Matrix Statements
Reference Manual

© Wang Laboratories, inc., 1975

LABORATORIES, INC.

(i ' ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase, lease, or license agreement by which this
software package was acquired, nor increases in any way Wang's
liability to the customer. In no event shall Wang Laboratories, Inc.,
or its subsidiaries be liable for incidental or consequential dam-
ages in connection with or arising from the use of the software
package, the accompanying manual, or any related materials.

(WANG)LABDFIATDFHES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 4569-5000, TWX 710 343-6769, TELEX 94-7421

HOW TO USE THIS DOCUMENT

This document is provided to give quick answers to questions
concerning the operations of the Matrix Statements. It assumes
the reader is familiar with the general operation of his system
hardware, and the hardware is sufficient to support the Matrix
statement set. Additionally, the reader is expected to have a
basic knowledge of matrix operations and definitions (linear
matrix algebra), and BASIC programming.

TABLE OF CONTENTS

Section | GENERAL INFORMATION
Introduction
Installation . .
Array Dimensioning.
Array Redimensioning .
Matrix Statement Rules .

Section I MATRIX OPERATIONS .
MAT addition .
MAT CONstant
MAT equality .
MAT IDN (identity)
MAT INPUT
MAT INVerse, d .
MAT multiplication .
MAT PRINT
MAT READ
MAT REDIM .
MAT scalar multiplication
MAT subtraction . .
MAT TRN (transpose) .
MAT ZERo .

APPENDICES A. Matrix Statement Error Messages
B. Specifications .
INDEX

Page

OCOO~NODO LB WNN= ==

14
16
17

® Section|

General Information

INTRODUCTION

The Matrix statements contained in this manual are standard instructions in the BASIC language set
available on all 2200T CPU’s (including PCS, WCS; and Work Station type processors). These statements
can also be installed as an option on most 2200 series CPU’s not already containing them. The matrix state-
ment set for the 2200VP, 2200MVP and 2200VS are described in separate manuals.

TABLE I. MATRIX OPERATIONS
OPERATION DESCRIPTION EXAMPLE
MAT additiont array = array + array MAT A=B+C
MAT CON* each element of array = 1 MAT A=CON
' |MAT equality?t array = array MAT A=B
MAT IDN* matrix = identity matrix MAT A=1IDN
MAT INPUT* ** receive array elements from MAT INPUT A,B$
keyboard
MAT INV dT matrix = inverse of matrix, MAT A =INV(B),D
d = determinant of matrix
MAT muitiplicationt | array = array x array MAT A=B=«C
MAT . PRINT** print elements of array MAT PRINT A,B$
MAT READ*** array = DATA values MAT READ A,B$
MAT REDIM*,** redimension array MAT REDIM A(X,Y)
MAT scalar array = constant x array MAT A =(3)*B
multiplicationt
MAT subtractiont array = array — array MAT A=B-C
MAT TRNt array = transpose of array MAT A =TRN(B)
MAT ZER* each element of array = 0 MAT A=ZER

*Resultant array redimensioned explicitly. (i.e. by specifying new dimensions in the statement)
tResultant array redimensioned implicitly. (i.e. depends upon dimension of arguments)
**Can be performed on alphanumeric arrays.

Operations are performed on numeric arrays according to the rules of linear algebra and can be used
for the solution of systems of non-singular homogenous linear equations. Inversion of matrices can be done
in significantly shorter time than is possible with BASIC programs. MAT operations on alphanumeric
arrays can be used for simple and rapid 1/O (input/output) and printing of alphanumeric material. Error
messages for Matrix Statements are described in Appendix A.

‘ INSTALLATION

The Matrix statements are either factory installed, or retrofit by a Wang Service Representative in
the user’s Systemn.

SECTION | — GENERAL INFORMATION

ARRAY DIMENSIONING

Both numeric and alphanumeric arrays can be manipulated with the Matrix statements. The rules of
the BASIC Language require that an array be dimensioned with a DIM or COM statement in order to re-
serve space for the array variables, prior to the variable’s use in a program statement.

The COM statement defines arrays which can be used in common by several programs or program seg-
ments. Common variables are stored in an area of memory which is not cleared as subsequent programs are
run. All non-common variables, however, are cleared from memory. A COM statement must not change
the dimensions of a previously defined common variable.

Space may be reserved for more than one array with a single dimension statement by separating the
entries for array names with commas. The space to be.reserved must be explicitly indicated — expressions
are not allowed. The maximum allowable dimension of arrays are 1< (dq, d2)<255. Note that the space
required for the array must not exceed the machines capacity (see Appendix B). Additionaily, with alpha-
numeric arrays, the length of each element in the array can be specified between 1 and 64 bytes, inclusive.

If an array’s dimensions are not specified in DIM or COM statement, it will be automatically dimen-
sioned as a 10 X 10 matrix. For an alphanumeric array, the maximum length of each element is defined
equal to 16. The total number of elements in any array must be < 4,096.

ARRAY REDIMENSIONING

The dimensions of an array can be changed explicitly during the execution of MAT statements by giving
the new dimensions, enclosed in parentheses, following the array name in any of the following MAT
statements:

MAT CON
MAT IDN
MAT INPUT
MAT READ
MAT REDIM
MAT ZER
Example:
MAT CON(5,5)
Arrays can also be redimensioned implicitly.
Example:
10 DIM A(10,10),B(2,2),C(2,2)
20...
30...
40 MAT A=B+C

The array A is redimensioned at statement 40 from a 10 x 10 array to a 2 x 2 array.

For alphanumeric arrays, the maximum length of each element can be changed by specifying the new
length after the dimension specification. .
Example:.
REDIM A$(2,3) 10
This statement redimensions the array A$ to be two rows by three columns with the maximum length of
each element in the array equal to 10.

NOTE:
With either explicit or implicit redimensioning, the newly
dimensioned array must not take up more space than was
available in the array as it was originally dimensioned. For
numeric arrays this implies there are the same number or
less total elements. For alphanumeric arrays, there must be
the same number or less total characters.

SECTION | — GENERAL INFORMATION

MATRIX STATEMENT RULES
Certain rules must be followed in using Matrix Statements.

1.
2.
3.

8.

Each matrix statement must begin with the word MAT.
Each variable used in a MAT statement must be an array variable.
Multiple matrix operations are not permitted in a single MAT statement. (e.g. MAT A=B+C-D is
illegal but the same result can be achieved by using the two MAT statements: MAT A = B+C,
MAT A = A-D).
Arrays which contain the result of certain MAT statements are automatically redimensioned;
other arrays can be redimensioned explicitly in the MAT statement (see Table I). A redimensioned
numeric array cannot contain more elements than given in its previous definition; a redimensioned
alphanumeric array cannot contain more characters than given in its previous definition.
A vector (a singly subscripted array) cannot be redimensioned as a matrix (a doubly subscripted
array); nor can a matrix be redimensioned as a vector.
When overlaying programs (i.e., loading and executing program segments under program control) or
running programs from a particular line number, common variables must be currently dimensioned
as originally defined in the COM statement. If not, the defining COM statement must be deleted
from the program when the program overlay is executed. (A common variable need only be listed
in the COM statement of the original program; it does not have to be specified in COM statements
of subsequently chained or overlayed programs.) Caution must be exercised when using DIM or
COM statements in programs where redimensioning occurs.
The same array variable cannot appear on both sides of the equation in matrix multiplication and
matrix transposition.

MAT C = A+B and MAT A = TRN (C) are legal MAT statements;

MAT C = C+B and MAT B = TRN (B) are not.

Matrix operations are valid only when the dimensions and/or types of the matrix operands are
compatible.

In the Matrix statement general forms given in Section 1l: items in brackets ([]) are optional.

items in uppercase must occur as shown.

items in lowercase must be defined by the user.

items in braces ({}) are alternatives, one of which
must be used.

symbols (+,=,*,(),etc.) must occur as shown.

section!

Matrix Operations

MAT 4 (VAT addition)

General Form:

MATc=a+b
where ¢, a, and b are numeric array names.

Purpose:

Example 1:

Example 2:

Let D =

Adds two matrices or vectors of the same dimension. The sum is stored in array
c. Array c can appear on both sides of the equation. Array c is redimensioned
to have the same dimensions as arrays a and b.

An error message is printed and execution terminated if the dimensions of a
and b are not the same.

This example illustrates syntax use of the MAT addition statement only and
does not constitute a working program.

10 DIM A(5,5),D(5,5),E(7),F(5),G(5)
20MATA=A+D
30MATE=F+G
40 MATA=A+A

The program provided adds the corresponding elements of the 3 by 3 arrays
D and E to give the new array F. Array F is automatically redimensioned as a
3 by 3 array.

10 DIM D(3,3),E(3,3),F(5,2)

20 PRINT “ENTER ELEMENTS OF ARRAY D"
30 MAT INPUT D

40 PRINT “ENTER ELEMENTS OF ARRAY E”
50 MAT INPUT E

60MATF=D+E

70 PRINT “ELEMENTS OF ARRAY F” :PRINT
80 MAT PRINT F;

1 1 1 3 3 3
1 1 1|, E-= 3 3 3
2 2 2 3 3 3

When the program is executed, array F is displayed:
ELEMENTS OF ARRAY F ’

4 4 4
4 4 4
5 5 5

'MAT CON

SECTION Il — MATRIX OPERATIONS , MAT:

®
MAT CON (MAT constant)

General Form: MAT c = CON [(d, [,d2]) 1
where ¢ is a numeric array name and d,, d, are expressions
specifying new dimensions. (1 <d,, d, < 256; default
d, =d, =10.)

Purpose: This statement sets all elements of the specified array to one (1). Using (d, ,dz)
causes the matrix to be redimensioned. If (d1,d2) are not used, the matrix
dimensions are as specified in a previous COM, DIM or MAT statement, or
are the default values.

Examples of MAT CON syntax:
10 MAT A = CON(10)
15 MAT C = CON(5,7)
20 MAT B = CON(5+Q,S)
30 MAT A=CON
Examples showing usage in a program:
10 MAT A =CON(2,2)
20 MAT PRINT A;
when this program is executed the CRT displays the result in packed format:

1 1
1 1

. MAT - (MAT equality)

General Form: MATa=b
where a and b are numeric array names.

Purpose: This statement replaces each element of array a with the corresponding
element of array b. Array a is redimensioned to conform to the dimensions
of array b.

Examples showing statement syntax:
10 DIM A(3,5),B(3,5)
20 MAT A=B
30 DIM C(4,6),D(2,4)
40 MAT C=D
50 DIM E(6),F(7)
60 MAT F=E

Example showing use in a program:

1 1 1 9 8 7
Let A=|1 1 1 B= |6 5 4
1

MAT -

SECTION Il — MATRIX OPERATIONS MAT IDN
M AT - (Continued)
Program: 10 DIM A(3,3),B(2,3)

20 MAT A= CON

30 MAT PRINT A

40 MAT INPUT B

50 MAT A=B

60 MAT PRINT A

when this program is executed the constant 3 by 3 array A is displayed as:

1 1 1

1 1 1

1 1 1

in zoned format; the array B is input via the keyboard; and the new array A is
displayed as:

9 8 7

6 5 4

in zoned format.

_ M AT I D N (MAT identity)

General Form: MAT c = IDN [(d, ,d,}]
where c is a numeric array name and d, .d, are expressions specifying
new dimensions. (1 <d, ,d,< 255;)

Purpose: This statement causes the specified matrix to assume the form of the identity
matrix. If the specified matrix is not a square matrix, an error message is
displayed and execution is terminated.

Using (d1 ,d2) causes the matrix to be redimensioned. If (d, . d2) are not used,
the matrix has the dimensions specified in a previous COM, DIM or MAT
statement.
Example showing statement syntax:

10 MAT A =IDN (4,4)
20 MAT B = IDN
30 MAT C = IDN(X,Y)

 Example in which the identity matrix is displayed:
10 DIM A(4,4)
20 MAT A= IDN
30 MAT PRINT A

When this program is executed, the matrix A is displayed in zoned format as:
0 0

(e NeNe R
o000

1 0
0 0
0 1

SECTION il — MATRI

MAT
X OPERATIONS INPUT

MAT INPUT

General Form:

numeric array name [(d. [d.])]
MAT INPUT {alpha array name [(d, [sz]z) {length]]}[' 2

where: d expression specifying a new dimension
(1<d,,d, <255; default: d, = d, =10)
length = expression specifying maximum length of each alpha array

element (1 < length < 65) {default = 16)

Purpose:

The MAT INPUT statement allows the user to supply values from the
keyboard for an array during the running of a program. When the system en-
counters a MAT INPUT statement, it displays a question mark (?) and waits
for the user to supply values for the arrays specified in the MAT INPUT state-
ment. The dimensions of the array(s) are as last specified in the program (by a
COM, DIM or MAT statement) unless the user redimensions the array(s)
by specifying the new dimension(s) after the array name(s). The maximum
length for alphanumeric array elements can be specified by including the length
after the dimensions specification; if no length is specified, a default value of
16 is used.

The values which are input are assigned to an array row by row until the array
is filled. If more than one value is entered on a line, the values must be
separated by commas. Alphanumeric data with leading spaces or commas in it
can be entered by entering a quotation character (*‘) before and after the data
value. Several lines can be used to enter the required data. Excess data are
ignored. If there is a system detected error in the entered data, the data must
be re-entered beginning with the erroneous value. The data which preceded the
error are accepted. Input data must be compatible with the array (i.e., numeric
data for numeric arrays, alphanumeric literal strings for alphanumeric arrays).
Entering no data on an input line (i.e., only touching the RETURN/EXECUTE
key to enter a carriage return) signals the System to ignore the remaining
elements of the array currently being filled.

Example 1, with numeric variables:

5 DIM A(2), B(3), C(3, 4)
10 MAT INPUT A,B(2),C(2,4)

When this program is run, key in on the keyboard the values, separated by

commas,
-3, -5, .612, .41

Touch the RETURN key to enter these values for array elements A(1),
A(2),B(1) and B(2). Enter the values

-6.4, -5.6, 98

separated by commas; touch the RETURN key to enter these values for the
array elements C(1,1), C(1,2), and C(1,3). Touch the RETURN key without
entering further values to enter a carriage return and ignore the rest of
possible values for the array C.

Example 2, with alphanumeric string variables:

10 DIM C$(2), A$(4)4, B(3)

100 MAT INPUT A$(4)3, B(2), C$

Enter RAD,DEG,MIN,SEC,2.5,5.6,LAST RESULT, “ROTATE X)Y" and touch
the RETURN key.

SECTION Il — MATRIX OPERATIONS MAT INV

MAT INV (MAT INVerse, D)

General Form:

MAT c = INV(a) [,d]
where ¢ and a are numeric array names.
d = numeric variable; the value of the determinant of the

array a.

Purpose:

This statement causes matrix ¢ to be replaced by the inverse of matrix a.
Array c can appear on both sides of the equation. Matrix c is redimensioned
to have the same dimensions as matrix a. Matrix a must be a square, non-
singular matrix; otherwise, an error message is displayed and program execution
is terminated.

After inversion, the variable d (if specified) equals the value of the determinant
of matrix a.

This statement uses the Gauss-Jordan Elimination Method done in-place;
as with any matrix inversion technique, results can be inaccurate if the deter-
minant (or normalized determinant) of the matrix is close to zero. It is there-
fore good practice to check the determinant after any inversion. Additionally
with large matrices, some round-off accumulation error is to be expected.

The Gauss-Jordan Elimination Method also works best when values on the
main diagonal are in the same range as other values in the matrix; in particular,
numbers with large negative exponents on the main diagonal should be avoided
when other values are not in this range. When in doubt, it is a good plan to
check your data before inversion and adjust or rearrange it accordingly (for
example, elements that are close to zero set equal to zero or rearrange data
so that elements on the main diagonal are as large as possible).

Example 1, illustration of statement syntax:

Example 2:

if array A=

=200

10 MAT A = INV(B)

400 MAT Z1=INV(P), X2

700 MAT F = INV(C), J3

800 MAT C = INV(C)

This program takes the 4x4 matrix A from the keyboard input, calculates the
inverse of it, and prints both the result and the value of the determinant
of A.

10 DIM A(4,4)

20 PRINT “ENTER ELEMENTS OF A 4x4 MATRIX"”

30 MAT INPUT A

40 MAT B=INV(A),D

50 MAT PRINT B

60 REM B IS THE INVERSE OF A, D IS THE DETERMINANT OF A
70 PRINT “VALUE OF DET.A=";D

2 4 8 then array B=| -1 0 0 .25
0 1 0 -3.5 -2 -4 1
0 0 1 0 1 0 0
8

16 32 1 0 1 -25

and the value of the determinant of A = -8
If the input matrix is singular (i.e., non-invertible) the error message ERR 93
is displayed.

SECTION 1l —

MATRIX OPERATIONS

MAT -
MAT PRINT

MAT * (MAT mutiplication)

General Form:

MATc=a «b
where c, a, and b are numeric array names

Purpose:

The product of arrays a and b is stored in array c. Array ¢ cannot appear on
both sides of the equation. If the number of columns in matrix a does not
equal the number of rows in matrix b, an error message is printed and execution
is terminated. The resulting dimension of ¢ is determined by the number of
rows in a and number of columns in b.

Example of statement syntax:

10 DIM A(5,2),B(2,3),C(4,7)
20 DIM E(3,4),F(4,7),G(3,7)
40MATG=E=F
50MATC=A =B

If the rows and columns are not compatible, the error message tERR 90 is
displayed. For example:

10 DIM A(2,2), B(4,4)

20MATC=A=*B
T ERR 90

Example of usage in a program:

Let A=

MAT PRINT

10 DIM A(2,3),B(3,4)
20 MAT INPUT A,B
SOMATC=A+*B
40 MAT PRINT C

0 1 41 , B = 5 1 0] 4
7 7 7 4 1 0 4
3 4 3 4

When the program is executed and arrays A and B are keyed in, array C is

displayed as:
16 17 12 20
84 42 21 84

General Form:

MAT PRINT array name | t array name ...] [t]
where t is a comma or semicolon

Purpose:

The MAT PRINT statement prints arrays in the order given in the statement.
Each matrix is printed row by row. All the elements of a row are printed on as
many lines as required. The first element of a row always starts at the beginning
of a new print line. An array is printed in zoned format unless the array name
is followed by a semicolon, in which case, the array is printed in packed
format. However, for alphanumeric arrays the zone length is set equal to the
maximum length defined for each array element (not always 16). A vector (a
one-dimensional array) is printed as a column vector.

SECTION Il —

MAT PRINT

'MATRIX OPERATIONS MAT READ

MAT PRINT

(Continued)

Examples of statement syntax:

10 DIM A(4),B(2,4),B$(10),C$(6)
100 MAT PRINT A; B, C$
200 MAT PRINT A, B$

Examples of usage in a program:

MAT READ

This program takes as input nine alphanumeric quantities, each up to 16
characters long, and prints them as a 3 x 3 array in packed format.

10 DIM Z$ (3,3)
20 MAT INPUT Z$
30 MAT PRINT Z$;

General Form:

numeric array name [(d, [d,])]
MAT READ {alpha array name [(d, [d]) [length]]} [

where: d = expression specifying a new dimension
(1<d, d, <255)

length = expression specifying maximum length of each
alpha array element

(1 < length < 65) (default = 16)

Purpose:

The MAT READ statement is used to assign values contained in DATA
statements to array variables without referencing each member of the array
individually. The MAT READ statement causes the referenced arrays to be
filled sequentially with the values available from the DATA statement(s).
Each array is filled row by row. Values are retrieved from a DATA statement
in the order they occur on that program line. If a MAT READ statement
references beyond the limit of existing numbers in a DATA statement, the
system searches for the next sequential DATA statement. If no more DATA
statements are in the program, an error message is printed and execution is
terminated.

Alphanumeric string variable arrays can also be used in the list. The infor-
mation entered in the data statement must be compatible with the array
(i.e., numeric values for numeric arrays, alphanumeric literal strings for
alphanumeric arrays).

The dimensions of the array(s) are as last specified in the program (by a
COM, DIM, or MAT statement) unless the user redimensions the array(s) by
specifying new dimension(s) after the array name(s) in the MAT READ
statement. The maximum length for aiphanumeric array elements can be
specified by including the length after the dimension specification; if no
length is specified, a default of 16 is used.

The RESTORE statement can be used with MAT READ in the same manner as
with the READ statement,

10

MAT READ
SECTION I —
MATRIX OPERATIONS ! MAT REDIM
MAT READ (Continued)

Example 1: 5 DIM A(1),B(3,3)
10 MAT READ A,B(2,3)
100 DATA 1,-.2,315,-.398,6.21,0,0
110 MAT PRINT A,B

Example 2: 10 DIM A(2,2),B$(3,2)
15 DIM C(3), D$(4) 7
20 MAT READ A,B$,C(2),D$(4) 6
100 DATA 1,2,3,-3.4E125
110 DATA “ABC",”DEFG"","HI",“J","K"
120 DATA .2345,1E-12, "AB", “CD", “EFGH""," K"
130 MAT PRINT A, BS, C, D$

MAT RED'M (MAT REDIMension)

General Form: MAT REDIM array name (d, [,d,]}[length] [....]
where: d = expression specifying new dimension
(1<d,,d, <255;)
length = expression specifying the maximum length of each alpha
array element (1 < integer < 65) (default = 16)

Purpose The MAT REDIM statement redimensions the specified arrays. The new
dimension(s) are enclosed in parentheses immediately following the array
name. The maximum length of each element in an alphanumeric array can be
specified by including the length as the last parameter of the dimension
specification. If a maximum length is not specified, it is set at 16. A vector
cannot be redimensioned as a matrix, and a matrix cannot be redimensioned
as a vector. Redimensioned arrays cannot be larger than the originally defined
array (if this occurs, error 92 is displayed).

Examples of statement syntax:
10 MAT REDIM A(4,5)
20 MAT REDIM B$(20)8,C1$(4,4),D$(8)

Example of a working program:
10 DIM A(3,3)
20 MAT INPUT A
30 MAT PRINT A;
40 MAT REDIM A(2,2)
50 MAT PRINT A;
When this program is executed, enter the array A as

987654321
The first MAT PRINT statement displays the above data as the matrix

987
654
321
and the second MAT PRINT statement displays it as

98
76
both MAT PRINT statements use packed format.

1

MAT ()«

SECTION Il —
MATRIX OPERATIONS MAT -
MAT () % (MAT scalar muitiplication)
General Form: MATc=(k) * a
where c and a are numeric array names and k is an expression.
Purpose: Each element of matrix or vector a is multiplied by the value of expression k

and the product is stored in array c. Array ¢ can appear on both sides of the

equation. Array c is redimensioned to the same dimensions as array a.
Example ot statement usage:

20 MAT C = (SIN(X))*A
30 MAT D = (X+Y12)*A
40 MAT A = (5)*A
Example of program:
This program inputs a 3x3 array and a scalar. It then performs scalar multi-
plication and displays the result.

10 PRINT “ENTER DATA FOR A 3x 3 ARRAY"
20 MAT INPUT C(3,3)

30 PRINT “ENTER SCALAR"

40 INPUT K

50 MATA=(K) = C

60 MAT PRINT A;

letC=[5 3 1 K=5 then A<[25 15 &
2 2 2 10 10 10
1 1 1 5 5 &
MAT - (MAT subtraction)
General Form: MATc=a-b

where a, b, and c are numeric array names.

Purpose: Subtracts matrices or vectors of the same dimension. The difference of each
element is stored in the corresponding element of c. Array c can appear on
both sides of the equation. An error message is displayed and execution is
terminated if the dimensions of a and b are not the same. Array c is redimen-
sioned to have the same dimensions as arrays a and b.

Example of statement syntax: :
10 DIM A(6,3),B(6,3),C(6,3),D(4),E(4)
20MATC=A-B
30MATC=A-C
40MATD=D-E

Example of program:

10 DIM D(3,3),E(3,3)
20 MAT INPUT D
30 MAT INPUT E
40MATF=D-E
50 MAT PRINT F

IfyouletD= 1 1 1 3 3 3 Then F= }-2 -2 -2
1 1 11 ,E= |3 3 3 -2 -2 -2
2 2 2 3 3 3 -1 -1 -1

12

MAT TRN

SECTION Il — MATRIX OPERATIONS MAT ZER
. M AT TR N (transpose)
General Form: MAT c = TRN(a)

where a and ¢ are numeric array names.

Purpose: This statement causes array ¢ to be replaced by the transpose of array a.
Array c is redimensioned to the same dimensions as the transpose of array a.
Array c cannot appear on both sides of the equation.

Example of statement syntax:
10 MAT C = TRN(A)

Example of program usage:
10 DIM A(3,3)
20 MAT INPUT A
30 MAT C = TRN(A)
40 MAT PRINT C

Let A=[9 8 7
6 5 4
3 2 1
When the program is executed, C is displayed as:
9 6 3
8 5 2

. 7 4 1
NOTE:

With any 32K System 2200, an array to be transposed must
not be the first variable or array defined in the program; it
must be preceded in the program by a variable or array
defined with at least

8* (column-dimension-of-array-to-be-transposed —1) bytes.
In the above example, on a 32K System 2200, line 10 should
read: 10 DIM A$16,A(3,3).

MAT ZER MaT zeRo)

General Form: MAT c = ZER [(d1 [,d2] 1
where ¢ is a numeric array name and d,, d2 are expressions
specifying new dimensions. (1 <d,, d, < 255; default:
d, =d, =10)
Purpose: This statement sets all elements of the specified array equal to zero. Using
» (d, ,d2) causes the matrix to be redimensioned. If (d,, d2) are not used, the
matrix has the dimensions specified in a previous COM, DIM, or MAT

statement.
Example: 10 MAT C = ZER(5,2)
o 20 MAT B = ZER

30 MAT A = ZER(F,T+2)
40 MAT D = ZER(20)

13

[]
Appendlx A Matrix Statement Error Messages

TERR 89

Cause:
Action:

Example:

TERR 90

Cause:

Action:

Example:

TERR 91

Cause:

Action:

Example:

MATRIX NOT SQUARE
The dimensions of the operand in a MAT inversion or identity are not equal.
Correct the array dimensions.

:10 MAT A=IDN(3,4)
:RUN

10 MAT A=IDN(3,4)
tERR 89
:10 MAT A=IDN(3,3) (Possible Correction)

MATRIX OPERANDS NOT COMPATIBLE

The dimensions of the operands in a MAT statement are not compatible; the operation
cannot be performed.

Correct the dimensions of the arrays.

:10 MAT A = CON(2,6)
:20 MAT B=IDN(2,2)
:30 MAT C=A+B

:RUN

30 MAT C=A+B
tERR 90
:10 MAT A=CON(2,2) {Possible Correction)

ILLEGAL MATRIX OPERAND

The same array name appears on both sides of the equation in a MAT multiplication
or transposition statement.

Correct the statement.

:10 MAT A=A+«B
tERR 91
:10 MAT C=A+*B {Possible Correction)

14

APPENDIX A

TERR 92

Cause:

Action:

Example:

tERR 93
Cause:
Action:

Example:

tERR 94
Cause:
Action:

Example:

ILLEGAL REDIMENSIONING OF ARRAY

The space required to redimension the array is greater than the space initially reserved
for the array; or a matrix is being redimensioned into a vector; or a vector is being

redimensioned into a matrix.
Reserve more space for array in DIM or COM statement.
:10 DIM A(3,4)

:20 MAT A=CON(5,6)
:RUN

20 MAT A=CON(5,6)
tERR 92
:10 DIM A(5,6) (Possible Correction)

SINGULAR MATRIX
The operand in a MAT inversion statement is singular and cannot be inverted.

Correct the input values or the program.

:10 MAT A=ZER(3,3)
:20 MAT B=INV(A)
:RUN

20 MAT B=INV(A)
TERR 93

MISSING ASTERISK
An asterisk (*) was expected.
Correct statement text.

:10 MAT C=(3)8B
1ERR 94 _
:10 MAT C=(3)+8B (Possible Correction)

15

A p p e n d i x B Specifications

Speed: For most matrix operations a Matrix Statement runs about 8 to 10 times faster than
equivalent BASIC programs without the MAT statement.

Approximate Speed for a

MAT statement 10 x 10 matrix (in seconds)

MATA=B+C 0.1
MATA=(B)* D 0.53
MATA=B-C 0.11
MAT A =INV(B), D 5.00
MAT A =TRN(B) 0.02
MAT PRINT A; (to CRT) 0.27
MATA=B «C 4.20
Size: The maximum number of numeric array elements which can be accommodated in a

machine of given memory size can be determined by evaluating the following expression:

M-H
8

where M = machine size (4K = 4096 bytes),

H = number of bytes in RAM for housekeeping (~ 700), program statements, and

) other variables.)]
Since eight bytes are needed for each numeric matrix element, take the square root of the

result to find the size of a square matrix.
M-H]"
8
A 4K machine can accommodate a 20x20 matrix or a matrix of 420 elements; an 8K

machine, a 30x30 matrix or a 960 element matrix, to a maximum of 63x63 elements
(a 3969 element matrix) in a 32K machine.

For alphanumeric arrays, the denominator of the previous expressions would change from
eight (8) to the desired element length (1 to 64 bytes inclusive).

16

INDEX

Page
Addition . 4
Algebra, linear . 1
Arrays . . 2
Array dlmenSIonlng 2
Array, doubly subscripted ... 3
Array, redimensioned23
Array, singly subscripted . 3
Array variable 3
Assignment of values to array elements 7,10
Asterisk (*), use of . 9,12
BASIC language e e .1,2,16
Brackets ([]),useof 3
Carriagereturn 7
COMstatement 3
Commas(,),useof79
CONstantmatrix 5
DATA statement,useof 10
Defaultvalues 7
Determipant, 8
Dimensions, automatic 2
Dimensionsofarray 2
DiM statement . 3,10
Element length . 2,7,10,11
Equality c v e e b
Equations, homogeneous e e e e e e 1
Equations, linear 1
ERR 90 9,14
ERR 93 8,15
{dentity matrix 6
lllegal MAT statements 3
INPUT . 7
Input/output 1
Installation . 1
Introduction 1
Inverse of matrix . . 8
Machine size 2,16
Matrix . . 3
Matrix addltlon 4
Matrix equality . b
Matrix inversion . < -« 816
Matrix multiplication 39

Matrix operations (table) .
Matrix operations, speed of .
Matrix redimensioning .
Matrix rules . .
Matrix scalar multlphcatlon .
Matrix subtraction

Matrix transposition

Maximum length of alpha array eIement

Multiple matrix operations .
Multiplication .
Multiplication, scalar

No data entry .
Non-singular matrix .
Operand .

Overlay

Packed format .

PRINT.

Printing a matrix .

Product of matrices .
Programs, overlaying
Question mark (?), use of
Quotation marks (*‘), use of
RAM .

READ .

REDIM

Redimensioning

Rules .

Scalar multlpllcatlon
Semicolon (;), use of
Singular matrix

Space for array .
Speed of matrix operations .
Square matrix . .
Square matrix, size of .
String variables

Subtraction .

Transpose

Vector .

Vector, column

ZERo matrix

17

Page

16
1

12

12
313
7,9,10

o1
2,311
. 3
- 12
-9
8,15

. 2,15,16

. . 16
.6,8,14
. 16
7,10
- 12
. .« 13
39,11
9,1
- 13

:To help us to provide you with the best manuals possible, please make your comments and suggestions
I concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
=and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
) name and address. Your cooperation is appreciated.

700-3332E

TITLE OF MANUAL: MATRIX STATEMENTS REFERENCE MANUAL

COMMENTS:

Fold

Folid

D G EEDEN A N G D WP GD SR G A oD SD S B) G G D ED U G5 G 00 GF G D G G b P GP Gh G GP GF G A S R A D G 4D GP G TP aD db G GF Gb GD 4D 4D 60 --------P-- -

(Please tape. Postal regulations prohibit the use of staples.)

(WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Lowell, Mass.

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

Cut along dotted line.

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Degartment

Fold

Printed in U.S.A.
13-1019

'
1
I
t
|
I
1
i
1
i
i
]
|
I
I
|
!
|
i
|
|
i
l
3
]
I
|
|
|
1
i
1
|
|
I
|
|
|
t
t
|
I
I
3
|
t
t
}
¢
1
[}
1
1
1
1
1
BUSINESS REPLY MAIL i
I
1
1
1
1
I
|
|
|
|
|
|
I
|
i
|
|
t
i
1
1
1
i
i
i
3
i
i
1
i
i
|
i
|
|
t
i
|
I
|
|
|
i
I
t
3
|
i
t
i
|
|
|
|
|
|
|
|
i
|
I
t
i
i

	Table of Contents
	Section I: General Information
	Introduction
	Installation
	Array Dimensioning
	Matrix Statement Rules

	Section II: Matrix Operation
	MAT + (MAT addition)
	MAT CON (MAT CONstant)
	MAT = (MAT equality)
	MAT IDN (MAT identity)
	MAT INPUT
	MAT INV (MAT INVerse, D)
	MAT * (MAT multiplication)
	MAT PRINT
	MAT READ
	MAT REDIM (MAT REDIMension)
	MAT () * (MAT scalar multiplication)
	MAT - (MAT subtraction)
	MAT TRN (transpose)
	MAT ZER (MAT ZERo)

	Appendix A: Matrix Statement Error Messages
	Appendix B: Specifications
	Index

