement can appear anywhere in a program, without regard to
where the references to the function appear. When encountered in the normal
sequence of execution, the DEFFN statement has no effect; it only comes into
play when the function it defines appears in another statement.

In effect, the DEFFN statement saves you the trouble of constantly

reentering frequently used expressions, and saves the memory space that these
expressions would occupy.

86

FUNCTIONS

The general form of the DEFFN is as follows:

DEFFN a (v) = expression
" Keyword Function ™ Dummy
Name Variable
where: a is any letter or digit.

v is any valid numeric variable form, i.e., A, Z, AO, 79, etc.

The general form of the reference to a defined function is:

FN a (expression)
N\ A\
Function /'Expression whose value is given to the
Name dummy variable in the DEFFN statement.

The v in the DEFFN statement form is called a dummy variable because it
is simply a place holder. Evaluation of the function has no effect on a true
variable of the same name, used elsewhere in the program. Notice that in
Example 6.3 the same dummy variable, X, is used in both DEFFN's.

The expression in the DEFFN statement may contain another defined
function, provided that the other function does not refer back to it. The
system can evaluate up to five levels of defined functions nested within
defined functions.

Some of the operations described in Section 6-2 can be incorporated into
DEFFN statements. For example, you might wish to define the truncate function
(see Tines 150 and 160 of Example 6.2).

90 REM TRUNCATE FUNCTION
100 DEFFN T(X) = INT(ABS(X))*SGN(X)

Many applications require that values be rounded to two decimal places.
The following function accomplishes this:

Example 6.4 A DEFFN for Rounding to Two Decimal Places

70 REM ROUND TO TWO DECIMAL PLACES
80 DEFFN R(X) = SGN(X)*INT(ABS(X)*100+.5)/100

With this DEFFN in a program, to round any value in a variable, V, you can
write a statement such as:

60 V = FNR(V)
or if the value of the variable is simply being printed, you could write

470 PRINT FNR(V)

87

FUNCTIONS

Review of Chapter 6

Functions can be used within BASIC statements wherever expressions can
be used.

Functions are evaluated at a single given quantity <called the
"argument". Any expression may be used to specify an argument.

Functions may be nested in the arguments of other functions. There is
no limit to this nesting.

The value m may be used in an expression by keying = or #PI.
After Master Initialization, all trigonometric arguments are considered
to be in radians. The unit of measure can be changed at any time with a
SELECT statement.

SELECT D selects degrees.

SELECT R selects radians.

SELECT G selects grads.
The DEFFN statement is used to define functions of one variable for use
in a program. For example, this statement defines a function named "R",
which rounds a value to two decimal places. ’

80 DEFFN R(X) = SGN(X)*INT(ABS(X)*100+.5)/100

This defined function can be used anywhere an expression can be used.
It is used in this form

FNR(expression)

where R is the name of the function.

88

CHAPTER 7
LOOPS

7-1 THE PARTS OF A LOOP

A block of statements that is executed repeatedly is called a "loop".
Loops are one of the most important and widely used program structures. The
inventory program, the factorial program, and the powers-of-two program
(Examples 2.1, 2.2 and 3.2) all contained loops.

Unlike the loops in factorial and powers-of-two programs, the inventory
program Tloop never ends. It has no built-in "exit"; to end the program, you
must key RESET. In this chapter we will be considering the more common type
of 1loop, that has an "exit" built in. Let's look at a powers-of-two program
again to see what makes up a loop.

Example 7.1 A Loop to Print Powers of Two

110 REM LOOP BEGINS
120 PRINT 24N;

130 N=N+1

140 IF N<=20 THEN 120
150 REM LOOP ENDED
160 PRINT "DONE"

Keying RUN (EXEC) sets N to zero. Statement 120 does all the “useful
work" of the 1loop, which simply consists of printing the value 2tN.
Statement 130 changes the value of N, so that the next time through the
loop a new value will be printed. 140 asks, "Repeat the Toop?" If the
answer is "no", it Tlets the normal sequence of execution prevail,
thereby providing an exit from the loop.

In general, four components of a loop can be distinguished, though not
all loops exhibit all of them. The functional parts of a loop are:

1. Set-up: operations that take place before the loop actually begins,
but which are necessary if the loop is to execute properly. This
includes, principally, setting any 1loop counters to their proper
initial values. In Example 7.1, RUN(EXEC) did this job.

2. Body of the Loop: consists of all the processing which is to be
repeatedly performed. (Line 120 in Example 7.1.)

89

LOOPS

3. Modification of a Key Variable: at least one key variable, to be
tested at "Test/Exit", is assigned a new value. Frequently this
takes the form of adding a quantity to the key variable's old value,
in which case the key variable is called a "counter." In Example 7.1
line 130 modifies the key variable N.

4. Test/Exit: the key variable or variables are tested to determine
whet?er the Toop should be repeated or exited. (Line 140 of Example
7.1.

Let's Took at a program that uses a loop, and clearly shows all four
loop components. Suppose we want to see how varying the interest rate affects
monthly mortgage payments for a given mortgage amount and repayment term. We
would like the calculations to be performed for 5%, 6%, 7%.~.12% interest
rates. The formula for calculating monthly payment is:

I
P \rz00.
+

M:
T\ =127
1- (1 1200)

The program shown in Example 7.2 achieves the desired results. The four
parts of a loop are identified by REM statements with asterisks. Enter and
execute the program. (If your system doesn't have a printer, eliminate
statement 160.)

Example 7.2 Monthly Payments as Interest Varies from 5% to 12%

110 REM ($MORT1) MONTHLY PAYMENT FOR INTEREST 5% TO 12%
120 REM OPERATOR ENTERS VALUES FOR PRINCIPAL, TERM

130 INPUT "ENTER PRINCIPAL",P

140 INPUT "ENTER MORTGAGE TERM IN YEARS", T

150 REM PRINT HEADINGS

160 SELECT PRINT 215 (80)

170 PRINT ,, "INTEREST","MONTHLY"

180 PRINT "PRINCIPAL", "TERM","RATE","PAYMENT"

190 PRINT
200 REM **** | Q0P SET-UP *¥**
210 I=5

220 REM **** BODY OF LOQP ¥
230 M=P*(1/1200)/(1-(1+1/1200) *(-12*T))

240 REM ROUND M TO 2 DECIMAL PLACES

250 M2 = SGN(M)*INT (ABS(M)*100+.5)/100

260 PRINT "$";P, T;"VEARS", I "3", "§"; M2
270 REM **** MODIFY KEY VARIABLE ***

280 I=1+1

290 REM **** TEST/ REPEAT LOOP? ¥

300 IF I<= 12 THEN 230

310 REM LOOP COMPLETE

320 PRINT

330 PRINT "----- DONE -----"
340 SELECT PRINT 005 (64)

90

LOOFS

In the body of the loop, statement 230 uses the formula given above to
calculate the monthly payment, and assigns the calculated amount to M.
250 then rounds M to 2 decimal places using the formula given in Section
6-5. These two operations could have been combined into one; the
resultant expression could have been placed as the last print element in
260, However, the combined formulas would have been cumbersomeiand
confusing, The following is an example of the program's output:

INTEREST MONTHLY

PRINCIPAL TERM RATE PAYMENT

$ 20000 30 YEARS 5% $ 107.36
$ 20000 30 YEARS 6 % $ 119.91
$ 20000 30 YEARS 7% $ 133.06
$ 20000 30 YEARS 8 % $ 146.75
$ 20000 30 YEARS 9 % $ 160.92
$ 20000 30 YEARS 10 % $ 175.51
$ 20000 30 YEARS 1 % $ 190.46
$ 20000 30 YEARS 12 % $ 205.72
----- DONE -----

In Examples 7.1 and 7.2 the key variable 1is a kind of counter. It
"counts" the number of times the loop has been processed. In general, if a
fixed quantity (positive or negative) is added to a variable each time through
a loop, and the value of this variable determines when processing is complete,
then the variable is called a "counter". Loops controlled by counters are so
frequently used, that BASIC has a pair of statements designed to make it easy
to program them. These statements are FOR...TO and NEXT.

7-2 CONTROLLING LOOPS WITH FOR...TO AND NEXT

The FOR...TO and NEXT statements are always used together. They make
programming counter controlled loops an easy, straightforward operation. The
program shown in Example 7.3 performs identically to the print powers of two
program shown in Example 7.1 It uses FOR...TO and NEXT to control the Tloop.

Example 7.3 Powers of Two Using FOR...TO and NEXT

110 REM LOOP BEGINS

120 FOR N =0 TO 20
130 PRINT 2%N;
140 NEXT N

150 REM LOOP ENDED

160 PRINT "DONE"

FOR...TO and NEXT mark the boundaries of the loop. FOR...TO specifies
the counter variable, assigns its initial value, and specifies the range of
values over which the loop is to be repeated. NEXT represents the end of the
loop, and decides whether or not to repeat the loop. If the Toop is to be
repeated, NEXT adds 1 to the counter variable, and branches back to the
statement following FOR...TO.

91

LOOPS

Let's Took at the step-by-step execution of the 1loop in Example 7.3.
The FOR...TO statement at line 120 of the program does this:

1. It designates N as the variable that contains the counter.
2. It assigns zero to N. Zero is N's initial value for the loop.

3. It says this loop is to be repeated as long as N is less than or
equal to 20. It saves this information in a special part of memory
for use by the NEXT statement.

Statement 130 makes up the body of the 1loop. Of course, in other
programs the processing that takes place inside a loop could require many
statements. An unlimited number of statements may appear within a FOR...
TO/NEXT loop. (A FOR...TO/NEXT loop may contain branching statements, and may
even contain other loops within itself. We'll look at these two possibilities
in Section 7-4.)

Despite its simple appearance, the NEXT statement completely controls
the repeated execution of the loop. The keyword "NEXT" is always followed by
the variable that is being used as the loop counter. The variable serves as a
place to keep the counter and as a name pointing to the Tloop's beginning.
Thus, the "N" in NEXT N says, "This loop has its counter in N and begins at
the FOR N=... TO... statement.®

When the system executes the NEXT statement of Example 7.3, it does
this:

It evaluates N+1,

1. If N+1 is less than or equal to 20, the value N+1 is assigned to N
and a branch to Tine 130 is made. Note that the branch is made to
the statement which follows the FOR...TO statement.

2. If the sum N+1 is greater than 20, NEXT N decides "The 1looping is
complete". Since the data saved by step 3 of the FOR...TO statement
is no 1longer needed, NEXT clears it from the "special part of
memory" where it was being saved. NEXT then exits the 1loop by
letting the normal sequence of execution prevail. (Notice that when
the 1loop ends, the value N+1 is not assigned to N; N retains the
last value it had which was less than or equal to 20.)

We can see that the single statement NEXT N in Example 7.3 achieves the
same result as statements 30 and 40 of Example 7.1. NEXT N can execute only
because the FOR...TO statement has saved the maximum value of the counter, and
marked the beginning of the loop. NEXT can never be used alone; the system
must always have previously executed a FOR...TO.

You may notice that FOR...TO and NEXT didn't eliminate any statements in
this program. This is true because the initial value of N is 0, which Tet
Example 7.1 depend upon RUN (EXEC) to do the set-up. Usually, this is not the
case. Example 7.4, which uses FOR,...TO and NEXT in the monthly payment
problem, illustrates the real convenience of these statements. However, an
important feature of FOR...TO is that it says clearly to anyone looking at the
program listing, "A Toop begins here, and is executed this many times."

92

LOOPS

Now look at how the problem of Example 7.2 1is solved in Example 7.4

using FOR...TO and NEXT. Once again, we've marked off the parts of the loop
with asterisked REM statements.

Example 7.4 Monthly Payment Problem with FOR...TO and NEXT

100 REM ($MORT2) MONTHLY PAYMENT FOR INTEREST 5% to 12%
120 REM OPERATOR ENTERS VALUES FOR PRINCIPAL, TERM
130 INPUT "ENTER PRINCIPAL",P

140 INPUT "ENTER MORTGAGE TERM IN YEARS", T

150 REM PRINT HEADINGS

160 SELECT PRINT 215 (80)

170 PRINT ,, "INTEREST", "MONTHLY"

180 PRINT "PRINCIPAL", "TERM", "RATE", "PAYMENT"
190 PRINT

200 REM **** | Q0P SET-UP ****

210 FOR I =5 T0 12

220 REM **** BODY OF LOQP ****

230 M=P*(1/1200)/(1-(1+1/1200)T(-12*T))

240 REM ROUND

250 M2 = SGN(M)*INT(ABS(M)*100+.5)/100

260 PRINT "$";P, T;"YEARS", I, "s", "$"; M2
270 REM **** MODIFY KEY VARIABLE AND TEST / EXIT ¥*%**
280 NEXT I

310 REM LOOP COMPLETE

320 PRINT

330 PRINT "e---- DONE =---- .

In Example 7.4 the statement FOR I = 5 TO 12 designates the variable I
as the counter, and assigns it an initial value of 5. It also saves in a
special part of memory the information, "The following Toop is to be executed
until I 1is greater than 12." The FOR I = 5 TO 12 statement sets the stage,
both for the first time through the loop, and for the successful operation of
the NEXT I statement.

The body of the loop hasn't changed at all from Example 7.2 to Example
7.4, but the REM's and spacing have been altered slightly to accord with
conventional indentation.

The operation of testing the key variable and modifying it are now
performed by the single NEXT I statement. This replaces lines 280 and 300 of
Example 7.2.

Reversed Direction in the FOR..,.TO Statement

Suppose that in Example 7.4 we accidentally reversed the FOR... TO
statement so that it read,

210 FOR I = 12 TO 5

This statement is acceptable to the system, but as it stands, it doesn't make
much sense. By repeatedly adding 1 to an initial value of 12, the counter
would never get to 5. The normal processing of FOR...TO and NEXT will cause
this "loop" to be executed once. The FOR statement assigns 12 to I, and saves
the information for NEXT that the loop is to be repeated until I is greater

93

LOOPS

than 5. The body of the loop will process normally with I=12. When the NEXT
I statement is encountered, it tells the system, "If I + 1 is greater than 5,
looping is complete; continue with the normal sequence of execution." Of
course, since I was set to 12 at the beginning, I + 1 is immediately greater
than 5. Thus, the "loop" is executed just once.

On the other hand, suppose that you really want the counter to assume
decreasing values from 12 to 5 in steps of -1. This is a plausible operation,
and one which 1is easily performed by adding the STEP specification to the
FOR...TO statement. STEP is discussed in Section 7-3.

Exit Values of the Counter Variable

The programs shown in 7.3 and 7.4 do not do exactly what 7.1 and 7.2 do,
though in terms of the purpose of 7.1 and 7.2, they are the same. To
appreciate the difference, add to Examples 7.1 and 7.3 the line

170 PRINT N

Now execute the programs. You will find that 7.1 prints "DONE" followed by
21, and 7.3 prints "DONE" followed by 20. The reason for this is that NEXT,
used in 7.3, first compares N+1 to 20, and only if the loop is to continue,
that 1is, only if N+1<=20, does it assign N+1 to N. By contrast 7.1 first
assigns the new value, then tests if, for the new N, N<=20. To do exactly
what the NEXT does in 7.3, 7.1 would have to look like this:

Example 7.5 Exact Duplication of NEXT Operation

110 REM LOOP BEGINS

120 PRINT 2 N;

130 IF N+1 > 20 THEN 170
140 N=N+1

150 GOTO 120

160 REM LOOP ENDED

170 PRINT “DONE"

Questions For Review

1. How many times is statement 30 executed in this program?

10 REM PRINT SUM OF INTEGERS 6 TO 16

20 FOR K=6 TO 16

30 T=K+T

40 NEXT K

50 PRINT T

Answer: 11 times.

2. How many times is statement 20 executed in the above program?

Answer: once.

94

LOOPS

3. If statement 20 in the above program were changed to:
20 FOR K=-16 TO -6
how many times will statement 30 execute?

Answer: 11 times.
4, If statement 20 were changed to
20 FOR K=-6 TO -16

how many times will 30 execute?

Answer: once.

5. What would be printed if we added the line
60 PRINT "VALUE OF K="; K

to this program? Answer: VALUE OF K = 16.

7-3 STEP and the General Form of the FOR...TO Statement

STEP

In the example programs of the last section, the NEXT statement added 1
to the counter, each time through the loop. Though this is the most common
programming requirement, often it is desirable to have some other value added
to the counter each time through. This can be accomplished by adding a STEP
specification to the FOR...TO statement. When a STEP specification is added,
the value that follows the keyword "STEP" is added to the counter each time
through the loop.

Example 7.6 is the same as Example 7.4, except that the FOR...TO
statement at line 210 has been replaced by:

210 FOR I=12 TO 5 STEP-1

95

LOOPS

Example 7.6 Illustration of STEP

110 REM ($MORT6) MONTHLY PAYMENT FOR INTEREST 12% TO 5%
120 REM OPERATOR ENTERS VALUES FOR PRINCIPAL, TERM
130 INPUT "ENTER PRINCIPAL",P

140 INPUT "ENTER MORTGAGE TERM IN YEARS", T
150 REM PRINT HEADINGS

160 SELECT PRINT 215 (80)

170 PRINT ,,"INTEREST","MONTHLY"

180 PRINT "PRINCIPAL", "TERM","RATE","PAYMENT"
190 PRINT

200 REM **** | Q0P SET-UP ****

210 FOR I =12 TO 5 STEP -1

220 REM **** BODY OF LOQP ****

230 M=P*(1/1200)/(1-(1-1/1200)t (-12*T))

240 REM ROUND

250 M2 = SGN(M)*INT(ABS(M)*100+.5)/100

260 PRINT "$";P, T;"YEARS", I; "%", "$"; M2
270 REM **** MODIFY KEY VARIABLE AND TEST / EXIT ****
280 NEXT I

310 REM LOOP COMPLETE

320 PRINT

330 PRINT "----- DONE ----- "

The FOR...TO statement does the loop set-up. It basically says this:
"For the first time through, set I at 12. Then, before each repetition of the
loop, NEXT should subtract 1 from 1. If I-1 is less than 5, it should
discontinue looping." Thus, I, interest, assumes the successive values 12,
1, 10, 9, 8, 7, 6, 5. When executed, this program produces the following
results:

INTEREST MONTHLY
PRINCIPAL TERM RATE PAYMENT
$ 35000 20 YEARS 12 % $ 385.38
$ 35000 20 YEARS 11 % $ 361.27
$ 35000 20 YEARS 10 % $ 337.76
$ 35000 20 YEARS 9 % $ 314.9
$ 35000 20 YEARS 8 % $ 292.75
$ 35000 20 YEARS 7% $ 271.35
$ 35000 20 YEARS 6 % $ 250.75
$ 35000 20 YEARS 5% $ 230.98
----- DONE -----

What has changed in the operation of FOR...TO/NEXT with the addition of
the STEP parameter? ‘

1. The FOR...TO statement saves the STEP value -1 in the special part

of memory for use by NEXT. (Without STEP, NEXT will assume the
value to be added is +1.)

96

LOOPS

2. Since the sign of the STEP value is negative, the value after the
keyword "TO" will be approached from the high side, as the loop is
executed. That is, I approaches 5 in the following manner: 12, 11,
10 ... 7, 6, 5., Therefore, NEXT I will test if I+(-1) 1is 1less
than 5 to see if the 1looping is complete. (Recall that in the
examples of the last section, which had an implied step of +1, NEXT
I tested if I+1 was greater than the value which followed the
keyword "TO".)

Notice that NEXT gets all its signals from the FOR...TO statement; line
280 is the same in Examples 7.4 and 7.6. FOR...TO...STEP does all the setup
work for the loop; NEXT does all the processing.

Fractional STEP Values

Now lets look at another use of the STEP function. Suppose, instead of
the mortgage table produced by Example 7.4, we would like to calculate the
monthly payment for each 1/4 of 1% increase in interest from 7% to 9%.
Cnanging line 210 is again all that's needed. The following substitution does
the job:

210 FOR I=7 TO 9 STEP .25
(If you save this program, don't forget to change the REM statement at 1line
110. ?EM'S should always be accurate for the program version in which they
appear.

The results of the modified program look like this:

INTEREST MONTHLY

PRINCIPAL TERM RATE PAYMENT

$ 30000 20 YEARS 7 % $ 232.59
$ 30000 20 YEARS 7.25 % $ 237.11
$ 30000 20 YEARS 7.5 % $ 241.68
$ 30000 20 YEARS 7.75 % $ 246.28
$ 30000 20 YEARS 8% $ 250.93
$ 30000 20 YEARS 8.25 % $ 255.62
$ 30000 20 YEARS 8.5 % $ 260.35
$ 30000 20 YEARS 8.75 % $ 265.11
$ 30000 20 YEARS 9 % $ 269.92
----- DONE -----

The General Form of the FOR...TO Statement

The general form of the FOR...TO statement is

FOR v = expression TO expression [STEP expression]
where v = a numeric variable.

97

- LOOPS

Variables and Complex Expressions in the FOR...TO Statement

Thus far, all of the examples have used constants to specify the range
of the loop and the STEP value; however, as can be seen from the above general
form, any expression can specify these values. The FOR...TO statement
evaluates the expression, and sets up a loop with the resultant values.

For a simple application of this, we can put variables into the FOR...TO
statement of our mortgage problem. If we then let the operator enter the
values of these variables, the program is considerably more flexible. This
program is shown in Example 7.7.

Example 7.7 Using Variables in the FOR...TO Statement

110 REM ($MORT7) MONTHLY MORTGAGE PAYMENT - ANY INTEREST RATES
120 REM OPERATOR ENTERS VALUES FOR PRINCIPAL, TERM

130 INPUT "ENTER PRINCIPAL",P

140 INPUT "ENTER MORTGAGE TERM IN YEARS", T

150 REM OPERATOR ENTERS STARTING RATE, INCREMENT, ENDING RATE
160 INPUT "ENTER STARTING INTEREST PERCENTAGE", A

170 INPUT "ENTER THE INTEREST INCREMENT", C

180 INPUT "ENTER ENDING INTEREST PERCENTAGE", B

190 REM PRINT HEADINGS

200 SELECT PRINT 215 (80)

210 PRINT ,, "INTEREST","MONTHLY"

220 PRINT "PRINCIPAL", "TERM","RATE","PAYMENT"

230 PRINT

240 REM ****x | Q0P SET-UP *¥**

250 FOR I = A TO B STEP C

260 REM **** BODY OF LOOP ****

270 M=P*(1/1200)/(1-(1+1/1200)1(-12*T))

280 REM ROUND

290 M2 = SGN(M)*INT(ABS(M)*100+.5)/100

300 PRINT "$";P, T;"YEARS", I;"s", "$"s M2
310 REM **** MODIFY KEY VARIABLE AND TEST / EXIT *¥**
320 NEXT I

330 REM LOOP COMPLETE

340 PRINT

350 PRINT "==--- DONE ----- "

The values of A, B, and C are entered at lines 160 to 180 and used in
the FOR...TO statement at line 250.

In a similar manner FOR...TO and NEXT can be used in a slightly modified
version of the factorial problem. In Example 7.8 the upper value is entered
into N, which is then used as the TO expression.

98

LoopPS

Example 7.8 Printing a Factorial Table Using FOR...TO and NEXT

110 REM FACTORIALS FROM 1! TO N! USING "FOR...TO" , "NEXT"
120 INPUT “"COMPUTE P! FOR P=1 TO P=", N

130 F=1

140 FOR P=1 TO N

150 LET F = P*F

160 PRINT "P="; P, "PI="; F
170 NEXT P

180 PRINT "*%X*% DONE ***%*"

The following are examples of FOR...TO statements that use more complex
expressions. The number of times the loop is executed depends upon the values
of the variables at the time the FOR...TO statement is executed.

FOR K = LOG(Q/N) TO 2*L0OG(Q/N+1) STEP LOG(Q/100)

NEXT K

FOR N = INT(ABS(E1)*10+.5)/10 TO E1+10.5 STEP .5

NEXT N
Modifying FOR...TO Values within the Loop

When using variables in FOR...TO statements, it must be remembered that
the FOR...TO statement is only executed once, at the beginning of the loop,
not each time through the loop. Therefore, the values of the TO and STEP
expressions are fixed for the entire Tloop processing, even if statements
within the loop assign new values to the variables in these expressions. This
is illustrated in Example 7.9.

Example 7.9 I1lustration of the Fact That STEP Value Is Fixed

110 T=2

120 PRINT "START, T = ";T
130 FOR K=0 TO 8 STEP T
140 PRINT "K="3K

150 T=T+1

160 NEXT K

170 PRINT "END, T=";T

The output from this program is:

START, T = 2
=0

99

LOOPS

T is 2 when the FOR...TO statement is executed. Despite the fact that T
changes each time through the loop, the step value is fixed at 2.

If the numeric variable that contains the counter 1is changed by a
statement within the 1loop, Tloop processing is affected. The program in
Example 7.10 loops endlessly, because statement 130 nullifies the effect of
the NEXT statement on the counter.

Example 7.10 An Endless FOR...TO/NEXT Loop

110 FOR N=5 TO 15 STEP 3
120 PRINT 2*N,

130 N=N-3

140 NEXT N

FOR...TO/NEXT 1loops 1in which the counter variable 1is altered by
statements within the loop easily become quite confusing. It is probably best
to avoid such techniques.

Branching into the Middle of a FOR...TO/NEXT Loop

Since NEXT depends upon information established by the FOR...TO
statement, an attempt to execute NEXT X produces an error if FOR X=...TO has
not been executed. Therefore, a branch into the middle of a FOR...TO/NEXT
loop is illegal.

7-4 NESTED LOOPS AND BRANCHING WITH LOOPS

Nested Loops

FOR...TO/NEXT loops can be used within FOR...TO/NEXT loops. When Toops
are used in this manner, they are said to be "nested."

To see how nested loops might be used, let's consider a new version of
our monthly mortgage payment problem. Suppose that in addition to
calculating the monthly payment for varying interest rates, we would T1like to
calculate it for a varying term as well. We would like the program to start
with a 20 year term and calculate the payment for 7%, 7.5%, 8%, 8.5%, 9%.
Then it should calculate it at each of these percentages for a 25 year term,
then at a 30 year term, then 35, and 40 year terms. The output should 1look
like this if a $35000 principal is entered.

100

LOOPS

INTEREST MONTHLY

PRINCIPAL TERM RATE PAYMENT

$ 35000 20 YEARS 7% $ 271.35
$ 35000 20 YEARS 7.5 % $ 281.96
$ 35000 20 YEARS 8 % $ 292.75
$ 35000 20 YEARS 8.5 % $ 303.74
$ 35000 20 YEARS 9 % $ 314.9

$ 35000 25 YEARS 7 % $ 247.37
$ 35000 25 YEARS 7.5 % $ 258.65
$ 35000 25 YEARS 8 % $ 270.14
$ 35000 25 YEARS 8.5 % $ 281.83
$ 35000 25 YEARS 9 % $ 293.72
$ 35000 30 YEARS 7 % $ 232.86
$ 35000 30 YEARS 7.5 % $ 244.73
$ 35000 30 YEARS 8 % $ 256.82
$ 35000 30 YEARS 8.5 % $ 269.12
$ 35000 30 YEARS 9 % $ 281.62
$ 35000 35 YEARS 7 % $ 223.6

$ 35000 35 YEARS 7.5 % $ 235.98
$ 35000 35 YEARS 8% $ 248.59
$ 35000 35 YEARS 8.5 % $ 261.4

$ 35000 35 YEARS 9 % $ 274.4

$ 35000 40 YEARS 7 % $ 217

$ 35000 40 YEARS 7.5 % $ 230. 32
$ 35000 40 YEARS 8 % $ 243.36
$ 35000 40 YEARS 8.5 % $ 256.58
$ 35000 40 YEARS 9 % $ 269.98
----- DONE -----

Obviously the interest rate goes through a complete cycle for each value
of the term. These results can easily be obtained by placing a FOR...TO/NEXT
loop, that varies the interest rate, within another FOR... TO/NEXT loop, that
varies the term. Note that in addition to incrementing the term, the outer
loop must also output a blank line preceding the next group of calculations.
Example 7.11 produces these results.

101

LOOPS

Example 7.11 Nested Loops in the Mortgage Problem

110 REM ($MORT8) ILLUSTRATION OF NESTED LOOPS

120 REM OPERATOR ENTERS VALUE FOR PRINCIPAL

130 INPUT "ENTER PRINCIPAL",P

140 REM PRINT HEADINGS

150 SELECT PRINT 215 (80)

160 PRINT ,,"INTEREST","MONTHLY"

170 PRINT "PRINCIPAL", "TERM","RATE","PAYMENT"

180 PRINT

190 REM ######### OUTER LOOP INCREMENTS THE TERM #############
200 FOR T=20 TO 40 STEP 5

210 REM

220 REM

230 REM **** TNNER LOOP UP'S THE INTEREST RATE ****
240 REM **** AND PERFORMS THE PROCESSING Fkedek
250 FOR I = 7 TO 9 STEP .5

260 M=P*(1/1200)/(1-(1+1/1200)4(-12*T))

270 M2 = (SGN(M)*INT(ABS(M)*100+.5)/100

280 PRINT "$";P, T;"YEARS", I; "%", "$"y M2
290 NEXT I

300 REM Jok kkkkkkk INNER LOOP ENDED Jekekkkdkkkkkkkkkk
310 REM

320 REM

330 PRINT

340 NEXT T

350 REM #f#####s#t###### OUTER LOOP ENDED #########H###HH###HH#
360 PRINT

370 PRINT "----- DONE ----- n

In Example 7.11 only the principal 1is entered by the operator.
Statement 200 sets up the outer loop. It sets the term, T, equal to 20
for the first time through the outer loop. It also specifies that the
outer loop is to be executed until T+5 is greater than 40, that is, the
STEP value is 5 and the upper bound is 40.

Statement 250 now sets up the inner loop. It says I, interest, is to
vary from 7% to 9% in steps of .5%. The body of this loop, statements
260-280, hasn't changed from the examples of the last section.

NEXT I causes a branch to 260 if I+.5 is less than or equal to 9. When
I[+.5 1is greater than 9, it 1lets the "normal sequence of execution"
prevail.

330 is the first executable statement after NEXT I. It outputs a blank
line that separates different term values. Then, NEXT T is encountered.
NEXT T dincrements the term value, in T, by 5, and effects a branch to
line 210. It does this as long as T+5 is less than or equal to 40.

After NEXT T branches to 210, the first statement to be executed is 250
FOR I=7 TO 9 STEP .5. Thus, each time through the outer loop, the inner
loop is setup by 250, and executed 5 times by 290 NEXT I.

As a practical matter loops can be nested within Toops indefinitely.

That is, there is no 1limit to the number of loops that may be contained within
any given loop.

102

LOOPS

Branching and FOR...TO/NEXT Loops

We have already pointed out that a branch into the middle of a FOR...
TO/NEXT Tloop will cause an error at the NEXT statement. The NEXT statement
depends upon information supplied by FOR...TO and without it cannot function.
For example, this program segment will report an error when statement 90 is
executed, after the branch from 30 to 70.

20 PRINT J*4
30 GOTO 70

60 FOR I=1 TO 10 STEP 2
70 Q2=(14/T)*1

80 PRINT Q2;

90 NEXT I

Recall that when looping is completed, and the NEXT statement 1is about
to let the normal sequence of execution prevail, it first clears from that
"special part of memory" the information that had been saved there by the
FOR...TO statement. This 1is done simply to make room for future FOR...TO
information. This implies that a program should not repeatedly branch out of
the middle of a FOR...TO/NEXT Tloop without allowing for a normal NEXT
statement loop termination. Repeated execution of FOR...TO statements, that
are never terminated by NEXT statements, eventually causes a "table overflow"
error (ERR 02).

Example 7.12 shows a program that branches out of a FOR...TO/NEXT 1loop,
without allowing normal NEXT statement termination of the loop.

Example 7.12 A Branch Out of a FOR...TO/NEXT Loop That Causes a Table
Overflow Error

110 REM BRANCH THAT AVOIDS NORMAL "NEXT" STATEMENT TERMINATION
120 REM PROGRAM TO PRINT PRIME NUMBERS 1 TO 1001

130 PRINT 1; 2; 3;

140 N=3

150 REM TRY DIVIDING N BY EACH ODD INTEGER

160 FOR T = 3 TO SQR(N) STEP 2

170 REM DOES T DIVIDE N EVENLY?
180 IF INT(N/T) = N/T THEN 230
190 NEXT T

200 REM N IS PRIME

210 PRINT N;

220 REM N NOT PRIME. TRY NEXT ODD NUMBER
230 N = N+2

240 IF N<= 1001 THEN 160

This program is supposed to print the prime numbers between 1 and 1001.
However, each time a number proves to be non-prime (it's divided evenly
by another number), 1ine 180 effects a branch out of the FOR...TO Tloop;
N dis incremented (1ine 230) and the FOR...TO statement is reexecuted
(branch from 240 to 160). Reexecuting the FOR...TO statement saves

103

LOOPS

information in memory for another Tloop. This is in addition to the
information for the last loop that was never cleared by a NEXT statement
loop termination. Eventually, the memory space allotted for FOR...TO
information fills, and a table overflow error interrupts execution. In
this program this occurs before all the primes between 1 and 1001 have
been found; therefore the program must be corrected.

If a loop must have another exit as well as a "counter" exit, then there

are two alternatives. Either forego FOR...TO/NEXT by setting up a counter and
counter-test using LET and IF...THEN as in Example 7.2, or use FOR...TO/NEXT

and,

at the "second way out", add an operation that forces NEXT to terminate

the loop. This latter approach is illustrated in Example 7.13.

of an

Example 7.13 Forcing a "NEXT" Termination

110 REM FORCING A "NEXT" TERMINATION

120 REM PROGRAM TO PRINT PRIME NUMBERS 1 TO 1001
130 PRINT 1; 2; 3;

140 N =3

150 REM TRY DIVIDING N BY EACH ODD INTEGER

160 FOR T = 3 TO SQR(N) STEP 2

170 REM DOES T DIVIDE N EVENLY?
180 IF INT(N/T) = N/T THEN 222
190 NEXT T

200 REM N IS PRIME

210 PRINT Nj

215 GOTO 230

220 REM N NOT PRIME. TRY NEXT ODD NUMBER

222 REM ***%*%*x FORCE A "NEXT" TERMINATIQN *¥**dkkkkdkokkkkdkikk
224 T = SQR(N)

226 NEXT T

228 REM ***xkkkkkdkkdkkhkhkkhkhhhhkkhihrhhhhhkhrrrhkhrkrrhrkrihrkrk
230 N = N+2

240 IF N<= 1001 THEN 160

In this example lines 224 and 226 are executed only if line 180 effects
a branch out of the FOR...TO/NEXT loop. 224 assigns the "TQ" value
SQR(N) to T. Since T is then at the upper limit of its range, NEXT T at
line 226 will always "terminate the 1loop" and clear the FOR...TO
information.

If loops are nested, one inside another, a branch to the NEXT statement
outer Toop clears the FOR...TO information of all inner loops. This

fact permits a better solution to the problem of Example 7.12, than that shown
in Example 7.13.

Example 7.14 Normal Termination of an Inner Loop by an Quter Loop

110 REM TERMINATING AN INNER LOOP BY BRANCHING TO AN OUTER LOOP
120 REM PROGRAM TO PRINT PRIME NUMBERS 1 TO 1001

130 PRINT 1; 2:3;

140 FOR N = 3 TO 1001 STEP 2

150 FOR T = 3 TO SQR(N) STEP 2

160 IF INT(N/T) = N/T THEN 190
170 NEXT T

180 PRINT N;

190 NEXT N

104

LOOPS

In this example an outer FOR...TO/NEXT 1loop 1is wused 1in place of
statements 140, 230 and 240 of Example 7.12. Now, the branch at line
160 is not a source of trouble, since execution of the outer loop's NEXT
statement (1line 190) clears the FOR...TO information for the inner loop.

Review of Chapter 7

1. FOR...TO and NEXT are used to control a Tloop.

2. The FOR...TO statement marks the beginning of the Tloop. It
specifies the variable that is to serve as the 1loop counter, and
assigns it its initial value. In a special part of memory, it saves
the exit value of the loop counter, and the increment (STEP value).
These are saved for use by the NEXT statement. For example,

FOR K = 2 TO 12
4 4 4 4
loop initial exit increment
counter value value (implied
variable +1)

3. The STEP parameter can be included 1in the FOR...TO statement to
specify an increment other than +1. (+1 is implied if the STEP
parameter is not used.) For example,

FOR N(I) = -2 T0 -16 STEP -2
4 4 4 4
loop - initial exit increment
counter value value
~variable

4, Any expression may be used to specify the initial, exit, and STEP
values in a FOR...TO statement.

5. FOR...TO merely sets up the Toop. NEXT controls the execution of
the loop, using the information saved by FOR...TO.

6. NEXT adds the increment to the counter, and effects a branch to the
statement following FOR...TO, until the value of the counter passes
the exit value. More precisely, if the increment is positive, NEXT
tests if adding the increment to the counter would cause the counter
to be greater than the exit value; if so, it "exits" the loop by
allowing the normal sequence of execution to prevail. If not, it
adds the increment to the counter, and branches to the statement
after FOR...TO. If the increment is negative, NEXT tests if adding
the increment to the counter would cause the counter to be less than
the exit value; if so, it "exits" the loop by allowing the normal
sequence of execution to prevail. If not, it adds the increment to
the counter, and branches to the statement after FOR...TO.

7. When NEXT "exits" the loop, it clears from the special part of
memory the information saved by FOR...TO.

105

LOOPS

10.

Repeated executions of FOR...TO, which do not lead to a normal NEXT
statement loop termination, will eventually cause a table overflow
error, as a result of the excess accumulated information saved by
FOR...TO.

If loops are nested, a branch to an outer Tloop's NEXT statement
clears the FOR,..TO information of all inner loops.

Since the operation of NEXT depends upon information saved by

FOR...TO, a branch into the middle of a loop, which bypasses the
FOR...TO, will produce an error at the NEXT statement.

106

CHAPTER 8
INTRODUCTION TO ALPHANUMERICS

8-1 ALPHANUMERIC VARIABLES

In Section 3-1 we said that a numeric variable is a place to keep a
number. Numeric variables are used to hold numeric quantities, which we may
multiply, divide, add, subtract or evaluate in a function. In addition to
numeric quantities, though, there is another kind of information that we may
want to process. Typical of this other information are names, addresses,
social security numbers, product descriptions, and part numbers. This kind of
information 1is called alphanumeric information, since it may consist of any
combination of alphabetic and numeric characters, punctuation, and symbols.

Alphanumeric information never enters into ordinary arithmetic
operations (+, -, /, *, +t, etcetera). For example, it wouldn't make much
sense to say "Take the square root of Jones' address and multiply it times his
last name". Nevertheless, we may want to process it. We may want to enter
it, update it, delete it, transfer it, save it, sort it, segment it, or print
it.

With the statements we have examined thus far, our ability to process
alphanumeric information has been very limited. Alphanumeric information has
appeared in only one form, the literal string. We've seen examples of literal
strings, such as "REORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS" and
"kxkx DONE ****" We know that the quotation marks aren't part of the
information per se. They are there only to say, "This is alphanumeric
information."

Thus far, all the variables we have been using have been numeric
variables. Numeric variables can only be assigned valid numeric quantities.
They can never hold alphanumeric characters, even if the alphanumeric
characters outwardly resemble a numeric quantity. For example, as noted in
Section 3-2, if we try to enter

10 K = "165"

the result is a syntax error, telling us that a numeric variable cannot be
assigned an alphanumeric literal string.

In BASIC, though, there is a kind of variable that can be assigned an
alphanumeric Tliteral string. Variables of this kind are called "alphanumeric
variables". Just as there are 286 numeric variables in BASIC, there are also
286 alphanumeric variables. They are named in a manner similar to the numeric
variables, except that every alphanumeric variable name ends with a dollar
sign, $. Thus, the alphanumeric variables are A$, B$, C$...Z$ and A0$, A1S,
A2$...A9%$,B0$,B1%...27$,28%,29%.

107

INTRODUCTION TO ALPHANUMERICS

Alphanumeric values can be assigned to alphanumeric variables in
statements that are similar to those that assign numeric quantities to numeric
variables. For example, these are all valid assignment statements.

60 D2 = "154 STATE ST."
170 LET AO$ = "A4078-R"
410 J8§ = "%

900 L1$,J3§,P9$ = "N/A"
91 V$ = “CREDIT"

140 Q$ = A9

Notice that the keyword "LET" is optional, and that multiple assignments are
possible (line 900). In line 140 the variable Q$ is assigned the value of the
variable A9%.

When a literal string is used in an assignment statement, the literal
string is always enclosed by quotation marks. The quotation marks do not
become part of the value of the alphanumeric variable.

Alphanumeric variables may never be used with arithmetic operators, or
where a numeric expression is required. For example, the following are
illegal uses of alphanumeric variables:

I1legal

10 A$
50 P2

C$ + D$
c8$

Alphanumeric variables cannot be assigned the value of an expression. The
following statements are also illegal:

I1legal

20 A$ = 250
40 FOR A$ = 2 TO 20

We may now expand the general form of the assignment statement to
include alphanumeric operations. This expanded general form is:

[LET] numeric variable [,numeric variable...] = expression

literal string
in quotes
[LET] alphanumeric variable [,alphanumeric variable...] =
alphanumeric
variable

8-2 A CLOSER LOOK AT ALPHANUMERIC VARIABLES (PRINT AND DIM)

In Section 2-6 we noted that the RUN command sets all numeric variables
to zero, whenever it is used without a 1ine number. Analogously, it sets
alphanumeric variables to all spaces. An alphanumeric variable which is
blank, that is, all spaces, is treated by the system as if it contained just
one space. Therefore, we can say that, in effect, the 1initial value, after
RUN, of every alphanumeric variable is one space.

108

INTRODUCTION TO ALPHANUMERICS

To see this, enter and execute the following program.

10 PRINT "ABC"; "DEF"
20 PRINT "ABC";A$;"DEF"

The program prints

ABCDEF
ABC DEF

The single blank which appears on the bottom 1line is the result of printing
A$. A$ has a value of one space.

A numeric variable can contain any valid numeric quantity. In Section
3-2 we said that such a quantity can have up to 13 digits, decimal
point, sign, and a signed 2 digit exponent. Every numeric variable, then, has
a fixed size "big enough" to hold any numeric quantity. By contrast, the size
of alphanumeric variables is not fixed; however, it is automatically set to
16 characters, unless you specify a different size. You will see how to
specify a different size for alphanumeric variables later in this section.

If you try to assign more characters to an alphanumeric variable than
its size will allow, the additional characters at the right are simply
ignored. For example, enter and execute:

10 D$ = "0123456789ABCDEFGH"
20 PRINT D$

The output from line 20,
0123456789ABCDEF

shows that statement 10 assigned to D$ only the first 16 characters of the
literal string. Since the size of D$ is 16, the 17th and 18th characters, "G"
and "H", are ignored. Later we will see additional means of assigning values
to alphanumeric variables; however, regardless of the method used, extra
characters beyond the variable's maximum size are ignored.

Now let's see what happens if you assign to an alphanumeric variable
fewer than its maximum number of characters. Enter and execute the following
program:

20 H$ = "JOHN Q. ADAMS"
30 PRINT H$

40 H$ = "HELP"

50 PRINT H$

55 L$ = "AT"

60 H$ = L$

70 PRINT H$

Execution outputs
JOHN Q. ADAMS

HELP
AT

109

INTRODUCTION TO ALPHANUMERICS

Notice from this example that when an alphanumeric variable is assigned
a new value (lines 20, 40 and 60), the new value completely replaces the old
value, despite the fact that the old value is longer than the new value. That
is, the result of executing line 50 specifically was not "HELP Q. ADAMS". The
"Q. ADAMS" has been replaced in H$ by spaces. The same is true for the
assignment made at line 60 where the "LP" of "HELP" is replaced by spaces.

The example above does not reveal, though, how alphanumeric variables
are printed in regard to spaces. We can add literal strings to the PRINT
statements to give us an answer., Change the program as follows:

20 H$ = "JOHN Q. ADAMS"
30 PRINT H$; "&&&"

40 H$ = "HELP"

50 PRINT H§; "&&&"
55 L§ = "AT"

60 H$ = L$

70 PRINT H$; "&&&"
The ampersands are added so that we can see any spaces which may be output.
The program now prints

JOHN Q. ADAMS&&&
HELP&&&
AT&&&

This result may seem paradoxical. We just said that 1line 40 of these two
programs replaces "Q. ADAMS" in H$ with spaces, but when we add a second print
element to 1line 50, these spaces don't show up. The same thing is true for
lines 60 and 70.

The answer to this is quite simple: trailing spaces 1in alphanumeric
variables are not considered to be part of the value of the variable.
Therefore, when an alphanumeric variable 1is printed, trailing spaces are
omitted. Trailing spaces are adjacent spaces that extend from the last
non-space character to the end of the variable. Since L$ and H$ are both 16
characters Tlong, if you could Took into the memory of your Wang system after
step 20, you can imagine seeing something like this:

110

INTRODUCTION TO ALPHANUMERICS

Fhe last non-space character

H$ JIO|H|N|A|Q|.|a|A|DJA[M|[S|a]|a]|a

s N\
trailing spaces not con-
sidered part of value of H$.

trailing spaces not con-
sidered part of value of L$,
7 N\
L$ Altlalalalalala|a|a|a|a |a|ala A]

+last non-space character,

After step 40 H$ Tooks 1ike this:

H$ H|E [L |P|A [A |A A [A [A (A |A | A] AlA A

? \)
V

trailing spaces not part of value,

L_last non-space character,

In summary, then, when alphanumeric variables are used as print
elements, trailing spaces are never printed. In the program below, note the
differing effects, 1in regard to spaces, of printing a literal string, and
printing an alphanumeric variable which has been assigned the value of the
literal string.

10 PRINT "FIVE "; "DOLLARS"
20 A$ = "FIVE "

30 B$ = "DOLLARS"

40 PRINT A$; B$

When executed, this produces:

FIVE DOLLARS
FIVEDOLLARS

We can see from this example that when the literal string 1is printed (line
10), the trailing space is included. When "FIVE " is assigned, though, the
space included in the literal string becomes merely a trailing space. As the
second line of output shows, this space is effectively lost.

1

INTRODUCTION TO ALPHANUMERICS

In a situation such as this, you can overcome this seeming problem
simply by putting a Titeral space into line 40, as in

40 PRINT A$; " "; B$
or you can add a space to the front of "DOLLARS" as follows:
30 B$ = " DOLLARS"

Since the latter is not a trailing space, it will be printed when B$ is
printed.

We opened this section by saying that if an alphanumeric variable
contains all spaces, it is treated -as if it contained just one. We can now
see the reason for this. The first space is considered to be a real
character, but all the spaces which follow the first are mere "trailing
spaces" which, as we have said, are ignored.

Dimensioning Alphanumeric Variables

We have noted that the system automatically sets alphanumeric variable
size to 16 characters in the absence of contrary instructions. It is possible
to specify a different maximum variable size for any alphanumeric variable by
means of a dimension statement. The dimension statement has several other
related uses which we will encounter in future chapters. Its use as a means
of specifying alphanumeric variable length is simple and straightforward.

In BASIC the word "dimension" has been abbreviated to the keyword "DIM".
To specify a size of 30 characters for the variable C$, we include in the
program, at a lower 1line number than any reference to C$, a statement such as:

20 DIM C$30

This statement fixes the maximum size of C$ at 30 characters for the
entire program. Once the size of a variable has been established, whether
automatically at 16 characters by the system, or by means of a DIM statement,
that size cannot be altered until all variables are cleared.

When you key RUN (EXEC), the system first scans through the entire
program, in Tline number sequence, looking for variables and DIM statements.
When it encounters an alphanumeric variable for the first time, it either
sets aside 16 characters of memory space for it, or, if it is in a DIM
statement, sets aside the amount specified. Once it has established the
size of a variable, that size is fixed. If the system later in its scan
encounters a DIM statement which attempts to change the size, an error is
signaled. This means that DIM statements must precede any program reference
to the dimensioned variable, since otherwise the system will have already set
the size at 16 characters. The following program violates this rule and will
not execute,

10 PRINT "ABC"; A$; "DEF“
20 DIM A$10

112

INTRODUCTION TO ALPHANUMERICS

In the DIM statement the size of the variable must be specified with a
number, not an expression. The number must be greater than 0 and less than or
equal to 64. Sixty-four characters is, therefore, the absolute maximum size
of any alphanumeric variable.

It is possible, and often desirable, to dimension multiple variables in
a single DIM statement. Such a statement might look 1ike this:

20 DIM A$40, A8%1, C7$25, C9%$25

In a multiple DIM statement each variable and dimension is separated from the

next by a comma. Any number of variables may be dimensioned in a single DIM
statement.

Notice that it is possible to specify a variable size Tless than 16
characters. This helps to conserve memory when less than 16 characters will
be assigned to the variable.

Regardless of the size of an alphanumeric variable, it 1is operated on
under the same principles discussed in the opening part of this section. If
you attempt to assign more characters than the variable can hold, excess
characters are lost. Assigning a new value to a variable replaces the entire
old contents of the variable. Trailing spaces are not part of the value of a
variable.

8-3 INPUT AND IF...THEN WITH ALPHANUMERIC VARIABLES

INPUT

The INPUT statement can be used with alphanumeric variables to permit
operator entry of alphanumeric data. For example, the following program
allows a name and address to be entered into four variables, with up to 30
characters for each line. It then prints the entered address.

10 DIM A$30, B$30, C$30, D$30
20 INPUT "NAME", A$

30 INPUT "ADDRESS LINE #1". B$
40 INPUT "ADDRESS LINE #2", C$
50 INPUT "ADDRESS LINE #3", D$
60 PRINT A$

70 PRINT B$

80 PRINT C$

90 PRINT D$

Use of INPUT with alphanumeric variables is very similar to its use with

numeric variables. The 1literal string prompt 1is optional, and multiple
variables can be included in a single statement. The keyboard entry mandated

113

INTRODUCTION TO ALPHANUMERICS

by the above lines 10 to 50 could have been accomplished with either of the
two methods shown below:

10 DIM A$30,B$30,C$30,D$30
20 INPUT A$
30 INPUT B$
40 INPUT C$
50 INPUT D$
60 PRINT A$

or
10 DIM A$30,B$30,C$30,D$30
20 INPUT A$,B$,C$,D$
60 PRINT A$

Alphanumeric and numeric receiving variables may be included in a single
INPUT statement. Thus, line 20 of the following program is a legal INPUT
statement:

10 DIM A$25
20 INPUT "ENTER NAME, HOURLY RATE", A$,R

When 20 is executed, the following will appear
ENTER NAME, HOURLY RATE?__
the operator can then make the two entries in either of the following ways

ENTER NAME, HOURLY RATE? JOHN JONES, 6.45 (EXEC)
or

ENTER NAME, HOURLY RATE? JOHN JONES (EXEC)

? 6.45 (EXEC)

Often it is better to avoid multiple-variable INPUT statements, due to the
increased probability of operator confusion.

If an operator enters more characters than an alphanumeric variable is
capable of holding, the overflowing characters are not assigned to the
variable; they are simply lost. No error is signaled. If any character is
entered, the entire old value of the receiving alphanumeric variable is
replaced.

When entering alphanumeric data on an INPUT instruction, an operator
need not enclose the entry in quotation marks. However, if quotation marks
are not used, leading spaces, entered by the operator, are not assigned to the
variable. Furthermore, without quotation marks, commas act as separators,

114

INTRODUCTION TO ALPHANUMERICS

that is, an entered comma is taken to mean, "That's all for the first
variable." (In the example shown above

ENTER NAME, HOURLY RATE? JOHN JONES, 6.45 (EXEC)

the comma separates the two values. It is not part of either.) Thus if the
operator wishes to enter BOSTON, MASS. 02109 for address line #3 in the first
example, it must be entered with quotation marks as follows:

ADDRESS LINE #3? "BOSTON, MASS. 02109"

Without quotation marks only BOSTON will be assigned to D$; the rest of the
entry will be lost.

IF...THEN

The IF...THEN statement can be used to compare alphanumeric values, and
branch if a specified condition is true. In the program shown in Example 8.1
the operator can select, by entering the words "YES" or "NO", whether the
program results are to appear on the CRT or be printed by the printer.

Example 8.1 Testing Alphanumeric Values with IF...THEN

100 REM TESTING ALPHANUMERIC VALUES WITH "IF...THEN"
120 INPUT "DO YOU WANT THE PROGRAM RESULTS TO BE PRINTED (YES/NO)", A$
130 REM TEST OPERATOR RESPONSE

140 IF A$ = "YES" THEN 210

150 IF A$ = "NO" THEN 230

160 REM ENTRY INVALID

180 PRINT "INVALID. REENTER."

200 GOTO 120

205 REM "YES" ENTERED

210 SELECT PRINT 215 (80)

220 GOTO 250

225 REM "NO" ENTERED, BE SURE CRT IS SELECTED

230 SELECT PRINT 005 (64)

245 REM MAIN PROGRAM BEGINS HERE

250 FOR I =1 TO 60

260 PRINT 2113

270 NEXT I

290 PRINT

With the IF...THEN statement, it 1is also possible to compare
alphanumeric values that are saved in alphanumeric variables. For example,
the following are valid BASIC statements:

200 IF C$ = D$ THEN 450
240 IF Z9% = A8$ THEN 710

115

INTRODUCTION TO ALPHANUMERICS

Variables being compared do not have to be the same size. For example,
the following is a valid sequence of statements:

10 DIM A$6, B}2
40 IF B$ = A$ THEN 70

70 PRINT A$

Whenever the alphanumeric terms being compared by an IF...THEN are of
different length, the comparison is made as if the shorter one were extended
with spaces out to the length of the longer one. To see how this works,
assign values in the example above as follows:

10 DIM A$6, B$2

20 A$ = "OSCAR"

30 B$ = "OS"

40 IF B$ = A$ THEN 70
50 INPUT R

70 PRINT A$

Intuitively we would say that A$, with a value of "OSCAR", and B$, with
a value of "0S", should not be considered equal. In fact this is the result
of the comparison at line 40; the branch is not taken. The system, noticing
that B$ is dimensioned smaller than A$, obtains the value "0S" from B$ and
temporarily extends it to the size of A$. The values it then has to compare
are as follows:

Of[S|C|]A|R |A

t___{temporary

extension

The first two characters of these values are the same. Howeyer, when the
system 1looks at the third characters, a C and a space, it finds them not the
same, and concludes that the relationship "equals" is not true. The branch is
not taken. Despite the "temporary extension" of B$ described here, the real
size of B$ hasn't changed, and remains at 2 characters after the IF...THEN
statement is complete.

The other IF...THEiK relational operators« ,>,>=,<=, can also be used
with alphanumeric comparisons. For example, suppose that parts are stored in
two warehouses. All the parts stored in the first warehouse are given part
numbers which begin with the 1letters A-M. Part numbers for the second

116

INTRODUCTION TO ALPHANUMERICS

warehouse begin with the Tetters N-Z. The following program segment tests an
entered part number to determine in which warehouse the part belongs.

10 DIM C$6

410 INPUT "PART NUMBER", C$
420 REM SECOND WAREHOUSE?

430 IF C$>="N" THEN 490

440 REM GOES IN FIRST WAREHOUSE

490 REM GOES IN SECOND WAREHOUSE

What happens if the operator enters L4906A at 1ine 4107 At the
IF...THEN statement, the system finds that the 1iteral string "N" is shorter
than the variable C$. Therefore, it takes the value of the Tliteral and
temporarily extends it with spaces to the size of C$. It is then ready to
compare the two values, which now Took like this:

[L]a]olo]e|A] c$
‘ N |2 iA JA ,A JAJ 1iteral string "N"

N —

I__temporary

extension

The comparison now takes place character-by-character until an 1inequality is
found (just as you would proceed if you were alphabetizing these two terms).
It finds an inequality right away: L is less than N. Since this relationship
viﬁ1ates the specified condition for the branch, C$>="N", the branch 1is not
taken.

Suppose that N2079 were entered instead. The set-up for the comparison
would be

Nf2]0|71]9 C$

Nia a a4, Titeral string "N"

When the first characters are compared they are equal, so the system
compares the next two characters. Space has a lower value than all Jletters,
numbers, and keyboard special characters. Therefore, when comparing the
second characters, the system finds the inequality 2 > space, This
inequality, 2 > space, immediately signifies that C$ > "N"; therefore, the
branch is taken.

117

INTRODUCTION TO ALPHANUMERICS

Alphanumeric comparisons take place character-by-character until unequal
characters are found. The relationship of the first pair of unequal
characters determines the relationship of the entire two values. This method
is exactly how one proceeds when alphabetizing,

Other than to say that spaces have a low value, we haven't specified the
relative ordering of all the keyboard characters. This relative ordering is
given in Table 8.1.

LOWEST

SPACE £~ Ty
! > a
n ? b
@ c
$ A d
% B e
& C f
] D g
(E h
) F i
* G j
+ H k
R I 1
- J m
. K n
/ L 0
o A Mmoo A
1 N q
2 0 r
3 P S
4 Q t
5 R u
6 S v
7 T W
8 U X
9 v y
: W b4
5 X
< Y

\:-_»/ :

HIGHEST

Table 8.1 Relative Ordering of Keyboard Characters

118

INTRODUCTION TO ALPHANUMERICS

The following program will allow you to experiment with the system's
alphanumeric ordering. Try entering different values, and observe the
results.

110 DIM A$64,B$64

120 PRINT

130 INPUT "ENTER VALUE FOR A$",A$
140 INPUT "ENTER VALUE FOR B$"“,B$
150 PRINT

160 IF A$ <> B$ THEN 190

170 PRINT A$; " -EQUALS- "; B$

180 GOTO 120

190 IF A$ > B$ THEN 220

200 PRINT A$; " -IS LESS THAN- "; B$
210 GOTO 120

220 PRINT A$; " -IS GREATER THAN- "; B$
230 GOTO 120

With the ability to compare alphanumeric values, a simple sort can be
performed to rearrange three values 1into '"alphabetical order" (or more
precisely, the order specified by Table 8.1). Example 8.3 accomplishes this
in a very simple way. Efficient sorting, however, requires subscripted
variables, which are introduced in Chapter 11.

Example 8.2 A Simple Alphanumeric Sort

110 REM SORT
120 DIM A$20,B$20,C$20,D$20

130 INPUT "ENTER THREE VALUES. EACH 20 CHAR. MAX.", A$,B$,C$
140 REM TEST #1

150 IF A$ < B$ THEN 210
160 REM SWITCH A$ AND B$
170 D$=A$

180 A$=B$

190 B$=D$

200 REM TEST #2

210 IF B$ < C$ THEN 270
220 REM SWITCH B$ AND C$
230 D$=B$

240 B$=C$

250 C$=D$

260 REM TEST #3 -(REPEAT OF TEST #1 WITH POSSIBLE NEW VALUES)
270 IF A$ < B$ THEN 320
280 REM SWITCH A$ AND B$

290 D$=A$
300 A$=B$
310 B$=D$

320 PRINT A$,B$,C$

119

INTRODUCTION TO ALPHANUMERICS

10.

Review of Chapter 8

Alphanumeric values may consist of any combination of alphabetic and
numeric characters, punctuation and symbols.

Alphanumeric values cannot enter into arithmetic operations.

Alphanumeric variable names are the same as numeric variable names,
except that a dollar sign, $, is added, e.g., A$, C$, F2§, X8%, etc.

Alphanumeric values may be assigned to alphanumeric variables in many of
the same ways that numeric values are assigned to riumeric variables.
For example,

10 B$ = "TEST #14.5"
10 INPUT "EMPLOYEE NAME", N$

Alphanumeric variables are 16 characters long, unless set to a different
size in a DIM statement.

A DIM statement can specify a length of 1 to 64 characters for an
alphanumeric variable. For example,

DIM C2$64, D$2

If you attempt to assign more characters to an alphanumeric variable
than its length can accommodate, the excess characters at the right are
ignored.

When a new value is assigned to an alphanumeric variable, any old value
is completely replaced by the new, which is padded with spaces at the
right.

Trailing spaces are not considered to be part of the value of an
alphanumeric variable.

Alphanumeric values may be compared in an IF...THEN statement. Values
are temporarily padded with spaces at the right, so that they are the
same length. Then, the comparison takes place character-by-character
until unequal characters are found, The first pair of unequal
characters determines the relationship of the entire two values. If no
unequal characters are found, the values are equal.

120

CHAPTER 9
DEBUGGING AIDS AND MISCELLANEOUS
SYSTEM FEATURES

In this chapter we are going to look at a number of Wang 2200 System
features and a few BASIC statements. Many of these features and statements
are used in debugging programs. This use will be highlighted here; however,
some of these features have many uses, and the discussion is not meant to
imply that program debugging is the only use.

9-1 THE STOP STATEMENT AND THE CONTINUE COMMAND

The STOP statement is a general purpose BASIC statement. When the
system encounters a STOP statement, it stops executing the program, and
outputs the word "STOP" at the device selected for Console Output (normally
the CRT). The colon and cursor (:) are displayed on the 1ine below the word
"STOP". A STOP statement can simply consist of the keyword STOP. However, a
character string, in quotation marks, can follow the keyword. If a character
string is used, the system outputs the character string on the same Tine as
"STOP".

In general, after a STOP statement has interrupted execution, the
operator can continue execution at the next statement by keying CONTINUE
(EXEC).

Example 9.1 illustrates a simple use of the STOP statement., The program
shown in 9.1 prints, in hardcopy, the factorials from 1 to N. It 1is similar
to Example 7.8, except for the addition of the printer selection statement,
and the STOP statement which warns the operator to ready the printer.

Example 9.1 A Simple Use of the STOP Statement

110 REM SIMPLE USE OF "STOP" STATEMENT TO PAUSE FOR OPERATOR
120 INPUT "COMPUTE P! FOR P=1 TO P=", N

122 STOP "READY PRINTER.(8 1/2 X 11 PAPER)"

125 SELECT PRINT 215 (80)

130 F=]

140 FOR P=1 TO N

150 LET F = P*F

160 PRINT "P="; P, "P!="; F
170 NEXT P

180 PRINT ~ "skkxx DONE *kkwxt

121

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

During execution of this program, the following appears on the CRT.

:RUN
COMPUTE P! FOR P=1 TO P=7 8

STOP READY PRINTER.(8 1/2 X 11 PAPER)

At this point the operator can ensure that the printer is ready, and then key
CONTINUE (EXEC) to resume normal execution.

In some cases the STOP statement is not the best choice for providing a
program pause, as shown in Example 9.1. Often the INPUT statement is a better
choice. The colon which appears below the word STOP signifies that the system
is ready to accept any operator command or action which would be available
before execution began. This means, for example, if an operator accidentally
keys one or more digits followed by (EXEC) or by CONTINUE (EXEC), the digits
are interpreted as a line number. The result could be the destruction of a
program Tline. Furthermore, any such change in a program text prevents the
CONTINUE command from resuming execution. By contrast, the system status at
an INPUT statement, when the question mark is displayed, 1is much more
restrictive. Accidentally keying a digit or character, at worst, produces an
ERR message. Program text cannot be changed.

In some circumstances, however, the broader opportunities offered at a
STOP interruption are needed. Program debugging is one such circumstance.

For example, if a particular Toop in a program doesn't seem to be doing
what you want it to do, you can temporarily insert a STOP statement
immediately before the FOR...TO statement that sets up the Toop, Then,
execute the program with whatever values are causing a problem. When the STOP
is reached, the program will output STOP and the colon. You can then use some
of the techniques described in the next sections to determine the cause of the
failure.

You may want to add a message to the STOP statement such as
58 STOP "LINE 58"

This identifies the STOP, if you have more than one, and tells you what 1ine
to delete when you want to take out the STOP,

The CONTINUE command cannot be used to resume execution after a STOP if
any of the following has occurred while execution was stopped.

1. A text or table overflow has occurred (ERR 01, ERR 02).

2. A variable has been added to the program which was not previously
part of it.

3. A CLEAR or RENUMBER command has been 1ssued. (Section 9-4
introduces the RENUMBER command,)

4. The RESET key has been depressed.
5. The program has been modified.

122

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

9-2 IMMEDIATE MODE OPERATIONS

In Chapter 5 we mentioned that the SELECT statement can be used as a
command, without a 1line number, as well as a BASIC program statement. For
example, whenever the colon is present you can key

:SELECT LIST 215 (EXEC)

to select a printer for program listings. The use of BASIC statements in this
fashion, as if they were commands, is known as Immediate Mode operation, so
called because the prescribed action takes place immediately upon keying
(EXEC), rather than being saved in memory for future execution.

Your Wang system has been designed so that a variety of BASIC statements
can be used in the Immediate Mode. For example, key

:PRINT 4/3.7, SQR(4/3.7) (EXEC)
The results appear immediately in the first two zones of the CRT:
1.081081081081 1.0397504898

Immediate Mode operations can be useful in debugging programs, and handy
whenever a quick and simple calculation needs to be performed. They are legal
whenever the colon is displayed. For example, if you insert a STOP statement
into a malfunctioning program, as discussed in the last section, you can check
the values of any program variables by executing Immediate Mode PRINT
statements.

The program in Example 9.2 is supposed to calculate the sum of the first
N odd integers by adding them up, but it has a bug. The sum it produces is
incorrect.

Example 9.2 Program with Bug
110 REM PROGRAM WITH BUG - SUM IS INCORRECT

120 PRINT "CALCULATE SUM OF FIRST N ODD INTEGERS"
130 INPUT "ENTER N", N

140 S =1

150 IF N = 1 THEN 200
160 FOR I =2 TO N
170 D = D+2

180 S = S5+D

190 NEXT I

200 PRINT "SUM="; S

If we enter a value of 5 for N, this program calculates the sum of the
first 5 odd integers as 21. (The answer should be 25, since the sum of the
first N odd integers is always N2.) We can insert a STOP statement, such as
185 STOP "LINE 185", to Tlet us check variable values as program execution
progresses.

123

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

With the STOP statement 1inserted, execution produces the following
output:

CALCULATE SUM OF FIRST N ODD INTEGERS
ENTER N? 5

STOP LINE 185

We can now execute an Immediate Mode PRINT statement to check the values
of D and S. For example, key

PRINT "D="; D, "S="; S (EXEC)
The display appears as:

STOP LINE 185
:PRINT "D="; D, "S="; S
D= 2 S=3

From the values of D and S we can see that, at this point, the program
has already run into trouble. Line 170 is supposed to set D equal to the next
odd integer; here, D is even.

Notice that the 1line :PRINT "D="; D, "S="; S is not entered into memory.
Since it has no Tline number, it is executed immediately.

We can let the program run through the Toop once more if we wish by
keying CONTINUE (EXEC). Again "STOP LINE 185" appears, and again we can
inspect the values of D and S with an Immediate Mode PRINT statement as shown
below.

STOP LINE 185
:PRINT D,S
4 7

Now we have a good idea of what the problem is: D should have been
assigned the value 1 before the Toop began; then, adding 2 to it repeatedly
will always give the next odd number. We should change Tine 140 to assign 1
to D, as well as S. If we delete line 185 and list the program, it now looks
like this:

Example 9.3 Debugged Version of 9.2
110 REM EXAMPLE 9.2 WITHOUT BUG

120 PRINT "CALCULATE SUM OF FIRST N ODD INTEGERS"
130 INPUT "ENTER N“, N

140 S, D =1

150 IF N = 1 THEN 200
160 FOR I =2 TO N
170 D = D+2

180 S = $+D

190 NEXT I

200 PRINT "SUM="; S

124

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

In order to run the program, we must now use the RUN command. The
CONTINUE command cannot be used since the program has been altered.

The PRINT statement functions exactly the same way in the Immediate Mode
as it does in a program (or "Program Mode", as it is sometimes called). You
can evaluate a large expression, for example, just as you would in a program
statement. The only difference is that all Immediate Mode PRINT operations
occur at the address selected for Console Output. Therefore, a PRINT
statement executed in the Immediate Mode outputs to Console Output (normally
the CRT), even if a statement such as SELECT PRINT 215 has been executed.

The assignment statement (LET) can be used in the Immediate Mode. If it
is used to change the value of a variable used in the program, then CONTINUE
can be wused to resume execution after a STOP. If a new variable is
established by an Immediate Mode assignment statement, CONTINUE cannot be
used. DIM may be used in the Immediate Mode. INPUT and IF...THEN may not be
used in the Immediate Mode. Section 9-5 introduces the use of FOR...TO/NEXT
in the Immediate Mode.

9-3 THE HALT/STEP KEY, TRACE, SELECT P

The HALT/STEP Key

As its name implies, the HALT/STEP key has a dual purpose. Depressed
once, it waits until execution of the current program statement is complete,
then halts execution and displays the colon (:) symbol. This is 1its "halt"
function. The effect is Jjust as if the currently executing statement were
followed by a STOP statement, except that the word "STOP" is not displayed.

If you want to temporarily stop program execution, the HALT/STEP key 1is
the ideal choice. After HALT/STEP, you can use CONTINUE to resume execution,
Jjust as you would after a STOP statement, The same limitations on the use of
CONTINUE apply with interruptions caused by HALT/STEP, as with ones caused by
STOP.

In addition to allowing the use of CONTINUE, HALT/STEP is preferable to
RESET since, unlike RESET, it allows the current statement to finish execution
before interrupting the program. This is of major importance during tape and
disk operations, when an instantaneous interruption can easily leave
half-written, unintelligible information on the tape or disk.

Keyed once, HALT/STEP stops program execution. Keyed a second time, or
keyed after STOP has interrupted execution, HALT/STEP Tists and executes the
next program statement, and halts again. Thus, it permits you to ‘step
through" the program, executing one statement at a time, and displaying the
statement as it is executed. This can be very useful in finding program bugs.

125

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

Example 9.4 Program with Bug

110 REM PROGRAM WITH BUG - SUM IS INCORRECT
120 PRINT "CALCULATE SUM OF FIRST N ODD INTEGERS"
130 INPUT "ENTER N", N

140 S =1

150 IF N = 1 THEN 200
160 FOR I =2 TO N
170 D = D+2

180 S = S+D

185 STOP "LINE 185"
190 NEXT I

200 PRINT "SuM="; S

Example 9.4 reproduces the program with a bug (Exampie 9.2); however, a
STOP statement has been added at Tine 185. When executed, this program
produces output such as this:

READY
:RUN
ENTER N? 5

STOP LINE 185

Keying HALT/STEP displays and executes the next statement, and then restores
the colon. The result Tooks Tike this:

STOP LINE 185

190 NEXT I

If HALT/STEP is keyed repeatedly from the position shown above, the
results l1ook 1ike this:
170 D = D+2

180 S = S+D

185 STOP "LINE 185"
STOP LINE 185
190 NEXT I

170 D = D+2

126

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

180 S = S+D

185 STOP "LINE 185"
STOP LINE 185

A program executed in this manner works exactly as it would if executed
normally. At any point, the normal execution can be resumed with the CONTINUE
command (provided that no action has been taken which would invalidate the use
of CONTINUE). HALT/STEP output occurs at the device selected for Console
Output.

TRACE

While HALT/STEP is an important debugging feature in that it allows you
to follow the sequence of execution, its power can be considerably enhanced
through the use of the TRACE mode. When the system is executing a program in
TRACE mode, each time a variable is assigned a value, the variable name and
its new value are printed. Each time the "normal sequence of execution" s
altered, the message "“TRANSFER TO line number" is printed showing the Tine
number branched to.

The system is put into TRACE mode by executing the BASIC statement
TRACE. TRACE may be executed as an Immediate Mode statement, or it may be
included as a line-numbered program statement. The system remains in TRACE
mode until a CLEAR command 1is executed, RESET is keyed, or TRACE OFF is
executed.

To see how TRACE works, execute the program of Example 9.4, and when it
reaches the STOP, key TRACE (EXEC). Output looks Tike this:

:RUN
CALCULATE SUM OF FIRST N ODD INTEGERS
ENTER N? 5

STOP LINE 185
:TRACE

Now, if you key HALT/STEP, TRACE and HALT/STEP together produce the following
output:

190 NEXT I
I= 3
TRANSFER TO 170

In this display you can see that HALT/STEP has listed 1line 190 and executed
it. Since the system is in the TRACE mode, the effect of NEXT I is displayed;
I is assigned the value 3 and a branch to 170 is made.

127

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

Repeatedly keying HALT/STEP produces this:

170 D
D= 4

D+2

180 S = S+D

185 STOP "LINE 185"
STOP LINE 185
190 NEXT I

I= 4
TRANSFER TO 170

170 D

- D42
D= 6
180 S = S4D

S= 13

Trace can be turned off by keying
:TRACE OFF (EXEC)

If it is turned off in this way, the CONTINUE command allows normal program
execution to be continued from the next statement.

TRACE and HALT/STEP together provide the most powerful means of
observing program operation. TRACE mode can be wused by itself, though,
permitting the system to execute instructions at normal speed. This can be
especially useful if a printer is available to record the output from the
trace. Output generated by TRACE mode always appears on the Console Output
device; therefore, to use a printer, you must first execute a statement such
as

:SELECT CO 215

With the STOP statement removed and a printer selected for PRINT and CO
output, Example 9.4 produces the following output:

128

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

:RUN

CALCULATE SUM OF FIRST N ODD INTEGERS
ENTER N? 5

S=1

I=2

D=2

S=3

I=3

TRANSFER TO 170
D= 4

S=7

I= 4

TRANSFER TO 170
D=6

S= 13

I= 5

TRANSFER TO 170
D=8

S= 21

I=>

SUM= 21

Used in this fashion, TRACE allows you to easily review a malfunctioning
program. The symbol => 1is wused 1in trace output when a NEXT statement
terminates a loop.

SELECT P

If a printer is not available, you may wish to slow down execution to
make the trace output easier to read on the CRT. The system can be instructed
to pause for a specified time after each line of output. This is done by
executing a statement such as

:SELECT P 1

In this statement the P stands for "pause", and the 1 says that the system is
to pause 1 sixth of a second after each line of output. A statement such as

:SELECT P 5
causes a 5/6 second pause, and is usually better for observing trace output,
The maximum pause value which may be used is 9 for a 9/6, or 1.5, second
pause. The digit used always specifies the pause time in sixths of a second.
Once a pause has been selected, it remains selected, until another pause
is selected, or the system is Master Initialized. No pause or ‘'“pause off"
may be selected by executing

:SELECT P

129

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

9-4 THE RENUMBER, CLEAR P, AND CLEAR V_COMMANDS

RENUMBER

RENUMBER is a powerful command that rapidly assigns new line numbers to

a program, or portion of a program, in memory.

It preserves program function

by inserting the appropriate new line number in all statements that refer to a

specific line.
renumbered at the bottom.
lines 12 and 14.

Example 9.5 The Effect of RENUMBER

Program before Renumbering
10 INPUT N

12 IF INT(N/2) = N/2 THEN 15

13 PRINT "NUMBER IS ODD"
14 GOTO 16

15 PRINT "NUMBER IS EVEN"
16 STOP

Program after Renumbering
10 INPUT N

20 IF INT(N/2) = N/2 THEN 50

30 PRINT "NUMBER IS ODD"
40 GOTO 60

50 PRINT "NUMBER IS EVEN"
60 STOP

For example, the program at the top of Example 9.5 has

The general form of the RENUMBER command is:

RENUMBER [1ine number]
The first line
to be renumbered.
A1l lines with
numbers greater
than or equal to
this number are
renumbered.

(If omitted, the
entire program
is renumbered,)

The renumbering shown in
command

:RENUMBER

with no additional parameters.

[,1ine number]

The new line
number that

the first re-
numbered 1line

is to receive.
(If omitted, the
new number of the
first renumbered
line equals the
increment between
the new line
numbers.)

increment of 10 and a new starting line number of 1Q.

130

been

Notice the changes made to the branch addresses at

[,integer]

The increment
between the new
Tine numbers

0 [integer] 100.
(If omitted,
the increment
is 10.)

Example 9.5 was effected with the simple

The entire program was renumbered with an

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

Now look at some other ways the original program, shown at the top of
Example 9.5, can be renumbered. Example 9.6 shows the original program
listing and the listing which results from executing

:RENUMBER 10, 200
Example 9.6 The Effect of RENUMBER 10, 200

:LIST

10 INPUT N

12 IF INT(N/2) = N/2 THEN 15
13 PRINT "NUMBER IS 0DD"

14 GOTO 16

15 PRINT "NUMBER IS EVEN"

16 STOP

:RENUMBER 10,200

(LIST

200 INPUT N

210 IF INT(N/2) = N/2 THEN 240
220 PRINT "NUMBER IS 0ODD"
230 GOTO 250

240 PRINT "NUMBER IS EVEN"
250 STOP

In Example 9.6, 200 is specified as the new line number for the first
line to be renumbered. In this case the same effect could have been achieved
by omitting the first 1line number parameter, in a command such as RENUMBER,
200. The comma preceding 200 indicates that the first parameter is omitted.

In Example 9.7 all three RENUMBER parameters are used. The renumber
command RENUMBER 13, 15, 2 says '"Renumber the lines starting at line 13,
change line 13 to line 15, and from there increment each line by 2."

Example 9.7 Using A1l the RENUMBER Parameters

:LIST

10 INPUT N

12 IF INT(N/2) = N/2 THEN 15
13 PRINT "NUMBER IS ODD"

14 GOTO 16

15 PRINT "NUMBER IS EVEN"

16 STOP

:RENUMBER 13,15,2

:LIST

10 INPUT N

12 IF INT(N/2) = N/2 THEN 19
15 PRINT “NUMBER IS ODD"

17 GOTO 21

19 PRINT "NUMBER IS EVEN"

21 STOP

131

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

RENUMBER is a command only. It cannot be part of a program.
CLEAR P

The CLEAR P command offers a means of clearing from memory all or part
of the program text, without disturbing any variables. Its general form is

CLEAR P [Tine number [,1ine number]]

If CLEAR P is executed with no line numbers specified, then the entire program
text is cleared. If a single line number is used, as in

:CLEAR P 220

all lines, from the indicated line through the highest numbered 1ine, are
cleared. If two 1line numbers are specified, as in

:CLEAR P 220, 1100

all program Tlines, from the indicated first line through the indicated second
line, inclusive, are deleted. CLEAR P is not programmable.

CLEAR V

The CLEAR V command clears all variables from memory, but 1leaves the
program text intact. It has no optional parameters, and is used by simply
keying

:CLEAR V (EXEC)

It is a command only, that is, it may not be programmed.

9-5 MULTISTATEMENT LINES

Thus far, in all our example programs, each BASIC statement has been
given a Tline number, or, in another way of looking at it, each numbered 1ine
has had only one statement on it. However, your Wang system allows any number
of statements to appear on a single Tline, provided that the maximum Tine
length of 192 keystrokes is not exceeded. Statements are separated from one
another by colons, and are executed sequentially, left to right, through the
line. The wuse of multistatement 1lines can allow a program to occupy less
memory space and to execute somewhat faster.

Branch statements such as GOTO and IF...THEN can only cause a branch to
a line number, which means to the first statement on a line, not to the
second, third or fourth statement on a line. There is no way to branch into
the middle of a line with a branch statement that branches te a line number.
Therefore, if you want to branch to a statement with a GOTO or IF.,.THEN, the
statement to be branched to must be the first statement on a Tine.

There are restrictions on the use of multistatement 1lines with some
BASIC statements. None of the statements discussed in previous chapters have
any such restrictions. When statements with such restrictions are introduced,
the restrictions will be noted.

132

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

Using multistatement lines, the original inventory program (Example 2.2)
could have been written on two lines. It is shown in Example 9.8 rewritten in
this fashion.

Example 9.8 Multistatement Lines Used for the Inventory Program
(Example 2.2)

10 LET 1I=42500:PRINT "OPENING INVENTORY="; I

20 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T:LET I=I
+T:PRINT :PRINT "TONS ON HAND ="; I:IF I>= 100 THEN 20:PRINT "R
EORDER COAL IMMEDIATELY: INVENTORY BELOW 100 TONS":GOTO 20

In Example 9.8, 1ine 10 contains two BASIC statements. The first one

LET I=42500

is the statement that originally appeared alone on 1ine 10. At the end of
this statement a colon appears. This colon was entered as the line was being
keyed in, to indicate the beginning of the second statement. The second
statement 1is taken from line 20 of the original program. During execution,
the system will execute the two statements on line 10 just as if they were on
two separate lines as before,

The INPUT statement, statement 30 of the original program, must be
branched to from later statements in the program. Therefore, this statement
must appear on a new line, despite the fact that 1ine 10 has not received 192
keystrokes of information. Line 20 now receives all the remaining statements.
Each statement is separated from the next by a colon. Notice that the branch
statement IF...THEN is embedded in the multistatement Tline; it is only the
statement branched to which must be the first statement on a line.

If execution is stopped, with a STOP statement or the HALT/STEP key, in
the middle of a multistatement 1ine, CONTINUE continues execution with the
next statement in the 1line. If HALT/STEP 1is used to step through a
multistatement 1ine, the entire unexecuted portion of the line appears on the
CRT, with the statement which is to be executed next in the leftmost position.

The use of multistatement Tines can make a program much more difficult
to read. This 1is obvious from a comparison of Examples 2.2 and 9.8. Even
when the number of statements per line is reduced to 2 or 3, readability is
sometimes impaired. Therefore, 1in this manual we ayoid the use of
multistatement lines in examples, and suggest that it may be a good idea for
you to do the same. However, one form of multistatement line generally adds
to program clarity. This is the use of a REM as the second statement on a two
statement Tine. For example,

10 LET I = 42500:REM INITIAL BALANCE

Since multistatement lines do offer some advantages, such as reduced
memory usage and increased execution speed, a special utility program is
available from Wang Laboratories which "compresses" a program by, among other
things, building 1long multistatement Tines wherever doing so is consistent
with maintaining executability.

133

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

Multistatement Lines in Immediate Mode

A multistatement line can be executed in the Immediate Mode, that is,
without a 1line number, by simply separating the statements with a colon,
Since Immediate Mode statements are executed and lost when (EXEC) 1is keyed,
they are rarely more convenient than writing a short program, If they fail to
execute due to a syntax error, they must be completely reentered. However,
when program execution has been stopped, and CONTINUE is to be wused, a
multistatement Immediate Mode operation can occasionally prove useful, In a
multistatement Immediate Mode operation FOR...TO and NEXT can be used,

The following multistatement line can be executed in the Immediate Mode.
It calculates and prints the value of 25 factorial.

:P=1 : FOR I=1 TO 25 :P=P*I :NEXT I :PRINT P

The FOR...TO and NEXT statements execute just the way they would if this were
written:

10 P=1

20 FOR I=1 TO 25
30 P=P*I

40 NEXT I

50 PRINT P

9-6 THE END STATEMENT

The END statement ends program execution, and displays the message:

END PROGRAM
FREE SPACE = XXXXX

where XXXXX is the approximate amount of memory (in bytes) which remains

unallocated to program text or variable space at the time that the END
statement is executed.

The message appears on the Console Output device (normally the CRT). After an

END statement has been executed, the CONTINUE key cannot be wused to resume
execution,

The END statement is optional. Your Wang system ends program execution
whenever, 1in the normal sequence of execution, it can find no higher numbered
line to execute.

The END statement can be executed in the Immediate Mode. Then, its only
function is to report on the amount of memory free space. Section 9-7
discusses in more detail the way memory space is used by your Wang system, and
the significance of the END statement's free space report.

134

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

9-7 MEMORY USAGE BY PROGRAM TEXT AND VARIABLES

In Chapter 8 we said that an alphanumeric variable would automatically
be given a maximum length of 16 characters, unless a DIM statement specifies a
different maximum length. When speaking about the length of an alphanumeric
variable, it is customary to speak in terms of character capacity, the number
of alphanumeric characters which the variable can hold. If an alphanumeric
variable is dimensioned to a 1length of 40 characters, then the system
automatically allocates to the variable enough memory capacity to hold 40
alphanumeric characters.

The amount of memory capacity allocated to store a single alphanumeric
character exactly corresponds to the fundamental unit of memory of the 2200
system, Outside of the specific context of storing alphanumeric characters,
this unit of memory capacity is called a "byte". Thus,

to store one alphanumeric
character

The memory capacity allocated
= one byte.

At the level of raw capacity, if your 2200 system is equipped with 8K of
memory, meaning exactly 8192 bytes of memory, then its character storage
capacity would be 8192 characters. However, in fact, memory must be used for
many things other than simply storing characters. This means that the
effective capacity is somewhat less than the raw capacity.

In every 2200 system approximately 700 bytes are wused by the system
itself, and are not directly available to the user. The system uses this
memory in a variety of ways including the storage of FOR/NEXT data and other
information. The rest of memory is available for your program text and
variables.

Your Wang 2200 system automatically converts each BASIC keyword and
function name to a special code, before storing it as program text in memory.
Each of these special codes occupies just one byte of memory. This feature of
your Wang system greatly reduces the amount of memory required for program
storage, and increases the speed of execution as well.

If you wish to know how much memory is available while you are keying in
a new program, you can simply execute an END statement in the Immediate Mode
at any time. However, your program will probably need memory capacity for
variables as well as for the program text itself. Thus, even if the program
text fits 1into your system, it will not be executable unless there is enough
memory capacity for the variables also.

When the system receives a RUN command, it quickly searches through the
entire program text, allocating the proper amount of memory space for each of
the variables it encounters. Only after it has established space for every
variable does it actually begin to execute the program statements. (If there
is not enough memory capacity for the program text and the required variable
space, the system signals an ERR 02 indicating the overflow.) If you want to
know how much actual memory capacity is Tleft over after program text and
variables are accounted for, you must first issue a RUN command, and then

135

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

execute an END statement. For example, you could temporarily put an END
statement at line 1 of your program. When you key RUN (EXEC), the system will
set aside memory space for all of the program variables, and then begin
execution with the END statement.

Each alphanumeric variable used in a program requires the number of
bytes of its dimensioned 1length (16 bytes if a DIM statement is not used),
plus five bytes of special control information. The control information
permits the system to find the variable when it needs to do so. Each numeric

variable requires eight bytes, plus five bytes, of control information. This
is summarized in Table 9.1,

Table 9.1 Memory Space Required per Variable

Space Usable Space for Total
Type by Value Control Information | Space
Numeric 8 bytes 5 bytes 13 bytes
Alphanumeric | DIM length 1-64 bytes 5 bytes 6-69
(16 if no DIM statement) bytes

Review of Chapter 9

1. The STOP statement stops program execution, and displays the stop
message and the colon.

2. Depressed once during program execution, the HALT/STEP key stops
execution at the end of the currently executing statement. Depressed a
second time, it lists and executes the next program statement.

3. After program execution has been stopped with STOP or HALT/STEP, it may
be resumed by keying CONTINUE (EXEC) (provided that certain actions
which prohibit continuation have not occurred while the program has been
stopped).

4. Many BASIC statements can be executed immediately by being entered
without a line number. These "Immediate Mode" operations can be useful
as a debugging aid and as a means of performing quick calculations.

5. TRACE mode outputs a message each time a branch 1is effected, and
displays the result of each assignment. A pause can be selected by
means of SELECT P.

6. The RENUMBER command renumbers the lines of a program, or portion of a
program.
7. CLEAR P allows all of a program text, or a portion of it, to be cleared

without disturbing variables. CLEAR V clears variables without
disturbing program text.

8. Any number of statements can appear on a single program Tine, up to the
maximum Tine length of 192 keystrokes. Statements must be separated by
colons.

136

10.

1.

DEBUGGING AIDS AND MISCELLANEOUS SYSTEM FEATURES

The END statement ends program execution, and displays the amount of
memory that is unused by program text and variables.

The amount of space allocated to store a single alphanumeric character
is called a "byte".

BASIC keywords occupy just one byte of memory in your Wang system.
Alphanumeric variables require as many bytes as their defined character
length (1-64), plus five control bytes. Numeric variables require eight
bytes, plus five control bytes.

137

CHAPTER 10
THE ON STATEMENT WITH GOTO

10-1 SIMPLE USE OF ON...GOTO

A single IF...THEN statement provides two alternative execution paths in
a program, Either the normal sequence of execution prevails, or a branch is
effected to a specified 1ine number. If more than two alternatives are
required, IF...THEN statements can be stacked to provide for all of them. An
example of such stacking is shown in Example 10.1. Asterisk REM's have been
inserted to highlight the IF...THEN's.

Example 10.1 A Program Segment with Stacked IF...THEN's

530 REM CHOOSE JOB CATEGORY

540 PRINT , "1. CARPENTER", "4. ROOFER"

550 PRINT , "2. LABORER", "5. FOREMAN"

560 PRINT , "3. ROD LAYER", "6. NON-UNION"

570 PRINT

580 INPUT "ENTER NUMBER TO CHOOSE JOB CATEGORY", C
590 REM BRANCH TO UPDATE CATEGORY DATA

600 REM kkkkkkhkkhkkkkkhkkkkhkkhkkhkkkkhkkkkkhkkhhkkkhkkkk

610 IF C =1 THEN 730
620 IF C = 2 THEN 760
630 IF C = 3 THEN 810
640 IF C = 4 THEN 850
650 IF C = 5 THEN 880
660 IF C = 6 THEN 940

670 REM khkkhkkkkkhkkkkhkhkhkkkhkkkkhhkkhkkkhkkkhhkkkkhkhkkhkkk

680 REM SELECTION INVALID

690 PRINT "INVALID. REENTER."
700 PRINT

710 GOTO 540

720 REM UPDATE CARPENTER HOURS
730 H1 = D + HI

740 GOTO 970

750 REM UPDATE LABORER HOURS, INSURANCE, VACATION FUND
760 H2 = D + H2

770 19 = 19 + (D*.052)

780 V9 = V9 + (D*.1175)

790 GOTO 970

570 REM NEXT OPERATION
138

THE ON STATEMENT, WITH GOTO

In this example the operator enters a selection number, 1-6, to choose a
worker's job category. The entry is made at Tline 580 and goes into
variable C. The six IF...THEN statements then test C for each possible
valid entry, and branch to the proper routine. If an invalid entry is
made, none of the IF...THEN branches are taken; the normal sequence of
execution produces a reenter message, and a branch back to the beginning
of the operation.

Example 10.1 is a simple case of a common programming requirement: the
value of an expression, in this case C, must determine which of many possible
branches is to be taken. The BASIC language provides a single statement to
make programming in this situation a simple and concise operation. This
statement is the ON statement. The ON statement has two forms, ON...GOTO and
ON...GOSUB. Though their operation is similar, we do not take up ON...GOSUB
until Chapter 13.

In Example 10.2 a single ON...GOTO statement is substituted for the six
IF...THEN's of Example 10.1. If the value of C is 1, the ON...GOTO statement
effects a branch to the first listed 1ine number, 730. If C is 2, it branches
to the second 1ine number, and so on, up to 6 which effects a branch to 1line
940. If C is 1less than 1, or equal to or greater than 7, the ON...GOTO
statement lets the normal sequence of execution prevail; this leads to the
reenter message.

Example 10.2 ON...GOTO Substituted for the Stack of IF...THEN's in
Example 10.1

530 REM CHOOSE JOB CATEGORY

540 PRINT , "1. CARPENTER", "4. ROOFER"

550 PRINT , "2. LABORER", "5. FOREMAN"

560 PRINT , "3. ROD LAYER", "6. NON-UNION"

570 PRINT

580 INPUT "ENTER NUMBER TO CHOOSE JOB CATEGORY", C
590 REM BRANCH TO UPDATE CATEGORY DATA

600 REM *hkkkkhkkkkkkhkkkhkhkkkkkhkkkkhkkkkkkkkkhkhkkkkkikikk

610 ON C GOTO 730, 760, 810, 850, 880, 940

620 REM **% ko dkokokokdok kokdkok deok ok ok ook dok ok ok dodekok deok ook ok ok

680 REM SELECTION INVALID

690 PRINT "INVALID. REENTER."

700 PRINT

710 GOTO 540

720 REM UPDATE CARPENTER HOURS

730 H1 = D + Hi

740 GOTO 970

750 REM UPDATE LABORER HOURS, INSURANCE, VACATION FUND

760 H2 = D + H2
770 I9 = 19 + (D*.052)
780 V9 = V9 + (D*.1175)

790 GOTO 970

970 REM NEXT OPERATION

THE ON STATEMENT, WITH GOTO

The general form of the ON statement with GOTO is
ON expression GOTO Tine number [,1ine number...]

The square brackets and ellipsis indicate that 1ine numbers beyond the first
are optional, and may be added without 1limit.

The ON...GOTO statement first evaluates the expression following "ON".
If the integer value of the expression is 1, a branch is taken to the first
line number following GOTO. If the integer value of the expression is 2, a
branch to the second T1line number is effected. In general, if the integer
value of the expression is n, a branch is effected to the nth 1line number
following "GOT0". If n is greater than the number of lines specified, or if n
is less than 1, no branch is taken; the normal sequence of execution prevails.

Differences between Stacked IF...THEN's and ON...GOTO

ON...GOTO, in Example 10.2, may be a good functional substitute for the
six IF...THEN's of Example 10.1. However, there is one difference which you
should be aware of, and may want to counteract. In Example 10.1 if a
non-integer value, such as 2.5, is entered, no branch is taken, since 2.5 does
not equal any of the acceptable values. An entry of 2.5, therefore, yields a
"RE-ENTER" message. In Example 10.2 the ON...GOTO statement uses only the
integer portion of the expression; it treats an entry of 2.5 as if it were 2.
An entry of 2.5 effects a branch to line 750. Thus, in Example 10.2 any entry
in the range 1 < C <7 causes a branch, whereas in Example 10.1 only the values
1, 2, 3, 4, 5 or 6 cause a branch.

In many circumstances this sort of difference may be immaterial.
However, 1if necessary, the difference can easily be eliminated from Example
10.2. Example 10.3 adds a test for a non-integer entry to the program in
10.2. The new test is highlighted by asterisks. If a non-integer is entered,
this test effects a branch to the reentry routine. Therefore, Example 10.3
functions identically to Example 10.1.

Example 10.3 Testing for a Non-Integer Expression before ON...GOTO

538 REM CHOOSE JOB CATEGORY

540 PRINT , "1. CARPENTER", "4. ROOFER"

550 PRINT, "2. LABORER", "5. FOREMAN"
560 PRINT, "3. ROD LAYER", "6. NON-UNION"
570 PRINT

580 INPUT "ENTER NUMBER TO CHOOSE JOB CATEGORY", C
581 REM ***¥kkkkkkkhdkkhkkhhdkhkdhhiokkkkhkkhkkhkkk
582 REM NON-INTEGER ENTRY?

584 IF INT(C) <> C THEN 690

585 REM kkkkkkhkkkhkkhkkkkkkkkhkhkkkhkhkkkkkkkkkkikkhkk
590 REM BRANCH TO UPDATE CATEGORY DATA

610 ON C GOTO 730, 760, 810, 850, 880, 240
680 REM SELECTION INVALID

690 PRINT "INVALID. REENTER."

700 PRINT

710 GOTO 540

140

THE ON STATEMENT,WITH GOTO

720 REM UPDATE CARPENTER HOURS

730 HT = D + Hi

740 GOTO 970

750 REM UPDATE LABORER HOURS, INSURANCE, VACATION FUND
760 H2 = D + H2

770 19 = 19 + (D*.052)

780 V9 = V9 + (D*.1175)

790 GOTO 970

970 REM NEXT OPERATION

One preliminary word of caution is 1in order about the ON...GOTO
statement, though. Later, after you have 1learned about subroutines and
subscripted variables, you will have two powerful tools for wusing the same
program statements to effect similar operations. With these techniques
available, when you find yourself using an ON...GOTO, you should ask, "Are
these separate operations, which are being branching to, similar enough to be
combined into one?" If you ask yourself this question, it should help you to
write better, more efficient programs,

10-2 USING MORE COMPLEX EXPRESSIONS IN ON...GOTO

In Example 10.2 the expression used in the ON,..GOTO statement is a
simple numeric variable. However, since any valid expression is allowed, more
complex forms can be used when needed.

Often the SGN function is handy for use with ON...GOTO. Suppose, for
example, that you want to do three different operations depending upon whether
K (or any expression) is less than, equal to, or greater than zero. SGN(K)
returns -1, 0, or 1 respectively for these conditions. SGN(K) + 1, then,
always yields 0, 1, or 2. This range is appropriate for use with ON...GOTO,

as follows:
Example 10.4 A Simple Use of SGN() with ON...GOTO

10 REM USING THE "SGN" FUNCTION WITH "ON...GOTO"

120 ON SGN(K) + 1 GOTO 170,210
130 REM K < 0
140 REM OPERATION FOR K < O GOES HERE

170 REM K=0
180 REM OPERATION FOR K=0 GOES HERE

210 REM K > 0
220 REM OPERATION FOR K>0 GOES HERE

141

THE ON STATEMENT,WITH GOTO

The range of an expression over vreqgular intervals can determine an
ON...GOTO branch by simply dividing the expression by the interval size and
adding one if necessary. For example, if K is positive, to branch as
specified on the intervals

0 < K < 800 branch to 900
800 < K < 1600 branch to 800
1600 < K < 2400 branch to 700
2400 < K < 3000 branch to 600
3000 < K no branch, execute next statement

This ON statement suffices:
490 ON (K/800)+1 GOTO 900, 800, 700, 600

Review of Chapter 10

1. The general form of the ON statement with GOTO is
ON expression GOTO 1ine number [,1ine number,..]

2. The ON...GOTO statement first evaluates the expression following the
keyword "ON". If the integer value of the expression is n, a branch is
effected to the nth 1ine number following the keyword "GOTO". If n is
greater than the number of lines specified, or if n is less than 1, no
branch is taken.

3. The SGN() function is often useful for producing an expression with
values in the range needed for ON...GOTO.

142

CHAPTER 11
LISTS

11-1 INTRODUCING LISTS, DIM REVISITED

It is often desirable to arrange information in a Tist. In the original
inventory program, Example 2.2, there was just one product, coal. Suppose,
though, that there are six products 1in the inventory. We might want to
maintain a quantity-on-hand 1list that looks something 1ike this:

Quantity-On-Hand List

Item Product Number Quantity in Units
1 X407 3455
2 D912 1200
3 T612D 120
4 E711 145
5 A816A 192
6 c4121 300

If we receive a shipment of 100 units of product E711, to update the
quantity-on-hand T1ist we go down the 1ist to the 4th item, and update the
quantity value which we find there. In this case, we set the quantity to the
sum of the present quantity, 145, plus 100.

Suppose that we want to write a program to accomplish this simple task.
Make it even simpler for the moment by assuming that the operator enters the
item number, 1-6, rather than the product number. This eliminates the need to
search through the 1ist for the right product.

We will need six variables in which to keep the quantities. We can use

Q0-Q5. A simple program which updates these variables with entered quantities
is shown in Example 11.1.

143

LISTS

Example 11.1 A Six-item Inventory Program, without List Variables

110 REM * A ROUTINE TO UPDATE ONE OF SIX INVENTORY BALANCES
120 REM * WITHOUT THE USE OF LIST VARIABLES
130 REM ACCEPT ITEM NUMBER

140 INPUT "ENTER ITEM NUMBER (1 - 6)", A

150 REM TEST ENTRY

160 IF A < 1 THEN 200

170 IF A > 6 THEN 200

180 IF A = INT(A) THEN 240

190 REM ENTRY INVALID

200 PRINT

210 PRINT "INVALID. REENTER"

220 GOTO 140

230 REM ITEM ENTRY OK. NOW ACCEPT TRANSACTION

240 INPUT "ENTER INVENTORY TRANSACTION AMOUNT (+ OR -)", B
250 REM BRANCH ON ITEM NUMBER

260 ON A GOTO 280, 320, 360, 400, 440, 480

270 REM UPDATE QO

280 PRINT "OLD BALANCE=", QO, "NEW BALANCE=", QO+B
290 Q0 = Q0 + B

300 GOTO 500

310 REM UPDATE QI

320 PRINT "OLD BALANCE=", Q1, "NEW BALANCE=", Q1+B
330 Q1 = Q1 + B

340 GOTO 500

350 REM UPDATE Q2

360 PRINT "OLD BALANCE=", Q2, "NEW BALANCE=", Q2+B
370 Q2 =Q2 + B

380 GOTO 500

390 REM UPDATE Q3

400 PRINT "OLD BALANCE=", Q3, "NEW BALANCE=", Q3+B
410 Q3 = Q3 + B

420 GOTO 500

430 REM UPDATE Q4

440 PRINT "OLD BALANCE=", Q4, "NEW BALANCE=", Q4+B
450 Q4 = Q4 +B

460 GOTO 500

470 REM UPDATE Q5

480 PRINT "OLD BALANCE=", Q5, "NEW BALANCE=", Q5+B
490 Q5 = Q5 + B

500 REM NEXT OPERATION

510 GOTO 110

One of the most conspicuous features of this program is that from 1line
270 to 490 essentially the same program steps are repeated six times over.
The only difference between one of the six update routines and another is the
variable name. Whenever you see this kind of vrepetition in a computer
program, you should look for a way to improve the program by wusing a single
set of statements to perform the similar operations.

With the programming features of BASIC which we've covered thus far,
though, Example 11.1 s about the best we can do. What is needed is to be
able to keep a 1list of variables to contain the inventory quantities. Such a
1ist should allow us to refer to a specific variable on the 1list by saying in

144

LISTS

effect, "I want the 1st variable (or the 2nd, or the 3rd, etc.) 1in the
inventory quantity list." Furthermore, we should be able to say which variable
in the 1ist we want by means of an expression. That is, if J equals 4, we
should be able to say "Get me the Jth variable in the Tist" and we should get
the 4th variable, since 4 is the value of the expression J.

BASIC offers just this capability. You can set up a list of variables,
and ¢ive the entire 1list a name. If you set up a list of six numeric
variables, the individual variables on the 1ist might be known as:

DOo00000L0
—] — imrid — —

NP wrn—
N e e e

The variables on this 1list may be referred to via
Q1 (expression)

provided that the value of the expression is greater than or equal to 1 and
less than 7. This means that, for example, if I=2, then

10 Q1 (I) = 50

will assign 50 to the second variable on the Tist. In 91(5) = 70, the
constant 5 is used to specify the 5th variable on the Tist.

Only the integer portion of the expression is used 1in specifying the
variable. Thus, Q1(2.2) is equivalent to Q1(2); it specifies the second
variable on the Tist. Q1(11/2) is evaluated as Q1(5.5) and specifies the 5th
variable on the 1list, ‘

Dimensioning Lists

In order to use list variables, you must first tell the system to set
aside space feor a list which contains the desired number of variables. This
is done with a dimension or DIM statement. Thus,

DIM Q1(6)

tells the system, "Set up a list of six numeric variables and call it Q1()."
(The symbol Q1() is generally used to refer to the entire list, to avoid
confusion with the simple numeric variable Q1, which is completely separate
from the 1list Q1().) 1In the DIM statement an expression may not be used to
specify the number of variables on the list. An integer between 1 and 255
must be used. (255 is the maximum number of variables in any list.)

The names which can be used for 1lists are the same as the names which
can be wused for ordinary variables, i.e., A-Z and A0-A9,6B0-B9,C0-C9 ...
Z0-79. However, whenever we refer to an entire 1list, we will use empty
parentheses () to indicate that it is a Tist we are talking about, and not a
single variable. For example, A2() refers to a 1list of numeric variables

145

LISTS

beginning with A2(1) and extending to A2(n), where n 1is the number of
variables in the list. A2 refers to the ordinary numeric variable A2, which
is independent and not a part of any 1list. The ordinary numeric variable A2
as well as the list A2() may be used without conflict in the same program.

Example 11.2 shows how the repetition in lines 280 to 490 of Example
11.1 can be eliminated by using list variables for the quantity-on-hand. The
new statements are enclosed in REM asterisks.

Example 11,2 Rewriting Example 11.1 Using List Variables

110 REM * THE OPERATION OF FIG 11.2 NOW USING LIST VARIABLES
111 REM * FOR THE QUANTITY BALANCES

112 REM ###kwkk DIMENSION THE LIST **kkkekess

115 DIM Q1(6)

]]7 REM Jkkkkdekokkkkokkok kdkkkkkkdkhkkkhhkhkkkkdkkkkkkkk

130 REM ACCEPT ITEM NUMBER

140 INPUT "ENTER ITEM NUMBER (1 - 6)", A
150 REM TEST ENTRY

160 IF A < 1 THEN 200

170 IF A > 6 THEN 200

180 IF A = INT(A) THEN 240

190 REM ENTRY INVALID

200 PRINT

210 PRINT "INVALID. REENTER."

220 GOTO 140

230 REM ITEM ENTRY OK. NOW ACCEPT TRANSACTION
240 INPUT "ENTER INVENTORY TRANSACTION AMOUNT (+ OR -)", B

250 REM *hkkkkkkkkkkkkhkkkhkkkhkhkhkkhkhkkhkkkkkhkhkhkkkkkkkk

255 REM UPDATE SELECTED ITEM

260 PRINT "OLD BALANCE=", Q1(A), "NEW BALANCE=", QI(A) + B
270 Q1(A) = Q1(A) + B

280 REM *hkkkkkhkkkkkkkkkkkkhkkhkkkkkkkkkhkkhkhkkkhkhkkkkkkkk

290 REM NEXT OPERATION

300 GOTO 110

At line 115 the Tist is established by means of a DIM statement. Q1(6)
in the DIM statement specifies that there are to be 6 numeric variables in the
Tist Q1(). The same rules apply to using DIM statements for setting up Tists
as for specifying alphanumeric variable length. That is, the DIM statement
must precede any reference to the variable in the program. Furthermore, once
the number of variables in the list is set by a DIM statement, any attempt to
change it with another DIM statement produces an ERR message.

At Tine 140 the operator enters the item number into variable A, just as
in Example 11.1. The entry is then tested in Tines 160 to 180 to ensure that
it is an integer within the acceptable range. At line 240 the transaction
amount is entered into B.

Line 260 prints "OLD BALANCE=" followed by the value of the variable
Q1(A). The expression within the parentheses, A, is evaluated to find which
variable, on the 1list Q1(), is being referred to. Since A received the item
number at Tline 140, QI(A) is the variable which contains the old balance for
the selected item. The new balance is equal to the old balance in Q1(A), plus
the transaction in B; therefore the new balance is Q1(A) + B. Line 270
replaces the old value with the new.

- 146

LISTS

Summary

Using 1list variables allows you to select a variable from a 1list by
means of the value of an expression. Whenever variables are related by virtue
of similar operations which must be performed on them, you should consider
whether efficiency might be improved by using 1list variables instead of
individual variables. With T1ist variables you can write one operation, and
let the value of an expression specify the variable on which the operation is
to be performed.

11-2 ALPHANUMERIC LISTS

Wang 2200 BASIC also permits alphanumeric list variables. The names of
such 1ists are the same as for lists of numeric variables, except that a $ is
inserted. For example,

DIM A$(12)

tells the system to set up a Tist known as A$(), containing 12 alphanumeric
variables. The variables are identified as A$(1) through A$(12). Similarly,

DIM C8%(42)

sets up a list of 42 alphanumeric variables with the 1ist named C8$(). It is
possible to use the same two characters to name different alphanumeric and
numeric lists. For example,

DIM C8%(42), C8(4)

sets up two completely separate lists, the first alphanumeric, the second
numeric, Furthermore, the individual variables C8$ and C8 could also be used
without any conflict with these two lists; all four are totally distinct.

When using a DIM statement with alphanumeric variables, you must
carefully distinguish between a length specification, and the specification of
the number of variables in a list. For example,

DIM A2%4

specifies that the individual alphanumeric variable A2$ is to be 1long enough
to hold four characters. It might look 1ike this in memory:

A2$ (ala | a] 4l

However,
DIM A2$(4)

specifies that a list, A2$(), containing 4 alphanumeric variables is to be set
up. The length of each variable is 16 characters, since that 1is the length

147

LISTS

the system always wuses unless told otherwise. In memory, the result of DIM
A2$(4) would look something 1ike this:

A2$(1) {a[a] A a[a]a] ol alalaTa[alaTalala]
A2$(2) plafa[a[a]afaf a[a] ala]a] afa] o 4]

A2$(3) alal o A A Aalala AA/_\.IAA Al A

-1

A2$(4) |alal Aalalalalalala alalalala

It is possible to set up a 1list of alphanumeric variables with the
maximum lengths of the variables set to other than 16 characters. For
example,

DIM A2$(4)6
sets up a Tist containing 4 alphanumeric variables in which each variable can

contain a maximum of 6 characters. In memory it would look something 1ike
this:

A2$(1) | a[a]] a]a] 4]
A2$(2) | A[4]A[4[4[4]
A2$(3) | A]A[4[4]

A2$(4) | A|a|a] 8|8

11-3 LISTS AND FOR...TO/NEXT LOOPS

List variables make possible the wuse of FOR...TO/NEXT Tloops where
separate processing would otherwise be required. For example, suppose we want
a very simple program to assign the opening inventory data of Figure 11.1 to
two lists. One list is alphanumeric, and contains the product number; the
other 1list is numeric, and contains the on-hand quantity. Values are assigned
so that corresponding variables receive corresponding values. That is, the
product number in the first variable of the product number Tist has its
associated quantity in the first variable of the quantity 1list, and so on. A
program to set up this Tist is shown as Example 11.3.

Example 11.3 Setting up the Inventory Lists
110 REM SETTING UP THE INVENTORY LISTS

120 DIM Q1(6), N$(6)8
130 FOR I =1 T0 6

140 PRINT "ITEM #"; I,

150 INPUT "PRODUCT NUMBER ", N$(I)
160 PRINT ,

170 INPUT "OPENING BALANCE", Q1(I)
180 PRINT

190 NEXT I

200 REM LIST COMPLETE
210 PRINT "LIST COMPLETE"

148

LISTS

Line 120 of Example 11.3 dimensions the two lists. The numeric quantity
list is Q1(). The alphanumeric product number list is N$(). Note that the
maximum length of a product number is 8 characters, and both 1lists contain six
variables.

The FOR/NEXT Toop sets up a counter variable, I, whose value runs from 1
to 6. At lines 150 and 170 the value of the counter variable determines which
variable in each 1list is to receive the entered value. The first time through
the loop, N$(I) and Q1(I) specify the first variable on each list, since I is
equal to 1. The second time through they specify the second variable on each
list, since I equals 2. The entry of information into successive pairs of
variables continues until NEXT I terminates loop processing.

We can now append to Example 11.3 a routine that allows posting of
inventory transactions. The complete program, with this appendage enclosed in
REM asterisks, is shown in Example 11.4.

Example 11.4 Adding Inventory Posting to Example 11.3
110 REM SETTING UP THE INVENTORY LISTS

120 DIM Q1(6), N$(6)8
130 FOR I =1T0 6

140 PRINT "ITEM #"; I,

150 INPUT "PRODUCT NUMBER ", N$(I)
160 PRINT ,

170 INPUT "OPENING BALANCE", Q1(I)
180 PRINT

190 NEXT I

200 REM LIST COMPLETE
210 PRINT "LIST COMPLETE"

220 REM kkkkkkkkhkhkkkkkkhkkkkhkhkhkhkhkhkkhkkkkhkkhkhkhkhkkhkhkhkhkkhkhkkkkkkkkkk

230 PRINT
240 PRINT
250 PRINT "POST INVENTORY CHANGES"
260 PRINT

270 REM ACCEPT PRODUCT NUMBER

280 INPUT "ENTER PRODUCT NUMBER", A$
290 REM SEARCH LIST FOR PRODUCT NUMBER
300 FORI =1T0 6

310 IF N$(I) = A$ THEN 380
320 NEXT I

330 REM NUMBER NOT FOUND

340 PRINT

350 PRINT "PRODUCT NUMBER NOT ON LIST. REENTER."
360 GOTO 280
370 REM PRODUCT NUMBER FOUND. SAVE I, THEN FORCE "NEXT" EXIT.

380 K=1
390 I =6
400 NEXT I

149

LISTS

410 REM

420 REM PRINT OLD BALANCE, THEN ACCEPT TRANSACTION AMOUNT
430 PRINT "PRODUCT # ", A$, "OLD BALANCE ="; QI(K)
440 PRINT

450 INPUT "ENTER INVENTORY TRANSACTION AMOUNT (+ OR -)", B
460 REM UPDATE INVENTORY BALANCE

470 Q1(K) = Q1(K) + B

480 PRINT "PRODUCT # "; A$,"NEW BALANCE ="; Q1(K)

490 PRINT

500 REM

510 REM RESET VARIABLE VALUES AND RETURN TO MAKE NEXT ENTRY
520 A$ = n

530 B=20

540 GOTO 280

550 REM ek dededede ke dek dekok dede ke de e de e deded ke ke ke ke ke ek dede ke ek dedek dedede ok ek ok ek dkk kk

The key feature of this posting routine, versus Example 11.2, 1is that
the operator enters the actual product number, rather than the list item
number. The program then searches down the 1ist of product numbers, N$(), to
find the entered one. The search occurs at lines 300-320. I, the counter for
the FOR/NEXT loop, is again used to successively specify each variable in the
list. As soon as statement 310 finds a listed product number equal to the
entered one, it branches out of the FOR/NEXT loop to line 380. Since this
branch out of the loop avoids the normal NEXT statement loop termination, the
program must force a NEXT termination. This forced termination takes place at
lines 390 and 400. However, the program must first save the value of the
variable I. This value is the location on the 1list of the entered product
number. Obtaining this value was the purpose of the search. Therefore, line
380 saves the exit value of I in K.

Notice that if the FOR/NEXT search loop terminates without finding the
entered value, it leads to a "not on 1list" message and a reentry at lines 330
to 360.

At line 420 the entered product number has been found; its list location
is stored in K. Lines 430-450 print the product number and old balance, and
request that the inventory transaction amount be entered. 470 updates the
inventory balance, and 480 prints the results of the transaction.

Values of variables A$ and B are cleared at 520 and 530, since otherwise
an accidental keying of (EXEC) would result in the previous values being
reprocessed.

The simple search technique shown here is acceptable for short Tists of
unsorted data.

FOR/NEXT loops and list variables are used together in a wide variety of
standard programming operations. For example, a loop can be used to set the
values of all Tlist variables to a constant. This is illustrated in Example
11.5.

150

LISTS

Example 11.5 Assigning a Constant to Each Variable in a List

110 REM ASSIGNING A CONSTANT TO LIST VARIABLES
120 DIM C2(40)

130 REM ASSIGN VALUES

140 FOR I =1 T0 40

150 c2(I) = 10000

160 NEXT I

Another use of list variables and loops is illustrated in Example 11.6.
The program sorts a numeric 1list A() into ascending order. The number of
items on the 1list is entered at line 200, but the program presumes that the
list itself is dimensioned, and has values in it ready to be sorted.

Example 11.6 Sorting the Values in a Numeric List

105 REM A NUMERIC SORT USING LIST VARIABLES

110 REM SORTING A LIST INTO ASCENDING ORDER

115 REM ** A DATA LIST IN A() MUST BE SUPPLIED **
200 INPUT "ENTER NUMBER OF ITEMS ON LIST A()", N
210 FOR J = 1 TO N-1

220 FOR K =1 TO N-J

230 IF A(K) < = A(K+1) THEN 280

240 REM EXCHANGE VALUES OF A(K) AND A(K+1)
250 T = A(K)

260 A(K) = A(K+1)

270 A(K+1) = T

280 NEXT K

290 NEXT J

The sort consists of two loops nested within one another, but all the
work is done by the inner loop. Assume we have an unsorted list A() of ten
items. Therefore, N, entered at line 200, equals 10. The first time into the
loops, J equals 1 and K equals 1. Line 230, then, 1looks at the first two
values on the 1ist, in A(1) and A(1+1). The object is to get the greater of
these two values into position A(1+1), i.e., A(2). If the condition at 1line
230, A(K) <= A(K+1) 1is false, the values of these two variables must be
exchanged, so that the greater value is in A(K+1). Thus, if the condition in
230 is false, the normal sequence of execution prevails and Tines 250-270 swap
the values of A(K) and A(K+1). If the condition is true, then the present
order is acceptable, and statement 230 simply branches over the statements
that swap the values.

Now suppose that it happens that, when we start the sort, the greatest
value of the entire 1list 1is in A(1). In other words, it is at the exact
opposite position from where we want it after the sort is complete. As a
result of the first time through the inner loop, as outlined above, this value
will be in A(2). It will have been exchanged with the value of A(2), since it
is greater. Now NEXT K sets K to 2, and statement 230 compares A(2) to A(3).
We know that now A(2) has the greatest value on the list, so the second time
through the inner 1loop, it will be exchanged with A(3), and ends up in
variable A(3). The next time through A(3) and A(4) are compared and it moves
to A(4). The inner Toop makes a total of nine comparisons (N-J=9):A(1) and

151

LISTS

A(2), A(2) and A(3), A(3) and A(4), A(4) and A(5), A(5) and A(6), A(6) and
A(7), A(7) and A(8), A(8) and A(9), A(9) and A(10). At the end of all these,
the greatest value has sunk to its correct position in A(10). The order of
the others, however, remains unchanged. At this point NEXT K terminates the
inner loop.

NEXT J (Tine 290) increments J to 2 and starts the inner loop all over
again. Only this time we can omit comparing A(9) and A(10) since we know
A(10) has the greatest value. Therefore, in the second complete execution of
the inner 1loop, K runs from 1 to N-2, to make 8 comparisons. At the end of
these 8 times through the inner loop, we know that the second greatest value
must have sunk to its correct position, A(9).

Again the outer Toop causes the entire inner loop to reexecute, but this
time 7 comparisons are made (N-3=7) and the 3rd greatest value is 1in its
proper position A(8).

This process repeats itself 9 times (FOR J=1 TO N-1). On the 9th time,
the 9th greatest value (which is the next-to-the-least value) has "sunk" to
A(2). This leaves the least value in A(1) and the sort is complete.

If you wish to test the sort program, the program in Example 11.7 can
precede the sort program to generate a list of random numbers to be sorted.
The numbers are integers between 1 and 10000.

Example 11.7 Generating a List of Random Integers
10 DIM A(25)
20 FOR I=1 TO 25

30 A(I) = INT (RND(1)*10000+1)
40 NEXT I

11-4 A NOTE ON TERMINOLOGY

In this chapter we have been talking about variables such as A(2) and
N$(6) and have been calling them "list variables." The forms which contain
them and refer to them collectively, such as A() and N$(), we have been
calling "lists." The term "list" is an unforbidding word in everyday usage
that accurately reflects the structure we are discussing. However, a variety
of other terms are so commonly used that you should be familiar with them.

In general any ordered arrangement of variable spaces in memory is known
as an array. If the Tocation of any variable in the array can be specified by
means of a single value, the array is said to be one-dimensional. Thus the
lists we have been discussing are also known as one-dimensional arrays. For
example, N$() is an ordered arrangement of variables, and we can pick out any
variable on the 1list N$() by specifying a single value such as 5, as in N$(5).
In BASIC, two-dimensional arrays can also be used. They are introduced in
Chapter 19.

Array variables are also sometimes referred to as "subscripted
variables." In the case of a list, the value which specifies a particular
variable, for example 4 in A2$(4), is called the "subscript." List variables
are then sometimes referred to as "singly subscripted variables", since just

152

LISTS

one subscript is required for specification. This terminology is derived from
mathematical notation in which successive variables in a sequence are
designated with subscripts, for example, a, a,,a,, CHERR

Matrix algebra has also contributed a terminology of its own. In
connection with matrix operations, what we have called a list is called a
"vector." The term "matrix", without any qualification, generally refers to a
two-dimensional array.

In contrast to list variables, such as C2(4) and A$(8), we have referred
to "ordinary" variables to mean individual variables such as A, D$, F4$, or
Z8. These "ordinary" variables are often called "scalar variables", when a
contrast with "array type variables" is to be drawn.

Review of Chapter 11

1. BASIC allows you to set up a list of variables. You can refer to any
variable on a 1list by giving the 1list name and an expression that
specifies the location of the variable in the 1list. For example,

P(7)
refers to the seventh variable down the list P().
2. Lists can be alphanumeric or numeric.

3. To use a list, a DIM statement must appear on a lower numbered 1line than
any reference to a variable on the list. The DIM statement specifies
the number of variables to be in the 1list and, optionally, the length of
thé alphanumeric variables in the list. For example,

10 DIM A2$(16)5, B(50)
4. The maximum number of variables in a list is 255.

5. FOR...TO/NEXT 1loops can be used to perform a variety of common
list-processing tasks.

6. Lists are often called "one-dimensional arrays". In discussions of
matrix operations, and elsewhere, they are also sometimes called
"vectors.”" Ordinary variables such as A$, X, F2, etcetera are sometimes
called "scalar variables" to contrast them with vectors and matrices
(matrices are introduced in Chapter 19).

153

CHAPTER 12
SUPPLYING CONSTANTS WITH DATA,
READ, AND RESTORE

12-1 INTRODUCING DATA AND READ

Some tasks require that a program make use of a relatively large number
of constant values. For example, calculating withheld income taxes may
require that a state's set of income intervals and associated percentages be
available. A wholesale supplier may have 10 different fixed sets of payment
terms for customers. Each set may have a low balance finance charge, a high
balance finance charge and a cutoff point separating the two. A single digit
in the customer's permanent file indicates which terms apply to the customer.
Finally, a program performing calculations on the readings of a scientific
measuring device may have to use in its calculations the fixed sensitivity
characteristics of the machine, over intervals of its readings. All of these
examples require that a program have access to a fixed set of numeric data.
Analogous situations can exist for alphanumeric data. For example, in a
billing application a variety of invoice messages may be used, based upon the
past due status of the account.

Thus far, our ability to handle such situations is somewhat 1limited.
Three related statements of Wang BASIC considerably enhance our capabilities
in these situations. These statements are DATA, READ, and RESTORE. Let's
look at DATA and READ first.

DATA and READ are two statements that depend upon one another for
effective operation. In a program, the DATA statement supplies values, but
the only way the program can make use of these values is by using the READ
statement to assign them to variables. Example 12.1 calculates the mean
average of a set of values supplied by a DATA statement.

Example 12.1 A Simple Use of DATA and READ Calculating an Average

110 REM CALCULATE THE AVERAGE ITEM VALUE (ARITHMETIC MEAN)
120 REM NUMBER OF ITEMS

130 DATA 10

140 REM ITEMS

150 DATA 26, 22, 28, 29.5, 32, 18, 20, 21.5, 22, 23
155 REM PROGRAM BEGINS

160 READ N

170 FOR I =1TON
180 READ D

190 E=E+D
200 NEXT 1

210 REM CALCULATE AND OUTPUT AVERAGE
220 PRINT "AVERAGE="; E/N

154

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

Notice in Example 12.1 that there are two DATA statements at the
beginning of the program. DATA statements do nothing when encountered in the
normal sequence of execution, Their only function is to supply values to be
referenced by a READ statement. The remark at line 155 calls attention to
this fact, that the first executable instruction begins at line 160.

The READ N statement at line 160 reads the first data value in the
program, and assigns that value to the variable N. The first data value is
always the first value in the lTowest line-numbered DATA statement. Therefore,
READ N assigns the value 10 to N. READ N also automatically moves an internal
pointer to the next data value. The DATA statement at 1ine 130 contains no
more data values, so the data pointer is set to the first value of the next
DATA statement, which is located at line 150.

At line 170 the newly assigned value of N is used as the "T0" value in
the FOR...TO statement. Thus, the loop set up by line 170 executes 10 times,
Line 180, within the loop, reads the value at the current data pointer
location, and assigns that value to the variable D. It then automatically
moves the pointer to the next data value. The first time through the loop, D
receives the value 26, since the first time line 180 is executed, the pointer
is set to the first value in the DATA statement at line 150.

In order to calculate an average, the program must add up all the values
to be averaged. This operation is performed at line 190. The variable E is
to contain the sum.

NEXT I causes a branch back to the READ D statement, until this loop has
been executed 10 times. Each time through the loop, READ D reads the data
value at the current pointer location, assigns the value to D, and moves the
pointer to the next data value. In this manner READ successively reads all
the values 1in the DATA statement at line 150. E is updated with each newly
read value.

When NEXT I terminates the loop, E contains the sum of all the DATA
values given 1in 1line 150. Line 220 calculates the average by dividing this
sum by N, the number of items,

During the last (10th) execution of the loop, the READ D statement reads
the last value, 23, and sets the data pointer beyond this 1last value. Any
attempt to execute another READ statement, with the data pointer set beyond
the last value, results in an error (ERR 27 Insufficient Data). Therefore, if
you append this statement to the program,

230 READ K

it produces an error. This is because the data pointer lies beyond the end of
the data values after the complete execution of the original program.

The RUN command, with or without a line number, always resets the data

pointer to the first data value. Therefore, Example 12.1 can be reexecuted
successfully by simply rekeying RUN(EXEC).

155

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

It is not necessary that all data values be read. Since the first data
value specifies the number of values to be averaged, if line 130 is changed to

130 DATA 6

the program will execute successfully, averaging only the first six values of
line 150. However, if line 130 is changed to

130 DATA 11

and no additional data values are provided, then on the 11th time through the
loop READ D produces an error (ERR 27 Insufficient Data).

The READ statement proceeds from one value to the next without regard to
whether the next value is in the next DATA statement or in the same DATA
statement. The fact that two DATA statements were used in this program is not
significant. The data could have been supplied in a single DATA statement
such as,

130 DATA 10, 26, 22, 28, 29.5, 32, 18, 20, 21.5, 22, 23

For that matter it could have been supplied in eleven DATA statements, each
with a single value.

The first data value is always the first value in the 1lowest 1line
numbered DATA statement. The system looks for DATA statements in line number
sequence. Thus, if line 130 were numbered 151 instead, the program would not
execute properly. DATA statements may appear anywhere in a program, before or
after the READ statements that read their data. Lines 130 and 150 could have
been numbered, for example, 9010 and 9020 respectively.

Values in DATA statements must be separated by commas. A comma must not
appear at the end of a DATA statement. Any number of values, up to the

maximum line length of 192 keystrokes, may be included in a single DATA
statement.

DATA statements may contain numeric or alphanumeric data or both.
Alphanumeric values must appear as character strings in quotes. When the data
pointer 1is pointing to an alphanumeric value, the next READ statement must
contain an alphanumeric variable to receive the value of the 1literal string.
An error results from any attempt to read numeric data into an alphanumeric
variable, or alphanumeric data into a numeric variable.

The general form of the DATA statement is:
DATA n [,n...]

Where n = a numeric constant, or
a literal string in quotation marks.

Example 12.2 shows a program that reads alphanumeric data into an
alphanumeric variable.

156

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

Example 12.2 DATA and READ with Alphanumeric Values

110 REM READ AND PRINT AN ADDRESS
130 DIM A$25
140 FOR I =1T0 3

150 READ A$
160 PRINT A$
170 NEXT I

180 DATA "WANG LABORATORIES, INC.", "836 NORTH STREET", "TEW
KSBURY, MA 01876"

Multiple Variables in a READ Statement

A single READ statement can read any number of successive data values
into specified variables, that is, a statement sequence such as:

40 READ A$
50 READ C
60 READ D

can be replaced by
40 READ A$,C,D

Multiple variables in a READ statement must be separated by commas. The READ
statement at line 130 of Example 12.3 assigns an address line to each variable

in A$().
Example 12.3 Multiple Variables in a READ Statement

110 REM USING READ WITH MULTIPLE VARIABLES

120 DIM A$(3)25

130 READ A$(1), A$(2), A$(3)

140 FOR I =1T0 3

150 PRINT A$(I)

160 NEXT I

200 DATA "WANG LABORATORIES, INC.","836 NORTH STREET",
"TEWKSBURY, MA 01876"

The general form of the READ statement is:
READ variable [,variable...]

12-2 THE RESTORE STATEMENT

The RESTORE statement offers a means of moving the DATA pointer to any
DATA value. The statement, RESTORE, with no additional parameters, returns
the DATA pointer to the first DATA value.

If we add a line to Example 12.3 as follows,

170 GOTO 130

157

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

the second execution of 130 yields an error, since the data pointer is beyond
the last data value. However, if we add

170 RESTORE
180 GOTO 130

the program will execute indefinitely. The RESTORE statement at 1line 170
moves the pointer back to its original position, pointing to the first DATA
value.

A more practical, though simplified, program which makes use of RESTORE
is shown in Example 12.4,

Example 12.4 A Simplified Withholding Tax Calculation

110 REM A SIMPLE WITHHOLDING TAX CALCULATION
120 INPUT "ENTER GROSS WAGES FOR WEEK", W
130 REM FIND APPLICABLE TAX BRACKET

140 FOR I =1T05

150 READ C, P
160 IF W< C THEN 210
170 NEXT I

180 REM W IS IN HIGHEST TAX BRACKET

190 P = .065

200 GOTO 240

210 REM FORCE "NEXT" EXIT

220 I=5

230 NEXT I

240 REM P NOW CONTAINS CORRECT TAX RATE %
250 T=W™*P

260 PRINT "WITHHOLDING TAX = "; T

270 REM RESET DATA POINTER

280 RESTORE

290 REM LET OPERATOR ENTER NEXT WAGE

300 PRINT

310 GOTO 120

320 REM TAX DATA (CUTOFF, RATE)...

330 DATA 80.00, .005, 125.00, .01, 175.00, .025, 255.00, .035,
325.00, .045

At line 120 the operator enters the weekly gross wage. Lines 140 to 170
make up a loop that carries out a search for the proper tax bracket. Each
time through the loop, line 150 reads an upper 1limit of a tax bracket and the
associated percentage for the bracket. Thus, the first time through the loop,
C is assigned the value 80.00 and P the value .005. If the wages for the week
are less than 80, then the tax rate is .005. Line 160 tests to see if the
wages are less than the tax bracket's upper 1imit. When 160 effects a branch,
P contains the appropriate percentage. If the loop terminates normally,
because the entered wage is $325.00 or more, then 190 sets P to the highest
tax rate, .065.

If 1ine 160 effects a branch, then the FOR...TO information must first
be cleared by forcing a NEXT statement exit. Lines 220 and 230 do this.
Then, the tax can be calculated by multiplying the percentage in P times the
wage, W.

158

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

After line 260 the work of the program has been done, but the DATA
pointer is no Tlonger at the beginning of the DATA values. The RESTORE
statement at line 280 is used to move it back, so that another wage entry can
be successfully processed.

Using an Expression in the RESTORE Statement

An expression can be used with the RESTORE statement to move the DATA
pointer to a specific DATA value. If the value of the expression is n,
RESTORE n moves the DATA pointer to the nth DATA value. Only the integer
portion of the expression's value is used.

Example 12.5 Illustration of RESTORE with Expression

110 REM ILLUSTRATION OF “"RESTORE" WITH EXPRESSION

120 INPUT "ENTER TWO SINGLE DIGIT POSITIVE NUMBERS", A,B

125 REM OUTPUT FIRST VALUE

130 RESTORE A

140 READ W$

150 PRINT W$; " PLUS ";

155 REM QUTPUT SECOND VALUE

160 RESTORE B

170 READ W$

180 PRINT W$; " EQUALS ";

185 REM QUTPUT SUM

190 RESTORE A+B

200 READ W$

210 PRINT W$

500 DATA "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN",
"EIGHT", “"NINE", "TEN", "ELEVEN", "TWELVE", "THIRTEEN", "FOURTE

EN", "FIFTEEN", "SIXTEEN"

510 DATA "SEVENTEEN", "EIGHTEEN", "NINETEEN"

For two entered values, such as 5 and 6, Example 12.5 outputs a 1line
such as:

FIVE PLUS SIX EQUALS ELEVEN.

At 1ine 120 the operator enters two single digit positive values into
the variables A and B. At line 130 the variable A is used as the expression
in a RESTORE statement. The RESTORE A statement moves the data pointer to the
Ath data value. Thus, if A is 5, the data pointer is moved to the fifth data
value, "FIVE"; if it were 9, RESTORE A would move the pointer to the 9th data
value, "NINE"., Line 140 then reads into W$ the value, at the current, newly
set, data pointer Tlocation. W$ 1is printed followed by the word " PLUS".
Lines 160 to 180 repeat this process for the second word. In 1line 190 the
same process is repeated, but now the RESTORE expression is A+B. RESTORE A+B
evaluates the expression A+B and, if we assume the result to be k, moves the
data pointer to the kth data value in the program.

The general form of the RESTORE statement is
RESTORE [expression]

Where 1 < value of expression < 256,

159

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

Example 12.6 shows a simple routine that prints one of several invoice
messages, depending upon the value of a variable D, where D is the age in days
of the oldest outstanding invoice.

Example 12.6 A Program That Prints Invoice Messages

110 REM PROGRAM SEGMENT WHICH PRINTS INVOICE MESSAGES
120 REM ** ASSUME THAT D CONTAINS THE AGE IN DAYS OF THE
130 REM ** OLDEST OUTSTANDING INVOICE AND THAT D < 120
140 DIM M$30

520 REM OUTPUT MESSAGE

530 RESTORE D/30 +1

540 READ M$

550 PRINT , M$

560 REM NEXT OPERATION

6000 DATA "THANK YOU FOR PAYMENT", "YOUR ATTENTION IS APPRECIATED",
"PAYMENT OVERDUE", "IMMEDIATE PAYMENT REQUESTED"

Example 12.6 assumes that D has been determined previously, and is 1less
than 120. If you want to try out this program segment, a simple INPUT
statement such as

150 INPUT "AGE IN DAYS", D
will make it operational.

The RESTORE statement at line 530 is the key to the operation. If there
is no outstanding invoice over 30 days old, then the account is current. With
a value of D less than 30, the RESTORE expression, D/30+1, has a value greater
than or equal to 1 but less than 2. For example, if D is 15, D/30+1 is 1.5,
Any value in this range is treated by RESTORE as if it were 1, since RESTORE
uses only the integer portion of the value. Thus if D is less than 30, the
message "THANK YOU FOR PAYMENT" 1is read and printed. A value of D in the
range 30 < D<60 yields a truncated expression value of 2, which causes the
second message to be output. Similarly 60-90 outputs the third message, and
90-120 the fourth.

160

SUPPLYING CONSTANTS: DATA, READ, AND RESTORE

Review of Chapter 12

The DATA statement contains values that are accessed by the READ
statement. When encountered in the sequence of execution, DATA
statements do nothing.

When the RUN command is executed, the DATA pointer is set to the first
DATA value in the first DATA statement in the program.

The READ statement assigns to a variable the DATA value at the 1location
of the DATA pointer, and then moves the pointer to the next DATA value.
If more than one variable is specified in the READ statement, it repeats
this operation until all variables have been assigned DATA values.
The DATA pointer must point to an alphanumeric value at the time that an
alphanumeric variable is encountered in a READ statement, and to a
numeric value at the time that a numeric variable is encountered in a
READ statement. Otherwise, an error results.
RESTORE, without an expression, moves the DATA pointer to the first DATA
value. RESTORE with an expression, whose integer value is k, moves the
DATA pointer to the kth DATA value in the program.
The general forms of DATA, READ and RESTORE are:

DATA n [,n...]

READ variable [,variable...]

RESTORE [expression]

where: n = a numeric constant, or
a character string in quotation marks.

and,

1 ¢ value of "expression" < 256 .

161

CHAPTER 13
INTRODUCTION TO SUBROUTINES

13-1 GOSUB_AND RETURN

Frequently, identical or nearly identical operations must be performed
repeatedly within a program. A naive solution in such a situation is to
simply append to the program, again and again, the instructions needed to do
the job. Such an approach, however, is nearly always impractical, because it
rapidly exhausts the limited resources of computer memory and programmer time.
For this reason, a variety of programming techniques have evolved that allow a
program to use the same instructions over and over, to perform similar
operations. A Tloop is an example of such a technique. The simplest kind of
loop allows the same instructions to be used over and over again, when only
the values of variables change each time through. The use of 1list variables
can be another such programming technique. This allows the same instructions
to be used repeatedly when the variable itself is what must be changed on each
repetition. In this chapter we are going to look at another technique for
reusing the same instructions to perform similar operations: the subroutine.

When the same operation must be performed at several different locations
within a program, it may be a good candidate for being made into a subroutine.
For example, a program that prints a report should print the column headings
at the top of the first page, and every page thereafter. This requires that
the program maintain a count of the number of lines printed on a page, and
compare the number printed with the full-page maximum, each time a line is to
be printed. If a Tine would overflow the page, the paper should be advanced
above the next perforation and the headings reprinted.

If a program has several print statements that output a 1line, this
entire operation of testing the 1line count, and possibly printing the
headings, must occur before each such PRINT statement. While it would be
possible to repeat the required instructions as many times as necessary within
the program, this is wasteful. A better approach is to take the instructions
required for testing the line count and printing the headings, and locate them
outside of the main program, perhaps, at a higher numbered 1ine than the end
of the main program. Then, as the program is being written, each time the
program must perform the line-count/headings operation, a branch to these
instructions is written, While it would be possible to branch to this
"subroutine" with a simple GOTO, there would then be the problem of how to get
back to the right place in the main program once the subroutine 1is complete.
That 1is, 1if the program branches to the line-count/headings operation from
several different locations in the main program, how can the
line-count/headings operation branch back to the right place in the main
program after it has done its work?

162

INTRODUCTION TO SUBROUTINES

The BASIC language offers a simple solution to this problem in the form
of two statements specifically designed for programming subroutines. In the
main program, when the line-count/headings subroutine is to be executed, a
branch is made to it with the statement

GOSUB 1ine number

where "1ine number" is the starting line number of the subroutine. GOSUB
works just like GOTO, except for one thing. GOSUB saves, in a special part of
memory, the location of the statement immediately following itself.

At the end of the line-count/headings subroutine, there appears the
statement

RETURN

RETURN Tooks to the part of memory 1in which GOSUB saves its
information, and branches to the statement whose location was saved by the
last GOSUB. In the process of doing this, it clears out the 1location
information that was saved by the last GOSUB. If a program branches, with
GOSUB statements, to the line-count/headings subroutine from three different
locations 1in the main program, the single RETURN statement will always branch
back to the statement following the most recently executed GOSUB.

GOSUB and RETURN may not be used in the Immediate Mode. In addition,
GOSUB may not be the last statement in a program.

The diagram shown in Figure 13.1 shows the example situation, programmed

without the use of subroutines. Notice that the block "TEST HEADINGS?" is
repeated three times, once before each PRINT line.

163

INTRODUCTION TO SUBROUTINES

WITHOUT SUBROUTINES

LINE 10

PROCESSING ?

LINE 420

¥

LINE 426

TEST. HEADINGS?]

LINE 500

510

PRINT
REPORT LINE

(PROCESSING)

Y

940 A

TEST. HEADINGS?]

930

1020

1030

PRINT
REPORT LINE

(PROCESSING)

450

ITEST. HEADINGS?
1540

1460

PRINT A
REPORT LINE

END

Figure 13,1 Program Flow without Using a Subroutine

164

INTRODUCTION TO SUBROUTINES

Figure 13.2 represents the program flow when the "TEST HEADINGS?"
routine has been made into a subroutine. The matching pairs of lines show the
branches effected by each execution of GOSUB and followed by RETURN. For
example, GOSUB, when executed at Tine 420 causes the next RETURN to branch to
line 430, since 430 contains the statement after 420. GOSUB from 1ine 860
causes the next RETURN to branch to 870, again because 870 1is the statement

following 860. Similarly the GOSUB at line 1280 causes RETURN to branch to
1290.

165

INTRODUCTION TO SUBROUTINES

MAIN PROCESSING

LINE 10

PROCESSING

420 GOSUB 3000

430 PRINT REPORT
LINE

(PROCESSING)

850 GOSUB 3000

860 PRINT REPORT
LINE

(PROCESSING)

1280 GOSUB 3000

1290 PRINT REPOR
LINE

STOP

Figure 13.2 Program Flow Using a Subroutine

166

SUBROUTINE
—\ NE
—— > //f LINE 3000
J TEST. HEADINGS?
/
- — — —_— RETURN
- ~ -
vy ¥
s v
7 /
J Ve
7 }/
s ~
4 S
e e
7 e
e
e
v

INTRODUCTION TO SUBROUTINES

13.1 A skeleton of the program we have been discussing is shown in Example

Example 13.1 A Skeleton of a Program Using Subroutines

10 REM PROCESSING BEGINS

420 GOSUB 3000
430 PRINT A$, C, D$(F), Q(8)
440 REM PROCESSING CONTINUES

850 GOSUB 3000
860 PRINT T$, R, U$(F), R(9)
870 REM PROCESSING CONTINUES

1280 GOSUB 3000

1290 PRINT E$, G, Y$(F), S(9)
1300 IF Q<> T THEN 10

1310 STOP "END OF PROGRAM"

3000 REM SUBROUTINE -- LINE COUNT / HEADINGS
3010 L=L+1

3090 RETURN

Since the RETURN statement branches to the 1last location saved by a
GOSUB, its operation depends upon this information. An error results if the
system encounters a RETURN statement when there 1is no return Tlocation
information previously saved by a GOSUB. This problem is analogous to that of
NEXT 1in relation to FOR...TO. In general, when using subroutines, you should
be certain that every possible route to a RETURN statement will provide the
statement with the GOSUB information it needs.

The RETURN statement always branches to the statement following the
GOSUB, In particular, if the GOSUB 1is in a multistatement 1ine, RETURN
branches to the next statement in that 1ine, not to the next line.

The RETURN statement clears from memory the return location, saved by
the 1last GOSUB, as it branches to that location. This clearing operation is
important because it prevents useless information from accumulating in memory.
If a program repeatedly executes GOSUB statements without executing
corresponding RETURN statements, for example, by using an IF...THEN to branch
back to the main program, then eventually a table overflow error will occur,
as a result of the excess accumulated return location information. There are
two ways to avoid this difficulty. You can check that each time a GOSUB is
executed, a RETURN is executed. If a subroutine has no statements which could

167

INTRODUCTION TO SUBROUTINES

branch out of it, other than RETURN, then there is no danger of avoiding the
RETURN. If, under some circumstances, the RETURN must be avoided by means of
a branch out of the subroutine, the RETURN CLEAR statement can be used to
clear out the information saved by GOSUB.

13-2 RETURN CLEAR

RETURN CLEAR does not branch; it clears from memory the return location
information saved by the last executed GOSUB. Example 13.2 illustrates the
use of RETURN CLEAR.

Example 13.2 A Simple Use of RETURN CLEAR

110 REM EXAMPLE USING RETURN CLEAR
120 REM PROCESSING

170 GOSUB 5000
180 REM NORMAL RETURN POINT FROM SUBROUTINE IS HERE

é70 REM RETURN FROM SUBROUTINE TO HERE ONLY IF X=2

AOOO STOP "END OF PROGRAM"
5000 REM SUBROUTINE

5060 IF X=2 THEN 5080
5070 RETURN

5080 RETURN CLEAR
5090 GOTO 270

In this program, in addition to the normal vreturn point immediately
following the GOSUB statement (1ine 180), if X=2, the subroutine must return
to line 270 of the main program. Line 5060, in the subroutine, tests for X
equal to 2. If X equals 2, it branches around the normal RETURN statement, at
line 5070, to 1line 5080. 5080 RETURN CLEAR clears out the return location
information saved by the last GOSUB, but makes no branch. 5090 then makes an
ordinary branch to 1line 270.

It is possible to branch to a subroutine from within a subroutine. Such
a procedure is known as nesting subroutines. Approximately 45 1levels of
subroutines nested within subroutines are permitted. From within a
subroutine, a simple GOSUB statement, giving the 1line number of another
subroutine, is all that 1is needed to use the other subroutine. A RETURN
statement always branches to the location saved by the 1last executed GOSUB.
So, 1if a subroutine GOSUB's to another subroutine, when that other subroutine
is complete, RETURN branches back to the original subroutine. When the
original subroutine is complete, RETURN branches back to the main program. A

168

INTRODUCTION TO SUBROUTINES

RETURN CLEAR statement wipes out only the location saved by the last executed
GOSUB. Therefore, if a RETURN CLEAR is executed in a nested subroutine, the
RETURN at the bottom of the nested subroutine will branch back to the
statement after the second previous GOSUB.

13-3 ON...GOSUB

In Chapter 10 the ON statement with the GOTO parameter was introduced.
In addition to ON...GOTO there is another form of this statement, ON...GOSUB.
ON...GOSUB works the same as ON...GOTO except that the 1location of the
statement following the ON...GOSUB statement is saved in a special part of
memory for use by the RETURN statement.

Review of Chapter 13

1. The GOSUB statement causes a branch to a specified 1line number, and
saves the location of the statement following itself in a special part
of memory for later use by the RETURN statement.

2. The RETURN statement is generally placed at the end of a subroutine. It
causes a branch to the location saved by the last executed GOSUB, and
clears the return location information.

3. The RETURN CLEAR statement simply clears the return 1location saved by
the last executed GOSUB. It does not effect a branch.

4, The ON statement with GOSUB works the same as ON with GOTO except that
the Tlocation of the statement following the ON...GOSUB statement is
saved in a special part of memory for use by the RETURN statement.

5. Approximately 45 levels of subroutine nesting are permitted.

169

CHAPTER 14
THE DEFFN’' STATEMENT

14-1 USING DEFFN' TO MARK SUBROUTINES

In the last chapter we Tooked at subroutines that were branched to with
the statement

GOSUB Tine number

where "1ine number" is the number of the first line in the subroutine. Thus,
if you are writing a program and wish to write a subroutine access with GOSUB,
you must know the line number of the beginning of the subroutine. This can be
somewhat inconvenient, especially if, in the process of writing the program,
you wish to renumber it. Renumbering will change the subroutine’s Tline
number, forcing you to 1look through the program 1isting to find the
subroutine, before writing the next GOSUB statement.

Wang BASIC offers a multipurpose instruction DEFFN' that, in its
simplest use, allows you to mark the beginning of a subroutine, and give it an
identification number. For example, the statement

1100 DEFFN' 198

marks the beginning of a subroutine, and identifies it as DEFFN' subroutine
198. To branch to this subroutine the statement

GOSUB' 198

is used. This statement is like GOSUB except that it causes the system to
search through the program for the statement DEFFN'198, and when it finds it,
causes a subroutine branch to the DEFFN'198 location. By wusing DEFFN' and

GOSUB', you don't have to keep track of where a subroutine is in order to use
it.

The number 198, chosen as the identification number for this subroutiner
has no particular significance, other than to distinguish it from other DEFFN
subroutines, It bears no relationship to the 1line number of the DEFFN'
statement, or to the processing accomplished in the subroutine. The RETURN
statement functions exactly the same for subroutines accessed with GOSUB' as
for those accessed with GOSUB. It branches to the statement foilowing the
Tast GOSUB' statement. There is no special form of the RETURN statement for
use with marked subroutines.

170

THE DEFFN'! STATEMENT

The general form of the DEFFN' statement for simple marking of
subroutines is

DEFFN' integer
where: 0 < integer < 255.

DEFFN' statements in which the specified integer is in the range 0-31 are used
to define Special Function keys. This use is discussed in Section 14-3.

. The general form of the GOSUB' statement for simple marked subroutines
is

GOSUB' integer

where 0 < integer < 255, and the integer corresponds to an integer in a DEFFN'
statement. GOSUB' may not be the last statement in a program.

The DEFFN' statement and its subroutine may appear anywhere in a
program, either at a lower or higher numbered line than the GOSUB' statements
that reference it. However, the DEFFN' statement itself must always be the
first statement on a 1line. If encountered in the normal sequence of
execution, the DEFFN' statement does nothing; its only purpose is to be
accessed via a GOSUB' statement or a Special Function key.

14-2 ARGUMENT PASSING

Often it is necessary to assign values to key variables before branching
to a subroutine. For example, if a program requires that several different
numeric values be entered from the keyboard, it may be worthwhile to write a
simple subroutine to handle all numeric entries. The subroutine should
display a specified prompt, and test the value entered to determine whether it
is within an acceptable range. Only if the value is acceptable should it
transfer control back to the main program. Such a subroutine is shown in
Example 14.1.

Example 14.1 A Numeric Entry Subroutine (without DEFFN')

5000 REM A NUMERIC INPUT SUBROUTINE

5010 REM ** P$ = THE PROMPT (64 CHARACTERS MAX) **
5020 REM ** | THE MINIMUM ACCEPTABLE VALUE
5030 REM ** U THE MAXIMUM ACCEPTABLE VALUE
5040 REM ** X RETURNED VARIABLE

5050 DIM P$64

5060 PRINT

5070 PRINT P$

5080 INPUT X

5090 IF X > U THEN 5120

5100 IF X >= L THEN 5130

5120 PRINT "INVALID. REENTER"

5125 GOTO 5060

5130 RETURN

nunn

171

THE DEFFN' STATEMENT

In order to use this subroutine the main line program must first assign
the operator prompt to P$, and the minimum and maximum acceptable values to L
and U respectively. Then, GOSUB 5000 can be executed to pass control to the
subroutine. (One other thing should be noted, though. The DIM statement in
the subroutine must be moved to a lower 1line number than any in which a
reference to P$ occurs.)

Example 14.2 shows a segment of a main program that makes use of this
input subroutine.

Example 14.2 Passing Control to the Numeric Entry Subroutine

110 DIM P$64

410 P$ = "ENTER HOURLY RATE"
420 U = 25
430 L = 2

440 GOSUB 5000
450 PRINT "HOURLY RATE = "; X

As can be seen from Example 14.2, three assignment statements must be
executed before passing control to the subroutine (lines 410-430). Since one
of the primary purposes of a subroutine is to reduce the total number of
statements needed for a program, the need to use three assignment statements
reduces the advantage of the subroutine. DEFFN' and GOSUB' offer a convenient
solution to this problem. GOSUB' can assign values to variables specified in
the DEFFN' statement, as it passes control to the subroutine.

The DEFFN' statement must specify all the variables that are to be
assigned values when control is passed to the subroutine. For the subroutine
of Example 14.1, the DEFFN' statement might look like this:

DEFFN' 100 (P$,U,L)

In this statement, 100 is the number chosen to identify the
subroutine. Within parentheses are the three variables that are to
receive values when GOSUB' branches to this subroutine.

In Example 14.2 the GOSUB' statement that would be used to make the
branch is

GOSUB'100 ("ENTER HOURLY RATE", 25,2)
This GOSUB' statement does the following:
1. Finds DEFFN' 100.

172

THE DEFFN' STATEMENT

2. Successively assigns the items in parentheses

"ENTER HOURLY RATE"
25
2

to the variables specified in the DEFFN' statement.
3. Branches to the subroutine.

Example 14.3 shows the main program segment and subroutine, rewritten
using DEFFN' and GOSUB'.

Example 14.3 Program and Subroutine with DEFFN' and GOSUB'
110 DIM P$64

40 GOSUB' 100 ("ENTER HOURLY RATE", 25, 2)
450 PRINT "HOURLY RATE = "; X

2050 REM END OF MAIN PROCESSING
2060 END

*

5000 REM A MARKED SUBROUTINE FOR NUMERIC INPUT (DEFFN' 100)
5010 REM ** P$ = THE PROMPT (64 CHARACTERS MAX) **
5020 REM ** L THE MINIMUM ACCEPTABLE VALUE

5030 REM ** U THE MAXIMUM ACCEPTABLE VALUE

5040 REM ** X RETURNED VARIABLE

5060 DEFFN' 100 (P$, U, L)

5070 PRINT

5080 PRINT P$

5090 INPUT X

5100 IF X > U THEN 5120

5110 IF X >= L THEN 5140

5120 PRINT "INVALID. REENTER"

5130 GOTO 5070

5140 RETURN

Using DEFFN' and GOSUB' to assign values and branch to the subroutine has
eliminated lines 420 through 440 of Example 14.2. :

With this subroutine in the program, a single GOSUB' statement can be
used to initiate the processing associated with receiving a keyboard numeric
entry. For example, in this program there might be other calls to this
subroutine such as,

920 GOSUB'100 ("ENTER REGULAR HOURS", 40, 0)
1170 GOSUB'100 ("ENTER OVERTIME HOURS", 100, 0)

173

THE DEFFN' STATEMENT

Any number of variables may be specified in a DEFFN' statement, but, for
each variable specified, the GOSUB' statement must supply an acceptable value.
This means not only that there must be an equal number of values and
variables, but also that alphanumeric variables must receive alphanumeric
values, and numeric variables must receive numeric values. Variables in the
DEFFN' statement and values in the GOSUB' statement must be separated by
commas.

In the GOSUB' statement the value may be specified by any form that
would be legal on the right of the "=" in a "LET" assignment statement. This
means that any expression can be used to specify a value to be received by a
numeric variable. Alphanumeric values may be specified with a literal string
or an alphanumeric variable. For example, if the DEFFN' statement for a
subroutine is

7000 DEFFN' 220 (K, N2(K), T$, F)
a GOSUB' such as this is acceptable :
850 GOSUB' 220 (SGN(G)+2,3,A$,SQR(G+#PI))

The values supplied in the GOSUB' statement are often called "subroutine
arguments."

Example 14.4 shows a subroutine that rounds a value to a specifiable
number of decimal places.

Example 14.4 A Subroutine to Round X to N Decimal Places
6000 REM A SUBROUTINE TO ROUND X TO N DECIMAL PLACES
6010 DEFFN' 255 (X,N)

6020 X= SGN(X)*INT((ABS(X)*104N+.5)/10+N)
6030 RETURN

14-3 DEFINING SPECIAL FUNCTION KEYS WITH DEFFN'

Across the top of your Wang 2200 System keyboard are 16 Special Function
keys. These keys may be defined by you, in a program, to perform a variety of
different types of tasks. Since each of the 16 keys may be depressed alone or
in conjunction with the SHIFT key, an effective total of 32 keyboard Special
Function keys is available. The Special Function keys are numbered 0 to 15
and 16 to 31, the latter range obtained by depressing SHIFT together with the
appropriate Special Function key. The DEFFN' statement can be used to define
the Special Function keys.

In the last two sections we have discussed the use of DEFFN' to mark
subroutines, and assign subroutine arguments. We said that the DEFFN'
statement can identify the subroutine with any integer 0 to 255. For example,

5000 DEFFN' 135

174

THE DEFFN' STATEMENT

assigns the identification number 135 to the subroutine that begins at 1line
5000. With this statement in the program, the statement

400 GOSUB' 135

can be used to transfer control to this subroutine. However, if the DEFFN'
statement uses a number 0 to 31 to identify a subroutine, the keyboard Special
Function keys can also be used to initiate execution of the subroutine. They
can be used in this manner whenever the system colon (:) is displayed, or the
system is awaiting a keyboard entry on an INPUT instruction.

If the system colon (:), or the ? of the INPUT statement, is displayed,
and a Special Function key 1is depressed, the system searches through the
program text for a DEFFN' statement that has a number corresponding to the
number of the depressed key. For example, if Special Function key 5 is
depressed, the system looks for a DEFFN' 5 statement; if Special Function key
0 is depressed, it looks for DEFFN'O. When it finds the appropriate DEFFN'
statement, it begins executing the subroutine that follows the DEFFN', just as
if it had been sent there with a GOSUB'. If a Special Function key is
depressed when the system colon is displayed, the RETURN statement at the end
of the accessed subroutine simply causes the colon to be redisplayed. If the
Special Function key 1is depressed at an INPUT instruction, the RETURN
statement causes the INPUT instruction to be repeated, that is, the prompt is
redisplayed with the question mark, and the system awaits an entry.

The ability to access and execute subroutines upon keyboard selection
opens a wide range of programming possibilities. For example, a program may
be designed to execute with all angles given in radians. If an observation
happens to be recorded in degrees, it can be converted while the main program
is stopped at an INPUT instruction, by accessing a conversion subroutine with
a Special Function key. Example 14.5 shows a segment of such a program at
lines 560 and 570, and a conversion subroutine accessible via Special Function
Key 11.

Example 14.5 A Program with a Special Function Subroutine That
Converts Degrees to Radians

560 INPUT "ENTER ANGLE T IN RADIANS", T
570 Z = TAN(T+#P1/6)

4000 REM CONVERT DEGREES TO RADIANS SUBROUTINE

4010 DEFFN' 11

4020 PRINT "CONVERT DEGREES TO RADIANS"

4030 INPUT "ENTER DEGREES, MINUTES, SECONDS", D,M,S
4040 A =D +M/60 +5/3600

4050 A = A-INT(A/360)*360

4060 PRINT "ANGLE = ",A*,0174532925; "RADIANS"

4070 RETURN

Whenever the main program requests an entry in radians, as it does at
line 560, the operator can enter the value in radians; however, if the
requested value happens to be recorded in degrees, the operator can depress
Special Function key 11 to access the conversion subroutine. The conversion

175

THE DEFFN' STATEMENT

subroutine requests the degree value, converts it to a radian value, and
prints the radian value. The RETURN statement then branches back to the INPUT
statement from which the subroutine was accessed, in this case line 560. The
operator can then enter the converted value that was printed by the
subroutine,

In a similar manner subroutines can be designed which print subtotals or
category totals, allow correction of erroneous entries, etcetera. Having
access to such subroutines from an INPUT instruction can be very convenient.

Since execution of Special Function subroutines can be initiated
wherever the system colon (:) is displayed, up to 32 separate programs to
perform related or often-needed calculations can be loaded into memory at
once, and accessed by a Special Function key. In such a case there might not
be any "main program", really. Each program would be set up as a DEFFN'
subroutine designed to perform a specific calculation. When the subroutine's
RETURN statement is executed, the system colon 1is vredisplayed. Two
calculations, arranged in this fashion, are shown in Example 14.6.

Example 14.6 Special Function Key Access to Independent Calculations

110 REM TWO DEFFN' SPECIAL FUNCTION KEY SUBROUTINES

120 STOP "ACCESS SUBROUTINES WITH SPECIAL FUNCTION KEYS."
130 REM INITIAL INVESTMENT

140 DEFFN' 0

150 PRINT

160 PRINT "CALCULATE INVESTMENT AMOUNT NEEDED"

170 PRINT " TO ENABLE ONE TO WITHDRAW A GIVEN AMOUNT"
180 PRINT " M TIMES PER YEAR FOR N YEARS."

190 PRINT

200 INPUT "AMOUNT OF WITHDRAWAL", R

210 INPUT "ANNUAL INTEREST RATE (PERCENTAGE)", 1

220 INPUT "NO. OF WITHDRAWALS PER YEAR", M

230 INPUT "NO. OF YEARS", N

240 I = 1/M/100

250 J = (1+I)+(N*M)

260 PRINT "INITIAL INVESTMENT = $"3; INT((J-1)/(I*J)*R*100+.5)/100
270 RETURN

280 REM WITHDRAWAL FROM INVESTMENT

290 DEFFN'1

300 PRINT "CALCULATE THE AMOUNT THAT CAN BE WITHDRAWN"
310 PRINT " FROM A GIVEN INITIAL INVESTMENT"

320 PRINT " M TIMES PER YEAR FOR N YEARS "

330 PRINT " AT INTEREST I, LEAVING NOTHING AT THE END."
340 PRINT

350 INPUT "INITIAL INVESTMENT", P

360 INPUT "ANNUAL INTEREST RATE (PERCENTAGE)",I

370 INPUT "NUMBER OF WITHDRAWALS PER YEAR", M

380 INPUT "NUMBER OF YEARS", N

390 I =1/M/100

400 R = P*(I/((1+I)4(N*M)-1)+I)

410 PRINT "AMOUNT OF WITHDRAWAL= $"; INT(100*R+.5)/100
420 RETURN

176

THE DEFFN' STATEMENT

Notice in Example 14.6 that each calculation begins with a DEFFN'
statement that defines a Special Function key. Each calculation also ends
with a RETURN statement, which simply redisplays the system colon. To
facilitate use of Special Function keys, a removable labeling strip can be
inserted on the keyboard below the Special Function keys.

The RUN command sets aside space for all variables used in a program.
It also resets the DATA pointer, and checks for certain types of program
errors. These operations are not performed when execution 1is begun by
depressing a Special Function key. However, variable space must be set aside
before any program can be executed. Therefore, whenever Special Function keys
are used to initiate execution, the RUN command must be executed at least once
after loading the program, so that variable space will be allocated. This is
the reason that the program shown in Example 14.6 has a STOP statement at 1ine
120. When the program is first loaded, whether from tape, disk, or keyboard,
RUN is used to set up variable space. Immediately, STOP is executed, which
restores the colon. Thereafter, Special Function keys can be used to initiate
execution of the desired calculations.

When a Special Function key is depressed, a location is saved in memory
for use by the RETURN statement, just as if the subroutine were accessed via
GOSUB'. This is true even if the Special Function key is depressed while the
colon or question mark is displayed. For this reason, some means for clearing
this information must be provided. If DEFFN' Special Function key routines
all lead to RETURN statements, then the RETURN statement will clear the return
location information as it uses it. However, if a DEFFN' Special Function key
access does not lead to a RETURN statement, the RETURN CLEAR statement must be
used to clear the return location information. Otherwise, repeated Special
Function key accesses will pile up return information in memory, eventually
producing a table overflow error.

Used with the RETURN CLEAR statement, DEFFN' can provide Special
Function key access to a variety of entry points to a program. The program
segment shown in Example 14.7 illustrates this use.

Example 14.7 DEFFN' and RETURN CLEAR to Define Program Entry Points

110 REM USING SPECIAL FUNCTION KEYS AND "RETURN CLEAR"

120 REM TO DEFINE PROGRAM ENTRY POINTS

130 STOP "CHOOSE OPERATIONS VIA SPECIAL FUNCTION KEYS"
140 REM ENTRY POINT NUMBER 1

150 DEFFN' 1

160 RETURN CLEAR

490 GOTO 530

500 REM ENTRY POINT NUMBER 2

510 DEFFN' 2

520 RETURN CLEAR

530 REM PROGRAM CONTINUES HERE

990 G0TO 1030

177

THE DEFFN' STATEMENT

1000 REM ENTRY POINT NUMBER 3

1010 DEFFN' 3

1020 RETURN CLEAR

1030 REM PROGRAM CONTINUES HERE

5600 REM EMERGENCY TERMINATION ROUTINE
5010 DEFFN' 31

5190 END

The program in Figure 14.7 is designed to be started from 1lines 150,
510, or 1010. The operator chooses where to begin the program by depressing
Special Function key 1, 2, or 3. If Special Function key 1 is depressed, the
entire program is executed. If 2 is depressed, lines numbered below 510 are
not executed while those numbered above 510 are. Notice that the GOTO
statements at Tlines 490 and 990 branch around the RETURN CLEAR statement.
This is done to avoid the execution error that would result if RETURN CLEAR
were executed without there being any return information to be cleared.

Line 5000 begins an emergency program termination routine, which is
accessible via Special Function key 31. Such a routine can be especially
useful when tape or disk data files are being worked on, since these often
require special file closing procedures. If the operator always has
accessible a routine which closes files and then stops program execution, the
1ikelihood that the system will be turned off without successfully closing the
files is greatly reduced.

If a DEFFN' statement that defines a Special Function key has a list of
variables to be assigned values at the time of access, values may be assigned
by entering them, separated by commas, prior to keying the Special Function
key. Such a program is shown in Example 14.8.

Example 14.8 Argument Passing with a Special Function Key Subroutine

110 REM ILLUSTRATION OF ARGUMENT PASSING

112 REM WITH A SPECIAL FUNCTION KEY SUBROUTINE
120 REM CONVERT DEGREES TO RADIANS

130 DEFFN' 11 (D,M,S)

140 A =D +M/60 +5/3600

150 A = A-INT(A/360)*360

160 PRINT "ANGLE = ";A*.0174532925; "RADIANS"
170 RETURN

Example 14.8 shows a subroutine to convert degree measure to radian
measure, Unlike the conversion subroutine in Example 14.5, the DEFFN'
statement of this subroutine requires that the three values for degrees,
minutes, and seconds be passed to it at the time of access. If a Special

178

THE DEFFN' STATEMENT

Function key is used to access this subroutine, values for D, M, and S must be
keyed in before the Special Function key is depressed. For example, to access
this subroutine, you can key

:25,15,20 (Special Function key 11)

The values 25, 15 and 20 are successively assigned to the variables D, M and
S, and execution of the subroutine begins. The assignment of values is the
same regardless of whether the system is at an INPUT instruction or at the
system level with the colon displayed. Values to be assigned to alphanumeric
variables must be enclosed by quotation marks.

14-4 DEFINING A SPECIAL FUNCTION KEY FOR CHARACTER STRING ENTRY

The DEFFN' can be used to associate a character string with a Special
Function key. When used in this fashion, depression of the specified Special
Function key causes the characters in the DEFFN' statement to be entered, as
if they had been entered one-by-one. For example, if this statement appears
in a program,

100 DEFFN'O "FREIGHT CHG."

depressing Special Function key 0, at an INPUT instruction or when the colon
is displayed, causes the characters "FREIGHT CHG" to become part of the
current text line, It must be emphasized that use of the DEFFN' statement to
define character strings 1is unrelated to its use in marking subroutines.
Character strings can be used with DEFFN' statements only when the DEFFN'
identification number specifies a Special Function key. Depressing the
Special Function key associated with a DEFFN' character string merely causes
the character string to be entered; it does not initiate execution of any
other statements.

If a Special Function key is defined for character string entry, and is
depressed while the system 1is waiting at an INPUT statement, the defined
characters appear on the screen as if they had been keyed in
character-by-character. If the (EXEC) key is then depressed, they are entered
into the receiving variable, and processing proceeds. Thus if a program
requires frequent keying of the same characters, a DEFFN' statement can be
incorporated which allows the characters to appear with a single stroke of a
Special Function key. Such an entry is illustrated below.

ENTER DESCRIPTION OF ADDITIONAL CHARGES? FREIGHT CHG.
;\/___J
Key S.F. 0 Key (EXEC)
TO

ENTER
RESPONSE

Special Function keys defined as character strings can also be useful
during programming. For example, if a DEFFN' such as

1 DEFFN'15 "LIST S 100, 9000"

is included in a program, a segmented listing of program lines 100 to 9000 can
be obtained by simply keying Special Function key 15 followed by (EXEC). If a

179

THE DEFFN' STATEMENT

program makes frequent use of a particular marked subroutine, a DEFFN'
statement such as

2 DEFFN' O "GOSuB' 243"

will allow you to enter the characters

GOSUB' 243

into a program line by simply depressing Special Function key 0.

3.

Review of Chapter 14

The DEFFN' statement marks the beginning of a subroutine, and gives the
subroutine an identification number. Optionally a list of variables may

be specified. Specified variables are assigned values when control is
passed to the subroutine.

The general form of the DEFFN' statement for a marked subroutine is:

DEFFN' integer [(variable [,variable...])]

where: integer 0 to 31 to define Special Function keys for

subroutine branching.
= 0 to 255 to mark GOSUB' accessable
subroutines.

variable any alphanumeric or numeric variable to be

assigned a value when a branch to the
subroutine is made.

The GOSUB' statement initiates a branch to a specified DEFFN' marked
subroutine. Its general form is:

GOSUB*' integer [(subroutine argument [,subroutine argument...])]
where: 0 <integer <255, and is the integer in a DEFFN' statement.

"Subroutine argument" is a value to be assigned to the next
successive variable in the DEFFN' list of variables. Values

may be specified by a literal string, alphanumeric variable,
or expression.

A DEFFN' subroutine whose integer identification is in the range 0 to 31
can be accessed by means of the corresponding keyboard Special Function
key. If a Special Function key is depressed when the system colon or
question mark is displayed, the system searches through the program text
for the DEFFN' statement, and initiates a branch to that location. Upon
execution of the RETURN statement, the system returns to the program
location from which the Special Function key was depressed; the colon or
question mark is redisplayed.

180

THE DEFFN' STATEMENT

The DEFFN' statement can be used to associate a character string with a
Special Function key. Depression of the Special Function key causes all
the specified characters to be entered, as if they had been entered
one-by-one.

The general form of the DEFFN' statement for character string definition
is as follows:

DEFFN' integer "character string"

where: 0 < integer < 31.

181

PART II
GAINING PROFICIENCY

CHAPTER 15
CONTROLLING OUTPUT FORMAT WITH
IMAGE (%) AND PRINTUSING

15-1 INTRODUCING IMAGE AND PRINTUSING

The Image (%) and PRINTUSING statements are used together to precisely
control the format of printed output. To use these statements, you first
write an Image statement in which you specify a print format. Then, when you
want to print a value according to that format, you use a PRINTUSING
statement. The PRINTUSING statement gives the line number on which the Image
statement can be found, and it gives the values that are to be printed.

PRINTUSING and Image statements are commonly used in applications
dealing with dollar amounts. Dollar amounts should be printed to at least two
decimal places, rarely more. The program and output shown in Example 15.1
shows simple numeric output from the PRINT statement compared with the output
from PRINTUSING and Image statements.

Example 15.1 Comparison of Qutput from PRINT and PRINTUSING

110 REM FIRST EXAMPLE COMPARING PRINT AND PRINTUSING

120 PRINT "PRINT OUTPUT",, "PRINTUSING OUTPUT"

130 FOR K =1 T0 7

140 READ N

150 PRINT N,,

160 PRINTUSING 180, N

170 NEXT K

180 % ##,###.##

190 DATA 14500.00, 2.00, 2.50, 2.65, .10, .01, 1200.456456456

:RUN
PRINT OUTPUT PRINTUSING OUTPUT
14500 14,500.00

2 2.00

2.5 2.50

2.65 2.65

o1 0.10
1.00000000E-02 0.01
1200.456456456 1,200.45

183

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

The Toop in this program simply reads the next data value and prints it,
first with PRINT, then with PRINTUSING. The PRINT statement formats output
according to its own fixed rules: trailing fractional zeros are never
printed; if the value is an integer, the decimal point 1is not printed; all
significant fractional digits are output; if the value is less than .1, it is
output in scientific form; and output 1is not aligned. By contrast the
PRINTUSING statement outputs according to a format specified in the program.
In Tine 160 '

160 PRINTUSING 180, N

the "180" is the line number of the Image statement that contains the format
to be wused. (The % sign is the keyword for the Image statement; the word
"Image" is never used.) PRINTUSING must always refer to a line number that
contains an Image statement. The variable N in line 160 is the print element.
Each time Tine 160 is executed, PRINTUSING outputs N according to the Image
given in line 180.

The Image specified consists of a space followed by a "format
specification." The format specification is the

#H #4#.H##
part of the Image.

In the format specification the # symbol is wused to indicate that a
particular digit is to be printed. The decimal point (period) indicates the
location of the decimal, and specifies that it 1is to be printed. Commas
merely indicate where a comma is to appear.

In the PRINTUSING output, notice that exactly two digits to the right of
the decimal are always output. Digits to the right of these are simply
truncated (as in the 1last DATA value), but, if zeros occupy the first two
decimal positions, they are printed. Output is aligned at the decimal point,
and scientific notation is not used, regardless of the value.

Probably the easiest way to understand how the PRINTUSING and Image
statements work is to imagine that the system takes the image and replaces #
symbols with digits. When this process is complete, it outputs the "image" at
the current cursor location, not the original image, but the image with the
digit substitutions (the original image is unchanged.)

A single Image statement can have several format specifications.
Example 15.2 shows an Image statement with four format specifications, and a
PRINTUSING statement with four print elements. All the print elements are the
same, but the output varies, since it is determined by the format
specifications.

Example 15.2 PRINTUSING and an Image with Four Format Specifications

110 REM AN IMAGE WITH 4 FORMAT SPECIFICATIONS
120 PRINTUSING 130, 123.45, 123.45, 123.45, 123.45

130 WH#E #E L #EE L # #i# ###
:RUN
123 123.4 123.45 123.450

184

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

In executing the PRINTUSING statement of line 120, the system takes the
first print element (123.45) and starts substituting digits from it into the
first format specification (###). Since there is no decimal point in the
format, the decimal 1location is implied immediately to the right of the
format. The digit "1" is substituted for the first # symbol, the digit "2"
for the second #, the digit "3" for the third. Now the system finds no more #
symbols, so the remaining digits in the first print element are ignored. The
system proceeds to the second print element, and starts transferring it into
the second format specification. It first aligns the decimal, then starts
substituting digits for # symbols. After replacing the 4, it runs out of #
symbols. It then moves to the third print element and the third format
specification. Finally it moves to the fourth print element and format
specification. In this 1last case, after substituting the digits 1, 2, 3, 4
and 5, it finds another # symbol, but no more digits. Since this extra #
symbol is to the right of the decimal, the system puts a zero in its place.

Now the system has exhausted the print elements in the PRINTUSING
statement, and has an image in which digits have replaced # symbols. This
image is output in its entirety beginning at the current cursor location. As
a vresult, the spacing within the Image statement is exactly duplicated in the
output. Since no spaces precede the first format specification, the first
digit is output directly under the colon. It is important to understand that
it is the image which is output, after the digit substitutions have been made.

In the last format of line 130 in Example 15.2, there is an extra # to
the right of the decimal. This # symbol dis replaced by a zero during
PRINTUSING execution. However, if we look again at Example 15.1, we notice
that for each DATA value except the first, there are extra # symbols to the
left of the decimal. When there are extra number symbols to the left of the
decimal, they are replaced by spaces, not zeros. Thus, on the first time
through the loop of Example 15.1, this substitution is made:

print element | -~ 14 500.00
222N 2

[image|> % ##.##4.#4

On the second time through, the system supplies spaces for the #'s (and the
comma) left of the first digit; thus,

spaces
supplied print
JQLEQ&?E?L‘ eljment.
AAAA ’786\
YR VEY Y
% ##,#H# A

Notice that the comma is replaced by a space if there is no digit to its left.
From the 5th and 6th DATA values in Example 15.1, you will notice that

if there are no significant digits left of the decimal, the # immediately left
of the decimal is replaced with a zero.

185

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

A single Image statement can be referenced by several PRINTUSING
statements. The Image statement has no effect when encountered in the normal
sequence of execution, and may be placed anywhere in a program without regard
to the location of the PRINTUSING statements that reference it. However, the
Image statement must be the only statement on a line.

PRINTUSING and Image are illegal in the Immediate Mode. The keyword
"PRINTUSING" may not be entered by keying the keyword "PRINT", and then typing
U-S-I-N-G, It may be entered character-by-character, or by means of the
PRINTUSING key on a BASIC KEYWORD keyboard.

PRINTUSING output occurs at the address selected for PRINT class I/0
operations. Therefore, if a statement such as

SELECT PRINT 215

has been executed, PRINTUSING output occurs at the printer rather than the
CRT.

Any expression can be used as a PRINTUSING print element. The
expression is evaluated, and its result is substituted digit-by-digit
into the format specification. In addition, alphanumeric literal strings and
variables can be used as print elements. Their use is discussed in Section
15-4. Each print element in the PRINTUSING statement must be separated from
the previous one by a comma or semicolon. The semicolon has a special
significance, discussed in Section 15-5. The comma acts as a simple element
separator. It does not have the significance it has in the PRINT statement,
and causes no cursor movement.

15-2 ALPHANUMERIC LABELS IN THE IMAGE STATEMENT

In addition to format specification, any alphanumeric characters (other
than # and colon) can be included in an Image statement. This allows for easy
labeling of output. Example 15.3 shows a modification of a program first
introduced in Chapter 12. The program is a DEFFN' subroutine that converts
degree measure to radian measure. The output is via the PRINTUSING statement.
The Image labels the output, and formats it.

Example 15.3 Alphanumeric Labels in the Image Statement

110 REM USING ALPHANUMERIC CHARACTERS IN THE IMAGE STATEMENT

120 DEFFN' 11

130 INPUT "ENTER DEGREES, MINUTES, SECONDS", D,M,S
140 A =D +M/60 +5/3600

150 A = A-INT(A/360)*360

160 REM %% %% ddededededededede ok dedededededede Jodededededededede dede

170 PRINTUSING 180, A*,0174533
180 % ANGLE= #.#### RADIANS

]go REM oK Je Jede Jo Je dede Jede Jode he e Jedede Je ke e dode Jede ke de ke kek ek

200 RETURN

186

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Output appears as follows:

ENTER DEGREES, MINUTES, SECONDS? 45,15,15
ANGLE= 0.7898 RADIANS

In Example 15.3 the expression A*.0174533 is the only print element in
the PRINTUSING statement. The value of this expression is calculated, and the
result is substituted digit-by-digit into the format specification in the
Image statement (1line 180). The Image contains just one format specification,
#.####. The other characters do not constitute a format specification, and
are merely output as a part of the Image, after digits have been substituted
for # symbols. The format specification calls for just four fractional
digits, so Jjust four are output; the additional fractional digits in the
result are simply truncated. Notice that the output from the PRINTUSING
exactly duplicates the Image, except that print element digits have been
substituted for # symbols. The Image begins immediately after the % sign;
thus the space between % and "ANGLE" appears in the output.

It is possible to intersperse 1labels between several format
specifications. Example 15.4 shows a slight modification of Example 15.3; it

outputs the entered degrees, minutes, and seconds together with the radian
value.

Example 15.4 An Image Statement with Several Labeled Format

Specifications
110 REM ANOTHER EXAMPLE OF ALPHANUMERICS IN THE IMAGE STATEMENT
120 DEFFN' 11
130 INPUT "ENTER DEGREES, MINUTES, SECONDS", D,M,S
140 A =D +M/60 +S/3600
150 A = A-INT(A/360)*360

]60 REM dedede etk dede dededede ke de ke ke ke de e ke de ke de ket dede dede dedede ke k

170 PRINTUSING 180, D, M, S, A*.0174533
180 %(### DEG, ## MIN, ## SEC) = #.#### RADIANS

]90 REM *%%k%kkdkddkhkkhkkhdkdkhkhkhkkkkkikhkikkkkhhk

200 RETURN
Execution produces

ENTER DEGREES, MINUTES, SECONDS? 320,15,15
(320 DEG, 15 MIN, 15 SEC) = 5.5894 RADIANS

If there are fewer print elements in the PRINTUSING statement than
format specifications in the Image statement, the portion of the Image that
lies to the right of an unused format is not output. For example, if the
print element S were accidentally omitted from Tine 170 as follows:

170 PRINTUSING 180, D, M, A*.,0174533
execution would produce:

ENTER DEGREES, MINUTES, SECONDS? 320,15,15
(320 DEG, 15 MIN, 5 SEC)=

187

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Here, the first two print elements are output correctly. However, since S is
missing, the third print element A*.0174533 vreplaces the third, but
inappropriate, format specification ##. (The 5 which appears before "SEC" is
actually the integer portion of 5.5894 radians.) Now there are no more print
elements, so the system outputs the image. However, output stops as soon as
the system finds a format specification for which digits have not been
substituted. No substitution has been made into #.####; therefore, = A are
the last characters output.

It is possible to wuse an Image statement in which no format
specification occurs, an Image that consists merely of alphanumeric
characters. This can be convenient when creating report headings that must be
aligned with columns of output. The Image statement for the headings can be
directly aligned on the CRT over the data-output Image statement. For
example,

Example 15.5 An Image Statement without a Format Specification

110 REM USING AN IMAGE STATEMENT WITHOUT FORMAT SPECIFICATIONS
120 %PART NO. ON HAND ON ORDER
130 %####### #H### #H###

270 PRINTUSING 120
280 PRINTUSING 130, A, B, C

3

In this example the Image statement at T1line 120 consists only of
alphanumeric characters; there are no format specifications. Line 270 simply
tells the system to output the Image found on line 120. Notice in 1line 270
that the "120" 1is not followed by a comma, and no print elements are
specified. A PRINTUSING statement which references an Image such as this must
not have any print elements.

15-3 THE $, +, AND - SYMBOLS

Thus far, in our PRINTUSING examples, we have printed positive numbers
only. The output from the following program illustrates the output when a
negative value is printed.

Example 15.6 Printing Negative Values without a Sign in the Format

110 REM PRINTING NEGATIVE VALUES WITHOUT A SIGN IN THE FORMAT
120 PRINTUSING 140, 25.45, 1615.18

130 PRINTUSING 140, -25.45, -1615.18

140 Z#### . ## #### A

:RUN

25.45 1615.18
- 25.45 -1615.18

188

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Line 120, which outputs positive values, is included in this example for
the purpose of comparison. The negative values output by 1line 130 cause a
minus sign to be output at the left of each format, and increase the length of
the format specifications by one character. This increase in length causes
the misalignment of the columns, as shown. In general, this effect is
undesirable: output is misaligned with previous output, and the minus sign
floats at the left of the format, perhaps leaving several spaces between it
and the first digit of the value.

Beginning a Format Specification with a Minus Sign

Whenever a format specification may receive a negative value, it should
be preceded with a minus (-) sign. A minus sign at the beginning of a format
specification has special significance. It tells the system to output a minus
sign immediately preceding the leftmost digit of a negative value, or output a
space if the value is positive. Example 15.7 shows the result of adding a
minus sign to the formats previously shown in Example 15.6.

Example 15.7 A Minus Sign in a Format Specification

110 REM USING A MINUS SIGN IN THE FORMAT
120 PRINTUSING 140, 25.45, 1615.18

130 PRINTUSING 140, -25.45, -1615.18

140 %-###4.## -#4#4 .44

:RUN
25.45 1615.18
-25.45 -1615.18

Notice in this example that the minus sign always appears immediately to the
left of the leftmost digit, regardless of the number of digits output. Since
there is room in the format for the minus sign, the format does not have to be
expanded to accommodate it. As a result, all columns are aligned.

Beginning a Format Specification with a Plus Sign

A plus sign may be used to begin a format specification. A plus sign
has the same general effect as a minus sign, except in one respect: when the
value of the print element is non-negative (greater than or equal to zero),
the + sign is output immediately preceding the leftmost digit. If the value
is negative, the minus sign is output. Example 15.8 illustrates the effect
of the + sign when used to begin a format specification.

189

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Example 15.8 A Plus Sign in a Format Specification

110 REM USING A PLUS SIGN IN THE FORMAT
120 PRINTUSING 140, 25.45, 1615.18
130 PRINTUSING 140, -25.45, -1615.18
140 Z+#### ## +###H A4

:RUN

+25.45 +1615.18
-25.45 -1615.18

When printing values that frequently alternate between positive and negative,
the explicit plus sign can increase clarity.

The Dollar Sign

If a format specification begins with a dollar sign ($), a dollar sign
is output immediately preceding the leftmost digit, if the value is positive.
If the value is negative, $- precedes the leftmost digit. The dollar sign
cannot be used together with a + or - in the format. It is used instead of
these symbols, and causes sign output analogous to the minus symbol. Example
15.9 illustrates the effect of the dollar sign used to begin a format
specification.

Example 15.9 The Dollar Sign in a Format Specification

118 REM USING A DOLLAR SIGN IN THE FORMAT
120 PRINTUSING 140, 25.45, 1615.18

130 PRINTUSING 140, -25.45, -1615.18

140 %$####. 44 S#### . #4

:RUN
$25.45 $1615.18
$-25.45 $-1615.18

Notice in Example 15.9 that when the value is positive, the § always appears
immediately left of the most significant digit, and that the format is not
expanded. When the value is negative, $- immediately precedes the value.
This does not cause expansion of the format unless the entire format
specification, including the $, is not large enough to accommodate the value
together with the $-. This occurs here for the value -1615.18, and causes a
misalignment of the columns. This misalignment can be avoided by simply
providing a format with one more #, left of the decimal, than the value will
ever occupy. In this case 1line 140 would be changed to

140 %$####.## S#####.#4
and the output would be aligned as follows:
<RUN

$25.45 $1615.18
$-25.45 $-1615.18

190

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

A maximum of 16 # symbols can appear in a single format specification
used for numeric output.

Rounding

The PRINTUSING and Image statements never round values. Any fractional
digits beyond those selected for output are merely truncated. However, if a
value is simply to be printed, and does not enter into further calculations,
it can be rounded by adding 5 in the decimal position immediately to the right
of the rightmost printed digit. Thus, if a format prints to two decimal
places, .005 added to the value, prior to printing, will round the output to
two decimal places. This assumes the value is positive. The added .005
causes a carry into the second position, if the digit in position three is 5
or greater. For example,

110 REM ROUNDING

120 INPUT "NUMBER TO BE ROUNDED", A
130 PRINTUSING 140, A+.005

140 % #### .44

If the value to be rounded is negative in the above example, -.005 must
be added in order to round. A simple way of rounding, when the sign of the
value to be rounded is unknown, is to multiply the vrounding factor by the
SGN() of the value, before adding. The above example would be modified as
follows:

110 REM ROUNDING (POSITIVE OR NEGATIVE)
120 INPUT "NUMBER TO BE ROUNDED", A
130 PRINTUSING 140, A + (SGN(A)*.005)
140 % -####.##

If a value is to be used in further calculations after it is printed, it
is not advisable to round in the manner shown above, since the value of A is
not changed by line 130. For example, if A equals 45.779 and .005 is added,
truncated A will print as 45.78, but, A still equals 45.779 and could yield
apparently erroneous results if it enters into further calculations. In such
circumstances, the value itself should first be rounded and truncated, using
the procedure given in Example 14.4, or in Chapter 6.

We have noted that if the number of digits left of the decimal is Tless
than the number of # symbols, the # symbols are replaced by spaces. However,
a different problem arises if there aren't enough # symbols left of the
decimal to accommodate the digits. For example, if the format specification
is -###.## and the value of the print element is 7500.50, there is no place
for the 7 in the format. When this happens, the system doesn't substitute any
digits 1into the format specification. The result 1is that the format
specification itself 1is printed. In this case -###.## would show up in the
output. This, then, is an indication of a programming error: a format
specification is too small for a value it is to receive.

Example 15.10 shows a modification of Example 7.10, a mortgage payment
program.

191

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Example 15.10 PRINTUSING in the Mortgage Payment Problem of Chapter 7

110 REM PRINTUSING IN A MORTGAGE PAYMENT PROGRAM
120 REM OPERATOR ENTERS VALUE FOR PRINCIPAL

130 INPUT "ENTER PRINCIPAL",P

]40 REM kkkkkkkkkhkkkkkkkkkk

150 PRINTUSING 280

160 PRINTUSING 290

]70 REM kkkkkkkkkkkkkkkkkkk

180 PRINT

190 FOR T=20 TO 40 STEP 5

200 FOR T =7 TO 9 STEP .5

210 M=P*(1/1200)/(1-(1+1/1200)* (-12*T))

220 REM kkkkkkkkkkhkkkhkkkkhkkkkhkkkkkkkkk

230 PRINTUSING 300, P, T, I, M+.005

240 REM **%dkkdkdhkkhkhkikkkhkrrrkrirkrkx

250 NEXT I

260 PRINT

270 NEXT T

280 % INTEREST MONTHLY
290 %PRINCIPAL TERM RATE PAYMENT
300 %$##,### . ## ## YEARS ## . H##% SH## . H##

In this example, notice that the report layout stands out in the program much
more clearly than it did in Example 7.10. The complicated round and truncate
operation of line 270 of Example 7.10 has been replaced by a simple rounding
effected by M+.005, and a truncation accomplished by the format specification.
Column output presents an even right edge, as shown below.

INTEREST MONTHLY
PRINCIPAL TERM RATE PAYMENT
$30,000.00 20 YEARS 7.00% $232.59
$30,000.00 20 YEARS 7.50% $241.68
$30,000.00 20 YEARS 8.00% $250.93
$30,000. 00 20 YEARS 8.50% $260.35
$30,000. 00 20 YEARS 9,00% $269.92

15-4 ALPHANUMERIC PRINT ELEMENTS

The PRINTUSING statement can be used to output alphanumeric values.
Alphanumeric print elements may be in the form of 1literal strings or
alphanumeric variables. In the Image statement, the format specification for
alphanumeric values usually simply consists of # symbols. Alphanumeric values
are substituted character-by-character 1into the format specification. The
leftmost # receives the leftmost character of the value, producing a left
alignment of the value in the format specification. If there are fewer
characters in the value than #'s in the format, the extra #'s at the right are
filled with spaces. If there are more characters 1in the value, the extra
characters at the right are simply truncated. A format specification used for
alphanumeric output may contain any number of # symbols.

A single PRINTUSING statement may contain both numeric and alphanumeric

print elements. Example 15.11 shows a program segment that outputs a report
line of mixed numeric and alphanumeric values.

192

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Example 15.11 Alphanumeric Print Elements

120 DIM N$20

130 % EMPLOYEE JOB REG. 0/T GROSS
140 % NAME NUM. HOURS HOURS PAY
150 %# ####### 444 ###FHHHHH #H## ##.#4# ## .44 #H# H#

890 PRINTUSING 130
900 PRINTUSING 140
910 PRINTUSING 150, N$, J$, R, O, G

Output from these Tlines appears as:

EMPLOYEE JOB REG. 0/T GROSS
NAME NUM. HOURS HOURS PAY
R. J. THOMAS 155 40.00 5.50 258.60

A "numeric" format specification, one that contains $,.-+, may also be
used for alphanumeric output. However, none of these special characters are
edited into the output, as they are with numeric print elements. Instead, if
such a format specification receives an alphanumeric value, these characters
act as if they are # symbols. The alphanumeric characters of the print
element are substituted for characters in a format specification such as
$##,### .## as if this specification were ##########. Occasionally this can be
useful. Example 15.12 shows Example 15.11 modified so that the column-output
Image is used for the output of the headings. This yields some reduction in
total memory occupied by the program.

Example 15.12 Printing Alphanumerics with "Numeric" Format
Specifications

110 REM ALPHANUMERIC PRINT ELEMENTS INTO "NUMERIC" FORMATS
120 DIM N$20
150 %###########HH#A#HHAS FHHE HEHE HEHE AERLRE

890 PRINTUSING 150, "EMPLOYEE","JOB","REG ","0/T","GROSS"
900 PRINTUSING 150, "NAME","NUM ","HOURS","HOURS","PAY"
910 PRINTUSING 150, N$, J$, %, 0, G

Output from these lines appears as

EMPLOYEE JoB REG 0/T GROSS
NAME NUM. HOURS HOURS PAY
R. J. THOMAS A155 40.00 5.50 248.60

193

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

15-5 SUPPRESSING THE CR/LF

Reusing an Image

If the number of print elements in a PRINTUSING 1is greater than the
number of format specifications in the Image statement, a carriage return/line
feed is issued when the formats are exhausted. The Image is then reused, from
the beginning, for the remaining print elements. In Example 15.13, a single
PRINTUSING uses an Image three times to complete its output.

Example 15.13 Using an Image Repeatedly with a Single PRINTUSING

110 REM USING AN IMAGE REPEATEDLY WITH ONE PRINTUSING
120 DIM A(3), B(3)

130 % ACCT. NO. AMOUNT

140 % ###### -# # i HHH A

: (values entered into A() and B())
380 PRINTUSING 130

390 PRINTUSING 140, A(1), B(1), A(2), B(2), A(3), B(3)
Output from this program segment appears as:

ACCT. NO. AMOUNT
101 14,512.01
105 44 ,500.00
112 16,357.95

In this example, 1ine 390 outputs the three lines of data by using the
Image (line 140) three times. In executing 390 the system first substitutes
the digits of A(1) into the first format specification, ######. Then, the
digits of B(1) are substituted into the second format specification. The
system now notices that there are more print elements but no more format
specifications. It therefore issues a CR/LF, which moves the cursor to the
leftmost position on the next 1line. Now it reuses the Image from the
beginning, substituting A(2) into the first format specification and B(2) into
the second. A CR/LF 1is issued and the process repeats itself a third time
outputting A(3) and B(3). After the third 1ine of output, PRINTUSING issues a
final CR/LF, and passes control to the next instruction.

The Semicolon

The CR/LF that is issued before the system reuses an Image, may be
suppressed by placing a semicolon in the PRINTUSING statement. The semicolon
is used instead of the comma, and must follow the print element associated
with the 1last format specification in the Image. Suppressing the CR/LF in
this fashion causes the output from the Image to be repeated on the same line.
Example 15.14 shows a PRINTUSING statement that uses an Image twice, and
suppresses the CR/LF with a semicolon.

194

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

Example 15.14 Suppressing a CR/LF with a Semicolon

110 REM SUPPRESSING THE CR/LF WITH A SEMICOLON
120 % ### #### PPM #### CU.MM
130 DIM I(15), C(15), V(15)

140 PRINT "ITEM CONCEN- TOTAL ITEM CONCEN- TOT
ALII

150 PRINT " NO. TRATION VOLUME NO. TRATION VOL
UME"

570 PRINTUSING 120, I(K), C(K), V(K); I(K+1), C(K+1), V(K+1)
Output from this program segment appears as follows:

ITEM CONCEN- TOTAL ITEM CONCEN- TOTAL
NO. TRATION VOLUME NO. TRATION VOLUME
13 455 PPM 0150 CU.MM 14 315 PPM 0170 CU.MM

Notice in this example that the Image at 1ine 120 contains three format
specifications. The PRINTUSING at 270 contains six print elements. Execution
of 1line 270 causes print elements I(K), C(K), and V(K) to be substituted into
the three formats of line 120. Normally a CR/LF would be issued at this
point, and the output of the next three elements would appear on the next
line. However, the print element V(K) is followed by a semicolon. This
suppresses the CR/LF. The Image is reused for print elements I(K+1), C(K+1),
and V(K+1). Output appears on the same line.

Regardless of the number of format specifications actually used by a
PRINTUSING statement, PRINTUSING normally outputs a CR/LF immediately prior to
passing control to the next instruction. This final CR/LF can be suppressed
by placing a semicolon at the end of the PRINTUSING statement. Example 15.15
shows a program which prints a table of random numbers using RND and
PRINTUSING. In the PRINTUSING statement the normal CR/LF at the end is
suppressed by a trailing semicolon.

Example 15.15 A Semicolon at the End of the PRINTUSING Statement

110 REM SUPPRESSING THE CR/LF WHICH NORMALLY FOLLOWS PRINTUSING
120 Z#####

130 FOR I = 1 TO 24

140 PRINTUSING 120, RND(1)*1ES5;

150 NEXT I

Output from this program appears as follows:
85710 91609 24725 5294 76934 75577 39969 34105

48561 44686 10999 14629 44239 31110 64724 70047
88009 55461 21020 80680 29352 51562 75265 31696

195

CONTROLLING OUTPUT FORMAT WITH IMAGE (%) AND PRINTUSING

In this program a single print element, RND(1)*1E5, is substituted into
a single format specification. Normally, after each execution of line 140, a
CR/LF would be issued. However, the semicolon at the end of Tline 140

suppresses the CR/LF. A CR/LF is issued only when the 1ine becomes completely
full.

Looking at Example 15.15 you may wonder what is causing the spacing
between the columns; no spaces are visible in the Image. Despite the fact
that none are visible, three spaces are in the Image following the format.
They do not appear in the listing, but if line 120 were recalled in EDIT mode,
it would appear as

*120 %#####

with the cursor positioned three spaces to the right.

15-6 EXPONENTIAL FORMAT

Exponential format may be specified by ending a format specification
with ++44, (Four wup-arrows (*) are always used.) The four up-arrows are
replaced in the output with the standard exponent form E+XX. The mantissa
ijs scaled so that its most significant digit occupies the leftmost # symbol,
and the value of exponent is adjusted to offset this scaling. Any numeric
value may be output in exponential format. Example 15.16 shows the results of
output in exponential format.

Example 15.16 Using Exponential Format Specifications

110 REM EXPONENTIAL FORMAT SPECIFICATIONS
120% COEFF = +.#### t14+ERROR = -## t441¢
130 PRINTUSING 120,2.13E-5, 2.3E-9

:RUN

COEFF = +2130E-04 ERROR = 23E-10

Notice that the mantissa has been scaled to fit the number of # symbols 1left
of the decimal in the format, and the exponent adjusted accordingly.

196

CHAPTER 16
MORE ABOUT ALPHANUMERICS

16-1 HEX CODES

In Chapter 8 we introduced the idea of alphanumeric variables. We
depicted an alphanumeric value in the memory of a Wang 2200 system without
saying very much about how the characters are actually recorded. For example,
if A$ = "BOSTON, MA", and A$ can hold a maximum of 16 characters, we would
have depicted memory as

As [B]o[s|T]on],|alm]a[a[a]a]a[a]a]

where A means "1 space"

In fact, each character in A$ is not recorded in memory the way we see
it here. In memory, each character is recorded as a binary code. The value
of A$ in memory consists of the binary code for B, followed by the binary code
for 0, followed by the binary code for S, etcetera. Since there is a binary
code for a space, A$ is recorded in memory as 16 binary codes, one for each
character and each space (a space just being a special kind of character).

These codes are called "binary" codes since the code for each character
is made up entirely of ones and zeros. For example, the character B is
represented by the binary code

01000010
The letter 0, the second character in A$, is represented by

01001111

With each code consisting of eight binary digits, there are a total of 256
possible codes.

Each keyboard character is represented by one of these codes. When a
key 1is depressed, the keyboard sends the proper code to the CPU. However, as
Table 8.1 shows, there are only 86 characters that can be entered from the
keyboard. This Tleaves 170 codes unused by the keyboard characters. These
"extra" codes are used in a variety of ways.

For example, if the CRT receives the code

00000011

197

MORFE ABOUT ALPHANUMERICS

it interprets this to mean, "Clear the screen and move the cursor to the top
left corner." There are other codes that are given special interpretations by
the CRT. In addition, printers execute form control and other operations
based upon receipt of certain special codes. However, before we discuss how
these special codes can be used, we must look at another, more convenient, way
of writing them.

Binary codes are inconvenient for human use. In order to write one code
for a single character, such as L, you must write eight binary digits

01001100

For this reason, a kind of shorthand for binary, called "hexadecimal" or
"hex", 1is used instead. Hex uses one hex digit to stand for each group of
four binary digits. By breaking the eight binary digits for "L" into two
groups of four, and using Table 16.1 below, you can see that, in hex, this
code would be written as 4C, as follows:

0100 1100

N N, -

N/

4c
So, we say that for the Wang 2200 system the hex code for "L" is 4C.
HEX HEX
BINARY EQUIVALENT BINARY EQUIVALENT
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 10N B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 3
0 7 1111 F

Table 16.1 Binary and Hex Equivalents

Since binary character codes always contain eight binary digits, the hex
representation always contains two hex digits. The hex digits 0-9 and A-F
must be thought of as just 16 symbols, each arbitrarily chosen to stand for
four binary digits. By contrast, the character "A" is represented by the hex
code 41 (its binary code is 01000001).

For the remainder of this volume we can ignore the cumbersome binary
representation and refer only to hex codes, aware that when we say
something like "This puts hex 4C into A$," we are just using hex 4C as a
kind of shorthand for the actual binary code.

It should be noted that the hex codes for the lower case characters are
different from the hex codes for the upper case characters. To the processor,
"A" and "a" are as different as "A" and "Z". A complete table of characters
and hex codes is given in Appendix C.

198

MORE ABOUT ALPHANUMERICS

16-2 THE HEX() FUNCTION

Suppose we want to use the control codes for the CRT that we mentioned
earlier. We want to clear the CRT screen and put the cursor in the top left
position. (This cursor position (line 0, column 0) is sometimes called
"home".) The hex code 03, received by the CRT, tells it to clear the screen
and home the cursor. How can we get the processor to send this code to the
CRT?

When we want the CRT to print a character, we Jjust write a statement
such as

10 PRINT "A"
or two statements such as

10 A2$ = "A"
20 PRINT A2%

In each case, execution of these statements causes the CPU to send the hex
code for "A", hex 41, to the CRT. However, there isn't any key on the
keyboard that we could use in place of the "A" key which would tell the CPU to
send hex 03 to the CRT. (The keyboard numeral "3" is represented by hex 33.)
Wang BASIC, therefore, provides the alphanumeric function HEX() as a means of
directly specifying any desired hex code or series of hex codes. HEX() says
to the system, "Interpret the characters in parentheses to be a directly
specified hex code, or codes." For example, to clear the CRT screen, you can
simply execute:

:PRINT HEX(03)

This may be executed as shown, in the Immediate Mode, or as a program
statement, provided that the CRT is selected for PRINT output. Alternatively,
this could be accomplished with the statements

10 A2$ = HEX(03)
20 PRINT A2$%

Statement 10 assigns the hex code 03 to the variable A2$. The code hex 03
then occupies the first, leftmost, character position in A2$. The remaining
character positions in A2$ are occupied by spaces, hex 20. Therefore, A2$
looks 1ike this in memory:

A2$ 03{20(20({20{20|20|20(20|20{20{20|20120|20|20(20

At statement 20 the CPU looks at A2$, determines that it contains one
non-space character, the hex 03, outputs that character and ignores the
trailing spaces, the fifteen hex 20 codes. The result is that the screen is
cleared and the cursor is put in the home position.

The HEX function may be thought of as a special kind of literal string,
used when a non-keyboard character code is needed, An alphanumeric value may
be specified with a HEX function whenever a literal string in quotation marks
may be used, with a few exceptions. The exceptions are:

199

MORE ABOUT ALPHANUMERICS

A HEX function may not be used in

An INPUT statement prompt.

A keyboard response to an INPUT statement.

A STOP statement message.

A PRINTUSING statement.

A DATA statement.

(On the 2200S only) a DEFFN' statement used to define a
character string for Special Function key entry.

ATl whN —
e e e e e

There is no 1imit to the number of hex codes which may be used in a
single HEX function; however, a hex code must always consist of 2 hex digits.
An odd number of hex digits may never be used. The following statements are
examples of legal uses of HEX functions.

10 A$ = HEX(03)
40 C$ = HEX(O30A)
85 PRINT HEX(030A0A); "PROCESSING FILE"; N
100 IF A$ = HEX(09) THEN 10
200 GOSUB' 50 (4,"NAME",HEX(09))
310 DEFFN'15 "LISTS 100, 9000"; HEX(OD)*
*NOT LEGAL ON 2200S

nou

Chapter 17 discusses the use of hex codes in controlling the CRT.
Chapter 18 discusses their use in controlling a printer.

The Hex Function in the DEFFN' Statement

On Wang 2200T systems (or 2200S with OP-24), the HEX function may be
used in DEFFN' statements, when these are used to associate a character string
with a Special Function key. The general form of the DEFFN' statement for the
2200T is

DEFFN's {HEX() ; {HEX() }
"character string"} ; "character string" oo

or
DEFFN'i [(variable [,variable])]

Where s is an integer 0-31 defining a Special Function key.
i is an integer 0-255 (if i <31, it defines a Special Function key).

The lower form shown is for marked subroutine definition; the top form is for
character string definition of Special Function keys.

Wang CRT's and printers can print certain characters which do not appear
on the keyboard. If you wish to use these characters you can define a Special
Function key to enter the required hex code for the character. For example,
hex 5B and 5D print 1left and right brackets [] on any Wang CRT. However,
these characters do not appear on the keyboard. If you wish an operator to be
able to enter these characters during program execution, you could define
Special Function keys 0 and 1 to the proper hex codes as follows:

6010 DEFFN'O HEX(5B)
6020 DEFFN'1 HEX(5D)

200

MORE ABOUT ALPHANUMERICS

With these two statements in a program, depressing Special Function key 0
causes a left bracket to be entered and appear on the CRT. Special Function
key 1 enters a right bracket. (Note, however, that these characters may not
be used in BASIC statements as substitutes for parentheses.)

The (EXEC) key causes the hex code OD to be entered. If a character
string in a DEFFN' statement is followed by HEX(OD), the string will appear on
the CRT, and be entered with one stroke of the defined Special Function key.
For example, if this statement appears in a program

10 DEFFN'1 "LISTS 500, 1000"

then keying Special Function key 1 when the colon is displayed causes the
following to appear on the screen:

:LISTS 500, 1000

To execute this LISTS command, (EXEC) must be keyed. However, if the
statement is changed to '

10 DEFFN' 1 "LISTS 500, 1000"; HEX(OD)
then merely depressing Special Function key 1 will initiate execution of the
LISTS command. The HEX(OD) at the end is the equivalent of keying (EXEC). A
semicolon must be used to separate HEX() functions from literal strings in the
DEFFN' statement.
Complete tables of hex codes and characters for the CRT's and printers
are given in Appendix C.

16-3 THE STRING FUNCTION

The string function, STR(), allows you to use and operate on any
specified section of an alphanumeric variable. For example,

STR(A$,2,4)

specifies the section of A$ beginning with the 2nd character position, taking
a total of 4 consecutive character positions. Thus, if

A = |N[{4/0|7]|5]|-|A|l2]|1]|Aa]alalalalala

then

STR(A$,2,4) = |4(0{ 7|5

The string function

STR(B$,9)

201

MORE ABOUT ALPHANUMERICS

specifies the portion of B$ beginning at the 9th character position and
extending through the end of the variable.

Thus, if

B$ = AlalalalalalA|B|C|D|E|F|G|ala|A

then

STR(B$,9) = C|D|E|F| Gla|Aa|A

A string function can be used whenever an alphanumeric variable can be used.
The string function is an extremely versatile feature of Wang BASIC.

If,

S$ = |K{1/0[4]3|-|R|B|AlA|A|A|A|AlA|A

and

R§ = |5(2|6|7|alAa]lA|Aa|la|Aa|A[A]lAalA|AlA

then after executing
200 R$ = STR(S$,2,4)

S$ is unchanged.

R§ = (1]|0]4|3|a|alalajajalajalalajala

The following are examples of valid uses of STR() functions:
10 INPUT "CREDIT RATING", STR(C9$%$,17,2)
(assigns the entered credit rating to the 17th and 18th characters of C9$.)
200 IF STR(C9%$,17,2) = "A1" THEN 280
(branches to 280 if the 17th and 18th characters of C9$ equal "A1".)
750 PRINT "SUPPLIER CODE="; STR(P$,1,5)
(prints “SUPPLIER CODE=" followed by the first five characters of P$.)
900 READ STR(A2$(5),6,1)

(assigns the next DATA value to the sixth character in the 1list variable

A2§(5).)
200 DEFFN'40 (STR(A$,5,15),B$%,K)

202

MORE ABOUT ALPHANUMERICS

(specifies that the first value passed to the DEFFN' by the GOSUB' is to be
assigned to the b5th - 19th characters of A$, that is, to the 15 consecutive
characters beginning with character 5.)

405 STR(B$,2,7) = STR(N$,10,7)

(beginning at the 10th character of N$, assigns the next seven characters to
the portion of B$ beginning at the second character and extending through the
next seven consecutive characters.) Thus, if

N¢ = |G|5/19/5|-16[2|3]-(Al4[0]1[1!B]|aA
. —~— J
STR(N$,10,7)
B$ = |N|[Q|5]|2|7]|2|Al2(2|-|F|A|L|2(3[1
- ~ -
STR(B$,2,7)

then after executing statement 405

where:

N$ is unchanged

B$ = N|AJ4({0(1|1|Bla]2[-[F[A|L|2 |31
v_\/—\/

STR(B$,2,7)

The general form of the STR(function is:

STR(alphanumeric variable, expression 1, [expression 2])

alphanumeric variable = any alphanumeric variable (subscripted or
scalar).

expression 1 = an expression specifying the starting character in
the string. 1Its integer value must be 1 or greater and less than or
equal to the maximum size of the variable.

expression 2 = an optional expression specifying the number of
consecutive characters desired. If this expression is omitted, the
entire remaining portion of the variable 1is specified. (If a
variable, A$, is dimensioned to hold a maximum of 20 characters,
then

STR(A$,5) is equivalent to STR(A$,5,16).

Both specify the entire remaining portion of the variable from
character 5 on.)

203

MORE ABOUT ALPHANUMERICS

Any numeric expression can be used in the string function to specify the
starting character and the number of consecutive characters to be used. Thus,
string functions of -the following forms are legal (provided the expressions
yield values that keep the string function within the defined size of the
variable).

STR(B2$,29,4)

(here the value of the numeric variable Z9 specifies the starting
character of the string function.)

STR(A2$,(N+2)/2, K)

(here the value of the expression (N+2)/2 determines the starting
character; the value of K specifies the number of consecutive
characters to be used.

NOTE: Only the integer portion of a value is used.)

When a variable is specified with a string function, all the characters
in the string are included in the value of the variable, even trailing spaces.
For example, enter and execute:

10 A$ = "T"
20 PRINT A$; "88&"
30 PRINT STR(A$,1); "&8&"

The result is:

T&8&&
T &84

The variable A$ after statement 10 consists of the character T followed
by 15 trailing spaces. When A$ is printed at line 20, the trailing spaces are
ignored; they are not printed. In line 30 STR(A$,1) specifies the entire
variable A$, that is, "starting at the first character, take all remaining
characters." Characters specified within a string function are taken to be
part of the value of the variable, even if they are trailing spaces.
Therefore, when STR(A$,1) is printed, all 15 spaces are printed with it.

Frequently, it is advantageous to store different data items in a single
variable and access individual items by means of a string function of that
variable. This 1is particularly true when data storage on tape or disk is
considered, topics we take up in Chapters 20 and 21. However, the string
function has a great many uses and we will see some of them in the coming
chapters.

16-4 INITIALIZING AN ALPHANUMERIC VARIABLE WITH A SPECIFIC CHARACTER (INIT)

When RUN (EXEC) is keyed, the system sets aside space in memory for all
the variables used in a program. Each numeric variable is assigned an initial
value of zero, and each alphanumeric variable is filled with spaces, hex 20's.

204

MORE ABOUT ALPHANUMERICS

Sometimes, though, we may wish to fill an entire alphanumeric variable, or
even an entire alphanumeric array, with some other character, or hex code.
For example, suppose we want to assign the hex code OA to each character in
the variable A$. We could do it in this manner:

A$ = HEX(OAOAOAOGAOAOAOAOAOAOAOAOAOAOAOAOA)

This approach, however, becomes inefficient and inconvenient as the
dimensioned 1length of A$ increases. If an entire array is to be filled in
this manner, a loop must be used to assign the hex codes to each variable in
the array.

On the 2200T a BASIC statement is available that assigns a specific
character to an entire alphanumeric variable or to an entire alphanumeric
array. This is the INIT statement. For example, the statement

20 INIT (OA) A$
assigns the hex code OA to each character in A$. The statement
20 INIT (0oC) R$()
assigns the hex code OC to each character in each variable in the array R$().

With the INIT statement, any single hex code (two hex digits) may be
specified within. the parentheses as the value to be assigned. Alternatively,
the value may be specified as a character in quotation marks. For example,

30 INIT ("X") A$
assigns "X" to each character of A$.

Finally, the value to be assigned may be specified by putting an
alphanumeric variable within the parentheses. If this method is used, the
first character in the variable is the character which is assigned. For
example,

20 A$ = "DEF"
30 INIT(A$) BS$()

This sequence assigns to each character in each variable in B$(), the value
"D", since "D" is the first character in A$.

In an INIT statement several variables may be initialized with the same
character, by separating them with commas.

For example,

40 INIT (OA) A$,B$,R$

205

MORE ABOUT ALPHANUMERICS

The general form of the INIT statement is:

(hh) alpha variable ,alpha variable
INIT ("character")
(alpha variable) alpha array designator ,alpha array designator

The INIT statement is legal in the Immediate Mode.

The INIT statement is not part of the 2200S instruction set. It s
available to users of the 2200S as part of Option 22. For 2200S owners,
without OP-22, the following technique is suggested for use whenever a 1long
alphanumeric variable must be initialized with a specific character.

The statement sequence

10 A$ = HEX(OA)
20 STR(A$,2) = STR(A$,1)

assigns the hex code OA to each character in the dimensioned length of A$.

This programming technique exploits the fact that the processor actually
makes the assignment at line 20 on a character-by-character basis, that is, it
first fetches a character from the source (STR(A$,1)), then assigns it to the
receiver (STR(A$,2)), then returns to the source for the next character,
assigns it, and so on. Statement 10 makes the first character in A$ equal to
hex OA. The remaining characters we can assume to be spaces. Statement 20
takes the first character in A$, hex OA, as specified by STR(A$,1) and assigns
it to the second character position in A$, as specified by STR(A$,2).
However, STR(A$,1) specifies the entire length of A$, so the processor
continues the assignment by taking the next character out of STR(A$,1) and
assigning it to the next character position in STR(A$,2). The character it
takes out of the second character position in STR(A$,1) is the hex OA that
just a moment ago it put there. It takes this OA and assigns it to the second
character position in STR(A$,2). Now, A$ looks like this:

A$ |OA|OA|[OA| 20| 20| 20| 20| 20| 20| 20| 20| 20| 20| 20 |20 | 20

The processor continues taking a character out of one character position and
assigning it to the next until STR(A$,2) is full.

16-5 THE LEN() FUNCTION

The LEN() function is used to determine the number of characters 1in an
alphanumeric variable, excluding trailing spaces. For example, if

aA$ = [ATB]c[p[a]a A“T aAlalalalalalalal]a

then LEN(A$) returns a value of 4, since there are 4 characters preceding the
first trailing space. Though LEN() operates on an alphanumeric variable, that
is, its argument is alphanumeric, it yields a numeric value and may be used
anywhere that a numeric expression may be used. The following are examples of
legal uses of the LEN() function:

206

MORE ABOUT ALPHANUMERICS

100 IF LEN(A$) = 20 THEN 400
100 R = LEN(K2$(3))*INT(V)
100 PRINT TAB(32-LEN(A$)); A$
100 STR(B$,1,LEN(A$)) = A$

If the alphanumeric variable in the LEN() function is all spaces, LEN()
returns a value of 1, not 0. This is in keeping with the discussion of

Chapter 8 which pointed out that the value of an alphanumeric variable,
which is all spaces, is 1 space.

In Section 16-3 it was pointed out that the STR() function causes the
system to treat all the characters within the specified string as significant,
even trailing spaces. Therefore, LEN() with a STR() as an argument, such as

L = LEN(STR(A$,1))

assigns to L the dimensioned length of A$, even if A$ is all spaces.

The LEN{) function can be useful in a variety of programming situations.
For example, it can be used in the TAB() parameter to produce right-aligned
output. This use is shown in Example 16.1.

Example 16.1 Right-Aligning PRINT Output
110 REM RIGHT-ALIGNING PRINT OUTPUT

120 READ N

130 FORJ=1TON

140 READ P$

150 PRINT TAB(20-LEN(P$)); P$
160 PRINT

170 NEXT J

990 DATA 5, "EMPLOYEE NAME", "JOB NO.", "JOB CATEGORY", "REGULAR
HOURS", "OVERTIME HOURS"
:RUN
EMPLOYEE NAME
JOB NO.
JOB CATEGORY
REGULAR HOURS

OVERTIME HOURS

207

MORE ABOUT ALPHANUMERICS

Notice that the output presents an even right edge with each line ending
at column 20 (last character in column 19). It is easy to see why this
works. When P$ is printed, PRINT outputs all characters up to a
trailing space, 1in other words, as many as the LEN() of P$.
Therefore, for each line, the total number of spaces from the TAB(), and
characters from P$, is 20 - LEN(P$) + LEN(P$), or 20.

On an INPUT statement with an alphanumeric receiving variable, an
operator can enter any number of characters, but if the number of characters
entered exceeds the dimensioned size of the variable, the extra characters are
lost, without the operator being alerted. This problem can be 1largely
overcome by using a single 64 character alphanumeric variable to receive all
alphanumeric input, and then testing the LEN() of the entry before assigning
it to a shorter variable. A DEFFN' subroutine that takes this approach is
shown in Example 16.2.

Example 16.2 Using LEN() to Test the Number of Characters in an Entry

110 REM AN ALPHANUMERIC ENTRY SUBROUTINE
115 DIM F$8, R$64, P$64

320 GOSUB '186 ("ENTER FILE NAME (MAX. 8 CHARACTERS)",2,8)
330 F$ = R$:REM ASSIGN RESPONSE

990 DEFFN' 186 (P$, L1, L2)

910 PRINT P$;

920 R$ = u

930 INPUT STR(R$,2)

940 IF LEN(R$)-1< L1 THEN 960 :REM LESS THAN MIN.?
950 IF LEN(R$)-1 <= L2 THEN 980 :REM LESS THAN MAX.?
960 PRINT "INVALID. REENTER"

970 GOTO 910

980 R$ = STR(R$,2)

990 RETURN

The GOSUB' at 1ine 320 passes a prompt and the minimum and maximum
number of characters acceptable as a response. In this case the
maximum, 8, is the dimensioned size of the variable F$ that ultimately
receives the value. Line 920 is used to ensure that a previous entry
will not be accepted as a new one if the operator merely keys (EXEC).
The value is received by STR(R$,2) rather than R$, so that LEN(R$)=1
indicates unambiguously that no entry was made (otherwise an entry of
one character would be indistinguishable from no entry, since LEN()
returns a minimum value of 1). Line 980 eliminates this space before the
subroutine returns.

208

MORE ABOUT ALPHANUMERICS

16-6 CONVERTING ALPHANUMERIC VALUES TO NUMERIC VALUES, AND VICE VERSA

To facilitate the evaluation of numeric expressions, numeric quantities
are contained in numeric variables in a unique format. This format is
completely different from the simple hex codes used to represent alphanumeric
characters. This is why alphanumeric values cannot be included in a numeric
expression, and why numeric values cannot be directly assigned to an
alphanumeric variable.

However, the BASIC statement CONVERT can be used to convert alphanumeric
values to numeric values, and vice versa. For example,

10 A$ = "1200.50"
20 CONVERT A$ TO N

Line 10 assigns the literal string "1200.50" to A$. In A$ this literal string
is represented simply as a series of characters followed by trailing spaces.
Line 20 takes the characters in A$, converts them to a numeric quantity (in
numeric format), and assigns this numeric quantity to the numeric variable N.
A$ is wunchanged. N contains the numeric quantity 1200.50, and can be used
anywhere an expression is allowed.

The characters to be converted in a CONVERT statement must be an
alphanumeric representation of a valid numeric quantity. This means that up
to 13 digits, decimal point, sign, and a signed two digit exponent may be
included 1in the alphanumeric value to be converted. In the above example, if
A$ were assigned "12#87" instead of "1200.50", an error would result when
CONVERT attempted to convert "12#87" to a numeric quantity, since "12#87" is
not a valid representation of a number.

In many programming situations it is desirable to check whether an
alphanumeric variable contains a valid representation of a number before
attempting to convert it. This helps to avoid error interruptions during
execution of CONVERT. The NUM() function can be used to facilitate such a
test. NUM() is similar to LEN() in that it operates on an alphanumeric
variable as its argument, but returns a numeric quantity. NUM() examines an
alphanumeric variable, and counts characters until it finds one that would be
illegal in a valid representation of a number, or it reaches the last
character. It includes all spaces, even trailing spaces, in its count.

IfA$ = (1]2|0]|0|.[5{6(AajalAalajAalalaljalA

then

NUM (A$) returns 16, since 1200.56 is a valid representation of a number, and
all the trailing spaces are counted.

IFA$ = (1|2|0|0|(X|A|B|AlAlAlAlA|A]A]A|A

then NUM(A$) returns 4, since the sequence of characters fails to conform to
standard BASIC number format when the X is encountered.

209

MORE ABOUT ALPHANUMERICS

To test whether an alphanumeric variable can be converted to numeric, a
program can simply test if the NUM() of the variable 1is equal to the
dimensioned length of the variable. A simple INPUT routine might Tlook Tlike
this:

10 INPUT A$

20 IF NUM(A$) = 16 THEN 50 : REM NUMERIC FORM?
30 PRINT "NON-NUMERIC. REENTER."

40 GOTO 10

50 CONVERT A$ TO X

With the ability to convert alphanumeric values to numeric ones, it is
possible to write a single DEFFN' subroutine for alphanumeric and numeric
entry. Receiving numeric entries as alphanumeric and then converting permits
the program to prescribe the error procedure when a numeric entry fails to
conform to numeric form. Example 16.3 shows such a subroutine.

Example 16.3 A General Purpose Input Subroutine

110 REM GENERAL PURPOSE INPUT SUBROUTINE

120 DIM P$64, R$64, T$1

130 DEFFN' 187 (P$, T$, L1, L2, L3)

140 PRINT P$

]50 R$= u n

160 INPUT STR(R$,2)

170 IF T$ = "A" THEN 250 :REM ALPHANUMERIC ENTRY?
180 REM NUMERIC TESTS

190 IF INUM(R$) 64 THEN 280 :REM NON-NUMERIC?

200 CONVERT R$ TO R

210 IF R< L1 THEN 280 :REM TOO LOW?

220 IF R > L2 THEN 280 :REM TOO HIGH?

230 IF INT(R*10%L3) = R*10tL3 THEN 330: REM DECIMALS OK?
240 REM ALPHANUMERIC TESTS

250 IF LEN(R$)-1 < L1 THEN 280 :REM ENTRY TOO SHORT?
260 IF LEN(R$)-1<= L2 THEN 320 :REM ENTRY SHORT ENOUGH?
270 REM DISPLAY ERROR MESSAGE

280 PRINT "INVALID. REENTER"

290 PRINT

300 GOTO 140

310 REM EXIT

320 R$ = STR(R$,2)

330 RETURN

The values passed to this subroutine are:
P$ = prompt, 64 characters maximum.

T$ = type of entry code: "A" = alphanumeric.
Any other value = numeric.

Numeric entry:

LT = minimum acceptable value.
L2 = maximum acceptable value.
L3 = maximum number of digits right of decimal point.

210

MORE ABOUT ALPHANUMERICS

Alphanumeric entry:

LT = minimum number of characters.

L2 = maximum number of characters.

L3 = not used.
Numeric values are returned in R, alphanumeric in R$§. Maximum response = 63
characters.

Converting Numeric to Alphanumeric

The CONVERT statement can also be used to convert numeric values to
alphanumeric values. However, when converting from numeric to alphanumeric, a
question arises as to the form in which the numeric value is to be
represented. For example,

3207.4500
3207.45
3.20745E+03

all represent the same numeric quantity. Therefore, when converting numeric
to alphanumeric, the programmer must specify an image for the converted value.
The image 1is written directly into the CONVERT statement. For numeric to
alphanumeric conversion the general form of CONVERT is

CONVERT expression TO alphanumeric variable, (image)
where: (image) = ([+] [#...] [.] [#...] [++44]
1 < number of #'s < 13
For example,

10 N = 3.1416
20 CONVERT N TO A$, (#.##)

This sequence assigns "3.14" to A$. The image in the CONVERT statement s
similar, though not ddentical to, a format specification in an Image (%)
statement. In executing the CONVERT statement, the system first evaluates the
expression, then starts substituting digits from the result for the # signs in
the image. Once this substitution is complete, the image, now with digits in
place of # signs, is assigned to the specified alphanumeric variable.

The rules for construction of the image are given below. The principal
differences between the image in the CONVERT statement and the PRINTUSING
format specification are noted by asterisks.

In general there are two formats:

Normal Format - e.g., ##.##
Exponential Format - e.g., #.## 4444

1. If the image starts with a plus sign (+), the sign of the value (+ or -)
is substituted for the plus sign in the image.

211

MORE ABOUT ALPHANUMERICS

*3.

5.

If the image starts with a minus sign (-), a blank for positive values
and a minus (-) for negative values is substituted for the minus sign in
the image.

If no sign is specified in the 1image, no sign 1is included in the
character string.

If the image is Normal Format:

a) The digits of the value are substituted for the # signs with the
decimal point in the proper position.

*b) If there are more # signs left of the decimal in the image than

there are digits 1left of the decimal in the value, leading zeroes
are substituted for the extra # signs. The sign, if present,
appears to the left of the leading zeroes.

*c) If there are fewer # signs left of the decimal than digits Tleft of

the decimal in the value, an error results.

d) Extra # signs right of the decimal receive zeroes. Extra digits
right of the decimal are truncated.

If the format is Exponential:
The value is scaled as specified by the 1image, so there are no

leading zeroes. The exponent is always substituted into the image
in the form: E+XX,

212

CHAPTER 17
CONTROLLING A CRT

17-1 CRT _HEX CONTROL CODES

If the cursor is positioned on the bottom 1ine of the CRT when a CR/LF
code is received, all the lines of the CRT are shifted up one line, and the
top Tine is removed. This clears a new bottom 1ine for output. This is
called "rolling", and 1is an automatic function of the CRT. It is not under
CPU control. The effect of rolling is that once a program fills the screen,
all new Tines appear at the bottom of the screen.

For some applications rolling is fine, and no programming steps need be
taken to circumvent it. However, frequently it is better to control the Tline
location of CRT output, and maintain a "steady-screen" display. This is more
aesthetically pleasing, and results in superior operator/system interaction.
For example, you might plan to have all input requests appear in the upper
left corner of the CRT, and use mid-screen for display of recently entered
items. To do this you must be able to control the cursor position (the
location at which characters will appear), move it up, down, right and left,
and be able to clear the screen when necessary. All of these things can be
done with special hex control codes. These codes are sent to the CRT by the
processor just as if they were characters, but instead of causing the CRT to
display "A", for example, they cause it to clear the screen or move the
cursor. The CRT cursor control codes are given in Table 17.1.

Table 17.1 The CRT Cursor Control Codes.

HEX CODE ACTION
01 Moves cursor to top left corner of the CRT (home).
03 Clears screen and homes the cursor.
08 Backspaces cursor.
09 Non-destructive space right.
0A Moves cursor down one line (line feed).
0C Moves cursor up one line (reverse index).
0D Moves cursor to leftmost position of the

current line.

213

CONTROLLING A CRT

Hex 01

Hex 01 moves the cursor to the top 1left corner of the CRT. No
characters are cleared from the screen. (This top left position is referred
to as "home" or column O row 0.) To observe the effect of HEX(01), execute
these two programs:

10 PRINT HEX(01);
20 GOTO 20

and
10 PRINT HEX(01); "“OUTPUT ON LINE 0"

The first of these programs goes into an endless loop at line 20 so that the
cursor can be observed; the second illustrates how a message might be printed
on line 0 by using the HEX(01) code.

Hex 03

Hex 03 also homes the cursor, but first clears the entire screen.
Clearing the screen has no effect on memory. Execute the statements shown
above but with HEX(03) rather than HEX(01).

Hex 08

HEX(08) backspaces the cursor one character position. No character is
erased. If the cursor is already in the leftmost position, column 0, it moves
to the right end of the 1ine. (The keyboard backspace key, when depressed
during an INPUT instruction or when the colon is displayed, does not simply
tell the CPU to output a HEX(08) because, when depressed, it erases the last
character in addition to backspacing the cursor.)

Hex 09

HEX(09) moves the cursor right one position but does not erase any
character. (The space character, HEX(20), which is the padding character for
alphanumeric variables and the character input by the keyboard space bar,
erases the character at the current cursor location before moving the cursor
right one position.) HEX(09) is usually called the "non-destructive space".

To see the relationship between HEX(08), HEX(09) and HEX(20), execute
the following program:

10 PRINT "ABCD"; HEX(080809);
20 GOTO 20

The display appears as

ABCD

214

CONTROLLING A CRT

The two 08 codes move the cursor back two spaces and then 09 moves it right
one space for a net left movement of 1. No characters are erased. Now change
the program to:

10 PRINT "ABCD"; HEX(080820);
20 GOTO 20

The display appears as
AB D

The cursor is in the same position but HEX(20), which was output when the
display was

ABCD

erases the character at the current location before moving the cursor right
one.

Hex OA

HEX(OA) moves the cursor down one 1ine from its current position. It
remains in its previous column; no character is erased.

:PRINT "AB"; HEX(OA); "cD"
produces

AB
cD

Hex 0OC

HEX(OC) moves the cursor up one 1line from its current location. No
characters are erased.

:PRINT "AB"; HEX(0OC); "CD"
produces

cD
AB

Hex 0D

HEX(OD), the so-called "carriage return", moves the cursor to the
leftmost position (column 0) on the current line. No characters are erased.

When the PRINT or PRINTUSING statements issue a CR/LF, the codes that
are received by the CRT are HEX(ODOA). Also, the system automatically issues
this HEX(ODOA) when a PRINT print element is about to overflow the current
line, and under a variety of other conditions described in previous chapters.

215

CONTROLLING A CRT

17-2 THE LINE LENGTH CHARACTER COUNT

The 2200 System counts the number of characters it has output to a
single 1ine of the CRT. It uses this count to issue a carriage return/line
feed when the maximum line length would be exceeded by the next character or
next print element. The TAB() parameter also depends upon this count for its
operation.

Whenever the system outputs a space (hex 20) or a character to the CRT,
it updates its count by one. Whenever a hex 0D (carriage return) is output,
the count is set back to zero. A1l of the other hex control codes have no
effect wupon the character count; they neither update it, nor reset it. This
can occasionally be a source of bewilderment for the unwary programmer.

For example, if you execute the following statement,
:PRINT TAB(62); HEX(03); "A"; "Xyz"
the result is:

On 1ine 0: A
On 1ine 1: XYZ

The 62 spaces output by TAB(62) update the internal character count to 62.
HEX(03) clears the CRT and homes the cursor, but does not reset the character
count. Therefore when "A" is output the system "thinks" its outputting it at
column 63. Were this the case, "XYZ" would overflow the 64 character line
length; therefore the system issues a CR/LF prior to outputting "XYZ". To
correct a problem such as this, the statement can be changed to

PRINT TAB(62); HEX(030D); "A"; "Xyz"

Here the added hex OD has no effect on the cursor position. It simply resets
the character count to zero.

The TAB() print element can be affected by the use of hex control codes.
TAB() issues spaces until the character count equals the value within
parentheses. Therefore, it will move the cursor to the correct column only if
the character count accurately reflects the cursor position when the TAB({ is
executed.

17-3 USING THE CRT HEX CONTROL CODES

How can the cursor control codes be used to implement steady-display CRT
usage? An example to consider is a rewritten version of Example 2.2, the first
inventory program. Suppose we wish the inventory status to always be
displayed on 1ine 0, the input message to appear on line 1, and a reorder
message, if any, to appear on 1line 3. The modification to Example 2.2 shown
in Example 17.1 uses the CRT control codes to obtain this form of display.

216

CONTROLLING A CRT

Example 17.1 The Inventory Program (Example 2.2) Rewritten for a
Steady Display

10 LET I=42500

20 PRINT HEX(03); "OPENING INVENTORY="; I

30 INPUT "NUMBER OF TONS RECEIVED (+) OR SOLD (-)", T

40 LET I=I+T

50 PRINT HEX(03); "TONS ON HAND ="; I

60 IF I>= 100 THEN 30

70 PRINT HEX(OAOA);"REORDER COAL IMMEDIATELY: INVENTORY BELOW
100 TONS"; HEX(01)

80 GOTO 30

At 1ine 20 HEX(03) clears the screen and homes the cursor, before
displaying the opening inventory status report. After executing line 20, the
system issues a CR/LF. This moves the cursor to column 0 1line 1. On 1line 1
the 1input prompt is displayed. Now, since the inventory status is always to
appear on line 0, the cursor must be homed before a new inventory status is
output. Furthermore, the old inventory status must be erased from the screen,
as well as the old operator entry. A HEX(03) at the beginning of 1ine 50 does
this. Since it clears the entire screen, it clears the prompt as well. This
is not a problem, however, since the prompt will be redisplayed when the INPUT
statement is executed.

Assuming there is no reorder message, the program simply loops from line
60 to 30. In a sense, we can think of this loop as "beginning" at Tline 50,
where the screen is cleared and the inventory status displayed. Then line 30
outputs the prompt on CRT line 1. When the operator makes an entry, the
process is repeated.

Now, suppose the inventory drops below 100 tons. This occurs at 1line
40. Line 50 displays the new status on CRT line 0, and then drops the cursor
to 1line 1. If we inserted the statement 55 GOTO 55 to see the cursor location
and display, the display would look 1like this:

TONS ON HAND = 40

Line 60 does not effect a branch; line 70 is executed. HEX(OAOA) drops the
cursor down two lines to line 3. Then, the reorder message is printed. Now
the cursor must be returned to line 1, column 0, so that the INPUT prompt will
be in its correct location. The easiest way to do this 1is by homing the
cursor HEX(01) and 1letting the normal CR/LF be issued to move the cursor to
line 1. Try running Example 17.1, and also try changing the various HEX codes
to see the results.

Status-Reports

When lengthy internal computations are taking place, or when external
files are being operated on without operator intervention, it is often a good
idea to maintain a system status message on the CRT. This message indicates
that the system 1is busy, and perhaps gives some idea of how long it will be
before the present operation is complete. Examp]e 17.2 maintains a steady
display of a loop counter, during loop process1ng, and indicates the upper
bound of the loop as well.

217

CONTROLLING A CRT

Example 17.2 Maintaining a Steady Processing Message on the CRT

550 PRINT HEX(030A0AOAOAQAOQAOQA)

560 FOR I =1 TO N

570 PRINT HEX(OC);TAB(18); "PROCESSING LOOP";I;"OF"; N
580 REM LOOP PROCESSING BEGINS HERE

1050 NEXT I

In this figure, line 550 clears the screen and moves the cursor to 1line
8 (seven HEX(OA)'s plus the CR/LF at the end). Line 8 is one line below the
line on which the display is to appear. Line 560 sets up the loop. In 570,
HEX(OC) moves the cursor up to the output line, TAB(18) centers the message,
the message is output, and a CR/LF at the end moves the cursor to the leftmost
position on the next line. This program can be executed, as shown, without
any loop content, if a value for N is supplied.

Example 17.2 may seem unnecessarily elaborate. Why not simply backspace
the cursor, and only output the print elements I; "OF"; N each time through?
This solution 1is impossible because backspace, hex 08, does not decrease the
character count, despite the fact that it moves the cursor left. Each time I;
"OF"; N is output, the characters update the count. When the count 1is about
to reach 64, the line length, the system issues a CR/LF that drops the output
to the next Tine.

If a program calls for frequent cursor repositioning, it 1is convenient
and efficient to include 1in the program a general cursor-positioning
subroutine. Such a subroutine is shown in Example 17.3. To wuse it, one
simply writes a statement such as GOSUB'185 (7,45) which tells the subroutine
to position the cursor at line 7, column 45,

Example 17.3 A Cursor-Positioning Subroutine
110 REM POSITION CURSOR SUBROUTINE

120 DIM C$64
130 DEFFN' 185 (R,C)

140 C$= HEX(01) /2t
150 INIT(09) STR(C$,2) /2%
160 R$ = HEX(00)) 23

170 INIT(OA) STR(R$,2) /2 ¥
180 PRINT HEX(OD); STR(C$,1,C+1); STR(R$,1,R+1);
190 RETURN

In this subroutine, C$ is dimensioned to a length of 64 characters. Line 140
assigns hex 01 to C$§. After 140, therefore, C$ has hex 01 in the leftmost
character position, followed by 63 trailing spaces. Statement 150, changes
all the trailing spaces to hex 09's. After 150, C$ Tooks like this:

C$ (01109{09({09|{09|09|09|09({09|09|09(09(09(09{09(09 09/09(09
A \\ ~— —/
{one 63 hex 09's

hex 01

218

CONTROLLING A CRT

Lines 160 and 170 go through a similar procedure with R$§, leaving it as
follows:

R§ | 00| OA| OA|[OA |{OA |OA [OA |OA | OA |OA| OA|OA| OA|OA| OA| OA

— ~— J
{one 15 hex OA's
hex 00

Lines 140 to 170 are simply a preparation for moving the cursor. Their only
function 1is to put the needed hex codes into C$ and R$. The subroutine could
be rewritten so that this operation was not repeated on each execution.

Line 180 positions the cursor to the selected column and row. The first
print element HEX(OD) moves the cursor to the leftmost position of whatever
line it happens to be on. However, its main function here is to reset the
internal character count so that we can be sure an automatic CR/LF will not be
issued during the cursor positioning. The second print element STR(C$,1,C+1)
starts outputting characters from C$ beginning with the first character. The
first character is a hex 01, which moves the cursor to home position (row O,
column 0). If the value of C, which was passed to the subroutine, was 0 for
column 0, STR(C$,1,C+1) 1is equivalent to STR(C$,1,1), which specifies just one
character, beginning in the first character position. If the value of C is
45, the first 46 characters of C$ are specified for output. These 46
characters consist of one hex 01 followed by 45 hex 09's. The 45 hex 09's
space the cursor to column 45. Now the cursor is in the correct column but on
row 0. STR(R$,1,R+1) moves it to the correct row. The first character in R$,
which is the only character output if R is 0, is a hex 00. Hex 00 does
absolutely nothing; the cursor isn't moved and no characters are erased. This
"do nothing" is exactly what we want if the desired row is row 0. However, if
the desired row is 7, STR(R$,1,R+1) outputs 8 characters: a "do nothing"
followed by 7 1line feeds, hex OA's, to move the cursor to its desired
location.

Clearing Selected CRT Lines

We have seen that the hex 03 code clears the entire CRT screen.
Sometimes, though, you may wish to clear just one line of the CRT. The
easiest way to clear a single line of the CRT is to move the cursor to column
0, and then TAB(64), assuming that the line length is 64. The TAB() outputs
spaces, thereby clearing the line.

219

CHAPTER 18
CONTROLLING A PRINTER

There are two fundamentally different kinds of printers available with
Wang 2200 systems. There are the matrix printers, Models 2221W, 2231W, 2221,
2231, and 2261, and the character printer, the 2201 Output Writer. Users of
matrix printers should read Section 18-1 on the Model 2221W, in which the
minor differences of the other models have been noted. Section 18-2 s
devoted to the 2201 Output Writer.

18-1 HEX CONTROL CODES FOR THE 2221W PRINTER

When the 2221W printer receives a hex code for a printable character, it
simply puts the code into its print buffer. Unless the buffer becomes full,
no immediate action 1is taken. However, certain special hex codes are not
entered into the buffer, but rather cause immediate action by the printer.
These special codes are the printer control codes.

The printer control codes for the 2221W are:

HEX (0D) PRINT BUFFER CONTENTS: The buffer is printed with 1line
feed and carriage return generated automatically. The
buffer is cleared after printing, and the processor's
internal character count is reset.

HEX (0A) LINE FEED: Advances paper one line.

HEX (OE) EXPANDED PRINT: Causes the printer to print the first
66 characters in the print buffer in an expanded format,
when the next HEX(OD) is received.

HEX(07) BELL: Generates a two second audible tone.

HEX(0C) FORM FEED: Advances paper until the next hole in
channel 7 of the forms tape is reached.

HEX(0B) VERTICAL TAB: Advances paper until the next hole in
channel 5 of the forms tape is reached.

HEX (7F) Clears current buffer contents.*

*Models 2221W and 2231W only.

220

CONTROLLING A PRINTER

Hex 0D

The hex OD code directs the printer to print the characters in its
buffer, After printing the buffer contents, the printer automatically feeds
the paper up one line, and returns the print head to the 1left of the print
well,

The processor issues a hex 0D code whenever a PRINT or PRINTUSING
statement ends without a comma or semicolon. Therefore, it is never necessary
to use the HEX function to issue a hex 0D code. In fact, because your Wang
system reduces all keywords to a one character code, a statement such as

100 PRINT "ABC CO."; HEX(OD);"15 BEACON ST."; HEX(OD); "BOSTON,MA"

occupies less memory if written as a multistatement 1line with the HEX
functions omitted:

100 PRINT "ABC CO.":PRINT "15 BEACON ST.":PRINT "BOSTON,MA"
Hex OA

The HEX(OA) code causes the printer to feed the paper up one Tline.
Buffer contents are not affected. It is important to realize that for all
control codes the printer acts immediately upon receipt of the control code,
and does not await a hex OD. Example 18.1 shows a program which uses hex OA's
and the resultant output.

Example 18.1 Illustration of the Fact That Control Codes Are Output
Immediately

110 SELECT PRINT 215 (132)

120 PRINT "LINE ONE"

130 PRINT "ABC CO."; HEX(OAOA); "BOSTON,MA"
:RUN

LINE ONE

ABC CO. BOSTON, MA

Despite the fact that two hex OA's are embedded in the PRINT statement
at line 130, they are not acted upon by the printer after "ABC CO." is printed
and before "BOSTON, MA" is printed. In this program the system first executes
line 120 which prints LINE ONE for reference. At line 130 the processor
outputs the characters ABC CO. to the printer. The printer senses that these
are printable characters, not control codes, and puts them into the buffer.
The processor now sends the two control codes OAOA to the printer. The
printer checks the first OA, finds it's a control code, and, therefore,
immediately executes it, feeding the paper up one line. The process is
repeated for the second OA. The OA's are not put into the buffer. Now the
processor sends the characters BOSTON, MA to the printer. The printer puts
them into the buffer. Finally the processor issues a hex OD code, since the
PRINT statement ends without a comma or semicolon. The printer, on receipt of
the hex OD code, prints the buffer contents. The results, as shown, is "LINE
ONE", followed by two 1ine feeds, followed by "ABC CO. BOSTON, MA".

221

CONTROLLING A PRINTER

Hex OE

A hex OE code tells the printer that the next time it prints the buffer
contents, it should print it in expanded form. Expanded characters take twice
the space of normal characters; therefore, only the first 66 characters in the
buffer can be printed. Any additional ones are simply lost. A hex OE code
does not itself initiate printing. It simply specifies that, when a hex OD is
received, characters should be printed in their expanded form. A hex OE can
be sent to the printer before or after the characters to be printed are put
into the buffer., Once the buffer is printed, after a hex OE, the printer
automatically reverts to normal print form, unless another hex OE arrives
prior to the next printing of the buffer.

Expanded print can be used for for producing striking report titles,
total 1ines, etcetera. Example 18.2 shows the use of expanded print.

Example 18.2 Expanded Print

110 REM USING EXPANDED PRINT

260 REM PRINT P&L

270 SELECT PRINT 215(80)

280 PRINT HEX(OE);"PROFIT AND LOSS STATEMENT"

Qutput from 1ine 280 appears as:

FROFIT aAaRND LOSS STAaTEMERNT

Figure 18.1 Sample of Expanded Print

When using expanded print, remember that each printed character takes up
twice the normal paper space, and that, therefore, a line length specification
in the SELECT statement does not offer the usual protection against printing
beyond the right end of the paper.

Hex 07

The hex 07 code, when received by the printer, generates a two second
audible tone. The tone is output immediately upon receipt of the hex 07 code;
the code does not become part of the buffer. A continuous tone can be
generated by putting PRINT HEX(07) within a loop. For example,

110 SELECT PRINT 215
120 FOR I=1 TO 6

130 PRINT HEX(07)
140 NEXT 1

This generates a tone of approximately 12 seconds duration. A pulsing tone
can be produced by putting a "do-nothing" FOR...TO/NEXT loop within the Toop
shown above. For example, you could add the lines

133 FOR K=1 TO 500
134 NEXT K

to the above example. This loop simply consumes time, to make the tone
pulsate.

222

CONTROLLING A PRINTER

Forms Control with Hex OB and Hex 0OC

The vertical format tape loop, located under the printer's 1left cover,
can be wused to control paper advance. Each time the paper is advanced one
line, the vertical format tape moves the distance of one sprocket hole past
the tape-reading photo-cells. This tape movement occurs as a result of a
mﬁch?nical linkage between the paper advance mechanism and the tape sprocket
wheel,

The vertical format tape can have holes punched in any of three
"channels" as shown below:

Channel 2 Punch — — -—-\

Channel 5 Punch — — A \
v\
—

\T
"
\—

1

2

3
00 - — —— Sprocket Holes

jt

~ N\ rﬂﬁ\/

Channel 7 Punch — 7L —»0

N

00 N O O b

Figure 18.2 A Section of a Vertical Format Tape (Enlarged)

Generally a tape is prepared so that the distance between Channel 7
punches, measured by the number of sprocket holes, is the same as the overall
length of the paper form being used, measured in the number of lines that can
be output on it. Standard 11" report-paper is 66 lines long; therefore the
distance between Channel 7 punches on the supplied standard vertical format
tape 1is 66 sprocket holes. When the printer receives a hex 0C code, it
rapidly advances the paper until the vertical format tape reader senses a hole
in Channel 7 of the tape. Provided that the paper was properly aligned in the
first place, this advances the paper to the top of the next form. The hex O0C
code is called a "form feed", by virtue of this function.

On special forms such as invoices, checks, account statements, etcetera,
a vertical format tape is prepared that has punches in Channel 5, spaced to
align with the major divisions on the form. For example, an invoice tape
might have Channel 5 punches that align with the first 1ine of the "ship to"
address, the "sold to" address, the body of the invoice and the "total" Tine.
If the "ship to" address is the top of the form, it might be punched in
Channel 2 as well as Channel 5. A hex OB, when received by the printer,

223

CONTROLLING A PRINTER

advances the paper until the vertical format tape reader senses a hole in
Channel 5 of the tape.

Form advance using the vertical format tape is considerably faster than
that which can be achieved by issuing line feeds (hex OA's). In addition, it
causes much less wear on printer mechanisms than repeated hex OA's, and,
therefore, should be used for all repetitive multi-line form-up. Example 18.3
is a skeleton of a simple invoicing program designed to show the use of hex 0C
and OB codes for paper advance. It presumes that a properly prepared tape has
been mounted in the vertical format tape reader. .

Example 18.3 Using Vertical Tabs in an Invoice Program

110 REM USING VERTICAL TABS, HEX(OB), TO FORM-UP AN INVOICE
120 SELECT PRINT 215

130 PRINT HEX(OC)

140 INPUT "ALIGN FORM BELOW PERF. KEY (EXEC) TO RESUME",A9%

200 REM PRINT "SOLD TO" ADDRESS
210 PRINT HEX(OB) :REM FORM UP TO FIRST "SOLD TO" LINE

é60 REM PRINT "SHIP TO" ADDRESS, IF DIFFERENT
270 PRINT HEX(OB) :REM FORM UP TO FIRST "SHIP TO" LINE 1

320 REM BODY OF INVOICE BEGINS

330 PRINT HEX(OB) :REM FORM UP TO FIRST ITEM LINE
335 L=0 :REM RESET LINE COUNT

340 L=L+1 :REM INCREMENT LINE COUNT

350 IF L = 17 THEN 1400 :REM INVOICE OVERFLOW?

900 INPUT "MORE INVOICE LINES? (Y OR N)", A9$
910 IF A9$="Y" THEN 340

920 IF A9$<>"N" THEN 900

930 REM NO MORE INVOICE LINES

940 PRINT HEX(OB) :REM FORM UP TO "TOTAL" LINE
950 REM CALCULATE DISCOUNTS AND PRINT TOTAL LINE

1100 INPUT "MORE INVOICES? (Y OR N)", A9$
1110 IF A9$%= "Y" THEN 200

1120 IF A9$<> "N" THEN 1100

1130 REM PRINT COMPANY TOTALS

1380 END
1400 REM INVOICE OVERFLOW ROUTINE

224

CONTROLLING A PRINTER

At line 130 a HEX(OC) is issued to advance the form and the vertical
format tape to the top-of-form position (Channel 7 hole). The operator should
then check that the form is properly positioned, and adjust it if necessary.
Often it is a good idea to have the program print a blank form, with all
fields filled with # symbols, to let the operator exactly position the form
for vertical as well as horizontal alignment. (Assuming that the PRINTUSING
statement 1is employed for printing on the form, this can be accomplished by
attempting to print 1E99 to all the format specifications. 1E99 is too Tlarge
a number for any format specification, other than exponential, and will
therefore cause the Image statement # signs to be output.)

The invoices used by Example 18.3 have four major divisions: sold to
address, ship to address, body of the invoice, and total 1line. At the
beginning of the program routines that operate on each section, a HEX(OB) is
printed to advance the form to the proper line. The number of lines used by
each of the sections, except the body of the invoice, is fairly standard, so
line counts are unnecessary. However, as the number of invoice items is
indeterminate, a line count of the body of the invoice must be maintained.
This T1ine count takes place at 1lines 340 and 350. If a 17th line is
to be added to the invoice, it must appear on the next form; a branch to an
invoice overflow routine is provided.

On the 2221W printer, a punch in Channel 2 of the vertical
format tape carries special significance. Unlike Channel 5 and 7 punches,
which are used only to terminate a form advance, Channel 2 punches initiate a
form advance. When the printer senses a hole in Channel 2 of the tape, it
automatically initiates a form-up that ends when a Channel 7 hole 1is sensed.
This feature is known as "automatic page eject", and, with a properly punched
tape, can eliminate the need for maintaining a line count within a program.
For example, standard 11" report paper is 66 lines long. Allowing 3 lines for
top and bottom borders leaves 60 print lines. The standard vertical format
tape supplied with the printer contains a Channel 2 hole sixty sprocket holes
(60 1lines) after an "initial" Channel 7 hole. Therefore, if the paper is
aligned after form-up to 3 lines below the paper perforation, then 60 1lines
later an automatic form up will take place, triggered by the Channel 2 hole.
Six lines after this Channel 2 hole -is the next Channel 7 hole which stops the
form-up at the top of the next sheet. This system automatically prevents
printing on a perforation.

If a program is being run that contains an internal 1line count to
trigger form-up, then channel 2 holes in the Vertical Format Tape should be
covered with an opaque material to prevent undesired automatic form-ups.

Hex 7F

A hex 7F code clears the print buffer on model 2221W and 2231W printers.
Nothing is printed, and no forms movement occurs. Whatever characters are in
the buffer, at the time the 7F is received, are simply lost. The hex 7F code
has no effect on the 2221, 2231, or 2261 series printers.

Outputting a hex 7F at the beginning of a program is often a worthwhile

precaution. The previous program may have left characters in the print
buffer which would otherwise spoil the first print output.

225

CONTROLLING A PRINTER

18-2 HEX CONTROL CODES FOR THE 2201 QUTPUT WRITER

The hex control codes for the 2201 Qutput Writer are:

HEX (OA) LINE FEED: Advances paper one 1line. Print assembly
does not move.

HEX (0D) CARRIAGE RETURN/LINE FEED: Moves the print assembly to
the left margin, advances paper one line, and resets the
processor's internal character count.

HEX (09) TAB: Moves the print assembly to the right until a
mechanical tab-stop is reached.

HEX (1A) SET TAB: Sets a mechanical tab-stop at the current
print position.

HEX (19) CLEAR TAB: Clears a mechanical tab-stop at the current
print position.

HEX (08) BACKSPACE: Backspaces the print assembly one character
position.

HEX (5F) UNDERSCORE: Prints an underscore mark at the current

print position.
Hex OA

The hex OA code causes the platen to advance one Tline. (The platen
will advance two 1lines if the manual single-space/double-space lever on the
right side of the Output Writer is set to double-space.) The hex OA code
does not affect the print assembly and, therefore, should be used instead
of hex OD whenever multi-line form-up is desired. For printing that requires
frequent form feeding, it may be desirable to initialize a form-feed
alphanumeric variable as follows:

10 DIM L9%$64
20 INIT (OA)L9S :REM L9$ IS FILLED WITH OA's

With this variable, L9%, initialized as above, a carriage return and six Tline
feeds can be accomplished with:

PRINT STR(L9$,1,5)

Here five OA's are output followed by the automatic carriage return/line feed.
Twenty line feeds without a carriage return can be accomplished with:

PRINT STR(L9$,1,20);
The semicolon suppresses the automatic line feed/carriage return.

Example 18.4 shows a segment of an invoice preparation program that uses
the 2201 Output Writer.

226

CONTROLLING A PRINTER

Example 18.4 Invoice Forms Control on the 2201

110 REM PROGRAM SEGMENT SHOWING FORM CONTROL ON 2201
115 REM INITIALIZE FORM-UP VARIABLE

120 DIM L9%29

140 INIT(OA) L9$

560 REM FORM UP TO BODY OF INVOICE AND START LINE COUNT
565 PRINT STR(L9$,1,3) :REM 4 LINES UP

570 L=0

580 L=L+1 :REM NEXT LINE, BRANCH BACK TO HERE
590 IF L = 25 THEN 2010 :REM LINE OVERFLOW?

600 REM OUTPUT ONE LINE OF INVOICE

710 INPUT "MORE INVOICE LINES (Y OR N)", R$
720 IF R$ = "Y" THEN 580

730 REM FORM UP TO "TOTAL" LINE FROM LINE L

740 PRINT STR(L9$,1,25-L)

750 REM OUTPUT INVOICE TOTAL LINE

2000 REM LINE OVERFLOW ON BODY OF INVOICE
2010 PRINT L9$:REM 30 LINES TO BODY OF NEXT FORM
2020 GOTO 570

Line 130 initializes L9$ to 29 hex OA's. This is the maximum number of
OA's which ever need to be output in this program. Between lines 140 and 560
the "Sold To", "Ship To" and "Salesman" 1lines are printed. Line 565 advances
the form to the first invoice line. Line 570 resets the l1ine count variable,
L. Line 580 increments the 1ine count by 1. There is room for 24 Tlines in
the body of this invoice. Line 590 tests if the line about to be output is
the 25th 1ine. If it is, 590 effects a branch to a routine which advances the
form to the body of the next invoice for continuation of output. Lines
600-710 are wused to construct and output one line of the invoice. At line
720, if there are more lines to be entered, R$ equals "Y" and a branch is
effected back to 1line 580. If there are no more 1ines to be entered, the
"total" line must be printed. Counting the 1st 1line in the body of the
invoice as 1, the "total" 1line is the 26th 1ine, and, therefore, can be
reached by outputting 25 1line feeds from line 1. If L is 1, 1line 740 outputs
the first 24 characters of L9%, followed by the automatic CR/LF for a total of
25 1line feeds. Similarly if L is any number in its range of 1-24, line 740
outputs the correct number of lines to reach the "total" line.

Hex 0D
In general it should not be necessary to explicitly include a HEX(OD) in

a program for the 2201, since this code can always be generated by simply
ending a PRINT statement without a comma or semicolon.

227

CONTROLLING A PRINTER

Hex 09 and Hex 1A

The hex 09 code causes the 2201 to rapidly move the print assembly to
the right until a mechanical tab stop is reached. This is the equivalent of
depressing the tab key on the 2201 when using it in manual mode. In order for
the hex 09 code to be useful, mechanical tab stops must previously have been
set at the desired positions. They may be set manually, or under program
control by issuing the hex 1A code.

The TAB() print element is not related to this mechanical tab capability
of the 2201. TAB() print elements cause spaces to be output until a desired
column Tlocation is reached. Outputting spaces in this fashion does not cause
the print assembly to move as rapidly as it moves when executing a mechanical
tab, but, on the other hand, it does not require that a mechanical tab be
preset. If a program requires a substantial amount of tabbing by the 2201, it
may be faster to have the program set mechanical tabs, and then move from tab
stop to tab stop by issuing hex 09's.

It should be noted that when a mechanical tab is executed, the system
"loses track of" the position of the print assembly. That is, the internal
character count, which is used by TAB() and causes the end-of-line automatic
CR/LF, 1is not properly updated, and therefore, TAB() cannot be used together
with the mechanical tab feature of the 2201.

For more information on setting and clearing mechanical tabs, see the
2201 Output Writer Reference Manual (#700-3113A).

Hex 08 and Hex 5F

The hex 08 code backspaces the print assembly one character position.
It does not update the internal character count, and, therefore, effectively
disables the TAB() print element. It can be used with the underscore mark,
hex 5F, to underline characters. The program shown in Example 18.5
illustrates a simple underlining subroutine that first backspaces past a
specified number of characters and then underlines them, leaving the print
assembly in its original position.

Example 18.5 An Underlining Subroutine for the 2201

110 REM ILLUSTRATION OF UNDERLINE SUBROUTINE FOR 2201
120 SELECT PRINT 211

130 PRINT "UNDERLINE THIS";

140 GOSUB '202 (14)

150 STOP

2000 REM UNDERLINE SUBROUTINE FOR 2201

2010 DEFFN' 202 (N) :REM N = NUMBER OF CHARACTERS TO UNDERLINE
2020 FOR I =1 TO N

2030 PRINT HEX(08);

2040 NEXT I

2050 FOR I =1 TO N

2060 PRINT HEX(5F);

2070 NEXT I

2080 RETURN

228

CHAPTER 19
TABLES (TWO-DIMENSIONAL ARRAYS)

19-1 INTRODUCING TWO-DIMENSIONAL ARRAYS

Thus far we have seen two ways of referring to variables. Ordinary (or
scalar) variables each have a fixed name assigned to them, for example, A, C2,
G8%, N$, X. In Chapter 11 we introduced 1ist variables. With Tist variables,
a name, such as D3(), is assigned to an entire list of variables. Each
variable on the 1ist is referred to by giving the 1list name and a single
expression in parentheses. The expression gives the position of the desired
variable in the Tist. A reference to a 1ist variable might be A2(3), which
specifies the third variable down the 1ist A2(). Assuming that it has four
elements, the variables on the 1list A2() can be named by:

In many instances 1list variables make simple and compact operations out
of ones that would be cumbersome using ordinary scalar variables. However,
sometimes a programming problem suggests that variables be arranged in a kind
of table. In a table arrangement of variables, a particular variable is
specified by means of two expressions that together give the variable's

position 1in the table. For example, a table of variables called N() is shown
below.

A Table of Variables Called N()

row 1 N(1,1) N(1,2) N(1,3)
row 2 N(2,1) N(2,2) N(2,3)
row 3 N(3,1) N(3,2) N(3,3)
row 4 N(4,1) N(4,2) N(4,3)

column 1 colum 2 column 3

The table N() consists of 12 variables, or elements, each named by
giving the table name together with the variable's row and column position.
The table N() has four rows and three columns. Thus, N(1,1) names the
variable at row 1 column 1; N(3,2) names the variable at row 3, column 2;
N(4,3) names the variable at row 4, column 3. Numbering of the rows and
columns of a table always starts with one, never zero.

229

TABLES (TWO DIMENSIONAL ARRAYS)

In Section 11-3 we mentioned that 1ist variables are often called
one-dimensional arrays, since any variable on the 1ist can be referred to by
means of a single value in parentheses. To specify a variable within a table
requires two expressions; therefore, variables arranged in table form are said
to be in a two-dimensional array.

Just as for a list, any expressions can be used to give the position of
a variable in a two-dimensional array. For example, in the array N(), above,
the variable in row 3, column 2 can be referred to not only by
N(3,2)
but also by
N(#PI,(6t2/18))

since the integer value of the expressions #PI, and 6% 2/18 is 3 and 2
respectively.

Establishing a Two-Dimensional Array

In order to use a two-dimensional array of variables, you must specify
in a DIM statement a name for the array and the number of rows and columns it
is to have. In BASIC the array names that are used for one-dimensional arrays
are also used for two-dimensional arrays. Thus, the names we gave in Chapter
11 as being 1legal for naming Tists, A()...Z() and AO(), A1(), A2()...A9(),
BO(), B1()...27(), 2Z8(), Z9(), are also 1legal for naming two-dimensional
arrays. The dimension statement for the two-dimensional array N(), shown
above, would be

DIM N(4,3)

where N() gives the name of the array, and the integers 4 and 3 give the
number of rows and columns the array is to have. The total number of
variables in this array is 12 (or 4 times 3). In the DIM statement the row
and column size of the array must be given by integers; an expression may not
be used. The maximum number of rows or columns in any array is 255; however,
the total number of elements may not exceed 4096. Therefore, a DIM statement
such as

DIM K(8,255)
is legal whereas
DIM(65,65)
is not, since a 65 by 65 array would contain more than 4096 elements.
A single DIM statement may be used to specify any number of one and
two-dimensional arrays, as well as giving the size of alphanumeric scalar

variables. For example,

40 DIM A$30, B(12), R(5,5), B$(4)2

230

TABLES (TWO DIMENSIONAL ARRAYS)

dimensions the scalar alphanumeric variable A$ to a length of 30 characters,
establishes the 1ist of 12 numeric variables B(), the numeric two-dimensional
array R() with 25 variables arranged in 5 rows and 5 columns, and finally the
alphanumeric 1ist B$() with 4 variables each 2 characters long. The DIM
statement for an array must appear at a lower line number than any reference
to a variable in the array.

In addition to two-dimensional arrays of numeric variables, BASIC also
permits two-dimensional arrays of alphanumeric variables. For example,

DIM R5$(10,12)

sets up an array of alphanumeric variables with 10 rows and 12 columns, a
total of 120 variables. Since a character length for the variables is not
specified, each variable 1in this array would be given a Tlength of 16
characters. It is possible, though, to specify a different variable length by
simply adding a 1length specification, 1-64, outside the parentheses. For
example, '

DIM K$(10,12)20

sets up an array of alphanumeric variables, each of which has a maximum Tength
of 20 characters.

It is not possible to use the same array name for a one-dimensional
array and for a two-dimensional array in the same program. Therefore, this
DIM statement produces an error:

DIM K(4,7), K(9)

However, a numeric array and an alphanumeric array may have the same name,
except for the $. For example, this DIM statement is legal

20 DIM R2(10,10), R2$(10,10)

Memory Usage

The total memory space required for an array, plus the memory space
occupied by the program statements and other variables, cannot exceed the
amount of memory available. The total amount of memory available can be
determined by executing an END statement in the Immediate Mode, after the
system memory has been cleared. (It is approximately 700 bytes less than the
the absolute amount, i.e., 4K, 8K, 16K, etc.)

In Chapter 9 it was mentioned that numeric variables occupy 8 bytes of
memory, and that, in addition, 5 bytes are used for the control information
that enables the processor to find the variable. Alphanumeric variables may
occupy from 1 to 64 bytes, and also require 5 bytes of control information.
The memory space, M, in bytes required for an array is given by

M=NIl+7
where n = the total number of variables or elements.
L = 8 if numeric array,

or
dimensioned length of each alphanumeric array element (1-64).

231

TABLES (TWO DIMENSIONAL ARRAYS)

and 7 is the seven bytes of control information required for an array.
For example, a 20 by 20 numeric array dimensioned as follows
DIM E2(20,20)
has 20*20 = 400 elements. Thus,
M = 400*%8+7 = 3207 bytes.
An alphanumeric array dimensioned as
DIM (13,13)30
has 169 elementsg thus,
M = 169*30+7 = 5072 bytes.
Remember that only if the RUN command has been executed does END take

into account the space occupied by variables and arrays.

19-2 USING TWO-DIMENSIONAL ARRAYS

A simple example of the use of a table, or two-dimensional array, in
commercial data processing is a withholding tax routine in a payroll program.
For example, a state supplied withholding tax table might look something Tike
this:

Number of Dependents
1 2 3 4 5 6 7 8 or more

Lowest Income 1 .005 .003 .001 0 0 0 0 0

2 .008 .005 .0025 .001 0 0 0 0

3 .015 .009 .004 .003 .0025 0 0 0

4 .015 .010 .009 .007 .005 .0035 .0025 .001

Income — J I g5 0175 | .01 .010 .009 .009 .007 .004 .003
Category

6 .02 .018 .0105 .0105 .010 .010 .009 .008

7 .028 .021 .019 .017 .014 .013 .012 .011

8 .03 .029 .02 .019 .018 .016 .015 .015

Highest Income { 9 .04 .04 .034 .030 .029 .025 .025 .022

232

TABLES (TWO DIMENSIONAL ARRAYS)

The proper withholding tax percentage can be found at the Tlocation specified
by a given number of dependents and a given income category. The routine to
calculate withholding tax simply uses a table of variables dimensioned to
accommodate this tax. table supplied by the state. For example, the program
might include a dimension statement such as

120 DIM T(9,8)

which defines T() as a table with 9 rows and 8 columns. Each variable in the
table must then be assigned the proper percentage as specified by the state.
To "look up" the percentage in the table, the program simply specifies the
correct variable with

T(1,D)
where I and D give the row and column (income and dependents).

We must assume that the state supplies an annual gross wage cut-off
point for each income category. For example,

PROJECTED
ANNUAL GROSS WAGE CATEGORY
IS UNDER IS

5100
6200
7600
8400
12300
- 14900
17100
21600
21600 and over

OCONOTO W —

Prior to accessing the tax table, the program must determine a person's
income category. Here, a list containing the cut-off points can be searched,
comparing the cut-off point with the person's projected annual wage. Example
19.1 does this, and then calculates the tax to be withheld.

Example 19.1 Determining Tax Bracket and Tax Using a List and a Table

110 REM CALCULATING TAXES BY ACCESSING A TABLE
120 DIM T(9,8), C(8)

450 REM D CONTAINS NUMBER OF DEDUCTIONS
460 REM CALCULATE STATE TAX
470 REM FIND TAX BRACKET NUMBER BY SEARCHING CUT-OFF LIST C(),

480 K=20

490 K = K+1

500 IF K = 9 THEN 520 :REM TOP BRACKET?

510 IF A>= C(K) THEN 490 :REM HIGHER BRACKET THAN K?

520 REM K NOW HAS CORRECT TAX BRACKET
530 REM T(K,D) IS WITHHOLDING PERCENTAGE
540 S =W * T(K,D)

550 REM S NOW HAS STATE TAX AMOUNT

560 REM 233

TABLES (TWO DIMENSIONAL ARRAYS)

At line 120 a tax table T() and a cut-off 1ist C() are dimensioned.
Between 120 and 450 we assume that the variables in the cut-off list and the
tax table have received the fixed values supplied by the state and that
variable A is assigned the projected annual wage for the individual being
processed, D is assigned a number of dependents (1-8), and W is the week's
gross wages.

Lines 490 to 510 form a loop in which the annual wage is compared to
each of the values in the cut-off list until the cut-off value C(K) is greater
than the annual wage or the highest bracket, 9, is reached. After 510, the
search is complete, and K contains the tax bracket (income category). Now the
state tax to be withheld can be calculated by simply multiplying the variable
W times the variable T(K,D), since K and D specify by row and column the
variable containing the proper percentage. This calculation is performed at
line 540.

We have passed over one major point in this discussion, how the values
are to be assigned to the variables in the tax table and cut-off 1list.
Normally this would be accomplished by loading the values into these arrays
from data files saved on tape or disk. Data files are discussed in Chapters
20 and 21.

In many situations, processing the elements of a two-dimensional array
can be accomplished with nested FOR...TO/NEXT loops. For example, to print
the value of each of the elements of a 5 by 5 array, D(), the following
routine can be used.

Example 19.2 Nested Loops Used to Process a Two-Dimensional Array

110 DIM D(5,5)

220 FOR R

=1T05
230 FORC=1T05
240 PRINT D(R,C);
250 NEXT C
260 PRINT

270 NEXT R
In this program all the elements in a single row are printed by the
inner loop 130-150; then a carriage return line feed is issued (1ine 160).
Then, NEXT R, in the outer loop, increments the row counter R, so that the
next row will be output when the inner loop executes again.

Instead of printing in such a 1loop, a READ, INPUT or assignment
statement could be used to assign values to each element. For example,

240 D(R,C) = D(R,C)*5

would multiply the value of each variable by 5.

234

TABLES (TWO DIMENSIONAL ARRAYS)

Technical Applications

OQutside of strictly commercial processing, two-dimensional arrays of
variables introduce particularly powerful programming simplifications for
computational problems in Tinear algebra. In programming applications of this
variety, the terminology of linear algebra supplants that which we have been
using, A table or two-dimensional array is called a "matrix", and a list or
one-dimensional array is called a "column vector".

Historically, the first problem of linear algebra is the solution of a
set of n Tinear equations in n unknowns. Because computational problems from
many fields of mathematics can often be reduced to problems of this and
related types, research into efficient computational techniques for these
problems 1is ongoing, and a substantial technical Tliterature has been
generated. However, for the most common problems of matrix algebra, a set of
special BASIC statements is available that permits operations on entire
matrices to be performed with a single statement. These statements are
discussed briefly in the next section, and in more detail in the reference
manual Matrix Statements (#700-3332B).

The special matrix statements of BASIC are not part of the standard
instruction set of the 2200S processor. They are, however, available as an
optional addition to the 2200S.

19-3 THE MATRIX STATEMENTS

BASIC includes a special set of 14 instructions which are designed to
facilitate matrix operations. Each of the instructions in this set operates
on an entire array of variables, rather than on individual variables within an
array. These statements are collectively known as the Matrix Statements, and
all of them begin with the keyword "MAT". Their operations are summarized in
Table 19.1.

235

TABLES (TWO DIMENSIONAL ARRAYS)

TABLE 19.1 MATRIX STATEMENT OPERATIONS
Operation E |1 A/N Description Example

Matrix Addition J array = array + array MAT X=Y +Z

Matrix Subtraction J array = array — array MAT X=Y -2

Matrix Multiplication J array = array * array MAT X=Y « Z

Scalar Multiplication v array = scalar expression array MAT X=(3) » Y

Matrix Inversion and

Determinant J matrix = inverse matrix and
scalar variable = determinant of matrix MAT X = INV(Y), D

Matrix Transposition J } array = transpose of array MAT X = TRN(Y)
A —— 4 - -]

Matrix Assignment J array = array MAT X =Y

Identity Matrix J array = identity matrix MAT X = IDN

Zero Matrix J each array element =0 MAT X = ZER

Matrix Constant J each array element = 1 MAT X = CON
__________ I o O S

READ Matrix J B J array elements = successive DATA values MAT READ X

PRINT Matrix J J print all array elements MAT PRINT X

INPUT Matrix J J array elements = values from keyboard MAT INPUT X
_________ ! _ L e e]

Redimension Array J J array shape changed as specified MAT REDIM X(R, C)

JE = Array can be redimensioned explicitly

Vv = Resultant array redimensioned implicitly

J A/N = Can be performed on alphanumeric as well as numeric arrays

Note:

In addition to Matrix Statements, Wang BASIC includes
another group of statements that begin with the word
"MAT". These are the Sort Statements. Their syntax,
operation, and purposes are not related to the Tlinear
algebra operations performed by Matrix Statements, and the
two groups should not be associated, nor implications
drawn from one to the other,

Matrix Statement Syntax

In several important and unique ways the Matrix Statements depart from
standard BASIC syntax and operation. Matrix Statements operate on entire
arrays not just on individual variables within an array. To facilitate use of
these statements, and to make their notation more similar to that commonly
used in 1linear algebra, an array of variables 1is referred to in a MAT
statement without appending the empty parentheses, (), to the name. Thus,
when it appears in a Matrix Statement, X can refer not to a scalar variable,

236

TABLES (TWO DIMENSIONAL ARRAYS)

as it does in all other BASIC statements, but to a numeric array X, which in
all previous chapters we have named X(). In the Matrix Statements, an array
name never includes the () symbols. For the Matrix Statements, the symbols at
the right below replace the symbols at the left.

Standard Basic Syntax Matrix Statement Syntax
c2() c2
A() A
D$() D$
K4$() K4$

Arrays that are referred to 1in Matrix Statements are automatically
dimensioned to 100 element 10 x 10 arrays, unless a DIM statement at a lower
line number has already established them with different dimensions.
Dimensioning of arrays occurs immediately after RUN (EXEC) is keyed, before
execution actually begins, and takes place in Tline number sequence. The
automatic or default dimensioning of arrays means that if a 10 x 10 array is
adequate for the operations being performed, a DIM statement need not be used.
Thus,

20 MATA=B +C
is equivalent to

10 DIM A(10,10), B(10,10), C(10,10)
20 MATA=B + C

However, notice that

10 A(5,4) = 75
20MATA=B+C

produces an error, since a reference to an array element, A(5,4), occurs at a
lower line number than the statement that dimensions the array (statement 20).
Alphanumeric arrays, referred to in MAT statements, are also dimensioned to 10
x 10 size, with each variable 16 characters long.

Several MAT statements can change the shape of an array during
execution. Here we must distinguish between the total size of an array (the
amount of space it occupies 1in memory) and the shape of an array. For
example, an 8 x 8 numeric array is square; it has 8 rows and 8 columns. A 2 Xx
32 numeric array is not square; it has 2 rows and 32 columns. Despite the
fact that the shapes of these arrays are different, the memory space required
for them is the same, since each contains 64 numeric variables.

Memory space for variables and arrays is allocated at only one time,
before execution begins, immediately after RUN (EXEC) is keyed. Therefore, it
is impossible to increase the total size of an array, once execution has
begun. However, some MAT statements can change the shape of an array. This
is called "redimensioning" and occurs when the MAT statement is executed. For
example, the statement MAT REDIM has redimensioning as its sole purpose.

237

TABLES (TWO DIMENSIONAL ARRAYS)

10 DIM K2(20,20)

730 MAT REDIM K2(12,N)

In the program segment shown above, the following occurs: After RUN is
keyed, prior to execution, the DIM statement at line 10 allocates space for a
20 by 20 array, and calls it K2(). Later, sometime during program execution,
line 730 is encountered. It changes the shape of array K2 so that it now has
12 rows and as many columns as the current value of the ordinary scalar
variable N (provided of course that 12*N is less than or equal to 20*20).

In the MAT REDIM statement a variable, or any expression, can be used to
give the new dimensions. This is not possible in the DIM statement.

If the redimensioned array is alphanumeric, a length specification may
be added to the new dimensions. For example,

10 DIM A$(20,20)20

430 MAT REDIM A$(25,30)10

In line 430, the 10 outside the parentheses specifies 10 characters as the new
maximum length for each variable. Notice that 1ine 430 also increases the
total number of variables, or elements, from 400 to 750. This is made
possible by the length decrease of each variable from 20 characters to 10,
which keeps the total array size less than the original array size. The total
number of characters in the redimensioned array is 7500 versus 8000 in the
original. Redimensioning, however, does not actually reduce the total amount
of memory used; it merely changes the shape of the array, and in this case,
leaves 500 bytes of memory inaccessible. It would be possible, however, after
statement 430, above, to again redimension array A$ to any size or shape up to
the maximum size to which it was originally dimensioned in line 10. Thus,

760 MAT REDIM A$(10,20)40

would be a legal addition to the program above. The total number of bytes in
the array it specifies is again 8000.

Five of the MAT statements permit explicit redimensioning 1in the same
manner as MAT REDIM, but then perform specific operations on the redimensioned
array. In addition, six of the MAT statements may redimension an array
automatically, the new dimensions being implicit from the operation and the
dimensions of the arrays operated upon. For the detailed syntax of each
Matrix Statement, see the publication Matrix Statements (#700-3332B).

A Programming Example

Presented below is a program that solves systems of up to 20 1linear
equations in 20 unknowns, provided such a solution exists.

238

TABLES (TWO DIMENSIONAL ARRAYS)

Before we look at the program, a brief discussion of the mathematics
employed 1is warranted. In general, a system of N linear equations in N
unknowns can be represented by

+ C i, X, t...1C
1%

1272 1nxn= b]

+cC +...%C

Co1X1¥ CopXo 2n*n™ P2

cm]x]+ cm2x2+...+cmnxn= bm
m=n
where: Sy to Cin are the coefficients
x] to X, are the unknowns

b1 to bn are the absolute terms, or "right hand sides"

This system can be written in matrix notation as
CX=B

where C is the matrix of coefficients, order n.
X 1is the vector of unknowns.
B is the vector of the right-hand sides.

The solution to this system can be written as

X =B
C

However, since direct matrix division is, in general, undefined, the solution
is always written

X =cC-18

where C-1 represents the inverse of the matrix C, a defined matrix operation
on C.

With the BASIC Matrix Statements, a solution can be obtained in two
steps. The matrix of coefficients, A, is inverted, and then multiplied by
the vector of the right-hand sides. The resulting vector X, of dimension m,
is the solution.

The program shown in Example 19.3 implements this solution at lines 280
and 290. The MAT INPUT and MAT PRINT statements are used to facilitate the
required I/0 operations. For systems of order less than 20, MAT REDIM (line
180) redimensions arrays to the proper size. It should also be noted that the
matrix 1inversion, performed at line 280, is done in place; a second array to
receive the inversion of C is not required. This reduces the amount of memory
needed by the program.

239

TABLES (TWO DIMENSIONAL ARRAYS)

Example 19.3 Solving a System of n Linear Equations in n Unknowns

110 REM SOLVING A SYSTEM OF N LINEAR EQUATIONS IN N UNKNOWNS
120 DIM C(20,20) :REM MATRIX OF COEFFICIENTS

130 DIM X(20) :REM VECTOR OF THE UNKNOWNS

140 DIM B(20) :REM VECTOR OF THE RIGHT HAND SIDES

150 PRINT HEX(03)

160 REM REDIMENSION ARRAYS TO SIZE OF LINEAR SYSTEM

170 INPUT "NUMBER OF VARIABLES (<= 20)", K

180 MAT REDIM C(K,K), X(K), B(K)

190 REM ASSIGN COEFFICIENTS TO MATRIX C

200 PRINT HEX(OA);"ENTER MATRIX OF COEFFICIENTS."

210 PRINT "ENTER ELEMENTS ROW BY ROW, SEPARATING ELEMENTS WI
TH COMMAS."

220 PRINT "KEY EXEC AFTER EACH ROW."

230 MAT INPUT C

240 REM ASSIGN RIGHT HAND SIDES TO VECTOR B

250 PRINT HEX(OA);"ENTER VALUES OF THE RIGHT HAND SIDES"
260 MAT INPUT B

270 REM SOLVE

280 MAT C = INV(C)

290 MAT X = C*B

300 REM OUTPUT SOLUTION VECTOR

310 . PRINT HEX(OA)3;"SOLUTION VECTOR"

320 MAT PRINT X

The user of this program should be alerted to two kinds of possible
problems. The first problem is that of inaccuracy in the result due to the
accumulation of round-off errors during execution of MAT Inversion and MAT
Multiplication. The other problem is of a fundamentally different character.
Some matrices, called "ill-conditioned" matrices, can yield solutions which
vary enormously with only small changes in the values of the entered
coefficients. As a practical matter, then, small errors in the process of
determining the values of the coefficients can produce wildly inaccurate
results.

The problem of round-off errors is most 1ikely to be serious when values
along the main diagonal are not in the same range as other values in the
matrix, 1in particular when those 1in the main diagonal have large negative
exponents. Rows can be rearranged, and values close to zero zeroed to help
overcome this problem. If you suspect significant round-off errors in the
results of Example 19.3, the simplest test is to reinvert the matrix C, in the
Immediate Mode:

:MAT C = INV(C)
and follow this with MAT PRINT
:MAT PRINT C
The discrepancies between this result and the original matrix of coefficients

will be at 1least as great as any round-off errors in the solution vector,
provided the matrix is not ill-conditioned.

240

TABLES (TWO DIMENSIONAL ARRAYS)

To test for an ill-conditioned matrix, the normalized determinant of C
should be calculated. The normalized determinant of C is defined as

Norm |C| = Lc]

where: |C| = determinant of C

)2, 2 2]
ak ‘/Ck-l +Ck2 +,..%+ Ckn k"-l, 2,3..."

If this value, norm|C|,is small relative to 1, then an ill1-conditioned matrix
should be suspected. It should be noted that the determinant |C| is not a
reliable indicator of an ill-conditioned matrix.

Example 19.3 can be modified to calculate and display the normalized
determinant by changing line 280 to GOSUB 1000 and adding the subroutine shown
in Example 19.4.

Example 19.4 A Subroutine That Calculates the Normalized Determinant

999 END

1000 REM SUBROUTINE CALCULATES NORMALIZED DETERMINANT OF C()
1010 A=1

1020 FOR Y =1T0K

1030 Al =0

1040 FOR X =1 T0 K

1050 Al = C(Y,Xx)t2 +A1

1060 NEXT X

1070 A = A * SQR(A1)

1080 NEXT Y

1090 MAT C = INV(C),D1 :REM INVERT AND GET DETERMINANT D1
1100 REM NORMALIZED DETERMINANT

1110 PRINT HEX(OA); "NORMALIZED DETERMINANT ="; D1/A
1120 RETURN

The Matrix
7 8 9
8 9 10
9 10 8

is i11-conditioned, yet its determinant is 3. Its normalized determinant is
8.29E-04. Try executing Example 19.3 with this matrix of coefficients and
with the right-hand sides close to the values:

You will notice large changes in the result with only small changes in the
values of the right-hand sides.

241

CHAPTER 20
AN INTRODUCTION TO DISK DATA FILES

20-1 OQVERVIEW OF CHAPTER 20

This chapter covers the fundamentals of the use of disk memory for data
storage and retrieval. Sections 20-2 through 20-7 provide an overview of the
basic catalog mode operations on data files: how to create a file, save data
in it, and read data sequentially and randomly from it. Sections 20-8 through
20-11 discuss in more detail some elementary topics introduced in the
preceding sections. ‘

This chapter is not an exhaustive treatment of all the capabilities of
the catalog mode statements. After reading this chapter, the beginner is
urged to read the chapter of the Disk Memory Reference Manual which presents
the general forms of the Automatic File Cataloging Statements and Commands.
This provides an excellent review, and will introduce some auxiliary statement
capabilities not discussed here.

20-2 FILES AND THE DISK CATALOG

In Section 4-2 we introduced the use of disks for program storage. We
said that the recording area of a disk is divided into a large number of small
chunks called sectors. Each of these sectors has an identifying number called
its address. Disk devices are known as direct access devices because the disk
read/write mechanism can move directly to any sector on the disk, when it is
given the address of that sector.

We said that it would be possible to save and load programs by manually
keeping an accurate T1ist of the sectors occupied by each program, and then
supplying the proper beginning sector address to the disk when saving or
loading 1is desired. However, this is extremely inconvenient. Therefore, a
group of instructions have been built into your Wang 2200 system that create
and maintain, on the beginning sectors of a disk, a complete list of the names
and associated sector addresses of all the files on the disk. These
statements are known as the "Catalog Mode" statements. They include SCRATCH
DISK which sets aside disk space for the catalog index and catalog area, SAVE
DC which saves a program and enters its names and sector addresses into the
catalog index, and LOAD DC which searches the catalog index for a specific
program name and then loads the program into memory from the sector addresses
it finds listed in the index. Catalog Mode statements also include a group of
seven statements for establishing and operating on files of data. This
chapter is an introduction to programming with these statements. A1l of these
statements may be executed in the Immediate Mode.

242

AN INTRODUCTION TO DISK DATA FILES

In addition to the Catalog Mode statements, your Wang 2200 system
includes a group of statements called the "Absolute Sector Addressing"
statements. In order to use these statements, the program must supply the
absolute disk sector addresses upon which operations are to take place.
Though these statements are essential for certain types of operations, the
Catalog Mode statements are easier to use and safer, in most cases.

A "file" is a collection of information about a topic. Generally,
within a file this collection consists of "records." For example, an employee
file might be a collection of the pay records for employees, one record per
employee. A test results file might be a collection of the records from each
repetition of a particular test, one record per repetition. When data files
such as these are maintained on a disk using the Catalog Mode statements, the
catalog index contains the starting and ending sector addresses of the file,
together with the file name. A single disk may contain many such files, or
perhaps only one. In any case, the catalog index contains the information
needed to find the file, and to prevent accidental destruction of an old file
with an incoming new one.

Programs saved on a disk are called "files" because they are treated as
files by the catalog system, i.e., their names are entered in the catalog
index with starting and ending sector addresses. The catalog index also
contains a notation indicating for each file whether it is a program file or a
data file.

The catalog index contains only the names of files and file boundary
addresses, not the sector addresses of the individual records within each
file. A variety of methods are employed to find individual records within a
file; these methods are discussed in Section 20-9.

An overview of the Catalog mode statements and their functions is given

below:

STATEMENT FUNCTION

1. DATA SAVE DC OPEN Establishes a new data file on a disk,
and readies the processor for operations
on the file.

2. DATA LOAD DC OPEN Readies the processor for operations on a
previously established data file.

3. a) DATA SAVE DC Takes values from memory, and saves them
as one "record" in a data file.

b) DATA SAVE DC END Saves a special record that marks the
end of live data in a file.

4, DATA LOAD DC Reads values from a record (or records),
and assigns the values to variables in
memory.

5. DSKIP These statements change the sector

6. DBACKSPACE address at which the next DATA SAVE DC or

DATA LOAD DC will occur. They permit
rapid nonsequential accessing of records.

243

AN INTRODUCTION TO DISK DATA FILES

7. DATA SAVE DC CLOSE Protects against accidental file damage,
‘ by clearing information needed for
operations on the file.

20-3 ESTABLISHING AND OPENING DATA FILES

The SAVE DC statement, introduced in Section 4-2, can be seen as
performing two distinct operations. First, it writes the program name into
the catalog index, specifying the new file's starting and ending sector
addresses. Secondly, it saves the program into these sectors. For disk data
files, these two kinds of operations are performed by different statements.

Establishing a New File

The statement DATA SAVE DC OPEN is used to write a new file name into
the catalog index, and to set aside a specific number of unused sectors for
the file. The addresses of the file's starting and ending sectors are entered
into the index. The user need only indicate a name for the file and the
number of sectors needed. DATA SAVE DC OPEN automatically allocates the next
available sectors to the file. This statement also writes a sector of control
information in the last sector allocated to the file (this sector serves as a
marker of the end of the file space). DATA SAVE DC OPEN does not save any
data into the file.

The statement
DATA SAVE DC OPEN F 200, "INVTORY"

establishes a new file called INVTORY, and assigns to the file the next 200
sectors in the disk's catalog area. The name INVTORY, together with the
starting and ending sector addresses, is entered into the catalog index, and

one sector of control information is written into the last sector in the new
file.

In the DATA SAVE DC OPEN statement shown above, the F indicates that the
file is to be opened on the F disk, of the device selected for DISK class I/0
operations. The F disk is the fixed Tower disk of 2230 series or 2260 type
drives, or the diskette mounted in the leftmost diskette port of 2270 type
drives. R could be used instead of F to specify the removable disk of
2230/2%60 drives, or the right port of the 2270-2 drive (the middle port
2270-3).

(During Master Initialization, address 310 is automatically selected for
DISK class I/0 operations. The DISK class address may be changed by executing
a statement such as

SELECT DISK 320

A system of file numbers is available to add greater flexibility to the
addressing procedures of disk operations. This system is discussed in
Sections 20-10 and 20-11. Until then, we shall rely upon the SELECT DISK
statement to provide the device address of the disk unit, and the F and R
parameters to specify the disk.)

244

AN INTRODUCTION TO DISK DATA FILES

Just as with program files, the name of a data file can contain up to
eight characters. It may be expressed as a character string in quotes or as
an alphanumeric variable. Therefore,

100 DATA SAVE DC OPEN F 200, "INVTORY"
is functionally equivalent to

100 A$ = "INVTORY"
110 DATA SAVE DC OPEN F 200, A$

In all Catalog Mode statements that require a file name, the name can be
specified by means of alphanumeric variable.

Before the DATA SAVE DC OPEN statement is executed, the programmer must
give some thought to how much space is needed in the file. Generally the
series of questions to be asked is as follows:

1. What information will be stored in each record?

2. How much disk space, in sectors, 1is required for one record of
information?

3. How many records are now waiting to be stored in the file?

4, How many additional records will be generated in the lifetime of the
file? Can these new records replace old records deleted from the
file?

These questions are discussed in detail in Section 20-3. For now, though, we
should note that in the DATA SAVE DC OPEN statement the exact number of
sectors desired for the file must be specified. If the number of sectors
proves to be too small, it is not possible to simply expand the file.
Generally, a new, larger file must be created, and all the data in the old
file transferred to the new.

We have seen that DATA SAVE DC OPEN establishes a new disk file by
putting 1its name and its starting and ending sector address into the catalog
index. However, it does something else as well. It readies the processor for
Catalog Mode operations on the new file.

In order to operate on a file in Catalog Mode, the processor must have
three sector addresses in a special part of its memory called the Device
Table. These sector addresses are the starting sector address of the file,
the ending sector address of the file, and a special third address called the
Current Sector address. When the processor has these addresses for a file in
its Device Table, the file is said to be "open," because data can then be
saved in or loaded from the file.

DATA SAVE DC OPEN establishes a new file and "opens" it, that is, it
puts the name and file boundaries into the catalog index, and puts the
starting, ending and Current Sector addresses into the Device Table (in the
processor). The starting and ending addresses in the Device Table are the

245

AN INTRODUCTION TO DISK DATA FILES

same as those in the catalog index. They are put into the Device Table for
quick reference by the processor, and represent the fixed boundaries of the
file. The Current Sector address is set to the starting sector address by
DATA SAVE DC OPEN.

Unlike the starting and ending sector addresses, which are fixed, the
Current Sector address is continuously updated by Catalog Mode operations. As
we shall see in the next section, this Current Sector address is the address
supplied to the disk drive when data is saved or loaded.

For now, we can consider the Device Table as follows:

Starting Ending Current Sector
Address Address Address
0 0 0

After DATA SAVE DC OPEN F 200, "INVTORY", the Device Table might 1look Tike
this:

Starting Ending Current Sector
Address Address Address
28 228 28

Re-Opening a File

The DATA SAVE DC OPEN statement is executed only when a new file is
being established for the first time. Thereafter, the file's name and sector
boundaries are permanently stored in the catalog index. They need only be
read from the disk 1into the Device Table in order to "open" the file. The
statement that must be used to open an already existent file is DATA LOAD DC
OPEN. For example,

DATA LOAD DC OPEN F "INVTORY"
searches the catalog index of the F disk for a data file named "INVTORY".
When it finds the entry, it reads the associated file boundaries into the

Device Table and makes the Device Table's Current Sector address equal to the
starting sector address of the file.

246

AN INTRODUCTION TO DISK DATA FILES

DATA SAVE DC OPEN and DATA LOAD DC OPEN are often confusing to the
beginner because they are not good descriptions of the operations they
perform. The following summary is therefore provided:

DATA SAVE DC OPEN 1. Establishes a new data file of specified
sector Tlength by entering its name and
sector boundaries into the catalog index.

2. Opens the new file for Catalog
Mode operations by putting its addresses into
the Device Table, and setting the Device
Table's Current Sector address equal to the
starting address of the file.

DATA LOAD DC OPEN 2. (ONLY) opens a file by getting 1its sector
addresses from the catalog index and putting
them into the Device Table. Sets the Current
Sector address equal to the starting sector
address of the file.

Once a file is open, data can be saved in it or read from it, regardless
of whether it was opened for the first time with DATA SAVE DC OPEN or Tlater
opened with DATA LOAD DC OPEN.

20-4 SAVING DATA IN A FILE

Once a new file has been established and opened with DATA SAVE DC OPEN,
the next step 1is to save data in it. The statement used to save data in a
cataloged file is DATA SAVE DC. For example,

DATA SAVE DC N$, D$, S$, Q, R

causes the disk drive to save the current values of the variables N$, D$,
S$§, Q, and R. The Current Sector address is supplied to the disk drive
as the address at which it is to begin saving the data. After the data
has been saved, the Current Sector address in the Device Table is
updated so that it contains the address of the sector following the 1last one
in which data was saved. Saving values specified by a DATA SAVE DC
statement may require just one sector or many sectors. However, even if
the final sector is not completely filled, the Current Sector address
is updated so that it has the address of the next sector following the
partially filled one.

In addition to saving the specified values, the DATA SAVE DC statement
surrounds the saved values with certain control information. This control
jnformation marks off the values, collectively, as a '"record." Thus, the
stored result of a DATA SAVE DC statement is, by definition, a record, and it
is the task of the program to specify all the values needed for a single
record, prior to executing the DATA SAVE DC statement. For example, suppose
that the above DATA SAVE DC statement saves an inventory record for one
product. Prior to executing this statement, N§ might receive the product
number, D$ the product description, S$ the supplier code, Q the on-hand

247

AN INTRODUCTION TO DISK DATA FILES

quantity, and R the reorder level. These values are the complete record for
one product in this simple inventory file. A very simple program that creates
a new inventory file, and allows records to be saved in the new file is shown
in Example 20.1.

Example 20.1 Creating a New File and Saving Records in It

110 REM A SIMPLISTIC PROGRAM FOR CREATING A NEW FILE
112 REM AND SAVING RECORDS INTO IT

120 DIM N$10, D$40, S$6

130 REM ESTABLISH A FILE AND OPEN IT.

140 DATA SAVE DC OPEN F 200, "INVTORY"
150 REM ENTER DATA FOR ONE INVENTORY RECORD
160 INPUT "PRODUCT NUMBER", N$

170 INPUT "PRODUCT DESCRIPTION", D$

180 INPUT "SUPPLIER CODE", S$

190 INPUT "ON HAND QUANTITY", Q

200 INPUT "INDICATED REORDER LEVEL", R
210 REM SAVE RECORD ON DISK

220 DATA SAVE DC N$, D$, S$, Q, R

230 REM MORE RECORDS?

240 INPUT "MORE PRODUCTS (Y OR N)", R$
250 IF R$ = "Y" THEN 160

Line 140 establishes a new file called "INVTORY", with 200 sectors
allocated to it, and opens the file. Lines 160 to 180 enter values into each
of the variables used to define the record. Line 220 writes the record into
the file, at the Current Sector address. Each time through the loop a record
is saved, and the Current Sector address is updated to the next available
sector. Since DATA SAVE DC OPEN sets the Current Sector address to the first
sector in the file, this program saves the first product record starting at
the first sector of the file. Each subsequent record is saved into the next
available sector. Thus, the records are saved into sequential sectors on the
disk in the same order that they are entered.

This program will execute successfully; however, it does not display
good programming practices for disk data files, for reasons that are discussed
below. It also should be noted that it cannot be executed twice with the same
disk, since on a second attempt, DATA SAVE DC OPEN would be trying to open a
second file with the name "INVTORY", an illegal operation. To reopen the
file created by this program, the DATA LOAD DC OPEN statement must be used.

Values to be saved by the DATA SAVE DC statement can be specified by
giving the name of the alphanumeric or numeric variable that contains the
value, as shown in line 220 of Example 20.1. If an entire array of values is
to be saved, an array designator such as A() or K2$(), may be used in the
DATASAVE DC statement. Finally, a value may be specified by means of a
literal string or an expression. In the latter case, the expression is
evaluated, and the result is saved.

248

AN INTRODUCTION TO DISK DATA FILES

Within a record, values are saved in the sequence in which they are
specified in the DATA SAVE DC statement. Arrays are saved row by row. Each
value is preceded in the record by a one byte Start of Value code, which
separates the value from the preceding value, and marks it as numeric or
alphanumeric. Only the value is saved in the record, not the name of the
variable or the quotation marks around a literal string.

20-5 MARKING THE END OF DATA IN A FILE AND CLOSING THE FILE

Usually, when a new file is created, it is given extra sectors to allow
for gradual growth in the number of records. Therefore, most files, at any
given time, will contain some unused sectors, between the 1last record saved
and the end of the file space. In many programming operations it is useful to
have this end of the live data clearly marked. This permits the end of the
live data to be found very quickly when a new record needs to be added, and it
is useful in other operations as well.

The statement DATASAVE DC END is used to write a special one-sector
trailer record that marks the end of live data in a file. DATA SAVE DC END
puts the special trailer record into the sector specified as the Current
Sector address.

In the program of Example 20.1, the Current Sector address is always set
to the first empty sector at the end of the live data; therefore, the DATA
SAVE DC END statement can simply be appended to the program as follows:

Example 20.2 Adding a DATA SAVE DC END to Example 20.1

110 REM MARKING THE END OF DATA

120 DIM N$10, D$40, S$6

130 REM ESTABLISH FILE AND OPEN IT.

140 DATA SAVE DC OPEN F 200, "INVTORY"
150 REM ENTER DATA FOR ONE INVENTORY RECORD
160 INPUT "PRODUCT NUMBER", N$

170 INPUT "PRODUCT DESCRIPTION", D$

180 INPUT "SUPPLIER CODE", S$

190 INPUT "ON HAND QUANTITY", Q

200 INPUT "INDICATED REORDER LEVEL", R
210 REM SAVE RECORD ON DISK

220 DATA SAVE DC N$, D$, S$, Q, R

230 REM MORE RECORDS?

240 INPUT "MORE PRODUCTS (Y OR N)", R$
250 IF R$ = "Y" THEN 160

260 REM MARK END OF DATA

270 DATA SAVE DC END

A20 g TRPD DL IS ;

Marking the end of 1ive data with a DATA SAVE DC END statement 1is not
required for the use of disk catalog operations; however, it is so often
useful to have the end of the data marked that it 1is a part of all good
programming.

249

AN INTRODUCTION TO DISK DATA FILES

Closing a File

Earlier we said that a file is "open" when starting, ending, and Current
Sector addresses are present in the Device Table. An open file can be
operated on with the Catalog Mode statements. A particular open file can be
"closed" by opening another file. This replaces the old file's sector
addresses with those of the newly opened file. (In Section 20-10 we will see
a means by which several files can be open simultaneously.) A file can also be
closed by executing CLEAR, or Master Initializing, which puts zeros into the
sector addresses in the Device Table. Since a closed file cannot be operated
upon with DATA SAVE DC, closing a file protects it from accidental
destruction by another program, or by an Immediate Mode operation. For this
reason, the statement

DATA SAVE DC CLOSE

is available to close a file. It simply replaces the sector addresses in
the Device Table with zeros. It does nothing to the disk file itself or
to the disk catalog index. Files closed with DATA SAVE DC CLOSE may, of
course, be reopened with DATA LOAD DC OPEN just as they could be if they had
been closed by any of the other means discussed above. Mere termination of a
program does not close a file. For this reason, DATA SAVE DC CLOSE
should be wused. Therefore, this statement should be added to Example 20.2.

280 DATA SAVE DC CLOSE

20-6 LOADING DATA FROM A FILE

Once a data file has been set up, and records saved in it, the records
can be read. In order to read a record in the Catalog Mode, the file must be
"open", that is, a starting, ending, and Current Sector address must be
entered into the Device Table. Except when first established, a data file is
always opened with DATA LOAD DC OPEN. This gets the starting and ending
addresses of the file, puts them in the Device Table, and sets the Current
Sector address equal to the starting sector address of the file.

The DATA LOAD DC statement is used to load data from a file in Catalog
Mode. For example, the statement

DATA LOAD DC N$, D$, S$, Q, R

causes the disk drive to begin reading, starting at the sector
specified as the Current Sector Address. The values that are read
are assigned successively to the variables specified in the DATA LOAD DC
statement. After values have been assigned to each_ of the specified
variables, the Current Sector address, in the Device Table, is updated to the
address of the first sector of the next record. -

250

AN INTRODUCTION TO DISK DATA FILES

Assignment of values is according to the conventional procedure. For
example, if an alphanumeric variable 1is too short to contain an entire
alphanumeric value, the assignment is made with the extra characters on the
right truncated. It is especially important to note that an error results if
a numeric value, encountered in the record, is matched with an alphanumeric
variable, in the DATA LOAD DC statement, or vice versa. For this and other
reasons, it is important that precise documentation be maintained of data file
record layouts.

Values may be loaded into an entire array by specifying the standard
array designator in the DATA LOAD DC statement. For example, in the statement

400 DATA LOAD DC A$(), X()

values from the data file are assigned row by row to the array A$(), until
each variable 1in the array has been assigned a value; then the next values
are assigned in the same way to X().

It is not necessary that the same variables be used to receive data in
the DATA LOAD DC statement as were used originally to save the data. The only
requirement 1is that numeric values be loaded into numeric variables, and
alphanumeric values into alphanumeric variables.

It is good programming practice to read exactly one record with a DATA
LOAD DC statement, though this is not required. For example, the DATA SAVE DC
statement of Example 20.1 creates a record with three alphanumeric values
followed by two numeric ones. Since the statement

DATA LOAD DC N$, D$, S$, Q, R

shown above specifies three alphanumeric variables followed by two
numeric ones, it loads exactly one record, as created by the DATA SAVE DC
statement of Example 20.1.

If fewer variables are specified in the DATA _LOAD DC .siategent . than
there are values in the record, the_gtrg values are. 1gnored4 If more .
variables are specified than there are _values in tﬁ*“record successive values *
from the next record(s) will be assigned to the var1ab1es It must be
emphas1zed though, that after a DATA LOAD DC statement the Current Sector
address is set to the beg1nn1ng of the next record, even if only some of the
va]ues from the prev1ous record have been ass1gned to var1ab1es In Cata]og

A simple program that reads and prints the inventory data file created
by Example 20.1 is shown in Example 20.3.

251

AN INTRODUCTION TO DISK DATA FILES

Example 20.3 Printing the Inventory File of Example 20.1

110 REM A SIMPLISTIC PROGRAM FOR PRINTING THE INVENTORY FILE
120 DIM N$10, D$40, S$6

130 SELECT PRINT 215 (100)

140 REM OPEN FILE

150 DATA LOAD DC OPEN F "INVTORY"

160 REM LOOP TO READ AND PRINT EACH RECORD

170 DATA LOAD DC N$, D$, S$, Q, R

180 PRINTUSING 200, N$, D$, S$, Q, R

190 GOTO 170

200 VIR S ddasaikai #A#HH A A AR AR AR A
#HHHA ##,##4 ##,###

Notice at 1line 120 of Example 20.3 that the alphanumeric variables are
dimensioned to the same size as those which were used to save the record.
Variables N$ and S$ could be allowed to be dimensioned to the default 1length
of 16 characters; however, if D$ were not dimensioned to at least 40
characters, part of the second value in the record might be lost, since it can
contain 40 characters.

Statements 170 to 190 form a loop. Each time through the loop a record
is read, the Current Sector address is automatically updated, and then the
record is printed. However, this loop has no exit, so, eventually, either the
end of live data will be reached, or the control sector at the very end of the
file space will be reached, or both. When either happens, an error is
signaled as the DATA LOAD DC statement attempts to load nonexistent data.
Remember, the file which this program reads was created by Example 20.1, so no
end-of-data trailer record is present.

Testing For End-of-Data

Now we can see a value in using the end-of-data trailer record. If the
Current Sector address is the address of an end-of-data trailer record in the
file, and a DATA LOAD DC statement is executed, several things happen. First
of all, the values of the variables in the DATA LOAD DC statement are left
unchanged. The Current Sector address is not updated, and a notation is made
in a special part of memory that a DATA LOAD DC statement has read an
end-of-data trailer record.

A special BASIC statement is available to test if an end-of-data trailer
has been read. The form of this statement is

IF END THEN Tine number

The IF END THEN statement checks the special part of memory to see if
an end-of-data trailer has been read during the last DATA LOAD DC
statement. If it has been read, IF END THEN effects a branch to the 1line
number following "THEN". Thus, the IF END THEN statement can be used to
exit from a record reading loop, when the end-of-data is reached (provided
that the end-of-data 1is marked with the special end-of-data trailer
record). IF END THEN may not be used in the Immediate Mode.

Example 20.4 shows a modification of Example 20.3. It uses IF END THEN
to exit from the loop. It will read and print a file created by Example 20.2.

252

AN INTRODUCTION TO DISK DATA FILES

Example 20.4 Printing the Inventory File Created by Example 20.2

110 REM A BETTER PROGRAM FOR PRINTING THE INVENTORY FILE
120 DIM N$10, D$40, S$6

130 SELECT PRINT 215 (100)

140 REM OPEN FILE

150 DATA LOAD DC OPEN F "INVTORY"

160 REM LOOP TO READ AND PRINT EACH RECORD

170 DATA LOAD DC N$, D$, S$, Q, R

175 IF END THEN 210

180 PRINTUSING 200, N$, D$, S$, Q, R

190 GOTO 170

200 b HERAARRARA #A# AR AAA AR AR R AR AR AHR R AR AR A A
HE#HHH ## s ## ## i

210 DATA SAVE DC CLOSE

The IF END THEN statement, added at line 175, effects a branch out of
the 1loop when DATA LOAD DC reads an end-of-data trailer record. Thus, this
program does not terminate in an error message, and were it necessary,
processing could continue uninterrupted.

It should be noted that only the special end-of-data trailer record
created by DATA SAVE DC END has the effect described above. An error resuits
if a DATA LOAD DC statement 1is executed when the Current Sector address
contains the address of the control sector at the end of the file.

20-7 NON-SEQUENTIAL ACCESS WITH DSKIP AND DBACKSPACE

We have seen that whenever a DATA SAVE DC statement 1is executed, the
Current Sector address is updated to the sector following the last one in
which data was saved. When a DATA LOAD DC statement is executed, the Current
Sector address is updated to the sector address of the next record. Thus, at
the most fundamental level, the Catalog Mode write and read statements are
designed for accessing records sequentially. Many applications require that
records be accessed sequentially, and, therefore, having this type of
accessing built into the Catalog Mode statements can be extremely convenient.
This 1is particularly true if the records can be kept in a particular sequence,
either by sorting the records or adding records that logically come at the
end.

For example, suppose that in our inventory example the product number is
assigned to new products by the user of the system. Further suppose that the
product number is a composite. The first character in the product number is a
letter of the alphabet that indicates the warehouse in which the product is
stored. The remaining characters in the product number provide a consecutive
numbering of the products. Thus the product numbers for the first five
products might be B1, A2, B3, F4, M5, If there are now 217 such products in
the inventory file and a new product, stored in warehouse A, must be added, it
would be assigned product number A218 and placed at the end of the file.

253

AN INTRODUCTION TO DISK DATA FILES

In such a situation, the file may be initially created sequentially, as
shown in Example 20.2 and also may be printed sequentially as shown in Example
20.4. But, what happens when a new record must be added to the end of the
file, or the on-hand quantity reduced for product number B185? One way to
find the end of the file would be:

200 DATA LOAD DC N$, D$, S$, Q, R
210 IF END THEN 230

220 GOTO 200

230 REM FOUND END OF FILE

This reads each record until the end-of-data trailer is read. A
similar approach to updating prouct B185 is:

200 DATA LOAD DC OPEN F "INVTORY"
210 FOR K=1 TO 184

220 DATA LOAD DC N$, D$, S$, Q, R
230 NEXT K

240 REM NOW READY TO UPDATE B185

However, both of these solutions fail to make use of the disk's
feature of offering direct access to every sector. These solutions
merely represent roundabout ways of getting the Current Sector address equal
to the address of the end-of-data trailer (first problem), or equal to
the sector address of product B185 (second problem). Once the Current Sector
address 1in the Device Table 1is ~correct, the disk device is used to
directly save new data at the proper location. If the Current Sector address
could be changed 1in a more direct fashion, the time consuming
sequential loading of the above examples could be eliminated.

Wang BASIC offers two statements whose purpose is to change the Current

Sector address. These two statements are DSKIP and DBACKSPACE. Each of these
statements can be seen as having three forms, summarized in Table 20.1.

Table 20.1 Forms of the DSKIP and DBACKSPACE Statements

Forms of the DSKIP Statement Operation
DSKIP expression S Evaluates the expression and adds the

truncated result to the Current Sector
address. Thus, if the value of the

-~ o

. ST A B expression is n, n sectors are ‘"skipped"
T mep STECTNTN 5 over.
DSKIP END o+ Sets the Current Sector address equal to
) » J the address of the end-of-data trailer
\:" : ..')’ i,") v’ o o B recm(itg' '; e f’»" . ‘! :‘!,‘ ; F’-’,: ‘ / -’\" i . ¢
o DSKIP expression D Evaluates the expression and skips over a -
% number of records equal to the truncated -

1 'E?Cf}fﬁ”/; value of the result.

254

AN INTRODUCTION TO DISK DATA FILES

Forms of the DBACKSPACE Statement Operation

DBACKSPACE expression S Evaluates the expression and subtracts
the truncated result from the
Current Sector address. Thus, if
the value of the expression is n, n
sectors are "backspaced" over.

DBACKSPACE BEG Sets the Current Sector address equal to
the starting sector address of the file.

DBACKSPACE expression Evaluates the expression and backspaces
over a number of records equal to the
truncated value of the expression.

The statement DSKIP END is used to set the Current Sector address to the
address of the end-of-data trailer record. Of course, the trailer must be
present for DSKIP END to execute correctly. Execution of DSKIP END is much
faster than the technique of reading each record shown above.

The DSKIP...S and DBACKSPACE...S statements simply add and subtract,
respectively, from the Current Sector address, the truncated (integer) value
of the expression. The value of the expression must be positive. If the
resultant Current Sector address would be less than the first sector of the
file, the address of the first sector of the file becomes the Current Sector
address. Similarly, if the resultant Current Sector address would be above
the end of the file space, the end of file address becomes the Current Sector
address. Thus, it is impossible to accidentally set the Current Sector
address to a sector outside of the file. However, it 1is possible to
accidentally set it above the address of the end-of-data trailer record. The
programmer must be careful to avoid this.

DSKIP...S and DBACKSPACE...S are the fastest ways of changing the
Current Sector address, since they require no action by the disk drive itself.
Their wuse, however, presupposes that the 1length of each file record, in
sectors, is known. For example, if the length of each record is known to be 2
sectors, and the program should skip forward "over" 20 records, then DSKIP 40
S could be used. Most often, record length is known and, therefore, DSKIP...S
and DBACKSPACE...S should be used. (Record length is discussed in detail in
Section 20-8.)

In some technical applications in which a few 1large arrays may
constitute an entire file, record length may not be known, or may be highly
irregular. In these circumstances DSKIP... and DBACKSPACE... may be the
easiest way to skip or backspace over a specific number of records. These
instructions require the disk to read all intervening records, though, and
are, therefore, much slower than DSKIP...S and DBACKSPACE...S.

Example 20.5 shows a program for adding new product records of the type
discussed above to the end of the inventory file. Each inventory record in
this system occupies one sector.

255

AN INTRODUCTION TO DISK DATA FILES

Example 20.5 A Adding Records to the End of the Inventory File

110 REM ADDING RECORDS TO THE END OF THE INVENTORY FILE
120 DIM N$10, N2$10, D$40, S$6

130 REM OPEN FILE

140 DATA LOAD DC OPEN F "INVTORY"

150 REM

160 REM READ LAST PRODUCT RECORD

170 DSKIP END

180 DBACKSPACE 1 S

190 DATA LOAD DC N$, D$, S$, Q, R

200 CONVERT STR(N$,2) TO N

210 REM GET NEW PRODUCT NUMBER AND CHECK.

220 PRINT HEX(03); "TO END PROGRAM KEY S.F. 31 AT ANY TIME"
230 INPUT "NEW PRODUCT NUMBER", N2$

240 IF NUM(STR(N2$,2)) <> 9 THEN 400 :REM NON-NUMERIC?
250 CONVERT STR(N2$,2) TO N2

260 IF N+1 <> N2 THEN 400 :REM OUT OF FILE SEQUENCE?
270 REM PRODUCT NUMBER OK. ENTER RECORD VALUES.

280 INPUT "PRODUCT DESCRIPTION", D$

290 INPUT "SUPPLIER CODE", S$

300 INPUT "ON HAND QUANTITY", Q

310 INPUT "REORDER LEVEL", R

320 REM SAVE NEW RECORD AND GO BACK FOR NEXT

330 DATA SAVE DC N2$, D$, S$, Q, R

340 N = N2
360 PRINT
370 GOTO 220
380 REM

390 REM BAD PRODUCT NUMBER ENTERED

400 PRINT "INVALID PRODUCT NUMBER"

410 PRINT

420 GOTO 230

430 REM END PROGRAM ROUTINE

440 DEFFN' 31

450 DATA SAVE DC END :REM MARK END OF DATA
460 DATA SAVE DC CLOSE

Line 170 changes the Current Sector address to the address of the end-
of-data trailer. Line 180 then backspaces one sector so that the last record
in the file can be read. The last record is read so that when the new product
number is entered, it can be tested to see that is actually the next
consecutive number. This protects the integrity of the file organization.
Before this test can be made, the consecutive portion of the product number,
STR(N$,2), must be converted to numeric form (1ine 200).

At Tine 230 the new product number is entered into N2$. Line 240 checks
that the number portion of this can be converted to numeric. Without this
test, an accidental entry of "XB125", for example, would cause an error at
line 250, since B125 cannot be converted to numeric form. Assuming the form
is acceptable, 250 makes the conversion, and 260 tests to see if the product
number is the next consecutive product number. If the entered product number
fails the validity tests at lines 240 or 260, a branch to an "invalid" message
occurs, and the number must be reentered.

256

AN INTRODUCTION TO DISK DATA FILES

Lines 280 through 330 allow the remaining record values to be entered,
and save the new record. The new record is saved over the end-of-data record,
which is thereby eliminated.

Line 340 sets N equal to the converted consecutive portion of the new
product number. If another record is to be added, the test for consecutive
product numbers can be performed without reading the last record.

Line 370 branches back to the product number entry routine, making this
program into a closed 1loop. The program can be ended any time the "?" s
displayed, by keying Special Function key 31. This causes a branch to the end
program routine, which writes the end-of-data trailer, and ends the program.
The end-of-data trailer must be written before the program is ended, since
operations on this file depend on its presence. Providing the Tloop exit in
this fashion gives the operator an emergency termination procedure, as well as
a routine one, both of which preserve the file's integrity.

Example 20.6 shows a program designed to allow updating of the quantity-
on-hand value in any selected record.

~

110 REM UPDATING A PRODUCT RECORD

120 DIM N$10, D$40, S$6

130 REM OPEN FILE

140 DATA LOAD DC OPEN F "INVTORY"

150 REM GET HIGHEST PRODUCT NUMBER

160 DSKIP END

170 DBACKSPACE 1 S

180 DATA LOAD DC N$, D$, S$, Q, R

190 CONVERT STR(N$,2) TO M :REM M IS MAX PRODUCT NUMBER
200 REM GET PRODUCT NUMBER OF RECORD TO BE UPDATED
210 PRINT HEX(03) :REM CLEAR CRT

220 INPUT "NUMBER OF PRODUCT TO BE UPDATED", N$
230 IF NUM(STR(N$,2)) <>9 THEN 460 :REM INVALID?
240 CONVERT STR(N$,2) TO N

250 IF N >M THEN 460 : REM TOO HIGH?

260 REM PRODUCT NUMBER OK. FIND PRODUCT RECORD.

270 DBACKSPACE BEG

280 DSKIP N-1 S

290 REM LOAD AND PRINT PRODUCT RECORD

300 DATA LOAD DC N$, D$, S$, Q, R

310 PRINT

320 PRINT D$

330 PRINT "QUANTITY ON HAND ="; Q

340 PRINT

350 DBACKSPACE 1 S

Example 20.6 A Program to Update Product Records.

257

AN INTRODUCTION TO DISK DATA FILES

360 REM ENTER TRANSACTION AND UPDATE RECORD

370 INPUT "ENTER AMOUNT RECEIVED (+) OR SOLD (-)", T
380 DATA SAVE DC N$, D$, S$, Q+T, R

390 REM MORE RECORDS TO UPDATE?

400 R$ = " " :REM NO DEFAULT ENTRY

410 INPUT "MORE RECORDS TO UPDATE (Y/N)", R$
420 IF R$ = "Y" THEN 210

430 IF R$ <>"N" THEN 410 :REM OPERATOR ERROR?
440 DATA SAVE DC CLOSE

450 END

460 REM ERROR ROUTINE

470 PRINT "INVALID. REENTER"

480 PRINT

490 GOTO 220

Lines 160-190 load the last record in the file, and convert the number
portion of its product number to a numeric value. This value is saved in M
(Tine 190) so that when product numbers are entered, they may be checked to
see that they are not greater than the highest product number.

Lines 210 to 250 allow the product number to be entered, convert its
number portion to numeric, and test that it is within the file.

Line 270 sets the Current Sector address equal to the beginning sector
address of the file. This permits DSKIP (1ine 280) to set the Current Sector
address equal to the address of the desired record. After 1line 270, the
Current Sector address points to the first record in the file. If the first
record is the record sought, then no skip is needed. For each product, the
number of sectors to be skipped to locate its record is one less than the
product number; therefore, N-1 sectors are skipped at line 280. After Tline
280, the Current Sector address is set to the address of the desired record.

Since DATA SAVE DC always saves an entire record, in order to update one
value in the record, the program must first read the whole record, update the
proper value, and write the entire record. Lines 300 to 350 read the record,
print the product description and quantity-on-hand, and backspace one sector
so that the updated record will be recorded in the same sector from which it
was read.

At line 370 the transaction is entered. The new value of the on hand
quantity appears as an expression in the DATA SAVE DC statement (1ine 380).
The DATA SAVE DC statement evaluates the expression, and writes the result
into the record.

258

AN INTRODUCTION TO DISK DATA FILES

20-8 DATA RECORDS AND PLANNING OF DATA FILES

The DATA SAVE DC OPEN statement requires that a file size in sectors be
specified. Thus, before a new file can be established, some planning must be
done to determine the size of each record to be saved in the file, and the
maximum number of such records which may be saved in the file at any one time
during the expected lifetime of the file. It is not possible to simply expand
a file which proves to be too short. In general, a new, larger file must be
opened on the same disk or another disk, and the contents of the old file
copied to the new.

When planning records and file space, careful attention must be paid not
only to the space occupied by actual data values, but also to the space used
by the various kinds of control information that the Catalog Mode statements
automatically supply. For example, the last sector of every data file is
occupied by a special control sector, which contains certain information about
the file in addition to that maintained in the catalog index. Also, all data
files should have an end-of-data trailer record. This also occupies one
sector. Thus, when estimating file size, two sectors should always be added
to the total required for the actual data records.

Each sector on a disk has a physical storage capacity of 256 bytes.
(Remember that a byte is the amount of space required to contain a single
alphanumeric character. We could as well say that a sector has a physical
_storage capacity of 256 characters, though the term "byte" is customar11y used
when referring to capacity.) However, control information is automatically
written into each sector by the DATA SAVE DC statement. This control
jgﬁgrmg;jon reduces _the amount of space available for data. Control

“Thformation is of two types: TomeT

L
1. Sector control bytes. 256 (3) A53 293
2. Start of value (SOV) control bytes. (—/)ﬁu_ valus Valsste 728

.f—’ 'hﬂ-

The DATA SAVE DC statement automatically writes "three = sector control ;)ahhaar
bytes into~ each sector of a record. Two of these bytes occupy the first two
Byte locations in each sector. These are used to indicate whether the sector
is the first, last, or a middle sector in the record. They serve to separate
one record from the next. The third control byte follows the last byte of the
last data-value in the sector, and marks the end of valid data within that
sector, Thus, after subtract1ng the three sector control bytes, a total of
(253 bytes are ava11ab1e for data and start -0f - va]ue (SOV) bytes.

a— i -

In addition to the sector control bytes, a s1ngle start- of -value .. (SOV)
byte precedes each value saved in a record. This byte indicates to the system
whether the value 1is numeric or “alphanumeric and 1its Tlength in bytes.
Consider, for example, the inventory record of the preceding sections. The
storage space for the record is defined by:

120 DIM N$10, D$40, S$6

220 DATA SAVE DC N$, D$, S$, Q, R

259

AN INTRODUCTION TO DISK DATA FILES

The record looks like this in a sector:

TOTAL USED = 80 BYTES TOTAL UNUSED = 176 BYTES
— A — A
SOV for SOV for SOV for SOV for SOV for
value of N$ value of D$ value of S$ value of Q value of R
10 bytes 40 bytes 6 bytes 8 bytes 8 bytes
—\ e\ e A

W-/
2 sector
control
bytes

Value of N$

Value % Value Value
Val D
™ Of s Of ss Of Q Of R §
7

1 sector control
byte. End of
valid data.

Disk storage space requirements can be summarized as follows:

1.

2.

There are 253 bytes available for storage in each sector, after
allowing for the sector control bytes. o

Each numeric value requires 9 bytes, 8 bytes for the value plus 1
byte for the SOV. (Numeric values may be specified 1in the DATA
SAVE DC statement by numeric variables, expressions, or numeric
array elements.)

Each alphanumer1c value requires a number of bytes equal to the

\d1mens1oned size of the specifying alphanumeric variable _or

array element 1us one t%, for the SOV, or the number of
characters in the’”?ﬁec1?“§n eral string plus one byte for the

SOv. Note that in the casé6f " ah alphanumeric variable or
array element, it 1is the dimensioned size, |nc1ud1ng _.an
trailing spaces, which must be counted. B

If a value does not completely fit into the space remaining in a
sector, it is automatically written in the next sector.
Values do not overlap from one sector to the next, though a
single record may require many sectors.

260

AN INTRODUCTION TO DISK DATA FILES

“When entire arrays are saved in a record by using the array designator,
the values are saved row by row into the record. For example, in the record
saved by

10 DIM K(3,3)

50 DATA SAVE DC K()

the values are saved from the variables in this order: K(1,1),
K(1,2), K(1,3), K(2,1), K(2,2), K(2,3), K(3,1), K(3, 2) K(3,3). The
value of an individual array element can always be specified in a DATA SAVE_
DC, _if the entire array is not to be saved. Within thé record there is no
1nd1cat1on of whether a value was saved from an array, or any other source,
and, therefore, values may be 1loaded into array or scalar variables
regard]ess of their origin.

When planning a disk file, it is wise to design files that do not waste
disk space. For the beginning programmer this means designing records so that
the total unused space at the end of each sector is held to a minimum. There
are several techniques for doing this.

When a record extends over several sectors, there can be more efficient
and less efficient ways of saving the record, depending only upon the order in
which the values are specified in the DATA SAVE DC statement. For example,

10 DIM A$(5)50, B$(3)64, C$48
100 DATA SAVE DC A$(), B$(), C$
This record requires three sectors which, after subtracting the three

sector control bytes and consolidating the SOV bytes into the values, look
like this:

AS$(1) AS$(2) AS$(3) AS$(4) \\§§l AS$(5) B$(1) B$(2) B3$(3) § (o \\\

51 51 51 65 65 7 49
(unused) (unused) (unused)
—V Y =V
253 bytes 253 bytes 253 bytes

~
1 RECORD

261

AN INTRODUCTION TO DISK DATA FILES

A total of 49+7+204 or 260 bytes are unused 1in the three sectors
occupied by this record. However, merely rearranging the order of
specification of the values in the DATA SAVE DC statement can result in a
savings of one entire sector as follows:

100 DATA SAVE DC C$, A$(), B$()

c$ A$(1) A$(2) AS(3) A$(4) AS$(5) B$(1) B$(2) B$(3)
49 51 51 51 51 51 65 65 65 7
(unused)
(- ~" S \ N~ o
253 bytes 253 bytes
" e’
2%
1 RECORD

A different approach is required when a record is so short that it uses
only one sector, and leaves most of the sector empty. An example of this is
the inventory record discussed in the previous sections. It uses only 80
bytes out of 256, leaving 176 bytes wasted. Beginning programmers are often
tempted to ignore this waste of disk space, especially when available space
exceeds present needs. This temptation should be overcome. Files tend to
grow more rapidly than may be anticipated, and operations on more compact
files are generally faster.

The programming technique used to reduce this waste 1is known as
"blocking" records. In the inventory file discussed 1in the preceding
sections, one disk record, that is, the result of a single DATA SAVE DC
statement, contains one data record, the data on a single product. DATA SAVE
DC always creates one disk record and always uses at least one sector. It is,
therefore, impossible to put more than one disk record into a single sector.
However, it is possible to let one disk record contain several data records.
From the point of view of the disk and the control information written with a
DATA SAVE DC statement, the several data records will "look 1like" a single
record, since they are written collectively with a single DATA SAVE DC
statement. The programs that create and use the file must internally
distinguish one data record from another, within a single disk record.

For example, since each inventory data record requires 77 bytes (after
subtracting the three sector control bytes), three such data records would
occupy 231 bytes and can fit into a one-sector disk record. An obvious way of
saving three such data records in a single disk record would be by simply
using three sets of variables, and specifying one set after the other in the
DATA SAVE DC statement:

262

AN INTRODUCTION TO DISK DATA FILES

120 DIM N1$10, D1$40, S1$6, N2$10, D2$40,
$2$6, N3$10, D3$40, S3$6

400 DATA SAVE DC N1$, D1$, S1$, Q1, R1, N2$,
D2$, S2$, Q2. R2, N3$, D3$, S3%, Q3, R3

Though intuitively obvious, this approach is extremely awkward from the
point of view of the programming required to manipulate the separate data
records. In most cases a far superior approach 1is to associate the
corresponding values in each of the data records, as follows:

record 1 N1$ D1$ S1$ Q1 R1
record 2 N2$ D2$% S2$ Q2 R2
record 3 N3$ D3$% S3% Q3 R3
Product Description Supplier Quantity Reorder
Number Code on Level
Hand

and, instead of wusing scalar variables to specify the values, use
one-dimensional array variables in which the subscript identifies the

data record. Thus, each of the values in the three records can be identified
as:

record 1 N$(1) D$(1) S$(1) Q(1) R(1)
record 2 N$(2) D$(2) S$(2) Q(2) R(2)
record 3 N$(3) D$(3) S$(3) Q(3) R(3)
Product Description Supplier Quantity Reorder
Number Code on Level
Hand

A1l three data records can be written into a single disk record as
follows:

120 DIM N$(3)10, D$(3)40, S$(3)6, Q(3), R(3)

200 DATA SAVE DC N$(), D$(), S$()» Q(), R()

This is known as "array type blocking". Notice that as a result of the DATA
SAVE DC statement, the corresponding values of each of the data
records are saved one after the other. Thus, at the beginning of the disk
record are the three product numbers. These are followed by the three
product descriptions, followed by the three supplier codes, etcetera.

263

AN INTRODUCTION TO DISK DATA FILES

Records saved in this fashion are loaded as follows:

120 DIM N$(3)10, D$(3)40, S$(3)6, Q(3), R(3)

190 DATA LOAD DC N$(), D$(), S$O), Q()» R()

Example 20.7 shows a modification of Example 20.2. It creates the
inventory file with three product records per sector (block).

Example 20.7 Creating a Blocked-Record Inventory File

110 REM EXAMPLE 20.2 MODIFIED FOR ARRAY TYPE BLOCKED RECORDS
120 DIM N$(3)10, D$(3)40, S$(3)6, Q(3), R(3)

130 REM ESTABLISH FILE AND OPEN IT.

140 DATA SAVE DC OPEN F 100, "INVTORY"

150 REM LOOP TO ENTER DATA FOR THREE RECORDS

160 FOR K=1T0 3

170 PRINT HEX(03); "KEY S.F.31 TO END PROGRAM"
180 INPUT "PRODUCT NUMBER", N$(K)

190 INPUT "PRODUCT DESCRIPTION", D$(K)

200 INPUT "SUPPLIER CODE", S$(K)

210 INPUT "ON HAND QUANTITY", Q(K)

220 INPUT "INDICATED REORDER LEVEL", R(K)

230 NEXT K

240 REM SAVE THREE DATA RECORDS IN ONE DISK RECORD

250 DATA SAVE DC N$(), D$(), S$(), Q(), R()

260 GOTO 160 :REM LOOP BACK FOR MORE

270 REM END OF DATA ENTRY

280 DEFFN' 31

290 IF K = 1 THEN 370 :REM NO LEFT-OVER DATA RECORDS?
300 REM FILL UNUSED DATA RECORDS

310 FOR J = K TO 3

320 INIT("t") N$(J), D$(J), S$(J)

330 NEXT J

340 REM SAVE LEFT OVER DATA RECORD(S) AND FILLED RECORD(S)
350 DATA SAVE DC N$(), D$(), S$(), Q(), R()

360 REM MARK END OF DATA

370 DATA SAVE DC END

380 DATA SAVE DC CLOSE

Notice that the data entry loop (lines 160-230) 1is executed three times
before a disk record is actually written. The loop counter, K, acts as a
subscript, specifying the variables to receive the values for a single
record. The main part of the program (1lines 160-260) forms a closed loop.
Special Function key 31 is used to end the program.

264

AN INTRODUCTION TO DISK DATA FILES

Since the number of product records may not be evenly divisible by 3, it
is possible that an entered data record may not have been written to the disk
when S.F. 31 s depressed. If all records have been written, then K will
have a value of 1, ready to specify the first product record in a new block,
and the DATA SAVE DC END trailer can be immediately written (lines 290 and
370). If, however, K has a value of 2 or 3, then 1 or 2 vrecords have been
entered but not saved on the disk. They must be saved and, in addition, the
unused records in this last block should be filled with padding characters.
The padding characters have several functions: they mark the end-of-data
within the block, and they ensure that, if the file should be sorted, garbage
in the Tlast unused record position will not be confused with 1ive data. The
values which should be padded are those which could serve as possible
identifiers (or so-called "keys") of the record. The loop at lines 310-330
fills the alphanumeric values in the unused records with up-arrow characters.
(Up arrows are often used for this purpose since their character value is
greater than all the uppercase keyboard characters; they, therefore, sort high
in an ascending sort of the file.)

Example 20.8 is a modification of Example 20.4. It prints the blocked
inventory file.

Example 20.8 Printing a Blocked File

110 REM PRINTING A BLOCKED INVENTORY FILE

120 DIM N$(3)10, D$(3)40, S$(3)6, Q(3), R(3)
130 SELECT PRINT 215 (100)

140 REM OPEN FILE

150 DATA LOAD DC OPEN F "INVTORY"

160 REM LOOP TO READ EACH DISK RECORD

170 DATA LOAD DC N$(), D$(), S$(), Q(), R()

175 IF END THEN 210

176 REM LOOP TO PRINT EACH DATA RECORD

177 FOR K=1T0 3

178 IF N$(K) = "t444444444" THEN 210 :REM PADDING?
180 PRINTUSING 200, N$(K), D$(K), S$(K), Q(K), R(K)
185 NEXT K

190 GOTO 170

200 O ik dkd lidaadgdaadsdgdadaddbdasaadabisaasdddddi
#HHHHH ##, #H## ## o

210 DATA SAVE DC CLOSE

In Example 20.8 notice that within the larger loop that reads the disk
records (lines 170-190) another loop has been nested. For each DATA LOAD DC
(1ine 170), this inner loop prints the three records.

There are two ways for this program to end. If the number of product
records divides evenly by 3, then IF END THEN (1ine 175) will be the loop
exit. Otherwise, 1ine 178 will detect padding characters and cause an exit.

To add records to the end of a file, when using blocked records, the
last block can be found by skipping to the end of the data and then
backspacing one sector (as shown in Example 20.5). However, the program must
then test to see if the block is filled with product records, or has some
padded records. If records are padded, then the new records must replace the
padded records in the 1last block. If the block is filled, then the new

records must begin a new block.
265

AN INTRODUCTION TO DISK DATA FILES

To access a specified product record with blocked files such as these,
the number of sectors to skip must be calculated, as must the record's
subscript within the block. The relationship between these three values for
the first 8 products is as follows:

Consecutive Number of Subscript
Portion of Sectors of Product
Product Number to Skip Record

1 0 1

2 0 2

3 0 3

4 1 1

5 1 2

6 1 3

7 2 1

8 2 2

The number of sectors to skip, B, is given by

-

B = INT((N-1)/3)
““"Wheéé: N is the consecutive portion of the product number.

L

The subscript is given by
g '

K =N - (B*3)

A

where: B and N are defined as above.

Programs that add records to the end of this file and update the
quantity on hand balance of selected records are given in Appendix E.

An additional consideration when planning file size 1is whether the
system of file organization will permit new records to replace old records
deleted from the file.

In the simple consecutive file organization which we have been
discussing here, it would not be too difficult to let new products replace old
ones in the file, provided that the reassignment of an old product number
would not cause any problems external to the system. Unless a single program
was used to mark "deleted" records (by filling the description with asterisks
or some such technique) and to add new records, a 1list of available deleted
records would have to be maintained. In the next section we discuss the
general problem of accessing records, and will return to the topic of
replacing deleted records with new ones from a broader perspective.

266

AN INTRODUCTION TO DISK DATA FILES

20-9 RECORD ACCESS TECHNIQUES

In Section 20-2 we mentioned that the catalog index contains the
starting and ending sector addresses of each file saved on the disk using
Catalog Mode statements. However, it does not contain the sector address of
each individual data record in a file. Therefore, some additional means of
determining the sector address of a desired record must be employed, whenever
data is to be saved in or loaded from a file.

When records in a file can be processed in their physical sequence, then
the automatic updating of the Current Sector address, by DATA SAVE DC and DATA
LOAD DC, can be used to supply the sector address of each record. A simple
example of this was shown in Examples 20.2 and 20.4.

The situation becomes more complicated when sequential accessing of
records 1is impractical. Example 20.6, which allows selected records to be
updated, is an example of nonsequential accessing. In this example a portion
of the product number directly identifies the record's location in the file.
The record is accessed by extracting this portion of the product number, and
"skipping" the specified number of sectors from the beginning of the file.

In general when accessing a file, as in Example 20.6, the known value
that 1is wused to identify the desired record is called the "key" or "key
field." (Sometimes a "key" may be only a portion of a field, as it 1is in
Example 20.6.) Example 20.6 assumed that the key field could be specified to
fit the needs of the system, that is, each new product is assigned the next
consecutive number. Often it is impossible or impractical to specify keys in
this fashion; the keys are determined by considerations external to the
system. For example, it may be necessary to access an employee record, given
the social security number as a key, or an accounts payable record given the
invoice number as a key. In situations such as these, there are a great many
different ways of approaching the problem, but they may be divided into two
classes: (1) solutions that involve the use of another, specially structured
data file that acts as an index to the data file containing the records to be
accessed, and (2) solutions that do not use a separate index file. These
generally depend upon the data file having been sorted on the key fields, or
upon the discovery of a formula for converting the key to a sector address.

When solutions of the first type are employed, the specially structured
index file contains some or all of the keys from the file to be accessed (the
object file). In the index file each key is associated with the sector
address of 1its record 1in the object file. The index file is structured so
that, given a key, the index entry for that key can be rapidly found. The
address in the index is then used to access the object record, or one
sufficiently close to the object record so that a minimal amount of searching
is needed.

Writing programs to create and maintain an index file can be a highly
complex programming task. The associated techniques are outside the scope of
this volume. However, a general purpose keyed file accessing system is
available from Wang Laboratories. Called KFAM, it creates and maintains an
index file for the records in a user's data file. The index file contains an
entry for each record in the user's file. The entry contains the record key,

267

AN INTRODUCTION TO DISK DATA FILES

its sector address, and, for blocked records, its position within the block.
Included in the KFAM system are DEFFN' subroutines which, when passed a key,
automatically search the index file and set the Current Sector address to the
address of the record in the user's data file. Thus, after passing the key of
the desired record to the KFAM subroutine, the user's program can simply
execute a DATA LOAD DC to obtain the record.

The structure of the KFAM index is such that it can be efficiently used
for files that frequently have new records added or old ones deleted. In
addition to random accessing of records, it permits rapid processing of the
user's file in key sequence. (In a user file accessed with KFAM, the physical
sequence of user data records will generally not be key sequence.)

The techniques employed for finding records when an index file is not
used are beyond the scope of this volume, except for simple cases such as the
inventory system shown above in which a portion of the key is directly related
to the sector address of the record. The beginning programmer who needs to
have random access to file records should use the KFAM system.

When using KFAM, it is possible to reuse the space occupied by deleted
records in the user's data file. However, it may be necessary to maintain a
separate file that contains a list of the sector addresses of deleted records.
For more information about this, see the KFAM manual.

20-10 MULTIPLE OPEN FILES

Many data processing tasks require that data from several files be
accessed to complete a single operation. For example, a program to process
customer orders for merchandise might require that, for each order, the
inventory file be updated, the customer (accounts receivable) file be updated,
and perhaps the salesperson's file as well.

With the disk catalog capabilities we have outlined thus far, such an
operation would require that a DATA LOAD DC OPEN statement be executed each
time the program goes from working on one file to working on the next file.
Each time this is done, the new starting, ending, and Current Sector addresses
replace the old ones in the Device Table. This gets the job done, but can be
quite awkward and inefficient. For example, it means that repeated searches
of the catalog index must be made, since this is what DATA LOAD DC OPEN does.
Furthermore, if one of the files 1is being accessed sequentially, the
convenience of having the Current Sector address automatically updated by DATA
SAVE DC and DATA LOAD DC is lost, since opening another file replaces the
Current Sector address with the starting address of the new file.

Thus far we have considered the Device Table as, for example,

Starting Sector Ending Sector Current Sector
Address Address Address
28 228 28

268

Implicitly, the device address and platter parameter has

AN INTRODUCTION TO DISK DATA FILES

been associated as

well, so that a more explicit picture of the Device Table might have looked
like this:
Device Platter Starting Sector | Ending Sector Current
Address | Parameter Address Address Sector Address
F or R
310 F 28 228 28

The device address was provided by Master Initialization or SELECT DISK,

and

the platter parameter was specified by the F or R in DATA LOAD DC OPEN or DATA
SAVE DC OPEN. These two statements also provided the starting, ending and
Current Sector addresses for the table.

The Device Table as shown above contains all the information needed by
the processor in order for it to access a disk sector, that is, the device
address, the platter (F or R), and the sector address on that platter.

If the Device Table consisted of just one row, or "slot" as it is
sometimes called, then in order to access different files, DATA LOAD DC OPEN
would have to be executed repeatedly, as discussed above. In fact, however,
the Device Table contains seven rows exactly like the one shown above, and
permits seven files to be "open" simultaneously. The rows are numbered O0-6.
Thus the actual entire Device Table looks like this:

Row or Device Platter Starting Ending Current
"File" Address Parameter Sector Sector Sector
Number (F or R) Address Address Address

#0 310 undefined 0 0 0

#1 000 undefined 0 0 0

#2 000 undefined 0 0 0

#3 000 undefined 0 0 0

#4 000 undefined 0 0 0

#5 000 undefined 0 0 0

#6 000 undefined 0 0 0

Figure 20.1 The Device Table after Master Initialization

Notice in Figure 20.1 that address 310 is saved by Master Initialization
in Device Table row #0. Row #0 is the row we have been wusing in all the
preceding examples. We were able to do this because row #0 is used by default
if a Device Table row is not explicitly specified in a disk statement. In the
general form of each of the statements we have considered, a specific device
table row can be specified. Thus expanded, the general forms look like this:

269

AN INTRODUCTION TO DISK DATA FILES

DATA SAVE DC OPEN {E} [#n,] expression, name
DATA LOAD DC OPEN {’;} [#n,] name

#n
DATA SAVE DC CLOSE ALL]

E
DATA SAVE DG [#n,] {arr\gJ]Ll?ment Hst}

DATA LOAD DC [#n,] argument list

DSKIP [#n,] {END]}

expression [S

DBACKSPACE [#n,] {Epr(Eession [s]}

For example, the statement

DATA LOAD DC OPEN F “INVTORY"

is equivalent to

DATA LOAD DC OPEN F #0, "INVTORY"

Each of these two statements specifies that the address of the disk device is
row #0 1in the Device Table, and that, when the data file
"INVTORY" is opened, row #0 is to receive the platter parameter,
file's sector addresses.

to be found

in

270

F,

and the

AN INTRODUCTION TO DISK DATA FILES

Now suppose that we had opened the inventory file in this manner and
wish to open, 1in addition, a customer (accounts receivable) file. At this
point, with just the inventory file open, the Device Table looks 1ike this:

Row or Device Platter Starting Ending Current
"File" Address Parameter Sector Sector Sector
Number (F or R) Address Address Address
— s i _ -
#0 310 F 028 228 028
#1 000 undefined 0 0 t]
#2 000 undefined 0 0 0
#3 000 undefined 0 0 0
#4 000 undefined 0 0 0
#5 000 undefined 0 0 0
#6 000 undefined 0 0 0

Before we can open a file in one of the other rows of the Device Table, we
must first put a device address into the row. The statement used to put an
address into one of the rows #1 through #6 is

SELECT 'file symbol' 'device address' ['file symbol' 'device address'...]

where: 'file symbol' is one of the following: #1,#2,
#3, #4, #5, #6.
and 'device address' is the device address to be put into the row.

For example, if the customer file were on a disk mounted in the same disk unit
as the inventory file, the program would execute

190 SELECT #1 310

This statement would put the address 310 into row #1 of the Device Table.

Now a statement such as

200 DATA LOAD DC OPEN R #1, "CUSTOMER"

would be used to open the file called "CUSTOMER" on the R disk, and put the R
parameter, starting sector address, ending sector address, and Current Sector

address into row #1 of the Device Table (Current Sector set to starting sector
address). After this statement the Device Table might look like this:

Row or Device Platter Starting Ending Current
"File" Address | Parameter Sector Sector Sector
Number (F or R) Address Address Address
#0 310 F 28 228 28
#1 310 R 485 960 485
#2 000 undefined 0 0 0
#3 000 undefined 0 0 0
#4 000 undefined 0 0 0
#5 000 undefined 0 0 0
#6 000 undefined 0 0 0

271

AN INTRODUCTION TO DISK DATA FILES

With both of these files open, the customer file, specified in row #1, can be
operated on with statements such as:

210 DATA LOAD DC #1, A$, R, K, Q$(), N

270 DBACKSPACE #1, 25
280 DATA SAVE DC #1, A$, R, K, Q$(), N

330 DSKIP #1, END

420 DBACKSPACE #1, BEG

In each case the #1 in the statement says that the specification of the device
address, platter, and sector addresses is to be found in row #1 of the Device
Table. To operate on the inventory file, the symbol #0 could be included in a
statement, or the specification may be omitted, since #0 is used automatically
if no row 1is specified. Up to seven files may be "open" simultaneously by
using all seven rows of the Device Table. The files may be Tlocated on the
same disk, at different disks mounted in the same drive (F or R), or at disks
mounted in different drives.

In the SELECT statement a 'file symbol' must be specified by the #
symbol and a digit 1-6. A variable may not be used, nor may a variable be
used to contain the device address. However, in disk statement references to
a Device Table row, the # symbol may be followed by a numeric variable. The
value of the variable (0, 1, 2, 3, 4, 5, 6) then determines which Device Table
row is used.

Example 20.9 shows how several open files can be accessed from the same
program,

272

AN INTRODUCTION TO DISK DATA FILES

Example 20.9 Accessing Records in Several Open Files
110 REM ACCESSING SEVERAL OPEN FILES

130 SELECT DISK 310, #1 320, #2 320
140 DATA LOAD DC OPEN F "INVTORY"

150 DATA LOAD DC OPEN R #1, "CUSTOMER"
160 DATA LOAD DC OPEN F #2, "SALES"

310 REM UPDATE INVENTORY FILE
320 DSKIP K S
330 DATA LOAD DC N$(), D$(), S$(), Q(), R()

350 DATA SAVE DC N$(), D$(), S$(), Q(), R()

480 REM UPDATE CUSTOMER FILE

490 DBACKSPACE #1, BEG

500. DSKIP #1, J S

510 DATA LOAD DC #1, A$, R, K2, A$(), N

530 DATA SAVE DC #1, A$, R, K2, A$(), N

600 REM UPDATE SALESPERSON FILE
610 DATA LOAD DC #2, E4$(), N2$(), G(), C()

630 DATA SAVE DC #2, E$(), N2$(), G(), C()
940 DATA SAVE DC CLOSE ALL

In Example 20.9 notice that a single SELECT statement (1ine 130) is used
to select addresses for several rows in the Device Table. The first part of
the SELECT statement, DISK 310, is used to ensure that address 310 is in row
#0 of the Device Table. Master Initialization, of course, puts 310 in row #0,
but a different address could have been selected by an intervening program.
It is not possible to assign a device address to row #0 with the form

SELECT #0 310
The word DISK must be used.

Lines 140 to 160 open the files at the selected addresses, thereby
assigning the platter parameter (F or R) and the sector addresses to the
proper rows in the table. Notice that #0 is not specified, but 1is wused by
default for statements 140 and 320-350. The other statements contain
explicit references to the device table row so that the proper file is
accessed.

The statement shown at 1line 940

940 DATA SAVE DC CLOSE ALL

273

AN INTRODUCTION TO DISK DATA FILES

closes all the open files by filling the Device Table sector addresses with
Zeros. It does not affect the device addresses, which remain as selected by
line 130. To close a particular file, a statement of this form can be used:

DATA SAVE DC CLOSE #n

where: n is a constant, or numeric variable with a value of 0, 1, 2, 3,
4, 5, or 6.

On the 2270-3 disk drive unit, the leftmost and middle diskette ports
are identified by means of the device address and the F or R platter parameter
(F referring to the left port, R the middle). However, the third or rightmost
diskette port is treated as if it were a separate disk drive unit. It has its
own disk address and is referred to by means of this address and the F platter
parameter. The device address of this third port can be determined by adding
40 to the device address of the other two ports. Thus, if the two main ports
are identified by 310, F and R, the rightmost port will be identified by 350,
F only. If the left and middle ports are 320, F and R, the rightmost will be
360, F only, etcetera.

20-11 THE "T" PLATTER PARAMETER

It is possible to let an operator choose the device address at which a
disk file is mounted. For example,

130 PRINT "1. 310", "2. 320"

140 INPUT "ENTER 1 OR 2 TO CHOOSE DEVICE ADDRESS",R
150 ON R GOTO 180, 190

160 PRINT "INVALID. REENTER"

170 GOTO 140

180 SELECT DISK 310

190 GOTO 210

200 SELECT DISK 320

210 DATA LOAD DC OPEN F "INVTORY"

With the techniques we have considered thus far, it is not possible to let an
operator choose whether a disk is to be mounted at the F or R disk locations,
at any given disk unit. This is because statements such as 210, above, have
contained a fixed F or R platter parameter. However, there exists a third
alternative to F and R, which may be used in place of these platter
parameters, This 1is the T parameter; it allows either the F or R disk to be
accessed with the same disk statement.

In order to execute a statement such as
210 DATA LOAD DC OPEN T "INVTORY"
the system must have some way of determining whether "INVTORY" is to be found

at the F or R disks of the selected disk drive. It does this by looking at
the first character of the device address.

274

AN INTRODUCTION TO DISK DATA FILES

A1l the disk device addresses we have mentioned thus far have had a 3 as
the first character (310, 320, 350, etcetera).

disk drive

units

can

However,
also: be addressed if the 3 is replaced with a B. A
complete device address, such as 310, is actually a composite,

same physical

in" which the

last two characters are the address of the physical disk drive unit, and the

first character is a special code, often called the "Device Type"

example, with the addresses 310 and B10

310 B10
AN /O
3 10 B 10
T T T T
Special Unit Special Unit
code Address Code Address
called called
"Device "Device
Type" Typell

code, For

Since 310 and B10 have the same unit address, either may be
the same disk unit.

used to address
If F or R is specified in a disk statement, such as

DATA LOAD DC F "INVTORY"

the device address may be specified in the Device Table as 310 or Bl10, with
exactly the same results. However, when the T parameter is used 1nstead of F
or R, then the 3 in the device address 310 indicates that the Ewgi§k at unit
~address 10 'is to be used; alternatively the B in the deVice ‘address B10.
indicates that the R disk at the same unit, unit 10, is to be used. Thus, by
using the T parametel, a disk statement such as

P —

- - ;
- A / -
L —— i

DATA LOAD DC OPEN T "INVTORY" P ,é? /ﬁ,?

is completely generalized as to the location where INVTORY s to “be found.
The Tlocation 1is specified entirely by the device address, whose last two
characters indicate the unit, and whose first character indicates the platter.

The sequence

110 SELECT #1 B10

120 DATA LOAD DC OPEN T#1, "INVTORY"

causes a search of the catalog index of the R disk at wunit 10 for a file
called "INVTORY". When it finds the index entry, it puts the starting and
ending sector addresses of the file into row #1 of the Device Table, sets the
Current Sector address equal to the starting sector address, and puts an R
into the platter parameter column (since the T in the statement and the B in
the address together indicate the R platter).

275

AN INTRODUCTION TO DISK DATA FILES

- address 310, while the R platter is referred to as address B10. When using
this terminology, it is important to be aware that these device addresses, 310
and B10, carry this platter distinction only for disk statements in which the
T parameter is used; otherw1se 310 and BlO are funct1ona11y 1dent1ca1

Example 20.10 shows a portion of a program that allows an operator to
choose the 1location of a disk file. The T parameter is used so that 310 and
B10, 320 and B20, specify different disk platter locations.

Example 20.10 Operator Selection of Disk File Location

110 REM OPERATOR SELECTION OF A SINGLE DISK FILE LOCATION

120 DIM P$64

130 SELECT DISK 310, #1 320, #2 350, #3 B10, #4 B20

140 PRINT HEX(O30A0AOAOAOA) :REM CLEAR CRT POSITION CURSOR

150 PRINT , "1. 310", "4, B10"

160 PRINT , "2. 320", "5. B20"

170 PRINT , "3. 350"

180 GOSUB '100 ("ENTER 1 - 5 FOR ADDRESS OF 'INVTORY' FILE",
5, 1, 0) :REM NUMERIC ENTRY

190 F1 = X - 1 :REM ASSIGN THE FILE NUMBER TO F1

200 DATA LOAD DC OPEN T#F1, “INVTORY"

L]

3000 REM NUMERIC ENTRY SUBROUTINE

3010 DEFFN' 100 (P$, U, L, D)

3020 PRINT HEX(OT0A); P$

3030 INPUT X

3040 IF X > U THEN 3070 :REM TOO HIGH?

3050 IF X < L THEN 3070 :REM TOO LOW?

3060 IF INT(X*10¢D) = X*104D THEN 3090 :REM # DECIMALS OK?
3070 PRINT HEX(OC); TAB(64); "INVALID. REENTER."

3080 GOTO 3020

3090 RETURN

Line 130 assigns each of the available disk addresses to a row of the
Device Table. This changes the programming problem from one of choosing an
address to choosing the desired row of the Device Table. Lines 140 to 170
display the available addresses. Line 180 passes control to a numeric entry
subroutine that displays a prompt and validates the operator entry. The
returned variable, X, contains a number (1 to 5) indicating the selection
number of the desired address (see lines 150-170). For each address, the
selection number is 1 greater than the row in the Device Table which was
assigned the address. Line 190, therefore, assigns to variable F1 the
appropriate row number. The numeric variable F1 is then used to specify the
Device Table row.

Since, with this form of selection, the Device Table row which is used
is unknown until execution, a different technique must be used if multiple
files are to be open simultaneously. Otherwise, if both files were on the
same disk, opening one would close the other. A program that allows addresses
for two files to be selected is shown in Example 20.11.

276

In common parlance, the F platter of the disk unit 10 is referred to as

-/

£

AN INTRODUCTION TO DISK DATA FILES

Example 20.11 Selecting Locations for Multiple Files

110 REM OPERATOR SELECTION OF DISK FILE LOCATIONS
120 DIM P$64

130 REM KEYBOARD SELECT OF 'INVTORY' DISK ADDRESS
140 GOSUB ' 182 ("ENTER 1 - 5 FOR 'INVTORY' ADDRESS")
150 ON X-1 GOTO 170, 180, 190, 200

160 SELECT DISK 310: GOTO 210

170 SELECT DISK 320: GOTO 210

180 SELECT DISK 350: GOTO 210

190 SELECT DISK B10: GOTO 210

200 SELECT DISK B20:

210 REM OPEN FILE

220 DATA LOAD DC OPEN T#0, "INVTORY"

230 REM KEYBOARD SELECT OF "CUSTOMER" DISK ADDRESS
240 GOSUB ' 182 ("ENTER 1-5 FOR 'CUSTOMER' DISK ADDRESS")
250 ON X-1 GOTO 270, 280, 290, 300

260 SELECT #1 310: GOTO 310

270 SELECT #1 320: GOTO 310

280 SELECT #1 350: GOTO 310

290 SELECT #1 B10: GOTO 310

300 SELECT #1 B20:

310 REM OPEN FILE

320 DATA LOAD DC OPEN T#1, "CUSTOMER"

.

2000 REM SUBROUTINE FOR KEYBOARD SELECTION OF DISK ADDRESS
2010 DEFFN' 182 (P$)

2020 PRINT HEX(O30AOAOAQACA) :REM CLEAR CRT POSITION CURSOR
2030 PRINT , "1. 310", "4. B10"

2040 PRINT , "2. 320", "5. B20"

2050 PRINT , "3. 350"

2060 GOSUB '100 (P$, 5, 1, 0) :REM NUMERIC ENTRY

2070 RETURN

3000 REM NUMERIC ENTRY SUBROUTINE

3010 DEFFN' 100 (P$, U, L, D)

3020 PRINT HEX(OT0A); P$ '

3030 INPUT X

3040 IF X > U THEN 3070 :REM TOO HIGH?

3050 IF X < L THEN 3070 :REM TOO LOW?

3060 IF INT(X*104D) = X*104¢D THEN 3090 :REM # DECIMALS OK?
3070 PRINT HEX(OC); TAB(64); "INVALID. REENTER."

3080 GOTO 3020

3090 RETURN

The T parameter can be useful even when operator selection of addresses
is not needed. For example, even though a particular data file may seemingly
always be mounted at the R disk, there may come a time when, due to system
expansion or other factors, it would be convenient to be able to mount it at
some other location. If the programs which operate on the file are written
using the T parameter, then only the address in one SELECT statement need be
changed to modify the program for operation at a different Tlocation. By
contrast, if F or R is used in the statements, then all F or R references must
be changed.

277

CHAPTER 21
DATA STORAGE ON TAPE CASSETTES

21-1 OVERVIEW OF CASSETTE DATA FILE OPERATIONS

In Section 4-1 we introduced the use of tape cassettes for program
storage. We said that a single program saved on cassette constitutes a
"file", and that a cassette may be used to save many such program files, the
exact number depending upon the length of the cassette tape and the sizes of
the programs. In addition to saving program files, cassettes can be used to
save data files.

A data file is a collection of information about a topic. Within a file
this collection consists of one or more 'records". For example, a test
results file might be a collection of the records from a particular test run,
one record per test. A record for statistical analysis might consist of an X
value and a Y value, the coordinates of a point in the plane; a file of such
records might define a statistical population.

Regardless of the content of the data file, Wang BASIC allows you to
easily create cassette data files, save data records, read data records, skip
forward and back over records and files, and update individual data records.
Table 21.1 provides an overview of the functions performed by the cassette
statements for standard-format data storage and retrieval operations.

Table 21.1 The Tape Data File Statements

STATEMENT FUNCTION

1. a) DATA SAVE OPEN "file name" Saves onto the cassette tape a special
"header" record which marks the begin-
ning of a data file. This special record
contains the name of the file.

b) DATA SAVE Takes values from memory and saves them
as one record on a cassette.

c) DATA SAVE END Saves a special "trailer" vrecord which
marks the end of a data file.

278

DATA STORAGE ON TAPE CASSETTES

2. a) DATA LOAD "file name" Searches forward through a cassette
for the "header" vrecord of a specific
file.

b) DATA LOAD Reads values from a tape cassette record,
and assigns the values to variables in
memory.

3. a) SKIP END Searches forward for the next special
"trailer" record.

b) SKIP n Skips forward over n records on tape.

c) SKIP nF Skips forward over n files on tape.

4, a) BACKSPACE BEG Searches backwards for a header record.

b) BACKSPACE n Backspaces over n records.

c) BACKSPACE nF Backspaces over n files.

5. a) DATA RESAVE OPEN Saves a new special header record which

replaces (updates) the header record of
an existing data file.

b) DATA RESAVE Takes values in memory and saves them as
one record on cassette, replacing
(updating) an existing data record.

A single cassette can be used for just one file or for many files.
Program files and data files can be saved on a single cassette; however, many
programmers prefer to store program files and data files on separate
cassettes.

Unless otherwise specified, all cassette operations occur at the device
whose address 1is selected for TAPE class I/0 operations. This TAPE class
address is set to 10A by Master Initialization, and may be changed at any time
by executing a SELECT statement with a TAPE address specified. For example,

:SELECT TAPE 10B
sets the TAPE class address to 10B.

In addition to the TAPE class parameter, there are two other ways of
specifying the address at which a cassette operation is to take place. These
are discussed in Section 21-8. However, when these other techniques are not
used, the system defaults to the TAPE address.

A11 the tape cassette statements discussed in this chapter can be
executed in the Immediate Mode .

279

DATA STORAGE ON TAPE CASSETTES

21-2 MARKING THE BEGINNING OF A FILE WITH DATA SAVE OPEN

The DATA SAVE OPEN statement is used to record a special header record
that marks the beginning of a data file. This special header record contains
the name of the file. The maximum length of the name is eight characters.
For example, the statement

120 DATA SAVE OPEN "TESTA114"

records a special header record at the current tape location, with the file
name "TESTA114".

It is not strictly necessary to save a header record at the beginning of
a data file. However, the presence of a header record makes it easier to
carry out certain operations. For example, it enables the system to search
forward through a cassette tape for the beginning of a named file, or to
backspace to the beginning of a file from any location within the file. In
general, if you wish to save several data files on one cassette, you will want
to mark the beginning of each of the files with the special header record
created by DATA SAVE OPEN. If you plan to put just one file on a cassette,
the header record may still be useful for cassette handling and control
purposes, since it Tlets you easily record the name of the file onto the
cassette. Finally, some of the utility programs supplied by Wang Laboratories
require that data files have header records.

21-3 SAVING DATA RECORDS

The DATA SAVE statement records data on a cassette tape, and
collectively marks off the recorded data as one "record." It starts recording
at the current position of the tape. For example,

100 DATA SAVE X,Y

causes the values of the variables X and Y to be saved on the cassette tape.
In addition to saving the specified values, DATA SAVE surrounds the saved
values with certain control information used by the system. This control
information collectively marks off the values as a record.

Values to be saved by a DATA SAVE statement can be specified in any of
the following ways:

a) A numeric variable, e.g., A, B1, C5, D.
b) An alphanumeric variable, e.g., A$, B2$, M4$.

c) A specific element of a one-dimensional numeric or alphanumeric
array, e€.g., A(Z), F](3)a X(]O)a B$(4)’ G3$(5)'

d) A specific element of a two-dimensional numeric or alphanumeric
array, e.g., A(3,4), Y5(2,9), A(1,15), C$(5,7), D1$(4,9).

280

DATA STORAGE ON TAPE CASSETTES

e) An array designator (an array name followed by a left And a right

parenthesis), e.g., A(), P$(), M4$(). The entire array of values is
saved.

f) A mathematical expression, e.g., X*Y-Z, SQR(A+2 + Bt2), 2*D, X. The
expression is evaluated and the result is saved.

g) A string function or hexadecimal function, e.g., STR(A$,3,8),
HEX(22), HEX(ODOA).

h) A literal string, e.g., "WANG LABORATORIES".

Any number of values may be specified in the DATA SAVE statement. Each value
specification, or "argument", must be separated from the next by a comma.
Values are saved in the sequence 1in which they appear in the DATA SAVE
statement. If an entire array is specified using an array
designator, for example,

100 DIM R(2,3)
140 DATA SAVE R()

the values in the array are saved row by row. Thus, in the above
example, the values are saved in this sequence: R(1,1), R(1,2), R(1,3),
R(2,1), R(2,2), R(2,3).

Regardless of how a value is specified in a DATA SAVE statement, only
the value 1is saved, not the name of the variable or array, nor the quotation
marks.

Example 21.1 allows the operator to enter the X and Y coordinates of
points in a plane. The values for each point are saved as a record. The
record also contains, as an alphanumeric value, the consecutive number of the
record.

Example 21.1 A Program That Creates a Tape Data File

110 REM CREATING A SIMPLE DATA FILE
120 DIM R$1, N$4

130 REM NAME FILE IN HEADER RECORD
140 DATA SAVE OPEN "POINTS1"

150 REM SET UP FOR RECORD

160 N =N+ 1 :REM RECORD COUNTER
170 PRINT HEX(03); "KEY S.F. 31 TO END PROGRAM"
180 PRINT "RECORD NUMBER ="; N
190 PRINT

200 REM RECEIVE RECORD VALUES

210 INPUT "X VALUE", X

220 INPUT "Y VALUE", Y

230 PRINT

281

DATA STORAGE ON TAPE CASSETTES

240 REM OPERATOR CHECK OF VALUES

250 R$ = " " :REM NO DEFAULT ENTRY

260 PRINT "CHECK VALUES"

270 INPUT “ENTER + TO ACCEPT, - TO REJECT", R$
280 IF R$ = "-" THEN 170 :REM REJECTED?

290 IF R$ = "+" THEN 330 :REM ACCEPTED?

300 PRINT HEX(OC); TAB(64); HEX(0COC): REM OPERATOR ERROR
310 GOTO 260

320 REM SAVE RECORD

330 CONVERT N TO N$,(####)

340 DATA SAVE N$, X, Y

350 GOTO 160

360 REM END PROGRAM

370 DEFFN' 31

380 PRINT HEX(03)

390 END

Line 140 writes a header record which contains the file name "POINTS1".
The display shows the consecutive record number and requires operator
verification of each set of values (170-310). Line 340 saves the record
number and the X and Y values of the point.

Lines 160-350 form a loop. The operator ends this 1loop by keying
Special Function key 31, which effects a branch out of the loop to line 370,
and ends the program,

There are several deficiencies in this simple program. One of these
deficiencies 1is that the end of the file is not marked. This problem is
discussed in the next section.

21-4 MARKING THE END OF A DATA FILE

The statement DATA SAVE END is used to mark the end of a cassette data
file. It writes a record that has special significance to certain other BASIC
statements.

The use of DATA SAVE END is not mandatory; however, as we shall see in
the next several sections, it is often very useful to have the end of the file
marked with DATA SAVE END.

In Example 21.1, the DATA SAVE END statement can simply be added to the
"end program" routine as follows:

375 DATA SAVE END

In future references to Example 21.1, we shall assume that this line has
been added to the program.

282

DATA STORAGE ON TAPE CASSETTES

21-5 LOADING DATA FROM A FILE

DATA LOAD "file name"

Before data can be loaded from a data file that has a header record
marking its beginning, the header record must be read. The statement,

DATA LOAD "file name"

searches forward through a cassette tape for the header record of the
specified file. After it reads the specified header record, it leaves the
tape positioned to read the first actual data record.

For example, the statement
150 DATA LOAD "POINTS1"

searches a cassette tape until it reads the header record of the file

"POINTS1". It 1leaves the tape positioned so that the first record can be
read.

The "file name" parameter in this statement must be a 1literal string
containing the file name, as saved by DATA SAVE OPEN.

DATA LOAD

The DATA LOAD statement reads values from a tape cassette record (or
records), and assigns them to specified variables.

For example, the statement
DATA LOAD N$, X, Y

causes the cassette drive to start reading values from the next record. The
values are assigned successively to the variables N$, X, and Y. The system
reads values until all the specified variables have been assigned a value.
After the last variable is assigned a value, the tape is positioned so that it
is ready to read the first value of the next record.

The assignment of values in DATA LOAD takes place just as if it were
performed in an assignment (LET) statement. For example, if an alphanumeric
variable is too short to contain an entire alphanumeric value, the assignment
is made, but the extra characters on the right are lost. Conversely, if the
variable is longer than the value, it is padded with spaces on the right. It
is especially important to be aware that an error results if a numeric value,
encountered in the record, is matched with an alphanumeric variable in the
DATA LOAD statement, or vice versa. For this, and other reasons, it is
important that precise documentation be maintained of data file record
layouts.

283

DATA STORAGE ON TAPE CASSETTES

Values may be assigned to an entire array by specifying the standard
form array name (array designator) in the DATA LOAD statement. For example,
the statement

DATA LOAD A$(), P()

reads values from a record or records and assigns them element by element, row
by row to the array A$(), until each element in the array has been assigned a
value. Then, the next values are assigned in the same way to P().

The same variables need not be used to receive the values as were
originally used to save them. The only requirement is that numeric values be
loaded into numeric variables or numeric array elements, and alphanumeric
values be loaded into alphanumeric variables or array elements.

Usually, it is good programming practice to read exactly one record with
one DATA LOAD statement. For example, the statement

DATA LOAD N$, X, Y

specifies that three values be read and assigned successively to one
alphanumeric variable, and two numeric ones. It therefore reads exactly one
record as written by statement 340 of Example 21.1.

A DATA LOAD statement need not read exactly one record. If fewer
variables are specified 1in the DATA LOAD statement than there are values in
the record, the extra values are ignored. If more variables are specified
than there are values in the record, successive values from the next record(s)
will be assigned to the variables. It must be emphasized, though, that after
a DATA LOAD statement, the cassette tape 1is positioned to read the next
record, even if only a portion of the previous record has been assigned to
variables. It is impossible to begin reading values in the middle of a record
with the DATA LOAD statement.

Example 21.2 shows a simple program for reading and displaying the data
file created by Example 21.1 (with the addition of the DATA SAVE END record
discussed in Section 21-4),.

Example 21.2 Reading and Displaying the Data File Records

110 REM PRINTING THE DATA FILE

120 DIM N$4

130 SELECT PRINT 005

140 REM FIND FILE

150 DATA LOAD "POINTST"

160 REM SET UP FOR OUTPUT

170 PRINT HEX(03) :REM CLEAR CRT
180 PRINTUSING 300: REM HEADINGS

284

DATA STORAGE ON TAPE CASSETTES

190 REM READ AND PRINT RECORDS
200 FORL =1 T0 14

210 DATA LOAD N$, X, Y
220 IF END THEN 280 :REM NO MORE RECORDS?
230 PRINTUSING 310, N$, X, Y

240 NEXT L

250 INPUT "KEY EXEC FOR MORE LINES", R$

260 GOTO 170

270 REM END

280 PRINT "END OF DATA FILE"

290 REWIND

300 % RECORD NO. X VALUE Y VALUE
310 % XXXX # ### A H #.### A

Statement 150 searches the cassette tape for the header record of
"POINTS1", and positions the tape so that it is set to read the first data
record. This program is designed to operate on a 16 1ine CRT. The headings
are output on line zero by statement 180. The FOR/NEXT loop reads and outputs
14 records, filling all but the bottom line of the CRT. On the bottom 1line a
prompt appears (statement 250) informing the operator that the next 14 records
can be displayed by keying (EXEC).

Example 21.2 reveals the importance of having an end-of-file trailer
record. When a DATA LOAD statement is executed, if the system reads the
special record saved by DATA SAVE END, several things happen. First of all,
the variables specified 1in the DATA LOAD statement, which would have been
assigned values had a normal data record been encountered, instead retain
their current values. Secondly, the DATA LOAD statement is terminated, and
the tape is repositioned so that the end-of-file trailer would be immediately
re-read on a subsequent DATA LOAD execution. Finally, a notation is made in a
special part of memory that an end-of-file trailer record has been read.

The IF END THEN Statement

A special BASIC statement is available to test if an end-of-file trailer
has been read. The form of this statement is

IF END THEN 1ine number

The IF END THEN statement checks the special part of memory to see if an end-
of-file trailer has been read during the last DATA LOAD statement. If it has
been read, IF END THEN effects a branch to the 1ine number following "THEN".
Thus, the IF END THEN statement can be used to exit from a record reading loop
when the end of a file is reached (provided that the end of the file is marked
with the DATA SAVE END trailer record). IF END THEN may not be used in the
Immediate Mode.

In Example 21.2 the IF END THEN statement 1is used to exit from the
record reading loop (1ine 220) when the tape has reached the end-of-file
trailer.

It should be noted that the REWIND statement, line 290, is included at

the end of this program as an operator convenience. Tape cassettes should not
be removed from the drive unless they are rewound.

285

DATA STORAGE ON TAPE CASSETTES

21-6 THE SKIP AND BACKSPACE STATEMENTS

specific

The SKIP and BACKSPACE statements are used to move the cassette tape a

distance forward or

back, without reading the intervening values.

Each of these statements has three forms whose functions are summarized below.

a)

b)

c)

b)

c)

The SKIP Statement:

SKIP END

SKIP n
where n = expression

SKIP nF
where: n = expression

The BACKSPACE Statement:

BACKSPACE BEG

BACKSPACE n
where n = expression

BACKSPACE nF
where n = expression

Searches forward for the next DATA SAVE
END trailer record. Positions the tape
so that the tape drive head is 1in front
of the trailer record.

Skips forward over the number of records
specified by the truncated value of n.
If a trailer record is encountered, the
tape is positioned so that the tape drive
head is in front of the trailer record.

Skips forward over the number of trailer
records specified by the truncated
value of n., The tape 1is positioned
SO that the tape drive head is
immediately beyond the nth
trailer record. (Note: Program
file trailer records as well as data
file trailer records are counted by
SKIP.)

Searches backwards for a DATA SAVE OPEN
header record. Positions the tape so
that the tape drive head is at the end of
the header record, that is, in front of
the first data record in the file.

Backspaces over the number of records
specified by the truncated value of n.
If a header record is encountered, the
tape is positioned so that the tape drive
head is at the end of the header
record, in front of the first data
record in the file.

Backspaces over the number of header
records specified by the truncated value
of n. The tape is positioned so that the
tape drive head is set to read the nth
header record.

The SKIP END statement is particularly useful when records must be added
to the end of a data file (provided, of course, that another data file does
not follow the end-of-file trailer). To add records, a program can simply
execute a SKIP END statement and begin saving the new records with DATA SAVE.
The program should write a new trailer record, when all the new records have
been added.

286

DATA STORAGE ON TAPE CASSETTES

Example 21.3 illustrates a possible use for skipping and backspacing
over individual records in a file. It operates on the file created by Example
21.1, with the
number, the program then SKIPs or BACKSPACEs the required number of records to
find the desired record, and prints the record, when it is found.

DATA SAVE END trailer present. The operator enters a record

Example 21.3 Printing Selected Records from a File

110 REM PRINTING SELECTED RECORDS FROM THE FILE

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

REM

REM

REM
REM

REM
REM

REM

REM

DIM N$4

SELECT PRINT 005

M = 300 :REM INITIAL MAXIMUM RECORD NUMBER ENTRY
FIND THE FILE

DATA LOAD "POINTS1"

P=1 :REM TAPE POSITIONED IN FRONT OF RECORD 1
OPERATOR ENTERS RECORD NUMBER SOUGHT

PRINT HEX(030A) :REM CLEAR SCREEN; LINE 1

INPUT “ENTER THE NUMBER OF THE RECORD TO BE PRINTED", R
IF R < 1 THEN 230 :REM TOO LOW?

IF R<= M THEN 260 :REM LOW ENOUGH?

PRINT "INVALID. REENTER"; HEX(0DOC); TAB(64); HEX(OC)
GOTO 200

BRANCH ON POSITION OF TAPE RELATIVE TO RECORD SOUGHT
ON SGN(R-P)+1 GOTO 330, 310

TAPE POSITIONED BEYOND DESIRED RECORD

BACKSPACE P-R

GOTO 330

DESIRED RECORD IS BEYOND THE CURRENT TAPE POSITION
SKIP R-P

TAPE SET TO READ DESIRED RECORD

DATA LOAD N$, X, Y

IF END THEN 490 :REM ENTERED RECORD NUMBER TOO HIGH
CONVERT N$ TO N

IF N<>R THEN 570 :REM FILE OUT OF SEQUENCE

P = R + 1:REM UPDATE TAPE POSITION COUNTER

OUTPUT RECORD

PRINT HEX(OC); TAB(64); TAB(64); HEX(OAQAOA)
PRINTUSING 620

PRINTUSING 630, N$, X, Y

PRINT HEX(0Q10A)

INPUT "MORE RECORDS (Y/N)", E$

IF E$ = "N" THEN 590 :REM DONE?

E$ = un

R=0

GOTO 190

ERROR ROUTINES

PRINT "ERROR: RECORD NUMBER"; R; "IS TOO HIGH"
BACKSPACE 1

DATA LOAD N$, X, Y :REM READ LAST RECORD

CONVERT N$ TO M :REM PUT ACTUAL LAST RECORD NO. IN M
PRINT "THE HIGHEST RECORD NUMBER IS"; M

P =M+ 1 :REM UPDATE TAPE POSITION COUNTER

PRINT HEX(010A);TAB(64)3HEX(0OC)

GOTO 430

STOP "FILE OUT OF SEQUENCE. CANNOT BE PROCESSED"

287

DATA STORAGE ON TAPE CASSETTES

580 REM END PROGRAM

590 REWIND

600 PRINT HEX(03)

610 END

620 % RECORD NO. X VALUE Y VALUE
#H## #o### A #o### A

This program maintains the current tape position in variable P. It is
maintained as the record number which the tape head is set to read. When the
file is found (1line 160), P is assigned the value 1 since at this point a DATA
LOAD would read record number 1.

At first the maximum record number is not known. However, the
assumption is made that it is not larger than 300 (lines 140 and 220). The
grounds for this assumption, which is based on the record format and maximum
tape capacity, are discussed in Section 21-7.

A record number is entered and validated at lines 200-240. The tape can
be in any of three positions relative to the record sought: it can be beyond
the record, it can be set to read the record, or it may have to skip ahead to
find the record. Line 260 effects no branch under the first condition, a
branch to 1ine 330 under the second, and one to 310 under the third. Line 280
BACKSPACEs, or 1line 310 SKIPs, the required number of records, to reach the
desired record.

Line 330 attempts to read the record. If an end trailer is read, then
the entered record number is greater than the number of records actually in
the file. If a data record has been read, it is checked to ensure that it is
the record sought (line 360), and the tape position, P, is updated. The
record is displayed, and the operator may then continue or end the program.

If an end-of-file trailer is read (line 340), the error routine (lines
490-560) indicates the problem, and reads the preceding record to determine
the exact maximum record number. This maximum is then substituted for the
earlier estimate in M. Thus, the error cannot occur twice.

It would have been possible to SKIP END at the beginning of this
program, to determine the last record number in the manner used by the error
routine. However, this is quite time consuming, and offers no real
advantages.

The operator of this program will quickly notice that backspacing over

records is much slower than skipping over them. For this reason it is
generally advantageous to process tape records sequentially.

21-7 EFFICIENT DATA STORAGE

How Data Is Recorded

In Section 21-3 we said that each DATA SAVE statement saves a single
record, that 1is, it collectively marks off the values it saves as a single
record. A single record can contain any number of values, and, therefore, it
is not strictly necessary to consider how data is recorded on cassette tape in
order to use the tape data file statements. However, knowing how data is
recorded can produce dramatically more efficient use of tape data files.

288

DATA STORAGE ON TAPE CASSETTES

A11 recording on cassette tape is done in physical blocks. Each block
has an absolute capacity of 256 bytes (remember a byte is the amount of space
needed to store one alphanumeric character). The cassette drive always
records at least one block each time a DATA LOAD is executed.

If a record requires less than 256 bytes for storage on tape, the DATA
SAVE statement simply 1leaves empty space (garbage) between the end of the
record and the end of the 256 byte block. Reducing the amount of this wasted
space is an 1important objective for the programmer. It results in more
efficient tape utilization and faster program execution,

In order to reduce this waste, you must first know exactly how much
space is occupied by recorded values. Although each tape block has a
physical capacity of 256 bytes, the system automatically records
certain control information in addition to the actual data values. There are
two types of control information:

1. Block Control bytes.
2. Start of Value (SOV) control bytes.

The DATA SAVE statement always writes three Block Control bytes into
each block. Two of these occupy the first two byte locations in each block.
These are used to indicate whether the block is the first, last, or a middle
block 1in the record. They distinguish one record from the next. The third
Block Control byte follows the last byte of the last data value in the block,
and marks the end of valid data within the block. After subtracting the three
Block Control bytes, a total of 253 bytes is available for data values and
Start of Value (SOV) bytes.

A single Start of Value (SOV) byte precedes each value saved in a
record. This byte indicates to the system whether the value is numeric or
alphanumeric and the length of the value in bytes. Consider, for example, the
X,Y coordinate record in the preceding sections. The storage space for the
record is defined by:

120 DIM N$4

220 DATA SAVE DC N$, X, Y

289

DATA STORAGE ON TAPE CASSETTES

and the record looks like this in a block:

TOTAL USED = 26 BYTES TOTAL BLOCK = 256 BYTES TOTAL UNUSED = 230 BYTES

B,
SOV for SOV for SOV for
value of N$ value of X value of Y

4 byte 8 byt
l ytes l jy\es Sjbztes
—A —

Value of

N$

Value of
Y

AN
AN

\W—/

2 block T
control
bytes 1 block
control
byte,

End of
valid data,

Figure 21.1 A Record in a Tape Block
Space requirements can be summarized as follows:

1. There are 253 bytes available for storage in each block after
allowing for the Block Control bytes.

2. Each numeric value requires 9 bytes, 8 bytes for the value plus 1
byte for the SOV. (Numeric values may be specified in the DATA SAVE
statement by numeric variables, expressions, or numeric array
elements.)

3. Each alphanumeric value requires a number of bytes equal to the
dimensioned size of the specifying alphanumeric variable or array
element plus one byte for the SOV, or the number of characters in
the specifying literal string plus one byte for the SOV. Note that
in the case of an alphanumeric variable or array element, it is the
dimensioned size, including all trailing spaces, which must be
counted.

4, 1If a value does not completely fit into the space remaining in a
block, it is automatically written in the next block. Values do not
overlap from one block to the next, though a single record may
require many blocks.

When entire arrays are saved in a record by using the standard array
designator, the values are saved element by element, row by row into the
record. Within the record there is no indication of whether a value was saved
from an array or any other specific source, and, therefore, values may be
loaded into array or scalar variables regardless of their source
specification.

290

DATA STORAGE ON TAPE CASSETTES

Programming Techniques That Improve Storage Efficiency

As can be seen from Figure 21.1, the records saved by the program of
Example 21.1 waste a tremendous amount of tape space. Each record uses 26
bytes of a block, and wastes 230. As a result of the program of Example 21.1,
one tape record (the result of a single DATA SAVE statement) contains one data
record, that is, the data needed to specify a particular point in the X,Y
coordinate plane. DATA SAVE always creates one tape record and always uses at
least one complete block. There is no way to put more than one tape record
into a single block. However, since the concept of what constitutes a data
record is defined by the program, it is possible to let one tape record
contain several data records (in this case the data for several points). From
the point of view of the tape record and the control information written with
a DATA SAVE statement, the several data records will "look 1ike" a single
record since they must be written collectively with a single DATA SAVE
statement. The programs that create and use the file must themselves
distinguish one data record from another within a single tape record.

Each point in our simple data file requires that two numeric values be
saved. The two values occupy a total of 18 bytes including the SOV bytes.
Since a total of 253 bytes is available per block for SOV's and data, we could
save 14 point specifications in a block. These would occupy 252 bytes,
leaving just one byte unused. However, as in Example 21.1, we may wish to
maintain some additional information in each block. For a blocked file it
might be a good idea to save in each block a block number and a notation
indicating the number of points actually saved in the block. To accommodate
this information, we reduce the number of points saved in each block to 13.

One way to save 13 point specifications is to simply use 13 sets of
variables in the DATA SAVE statement. For example, if the additional block
information (block number, number of records) is in B$, and the 13 points are
given by

(X,Y), (X0,Y0), (X1,Y1), (X2,Y2)...(X9,Y9)
(A,B), (A0,BO)

then the DATA SAVE statement would be

DATA SAVE B$,X,Y,X0,Y0,X1,Y1,X2,Y2,X3,Y3
X4,Y4,X5,Y5,X6,Y6,X7,Y7,X8,Y8,X9,Y9,A,B,A0,B0

This approach to saving the records is extremely awkward. A far better
approach is to put all the X values into a one-dimensional array, X(), and all
the Y values into a one-dimensional array, Y(). In this way X(1) and Y(1) can
define a point, as can X(2) and Y(2), X(3) and Y(3)...X(13) and Y(13). The 13
points are saved as follows:

120 DIM X(13) Y(13) B$6

400 DATA SAVE B$, X(), Y()

Saving multiple data records with a single DATA SAVE statement in this fashion
is often called "array-type blocking".

291

DATA STORAGE ON TAPE CASSETTES

Example 21.4 shows a program that creates a data file
saving 13 points per block.

Example 21.4 Array Type Blocking of a Data File

110 REM ARRAY TYPE BLOCKING OF A DATA FILE

120 DIM X(13), Y(13), R$1, B$6

130 REM NAME FILE IN HEADER RECORD

140 DATA SAVE OPEN "POINTS2"

150 REM SET UP PER BLOCK

160 B =B + 1 :REM BLOCK COUNTER

170 REM LOOP TO ENTER VALUES FOR ONE BLOCK

180 FOR R =1 TO 13 :REM 13 RECDS. PER BLOCK

in this manner,

190 PRINT HEX(03); "KEY S.F. 31 TO END PROGRAM"
200 PRINT "RECORD NUMBER="; (B-1)*13 + R

210 PRINT

220 REM RECEIVE RECORD VALUES

230 INPUT "X VALUE", X(R)

240 INPUT "Y VALUE", Y(R)

250 PRINT

260 REM OPERATOR CHECK OF VALUES

270 R$ =" ":REM NO DEFAULT ENTRY

280 PRINT "CHECK VALUES"

290 INPUT "ENTER + TO ACCEPT, - TO REJECT", R$
300 IF R$ = "-" THEN 190 REM REJECTED?

310 IF R$ = "+" THEN 340 :REM ACCEPTED?

320 PRINT HEX(OC); TAB(64); HEX(OCOC): REM ENTRY ERROR
330 GOTO 280

340 NEXT R

350 GOSUB 390 :REM SAVE BLOCK OF RECORDS

360 GOTO 160

370 REM

380 REM SAVE BLOCK

390 CONVERT B TO B$,(####) :REM BLOCK NUMBER

400 CONVERT R TO STR(B$,?%, (##) :REM # OF RECDS.

410 DATA SAVE B$, X(), Y
420 RETURN

430 REM

440 REM END PROGRAM

450 DEFFN' 31

460 IF R = 1 THEN 490 :REM ALL ENTERED RECORDS SAVED?

470 R=R-1 :REM R = NO. OF COMPLETED RECORDS
480 GOSUB 390 :REM SAVE LAST GROUP OF RECDS.
490 DATA SAVE END :REM MARK END OF DATA FILE

500 PRINT HEX(03)

510 END

In this program a FOR/NEXT Toop (180-340) allows the 13

sets

IN BLOCK

of point

values to be entered. The counter variable, R, is used as the specifying

subscript for the receiving variables (lines 230 and 240).

292

DATA STORAGE ON TAPE CASSETTES

After 13 points have been entered, the loop terminates, and a record is
saved by the "save block" subroutine (1ines 340, 350). The program then loops
back for more point entries.

The “save block" subroutine (1ines 390-420) converts the block number
and record counter to alphanumeric characters. Both of these values are
assigned to B$, which has a length of 6 characters. Converting these numeric
values to alphanumeric form reduces their storage space requirement from 18
bytes (2 numeric values and SOV's) to 7 bytes. In this program this isn't
strictly necessary, since the block could have accommodated two more numeric
values; however, it serves to illustrate a commonly used technique.

The operator ends this program by keying Special Function key 31 which
causes a branch to line 450. However, before program execution terminates,a
check is made to see if all entered points have been saved. Unless the number
of points entered is a multiple of 13 when S.F. 31 is keyed, there are
left-over points not yet saved, that must be saved. If the record counter, R,
equals 1 at Tine 460, then all entered and accepted points have been saved.
In general, R-1 is equal to the total number of entered and accepted points
that have not yet been saved. Line 480 saves the last block of records, with
the last two characters of B$ now containing a number less than 13. Finally,
line 490 saves the special end-of-file record.

Example 21.5 shows a program that reads and displays the data file
created by Example 21.4. It is functionally similar to Example 21.2.

Example 21.5 Printing the Array-Blocked Data File

110 REM PRINTING THE ARRAY BLOCKED DATA FILE

120 DIM X(13), Y(13), B$6

130 SELECT PRINT 005

140 REM FIND FILE

150 DATA LOAD "POINTS2"

160 REM READ AND PRINT

170 DATA LOAD B$, X(), Y()

180 PRINT HEX(03) :REM CLEAR CRT

190 IF END THEN 290

200 PRINTUSING 310: REM HEADINGS

210 CONVERT STR(B$,1,4) TO B :REM BLOCK NUMBER
220 CONVERT STR(B$,5) TO N :REM NUMBER OF RECDS IN BLOCK
230 FORJ =1 TO N

240 PRINTUSING 320, J+(B-1)*13, X(J), Y(J)
250 NEXT J

260 IF N <13 THEN 290 :REM NO MORE BLOCKS?
270 INPUT "KEY (EXEC) FOR MORE RECORDS", Z$
280 GOTO 170

290 REWIND

300 STOP "END OF DATA FILE"

310 % RECORD NO. X VALUE Y VALUE

320 % #### #o### 4 H AR A

293

DATA STORAGE ON TAPE CASSETTES

In this program, line 170 reads the entire block of records. Lines 210
and 220 convert the block number and number of records in the block to numeric
form. Every block except the last contains 13 significant records. The loop
at lines 240-250 displays the 13 records, each on a separate line of the CRT.

At 1line 270, the operator keys (EXEC) to get the next block of records
displayed.

After all records have been displayed, the program ends in either of two
ways. If the total number of records in the file is a multiple of 13, then
every block, including the last, is full. In this case, after the last block
of records has been displayed, line 170 reads an END trailer, and 1line 190
branches to end the program. Otherwise, if the number of records is not an
exact multiple of 13, then the last block contains less than 13 records. (The
FOR/NEXT 1oop only displays as many records as are actually present, since its
upper bound is N (line 230).) Line 260 tests if N is less than 13, and ends
the program if it is.

21-8 SPECIFYING TAPE DEVICE ADDRESSES

A1l of the cassette operations in the preceding example programs have
occurred at the address selected for TAPE class I/0 operations. Master
Initialization selects address 10A for TAPE operations. Generally any system
that contains at 1least one cassette drive will have a cassette drive with
address 10A. If a system includes additional cassette drives, they usually
are addressed as 10B, 10C, 10D, 10E, 10F, in that order.

If your system consists of just one cassette drive and that drive is
address 10A, then you never have to specify any cassette address, since Master
Initialization automatically selects 10A for all TAPE operations. However, if
your system includes more than one cassette drive, then in order to use any
drive that has an address of 10B...10F, you must in some way specify its
address.

There are three ways of specifying an address for a cassette operation:

1. An address may be directly specified in the tape cassette statement.
A directly specified address is always written in the form

/XYY
where xyy is the device address.
For example,
100 DATA SAVE /10C, OPEN "POINTS1"

This statement writes a header record on the cassette tape mounted
at device 10C. Additional examples, for the statements we have
considered, are:

100 DATA LOAD /10B, N$, X, Y
100 DATA SAVE /10A, B$, X(), Y()
100 BACKSPACE /10B, BEG

100 SKIP /10C, K2 F

100 DATA SAVE /10A, END

294

DATA STORAGE CON TAPE CASSETTES

Each of these operations takes place at the specified address. When
an address is specified directly in this fashion, the address
selected for TAPE operations is ignored.

2. A SELECT statement with a TAPE parameter can be executed. Cassette
statements can then be written without additional specification, so
that the selected TAPE class address 1is wused. For example, the
statement

SELECT TAPE 10C

selects the cassette drive whose address is 10C for all subsequent
tape operations in which no additional specification is supplied.

3. A SELECT statement may be used to associate a tape cassette address

with a "file number". If a cassette statement then contains a "file
number" specification, the address SELECTed for that "file number"
is used.

For example, this sequence causes the cassette operations to take
place at address 10C.

120 SELECT #1 10C
130 DATA SAVE #1, B$, X(), Y()

260 DATA SAVE #1, END
270 REWIND #1

In the above example, the SELECT statement at 1ine 120 associates
the address 10C with "file number" #1. In the subsequent
statements, #1 is specified as the file number whose device address
is to be used for the operation.

The term "file number" refers to any of the following two-character
symbols: #, #2, #3, #4, #5, #6. In cassette operations, unlike
disk operations, a variable may not be used to specify a file
number.

File numbers are a useful means of specifying cassette addresses
when a single program uses more than one cassette, and when operator
selection of cassette address is desirable.

Example 21.6 shows a routine that might be used to allow an operator to

select, from three possible addresses, the addresses at which "input" and
"output" cassettes are mounted.

295

DATA STORAGE ON TAPE CASSETTES

Example 21.6 Operator Selection of Tape Device Addresses

110 REM OPERATOR SELECTION OF TAPE FILE DEVICE ADDRESSES

120 REM SELECT INPUT FILE ADDRESS

130 GOSUB 2010 :REM DISPLAY ADDRESS MENU

140 REM KEYBOARD ENTRY

150 INPUT "ENTER 1, 2 OR 3 TO SELECT INPUT FILE ADDRESS", R
160 IF R = INT(R) THEN 200 :REM ENTRY IS INTEGER?

170 PRINT "INVALID. REENTER"; HEX(0ODOC); TAB(64); HEX(OC)
180 GOTO 150

190 REM BRANCH ON ENTERED VALUE

200 ON R GOTO 220, 230, 240

210 GOTO 170 :REM INVALID ENTRY

220 SELECT #1 10A :GOTO 260

230 SELECT #1 10B :GOTO 260

240 SELECT #1 10C

250 REM SELECT OUTPUT FILE ADDRESS

260 GOSUB 2010 :REM DISPLAY ADDRESS MENU

270 REM KEYBOARD ENTRY

280 INPUT "ENTER 1, 2 OR 3 TO SELECT OUTPUT FILE ADDRESS", R
290 IF R = INT(R) THEN 330 :REM ENTRY IS INTEGER?

300 PRINT "INVALID. REENTER"; HEX(ODOC); TAB(64); HEX(OC)
310 GOTO 280

320 REM BRANCH ON ENTERED VALUE

330 ON R GOTO 350, 360, 370

340 GOTO 300 :REM INVALID ENTRY

350 SELECT #2 10A :GOTO 380

360 SELECT #2 10B :GOTO 380

370 SELECT #2 10C

2000 REM DISPLAY ADDRESS MENU SUBROUTINE

2010 PRINT HEX(O30A0OAOAQAOA) :REM CLEAR CRT. LINE 5.
2020 PRINT , "“1. 10A","3. 10C"

2030 PRINT , "2. 10B"; HEX(01);

2040 RETURN

A subroutine (1ines 2010-2040) displays the avaiiable addresses. The
operator enters 1, 2, or 3 to choose an address (1ine 150). An ON...GOTO
statement branches on the operator's entry (line 300) to select the desired
address for file number #1 (lines 220-240). The procedure is repeated for the
output file, whose address is selected for file number #2.

The program (not shown) that follows this routine would include file

number #1 in all cassette statements operating on the "input" cassette and
file number #2 in the statements operating on the "output" cassette.

296

DATA STORAGE ON TAPE CASSETTES

21-9 UPDATING CASSETTE DATA FILES

Any data file may become obsolete. Depending on the purpose of the
file, you may then simply destroy it by saving other data or programs over it,
or you may update it, so that it is no longer obsolete. Typically, to update
a file, you may wish to add new records to the end of the file, add new
records in the middle of the file, or change the values saved in existing
records.

If, when you create a new data file, you know that more records will
sometime have to be added to the end of it, then it is probably a good idea to
devote an entire cassette to the file. When new records must be added, your
program can simply SKIP END, and begin saving the new records, provided, of
course, that the cassette is not full.

When existing records must be updated, or new records added to the
middle of a file, there is a preferred approach, and there is a less desirable
approach that can be used if absolutely necessary.

The preferred approach to updating a cassette data file is to create a
new updated file on another cassette, by copying from the old file all records
which are acceptable, and substituting new updated records wherever necessary.
This method requires two cassette drives, and is sometimes called a
"father-son" approach to file maintenance. In general, the obsoleted file is
preserved at least until the new file contributes to a third-generation
updated file. Thus, should a file accidentally be destroyed, the 1last
updating of the file is all that has been lost. This form of copy-updating is
the only prudent approach for a file that must frequently be updated over a
long lifetime, and that would be difficult to reconstruct if accidentally
destroyed. Example 21.7 shows a program that performs this type of updating
on the array-blocked file discussed in Section 21-7,

Example 21.7 Updating the Array-Blocked Data File

110 REM UPDATING THE ARRAY-BLOCKED DATA FILE

120 DIM X(13), Y(13), B$6

130 SELECT PRINT 005, #1 10A, #2 10B

140 PRINT HEX(030A)

150 INPUT "MOUNT OLD FILE - 10A, BLANK CASSETTE - 10B", Z9%
160 DATA LOAD #1, "POINTS2" :REM FIND OLD FILE

170 DATA SAVE #2, OPEN "POINTS2" :REM SAVE NEW HEADER

180 REM

190 REM LOAD NEXT BLOCK

200 DATA LOAD #1, B$, X(), Y()

297

DATA STORAGE ON TAPE CASSETTES

210 REM DISPLAY BLOCK

220 PRINT HEX(030AOA) :REM CLEAR CRT

230 IF END THEN 620

240 PRINTUSING 660: REM HEADINGS

250 CONVERT STR(B$,1,4) TO B :REM BLOCK NUMBER

260 CONVERT STR(B$,5) TO N :REM NUMBER OF RECDS IN BLOCK
270 PRINT HEX(OC)

280 FORJ =1 TO N

290 PRINT
300 PRINTUSING 670, J+(B-1)*13, X(J), Y(J);
310 NEXT J

320 PRINT HEX(010D);

330 REM KEYBOARD CHOICE - UPDATE? OR OK NOW?

340 INPUT "ENTER NUMBER OF RECORD TO BE CHANGED (0 = NONE)",R1
350 REM OK NOW?

360 IF R1 = 0 THEN 590 :REM SAVE BLOCK

370 REM OPERATOR ERROR?

380 IF R1<> INT(R1) THEN 560 :REM NOT INTEGER?

390 IF R1 < 1+(B-1)*13 THEN 560 :REM TOO LOW?

400 IF RT > N+(B-1)*13 THEN 560 :REM TOO HIGH?

410 REM CHANGE A RECORD

420 S = R1-(B-1)*13 :REM S IS SUBSCRIPT OF DESIRED RECORD
430 PRINT HEX(O30AOAOAOAQAOA); "RECORD NOW IS:"

440 PRINTUSING 660

450 PRINTUSING 670, R1, X(S), Y(S)

460 PRINT HEX(010A)

470 INPUT "ENTER NEW X VALUE", X

480 INPUT "ENTER NEW Y VALUE", Y

490 INPUT "ENTER + TO ACCEPT, - TO REJECT NEW ENTRIES", Z9%
500 IF Z9$<> "+" THEN 430 :REM NEW ENTRIES REJECTED?

510 X(S) = X

520 Y(S) = ¥

530 GOTO 220 :REM REDISPLAY BLOCK

540 REM

550 REM ERROR ROUTINE

560 PRINT "INVALID. REENTER"; HEX(ODOC); TAB(64); HEX(OC)
570 GOTO 320

580 REM SAVE UPDATED BLOCK ON OQUTPUT TAPE

590 DATA SAVE #2, B$, X(), Y()

600 IF N = 13 THEN 200: REM MORE BLOCKS?

610 REM END OF PROGRAM

620 DATA SAVE #2, END

630 REWIND #1

640 REWIND #2

650 PRINT HEX(03); "END OF PROGRAM"

660 % RECORD NO. X VALUE Y VALUE

670 % #H## #, 444 H#H # 444 H#H

In this program file number #1 is used to specify the old cassette, in
drive 10A; file number #2 is used to specify the new cassette, in drive 10B.
At 1ine 200 a block of records is read from the old file. Lines 220 to 320
display the block of records in a manner similar to that used in Example 21.5.
The operator can then enter a record number for a record to be changed, or
accept the block of records as currently displayed (1line 340). If a record is
selected to be updated, it is displayed alone on the screen (lines 440, 450),

298

DATA STORAGE ON TAPE CASSETTES

and the operator enters and accepts the new values (lines 470-500). The
entered values are assigned to the block array (lines 510, 520), and the
entire block, as updated, is redisplayed. After a block is accepted (1lines
340, 360), it is saved on the new cassette (line 590). The program continues
until the end of the file is found (1ine 230, 600). Line 620 then saves an
end-of-file record in the new file.

The DATA SAVE statement cannot be used to update a record or block of
records 1in the middle of a data file. For example, one might suppose that to
update a record in a tape cassette file, a program could simply read the
record, or block of records, backspace one record, or block of records, and
execute a DATA SAVE to write a new record over the old one. This cannot be
done effectively. The DATA SAVE statement, used in this fashion, will not
position the new record exactly over the old one. Remnants of the old record

will cause errors, when a later DATA LOAD is attempted, and prevent the file
from being read.

On systems that have two cassette drives, the copy-update technique as
illustrated in Example 21.7 should always be used for file updating. On
systems that have only one cassette drive, occasional updating of relatively
short-lived data files can be performed with the BASIC statement DATA RESAVE.
DATA RESAVE performs the same functions as DATA SAVE, except that it carefully
records the new record or block of records exactly over a previously recorded
record or block of records. Thus, DATA RESAVE permits single cassette
updating. Unlike the two-cassette "father-son" approach, updating 1in place
with DATA RESAVE does not leave any back-up cassette. For this reason, DATA
RESAVE should only be used when the following conditions exist.

1. Only one cassette drive is available.

2. The file to be updated need only be wupdated infrequently.
(Specifically the file should not be one requiring regular updating
that is intrinsic to the file's purpose.)

3. The file, if accidentally destroyed at any time, «can be
reconstructed without a disasterous interruption of operations.

Example 21.8 shows a modification of Example 21.7 that uses DATA RESAVE
to update a cassette file.

Example 21.8 Using DATA RESAVE to Update a File

110 REM UPDATING THE ARRAY-BLOCKED DATA FILE - ONE CASSETTE
120 DIM X(13), Y(13), B$6, F$1

130 SELECT PRINT 005, #1 10A

140 PRINT HEX(030A)

150 INPUT "MOUNT FILE TO BE UPDATED IN DRIVE 10A", Z9%

160 DATA LOAD #1, "POINTS2" :REM FIND OLD FILE

180 REM

190 REM LOAD NEXT BLOCK

200 DATA LOAD #1, B$, X(), Y()

205 F$ = "U" :REM SET BLOCK FLAG TO "U" = UNCHANGED,

299

DATA STORAGE ON TAPE CASSETTES

210 REM DISPLAY BLOCK ‘

220 PRINT HEX(030A0A) :REM CLEAR CRT

230 IF END THEN 630

240 PRINTUSING 660: REM HEADINGS

250 CONVERT STR(B$,1,4) TO B :REM BLOCK NUMBER

260 CONVERT STR(B$,5) TO N :REM NUMBER OF RECDS IN BLOCK
270 PRINT HEX(OC)

280 FORJ =1 TO N

290 PRINT
300 PRINTUSING 670, J+(B-1)*13, X(J), Y(J);
310 NEXT J

320 PRINT HEX(010D);

330 REM KEYBOARD CHOICE - UPDATE? OR OK NOW?

340 INPUT "ENTER NUMBER OF RECORD TO BE CHANGED (0 = NONE)",R1
350 REM OK NOW?

360 IF R1 = 0 THEN 585 :REM RESAVE BLOCK, IF CHANGED.

370 REM OPERATOR ERROR?

380 IF R1<> INT(R1) THEN 560 :REM NOT INTEGER?

390 IF Rl < 1+(B-1)*13 THEN 560 :REM TOO LOW?

400 IF Rl > N+(B-1)*13 THEN 560 :REM TOO HIGH?

410 REM CHANGE A RECORD

415 F$ = "C" :REM SET BLOCK FLAG TO "C" = CHANGED

420 S = R1-(B-1)*13 :REM S IS SUBSCRIPT OF DESIRED RECORD
430 PRINT HEX(O30AOAOAOAQAOA); "RECORD NOW IS:"

440 PRINTUSING 660 '

450 PRINTUSING 670, R1, X(S), Y(S)

460 PRINT HEX(010A)

470 INPUT "ENTER NEW X VALUE", X

480 INPUT "ENTER NEW Y VALUE", Y

490 INPUT “ENTER + TO ACCEPT, - TO REJECT NEW ENTRIES", Z9%
500 IF Z9$<> "+" THEN 430 :REM NEW ENTRIES REJECTED?

510 X(S) = X

520 Y(S) = Y

530 GOTO 220 :REM REDISPLAY BLOCK

540 REM

550 REM ERROR ROUTINE

560 PRINT "INVALID. REENTER"; HEX(0DOC); TAB(64); HEX(OC)
570 GOTO 320

580 REM RESAVE UPDATED BLOCK IF NECESSARY

585 IF F$ = "U" THEN 600 :REM NO CHANGE TO THIS BLOCK
587 BACKSPACE #1, 1 :REM POSITION TAPE FOR UPDATE OF BLOCK
590 DATA RESAVE #1, B$, X(), Y()

600 IF N = 13 THEN 200: REM MORE BLOCKS?

610 REM END OF PROGRAM

630 REWIND #1

650 PRINT HEX(03); "END OF PROGRAM"

660 % RECORD NO. X VALUE Y VALUE

670 % #### #, 444 HHH #, 44 # A

Only minor modifications are required to adapt the two cassette version
(Example 21.7) to single cassette (Example 21.8). Line 170 is eliminated. To
update the cassette (lines 587 and 590), the tape is backspaced one record and
DATA RESAVE 1is used. With the one cassette system, if a block of records is
completely unchanged, there is no need to backspace and resave it, so a
procedure for detecting whether a block has been changed is added to this

300

DATA STORAGE ON TAPE CASSETTES

program. When a new block is read, a flag, F$, is set to "U" to signify that
at this stage the block is unchanged. If the operator immediately accepts the
entire block as is (1ine 340), then the value "U" in F$ causes a branch (line
585) around the update routine. If any change is made to a block of records,
F$ is set to "C" (1ine 415) to ensure that an updated block will be resaved.

When DATA RESAVE is used, the record to be saved must be absolutely

identical to the record being recording over; otherwise, the file is
destroyed.

301

CHAPTER 22
CHAINING PROGRAM MODULES

22-1 OVERVIEW

Sometimes a program cannot fit in the available system memory. In this
case it may still be possible to accomplish the program's task with a
technique called "chaining" (sometimes also called "overlaying").

To use chaining, a task to be programmed should first be broken down
into two or more major sub-tasks or "phases." For example, many tasks may
easily be broken down into a set-up or data dinput phase and a processing
phase. Often a distinct third phase may be present in which an output
operation takes place.

Once the task has been broken down into several phases that follow upon
one another, the program can be broken down into several sub-programs, called
"modules", that each accomplish one phase of the total task. We have
presupposed that all of these modules will not fit into memory at one time;
however, since each accomplishes a distinct phase of the total task, it may be
possible to execute these modules successively, letting one module replace the
preceding one in memory, and in this manner complete the entire task.

If a task has been programmed using three modules, the operator loads
the first module. When the task of the first module is complete, all (or some
portion) of the program statements of the first module are automatically
cleared; the second module is 1loaded, and starts to execute. The BASIC
statements LOAD or LOAD DC are used to accomplish this linking of one module
to the next. Operator action is not required. The LOAD statement appears in
one module and, when executed, loads the next module. This second module may
contain a LOAD statement which loads a third module. This Tinking of modules
is responsible for the use of the term "chaining". Each time a new module is
loaded, some portion of the previous module is cleared to make room for the
new.

Four BASIC statements are available to facilitate program chaining.
Their purposes are summarized below.

302

CHAINING PROGRAM MODULES

Statement Purpose
COM Specifies a variable or array that contains data common

to several modules, and that is not to be cleared when
a new module is loaded.

LOAD Clears a specifiable portion of the program currently
R in memory, and clears all variables not designed as
common. Then loads a named program module into memory
from cassette tape, and initiates execution at a

specified line.

LOAD DC Same as LOAD except that the program module is 1loaded
from a cataloged disk.

COM CLEAR Changes the status of a variable from common to
non-common, Or vice-versa.

An additional command is also available which has not previously been
discussed, and which is useful when programming in multiple modules. This is
the command

CLEAR N
The "N" parameter stands for "non-common" variables. CLEAR N clears all
variables not designated as common. CLEAR N Tleaves common variables
undisturbed.

22-2 THE LOAD STATEMENTS (LOAD and LOAD DC)

A LOAD statement, LOAD or LOAD DC, is used in a program to load another
program module. LOAD is a cassette statement that searches forward through a
tape for a named program module, and loads the module. LOAD DC searches a
disk catalog index for a named program module, and loads the module from the
sector addresses specified in the index.

In Chapter 4 the LOAD and LOAD DC commands were introduced. Though
there are some functional similarities between the LOAD commands and the LOAD
statements, the operations performed are not identical. Unlike the LOAD
commands, the LOAD statements have been specifically designed for chaining
program modules. LOAD and LOAD DC are statements when they appear 1in a
numbered program line; otherwise LOAD and LOAD DC are commands.

The general forms of the LOAD and LOAD DC statements are:
"' LOAD STATEMENT ~

)

AEQAD [#hiw'] f"name"] [1st line number] [,2nd Tine number]
o /xyy,

where: #n = file number, #1-#6, for which a cassette device
address has been SELECTed.
/xyy = a cassette device address.

303

Ed

£

P

CHAINING PROGRAM MODULES

{

where:

CLEAR

"name"

1st line number

2nd 1ine number

~
-

.,
N

LOAD DC_STATEMENT !

e 7

F

i,
LOAD DC <R /Xyy
T /

#n

/xyy

name

1st 1ine number

2nd line number

LOAD and LOAD DC can

P

name of program module to search for and Tload

to 8 characters).

(1

the number of the first line to be deleted from
the program currently in memory, prior to loading
the new program module. After loading, execution
begins again starting with this 1ine number.

the number of the last line to be deleted from the
program currently in memory, before the new program
module is loaded.

J name [1st Tine number][,2nd line number]

fixed platter. or left platter.

removable platter or right platter (middle on
2270-3).

"F" or "R" platter depending on device
the device address.

type code in

address has
or a numeric

file number, for which a disk device
been selected; n 1is an integer 1-6
variable.

a disk device address.

the name of the cataloged program file to be loaded

into memory, expressed as either an alphanumeric
variable or literal string in quotes.

the 1ine number of the first line to be deleted
from memory, prior to 1loading the new program

module. After loading, execution begins
this 1ine number.

again- at

the number of the last line to be deleted from the
program currently in memory, before the new program
is loaded.

be thought of as program statements that, in
effect, produce the following sequence of BASIC commands:
Clears program text from memory, beginning at "1st 1line

number"
(if specified).
program lines are cleared.

(if specified) and ending at "2nd line number"
If no line numbers are specified, all

If only "1st line number" is

specified, all program lines from 1st Tine number to the
highest 1ine number are cleared.

304

CHAINING PROGRAM MODULES

CLEAR N Clears all variables not specifically designated as
common variables (see COM statement next section),
and all FOR/NEXT and RETURN information.

LOAD (or LOAD DC) Load named program module.

RUN Run new program beginning execution at "1st Tline number"

(if specified). If no Tine number specified, begin at
lowest 1ine number in memory.

In summary, then, the £0A®-and LOAD DC statements clear a specified
portion of the program text currently in memory, clear all variables which
have not been designated as common variables, load a specified program module,
and begin executing it. The48&B or LOAD DC statement can itself be included
within the area to be cleared. Before execution of the newly loaded moduie
actually begins, the system searches through the entire program text
allocating memory area to variables.

For example, the statement
700 LOAD /10A, "LIN-EQU2" 100

clears all program text from line 100 through the highest numbered 1ine,
clears all non-common variables, searches the cassette mounted at device 10A
for a program file named "LIN-EQU2" and loads the file. After the file has
been 1loaded, the system scans the entire program text (old statements as well
as new) for variables, allocating memory space as needed, and initiates
execution at 1line 100. If there is no line 100 in the program an error
results.

fThe statement
4040 LOAD DC T#3, "PAYMOD2" 900, 6020

clears all program text from lines 900-6020 inclusive, clears all non-common
variables, searches the disk catalog index of the disk mounted at the device
and location specified at file number #3, and 1loads the program module
"PAYMOD2". After the file has been 1loaded, memory space is allocated to
variables, and execution begins at line 900.

When a program module is loaded, a 1ine in the incoming module that has
the same 1ine number as a Tline already in memory replaces the old line,
However, a LOAD statement executes more quickly if program 1ines that have the
same line numbers as incoming program lines, have first been cleared (by
loading into the area cleared by the LOAD or LOAD DC statement).

If used in a multistatement line, LOAD (or LOAD DC) must be the Tlast
statement in the line.

305

CHAINING PROGRAM MODULES

22-3 THE COM AND COM CLEAR STATEMENTS

In order to accomplish a programming task 1in several modules that,
because of memory limitations, cannot be accomplished in one module, each
module must, in some way, pass information to the succeeding module. Broadly
construed this "information" might include such things as a temporary data
file on tape or disk, or an invoice which has the customer name and address
completed. Most frequently, though, information is passed to a succeeding
module by assigning it to variables or arrays that are not cleared when the
next module is loaded. Since such variables are common to both modules, they
are known as "common" variables. In BASIC any variable or array can be
established as a common variable or array by means of the COM statement. If a
variable has been established as a common variable it is undisturbed by the
execution of a LOAD or LOAD DC statement; its value and dimensions pass intact
to the next module.

The COM statement designates a variable as a common variable.
Otherwise, it can be thought of as exactly 1like DIM, except for two
differences:

1. A "scalar" numeric variable can be idincluded in a COM statement
(since a program may require that such a variable be common to
several modules).

2. The COM statement (or statements) must be at a Tlower 1line number
than any 1line on which there appears a DIM statement or any
reference to any non-common variable.

Here is an acceptable use of COM statements:

10 COM X, Y, A$20, C$14, D$, R$1, K$(4,4)8

20 COM R(12), S(14,14), L$(6)2

30 DIM T$(14)8, T(14)

40 INPUT "NAME OF FILE", F$

50 DIM R2(12,12)

60 INPUT "ENTER STARTING ARRAY VALUE", R2(1,1)

Notice that the scalar numeric variables X and Y have been designated as
common (1ine 10). Scalar alphanumeric variables can be established with any
desired character length (1-64). If no length is specified (D$, 1ine 10), the
length is 16 characters. Numeric and alphanumeric arrays can be established,
just as in a DIM statement (lines 10 and 20). A1l COM statements must precede
any DIM statements and any references to variables (lines 30-50).

A DIM statement need only precede a reference to the variable it
dimensions (1ines 50 and 60); it may follow other variable references (F$ in
line 40). However, a COM statement must precede all references to non-common
variables and all DIM statements. If 1line 40 were changed to line 5, this
program would not execute, since, then, a reference to a non-common variable,
F$, would precede a COM statement.

306

CHAINING PROGRAM MODULES

A common variable can only be cleared from memory by a CLEAR or CLEAR V
command, or by Master Initialization. Thus, it is unaffected by successive
LOAD operations, and is available in all succeeding modules. However, the
BASIC statement COM CLEAR is available to designate common variables as
non-common. (COM CLEAR is not included in the 2200S Instruction Set, but can
be obtained as part of Option 24.) If COM CLEAR is used to designate common
variables as non-common, then the variables designated as non-common will be
cleared from memory when a LOAD or LOAD DC statement is executed. COM CLEAR
does not itself clear any variables from memory; it merely changes the
designation of variables from common to non-common.

To understand what COM CLEAR does, one must have a figurative idea of
what it means for a variable to be a common variable or a non-common variable.
We have said that during a process called "program resolution", which occurs
immediately after RUN(EXEC) is keyed, the system scans the entire program
text, in 1line number sequence, 1looking for variables and arrays, and
allocating memory space to each variable and array used in the program. Each
time it finds a variable in the program, it checks whether it has already
allocated space to that variable. If it has, it goes on; if not, it allocates
the correct amount of space, and assigns the proper initial value. By this
process, variables are assigned memory space in the order in which they appear
in the program. Let us suppose that Figure 22.1 depicts the memory area used
for variables as defined by the program statements of Example 22.1 shown
below:

Example 22.1 Program to Il1lustrate Memory Allocation to Common and
Non-Common Variables

10 COM X, A$, R2(6), N$(4)64
20 INPUT K$

30 DIM J(4,4)

40 FOR S=1 TO 4

50 J(S,S)=1

60 NEXT S
. s . .
[) p
S Memory Area
Used For
J() Variables
COMMON VARIABLE POINTER ————» K$

(A11 variables below this
pointer are common variables.
The COM variable pointer N$()
protects them from being
cleared when a LOAD
statement is executed. All

variables above this R2() Bottom of
pointer are non-common and Area Used for
are cleared during execution A$ Variables

of a LOAD statement.) . 1/

Figure 22.1 Common and Non-Common Variables Set-up by Sample Program
307

CHAINING PROGRAM MODULES

Since X is the first variable to appear in the program (in the COM
statement at 1line 10), it is the first variable for which space is allocated
in memory. In the figure, it appears at the bottom of the memory area used
for variables. The other common variables and arrays, A$, R2(6), and N$(4)64,
occupy the next successive areas of memory above X. Since common variables
must be specified at a lower 1line number than any DIM statement or reference
to a non-common variable, all common variables are allocated contiguous memory
space below all non-common variables. In the example above, K$ is the first
non-common variable, and all the variables which appear in the program after
K$ are non-common. To separate the common variables from the non-common
variables, and thereby mark the common variables as common, the system uses
the common variable pointer, shown in the illustration as a large arrow. The
common variable pointer points to a particular place in memory and says in
effect, "Al1l the variables below this Tlocation are common variables."
Whenever the system clears non-common variables, as it does during a LOAD
statement, it clears out all the variables down to the common variable
pointer. Variables below the common variable pointer are left undisturbed.

The COM CLEAR statement has the following general form:

variable
COM CLEAR
array designator

If COM CLEAR is used without any variable specified, for example,
70 COM CLEAR

it causes all common variables to become non-common variables. It does this
by simply moving the common variable pointer to the bottom of the memory area
used for variables. Thus, if statement 70 (above) were appended to Example
22.1, when execution begins, the memory area for variables looks as it does in
Figure 22.1, but after statement 70 is executed, it will look this this:

N$()
R2()
A$

COMMON VARIABLE POINTER X
(after COM CLEAR) —

308

CHAINING PROGRAM MODULES

With the common variable pointer moved to the bottom of the memory area,
there are now no common variables. The variables which were common are now

non-common, and will be cleared from memory if a LOAD statement is executed
(or a CLEAR N command is issued).

If a common variable or array designator is specified in the COM CLEAR

statement, then the specified variable and all variables defined after it in

the program become non-common. For example, if this statement 1is added to
Example 22.1

70 COM CLEAR R2()

then after this statement is executed, memory looks like this:

J()
K$

N$()

COMMON VARIABLE POINTER R2()
(after COM CLEAR R2()) -

A$

As can be seen from the figure, R2() and N$() have become non-common as
a result of 70 COM CLEAR R2(). N$() is non-common since it was defined in the
program after R2() (see line 10).

It is apparent from this example that there 1is no possible means of

making R2() non-common and leaving N$() common. This could be done only if

R2() had been originally defined after N$() in a COM statement that 1looked
like this:

10 COM X, A$, N$(4)64, R2(6)

Thus, if COM CLEAR is to be used, the sequence of variables and arrays in COM
statements can be very important.

309

CHAINING PROGRAM MODULES

We can now see that the COM CLEAR statement simply moves the Common
Variable Pointer to change the designation of variables from common to
non-common. It should not be altogether surprising, then, to find that the
COM CLEAR statement can be used for the opposite effect: to make non-common
variables into common variables. For example, if statement 70 is

70 COM CLEAR S

then, after 70 is executed, the memory area used for variable storage Tlooks
like this:

COMMON VARIABLE POINTER S
(after COM CLEAR §) ——— 0
J

K$

N$()

R2()
A$
X |

After executing COM CLEAR S, J() and K$ have been added to the group of common
variables, since J() and K$ were defined in the program before S.

A newly loaded module can add more common variables to the group of
common variables which have been passed to it by a previous program. It can
do this by beginning with COM statements or by executing a COM CLEAR statement
which specifies a non-common variable.

Example 22.2 shows the COM statements and LOAD DC statements for

chaining a four-module program. Actual processing to be accomplished by the
modules is not shown.

310

CHAINING PROGRAM MODULES

Example 22.2 Chaining a Four-Module Program

110 REM MODULE 1 OF A 4 MODULE PROGRAM

120 COM N$30, D(8), C$2, F2$(4)8, A$(4)30

130 DIM C$(4,4)2, K$24, R(10,10), S$8

140 SELECT #6 320 :REM PROGRAM MODULES ARE AT 320
150 REM FIRST MODULE PROCESSING STATEMENTS BEGIN HERE

[d

1200 REM END OF FIRST MODULE PROCESSING STATEMENTS
1210 REM CLEAR ALL OF MODULE 1 AND LOAD MODULE 2
1220 LOAD DC T#6, "MOD-2"

110 REM MODULE 2 OF A 4 MODULE PROGRAM

120 CoM M$(4)60

130 DIM Q(2,2)

140 REM SECOND MODULE PROCESSING STATEMENTS BEGIN HERE

[]

730 LOAD DC T#6, "MOD 3" 110, 740

740 REM LAST LINE TO BE CLEARED DURING LOAD

750 REM *** LINES 750 - 1110 ARE RETAINED INTO MODULE 3 **

[]
1110 REM LAST LINE OF MODULE 2

110 REM MODULE 3 OF A 4 MODULE PROGRAM

120 DIM K2$(2)24

130 REM MODULE 3 CONTAINS LINES NUMBERED 110 - 700, 1120 - 1300
140 REM LINES 750 - 1110 ARE LEFT IN IT BY MODULE 2

[d

700 REM FIRST SEGMENT OF MODULE 3 LINES ENDS HERE

Lines 750-1110 from module 2 will be here
during execution of module 3.

1120 REM SECOND SEGMENT OF MODULE 3 BEGINS HERE

f270 REM DESIGNATE NON-COMMON ALL VARIABLES EXCEPT N$
1280 COM CLEAR D()

1290 REM CLEAR ALL OF MODULE 3 AND LOAD MODULE 4

1300 LOAD DC T#6, "MOD 4"

110 REM MODULE 4 OF A 4 MODULE PROGRAM
120 DIM R$1, Z$(2)64

130 REM MODULE 4 INCLUDES LINES 110 - 620
[3

610 REM END OF PROGRAM
620 END

311

CHAINING PROGRAM MODULES

Module 1, (first box) establishes COM variables and arrays (line 120) as
well as non-common variables and arrays (line 130). At line 140 the address
of the disk containing the program modules is assigned to file number #6. (It
is important for the programmer to be aware that the LOAD DC statement uses a
row of the device table much the way a data file does, and that, therefore,
if, by default or otherwise, the LOAD DC takes place at a file number already
in use for a data file, the data file will be "closed" by the operation of the
LOAD DC.) Line 1220 of module 1 clears all of module 1, leaving only the COM
variables in memory.

Module 2 (second box) adds the COM array M$() to those passed to it.
Line 730 clears 1ine 110 to 740 and loads the third module. This however
leaves lines 750-1110 of module 2 in memory to become part of module 3. This
partial clearing technique may be used to pass commonly used subroutines from
one module to the next, or simply to pass routines which must be executed in
both modules.

Module 3 receives all the COM variables established in modules 1 and 2.
It has two segments of program 1lines, numbered 110-700 and 1120-1300
respectively. These segments will surround those left in by module 2 (1ines
750-1110). Module 3 does not add any common variables. In fact, it makes
non-common all the variables that were passed to it, except N$. It does this
at line 1280, by means of the COM CLEAR statement. The array D() specified in
line 1280 was declared common by module 1 (1line 120). It, and all the
variable space allocated after it, are now non-common, which leaves only N$ as
common. A1l program lines are cleared by the statement at line 1300 of module
3 (including those lines left by module 2).

Module 4 is loaded. Only N$ 1is passed to it from module 3. It
executes, and the entire program ends at line 620 of module 4.

312

APPENDIX A

ERROR MESSAGES AND THEIR SIGNIFICANCE

ERR 01 TEXT OVERFLOW

ERR 02 TABLE OVERFLOW

ERR 03 MATH ERROR

ERR 04 MISSING LEFT PARENTHESIS

ERR 05 MISSING RIGHT PARENTHESIS

ERR 06 MISSING EQUALS SIGN

ERR 07 MISSING QUOTATION MARKS

ERR 08 UNDEFINED FN FUNCTION

ERR 09 ILLEGAL FN USAGE

ERR 10 INCOMPLETE STATEMENT

ERR 11 MISSING LINE NUMBER OR CONTINUE ILLEGAL

ERR 12 MISSING STATEMENT TEXT

ERR 13 MISSING OR ILLEGAL INTEGER

ERR 14 MISSING RELATION OPERATOR

ERR 15 MISSING EXPRESSION

ERR 16 MISSING SCALAR

ERR 17 MISSING ARRAY

ERR 18 ILLEGAL VALUE

ERR 19 MISSING NUMBER

ERR 20 ILLEGAL NUMBER FORMAT

ERR 21 MISSING LETTER OR DIGIT

ERR 22 UNDEFINED ARRAY VARIABLE

ERR 23 NO PROGRAM STATEMENTS

ERR 24 ILLEGAL IMMEDIATE MODE STATEMENT

ERR 25 ILLEGAL GOSUB/RETURN USAGE

ERR 26 ILLEGAL FOR/NEXT USAGE

ERR 27 INSUFFICIENT DATA

ERR 28 DATA REFERENCE BEYOND LIMITS

ERR 29 ILLEGAL DATA FORMAT

ERR 30 ILLEGAL COMMON ASSIGNMENT

ERR 31 ILLEGAL LINE NUMBER

ERR 33 MISSING HEX DIGIT

ERR 34 TAPE READ ERROR

ERR 35 MISSING COMMA OR SEMICOLON

ERR 36 ILLEGAL IMAGE STATEMENT

ERR 37 STATEMENT NOT IMAGE STATEMENT

ERR 38 ILLEGAL FLOATING POINT FORMAT

ERR 39 MISSING LITERAL STRING

ERR 40 MISSING ALPHANUMERIC VARIABLE

ERR 41 ILLEGAL STR{ ARGUMENTS

ERR 42 FILE NAME TOO LONG

ERR 43 WRONG VARIABLE TYPE

ERR 44 PROGRAM PROTECTED

ERR 45 PROGRAM LINE TOO LONG

ERR 46 NEWSTARTING STATEMENT NUMBER
TOO LOW

ERR 47 ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

ERR 48 UNDEFINED SPECIAL FUNCTION KEY

ERR 49 END OF TAPE

313

ERR 50 PROTECTED TAPE

ERR 51 ILLEGAL STATEMENT

ERR 52 EXPECTED DATA (NONHEADER) RECORD

ERR 53 ILLEGAL USE OF HEX FUNCTION

ERR 54 ILLEGAL PLOT ARGUMENT

ERR 55 ILLEGAL BT ARGUMENT '

ERR 56 NUMBER EXCEEDS IMAGE FORMAT

ERR 57 ILLEGAL VALUE

ERR 58 EXPECTED DATA RECORD

ERR 59 ILLEGAL ALPHA VARIABLE

ERR 60 ARRAY TOO SMALL

ERR 61 TRANSIENT DISK HARDWARE ERROR

ERR 62 FILE FULL

ERR 63 MISSING ALPHA ARRAY DESIGNATOR

ERR 64 SECTOR NOT ON DISK OR DISK NOT SCRATCHED

ERR 65 DISK HARDWARE MALFUNCTION

ERR 66 FORMAT KEY ENGAGED

ERR 67 DISK FORMAT ERROR

ERR 68 LRC ERROR

ERR 71 CANNOT FIND SECTOR/PROTECTED PLATTER

ERR 72 CYCLIC READ ERROR

ERR 73 ILLEGAL ALTERING OF A FILE

ERR 74 CATALOG END ERROR

ERR 75 COMMAND ONLY (NOT PROGRAMMABLE)

ERR 76 MISSING < OR > (PLOT STATEMENT)

ERR 77 STARTING SECTOR > ENDING SECTOR

ERR 78 FILE NOT SCRATCHED

ERR 79 FILE ALREADY CATALOGED

ERR 80 FILE NOT IN CATALOG

ERR 81 /XYY DEVICE SPECIFICATION ILLEGAL

ERR 82 NO END OF FILE

ERR 83 DISK HARDWARE ERROR

ERR 84 NOT ENOUGH MEMORY FOR MOVE OR
COoPY

ERR 85 READ AFTER WRITE ERROR

ERR 86 FILE NOT OPEN

ERR 87 COMMON VARIABLE REQUIRED

ERR 88 LIBRARY INDEX FULL

ERR 89 MATRIX NOT SQUARE

ERR 90 MATRIX OPERANDS NOT COMPATIBLE

ERR 91 ILLEGAL MATRIX OPERAND

ERR 92 ILLEGAL REDIMENSIONING OF ARRAY

ERR 93 SINGULAR MATRIX

ERR 94 MISSING ASTERISK

ERR 95 ILLEGAL MICROCOMMAND OR FIELD/
DELIMITER SPECIFICATION

ERR 96 MISSING ARG 3 BUFFER

ERR 97 VARIABLE OR ARRAY TOO SMALL

ERR 98 ILLEGAL ARRAY DELIMITERS

ERR=1 MISSING NUMERIC ARRAY NAME

ERR=2 ARRAY TOO LARGE

ERR=3 ILLEGAL DIMENSIONS

APPENDIX B
STANDARD FLOWCHART SHAPES AND
SYMBOLS

PROCESSING

0

DISK
FILE

v

CONDITION
MET

KEYBOARD PUNCHED
ENTRY CARDS
@ é Q CONNECTORS

PRINTED TERMINAL PRINT,
DOCUMENT STOP, DELAY,

\/ START, ETCETERA

ORt

CONDITION
NOT MET

314

APPENDIX C
TABLE OF CHARACTERS AND HEX CODES

High Order Hexadecimal Digit of Code

0 1 2 3 4 5 6 7
o | NULL SPACE| © @|p orime| p
1 | HOME (CRT) ! Al Q a | g
2 2 B R b r
3 | CLEAR SCREEN # 3 | c|s c |s
(CRT)
4 $ 4 DI|T d t
5 % 5 E|U e | u
B 6 & 6 F | v f v
S 7 [BELL 7 G |w g | w
2 (apos)
= 8 | BACKSPACE (8 H | X h | x
= (CRT CURSOR <)
E — —
g8 9 CLEAR) 9 R i |y
g CRT CURSOR — TAB(2201)
T A | LINEFEED SET * : J |z i |z
k) (CRT CURSOR) | TAB(2201)
S B (VERTICAL + ; K | [k
2 TAB) PRINTER
= . _JL
C | FORM FEED OR , <or[| L |\ N
REV. INDEX |
(CRT CURSOR 1)
D | CR(CARRIAGE - = M|] m
RETURN)
E ¢) >or] N | torMort | n ~
F ° / ? O | <or _ ° | a
(DEGREE)

There is some variation in character sets from one peripheral device to another; therefore, you
should consult the reference manual of a particular peripheral device for precise character set
definition.

315

APPENDIX D

I/0 CLASSES AND ASSOCIATED STATEMENTS

For input as follows:

1) System commands.

2) Immediate Mode statements.

3) Program text entry.

For input as follows:
- a

1) Data for INPUT

For 1/0 operations:
1) BACKSPACE
2) DATALOAD

3) DATALOAD BT
4) DATARESAVE
5) DATASAVE TAPE
6) DATASAVE BT
7) LOAD

8) REWIND

9) SAVE DISK
10) SKIP
11) $GIO
12) SIF ON |

statements.

2) Data for KEYIN
statements. \

3) Data for MAT INPUT
statements.]

L

CI

INPUT

For disk or diskette operations:

1) COPY 12)
2) DATALOAD BA 13)
3) DATALOAD DA 14)
4) DATALOAD DC 15)
5) DATALOAD DC OPEN 16)
6) DATASAVE BA 17)
7) DATASAVE DA 18)
8) DATASAVE DC 19)
9) DATASAVE DC CLOSE 20)
10) DATASAVE DC OPEN 21)
11) DBACKSPACE 22)

DSKIP
LIMITS
LOAD DA
LOAD DC
MOVE
MOVE END
SAVE DA
SAVE DC
SCRATCH

SCRATCH DISK

VERIFY

I/0 Class
Parameters

316

\
PRINT

LIST

PLOT

/ 4)
5)

For output as follows:

1)
2)

3)

6)
7)
8)

9)

Data from Immediate Mode
PRINT or HEXPRINT stmts.
Literal string messages
from INPUT statements.
Question marks when the
system is awaiting
INPUT-class data.

Echo of data received for
INPUT or MAT INPUT stmts.
Colons when the system is
ready for CI-class input.
Error message codes.

STEP mode printouts.
TRACE mode printouts.
Other system messages.

For output as follows:

1)
2)

3)

Data from Program Mode
PRINT or HEXPRINT stmts.
Data from PRINTUSING and
associated Image stmts.
Data from MAT PRINT stmts.

For output as follows:

1) Program text from
LIST commands.

2) Disk data from
LIST DC statements.

For output as follows:

h) Graphs and labels]

from PLOT statements
L

APPENDIX E
UPDATING ARRAY-BLOCKED DISK FILES

110
120
130
140
150
10
170
180
130
200
210
220
230
240
250
260
270
280
230
300
310
320
330
340
350
360
370
380
330
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
550
560
570
580
590
€00
610
620
€30
€40
€50
660
€70
€80
&30
700
710
720

REM
REM

REM
REM

REM

REM

REM
REM

REM
REM

REM

REM
REM

REM

REM

REM

REM

ADDING RECORDS TO THE END OF THE BLOCKED FILE
DIM N$(3)10, D$(3)40, S$(3)6, Q(3), R(3)
OPEN FILE

DATA LOAD DC OPEN F " INVTORY"

READ LAST BLOCK

DSKIP END

DBACKSPACE 1 S

DATA LOAD DC N#(), D$(), S$(), Q(), R()

LOOK BACK THRU BLOCK FOR LAST DATA RECORD
FOR K = 3 TO 2 STEP -1

IF N&(K) <> "4t444444444" THEN 260 :REM DATA?
NEXT K
J = 1 IREM LAST DATA RECORD IS SUBSCRIPT 1
GOTO 300
J = K IREM SAVE K
K =2 :REM #* FORCE #*

NEXT K tREM % "NEXT" EXIT #
J CONTAINS SUBSCRIPT OF LAST DATA RECORD
CONVERT STR(N$(J),2) TO N :REM FOR SEQUENCE TEST
NOW SET J EQUAL TO SUBSCRIPT OF NEW DATA RECORD
J = J+1
IF J = 4 THEN 330 :REM START NEW BLOCK?
NEW DATA RECORD MUST GO IN OLD (UNFILLED) BLOCK.
DBACKSPACE 1 8
GOTO 400

RECORD CREATION LOOP BEGINS HERE
J =1
FOR X = J T0 3
REM GET NEW PRODUCT NUMBER AND VAL IDATE I7.
PRINT HEX(03); "KEY S.F. 31 TO END PROGRAM"
INPUT "NEW PRODUCT NUMBER", N$(X)
IF NUM(STR(N$(X),2)) <* 9 THEN 530 :REM BAD?
CONVERT STR(N#%(X),2) TO N2
IF N+1 <> N2 THEN 530 REM NOT IN SEQUENCE?
REM PRODUCT NUMBER OK. ENTER RECORD VALUES.
INPUT "PRODUCT DESCRIPTION", D$(X)
INPUT "SUPPLIER CODE", S#%(X)
INPUT "ON HAND QUANTITY", Q(X)
INPUT "REORDER LEVEL", R(X)
N = N2 :REM SET-UP FOR NEXT ENTRY
NEXT X
SAVE BLOCK OF DATA RECORDS AND GO BACK FOR MORE
DATA SAVE DC N#$¢(), D$%(), S%(), Q(), R(O)
GOTO 330

BAD PRODUCT NUMBER ENTERED
PRINT "INVALID PRODUCT NUMBER"
PRINT

GOTO 430

END PROGRAM ROUTINE
DEFFN’ 31
IF X = 1 THEN 720 :REM ALL BLOCKS FULL?
FILL EXTRA RECORDS IN BLOCK
FOR K = X TO 3
INIT("4") N&(K), D$(K), S$(K)
NEXT K
DATA SAVE DC N#(), D#$(), S$(), Q(), R()
MARK END OF DATA
DATA SAVE DC END

317

UPDATING

110
120
130
140
150
160
170
180

200
210
=220
230
240
250
60
270
280
230
300
310
320
330
340
350
360
370
380
330
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
550
560
570
580
530
€00
610
€20
€30
€40

REM
REM

REM

REM

REM

REM

REM
REM

REM

REM

REM

REM

END
REM

ARRAY-BLOCKED DISK FILES

UPDATING QUANTITY VALUE IN A SPECIFIED RECORD
BLOCKED RECORDS

DIM N%$(3)10, D#%(3)40, S$(3&, Q(3), R(3), N2%10
DATA LOAD DC OPEN F " INVTORY"

READ LAST BLOCK
DSKIP END
DBACKSPACE 1 S
DATA LOAD DC N$(), D#%(), S5%(), Q(), R()
LOOK BACK THRU BLOCK FOR LAST DATA RECORD
FOR K = 3 TO 2 STEP -1
IF N$(K) < "t444424444" THEN 260 IREM DATA?
NEXT K
J = 1 IREM LAST DATA RECORD IS5 SUBSCRIPT 1
GOTO 300
J = K :REM SAVE K
K =2 tREM #* FORCE 3
NEXT K tREM # "NEXT" EXIT #*
J CONTAINS SUBSCRIPT OF LAST DATA RECORD
CONVERT STR(N$(J),2) TO M :REM M IS5 MAX PRODUCT NUMBER

GET NEW PRODUCT NUMBER AND VALIDATE IT.

PRINT HEX(03)

INPUT "PRODUCT NUMBER", N2%

IF NUM(STR(N2$,2)) <> 9 THEN 620 :REM NON-NUMERIC?
CONVERT STR(N2$,2) TO N2

IF N2 > M THEN €20 :REM PRODUCT NUMBER TOO BIG?
PRODUCT NUMBER OK. FIND PRODUCT RECORD.

B = INT((N2-1)/3) :REM B IS NUMBER OF SECTORS TO SKIP
K = N2 - (B*3) :REM K IS SUBSCRIPT

DBACKSPACE BEG

DSKIP B S :REM SKIP TO CORRECT BLOCK

LOAD AND PRINT PRODUCT RECORD

DATA LOAD DC N$(), D$(), S$(), Q(), R()

PRINT

PRINT D$(K)

PRINT "QUANTITY ON HAND ="3; GQ(K)

PRINT

DBACKSPACE 1 S

ENTER TRANSACTION AND UPDATE RECORD

INPUT "ENTER AMOUNT RECEIVED (+) OR SOLD (-)", T
Q(K) = Q(K) + T

DATA SAVE DC N$¢), D$(), S$(), @), R()

MORE RECORDS TO UPDATE?

R$ = " " :REM NO DEFAULT ENTRY

INPUT “MORE RECORDS TO UPDATE (Y/N)", R$

IF R$ = "Y" THEN 330

IF R$ <3 "N" THEN 560 :REM OPERATOR ERROR?

DATA SAVE DC CLOSE

ERROR ROUTINE

PRINT "INVALID. REENTER"
PRINT

GOTO 340

318

NOTES

NOTES

=To help us to provide you with the best manuals possible, please make your comments and suggestions
¥ concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
=and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
1 name and address. Your cooperation is appreciated.

700-3231F

TITLE OF MANUAL: PROGRAMMING IN BASIC

COMMENTS:

Fold

Fold

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Marketing Department

Fold

Printed in US.A.

Cut along dotted line.

WANG LAEBORATORIES
(CANADA) LTD.

49 Valleybrook Driye

Don Mills, Ontario K/BB 256
TELEPHONE (416) 449-7175
Telex: 069-66546 . {

— .
WANG EUROPE, S.A{
Buurtweg 13 ‘
9412 Ottergem, Belgium -
TELEPHONE 053/704514
Telex: 26077

WANG DO BRASIL
COMPUTADORES LTDA.

Rua Barao de Lucena No. 32
Botafogo ZC-01 20,000

Rio de Janeiro RJ, Brasil
TELEPHONE 2264326, 266-5364
Telex: 2123296 WANG BR

WANG COMPUTERS

(SO. AFRICA) PTY.LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

Republic of South Africa
TELEPHONE (011) 48-6123
Telex: 960-86297

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94-7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A
S-171 36 Solna, Sweden

- TELEPHONE 08/27 27 95
Telex: 11498

WANG NEDERALND B.V.
Damstraat 2

Utrecht, Netherlands

(030) 93-0947

Telex: 47579

WANG PACIFIC LTD.

902-3 Wong House

26-30, Des Voeux Road, West
Hong Kong

TELEPHONE 5-435229
Telex: 74879 WANG HX

WANG INDUSTRIAL CO., LTD.
110-118 Kuang-Fu N. Road
Taipei, China

TELEPHONE 784181-3

Telex: 21713

WANG GESELLSCHAFT M.B.H.
Murlingasse 7

A-1120 Vienna, Austria
TELEPHONE 85.13.54, 85.13.55
Telex: 74640 Wang a

WANG S.A./A.G.
Markusstrasse 20

. CH-8042 Zurich 6, Switzerland

TELEPHONE 41-1-60 50 20
Telex: 59151

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065 , Australia
TELEPHONE 439-3511

Telex: 25469

WANG ELECTRONICS LTD.
Argyle House :
Joel Street

Northwood Hills

Middlesex, HAG ILN
TELEPHONE Northwood 28211
Telex: 923498

LABORATORIES, INC.

WANG FRANCE S.A.R.L.
Tour Gallieni, 1

78/80 Ave. Gallieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 680958F

WANG LABORATORIES GmbH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

WANG DE PANAMA (CPEC) S.A.
Apartado 6425

Calle 45E, No. 9N. Bella Vista
Panama 5, Panama

TELEPHONE 69-0855, 69-0857
Telex: 3282243

WANG COMPUTER LTD.

302 Great North Road

Grey Lynn, Auckland

New Zealand

TELEPHONE Auckland 762-219
Telex: CAPENG 2826

WANG COMPUTER PTE., LTD.
37, Hill Street

Singapore 6, Republic of Singapore
TELEPHONE 333641, 321791
Telex: RS 23987 GENERCO

WANG COMPUTER SERVICES
836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 85614111
TWX 710-343-6769

Telex: 94-7421

DATA CENTER DIVISION

20 South Avenue . -
Burlington, Massachusetts 01803
TELEPHONE (617) 272-8550

~\

v,

(i UANG)836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A.

700-3231E
9-76-5M

Price: see current list

	Cover
	Preface
	Table of Contents
	Part I: The Fundamentals of BASIC
	Chapter 1: Introduction to the Equipment In Your Wang System
	Chatper 2: Getting Started
	Chapter 3: Fundamental Instructions
	Chapter 4: Saving and Loading Programs
	Chapter 5: SELECT Statements and the Use of a Printer
	Chapter 6: Functions
	Chapter 7: Loops
	Chapter 8: Introduction to Alphanumerics
	Chapter 9: Debugging Aids and Miscellaneous System Features
	Chapter 10: The ON Statement With GOTO
	Chapter 11: Lists
	Chatper 12: Supplying Constants With DATA, READ, and RESTORE
	Chapter 13: Introduction to Subroutines
	Chatper 14: The DEFFN' Statement

	Part II: Gaining Proficiency
	Chapter 15: Controlling Output Format With Image (%) and PRINTUSING
	Chapter 16: More About Alphanumerics
	Chatper 17: Controlling a CRT
	Chapter 18: Controlling a Printer
	Chapter 19: Tables (Two-Dimensional Arrays)
	Chapter 20: An Introduction to Disk Data Files
	Chapter 21: Data Storage On Tape Cassettes
	Chapter 22: Chaining Program Modules

	Appendix A: Error Messages and Their Significance
	Appendix B: Standard Flowchart Shapes and Symbols
	Appendix C: Table of Characters and Hex Codes
	Appendix D: I/O Classes and Associated Statements
	Appendix E: Updating Array-Blocked Disk Files

