(WANG)

Wang Basiec Disk
Relerenee Wanval

Wang Basic Disk
Reference Manual

© Wang Laboratories, Inc., 1979

LABORATORIES, INC.

WANG)ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

HOW TO USE THIS MANUAL

The Wang BASIC Disk Reference Manual 1is designed to serve as a
programmer's guide to the concepts and features of disk utilization, and a
reference guide for the BASIC instructions which govern disk operations.
These logically and functionally distinct areas are, treated in individual
chapters or groups of chapters, as much as possible.

Chapter 1 introduces the concepts and features of information storage
and retrieval on the disk and the general procedures for addressing and
accessing a disk drive under program control. These procedures are common to
most Wang disk models.

Wang System 2200 provides two modes of disk operation - Automatic File
Cataloging Mode and Absolute Sector Addressing Mode. Chapters 2, 3, and 4
constitute a programmers guide to the features available in the Automatic File
Cataloging Mode. Chapter 2 may be of particular interest to the beginning
disk programmer, because it serves as a primer for disk operations, explaining
fundamental concepts of disk management such as file structure, record layout,
file and record accessing, etc.

Chapter 5 is a reference chapter for the BASIC statements which comprise
the Automatic File Cataloging Mode. The syntax and capabilities of each
statement are presented in a brief, compact format which makes it quickly
accessible to the programmer who is already familiar with the general
principles of Automatic File Cataloging.

Chapter 6 serves as a programmer's guide for the Absolute Sector
Addressing Mode. Chapter 7 is a companion reference chapter which describes
the syntax and capabilities of the BASIC instructions of Absolute Sector
Addressing Mode.

Chapter 8, finally, is a hybrid chapter incorporating both hardware and
programming information on the disk multiplexer Model 2230MXA-1/B-1, which
permits a single disk unit to be accessed by several CPU's. Multiplexer
owners should consult this chapter before attempting to install or program the
multiplexer.

Explanations of the disk error codes, a bibliography of disk literature,
a glossary of disk terminology, and other information of interest to the disk
user has been assembled in the Appendices.

CHAPTER

CHAPTER

CHAPTER

1

N

NN

=
[V, I - VU

NMNNOMNDNDNN

w W

w W w
[)N C P

[«)8

[« NNV, I - R LR

~J

.10

.11
.12

.13
.14
.15

TABLE OF CONTENTS

ACCESSING A DISK DRIVE

Introduction . . . « & « v v v 4 e v e e e e e

The 'F' and 'R' Platter Parameters

Accessing a Disk Platter

The Disk Device Address

Accessing the Third Drive (Model 2270 3/2270A—3) and
Slave Drive (Model 2260C-2/2260BC-2)

Access Limitations of Certain Disk Models

AUTOMATIC FILE CATALOGING PROCEDURES

Introduction . .
What Is Automatic F11e Catalog1ng7 .
Sectors and Addresses
Initializing the Catalog
Saving Cataloged Programs Stored on Dlsk .
Retrieving Programs Stored on Disk:
The LOAD DC Command
The LOAD DC Statement e e e e e e e e
Listing The Catalog Index « « . . .
Saving Data Files on Disk e e e e e e e
The Hierarchy of Data+ . .
Opening a Data File on Disk .
Saving Data in a Data File on Disk
The Structure of Data Files .
Opening a Second Data File on DlSk
Re~Opening a Data File on Disk with the
"DATALOAD DC OPEN" Statement
Retrieving Data from a Cataloged Data File on D1sk .
Skipping and Backspacing Over Logical
Records in a Data File ..
Testing for End-of-File
Scratching Unwanted Files .
Moving the Catalog from One Platter to Another .

DISK DEVICE SELECTION AND MULTIPLE DATA FILES

Introduction . .
Disk Device Selectlon
The Device Table. .
Use of File Numbers in Acce551ng the #3 Drlve in
Models 2270-3/2270A-3 and Slave Drive in
Models 2260C-2/2260BC-2 e e
Why Use the Device Table?
Maintaining Multiple Open Data F11es on DlSk .
Using a Variable to Store the File Number .
The "Current Sector Address' Parameter .
Closing a Data File . .
Skipping and Backspacing Over Ind1v1dual

Sectors in a File .

ii

PAGE

WN ==

w o~

28
32
33
34

37
37
38

40
41
41
46
47
50

51

CHAPTER 4

CHAPTER

oIS o

VWM =

v oo

wWN -

Using The 'T' Parameter
Changing the Default Address
Multiple Disk Units

Models 2260BC, 2260C, 2270/70A— » 2270/70A-2,

and Minidiskette .

Models 2270-3 and 2270A—3 .
Models 2260BC-2 and 2260C-2 .
Accessing Multiple Disk Units .

EFFICIENT USE OF THE DISK

Introduction .
Program Files Rev1s1ted

Establishing Temporary Work F11es on DlSk

Altering the Catalog Area .
Renaming and Re-Using Scratched F11es
Efficient Use of Disk Storage Space
System Control Information
Inter-Field Gaps
The LIMITS Statement .
Form 1 of LIMITS
Form 2 of LIMITS
Conclusion .

AUTOMATIC FILE CATALOGING STATEMENTS AND
COMMANDS

Introduction .

System 2200 Disk Statements and Commands .

Basic Rules of Syntax and Terminology
DATALOAD DC . . .
DATALOAD DC OPEN
DATASAVE DC
DATASAVE DC CLOSE .
DATASAVE DC OPEN
DBACKSPACE
DSKIP .

LIMITS

LIST DC . .

LOAD DC (Command)
LOAD DC (Statement)
MOVE e e
MOVE END .

SAVE DC (Command)
SCRATCH . .
SCRATCH DISK
VERIFY

iii

PAGE

53
56
57

57
57
58
60

61
61
62
65
65
68
68
70
71
72
73
74

75
75
76
78
79
81
83
84
86
87
88
90
91
92
94
96
97
99
101
103

CHAPTER

CHAPTER

CHAPTER

6

Ao
. .
W =

6.4

[+ A0« \ W«)}
~N O\ n

6.8

~ o~
N =

oo 0 0o
w N~

o o
v &

ABSQOLUTE SECTOR ADDRESSING

Introduction e e e

Specifying Sector Addresses . e . AN

Storing and Retrieving Programs on Dlsk in
Absolute Sector Addressing Mode
Saving Programs on Disk with SAVE DA

Retrieving Programs Stored on Disk with LOAD DA .

The LOAD DA Command
The LOAD DA Statement .
Storing and Retrieving Data on DlSk in
Absolute Sector Addressing Mode . .
Storing Data on the Disk with DATASAVE DA .
Retrieving Data from Disk with DATALOAD DA
The 'BA' Statements
Platter-to-Platter Copy N ..
Using Absolute Sector Addressing Statements in
Conjunction with Catalog Procedures
(Binary Search)
Conclusion. ..

ABSOLUTE SECTOR ADDRESSING STATEMENTS AND COMMANDS

Introduction . .
Statement /Command Dlstlnctlon and
General Rules of Syntax .
COPY .
DATALOAD BA .
DATALOAD DA .
DATASAVE BA .
DATASAVE DA
LOAD DA (Command)
LOAD DA (Statement)
SAVE DA .

THE DISK MULTIPLEXER (MODEL 2230MXA-1/MXB-1)

Introduction . .
The Model 2230MX Multlplexer .
Installing the Model 2230MX
Unpacking and Inspection
Installation Procedure
Power-On Procedure
Multiplexer Operation
Programmable Hog Mode
$GIO Hog
Address Hog .

iv

PAGE

105
107

108
109
110
110
111

113
113
115
117
119

121
126

127

127
128
130
132
134
136
138
140
142

144
145
147
147
147
148
150
151
151
152

APPENDICES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

DISK ERROR CODES . .o
Explanations of error codes assoc1ated
with disk operation.

A GLOSSARY OF DISK TERMINOLOGY .
Brief definitions of commonly-used disk
terms.

BIBLIOGRAPHY .

A list of articles and textbooks whlch
discuss disk file access techniques and
disk file design philosophies.

DISK FILE BACKUP . . .
A discussion of why, when, and how to
backup disk files.

PAGE

154

165

173

175

179

Example
2-1:

2-2:

2-10:
2-11:
2-12:

2-13:

2-14:

2-15:
2-16:
2-17:
2-18:
2-19:
2-20:
2-21:
2-22:
2-23:

2-24:

LIST OF EXAMPLES

Initializing the Catalog
Initializing the Catalog ('LS' Parameter Omitted).
Saving a Program on Disk .

Saving Part of a Program on Disk (One Line Number Specified)

Saving Part of a Program on Disk (Two Line Numbers Specified).

Loading a Cataloged Program File from Disk .

Attempting to LOAD a Non-Cataloged Program from Disk .
Chaining a Program from Disk with the LOAD DC Statement.
Loading a Program Overlay from Disk

Listing the Catalog Index.

Opening a Data File on Disk.

Saving Data in a Data File

Writing an End-of-File (Trailer) Record to a Cataloged Data
File on Disk 0 .00 .

Writing a Data Trailer Record after a Series of DATASAVE
DC Statements

Reopening a Cataloged Data File on Disk.

Attempting to Reopen a Non-Cataloged Data File
Reading Data from a Cataloged Data File

Saving and Loading one Logical Data Record

Loading Portions of one Logical Data Record

Skipping over Logical Records in a Data File
Backspacing over Logical Records in a Data File
Backspacing to the Beginning of a Cataloged Data File
Skipping to the End of a Cataloged Data File

Testing for the End-Of-File Condition in a
Cataloged Data File

vi

Page

10
10
10
11
12
13
13
14
17

18

19

20
25
25
26
26
27
30
31
31

31

32

2-25:;

2-26:

2-27:

3-4:

3-5:

3-6:

3-10:

3-11:

3-12:

4-10:

Scratching Unwanted Files.
Copying the Catalog from One Platter to Another

Checking the Validity of the File after a MOVE

Storing Disk Device Addresses in the Device Table
Opening a New Data File with a File Number
Referencing an Open File by File Number.
Referencing an Open File by File Number.

Closing a Data File by Reassigning Its File Number

Closing a Specified File with a DATASAVE DC CLOSE Statement

Closing All Currently Open Files with a DATASAVE DC
CLOSE Statement e e e e e e e e

Skipping Over a Number of Sectors in a File.

Backspacing Over a Number of Sectors in a File .

Accessing More Than One Disk Platter with the 'T' Parameter

Using the 'T' Parameter to Access a User-Selectable
Disk Platter

Using the 'T' Parameter with a New Default Address

Reserving Additional Sectors in a Program File

Opening a Temporary Work File on Disk.

Opening More Than One Temporary Work File.

Re-Opening a Temporary Work File .

Changing the Size of the Catalog Area.

Saving a Program in Space Occupied by a Scratched File .
Opening a Data File in Space Occupied by a Scratched File

Opening a Data File in Space Occupied by a Scratched
Program File ..

Renaming Scratched Program File with the Same Name .

Renaming Scratched Data File Which Is Still Viable .

vii

33

34

35

39
44
45
46
50

51

51
52
52

54

55

56

62
64
64
64
65
65

66

66
66

67

4-11:

4-12:

4-13:

4-14:

6-4:

6-5:

6-6:

6-8:

6-9:

6-10:

6—-11:

6-12:

6-13:

6-14:

6-15:

6-16:

Form 1 of the LIMITS Statement ('File Name' specified)

Form 1 of the LIMITS Statement ('File Name' and a File
Number Specified)« . . o .

Form 2 of the LIMITS Statement ('File Name' not specified)

Form 2 of the LIMITS Statement ('File Name' not specified)

Saving a Program on Disk with SAVE DA (No Line Number
Specified)

Saving a Program on Disk with SAVE DA (Two Line
Numbers Specified) .

Loading a Program from Disk with LOAD DA Command .

Loading Programs from Disk with a LOAD DA Statement
(No Line Number Specified)

Loading Program Overlaps from the Disk with the LOAD DA
Statement (Two Line Numbers Specified)

Storing Data on Disk with DATASAVE DA Statement

Saving a Number of Data Records in Sequential
Areas of the Disk

Writing an End-of-File Record in a Data File
with a DATASAVE DA END Statement

Retrieving Data from a Data File on Disk with
a DATALOAD DA Statement

Testing for the End-of-File Condition in a
Non-Cataloged Data File

Writing an Unformatted Sector with DATASAVE BA .
Reading a Sector from Disk with DATALOAD BA

Copying a Disk Platter with the COPY Statement
Copying a Disk Platter with the COPY Statement
Verifying Data Transfer Following a COPY operation .

Performing a Binary Search on a Cataloged Data File.

Entering and Leaving Hog Mode Using $GIO Hog

Entering and Leaving Hog Mode Using Address Hog

viii

72

72

73

73

109

110

110

111

112

113

114

115

115

116

117

118

119

119

120

125

151

153

LIST OF FIGURES

Figure No. Page
2-1 The Catalog Index Listing . . e e e e e e e e e e e e 14
2-2 Catalog Index Entry for DATFIL 1 e e e e e e e e e e e e e e 17
2-3 Catalog Index Entry for DATFIL 1 . . . e e e e e e e e e e 19
2-4 Updated Catalog Index Entry for DATFIL 1 v e e e e e e e e e 20
2-5 Logical Record Consisting of One Sector 22
2-6 Two One-Sector Logical Records e e e e e e e e e 23
2-7 Logical Record Cons1st1ng of Three Sectors e e e e e e e e 24
2-8 Logical Records in TEST 1 . . . e e e e e e e e 29
2-9 Skipping Over Logical Records in a Data F11e e e e e e e e e 29
2-10 Backspacing Over Logical Records in a Data File 30
2-11 The Catalog Index Showing Scratched Files 34
3-1 The Device Table in Memory . . e e e e 38
3-2 The Device Table with Disk Addresses Stored Oppos1te

File Numbers #3 and #5 e e e e e e 39
3-3 The Device Table with One File Open (DATFIL 1) e e e e e e e 42
3-4 The Device Table with One File Open (DATFIL 2) 43
3-5 The Device Table with Disk Device Addresses Stored

Opposite File Numbers #3 and #5 and One Open File

(DATFIL 2) e e e e e e e e e e e b4
3-6 The Device Table w1th Two Open F11es e e e e e e e e 44
3-7 The Device Table in Memory with Three Open F11es e e e e e e 45
3-8 Device Table Slot for DATFIL 2 . . . e e e e e e e e e e e 47
3-9 Updated Device Table Slot for DATFIL 2 e, © 48
3-10 Updated Device Table Slot for DATFIL 2 . . . e e e e e e 48
3-11 Updated Device Table Slot for DATFIL 2 Follow1ng

Execution of a DBACKSPACE BEG Statement e e e 49
3-12 The Device Table Default Slot Following Executlon of

a SELECT DISK Bl0 Statement « « « « « v & « o « o 56
4-1 The Program File PROG 1 with 10 Extra Sectors Reserved 62
4-2 Layout of the Platter Surface Showing Catalog Index,

Catalog Area, and Non-Catalog Area (Used for Storage

of Temporary Files) e e e e 63
4-3 One Logical Record, Showing Sector Control Bytes and

Start-of-Value Control Bytes for Each Field 69
4-4 Inter-Field Gap in a Multi-Sector Record 70
4-5 A Multi-Sector Record with No Gaps « « « « + « & « . 71
6-1 Typical Entry in Customer Credit File . . . e e 122
6-2 Typical Customer Credit File (Sorted in Ascendlng Order) e 122
6-3 Binary Search Technique + .+ « « v « 4 v v o o« o 0 o 123
8-1 Model 2230MXA-1 Master Board and 2230MXB-1 Slave Boards 145
8-2 T-connector Cable in Multiplexed System . . .« e e e 145
8-3 Connecting Extension Cable with Standard 12- Foot Cable e e e 146
8-4 Typical System Configuration: Model 2230MX Mu1t1p1exer,

Disk Unit, and Four Attached CPU's e e e 147

ix

w —=
—

w W
w N

LIST OF TABLES

Page
Platter Parameters + v « « ¢ « & o o o v 4 e e e e e e 2
Disk Addresses for Models 2260BC, 2260C, 2270-1/2270A-1,
2270-2/2270A-2 and Minidiskette +. v v ¢ v v e 4 e 4 . . 58
Disk Addresses for Model 2270-3/2270A-2 « v v « « . 59
Disk Addresses for Models 2260C-2/2260BC-2 « « « « « . 59

CHAPTER 1
ACCESSING A DISK DRIVE

1.1 INTRODUCTION

Information on a disk platter is stored on concentric circular tracks

which are divided into a number of discrete segments called sectors. Each
sector has a fixed storage capacity of 256 bytes and has its own sector
address which allows it to be directly accessed by the system. The
programmable instructions used to access the disk platters are essentially the
same for most disk models. This section discusses the procedures for
accessing the disk platters when the system contains only one disk unit or the
primary disk drive among multiple disk wunits 1is being accessed. The

considerations for accessing the disk platters when the System contains more
than one disk unit are discussed in Chapter 3.

1.2 THE 'F' and 'R' PLATTER PARAMETERS

Before it can perform a disk read or write operation, the system must
know which platter is to be accessed from a disk drive. Each platter in the
disk unit is regarded by the system as an independent logical unit, with its
sectors independently numbered starting at zero. In order to locate a given
sector, the system must be told which drive unit (device address) and platter

(platter parameter) contain the desired sector. The system uses two
parameters - 'F' and 'R' - to identify individual platters in the drive.
The 'F' and 'R' parameters were designed originally for the

fixed/removable disks (Model 2260), and they are mnemonics for '"fixed" ('F')
and "removable" ('R'). Thus, the 'F' parameter uniquely identifies the fixed
platter in these disk units, and the 'R' parameter identifies the removable
platter (disk cartridge).

'F' and 'R' may also be used with the Model 2270 or Model 2270A diskette
and minidiskette drives. All diskettes are equally removable; no diskette has
a privileged status. 'F' and 'R' therefore have no particular mnemonic
significance in this case. 'F' identifies the diskette drive #1, while 'R’
identifies drive #2. 1In a Model 2270-1/2270A-1 or minidiskette configuratiom,
which has only one drive, 'F' identifies the single drive, and 'R' is not
used. In a Model 2270-3/2270A-3, with three drives, 'F' serves double duty,
identifying both drive #1 and drive #3. When used to reference drive #3,
however, the 'F' parameter must be accompanied by a special disk device.

Table 1-1. Platter Parameters

PARAMETER MODELS MODELS MODEL MODEL
2260C 2270-1 2270-2 2270-3
2260BC 2270A-1 2270A-2 2270A-3

Minidiskette Dual
) Minidiskette
F Fixed Platter Drive #1 Drive #1 Drive {1
or #3%
R Removable Platter Not Used Drive #2 Drive #2

*'F' parameter must be accompanied by special disk device address to
access drive #3 (see Section 1.5).

1.3 ACCESSING A DISK PLATTER

Access to a particular platter is obtained by including the appropriate

platter parameter in a disk statement. For example, the Absolute Sector
Addressing statement DATASAVE DA is used to store data on disk beginning at a
specified sector address. The following statement might be used to record

data in sector #100 on the fixed platter of a fixed/removable disk, or on the
diskette mounted in drive #1 of a diskette drive:

10 DATASAVE DA F (100) A$

Similarly, the following statement could be used to record data in sector #100
on the removable platter, or on a diskette mounted in drive #2:

10 DATASAVE DA R (100) A$

The Automatic File Cataloging procedures, discussed in Chapters 2-4,
permit the programmer to read and write information on disk without specifying
a sector location. In this case, the Catalog automatically keeps track of
where each file is stored, so that the programmer only needs to provide the
file name (device address) and the platter parameter. For example, the SAVE
statement is used to record named programs on disk with Catalog procedures.
Thus, the following statement could be used to save the program PROG 1 on the
fixed platter of a hard disk unit (e.g., the Model 2260C) or diskette #1 of a
diskette drive unit (e.g., Model 2270):

10 SAVE DC F "PROG 1"

The same program could be saved on the removable platter, or on diskette #2 of
a diskette drive unit, with the following statement:

10 SAVE DC R "PROG 1"

1.4 THE DISK DEVICE ADDRESS

In addition to the platter parameters, which identify individual disk
platters within a disk unit, the disk unit as a whole is identified with a

unique three-digit disk device address. The disk device address enables the
system to distiguish the disk from other peripheral devices (printers,
plotters, etc.) and from other disk units on the same system. The device

address is not selectable by the programmer, but is preset within each disk
controller board at the factory or by a Wang Customer Service Representative.
The device address of the first or primary disk unit in a system is 310. If
the system supports two or more disk units, the disk device address is
incremented by HEX(10) for each additional disk unit. (For example, the
address of a second disk unit on the same system is 320; of a third, 330,
etc.) The device addressing scheme for multiple~disk systems is covered in
greater detail in Chapter 3, Section 3.8:

The following statement saves a file named "PROG 1" on the platter
designated "F" on the default disk unit (designated 310):

10 SAVE DC F /310, "PROG 1"

Notice that the device address is preceded by a slash ("/") when specified
directly in a disk statement. The indirect specification of a disk address
involves the use of file numbers, and discussion of this technique is
postponed until Chapter 3, where file numbers are introduced.

NOTE:

Since the system assumes a device address of 310
automatically, the disk device address may be omitted from
a disk statement if there is only one disk unit in the
system, or if the primary disk unit in a multiple-disk
system 1is to be accessed. Thus, the following pair of
statements are, in general, equivalent:

10 SAVE DC F/310, "PROG 1"
or

10 SAVE DC F "PROG 1"

In either case, the disk unit with address 310 is accessed.

1.5 ACCESSING THE THIRD DRIVE (MODEL 2270-3/2270A-3) AND SLAVE DRIVE (MODEL
2260C-2/2260BC-2)

In general, the device address of drive #3 1is determined by ORing
HEX(40) to the primary address assigned to drives #1 and #2. For example, if
the primary address of the triple drive is 310, the address of drive #3 is
350; if the primary address is 320, the address of drive #3 is 360, etc.

I1f drive #3 is accessed with the 'F' parameter, the special address must
be referenced. For example, statement 10 below would access drive #1 of a
triple drive unit:
10 SAVE F "PROG 1"
Alternatively, statement 20 accesses drive #3:

20 SAVE F /350, "PROG 2"

These statements assume, of course, that the primary address of
the triple drive is the default address, 310.

The slave drive in a Model 2260C-2/2260BC-2 dual drive system is treated
much the same as the third drive in the Model 2270-3. Although it 1is
functionally an extension of the Master drive, it is assigned a separate
address which is always HEX(40) greater than the address of the Master disk.
If the Master drive's default address is 310, for example, the Slave drives
address would be 350. The fixed and removable platters are specified 'F', and
'R', as described in previous sections. In the above example, Statement 10
would access the fixed platter in the Master drive, Statement 20 would access
the fixed platter in the Slave drive. Alternatively changing the 'F' to 'R’
would access the removable platters in the respective drives.

1.6 ACCESS LIMITATIONS OF CERTAIN DISK MODELS

In general, the discussion of disk statements and commands which follows
in Chapters 2-6 applies to all disk models, since all 2200 series disks share
the same BASIC instruction set. There are, however, three special exceptions
to this general rule, regarding the use of the platter~to-platter MOVE and
COPY statements (covered in Sections 2.15 and 6.6, respectively).

Model 2260C-2/2260BC-2

The platter-~to-platter MOVE and COPY operations are legal for the fixed
and removable platters in either the slave drive or the master drive.
Information cannot be transferred between the master and slave drives,
however, because they are accessed with separate addresses.

Model 2270-1/2270A-1

The platter-to~platter MOVE and COPY statements are illegal on the Model
2270-1, because that it holds only a single diskette. The MOVE and COPY
operations cannot be carried out between separate disk units (i.e., between
one Model 2270-1 and a second disk unit).

Model 2270-3/2270A-3

The platter—to-platter MOVE and COPY operations are legal for drives #1
and #2 in the 2270-3, but illegal for drive #3. Drive #3 is regarded as
belonging to a separate disk unit, and the MOVE and COPY operations cannot be
carried out between two disk units.

CHAPTER 2
AUTOMATIC FILE CATALOGING PROCEDURES

2.1 INTRODUCTION

Once the disk is formatted using the procedures outlined in the
appropriate disk manual, you are ready to begin storing information on it.
The System 2200 provides two methods of accessing and utilizing the disk,
Automatic File Cataloging Mode and Absolute Sector Addressing Mode. Automatic
File Cataloging consists of a set of catalog procedures designed to
facilitate creating and maintaining files on the disk without concern for
where the files are actually located. Absolute Sector Addressing, on the
other hand, permits direct access to any sector on the disk; Absolute Sector
Addressing statements can be used to design a custom disk operating system, or
to write special disk operating procedures such as binary searches, sorting
routines, etc.

Chapters 2, 3, 4, and 5 describe and explain the functions and uses of
the catalog procedures. The present chapter introduces the concept of
cataloging, and discusses basic catalog procedures, such as storing and
retrieving programs and data on disk, skipping over data records in a data
file, listing the contents of the catalog index for each platter, and creating
back-up copies of the catalog. Chapters 3 and 4 discuss these and other
subjects in greater detail. Chapter 5 provides an alphabetical listing of all
catalog statements and commands with a detailed summary of the general format
and function of each.

2.2 WHAT IS AUTOMATIC FILE CATALOGING?

Automatic File Cataloging comprises a built-in set of catalog procedures
which automatically keep track of the locations of all cataloged files stored
on a disk platter. The catalog procedures enable a programmer to create and
access program files and data files on disk by name, without knowing where the
files are located on the platter. The system itself automatically places each
newly created file in an available location, and records this location for

future reference.

The catalog procedures provided in Automatic File Cataloging consist of
18 BASIC statements which control the storage and retrieval of information on
the disk, along with a number of auxiliary file maintenance operations. Prior
to opening any cataloged files on a disk platter, it is necessary to establish
a catalog on the platter. The catalog consists of two parts: the Catalog
Index, and the Catalog Area.

All cataloged files (program and data) are stored sequentially in the
portion of the platter designated as the Catalog Area. The Catalog Index,
which normally occupies a portion of the platter much smaller than the Catalog
Area, contains the name and location of each cataloged file. When a file is
initially opened, the system automatically stores it in the first available
sequential location in the Catalog Area. The system then records the file's
name and location 1in the Catalog Index. Thus, the Catalog Index functions
much like the table of contents in a textbook, while the Catalog Area is
analogous to the body of text. When the system is subsequently instructed to
access a cataloged file, it goes to the Catalog Index, looks up the file's
name and location, and moves to the appropriate location in the Catalog Area
to access the file. Because the Catalog Index is automatically maintained and
consulted by the system itself in Automatic File Cataloging mode, the
programmer never needs to know where a cataloged file is actually located on
the disk in order to access it.

2.3 SECTORS AND ADDRESSES

The Catalog Index keeps track of the location of each file in the
Catalog Area by recording the starting sector address of the file at the time
it is stored. You may recall from Chapter 1 that the sectors on each disk
platter are numbered sequentially, starting at zero. Each sector, therefore,
has a unique number, or 'address'".

Each sector has a storage capacity of 256 bytes of information. Thus,
for example, a 1000-byte program would occupy four consecutive sectors.
Following our analogy in Section 2.2, the sectors can be thought of as pages
in a textbook, each with its own number. When a program or data file is
stored on the disk with the cataloging procedures, the system automatically
records the name of the file and its starting sector address - i.e., the
address of the first sector in which information belonging to that file 1is
stored - in the Catalog Index. When information from the file is to be
retrieved, the system reads the starting sector address in the Catalog Index,
to that location, and sequentially reads as many sectors as needed to retrieve
the required information.

2.4 INITIALIZING THE CATALOG

Before any information can be recorded on the disk with catalog
procedures, the catalog itself must be initialized with a SCRATCH DISK
statement. In the SCRATCH DISK statement, you must tell the system three
things:

1. The disk platter on which the catalog is to be established.
Separate and independent catalogs are established on each disk
platter, and each must be initialized independently. The 'F' or 'R’
parameter is used to specify the desired disk platter.

2. The number of sectors to be reserved for the Catalog Index (any
number between 1 and 255 is allowed). The 'LS' parameter is used
for this purpose (see Example 2-1).

3. The address of the last sector to be used for the Catalog Area.
(Cataloged files cannot be stored on the disk beyond this sector.)
The 'END' parameter is used for this purpose. Obviously, you cannot
reserve more sectors for the Catalog Area than there are sectors on
the disk platter; thus, the address of the last sector in the
Catalog Area must not be higher than the address of the last sector
on the disk platter. (This address varies according to the capacity
of the disk configuration. Check the appropriate Disk Drive Users
Manual to determine the highest legal sector address of your Model.)

Example 2-1: 1Initializing the Catalog

10 SCRATCH DISK F LS=100, END=1000

Statement 10 instructs the system to initialize a catalog on the
disk platter designated by 'F' ('F' designates the fixed disk
platter on the Models 2260C/2260BC, and Drive #1 on the Model
2270/2270A and minidiskette). One hundred sectors are reserved for
the Catalog Index on this platter (LS = 100), and sector 1000 is
specified as the last sector in the Catalog Area (END = 1000). Note
that each disk platter must be initialized separately (i.e., with a
separate SCRATCH DISK statement).

In deciding how many sectors you should allocate for the Catalog Index,
keep in mind the fact that the first sector of the Index (sector 0) can hold
15 file names, and each subsequent sector (up to sector 254) can hold 16 file
names. Thus, if you intend to hold 15 or fewer files on a disk platter, one
sector will be adequate for the Index. If you intend to hold 16 or more
files, two or more sectors must be reserved for the Index. It is important to
note, however, that the size of the Catalog Index, once fixed, cannot be
altered without reorganizing the entire catalog. The Index should therefore
be allotted enough space to provide for any possible future additional files.

It is not absolutely necessary to specify the number of sectors to be
reserved for the Catalog Index. If you do not specify the number of sectors
to be reserved in your SCRATCH DISK statement (i.e., if the 'LS' parameter is
omitted), the system automatically reserves the first 24 sectors on the disk
platter for a Catalog Index. Since the first sector holds up to 15 file
names, and each subsequent sector can hold up to 16 file names, a Catalog
Index of 24 sectors holds a maximum of 383 file names.

Example 2-2: Initializing the Catalog ('LS' Parameter
Omitted)

20 SCRATCH DISK R END = 1000

Statement 20 instructs the system to establish a Catalog on the disk
platter designated by 'R' ('R'designates the removable disk platter
on the Models 2260C/2260BC, and Drive #2 on a minidiskette and the
Models 2270-2/2270A-2 and 2270-3/2270A-3; the 'R' parameter is
illegal on a Model 2270-1/2270A-1). Sector 1000 is specified as the
last sector to be used in the Catalog Area (END = 1000). Since the
'LS' parameter is omitted, the system automatically reserves the
first 24 sectors on the 'R' platter for the Catalog Index.

2.5 SAVING CATALOGED PROGRAMS STORED ON DISK

Once the catalog is initialized, cataloged information can be stored on
the disk. Information recorded on the disk must be stored in either program
files or data files. A data file may contain a large collection of data. A
program file, however, always contains only one BASIC program or program
segment .

The SAVE DC command is used to save program files on the disk. One
program file is created automatically whenever a SAVE DC command is executed.
A program file consists of the BASIC program or program segment being saved,
as well as certain control information which is automatically included in the
file by the system when the program is stored on disk.

When a program is recorded with a SAVE DC command, the system must be
supplied with the following information:

1. The disk platter on which the program is to be stored ('F' or 'R').
The specified disk platter must have been initialized with a SCRATCH
DISK statement.

2. The name of the program. You must name the program so that the
system has some way of identifying it when it is stored on the
disk. The name can be from one to eight characters in length. It
may be specified as a literal string in quotes, or as the value of
an alphanumeric variable.

Example 2-3: Saving a Program on Disk
SAVE DC R "PROG 1"

This command (the term "command" indicates that SAVE DC is not
programmable) instructs the system to transfer all program lines
currently in memory to the disk platter designated by 'R' and name
this program file "PROG 1". The file's name ("PROG 1") and location
are automatically listed in the Catalog Index.

It is also possible to save just a portion of a program currently in
memory. This is accomplished by including the appropriate line numbers in the
SAVE DC command:

Example 2-4: Saving Part of a Program on Disk
(One Line Number Specified)

SAVE DC R "PROG 2" 200

This command instructs the system to transfer all program lines in
memory beginning with line 200 onto the disk platter designated by
'R'. The program is named "PROG 2'", and its name and location are
automatically entered in the Catalog Index.

Example 2-5: Saving Part of a Program on Disk (Two Line
Numbers Specified)

A$ = "PROG 3"
SAVE DC R A$ 200, 500

This command transfers program lines 200 through 500 from memory to
the 'R' disk platter. The program is named "PROG 3", since that is
the value of A$, and the program's name ("PROG 3") and location are
entered in the Catalog Index.

2.6 RETRIEVING PROGRAMS STORED ON DISK

Cataloged programs are retrieved from the disk with the LOAD DC
instruction. The LOAD DC instruction produces a different sequence of events
depending upon its mode of execution. When LOAD DC is executed in Immediate
Mode, it functions as the LOAD DC command; the LOAD DC command stimulates a
specific sequence of operations. When LOAD DC 1is executed in Program Mode
(i.e., on a numbered program line), it functions as the LOAD DC statement; the
LOAD DC statement initiates a sequence of operations different from those
associated with the LOAD DC command.

10

The LOAD DC Command

The LOAD DC command is never executable in Program Mode; it is executed
in Immediate Mode only. If the LOAD DC instruction appears in a program (on a
numbered program line) it is always interpreted as a LOAD DC statement, and
the operations associated with the LOAD DC statement are carried out by the
system. The LOAD DC command instructs the system to locate a named program on
a specified disk platter, and load the program into memory. The system checks
the Catalog Index for the specified program name, determines the program's
location in the Catalog Area, and moves to that location to load the program.

Following execution of the LOAD DC command, the newly loaded program is
appended to existing program text in memory. New program lines which have the
same numbers as program lines already stored in memory replace the currently
stored lines in memory. Currently stored program lines which do not have the
same line numbers as new program lines are not cleared, however; they remain

as lines in the new program. (For example, if the old program has lines
numbered 5, 15, 25, etc., and the newly-loaded program lines are numbered 10,
20, 30, etc., the new program in memory has lines numbered 5, 10, 15, 20,

etc.) For this reason, it is generally wise to clear memory prior to loading
the new program. All of memory can be cleared by executing a CLEAR command
prior to executing the LOAD DC command.

Alternatively, a CLEAR P command causes only program text to be leared from
memory. After the new program is loaded, it is necessary to key RUN and
EXECUTE in order to execute the newly loaded program.

The LOAD DC command must include the following two items of information:

1. The disk platter (either 'F' or 'R') on which the desired program is
stored.

2. The name of the program which is to be retrieved (the name may be
specified as a literal string in quotes, or as the value of an
alphanumeric variable).

Example 2-6: Loading a Cataloged Program File from Disk

CLEAR
LOAD DC R "PROG 1"

This command instructs the system to load PROG 1 from the disk
platter designated by 'R'. When the command is executed, the system
accesses the 'R' platter and searches for the program name "PROG 1"
in the Catalog Index. Upon locating the name in the Catalog Index,
the system checks the starting sector address of the program, and
moves to that address in the Catalog Area to begin loading PROG 1
into memory. The new program is appended to existing program text
in memory (new program lines which have the same number as program
lines already in memory replace the currently stored lines in
memory). After the program is loaded, it is necessary to key RUN
and EXECUTE in order to begin execution of the new program.

11

If the program name specified in the LOAD DC command ("PROG 1" in
Example 2-6 above) is not located in the Catalog Index on the specified disk
platter, an error is indicated. Note that the program name supplied in a LOAD
DC command must correspond exactly to the program name listed in the Catalog
Index. Any misspelling results in an error.

Example 2-7: Attempting to LOAD a Non-Cataloged Program
from Disk

CLEAR
LOAD DC R "PRAG 1"

This command is meant to retrieve PROG 1 from the 'R' disk platter.
Because the program's name is misspelled, however ("PRAG 1" instead
of "PROG 1"), the system cannot find a program under this name in
the Catalog Index. It therefore signals an error:

LOAD DC R "PRAG 1"
4+ ERR 80

Where Error 80 = "File Not in Catalog'.

The LOAD DC Statement

Cataloged programs can also be loaded into memory from disk under
program control. The LOAD DC statement is used for this purpose. The LOAD DC
statement is executable only in a program (i.e., on a numbered program line).
When the LOAD DC instruction is executed in Immediate Mode, it is always
interpreted as a LOAD DC command, and the sequence of operations associated
with the LOAD DC command (see above) is followed by the system.

The following sequence of operations is associated with the LOAD DC
statement:

1. Stop current program execution.

2. Clear all currently stored program text (or a specified portion of
currently stored program text) from memory.

3. Clear all noncommon variables from memory.

4. Locate the named program on the specified platter, and load this
program into memory (if the specified name cannot be found in the
Catalog Index, an error is signalled).

5. Run the newly loaded program.

In a LOAD DC statement, the system must be provided with the following
information, in the order indicated:

1. The disk platter (either 'F' or 'R') on which the desired program is
stored.

12

2. The name of the program which is to be loaded (the name may be
specified as a literal string in quotes, or as the value of an
alphanumeric variable).

3. One or two line numbers which identify the first and last program
lines to be cleared from memory prior to loading the new program.
(This item is optional and, therefore, need not be included.)

If no line number is specified in the LOAD DC statement, the system
clears all program text from memory prior to loading the new program from
disk. As soon as the program is loaded, execution begins automatically at the
first (lowest) program line in the newly loaded program. The LOAD DC
statement 1is commonly wused to '"chain" programs from the disk. Common
variables (so specified in a COM statement) are retained in memory for use by
each succeeding program in the chain. Noncommon variables are cleared by the
LOAD DC statement.

Example 2-8: Chaining a Program from Disk with the LOAD DC
Statement

100 LOAD DC F "PART 2"

When it is executed, statement 100 stops program execution, clears
all program text and noncommon variables from memory, and loads in
the program PART 2 from the 'F' disk platter. Execution of PART 2
begins automatically at the first (lowest) line in the program.

If program segments are to be overlayed from disk, it may be desirable
to clear out only a specific portion of program text prior to loading the new
program segment. In this case, one or two program line numbers can be
included in the LOAD DC statement. Inclusion of a single line number in the
statement causes all program text beginning at that line to be cleared from
memory prior to loading the new program. Two line numbers instruct the system
to clear all program text between and including the specified lines prior to
loading the new program. 1In either case, all non-common variables are also
cleared. Execution of the newly loaded program begins at the first line
number specified in the LOAD DC statement. If this line number does not appear
in the newly loaded program, an ERROR 11 (Missing Line Number) is signalled.

Example 2-9: Loading a Program Overlay from Disk
200 LOAD DC F "PART 3" 300, 900

Statement 200 halts program execution and clears program lines 300
through 900 from memory, along with all non-common variables, prior
to loading program overlay PART 3 from the 'F' platter. After PART
3 is loaded, program execution continues automatically at line 300.
If PART 3 contains no line number 300, an ERROR 11 (Missing Line
Number) is signalled.

13

2.7 LISTING THE CATALOG INDEX

You can obtain a list of the names and locations of all cataloged files
on a disk platter, as well as certain information about the catalog itself, by
executing a LIST DC statement. In the LIST DC statement, you must specify the
disk platter whose Index is to be listed. When the LIST DC statement is
executed, the following information is returned:

1.

7.

The number of sectors reserved for the Catalog Index on that disk
platter.

The address of the last sector reserved for the Catalog Area.
The current end of the Catalog Area.

The name of each cataloged file.

The file type (program or data) of each file.

The starting and ending sector addresses of each file.

The number of sectors used in each file.

Example 5-10: Listing the Catalog Index

50 LIST DC R

Statement 50 causes the system to list the contents of the Catalog
Index from the disk platter designated by 'R'.

This platter was initialized in Example 2-2, and program files were
saved in Examples 2-3, 2-4, and 2-5; the listing therefore looks
like this:

REMOVABLE CATALOG
INDEX SECTORS = 00024
END CAT. AREA = 01000
CURRENT END = 00132

NAME TYPE START END USED
PROG 2 P 00051 00112 00062

PROG 3 P 00113 00132 00020
PROG 1 P 00024 00050 00017

Figure 2-1. The Catalog Index Listing

14

There are several things which should be noticed about the information
in this listing. Notice, first, that all files are stored sequentially. The
Catalog Index occupies the first 24 sectors (sectors 0-23). The first file,
PROG 1, is stored beginning at the first available sector following the Index
(sector 24). PROG 2 begins at the first available sector following PROG 1
(sector 51), and PROG 3 starts with the first sector after PROG 2 (sector
113). Notice also, however, that the Catalog Index entries themselves are not
listed in sequential order. That is because entries in the Catalog Index are
stored in a "hashed" order, which minimizes the system's search time for
finding entries in the Index. You should observe, finally, that the USED
column opposite each program name indicates the number of sectors occupied by
that program.

In the cases so far discussed, the system automatically uses exactly
enough sectors on the disk to store each program. It is also possible to
reserve extra sectors in a program file beyond the number needed to store the
program; these extra sectors can be used subsequently for additions to the
program. The technique for reserving extra sectors in a program file is
discussed in Chapter 4.

NOTE TO OWNERS OF THE MODEL 2270/2270A:

The Catalog Index listing 1is always identified as the
"Fixed Catalog" or the "Removable Catalog".

On the Model 2270-2/2270A-2, the '"Fixed Catalog" refers to
the Catalog Index listing for the diskette in drive #1; the
"Removable Catalog" identifies the Catalog Index listing
for the diskette in drive #2.

On the Model 2270-1/2270A-1, the "Fixed Catalog"
identifies the Catalog Index listing for diskette #1. It
is not possible to generate a "Removable Catalog'" listing.

On the Model 2270-3/2270A-3, the "Fixed Catalog'" identifies
the Catalog Index listing for Diskette #1 and for Diskette
#3; the "Removable Catalog" identifies the Catalog Index
listing for Diskette #2.

2.8 SAVING DATA FILES ON DISK

The Hierarchy of Data

Unlike a program file, which always contains only a single program or
program segment, a data file normally contains several different items of
data. Obviously, it would be unwise simply to dump data on the disk in a
random or disorganized fashion, since there would then be no efficient way to
retrieve specific items when they were needed. 1In order to facilitate fast,
efficient retrieval of data from the disk, data stored on disk is organized
into a well-defined structure or "hierarchy."

15

The hierarchy of data contains two levels: on the lower level,
individual data relating to a single subject (such as a particular customer,
or a particular item in the inventory) are organized into a data record (also
known as a logical record); at the higher level, a number of related logical
records are organized into a data file (say, an inventory file or customer
file). An inventory file, for example, typically contains a number of
inventory records, each of which in turn contains information about an
individual item in the inventory (such as model number, name, price, number in
stock, etc.). Whenever a particular piece of information about one of the
items in the inventory is needed, the procedure is to locate first the
inventory file, then the desired record within the file.

Catalog Mode permits the programmer to open a number of different files
on disk or, if it is more convenient, a single large file which occupies the
entire Catalog Area. Within each file, the individual records can be as long
as necessary. Each record, however, occupies a minimum of one sector on disk,

unless special techniques are used to "block'" records in a sector. In Catalog
Mode, the system automatically keeps track of where each file is located on
the disk. It is up to the programmer, however, to locate individual records

within the file.

Because the system itself has no way of knowing how many records will be
stored in a file, or how many sectors each record will occupy, it 1is the
programmer 's responsibility to estimate how many sectors each data file will
require. The system must be instructed to reserve adequate space for the file
on a designated platter. Thus, two steps are required to save data on the
disk:

1. First, a data file must be cataloged, or ‘'opened', with the
statement, DATASAVE DC OPEN. In this statement, the new data file
is named, and the number of sectors to be reserved for the file is
specified. No data is actually stored in the file at this point.

2. Once the file is opened, data records can be stored in the file with
the DATASAVE DC statement.

Opening A Data File On Disk

A data file is opened on the disk with a DATASAVE DC OPEN statement,
which requires the following information:

1. The disk platter (either 'F' or 'R') on which the data file is to be
opened. This disk platter must have been initialized with a SCRATCH
DISK statement. (See Section 2-4.)

2. The number of sectors to be reserved for the data file. Take care
that the file does not extend beyond the limits of the Catalog Area
(if it does, an error is signalled).

3. The name of the data file. You must name the file so that the
system has some way of identifying it. The name can be from omne to
eight characters in length, and may be specified either as a
character string in quotes or as the value of an alphanumeric
variable.

16

When the DATASAVE DC OPEN statement is executed, the specified number of
sectors are reserved for the newly-opened file in the Catalog Area. The last
sector of the file is used by the system for a special control record which
marks the absolute end of the file; no data can be written in the file beyond
that point. The file's name and location are also automatically entered in
the Catalog Index.

Example 2-11: Opening a Data File on Disk
150 DATASAVE DC OPEN F 100, "DATFIL 1"
Statement 150 instructs the system to reserve 100 sectors on the
disk platter designated by 'F' for a data file, and name this file

"DATFIL 1". The file's name ("DATFIL 1") and location are entered
automatically in the Catalog Index on the 'F' platter.

NOTE:

The system automatically allocates the last sector in each
data file exclusively for the system control record.

The system control record contains control information and
pointers used by the system in maintaining the data file,
and no data can be stored in this sector. It is also
generally desirable to write an end-of-file trailer record
in a data file after all data has been stored; the trailer
record also occupies one sector which cannot be used for
data. Thus, it 1is always good programming practice to
reserve at least two more sectors than are actually
required for a data file in order to account for the two
sectors which cannot be used. For example, if you wish to
store 24 sectors of data in a file, you should reserve at
least 26 sectors (24 + 2) in the DATASAVE DC OPEN statement.

If a LIST DC statement is executed following line 150 in Example 2-11,
the listing should look like this:

FIXED CATALOG
INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199

NAME TYPE START END USED
DATFIL 1 D 00100 00199 00001

Figure 2-2. (Catalog Index Entry for DATFIL 1

17

One hundred sectors are reserved for DATFIL 1 (000100-000199), but,
despite the fact that no data has yet been saved in the file, the USED columm
for DATFIL 1 indicates that one sector is already occupied. This is the last
sector in the file, automatically set aside for system control information in
DATFIL 1. Thus, although 100 sectors were reserved for DATFIL 1, only 99 of
those sectors can actually be used for data storage. If 100 sectors are
needed for data, at least 101 must be reserved for the data file.

NOTE:

Wang systems do not distinguish between input files and
output files in disk operations. Thus, data can be either
written in or read from a file which has been opened with a
DATASAVE DC OPEN statement.

Saving Data In A Data File On Disk

Once a data file has been opened on a disk platter, data can be stored
in the file with a DATASAVE DC statement. All of the data values (or the
variables and arrays containing the data values) which are to be included in
one record must be listed in the DATASAVE DC statement. This information is
referred to as the DATASAVE DC "argument list." 1Individual items must be
separated by commas. The system automatically groups information from the
argument list sequentially in a logical data record, and stores this record in
the currently open data file on the disk.

Suppose, for example, that you wish to create a record containing the
name, street address, and birth date of an employee, and store this record in
the file DATFIL 1. Since DATFIL 1 was recently opened with a DATASAVE DC OPEN
statement (Example 2-11), it 1is the currently open data file on disk.
Assuming that the information is stored in several variables, you can transfer
the data into DATFIL 1 simply by including the variable names in the argument
list of a DATASAVE DC statement:

Example 2-12: Saving Data in a Data File

160 A$ = "PETER RABBITT"
170 B$ = "4 OAK DRIVE"
180 N = 032948

190 DATASAVE DC A$,B$§,N

Statement 160 instructs the system to transfer all values from the
variables A$, B$, and N into the currently open data file on disk
(DATFIL 1). Collectively, the three items of information '"PETER
RABBITT", "4 OAK DRIVE", and 032948 constitute one logical record in

DATFIL 1.

18

1f, after saving a record in DATFIL 1, you execute a LIST DC F statement,
the Index looks like this:

FIXED CATALOG

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199

NAME TYPE START END USED
DATFIL 1 D 00100 00199 00001
T
USED column
not yet updated

Figure 2-3. Catalog Index Entry for DATFIL 1.

Notice that the USED column has not yet been updated to reflect the
newly stored data in DATFIL 1. Since all the information in this record can
be stored in one 256-byte sector, the USED column for DATFIL 1 should read
0002, indicating that one sector in DATFIL 1 has been used for data, in
addition to the single sector reserved for system information. Why doesn't it?

The answer 1is simple: The USED column in a data file is updated only
when an end-of-file record has been written in the file. The end-of-file (or
trailer) record tells the system, in effect, that 'mo data is stored in this

file beyond this point." With this information, the system can determine how
many sectors in the file are filled with data, and can update the USED
parameter appropriately. A trailer record is not written 1in the file

automatically, however; it must be created by the programmer with a DATASAVE
DC END statement. The USED parameter for DATFIL 1 could be updated by
following statement 190 in Example 2-12 with a DATASAVE DC END statement, as
shown in the following example:

Example 2-13: Writing an End-Of-File (Trailer) Record to a Cataloged
Data File on Disk

200 DATASAVE DC END

Statement 200 instructs the system to write a trailer record into
DATFIL 1.

19

If you now perform a listing of the Catalog Index, the Index looks like
this:

FIXED CATALOG

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199
NAME TYPE START END USED
DATAFIL 1 D 00100 00199 00005

T
Updated USED
now shows one sector used for
file control, one sector for end-
of-file record, and three sectors
for data record.

Figure 2-4. Updated Catalog Index Entry for DATFIL 1

The USED column is now updated. It is good programming procedure to
write a trailer record every time you have finished saving data in a file so
that you will always know how much of the file is filled, and how much space
remains. However, it is not necessary to write a trailer record after every
DATASAVE DC statement; instead, a single DATASAVE DC END statement can be used
at the conslusion of a disk write routine.

Example 2-14: Writing a Data Trailer Record after a Series
of DATASAVE DC Statements

200 DATASAVE DC A()

210 DATASAVE DC B(),N,M(3)
220 DATASAVE DC A$,T$()
230 DATASAVE DC END

Lines 200-230 instruct the system to transfer data from the numeric
and alphanumeric variables, arrays, and array elements specified in
the respective argument lists, and store this data in the currently
open data file (DATFIL 1) on disk. Statement 230 instructs the
system to write an end-of-file trailer record following the last
data record in DATFIL 1, and update the USED parameter for DATFIL 1
in the Catalog Index to indicate how many sectors have been used.
In addition to updating the USED parameter for the file, there are
three major advantages to writing an end-of-file trailer record in a
data file:

20

1. The trailer record makes it possible to skip to the end of stored
data in a file in order to write new records in the file. (See
Section 2.12.)

2. The trailer record makes it possible to test for the end of stored
data (last record) in a file when reading through the file
sequentially under program control. The IF END THEN statement is
used for this purpose. (See Section 2.13.)

3. The trailer record insures against accidentally reading beyond the
last valid data record in a file.

WARNING:

Never use the RESET button to terminate program execution
during a disk write routine. RESET causes the disk to
immediately terminate any operation and return the
read/write head to the home position, even if it is in the
middle of writing a sector. Thus, it is possible that a
half-written sector may be left in the file following a
RESET operation. Any subsequent attempt to read the
half-sector results in an error. To avoid this problem,
always use the HALT/STEP key if you wish to halt program
execution during a disk write routine. HALT/STEP permits
the disk to complete the write operation for the current
sector before terminating the data transfer.

2.9 THE STRUCTURE OF DATA FILES

Up to now the discussion has focused primarily on the mechanics of
saving data on the disk; little attention has been paid to the actual manner
in which data is organized and stored by the system. It will be helpful to
consider this question briefly now (a more detailed discussion is reserved for
the following chapter), prior to discussing the retrieval of data from a
cataloged data file on disk.

The major concept to be understood in connection with data files is that
of a logical data record. A single logical record (or data record) is created
in a file on the disk with each DATASAVE DC statement. The logical record
contains all of the data included in the DATASAVE DC argument list, as well as
certain control information inserted by the system. Suppose, for example,
that the following statements are executed:

10 DATASAVE DC OPEN R 200, "DATFIL 1"
20 DATASAVE DC "PETER RABBITT", 01121,B$,N,A()

21

Statement 10, opens DATFIL 1 on the 'R' platter. Statement 20 creates
one logical record in DATFIL 1 containing all the data in the DATASAVE DC
argument list. Notice that there are several different types of data in the
argument list. The first item is a literal string "PETER RABBITT". Whenever
a literal string is specified in a DATASAVE DC argument list, it must be
enclosed in quotes. The second item, 01121 is a numeric value which need not
be set in quotes. The third item, B$, is an alphanumeric variable, the
fourth, N, is a numeric variable, and the fifth, A(), is a numeric array.
Empty parentheses are used to indicate that the entire array is to be saved.
Thus, if array A() contains four elements, the statement

DATALOAD DC A()
is equivalent to the statement
DATALOAD DC A(1), A(2), A(3), A(4)

Array elements are recorded in sequence (two-dimensional arrays are stored row
by row). Each individual item in the DATASAVE DC argument list (including
each array element) is considered to be a single argument. Thus, if the array
A() is dimensioned to contain four elements, it is regarded as a collection of
four separate arguments, and DATASAVE DC argument list in statement 20
consists of a total of eight arguments.

When the DATASAVE DC statement is executed, the arguments are taken in
sequence from the argument list and stored in a logical record on the disk (if
a two-dimensional array is included in the argument list, the array elements
are transferred row by row). Thus, if the following assignments are assumed,
the logical record created by statement 20 resembles the figure below.

B$ = "10 OAK DRIVE"
N = 2222
A(l) = 123
A(2) = 456
A(3) = 789
A(4) = 100
B$ N A(1) A(2) A(3) A(4)

\ 4 v Vv v VvV V¥
PETER RABBITT | 01121 10 OAK DRIVE| 2222 | 123 | 456 | 789 | 100 % / A

Figure 2-5. Logical Record Consisting of One Sector

The arguments saved in a logical record on disk are commonly referred to
as "fields" within the record. In the record above, for example, "PETER
RABBITT" is the first field in the record, while '100' is the last field. It
is important to note that when a logical record is read back into memory from
disk, each field must be read into a single variable or array element; it 1is
never possible to read two or more fields into a single variable or array
element, even if the receiving variable or element is large enough to contain
more than one field. Note, too, that alphanumeric fields must be read back
into alphanumeric variables or array elements, and numeric fields must be read
back into numeric variables or array elements.

22

In the present example, the logical record occupies somewhat less than
one sector. Notice in Figure 2-5 that the remainder of the sector is unused.
The remainder of the sector contains meaningless data, which is ignored by the
system (the system provides automatic safeguards against accidentally reading
this meaningless data when the record is read back into memory). If another
logical record is created (with a second DATASAVE DC statement), the new
record begins at the beginning of the next sector. The remaining unused
portion of the first sector is not used for the second record. A logical
record always begins at the beginning of a sector. This is the case even if
the logical record occupies only a very small portion of the sector. For
example, consider the statements:

30 DATASAVE DC A
40 DATASAVE DC B

Each of these statements creates a single logical record containing a single
numeric value, and each occupies an entire sector on the disk:

A UNUSED B UNUSED
* A A

= JIn

Figure 2-6. Two One-Sector Logical Records

Obviously, this is not a very efficient way to store data. It would surely be
more efficient to store both values in a single record, with a single DATASAVE
DC statement (e.g., DATASAVE DC A,B). 1In this case, both values occupy the
same sector.

On the opposite end of the spectrum, a single logical record can occupy
several sectors - as many sectors, in fact, as are required to store all the
data in the DATASAVE DC argument list. Consider, for example, the following
routine:

60 DIM A(60)
70 DATASAVE DC A()

23

In this case, the DATASAVE DC argument list contains 60 arguments, each
consisting of a single numeric array element. Since 28 full-precision numeric
values can be stored in a sector, the data in the logical record created by
statement 70 occupies two complete sectors and a small portion of a third:

UNUSED

Figure 2-7. Logical Record Consisting of Three Sectors

A(1) - A(28) A{29) - A(56) A(57) - A(60

The logical record created by statement 70 requires three sectors on
disk. Remember that the next logical record begins with the next consecutive
sector. The remainder of sector number three in this record remains unused.

Opening a Second Data File on Disk

After all the necessary data has been recorded in DATFIL 1, it may be
desirable to open a second data file, DATFIL 2, which is to contain a whole
new set of records. This is done with a second DATASAVE DC OPEN statement:

250 DATASAVE DC OPEN F 500, "DATFIL 2"

However, it is important to recognize that the opening of DATFIL 2 in
effect "closes" DATFIL 1, since DATFIL 2 now becomes the currently open file
on disk, and any DATASAVE DC or DATALOAD DC statement now automatically
accesses DATFIL 2 instead of DATFIL 1. Chapter 6 introduces a technique for
keeping more than one file open on disk at the same time. For the present,
however, it is assumed that only one file can be open at any given moment.

2.10 REOPENING A DATA FILE ON DISK WITH THE "DATALOAD DC OPEN" STATEMENT

After a data file has been opened on disk and subsequently '"closed" by
opening a second file, the data in the original file can be accessed by
reopening the file with a DATALOAD DC OPEN statement. DATALOAD DC OPEN is
used to reopen an existing file regardless of whether you intend to store
additional, or read existing data in the file,. The DATASAVE DC OPEN
statement, used to open a file initially, is never used to reopen an existing
file; any attempt to use this statement to reopen a file produces an error.

24

In the DATALOAD DC OPEN statement, you must supply the system with the
following information:

1. The disk platter (either 'F' or 'R') on which the file is cataloged.

2. The name of the file.

When a DATALOAD DC OPEN statement is executed, the system searches the
Catalog Index on the designated platter for the specified file name. The
file's location is then recorded in memory for any future reference to the
file.

Example 2-15. Reopening a Cataloged Data File

300 DATALOAD DC OPEN F "DATFIL 1"

Statement 300 causes the system to search the Catalog 1Index on the

'F' platter for the file name "DATFIL 1". When the name is found,
the file's location is read and stored in memory for future
reference.

Of course, the file name specified in the DATALOAD DC OPEN statement
must be the name of a data file currently cataloged on the specified platter.
If the system cannot locate the file name in the Catalog Index, an error 1is
signalled.

Example 2-16: Attempting to Reopen a Non-Cataloged Data
File

300 DATALOAD DC OPEN F "DOTFIL 1"

TERR 80

Statement 300 attempts to reopen a data file whose name is not
listed in the Catalog Index. Since "DOTFIL 1" is not identical to
"DATFIL 1", Error 80 (File Not In Catalog) is indicated.

Once a file has been reopened with a DATALOAD DC statement, it is

possible both to store new data in the file (with a DATASAVE DC statement),
and to read existing data from the file (with a DATALOAD DC statement).

25

2.11 RETRIEVING DATA FROM A CATALOGED DATA FILE ON DISK

Data which is stored on a disk would not have much value if it could not
be read back into memory for analysis and processing. In Catalog mode, data
is read from a currently open file on disk with a DATALOAD DC statement. When
loading data from the disk into memory, you must tell the system which
variable(s) and/or array(s) in memory are to receive the data. The list of
receiving variables and arrays is specified in a DATALOAD DC statement, and is
known as the "argument list" for that statement. As with DATASAVE DC, it is
possible to specify an entire array in a DATALOAD DC argument 1list by
following the array name with empty parentheses, e.g., A(), B$(). In this
case, each element of the array is regarded as a single receiving argument.
The system reads one or more logical records from the currently open file on
disk (if no file is currently open, an error is indicated), and stores the
data in the variable(s) and array(s) specified in the argument list. The
system continues to read data from the file until all arguments in the
argument list have been filled, or until there is no more data remaining in
the file. 1If the argument list contains more receiving variables than there
are fields in a record, the first fields of the next sequential record are
automatically read to satisfy all unfilled variables.

The remainder of the second record is then read and ignored, and the
system is positioned at the beginning of the third record. If only the first
few fields in a record are read (i.e., if the argument list contains fewer
recelving arguments than there are fields in the record), the remainder of the
record is read but ignored, and the system is positioned at the beginning of
the next record.

Example 2-17: Reading Data from a Cataloged Data File on Disk

310 DIM B(60)
320 DATALOAD DC B()

Statement 310 dimensions an array B() to hold 60 elements.
Statement 320 instructs the system to load enough data from the
currently open file on disk to fill array B().

It is, in general, good programming procedure to read back exactly one
logical record with each DATALOAD DC statement. For example, if a record of
60 fields is saved with a DATASAVE DC statement, the argument list in the
DATALOAD DC statement should consist of 60 receiving arguments, so that the
entire logical record is retrieved.

Example 2-18: Saving and Loading One Logical Record

100 DIM A(60)

150 DATASAVE DC OPEN F 100, "DATFIL 1"
160 DATASAVE DC A()

170 DATASAVE DC END

240 DIM B(10),c(10),D(10),E(10),F(10),G(10)
250 DATALOAD DC OPEN F "DATFIL 1"
260 DATALOAD DC B(),c(),D(),E(),F(),G()

26

Statement 150 opens DATFIL 1 and statement 160 stores data from the
array A() (which contains 60 elements) in DATFIL 1. In the
intervening program execution, DATFIL 1 is closed. Statement 250
reopens DATFIL 1, and statement 260 1loads one logical record
(consisting of 60 values) from DATFIL 1 into six receiving arrays,
each consisting of 10 elements. Note that it is not necessary for
the DATALOAD DC argument list to be identical to the DATASAVE DC
argument list, as long as both contain the same number of arguments,
of the same types (alpha or numeric). :

Example 2-19: Loading Portions of a Logical Data Record

50 DIM B(20),N(30),S(40)

60 DATASAVE DC OPEN F 100 "DATFIL 1"
70 FOR I = 1 TO 30

80 INPUT N(I)

90 NEXT I

100 DATASAVE DC N()

110 GO TO 70

390 DATALOAD DC OPEN F "DATFIL 1"
400 DATALOAD DC B()
410 DATALOAD DC S()

Lines 70-90 constitute an input loop used to enter data into array
N(), which contains 30 elements. At line 100, this array is
recorded in a logical record in the data file DATFIL 1. In
subsequent processing, DATFIL 1 is closed, and is reopened at line
390. At line 400, a DATALOAD DC statement is used to read the first
logical record from DATFIL 1 into array B(). However, B() contains
only 20 elements, while the logical record has 30 fields.

The first 20 fields are, therefore, read into B(), and the remaining
10 fields are read but ignored, since there is no place to store
them in memory. At the conclusion of this operation, the system is
positioned at the beginning of logical record #2. This record is
read into array S() at line 410. However, S() contains more
receiving elements (40) than there are fields in the logical record
(30). The first 10 fields of the third logical record are
automatically read to fill the last 10 elements of S(), and the
system is positioned at the beginning of logical record #4.

Other problems can result if a DATALOAD DC argument list does not
correspond to the argument list of the DATASAVE DC statement which
created the record initially. 1In particular, you should keep the
following two points in mind:

27

1. Each field in the logical record must be read into a single
receiving argument (variable of array element). It is not possible
to load two or more fields into one receiving argument. For
example, if your record contains two four-character alphanumeric
fields, "ABCD" and "EFGH", both fields cannot be read into a single
alphanumeric variable, even if the variable can store more than
eight characters.

2. Alphanumeric fields must be returned to alphanumeric receiving
arguments, and numeric fields must be returned to numeric receiving
arguments. Any attempt to read an alphanumeric value into a numeric
variable, or vice-versa, results in an ERROR 43 (Wrong Variable
Type). For example, if you save a record with the statement

50 DATASAVE DC A$,N
then try to read it back with the statement
100 DATALOAD DC N,A$
the system generates an ERROR 43 (Wrong Variable Type).
Thus, you should be sure that the size, number, type, and order of the

receiving arguments in a DATALOAD DC argument list corresponds to the argument
list of the DATASAVE DC statement with which the record was created.

2.12 SKIPPING AND BACKSPACING OVER LOGICAL RECORDS IN A DATA FILE

An existing data file on the disk is generally reopened (with a DATALOAD
DC OPEN statement) for one of three reasonmns:

1. To read data from the file.
2. To store additional data in the file.
3. To change or update existing data in the file.

In any of these three cases, it is usually necessary to access one oOr
more specific logical records within the file. Two catalog statements, DSKIP
and DBACKSPACE, enable you to move to a particular record within a file
without reading through all intervening records.

The use of DSKIP and DBACKSPACE can be illustrated by considering a file
which consists of several logical records:

400 DATASAVE DC OPEN F 50, "TEST 1"
410 DATASAVE DC A(Q)
420 DATASAVE DC B()
430 DATASAVE DC C()
440 DATASAVE DC D()
450 DATASAVE DC E()
460 DATASAVE DC END

28

This file, named "TEST 1", occupies 50 sectors on the 'F' platter. Five
logical records (statements 410-450) have been stored in TEST 1, and a trailer
record has been written following the last logical record. Assuming that each
logical record consists of two sectors, the five records occupy ten sectors.

One Sector
e
o _J N, J A S . 7 Ny 7
2's -V ' ' 2'e
Record #1 Record #2 Record #3 Record #4 Record #5
Figure 2-8. Logical Records in TEST 1
Suppose, now, that TEST 1 is closed and subsequently reopened with a

DATALOAD DC OPEN statement. When the file 1is reopened, the system
automatically positions itself at the beginning of the file. In order to
access any record other than record #l, the system must be instructed to skip
ahead through the file to the desired record. Logical records in a data file
are skipped with a DSKIP statement. 1In the DSKIP statement, you must tell the
system how many records to skip. Suppose, for example, you wish to read
record #3 in the file. Since the system is currently positioned at record #1,
it is necessary to skip two records.

File
Begins One
Here Sector
— =
N ~ A e N 7 N S N S
VY g 2 " 2'g
Record #1 Record #2 Record #3 Record #4 Record #5
This is where .. .But this
the system is is where you
now. . . » want it to be.
Figure 2-9. Skipping over Logical Records in a Data File

29

Example 2-20: Skipping over Logical Records in a Data File

470 DATALOAD DC OPEN F "'TEST 1"
480 DSKIP 2

Statement 470 reopens TEST 1. The system is positioned at the
beginning of the file. Statement 480 instructs the system to skip
two logical records (records #1 and #2), and reposition itself at
the beginning of record #3.

A DATALOAD DC statement such as
490 DATALOAD DC C()
now loads record #3 from the file into memory.

Notice that the number supplied in the DSKIP statement specifies how
many logical records are to be skipped (remember that each logical record was
created by a single DATASAVE DC statement). It does not matter how many
sectors are contained in each logical record (record #1 might contain five
sectors, for example, while record #2 contains ten, etc.). Be sure, however,
that the argument list of the DATALOAD DC statement which is used to load a
record corresponds to the argument list of the DATASAVE DC statement which
originally created the record.

After a logical record has been loaded, the system is positioned at the
beginning of the next logical record. Suppose that you now want to load and
check logical record #1 from TEST 1. Since the system is currently positioned
at the beginning of record #4 (having just loaded record #3), you must
backspace three logical records (see Figure 2-10). You can do so with a
DBACKSPACE statement.

Flle One
begins Sector
hfre A
N, Y __/ o Y J N ~ >4 L. - o Ny — 7
Record #1 Record #2 Record #3 Record #4 Record #5
... But this is This is where the
where you want system is
it positioned. ¢ positioned now. . .

Figure 2-10. Backspacing over Logical Records in a Data File

30

Example 2-21: Backspacing over Logical Records in a Data File
500 DBACKSPACE 3

Statement 500 causes the system to backspace over three logical
records in the currently open file (TEST 1) on disk. Since the
system is currently positioned at the beginning of record #4, it is
repositioned to the beginning of record #l1 following statement
execution. Record #1 can now be loaded with a DATALOAD DC statement
such as

510 DATALOAD DC A()

It is possible to backspace to the beginning of a file from any point in
the file with a DBACKSPACE BEG statement. In Example 2-21, for instance, it
would have been just as easy to access record #l1 by backspacing to the
beginning of the file and executing statement 510.

Example 2-22: Backspacing to the Beginning of a Cataloged Data File
500 DBACKSPACE BEG

Statement 500 instructs the system to backspace from its current
position in the file to the beginning of first record of the file.

In order to hold additional data in a file which has just been reopened,
it is necessary to skip to the current end of the file, and begin saving the
new data at that point. This can be done with a DSKIP END statement if the
current end of file is marked by an end-of-file trailer record. If no
end-of-file trailer record has been writtenm in the file, however, an ERROR 82
(No End of File) is returned following execution of the DSKIP END statement.
The DSKIP END statement locates the end-of-file trailer record, and
repositions the system at the beginning of the trailer record. A new data
record can then be saved over the trailer record, and a new trailer record
written to mark the new end of the file.

Example 2-23: Skipping to the End of a Cataloged Data File
520 DSKIP END

Statement 520 instructs the system to skip to the current end of the
currently open data file on the disk (TEST 1). A trailer record
must have been written in the file with a DATASAVE DC END statement
(statement 460) following the most recent DATASAVE DC statement
(statement 450); otherwise, an ERROR 82 1is returned. After the
DSKIP statement is executed, the system 1is positioned at the
beginning of the trailer record in the file. A new data record can
be saved over the trailer record, and a new trailer record written
in the file, with the following statements:

530 DATASAVE DC F()
540 DATASAVE DC END

31

2.13 TESTING FOR THE END-OF-FILE

If you have written a data trailer record in your file, you can use it
to test for an end-of-file condition when reading the file. For example,
suppose that you wish to read all the records from a particular file, but you
don't know exactly how many records are stored in the file. You can set up a
loop which will continue to load logical records until it encounters a trailer
record.

Example 2-24: Testing for the End-Of-File Condition in a Cataloged Data
File

600 DATALOAD DC OPEN F "TEST 1"
610 DATALOAD DC A()
620 IF END THEN 700

640 GOTO 610
700 STOP

Statement 600 opens the file TEST 1, and statement 610 loads a
logical record from that file into A(). Statement 620 then tests
for the end-of-file record signifying that the last data record in
the file has been read. 1If this is the case, the program jumps to
statement 700 and stops. If it is not the case, the data loaded
into array A() is processed until, at statement 640, the system 1is
instructed to loop back and load in another record. This example
assumes that all records in TEST 1 were written using an argument
list identical to A().

NOTE:

When the end-of-file trailer record 1is detected by the
system with an IF END THEN test, the file's current sector
address 1s set to the address of the trailer record. Thus,
the IF END THEN test can be used to cause the system to
exit from an input routine after all records have been
read, and branch to an output routine which writes
additional records in the same file. The first record
saved will be written over the trailer record. A new
trailer record must, of course, be written following the
last new data record.

32

2.14 SCRATCHING UNWANTED FILES

After the disk has been in use for a while, you may find that a file has
outlived its usefulness. Perhaps a program is now hopelessly inefficient and
must be replaced, or a data file contains information which is no longer
accurate or appropriate. In either case, you may want to be sure that the
file cannot accidentally be accessed (this is especially true in the case of a
data file whose data is no longer accurate), and you may want to store a new
file in the space currently occupied by the unwanted file. You can use the
SCRATCH statement (not to be confused with 'SCRATCH DISK') to accomplish both
of these tasks.

The SCRATCH statement sets the status of the named file to a scratched

condition. A scratched file is not physically removed from the disk. The
file's name and location remain listed in the Catalog Index, but the file is
flagged as a scratched file. A scratched file has two significant
characteristics:

1. A scratched file cannot be accessed by a DATALOAD DC OPEN or LOAD DC
statement. That is, no programs or data can be saved in or loaded
from a scratched file.

2. A scratched file can, however, be renamed and reopened with a
DATASAVE DC OPEN statement or SAVE DC command. In this case, a new
file is created in the space previously occupied by the scratched
file. (See Chapter 4, Section 4.5.)

Example 2-25: Scratching Unwanted Files
750 SCRATCH F "PROG 1", "TEST 1"

Statement 750 sets the status of the program file PROG 1 and the
data file TEST 1 to a scratched condition; PROG 1 cannot be loaded
into memory with a LOAD DC statement, and TEST 1 cannot be opened to
load or save data with a DATALOAD DC OPEN statement. New files can
be stored in the space occupied by PROG 1 and TEST 1, however.
(Refer to Chapter 4 for a discussion of how to reuse the space
occupied by scratched files.)

33

If a LIST DC F statement is executed following statement 750 in Example
2-25 above, the Catalog Index listing looks like this:

FIXED CATALOG
INDEX SECTORS 00100
END CAT. AREA = 01000

CURRENT END = 00269

NAME TYPE START END USED
These files DATAFIL 1 D 00100 00199 00002
are <:TEST 1 SD 00200 00249 00001
scratched PROG 1 SP 00250 00269 00020

Figure 2-11. The Catalog Index Showing Scratched Files
Notice that under "TYPE", PROG 1 reads ''SP" and TEST 1 reads "SD". The '"S" in

this case signifies that each file has been scratched. The renaming and reuse
of scratched files is discussed in Chapter 4.

2.15 MOVING THE CATALOG FROM ONE PLATTER TO ANOTHER

Catalog procedures provide a means of copying the contents of the
catalog (Catalog Index and Catalog Area) from one disk platter onto another.
The MOVE statement is used for this purpose. The MOVE statement is generally
used for two reasons:

1. To make a back-up copy of important cataloged files.

2. To eliminate scratched files from the catalog and compress
still-active files into the available space, thus making more
efficient use of the Catalog Area.

The MOVE statement copies the entire catalog from one disk platter to
another, removing all scratched files from the Catalog Area, and deleting
scratched file names from the Catalog Index. After the scratched files are
removed, the still-active files are moved up to fill in the vacated sectioms.
The Catalog Index is then revised to reflect the files' new positions in the
Catalog Area. Prior to copying any files or file maintenance information from
the first platter to the second, MOVE automatically scratches the second
platter, setting up a Catalog Index and Catalog Area identical 1in size to
those which are to be moved. The only requirement for the second platter,
therefore, is that it be formatted. The user does not need to open a catalog
on the second platter with a SCRATCH DISK statement prior to executing the
MOVE, since this task is performed automatically by MOVE itself.

Example 2-26: Copying the Catalog from One Disk Platter to

the Other
450 MOVE FR
Statement 450 copies the entire catalog from the 'F' platter to the
'R' platter, squeezing out all scratched files. If the 'RF'
parameter is specified instead of 'FR', the copy takes place from

the 'R' disk platter to the 'F' disk platter.

34

After the catalog has been moved from one disk platter to the other, it
is good policy perform a test which ensures that all information has been
copied accurately. The VERIFY statement can be used to perform such a test.
In the VERIFY statement, you must tell the system which platter contains the
catalog ('F' or 'R'), as well as the starting and ending sector addresses of
the entire catalog. The starting sector of the catalog is always sector O,
since that is the first sector on each platter. The ending sector address
varies from one catalog to the next (it was initially specified when the
catalog was created with the 'END' parameter in a SCRATCH DISK statement).
The ending sector address can be obtained by executing a LIST DC statement
for the appropriate platter. The first three items displayed (or printed) by
LIST DC are INDEX SECTORS, END CAT. AREA, and CURRENT END. The sector address
shown opposite END CAT. AREA is the ending sector address of the catalog.
The starting and ending sector addresses in the VERIFY statement must be
separated by a comma, and enclosed in parentheses. All sectors between and
including the specified sectors are checked by the VERIFY statement.

Example 2-27: Checking the Validity of Files after a MOVE

450 MOVE FR
460 VERIFY R (0,2399)

Statement 450 copies all catalog information from the 'F' disk
platter to the 'R' disk platter. Statement 460 checks the 'R' disk
platter to ensure that all information has been copied correctly.
Sectors 0 through 2399 are verified (2399 1is the ending sector
address of the catalog).

If the test performed by VERIFY turns up no errors, the system returns
the CRT cursor and colon to the screen, indicating that the information has
been copied accurately. If one or more errors are discovered, the system
returns an error message indicating which sector(s) did not copy properly, for
example:

ERROR IN SECTOR 2027
1f an error is indicated following a MOVE operation, repeat the MOVE and
VERIFY operations. As repeated errors may indicate a faulty platter, replace

the platter and repeat the process. Call your Wang Service Representative if
the error persists.

35

On the
illegal.

disk

On the Model 2270-3/2270A-3, it is illegal to attempt a
MOVE operation from drive #3 to drives #1 or #2, and vice
In order to MOVE the catalog to or from a diskette
in drive #3, the diskette must be physically removed from
drive #3 and inserted in drive #l or drive #2.

versa.

platter in one Model 2270-1/2270A-1 onto a disk
platter in another disk unit.

NOTE TO OWNERS OF THE
MODELS 2270-1/2270A-1 AND 2270-3/2270A-3:

Model 2270-1/2270A-1, the MOVE statement is
It is not possible to MOVE the catalog from a

VERIFY can be used at any time to check the validity of data stored
anywhere on the disk. It need not be used exclusively in conjunction with a
MOVE operation.

platter

before

It is often wise, for example, to verify existing data on a

the platter 1is used. Many programmers verify important

platters regularly at the beginning of daily operation.

It is important that backup copies of important disk-based
files be created regularly. Like other storage media, disk
platters can be worn out with excessive use, and they are,
of course, subject to accidental damage or destruction. To
avoid the necessity of recreating your data base following
such a potential disaster, you should always maintain one
or more
important files. Cataloged files can be copied to a backup
platter with the MOVE statement.

WARNING:

backup platters containing duplicates of all

36

CHAPTER 3
DISK DEVICE SELECTION AND MULTIPLE DATA FILES

3.1 INTRODUCTION

Chapter 2 introduced the most basic catalog procedures, including saving
and loading programs and data files, skipping over records within a data file,
scratching unwanted files, and moving the contents of the catalog from one
platter to the other. In the interests of simplicity and clarity of
exposition, however, a number of important but complex disk operations were
omitted from Chapter 2. Chapters 3 and 4 are therefore designed to expand and
elaborate upon the discussion of catalog procedures begun in Chapter 2.
Probably the most significant omission in that discussion was an explanation
of how it is possible to keep more than one data file open on a disk at the
same time. This subject 1is especially important because so many data
processing problems involve the transfer of data from one file to another,
or the storing of data in or reading of data from several different files in

the course of processing transactions. Such operations would be extremely
time consuming if each file had to be reopened every time a record was to be
written into it or read from it. Chapter 3 discusses the procedures for

maintaining multiple open files on disk simultaneously. The related questions
of how the disk is addressed, and how multiple disk units can be operated by a
single system, also are examined in this chapter,

3.2 DISK DEVICE SELECTION

Chapter 2 presented what was essentially a '"recipe'" for using the disk.
You were told that by executing a particular statement which included
particular parameters, you could elicit a particular response from the
system. The system itself remained a black box, however, whose internal
workings were only vaguely hinted at. Although such an approach was
appropriate for the purposes of Chapter 2, it cannot be safely followed in the
present chapter. Some understanding of the internal operations of the system,
particularly those which relate to management of the disk, is a necessary
prelude to any discussion of how the system maintains open data files. The
first topic to be considered is the mechanism by which the system is able to
identify the disk unit and the individual platters within it.

37

Whenever a disk statement or command is
immediate need for at least two items of information:

executed, the system has
the disk platter which

is to be accessed, and the disk unit which contains that platter. The first
item is supplied by specifying the 'F' or 'R' parameter in the statement
itself. Because several disk units can be attached to the same system,

however, the system must also have some way of identifying the disk which
contains the specified platter. A three-digit device address is assigned to
the disk unit as a means of identifying it.

For certain disk statements and commands, the disk device address can,
like the disk platter parameter ('F' or 'R'), be specified directly in the
statement or command itself. For example, the statement

10 LOAD DC F /350, "PROG 1"

causes the system to access the disk unit with device address 350. On the
Model 2270-3/2270A-3, this statement accesses Platter #3. In general,
however, it is not necessary to specify the device address in a statement or
command, since if no address is specified, the system automatically uses the
default disk address, 310. The default address is stored by the system in a
special section of system memory called the Device Table. Whenever a disk
statement or command is executed, the system's first operation is to check the
Device Table for a disk device address (unless, of course, the address has
been specified in the statement or command itself).

The Device Table

The Device Table in memory consists of seven rows, or 'slots", each of
which is identified by a unique file number from #0 to #6. The default device
address (310) is stored in the Disk Device Address location in the slot
opposite #0. For this reason, #0 is referred to as the "default file number,"
and the slot associated with #0 is called the '"default slot."

DISK STARTING ENDING CURRENT
FILE DEVICE SECTOR SECTOR SECTOR
NUMBER ADDRESS ADDRESS ADDRESS ADDRESS
default — #0 310 00000 00000 00000
stot #1 000 00000 00000 00000
#2 000 00000 00000 00000
#3 000 00000 00000 00000
#4 000 00000 00000 00000
#5 000 00000 00000 00000
#6 000 00000 00000 00000
Figure 3-1. The Device Table in Memory

38

As you can see, however, each of the remaining six slots (#1 - #6) also
has a location for a disk device address (although this location is currently
filled with zeroes). Each slot also has locations for three other items of
information: a Starting Sector Address, an Ending Sector Address, and a
Current Sector Address. The sector address parameters, used by the system to
maintain open data files on disk, are discussed in the following section.

The default device address (310) is always stored next to the ,default
file number (#0) by the system itself. Even after the system is Master
Initialized (by turning the main power switch OFF and then ON, thus clearing
out all of memory), the system automatically returns address 310 to its
location opposite #0 in the Device Table.

For this reason, it is always possible to execute a disk statement or
command without specifying a device address of 310. When, for example, a
statement such as

10 LOAD DC F "PROG 1"

is executed, the system automatically goes to the Device Table and checks for
the default address opposite #0.

It is also possible, however, to store a device address in the Disk
Device Address location opposite any one of the other file numbers (#1 - #6)
in the Device Table. In this case, the device address must be explicitly
stored in the table with a SELECT statement.

Example 3-1: Storing Disk Device Addresses in the Device Table
50 SELECT #3 310, #5 310
Statement 50 instructs the system to store disk device address 310

opposite file numbers #3 and #5 in the Device Table. Following the execution
of statement 50, the Device Table looks like this:

DISK
FILE DEVICE | START END | CURRENT

NUMBER | ADDRESS
Default Slot L~ #0 310 00000 | 00000 | 00000
000 00000 | 00000 | 00000
These slots #2 000 00000 | 00000 | 00000
now avail- #3 310 00000 | 00000 | 00000
able to <<Z::' #4 000 00000 | 00000 | 00000
open new files #5 310 00000 | 00000 | 00000
#6 000 00000 | 00000 | 00000

Figure 3-2. The Device Table with Disk Device Addresses
Stored Opposite File Numbers #3 and #5

39

Notice that device address 310 is now stored in the Disk Device Address
location opposite file numbers #3 and #5, as well as in the default slot
(opposite #0). The file numbers #3 and #5 can now be used in a disk statement
or command to reference device address 310 indirectly. For example, if a
statement such as

60 LOAD DC F #3, "PROG 2"

is now executed, the system immediately checks the Device Table for a device
address opposite #3. Upon finding address 310, it proceeds to the disk unit
and accesses the 'F' platter. If no address is stored opposite #3, or if the
address of a device other than the disk (say, a tape drive) is stored there,
the system will signal an error when the disk statement is executed.

In summary, then, it is possible to specify a disk device address in two
ways: directly (by explicitly including the address in the statement), or
indirectly (by referencing a file number associated with the appropriate
address). Therefore, a statement of the form

10 LOAD DC F /310, "PROG 2"
is equivalent to the pair of statements

10 SELECT #3 310
20 LOAD DC F #3, "PROG 2"

Note, however, that the data file manipulation statements (DATASAVE DC
OPEN, DATASAVE DC, DATALOAD DC, etc.) do not permit the direct specification
of a device address within the statement. In these statements, therefore, the
device address must be referenced indirectly via a file number. This
restriction is important because file numbers play a most critical role in the
manipulation of cataloged data files.

Use of File Numbers in Accessing the #3 Drive in Models 2270-3/2270A-3 and the
Slave Drive in Models 2260C-2/2260BC-2

The #3 drive in the Models 2270-3/2270A-3 and the slave drive in the
2260C~-2 and 2260BC-2 have a special device address, 350. If this address is
stored in a slot opposite one of the file numbers #1 - #6 in the Device Table,
subsequent reference to the associated file number will cause the system to
access drive #3 or the slave drive, depending on the model. For example, the
statements

50 SELECT #2 350
60 LOAD DC F #2, "PROG 1"
cause device address 350 to be stored opposite #2 in the Device Table and to

load PROG 1 from the disk mounted in the drive address 350. See Section 3.8
for limitation on using device address 350.

40

Why Use The Device Table?

It may appear somewhat inefficient to use a section of memory and a
special statement to store device addresses when the address can be supplied
in the statement or command itself or when, as in the normal case, no address
need be supplied at all. If the Device Table were used exclusively to store
device addresses, there would hardly be justification for belaboring the
reader with an explanation of its purpose and operation. However, the Device
Table serves a second and far more important function in connection with disk
operations. The slots in the Device Table are utilized by the system to hold
critical sector address information on currently open data files. Without the
Device Table, therefore, it would not be possible to maintain multiple open
files on the disk.

NOTE:
The Device Table slots #1 - #6 are used to store other
device information as well as disk file information. A

statement of the form SELECT #1 04C, for example, stores
the interface board address 04C opposite file number #1 in
the Device Table. If you are using disk in conjunction
with another device be sure to use different file numbers
for your disk and non-disk files. Note, however, that the
default slot (opposite #0) is reserved for disk wuse
exclusively.

3.3 MAINTAINING MULTIPLE OPEN DATA FILES ON DISK

The concept of an "open' data file was introduced in Chapter 2 with
little exposition. It was pointed out simply that DATASAVE DC OPEN and
DATALOAD DC OPEN are used to "open'" and 'reopen" a data file on disk; the
actual procedures followed by the system in opening or reopening a file were
left as undefined and faintly magical internal operations.

In fact, there is nothing magical about these operations at all. The
system follows a specific and clearly defined procedure in opening a data
file. To understand this procedure, however, you should first consider the

kinds of information the system requires in order to be able to access a
file. Such information includes:

1. The disk platter and disk unit on which the data file is (or is to
be) stored.

2. The starting sector address of the file.
3. The ending sector address of the file.

4. The current sector address of the file (i.e., where the system is
currently positioned in the file).

41

Although items #2 and #3 can be found in the Catalog Index, it 1is
efficient for the system to have all of the necessary information on hand in
one place. As you may already have suspected, that "one place" is the Device
Table. The Device Table provides a convenient location in memory for the
temporary storage of all information required by the system to access and
maintain a cataloged data file. Such information is automatically copied from
the Catalog Index on disk into the Device Table whenever a data file is
initially opened (with DATASAVE DC OPEN), or later reopened (with DATALOAD DC
OPEN). 1In either case, the system first checks the default slot (or one of
the other slots, #1 - #6, if a file number has been specified in the
statement) for a valid disk address. If the slot contains no address, or an
invalid address (for example, a tape address), an error is signalled and
execution halts. If a valid address is found, the system proceeds to access
the appropriate platter ('F' or 'R') in the specified disk unit.

When an existing file is reopened with a DATALOAD DC OPEN statement, the
system merely copies the file's starting and ending sector addresses from the
Catalog Index into the default slot (or into one of the other slots, if a file
number is used). The file's current sector address is initially set equal to
the starting sector address. When a file 1s newly opened on disk with
DATASAVE DC OPEN, the system first reserves space on the designated platter,
and enters the file's name and sector parameters in the Catalog Index. Once
this is done, the parameters are copied to a slot in the Device Table.
Suppose, for example, that file DATFIL 1 is to be opened on the 'F' platter.
Statement 10 below might be used:

10 DATASAVE DC OPEN F 100, "DATFIL 1"

One hundred sectors are reserved for DATFIL 1 on the 'F' platter.
Assuming DATFIL 1 is the first file to be opened on this platter, and assuming
that the Catalog Index occupies sectors 0 - 23, the Catalog Index entry for
DATFIL 1 looks like this:

NAME TYPE START END USED
DATFIL 1 D 00024 00123 00001
Once the Catalog Index has been appropriately updated, the sector address

parameters for DATFIL 1 are immediately written to the default slot which
therefore looks like this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
Default Slot » #0 310 00024 00123 00024
(DATFIL 1) #1 000 00000 00000 00000
#2 000 00000 00000 00000
#3 000 00000 00000 00000
#4 000 00000 00000 00000
#5 000 00000 00000 00000
#6 000 00000 00000 00000

Figure 3-3. The Device Table with One File Open (DATFIL 1)

42

The parameters stored opposite #0 are those of DATFIL 1. (Note that the
current address of DATFIL 1 is equal to the starting address at this point.)
DATFIL 1 1is now officially "open'", and any DATASAVE DC or DATALOAD DC
statement automatically accesses it.

Suppose, however, that a second file is opened:
20 DATASAVE DC OPEN F 250, "DATFIL 2"

Execution of statement 20 causes the system to run through the same
procedure followed in opening DATFIL 1, with the result that DATFIL 1's
parameters opposite #0 in the Device Table are replaced by those of DATFIL 2.
The Device Table looks like this following execution of statement 20:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
Default Slot »| #0 310 00124 00373 00124
(DATFIL 2) #1 000 00000 00000 00000
#2 000 00000 00000 00000
#3 000 00000 00000 00000
#4 000 00000 00000 00000
#5 000 00000 00000 00000
#6 000 00000 00000 00000

Figure 3-4. The Device Table with One File Open (DATFIL 2)

DATFIL 2 becomes the currently open file on disk, and any DATASAVE DC or
DATALOAD DC statement now accesses it instead of DATFIL 1. The question then
arises: if every new file erases information on the previous file from the
default slot, how is it possible to have more than one file open at once? The
answer to this question is somewhat obvious: different slots in the Device
Table can be used to open different data files. Since there are seven slots
in the Device Table, a total of seven files can be open at the same time.

You have already seen that the first thing the system does when a disk
statement is executed is to check the'Device Table for a disk device address.
In the two examples just cited, only the default slot was used for file
information. As you know, the system itself automatically keeps the system
default address (310) in that slot. Before any of the other slots can be used
to open new files, however, the disk device address must be stored in the slot
with a SELECT statement, such as the one illustrated below:

50 SELECT #3 310, #5 310

43

As you have already seen; this statement instructs the system to store
disk device address 310 in the Device Table opposite #3 and #5. The Device
Table now looks like this:

DISK
FILE DEVICE START END CURRENT

NUMBER ADDRESS
Default Slot—= _#0 310 00124 00373 00124
(DATFIL 2) #1 000 00000 00000 00000
#2 000 00000 00000 00000
These slots now—{ #3 310 00000 00000 00000
available to #4 000 00000 00000 00000
open new files—s! #5 310 00000 00000 00000
#6 000 00000 00000 00000

Figure 3-5. The Device Table with Disk Device Addresses
Stored Opposite File Numbers #3 and #5, and
One Open File (DATFIL 2)

The slots opposite #3 and #5 can now be used, in addition to the default
slot, to store the sector address parameters of open files. To use one of
these slots, it is necessary only to specify its file number in a DATASAVE DC
OPEN or DATALOAD DC OPEN statement. Example 3-2 below uses file #3 to open a
second data file on the disk.

Example 3-2: Opening a New Data File with a File Number
150 DATASAVE DC OPEN F #3, 50, "DATFIL 3"

Statement 150 causes the system to check the slot opposite #3 for a
device address. Upon finding address 310, the system goes to the
disk unit and accesses the 'F' platter. Fifty sectors are reserved
for DATFIL 3, and the file's name and location are entered in the
Catalog Index. The file's sector address parameters (starting,
ending, and current) are then written in the slot opposite #3 in the
Device Table:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
DATFIL 2| #0 310 00124 00373 00124
#1 000 00000 00000 00000
#2 000 00000 00000 00000
DATFIL 3| #3 310 00374 00423 00374
#4 000 00000 00000 00000
#5 310 00000 00000 00000
#6 000 00000 00000 00000

Figure 3-6. The Device Table with Two Open Files

44

Obviously, the system must have some way of distinguishing DATFIL 2 from
DATFIL 3 when data is to be stored in, or retrieved from, each file. Since
the file names are not entered in the Device Table, the system can identify
each file only by its associated file number. This file number file must
therefore be used in any subsequent disk statement or command which accesses
that file. The default file is, of course, automatically accessed if no file
number is specified. Thus, the statement

160 DATASAVE DC A$()

causes array A$() to be stored in DATFIL 2 (since DATFIL 2's parameters are
stored opposite #0 in the default slot), while the statement

170 DATASAVE DC #3,A$()

causes A$() to be saved in DATFIL 3 (since DATFIL 3's parameters are stored
opposite #3).

Example 3-3. Referencing an Open File by File Number

10 SELECT #5 310

20 DATASAVE DC OPEN F #5, 50, "FIRST"
30 DATASAVE DC #5, A()

40 DATASAVE DC #5, END

Statement 10 writes the disk address (310) in the slot opposite #5
in the Device Table. Statement 20 opens FIRST and assigns its
parameters to slot #5 in the Device Table. Statement 30 writes data
from array A() into FIRST, and statement 40 writes an end-of-file
trailer record to FIRST. Notice that both statements reference
FIRST by specifying the file number (#5) to which it is assigned in
the Device Table. When statements 30 and 40 are executed, the
system immediately checks the slot opposite #5 in the Device Table
for a disk address. It then accesses the specified disk and begins
storing data at the sector specified in the Current Sector Address
parameter of slot #5. TFollowing execution of statement 40, the
Device Table looks like this:

DISK
FILE DEVICE START END CURRENT

NUMBER ADDRESS
DATFIL 2 —» #0 310 00124 00373 00129
#1 000 00000 00000 00000
#2 000 00000 00000 00000
DATFIL 3 » #3 310 00374 00423 00379
#4 000 00000 00000 00000
FIRST > #5 310 00424 00473 00428
#6 000 00000 00000 00000

Figure 3-7. The Device Table in Memory with Three Open Files

45

Existing files reopened with DATALOAD DC OPEN can also be assigned file
numbers. It is not required that a file be reassigned its original file
number every time it is reopened; the parameters of a file are copied anew
into the Device Table each time it is reopened, and it may be assigned to any
available slot. The file FIRST, opened initially in Example 3-3, might
subsequently be reopened and assigned a different file number, as illustrated
in Example 3-4 below.

Example 3-4: Referencing an Open File by File Number

10 SELECT #4 310

20 DATALOAD DC OPEN F #4, "FIRST"
30 DSKIP #4, END

40 DATASAVE DC #4, B()

50 DATASAVE DC #4, END

Statement 10 writes disk address 310 in the slot opposite #4 in the
Device Table. Statement 20 opens an existing file, FIRST, and
assigns its parameters to slot #4 in the Device Table. Statement 30
skips to the current end-of-file trailer record in the file.
Statement 40 saves a new record in the file from array B() over the
trailer record, and statement 50 writes a new trailer record in the
file. Notice that all reference to FIRST in statements 30, 40, and
50 is in terms of the file number (#4) to which it 1is assigned in

the Device Table. Notice also that #4 is not the file number
originally assigned to FIRST when it was initially opened in Example
3-3.

It is possible to reopen the same file repeatedly, using a different
file number each time. 1In this manner, every slot in the Device Table can be
filled with the parameters of a single file. The practical advantage of such
an arrangement would, however, be questionable in most cases.

Usiqg A Variable To Store The File Number

If it is convenient, a file number may be referenced in a disk statement
as the value of a numeric variable. For example, the statements

5 SELECT #3 310
10 A =3
20 DATALOAD DC OPEN F #A, "DATFIL 1"

cause the system to reopen DATFIL 1 on the 'F' platter, and store its
parameters opposite #3 in the Device Table (since A=3). (The use of numeric
variables to reference file numbers 1is not 1legal in the SELECT statement
itself. Thus, a statement of the form SELECT #A 310 is not permitted.)

46

3.4 THE "CURRENT SECTOR ADDRESS' PARAMETER

In the discussion of skipping over logical records within data files in
Chapter 2, as well as in the recent discussion of storing data in a data file,
you have seen why it is important, in fact necessary, for the system to know
at all times where it is positioned within a file. If the system does not
know, for example, that it has just stored a record ending at sector 86 in a
currently open file, then it cannot know that the next record must be saved in
that file starting at sector 87. 1In such a case, the system would obviously
be incapable of maintaining data files on disk at all.

The system knows where it is positioned in a file by referring to the
Current Sector Address of the file. The Current Sector Address is updated
every time a record is saved in or loaded from a file, and every time records
are skipped or backspaced in a file. The Current Sector Address always
indicates the next sequential sector following the most recent access of a
file. For example, suppose that a file DATFIL 2 is to be saved on the 'F'
disk platter:

300 DATASAVE DC OPEN F #1, 500, "DATFIL 2"

The Device Table slot for DATFIL 2 now looks like this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#1 310 00060 00559 00060
Figure 3-8. Device Table Slot for DATFIL 2

Notice that the Current Sector Address for DATFIL 2 is identical to the
Starting Sector Address. This is the case whenever a file is opened or
reopened.

Suppose, now, that you store data from an array, A(), into DATFIL 2:

305 DATASAVE DC #1 A()

47

Assuming that the data from A() occupies one sector on disk, the Device Table
slot for DATFIL 2 now reads as follows:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS

#1 310 00060 00559 00061

Current Address now
updated to show
that sector 61 is
the next available
sector.

Figure 3-9. Updated Device Table Slot for DATFIL 2

Notice that the Current Address is now updated to show that sector 61 is
the next available sector in the file, since sector 60 (the first sector in
the file) has been filled with data.

You might now save three more arrays of data:

310 DATASAVE DC #1, B()
320 DATASAVE DC #1, c()
330 DATASAVE DC #1, D()
340 DATASAVE DC #1, END

Following execution of these statements (and assuming each array requires only
one sector on disk), the Device Table looks like this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS

#1 310 00060 00559 00064

Figure 3-10. Updated Device Table Slot for DATFIL 2

48

Figure 3-10 illustrates a special case of updating the Current Sector
Address. A total of five sectors have been recorded in the file with lines
300-340. Those five sectors are 60, 61, 62, 63, and 64 (sector #64 contains
the end-of-file record written at line 340). According to the rule set forth
above, the Current Sector Address should equal the address of the next sector
at this point (sector #65). 1Instead, it is set to the address of the
end-of-file record (64). The creation of an end-of-file record involves an
exception to the rule governing updating of the Current Sector Address:
following the creation of an end-of-file (EOF) record with DATASAVE DC END,
the Current Sector Address is always set to the address of the EOF record,
rather than to the address of the next consecutive sector. In this way, a
subsequent DATASAVE DC statement will store the next data record over the EOF
record, and the danger of leaving an EOF record in the middle of a file when
new data records are saved is avoided.

In order to skip back from the current position to the beginning of the
file, a DBACKSPACE BEG statement is used:

350 DBACKSPACE #1, BEG
This statement instructs the system to set the value of the Current Sector

Address equal to the value of the Starting Sector Address. Following
execution of Statement 350, the Device Table looks like this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#1 310 00060 00559 00060
Current Address now
set back to address
of first sector in
file.
Figure 3-11. Updated Device Table Slot for DATFIL 2

Following Execution of a DBACKSPACE
BEG Statement

At this point, the first record can be read from DATFIL 2. DSKIP
functions in an analogous manner, causing the Current Sector Address to be
updated to reflect the new current location in the file following the skip.

49

3.5 CLOSING A DATA FILE

You should now understand more clearly the precise meanings of the
concepts of "opening" and "closing" a data file. A data file is opened (by a
DATASAVE DC OPEN or DATALOAD DC OPEN statement) when its parameters are
entered in a slot in the Device Table. A data file is closed when its
parameters are removed from the Device Table, either by writing over the
parameters with another set of parameters, or by zeroing out the parameters.
There are four methods of closing a currently open data file:

1. Assigning the file number currently associated with the file to
another file.

2. Executing a CLEAR command with no parameters.

3. Master Initializing the system.

4. Executing a DATASAVE DC CLOSE statement.

Each of these four methods is explained in the following paragraphs:

1. Assigning the file number currently associated with the file to
another file causes the parameters of the new file to be written
over the parameters of the original file, thus closing the original
file.

Example 3-5: Closing a Data File by Reassigning Its File
Number

110 SELECT #1 310
120 DATASAVE DC OPEN F #1, 110 "DATFIL 1"
150 DATASAVE DC OPEN R #1, 600 "DATFIL 2"

Statement 110 selects file number #1 to the disk. Statement 120
opens DATFIL 1, reserves 110 sectors for it on the 'F' disk platter,
and causes its parameters to be entered in the Device Table in the
slot opposite #1. Statement 150 opens a new data file, DATFIL 2,
and stores its parameters in slot #1. These parameters overwrite
those of DATFIL 1, effectively closing DATFIL 1.

2. Executing a CLEAR command with no parameters causes all of memory to
be cleared, including the Device Table. All the information in the
Device Table is zeroed out, thereby closing all files.

3. Master Initializing the system (i.e., throwing the main power switch
OFF and then ON) also has the effect of clearing out memory, thus
closing all files.

4, Executing a DATASAVE DC CLOSE statement causes all sector address
parameters for the specified file(s) in the Device Table to be
zeroed out, thereby closing the file(s). (DATASAVE DC CLOSE should
not be confused with DATASAVE DC END. DATASAVE DC END causes an
end-of-file trailer record to be written in the specified file.)
The disk device address stored in a slot is not zeroed out by

DATASAVE DC CLOSE, however.

50

Example 3-6: Closing A Specified File With A DATASAVE DC
CLOSE Statement

200 DATASAVE DC CLOSE
210 DATASAVE DC CLOSE #l1

Statement 200 causes the sector address parameters associated with
the default file #0 (since no file number is specified) to be zeroed
out, thus closing the file associated with #0. Statement 210 causes
the sector address parameters stored in slot #1 to be zeroed out,
thus closing the file associated with #1.

Example 3-7: Closing All Currently Open Files with a
DATASAVE DC CLOSE Statement

300 DATASAVE DC CLOSE ALL

Statement 300 causes all sector address parameters in the Device
Table to be zeroed out, thus closing all currently open files.

It is generally good practice to close a data file once precessing of
the file 1is complete. In this way, another operator is prevented from
accidentally storing data into the file over currently stored data, and
destroying the existing data. It is also good policy to write an end-of-file
record in the file prior to closing it, since it will then be possible to skip
to the end-of-file and continue storing data in the file when it is
subsequently reopened.

When a file is closed (by whatever method) its three sector address
parameters are removed from the Device Table. When the file is subsequently
reopened with a DATALOAD DC OPEN statement, the Current Sector Address is
automatically set equal to the Starting Sector Address.

3.6 SKIPPING AND BACKSPACING OVER INDIVIDUAL SECTORS IN A FILE

In Chapter 2, the discussion of DSKIP and DBACKSPACE was confined to the
skipping of logical records within a file. It is also possible, however, to
skip individual sectors in a file. This method is a much faster way of
moving through a file than skipping records, but its value cannot be fully
understood until the process of skipping logical records is examined in
greater detail.

Remember that a logical record may consist of any number of sectors.
The first logical record in a file might, for example, contain three sectors,
while the second contains thirteen. The system has no way of knowing in
advance how many sectors are in each record. When the system is instructed to
skip or backspace over a prescribed number of records, it must therefore
actually read those records from the file and update the Current Sector
Address after the specified number of records have been read. Suppose, for
example, that the system is currently positioned at the beginning of DATFIL 1,
and that DATFIL 1 is associated with file #1 in the Device Table. If you want
to skip three records in DATFIL 1, you would execute a DSKIP #1,3 statement.
Such a statement causes the system to run through the following set of

operations:

51

1. Check the Current Sector Address in slot #1 of the Device Table to
see where it is currently positioned in the file.

2. Access the disk and read three logical records, beginning at the
location specified in the Current Sector Address parameter.

3. After reading the third logical record, check the sector address of
the last sector in that record.

4. Set the Current Sector Address in slot #1 equal to one greater than
the address of the last sector in logical record #3.

At the end of this procedure, the Current Sector Address in slot #l 1is
equal to the address of the first sequential sector following record #3.

Suppose, now, that you know there are three sectors in each logical
record in DATFIL 1. 1In this case, if you want to skip three logical records,
you can simply instruct the system to skip nine sectors. Since the system
knows exactly how many sectors are to be skipped, it need not access the disk
and read the records themselves; it simply increments the Current Sector
Address in Slot #1 by nine. The process of skipping or backspacing through a
file is greatly accelerated, since no disk accesses are required.

The 'S' parameter is used in a DSKIP or DBACKSPACE statement to inform
the system that it is to skip a specified number of sectors rather than
logical records.

Example 3-8: Skipping over a Number of Sectors in a File
400 DSKIP #1, 20S

Statement 400 instructs the system to increment the Current Address
for the file associated with slot #1 in the Device Table by 20. 1If
the old Current Address was equal to X, the new Current Address is
equal to X+20. 1If each logical record consists of five sectors,
this statement has the effect of skipping over four logical records.

Example 3-9: Backspacing over a Number of Sectors in a File
410 DBACKSPACE #3, 258
Statement 410 instructs the system to decrement the Current Address

for the file associated with #3 in the Device Table by 25. 1If the
original Current Address was equal to Y, the new Current Address is

equal to Y - 25. If each logical record consists of five sectors,
this statement has the effect of backspacing over five logical
records.

When the 'S' parameter is used, it is necessary that every logical
record in the file consist of the same number of sectors; otherwise, skipping
or backspacing over a number of sectors can lead to serious problems. If the
number of sectors skipped does not represent a number of whole records, the
system may end up somewhere in the middle of a logical record. In such a
case, it will automatically skip to the beginning of the next sequential
logical record and begin reading at that point.

52

3.7 USING THE "T" PLATTER PARAMETER

Until now, only two parameters have been discussed in connection with
accessing a disk platter, the 'F' and 'R' parameters. These parameters are
“"absolute" in the sense that each identifies a single disk platter. The
reference of each parameter is fixed and cannot be changed (that is, the 'F'
parameter can never be used to access the 'R' platter, and vice versa).

Such an arrangement lacks some flexibility. In certain programming
cases, it is desirable to be able to access either the 'F' or 'R' platter with
the same disk statement or command. The 'T' parameter provides such a
capability. When the 'T' parameter is specified in a disk statement or
command instead of 'F' or 'R', it causes the system to use the disk device
address to determine which platter is to be accessed, and access the
designated platter.

For such a technique to be possible, however, it is evident that each
disk platter must have its own device address. This is true only in a very
limited sense. The disk device address (e.g., "310") is really a conjunction
of a device type and a unit device address. The first hexdigit of the disk
address is the device type; the remaining two hexdigits form the unit device
address. It is the device type which can be used to designate a particular
disk platter.

? W?

Device Unit
Type Device
Address

In all of the examples to this point, a single device type, "3" (e.g.,
310, 320, etc.), has been used consistently. However, a second device type,
"B" (e.g., BlO, B20, etc.), is also permissible in a disk device address.
When used in conjunction with the 'T' parameter, a device type of "3"
designates the 'F' disk platter, while a device type of "B" designates the 'R'
platter:

T 10 ?]f
Designates Desj;nates Designates Designates
the 'F' the primary the 'R' the primary
platter disk drive platter disk drive
when 'T' when 'T'

parameter parameter

is used is used

For example the statement

10 LOAD T/310, "PROG 1"

53

causes the system to access the 'F' platter, while the statement
20 LOAD T/B10, "PROG 2"

causes the system to access the 'R' platter. It should be emphasized that a
disk device address is never used by itself to access a disk platter; it is
always necessary to specify one of the parameters 'F', 'R', or 'T' in
statements where such a parameter is required.

No mention was made of the "B" device type in previous examples because
the device type "B" itself is significant only when the 'T' parameter 1is
specified. The 'F' or 'R' parameter, when specified, always overrides the
device type. Thus, for example, the command

LOAD F/310, "PROG 1"
access the 'F' platter; and so too does the command
LOAD F/B10, "PROG 1".
In this case, the device type ("B") has no meaning to the system.

The 'T' parameter provides maximum flexibility when used in a statement
which references a file number specified as the value of a variable. In such
a case, the system obtains the specified file number from the value of the
variable, then checks the Device Table and inspects the device type in the
device address stored opposite the specified file number to determine which
platter to access. This arrangement makes it possible to use the same disk

statement to access all platters in the disk unit simply by changing the value
of the file number variable.

Example 3-10: Accessing more than One Disk Platter with the
'T' Parameter

10 SELECT #3 310, #4, BlO

100 GOSUB'20 (3,"DATFIL 1")
290 DEFFN'20 (A,B$)

300 DATALOAD DC OPEN T #A, B$
310 RETURN

54

Here statement 10 stores disk device addresses 310 and Bl0 in slots
#3 and #4 of the Device Table, respectively. Subsequently, the
'GOSUB' statement at line 100 passes the values '3' and "DATFIL 1"
to the marked subroutine at line 290. Because address 310 1is
assigned to file number #3, the DATALOAD DC OPEN statement at line
300 reopens DATFIL 1 on the 'F' platter. The same subroutine could
be used to open a different file on a different platter if called
from another point in the program and passed a different set of
values:

200 GOSUB'20 (4,"TEST 2")

290 DEFFN'20(A,B$)
300 DATALOAD DC OPEN T #A, B$
310 RETURN

In this case, data file TEST 2, located on the 'R' platter, is
reopened by the subroutine.

The 'T' parameter provides the general capability to write disk
statements which can access any disk platter. This feature may prove
particularly useful for file update operations where two versions of the same
file may reside on different platters. Users of the Model 2260C/2260BC series
should find the 'T' parameter helpful in debugging file maintenance programs
written for the Fixed Platter by testing them with dummy files stored on the
Removable Platter (thus avoiding the danger of erasing legitimate data on the
Fixed Platter). Finally, Model 2270-3 and 2270A-3 owners will find the 'T'
parameter helpful because it provides them with a single parameter which can
be used to access all three disk platters. For example, a program can be
designed which makes a specific platter (and disk unit) selectable by the
operator when the program is run:

Example 3-11: Use of the 'T' Parameter to Access a
User—-Selectable Disk Platter

10 INPUT "ENTER PLATTER-NUMBER (1,2, OR 3)", A
20 INPUT "ENTER PROGRAM NAME', N$

30 ON A GOTO 30, 50, 60

40 SELECT #1 310:GOTO 70

50 SELECT #1 B10:GOTO 70

60 SELECT #1 350

70 LOAD DC T #1, N$

55

Changing the Default Address

The system default disk address, 310, is a system-defined parameter
which cannot be premanently changed by the programmer. Following Master
Initialization, the system automatically returns address 310 to the default
slot. It is, however, possible to change the value of the default address
temporarily with a SELECT DISK statement. For example, the statement

50 SELECT DISK BlO

causes disk address Bl0 to be recorded in slot #0 in the Device Table:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#0 B10 00000 00000 00000
Figure 3-12. The Device Table Following Execution of a

SELECT DISK Bl0 Statement

Once statement 50 is executed, any disk statement or command containing
the 'T' parameter with no file number specified causes the system to access
the 'R' platter (based on a device type of "B"), rather than the 'F' platter
(as would be the case with the system default address, 310). Note that the
default address cannot be changed with a statement of the form SELECT #0 BlO.
This statement is illegal.

Example 3-12: Using the 'T' Parameter with a New Default Address
10 SELECT DISK B10
20 DATASAVE DC OPEN T 100, "DATFIL 1"

Statement 10 changes the default address from 310 to B10. Statement
20 causes the system to check the default address in the default
slot and, since the 'T' parameter is used, to inspect the device
type in the address. 1In this case, the device type is B (B10); the
'R' platter is therefore used to open DATFIL 1.

After it has been changed, the default address can be reset to 310 by:

1. Entering a SELECT DISK 310 statement, or

2. Master Initializing the system (i.e., throwing the main power switch
OFF and then ON).

56

3.8 MULTIPLE DISK UNITS

If only one disk unit is attached to the system, the problem of multiple
disk addresses is not a concern, since you will deal exclusively with the
primary disk addresses 310 and B10 (and 350 on the Model 2270-3/2270A-3.)
Many installations, however, drive two or more disks with a single CPU. (A
typical configuration includes one large fixed/removable disk drive for the
data base, and a smaller diskette drive for software.) In multiple-disk
configurations, the system distinguishes different disk units by means of the
last two digits in their device address, called the "unit device address":

3/B 10
Device Unit Device Address
Type (Identifies disk drive

number one)

Models 2260BC, 2260C, 2270/70A-1, 2270/70A-2 and Minidiskette

On the Models 2260BC, 2260C, 2270/70A-1, 2270/70A-2 and minidiskette,
the unit device address of each successive disk unit on the same system is
computed by adding HEX(10) to the disk device address of the primary disk.
The addresses of successive disks are listed in Table 3-1.

Table 3-1. Disk Addresses for Models 2260BC, 2260C, 2270-1/2270A-1,
2270-2/2270A-2 and Minidiskette

Disk Unit no. 1 (Primary) 310 or BlO
Disk Unit no. 2 320 or B20
Disk Unit no. 3 330 or B30

Models 2270-3 and 2270A-3

On the Model 2270-3/2270A-3, the addressing scheme is somewhat
different. The unit device address of drives #1 and #2 in a second and third
disk unit on the same system is computed by adding HEX(10) to the primary disk
address (310); the addresses for four or more units are computed by adding
HEX(0l) to the previous address. Similarly, the address of drive #3 is
computed for the first three units by adding HEX(10) to the primary address
(350), and by adding HEX(0l) for each unit beyond the third. The addresses
for successive units are listed in Table 3-2.

57

Table 3-2. Disk Addresses for Model 2270-3/2270A-3

Drives #1 and #2 Drive #3
Disk Unit no. 1 (Primary) 310 or B10 350
Disk Unit no. 2 320 or B20 360
Disk Unit no. 3 330 or B30 370

NOTE:

When the system contains any combination of a dual disk
unit (2260BC-2 or 2260C-2) and a triple diskette wunit
(2270-3 or 2270A-3), the primary address 350 can only be
assigned to either the disk unit (slave drive) or the
diskette unit (drive #3).

Models 2260BC-2/2260C-2

On the Models 2260BC-2 and 2260C-2, the individual disk drives are
addressed as shown in Table 3-3. The master drive address in combination
number 2 and number 3 of the same system is computed by adding HEX(10) to the
primary disk address (310); the addresses for four or more units are computed
by adding HEX(0l) to the previous address. Similarly, the address of the
slave drive in the first three combinations is computed by adding HEX(10) to
the primary address (350), and by adding HEX(0l) for each combination beyond
the third.

Table 3-3. Disk Addresses for Models 2260C-2/2260BC-2

Master Slave
Drive Drive
Combination No. 1 (Primary) 310 or B1O 350 or B50
Combination No. 2 320 or B20 360 or B60
Combination No. 3 330 or B30 370 or B70
NOTE:

The device addresses for disk wunits are set at the

factory, or by a Wang Service Representative. The address
of each disk unit should be marked on the disk controller
board for that unit. If you have questions about

addressing multiple disks in a system, contact your Service
Representative.

58

Accessing Multiple Disk Units

Whether a system has one disk unit, or many disk units, the techniques
for accessing a disk platter are the same. A platter can be accessed in four
ways:

1. Specifying the disk device address in a disk statement or command,
e.g.:

100 LOAD DC R /330, "PROG 1"

Statement 100 loads PROG 1 from the 'R' platter in disk unit number
three. Note that there are a number of catalog statements in which
the device address cannot be directly specified.

2. Selecting a disk address as the default disk address, and
referencing the default address, e.g.:

110 SELECT DISK 340
120 DATASAVE DC OPEN F 100, "DATFIL 1"

Statement 110 changes the default address from 310 to 340, and
statement 120 opens DATFIL 1 on the 'F' platter of disk unit number
four. Note that the default address reverts to the system default
address, 310, when the system is Master Initialized.

3. Assigning the disk address to a file number in the Device Table, and
referencing the address indirectly, via the file number, e.g.:

100 SELECT #3 320
110 DATASAVE DC OPEN F #3, 100, "DATFIL 1"

Statement 100 stores disk address 320 in the #3 slot in the Device
Table, and statement 110 opens DATFIL 1 on the 'F' platter of disk
unit number two. In this case, the disk unit is determined from the
disk address, while the disk platter is specified in the DATASAVE DC
OPEN statement ('F'). Alternatively, both the disk unit and the
disk platter can be determined from the device address:

100 SELECT #3 320
110 DATASAVE DC OPEN T #3, 100, "DATFIL 1"

In this case, both the disk unit (number two) and the disk platter
('F' platter) are determined by inspection of the device address.

4. Assigning the device address to a file number in the Device Table,
and referencing the file number indirectly (via a variable), e.g.:

100 SELECT #3 B20
105 A = 3: B$ = "DATFIL 1"
110 DATASAVE DC OPEN T #A, 100, B$

Since A = 3, and address B20 is stored in slot #3 in the Device

Table, the file DATFIL 1 is opened on the 'R' platter of disk unit
number two.

39

CHAPTER 4
EFFICIENT USE OF THE DISK

4.1 INTRODUCTION

This chapter discusses several techniques designed to help you make more
efficient use of your disk, both in terms of optimizing the use of disk
storage space and speeding up processing time for disk files. The following
topics are covered in the chapter:

1. Reserving additional space in program files for program expansion.

2. Establishing temporary work files on the disk.

3. Renaming and reusing scratched files.

4. Efficient use of disk storage space within records.

5. The LIMITS Statement.

4.2 PROGRAM FILES REVISITED

The discussion of saving program files in Chapter 2 restricted itself to
cases in which the system used exactly enough disk space to hold the recorded
program lines. In many cases, however, it 1is advantageous to reserve
additional sectors within a program file for future expansion of the program.
If such additional space 1s reserved at the outset, the program can
subsequently be expanded and written back into its original location in the
catalog (the reuse of scratched program file locations is described in Section
4.5). If extra space is not reserved when the file is initially created, the
expanded program will not fit into its original space, and must be saved at a
new location in the Catalog Area. 1In this case, the space occupied by the
old program is wasted, unless a new file can be found to occupy it. The SAVE
DC command provides a means of reserving extra sectors in a program file when
the program is initially stored on disk.

In order to reserve extra sectors in a program file, the number of
additional sectors to be reserved must be enclosed in parentheses and listed
in the SAVE DC command immediately before the program name. The system then
automatically adds the specified number of additional sectors at the end of
the program file when the program is recorded on disk.

60

Example 4-1: Reserving Additional Sectors in a Program File
SAVE DC F (10) "PROG 1"

This command instructs the system to record all program lines
currently in memory on the 'F' disk platter, and name the file "PROG
1". 1In addition to the sectors needed to hold the program itself,
10 sectors are reserved for future additions to the program.

HEADER 18T 2ND 3RD Nth TRAILER END-OF-FILE

RECQRD PRQG PROG PROG PROG RECORD CONTROL

“PROG 1” RECORD RECORD RECORD RECORD RECORD
- v 1

Free space available for
subsequent expansion of
program within this file
(10 sectors).

Figure 4~1. The Program File PROG 1 with Ten Extra
Sectors Reserved

4.3 ESTABLISHING TEMPORARY WORK FILES ON DISK

Temporary work files can be useful in a variety of data processing
operations. A temporary work file 1is opened with a DATASAVE DC OPEN
statement, but unlike a regular cataloged file, it is not listed in the
Catalog Index, and not stored in the Catalog Area on disk. Its parameters
are, however, entered in the Device Table in memory. Temporary files may be
used as transaction files, to contain transactions saved over a period of time
and processed as a batch, or as scratch files, in which the results of
intermediate calculations are stored prior to final processing. They may, in
short, be used as a storage area for any type of transient data which is not
sufficiently final to warrant storage in a permanent file.

Because they are not cataloged, temporary files must be stored outside
the Catalog Area on disk. The end of the Catalog Area (the address of the
last sector reserved for the Catalog Area) is specified in the SCRATCH DISK
statement when the catalog is established. If temporary files are to be used,
the catalog may not occupy the entire platter; a number of sectors must be
left outside the Catalog Area for the temporary files. For example, the Model
2260C Disk Drive has 19,584 sectors on each platter. Since sector numbering
starts at zero rather than one, the highest sector address on the Model 2260C
is 19,583. 1If a number of sectors (say, 1,000) are to be left available for
temporary files, the address of the last sector in the Catalog Area must be
19,583 minus 1000, or 18,583:

61

100 SCRATCH DISK F LS=30, END=18583

Sectors 18,584 through 19,583 are left outside the Catalog Area, and may be
used for temporary files.

Non-
Catalog
Area

Catalog Catalog
Area | ndex

/ L]
Track #0

Figure 4-2. Layout of the Platter Surface Showing Catalog
Index, Catalog Area, and Non-Catalog Area
(Used for Storage of Temporary Files).

Temporary files are opened and accessed with the same BASIC statements
used to open and access cataloged files. However, temporary files cannot be
named, nor can they be accessed by name. Instead, the special TEMP parameter,
along with the beginning and ending sector addresses of the temporary file,
must be specified in the DATASAVE DC OPEN statement when the file is opened
initially, and again in the DATALOAD DC OPEN statement when the file is
reopened.

62

Example 4-2: Opening a Temporary Work File on Disk
300 DATASAVE DC OPEN R TEMP, 18584, 19583

Statement 300 opens a temporary work file on the 'R' disk platter.
Sectors 18,584 through 19,583 are reserved for this temporary file.
No information on the file is entered in the Catalog Index; however,
the temporary file's parameters are entered in the default slot in
the Device Table. Following the execution of statement 300, any
DATASAVE DC or DATALOAD DC statement which does not specify a file
number (i.e., which references the default slot) will read or write
data in the temporary file.

Like cataloged files, temporary files can be assigned file numbers. In
this way, more than one temporary file can be open at the same time.

Example 4-3: Opening More Than One Temporary Work File

300 SELECT #1 310, #3 310
320 DATASAVE DC OPEN F #1, TEMP, 18584, 18699
330 DATASAVE DC OPEN F #3, TEMP, 18700, 19583

Statement 300 stores disk address 310 opposite file numbers #l and
#3 in the Device Table. Statement 320 opens a temporary file on the
'F' platter, reserves sectors 18,584 through 18,699 for that file,
and enters the file parameters in slot #1 of the Device Table.
Statement 330 opens a second temporary file on the 'F' platter,
occupying sectors 18,700-19,583, and assigns its parameters to slot
#3 in the Device Table. Any reference to #1 or #3 in a DATASAVE DC
or DATALOAD DC statement accesses these temporary files.

Data is stored in a temporary file just as it is stored in a cataloged
file. As with a cataloged file, a data trailer record should always be
written in the file at the completion of a data storage operation. As with
cataloged data files, the last sector of a temporary data file is used by the
system for control information; at least one more sector than the data
actually requires should be reserved for the temporary file.

A temporary file is closed in the same way a cataloged file is closed,
and is reopened with a DATALOAD DC OPEN statement. The TEMP parameter and the
beginning and ending sector addresses of the file must be specified.

Example 4~4: Reopening a Temporary Work File

500 DATALOAD DC OPEN F TEMP, 18700, 19583

Statement 500 reopens an existing temporary file beginning at sector
18,700 on the 'F' disk platter.

63

4.4 ALTERING THE CATALOG AREA

The upper limit of the Catalog Area is originally set with the END
parameter in a SCRATCH DISK statement when the catalog is created. If more
room is needed for temporary files, or if more sectors must be devoted to
cataloged files, the size of the Catalog Area can be changed with a MOVE END
statement. In this statement, it is necessary to specify only the sector
address which is to become the new ending sector address of the Catalog Area.
Note that MOVE END alters the size of the Catalog Area only; it does not
change the size of the Catalog Index.

Example 4-5: Changing the Size of the Catalog Area

100 SCRATCH DISK F LS=30, END=9299

500 MOVE END F = 8299

Statement 100 sets the limit of the Catalog Area at sector 9299,
Statement 500 moves the limit back 1,000 sectors, to sector 8299,
thereby allowing 1,000 additional sectors to be used for temporary
files (outside the Catalog Area). The Catalog Area may be expanded
as well as constricted, but its upper limit must never exceed the
highest sector address available on a disk platter. The size of the
Catalog Index cannot be changed with MOVE END.

4.5 RENAMING AND REUSING SCRATCHED FILES

Temporary files offer one good way to make the most efficient use of
disk storage space. Another way to get maximum use out of available disk
storage area is to reuse the space occupied by scratched files. As you saw in
Chapter 2, one way to eliminate scratched files is to execute a MOVE
operation, since MOVE automatically deletes scratched files when it copies the
catalog to a new platter. In many cases, however, it is easier and more
efficient to store a new program or data file directly into space occupied by
a scratched file, without moving the whole catalog to a second platter. This
is true particularly in the case of revised programs. New files are recorded
in the space occupied by scratched files with the SAVE DC command and DATASAVE
DC OPEN statement. The file type of the scratched file (program or data) is

irrelevant when opening a new file in its space. A program file may be saved
in the space occupied by a scratched data file, and a data file may be saved
in the space occupied by a scratched program file. The scratched file name

must precede the new file name in the SAVE DC command or DATASAVE DC OPEN
statement.

Example 4-6: Saving a Program in Space Occupied by a
Scratched File

SCRATCH R "PROG 1"
SAVE DC R ("PROG 1") "PROG 2" 200, 500

64

The SCRATCH statement causes program file PROG 1 to be set to a
scratched status. SAVE DC then stores lines 200 through 500 in the
sectors previously reserved for PROG 1, and names the new program
"PROG 2". The new file name ("PROG 2") and location are entered in
the Catalog Index. The scratched entry for PROG 1 remains in the
Catalog Index, although it no longer appears in a listing of the
Index.

Notice that the scratched file name must be enclosed in both quotes and
parentheses when it is referenced in a SAVE DC command.

Example 4-7: Opening a Data File in Space Occupied by a
Scratched File

10 SCRATCH F '"DATAFIL 1"
20 DATASAVE DC OPEN F "DATFIL 1", "DATFIL 2"

Statement 10 scratches DATFIL 1. Statement 20 assigns the sectors
previously reserved for DATFIL 1 to DATFIL 2, and updates the
Catalog Index accordingly. DATFIL 2's parameters (previously those
of DATFIL 1) are entered in the default slot (#0) in the Device
Table. The scratched entry for DATFIL 1 remains in the Catalog
Index, although it no longer appears in a listing of the Index.

A program file which has been scratched can be reused as a data file,
and vice versa.

Example 4-8: Opening a Data File in Space Occupied by a
Scratched Program File

10 SCRATCH F "PROG 1"
20 DATASAVE DC OPEN F #1, "PROG 1", "DATFIL 3"

Statement 10 scratches PROG 1. Statement 20 assigns the sectors omn
disk previously reserved for PROG 1 to DATFIL 3, and updates the
Catalog Index accordingly. DATFIL 3's parameters (previously those
of PROG 1) are entered in slot #1 in the Device Table (the disk
device address must previously have been stored opposite #1). The
scratched entry for PROG 1 is not removed from the Catalog Index,
however, although it no longer appears in the Index listing.

It is entirely possible to rename a scratched file with the same name.
This feature is useful for revising program files, since the program can be
updated and then resaved into the original location with the same name
(assuming, of course, that additional space has been reserved in the original
file for expansion of the program).

Example 4-9: Renaming a Scratched Program File with the
Same Name

SCRATCH R "PROG 1"
SAVE DC R ("PROG 1'") "PROG 1"

65

The SCRATCH statement scratches PROG 1. The SAVE DC command
subsequently resaves an updated version of the program, assigning it
the same name ("PROG 1"), and storing it in the same location as the
original PROG 1. If there is not enough space in the file for the

new program, an error 1is signalled. In this case, the scratched
entry for PROG 1 is removed from the Catalog Index when the program
is saved.

Finally, it is also possible to scratch and rename a data file without
disturbing the data in the file, if you simply want to give the file a new
name.

Example 4-10: Renaming a Scratched Data File Which Is Still
Viable

10 SCRATCH "DATFIL 1"
20 DATASAVE DC OPEN F "DATFIL 1", "TEST 2"

Statement 10 scratches DATFIL 1. Statement 20 renames DATFIL 1 with
the name "TEST 2'". The data in the file is not disturbed. However,
the end-of-file trailer record in the file is lost and the USED
column for TEST 2 in the Catalog Index is reset to 1. Thus, you
should note the sector address of the trailer record in DATFIL 1
prior to scratching it. After opening TEST 2, you can skip to that
location and rewrite the end-of-file record. Throughout this
operation, the data is unaltered.

NOTE:

Although the name of a scratched file no longer appears in
the catalog listing once the file has been renamed, the
scratched file name remains in the Catalog Index. Thus, if
a single file is scratched and renamed 16 times, only the
final name shows in the catalog listing, despite the fact
that all 16 names remain in the Catalog Index itself.
Those 16 names would occupy one entire sector of the
Catalog Index. Scratched file names can be removed from
the Index only by executing a MOVE. The single exception
to this rule is the case in which a scratched file is

renamed with the same name. In that case, the new name
occupies the slot on the Catalog Index occupied by the old
name, and no duplication occurs. If it 1is necessary to

scratch and rename files frequently, therefore, provision
must be made for the scratched file names when establishing
the size of the Catalog Index initially with SCRATCH DISK.
Remember that the size of the Index cannot be altered once
the catalog has been created.

66

4.6 EFFICIENT USE OF DISK STORAGE SPACE

The large storage capability of the disk unit may occasionally tempt the
programmer to become profligate and inefficient in his use of disk storage
space. Specifically, he may be tempted to design his records without due care

for packing a maximum amount of data in a minimum number of sectors. Even
when the available storage clearly exceeds present needs, however, this
temptation should be overcome. Files have a way of outgrowing preliminary

estimates at a faster—-than-expected rate. Also, a file which is compact can
be searched more quickly than one which is loosely layed out and contains
large amounts of wasted space. In order to organize data within a record
efficiently, it 1is necessary to understand more precisely how the system
stores data in a sector. There are two main

points to be considered:

1. Control information: The system automatically records control
information along with the data in each sector. The control
information occupies space in the data field of a sector, and must
be taken into account when calculating how much space 1is required
for a given amount of data.

2. Gaps in multisector records: Under certain conditions, gaps may
occur between fields in a multisector record. In order to optimize

the use of disk storage space, such gaps must be kept to a minimum.

System Control Information

The 2200 System automatically writes control information in each record
created with a DATASAVE DC statement (or DATASAVE DA statement). This
information is of two types:

1. Sector control bytes.
2. Start-of-value (SOV) control bytes.

Three sector control bytes are automatically written in each sector of a
logical data record. The first two sector control bytes occupy the first two
locations in the sector. The third control byte follows the last byte in the
last field in the sector, and marks the limit of valid data within that
sector. Information in the sector following the last sector control byte
(also called the "end-of-block' byte) is regarded as garbage, and is ignored
by the system when the sector is read. After taking into account the three
sector control bytes, only 253 of the 256 bytes in a sector are initially
available for data storage.

In addition to the sector control bytes, a start-of-value (SOV) control
byte is prefixed to every field stored in the sector. The SOV byte separates
data fields within a sector, marking the beginning of each individual value in
the sector.

Consider, for example, the following statements:

10 DIM A$(2) 30
20 DATASAVE DC A$(), B$, "ABCD", 123, N

67

The argument list in statement 20 contains six separate arguments, each
of which is prefixed with an SOV control byte when saved on disk. (Remember
that each element of an array constitutes a single argument. Since A$() has
two elements, it must be counted as two arguments.) The logical record
created by statement 20 therefore looks like this:

30 bytes 30 bytes 16 bytes 4 bytes 8 bytes 8 bytes
A A A A ——,
8 asm 8] asm [8 - 8 8 5
0 .y 9 BS$ v ABCD v 123 v N B
———"
Sov SOV sov sov Sov SOV End-of data UNUSED
for for for for for for control byte
A$ (1) AS$ (2} B$ “ABCD” 123" N
2 sector

control
bytes

Figure 4-3. One Logical Record, Showing Sector Control
Bytes and Start-of-Value Control Bytes for
Each Field

From this illustration, it can be inferred that the following disk
storage requirements hold:

a) Each numeric value, variable, or array element in the argument list
always occupies nine bytes on disk (eight bytes for the numeric
value and one byte for the SOV).

b) Each literal string in quotes occupies a number of bytes on disk
equal to the number of characters in the literal string, plus one
SOV byte.

c) Each alphanumeric variable or array element occupies a number of
bytes on disk equal to the dimensioned length of the variable or
element, plus one SOV byte.

Note that in the case of an alpha variable or array element, it is the
dimensioned size, and not the number of characters actually stored in the
variable or element, which must be counted. For example, the routine

50 DIM A$ 20
60 A$ = "ABC"

produces an alpha variable A$ which occupies 21 bytes on the disk (20 + 1),

despite the fact that A$ contains a literal string only three characters 1in
length. The remaining 17 bytes of A$ are blanks (spaces).

68

Inter~Field Gaps

In no case will the system overlap a single field from one sector to the
next. If a field does not fit completely into one sector, it is written in
its entirety into the next sequential sector. If record layouts are not
carefully designed, this situation often gives rise to gaps between fields in
multisector records.

Suppose, for example, that a logical record has been created with the
following routine:

10 DIM A$(5)50, B$(3)64, C$ 48

ioo DATASAVE DC A$(), B$(), C$

You could do some quick calculating and, making sure to add a control
byte for each argument, conclude that the total record occupies 499 bytes.
Since each sector can hold 253 bytes of data and control information (after
the three sector control bytes are subtracted, two sectors can contain a total
of 506 bytes. You might assume, therefore, that the record will fit easily
into two sectors. Unfortunately, this calculation does not take into account
the possibility of an inter-field gap. The argument list from line 100 is
saved on disk in the following way:

A$(5) | BS(1) | B$(2) | B$(3)

S ey N Y —— eV e e 7
51 51 51 51 49 51 65 65 65 (unused)
{Unused)
v v '
253 253 253
Sector # 100 Sector # 101 Sector # 102

Figure 4-4. Inter-Field Gap in a Multisector Record

Notice that the last field in sector 100 consists of 49 bytes, and is
marked "unused". Since A$(5) requires 51 bytes of space, it does not fit
into the remaining 49 bytes in sector 100, and the entire field is written
into the next sector (sector #101). The unused 49 bytes in sector #100
represent a "gap" of wasted space between A$(4) and A$(5). As a result of
this gap, C$ must be written in a third sector. Instead of requiring two
sectors, as the figures indicated, this record occupies three sectors. If the
file contains, say, 100 such records, it will require 100 more sectors than
were initially estimated.

The waste resulting from inter-field gaps can, in many cases, be
decreased or eliminated by careful attention to the design of the record. 1In
this case, for example, the record can be made to fit into two sectors simply
by rearranging the order of the arguments in the DATASAVE DC argument list:

69

100 DATASAVE DC C$, A$(), B$()

The resulting logical record now looks like this:

c$ AS(1) | AS(2) | AS$(3) | AS(4) A$(5) | BS$(1) | BS$(2)
49 51 51 51 51 51 65 65 65 7
p ﬂmqyﬂ
Y A
253 253
Sector # 100 Sector # 101

Figure 4-5. A Multi-Sector Record with No Gaps

By moving C$ from the end of the argument list to the beginning, the
49-byte gap in sector 100 is filled, thereby eliminating the need for a third
sector in the record.

4.7 THE 'LIMITS' STATEMENT

A special catalog statement, LIMITS, enables the programmer to obtain
the sector address parameters of a cataloged file under program control.
LIMITS is useful for catalog operations alone, such as keeping track of the
amount of free space remaining in a file during an input routine. When the
catalog procedures are supplemented with Absolute Sector Addressing operations
(discussed in Chapter 6), which provide direct access to individual sectors,
LIMITS becomes a truly powerful programming tool. One important use of LIMITS
in conjunction with Absolute Sector Addressing statements is in the binary
search technique described in Chapter 6.

The LIMITS statement has two forms. 1In Form 1, the name of a cataloged
disk file is specified in the LIMITS statement. In this case, LIMITS goes
directly to the disk and retrieves the starting sector address, ending sector
address, and number of sectors used for the named file from the Catalog
Index. In Form 2, the file name is omitted from the LIMITS statement. When
this form is used, LIMITS reads the sector address parameters from a specified
slot in the Device Table (the default slot if no file number is specified),
and retrieves the starting, ending, and current sector address parameters from
that slot. 1In this case, the disk is never accessed.

70

Form 1 of LIMITS

In Form 1 of the LIMITS statement, the following information must be
specified:

1. The disk platter on which the named file resides ('F' or 'R').
2. Optionally, a file number (#0-#6).
3. The name of the file whose parameters are to be obtained.

4. Three numeric return variables designated to receive the file
parameters. Variable #1 is set equal to the starting sector address
of the file, variable #2 is set equal to the ending sector address,
and variable #3 is set equal to the number of sectors used in the
file.

Form 1 of the LIMITS statement reads the Catalog Index entry for the
named file and extracts the starting and ending addresses, and number of
sectors used. These values are written in the specified slot in the Device
Table (if a file number is included) or in the default slot (if no file number
is included), and from there are copied to the three designated return
variables.

Example 4-11: Form 1 of the LIMITS Statement
('"File Name' Specified)

60 LIMITS F "TEST", A,B,C

Line 60 instructs the system to search the Catalog Index on the 'F'
platter for the file "TEST", and retrieve the beginning and ending
sector addresses of TEST, as well as the number of sectors used.
These values are transferred to the default slot in the Device Table
(since no file number is specified in the statement), and are then
stored in the variables A,B,C, according to the following scheme:

A = Starting sector address.
Ending sector address.
Number of sectors used.

B
C
Example 4-12: Form 1 of the LIMITS Statement
('"File Name' and a File Number Specified)
100 LIMITS R #2, "FILE 1", M,V,P
Line 100 instructs the system to retrieve the file parameters of
FILE 1 from the 'R' platter. The parameters are first read into the

slot opposite #2 in the Device Table, and are then stored in the
designated return variables M,V,P.

71

Note that because the Device Table is used as an intermediate step in
the retrieval of file parameters by Form 1 of LIMITS, the programmer must take
care to specify an unused file number in the LIMITS statement. If the file
number of a currently open file is specified, LIMITS will erase the sector
address parameters of that file in the process of retrieving the requested
file parameters from disk.

Form 2 of LIMITS

In Form 2 of the LIMITS statement, the following information must be
specified:

1. The 'T' parameter.

2. The file number (#0-#6) of a currently open file (if no file number
is specified, the default file number, #0, is used).

3. Three numeric return variables designated to receive the file
parameters. Variable #1 is set equal to the starting sector address
of the file, variable #2 is set equal to the ending sector address,
and variable #3 is set equal to the current sector address.

Form 2 of the LIMITS statement reads the sector address parameters from
a specified slot in the Device Table, and stores them in the designated return
variables. Unlike Form 1, Form 2 does not access the disk to read the Catalog
Index, nor does it alter in any way the sector address parameters stored in
the Device Table.

Example 4-13: Form 2 of the LIMITS Statement
("File Name' Not Specified)

150 LIMITS T A,B,C

Line 150 reads the sector address parameters (starting, ending,
current) from the default slot in the Device Table (since no file
number is specified), and stores them in variables A,B,C in the
following order:

A = Starting sector address.
B = Ending sector address.
c Current sector address.

Example 4-14: Form 2 of the LIMITS Statement
('File Name' Not Specified)

200 LIMITS T #3, M,V,P

Line 200 retrieves the sector address parameters from the Device
Table slot opposite file number #3, and stores those parameters in
variables M,V,P.

72

Note that Form 2 of the LIMITS statement makes no check on the validity
of the information read from the Device Table. If a slot contains meaningless
parameters (as it might, for example, if its file number had recently been
used in an Absolute Sector Addressing statement), this information is returned
by LIMITS without an error. It is the programmer's responsibility to ensure
that the specified file number is associated with a currently open cataloged
file. Because Absolute Sector Addressing operations do not store meaningful
file parameter information in the Device Table, LIMITS should not be used with
files maintained in Absolute Sector Addressing Mode. (LIMITS may be used,
however, in conjunction with Absolute Sector Addressing procedures to process
a cataloged file, see Chapter 6, Section 6.7).

4.8 CONCLUSION

The discussion of catalog procedures proper is now concluded. All of
the characteristics of the several catalog statements and commands and their
applications have, in greater or lesser detail, been touched upon. The
programmer who wishes to make the most efficient use of the catalog procedures
should press on, however, and read Chapter 6, which deals with the Absolute
Sector Addressing Mode. Absolute Sector Addressing statements and procedures
can be used in conjunction with cataloging procedures to produce a more
versatile and efficient disk management system. 1In particular, Chapter 6
discusses the '"binary search" technique for directly accessing records in a
cataloged file.

73

CHAPTER 5
AUTOMATIC FILE CATALOGING STATEMENTS AND COMMANDS

5.1 INTRODUCTION

This chapter contains capsule descriptions and general forms for the
following Automatic File Cataloging statements and commands, listed
alphabetically for ease of reference:

DATALOAD DC LOAD DC (Command)
DATALOAD DC OPEN LOAD DC (Statement)
DATASAVE DC MOVE

DATASAVE DC CLOSE MOVE END

DATASAVE DC OPEN SAVE DC

DBACKSPACE SCRATCH

DSKIP SCRATCH DISK

LIMITS VERIFY

LIST DC

5.2 SYSTEM 2200 STATEMENTS AND COMMANDS

The distinction between a statement and a command requires some
explanation. In general, the term "statement" is a generic term which denotes
all BASIC instructions in the System 2200 BASIC language set. There are two
categories of BASIC statements:

a. Programmable statements (also referred to simply as 'statements').
b. Non-programmable statements (also referred to as 'commands').

In its narrower sense, therefore, the term 'statement' denotes BASIC
instructions which can be executed within a program (i.e., on a numbered
program line). The term "command," however, denotes those BASIC instructions
which can never be executed in a program (commands are executable in Immediate
Mode only). The set of BASIC instructions governing disk operations contains
only two commands: SAVE DC and SAVE DA (SAVE DA is discussed in Chapters 6
and 7). These commands cannot be executed in a program. All other disk
instructions are programmable statements, and may be executed either in
Program Mode (i.e., on a numbered program line) or in Immediate Mode.

74

A single exception to the command/statement distinction must be noted.
Nearly all System 2200 programmable statements can be executed either in
Program Mode or in Immediate Mode (as noted above, this is true of all disk
statements). In general, the sequence of operations associated with a disk
statement when it is executed within a program is identical to the sequence of
operations associated with the statement when it is executed in Immediate
Mode. LOAD DC (and LOAD DA) represent exceptions to this rule, however. The
sequence of operations initiated by a LOAD DC (or LOAD DA) instruction when it
is executed in Immediate Mode is significantly different from the sequence of
operations initiated by the same instruction when executed on a numbered
program line. For this reason, the LOAD DC instruction is treated as two
separate and distinct entities, distinguished by their mode of execution: the
LOAD DC statement (executed in a program), and the LOAD DC command (executed
in Immediate Mode). The LOAD DA instruction is treated similarly in Chapter 7.

5.3 BASIC RULES OF SYNTAX

The notation and rules of syntax employed in the General Forms of disk
statements follow the conventions used in the System 2200 Reference Manual The
conventions are summarized below:

1. The following symbols must be included in an actual BASIC statement
exactly as they appear in the General Form of the statement:

a. Uppercase letters A through Z
b. Comma s

c Double Quotation Marks "

d. Parentheses O

e. Pound Sign #

f. Slash /

2. Lowercase letters and words in the General Form of a statement
represent items whose values must be assigned by the programmer.
For example, if the lowercase word ''mame'" appears in a General Form,
the programmer must substitute a specific file name (such as '"PROG
1"), or an alphanumeric variable containing the name, in the actual
statement. Similarly, where the lowercase letter n appears, the
programmer must substitute an actual file number (from 0 to 6) or a
variable containing a file number.

3. Three special symbols are used in the General Forms as mnemonics,
providing the programmer with required information. These symbols
are never included in an actual BASIC statement:

a. Brackets [1
b. Braces { }
c. Ellipses .o

4. Square brackets, [1, indicate that the enclosed information is

optional, and may be included or not in the actual BASIC statement,
at the programmer's discretion.

75

Vertically stacked items represent alternatives, only one of which
should be included in an actual BASIC statement:

a. Square brackets, [] , enclosing vertically stacked items
indicate that all of the items are optional.

b. Braces,{ }, enclosing vertically stacked items indicate that
one of the items must be included in an actual statement.

Ellipses, ..., indicate that the preceding item(s) may be repeated
once or several times in succession.

Blanks (spaces), used to improve the readability of the General
Forms, are meaningless to the system (unless enclosed in double
quotation marks), and may be omitted or included in an actual
statement, at the option of the programmer.

The sequence in which terms are listed in the General Form of a
statement must be followed exactly in an actual statement.

76

DATALOAD DC

General Form:
DATALOAD DC [#n,] argument list

where: DC
#n

A parameter specifying Disk Catalog Mode.

A file number to which the disk is currently assigned {‘n’ is
an integer or numeric variable whose value is from O to 6).

alphanumeric variable
numeric variable . e
alpha or numeric array designator

array designator = An array name followed by closed parentheses, e.g.,

A(), BS().

argument list

Purpose:

The DATALOAD DC statement is used to read logical data records from a
cataloged disk file and sequentially assign the values read to the variables
and/or arrays in the argument list. Before data can be read from a cataloged
file, the file must be opened by a DATALOAD DC OPEN or DATASAVE DC OPEN
statement. Thereafter, each time a DATALOAD DC statement is executed, the
system begins reading data from the file at the next sequential logical record
in the file. Arrays are filled row by row. If the DATALOAD DC receiving
variable list is not filled by one logical record the next logical record (or
a portion of the next logical record) is read. If the logical record being
read contains more data than 1is required to fill all receiving variables in
the argument list, data not used is read but ignored. Each time the DATALOAD
DC statement is executed, the Current Sector Address associated with the file
in the Device Table is updated to the Starting Sector Address of the next

consecutive logical record. If an end-of-file trailer record is read, an
end-of-file condition is set, the Current Sector Address is set to the address
of the trailer record, and no data is transferred. The end-of-file condition

can be tested by a subsequent IF END THEN statement. If the user attempts to
read beyond the final sector address for the file, an error is signalled.

Examples:
100 DATALOAD DC S(), Y, Z

100 DATALOAD DC #2, A$(), B()
100 DATALOAD DC #B2, B(), C, D$

77

DATALOAD DC OPEN

General Form:

F TEMP, expression 1, expression 2
DATALOAD DC OPEN { Rp [#n,] name
T

where: DC
F = Fixed platter, Drive #1, Drive #3.

A parameter specifying Disk Catalog Mode.

R = Removable platter, Drive #2.

T = ‘F’ or ‘R’ disk platter, depending on device type specified in
device address.

#n = A file number to which the disk is currently assigned (‘n” is an
integer or numeric variable whose value is from 0 to 6).

name = The name of the cataloged data file to be located and opened.
The name is from 1 to 8 characters in length, and is expressed as
an alphanumeric variable or literal string in quotes.
TEMP = A temporary work file is to be re-opened.

expression 1 Truncated value is starting sector address of temporary work file.

expression 2 Truncated value is ending sector address of temporary work file.

Purpose:

The DATALOAD DC OPEN statement is used to open data files that have
previously been cataloged on the disk. When the statement is executed, it
locates the named file on the specified disk platter, and sets up the
Starting, Ending, and Current Sector Addresses of the file in the Device Table

(the current address is set equal to the starting address). Any subsequent
use of the same file number in other catalog (DC) statements accesses this
file. 1If no file number 1is included, the file 1is assumed to be associated

with the default file number (#0) and can be accessed by subsequent DC
statements with the file number omitted, or by specifying #n = #0.

An error will result if the file name cannot be located in the Catalog
Index of the specified disk, or if the file has been scratched.

The TEMP parameter is used to reopen a temporary work file; the starting
and ending addresses must not be located in the cataloged area. Temporary
file areas can be accessed with catalog statements and commands (e.g.,
DATASAVE DC, DATALOAD DC, etc.).

78

The DATALOAD DC OPEN statement must be used when reopening an existing
cataloged data file; use of the DATASAVE DC OPEN statement results in an error
if the named file is already in the catalog and has not been scratched.
Therefore, DATALOAD DC OPEN is used to reopen a cataloged file irrespective of
whether data is to be written in the file with a DATASAVE DC statement or read

from the file with a DATALOAD DC statement.

Examples:

100 DATALOAD DC OPEN F "HEADING"
100 DATALOAD DC OPEN R #2, A$
100 DATALOAD DC OPEN T #A, TEMP, 8000, 9000

79

DATASAVE DC

General Form:

END

DATASAVE DC [$] [#n,] :
argument list

where: DC = A parameter specifying Disk Catalog Mode.
$ = Read after write.
#n = A file number to which the file is currently assigned (‘n’ is an
integer or numeric variable whose value is from O to 6).
literal string
alphanumeric variable
argument list = < expression ,

numeric variable
alpha or numeric array designator

array designator
END

An array name followed by closed parentheses, e.g., A(), B$().

Write a data trailer (end-of-file} record.

Purpose:

The DATASAVE DC statement causes one logical record, consisting of all
the data in the DATASAVE DC argument list, to be written onto the disk,
starting at the current sector address associated with the specified file
number (#n) in the Device Table. If no file number is specified in the
DATASAVE DC statement, the data is written into the file currently associated
with the default file number (#0) in the Device Table. The file must
previously have been opened with a DATASAVE DC OPEN or DATALOAD DC OPEN
statement. No data can be saved into an unopened file; if the DATASAVE DC

statement specifies a file number not associated with a currently open file,
an error results.

The DATASAVE DC argument list may include literal strings (e.g., "JOHN
JONES'") and expressions (e.g., B*C), as well as alphanumeric and numeric
variables and arrays.

The 'DC' parameter implies that the data in the argument list is to be
written as one logical record in standard System 2200 format, including the
necessary control information. The values in the argument list are stored
sequentially on the specified disk. Arrays are written row by row. Each
single logical record may consist of one or more sectors on the disk.

80

NOTE:

Each numeric value in the argument list requires 9 bytes
of storage on disk. Each alphanumeric variable requires
the maximum length to which the variable is dimensioned
plus 1 byte; e.g., if the length of A$ is set to 24
characters in a DIM A$24 statement, then A$ requires 25
(24 + 1) bytes of storage on disk. Each 256 byte sector
also requires 3 bytes of sector control information
(refer to Chapter 7, Section 7.6).

The '$' parameter specifies that a ‘'read-after-write' verification test
be made on all data written to the disk. This test provides an extra
safeguard against disk write errors, but also effectively doubles the time
required for the DATASAVE DC operation.

If the special END parameter 1is specified, a data trailer record 1is
written in the file, and the Catalog Index entry for the file is updated so
that the number of sectors used by the file includes all sectors up to the
trailer record just written. A cataloged file should always be ended by a
trailer record. A new data record can be stored in the file by writing over
the trailer record, and subsequently creating a new trailer record.

A DSKIP END statement positions the system to the beginning of the
trailer record; a DATASAVE DC statement can be executed at that point to store
the new record over the trailer record, and a subsequent DATASAVE DC END
statement executed to create a new trailer record.

Examples:

100 DATASAVE DC A,X, "CODE#4"

100 DATASAVE DC $ #2, M$, P2(), F130

100 DATASAVE DC $ #1, "ADDRESS", (3%1)/100, J$(Q)
100 DATASAVE DC #3, END

100 DATASAVE DC #A, A$()

81

DATASAVE DC CLOSE

General Form:

#n
DATASAVE DC CLOSE [ALL]

where: DC = A parameter specifying Disk Catalog Mode.
#n = The file number associated with a currently open file which is to
be closed (‘n’ is an integer or numeric variable whose value is
from O to 6).
ALL = All currently open files are to be closed.
Purpose:

The DATASAVE DC CLOSE statement is used to close an individual data file
or all data files which are currently open, if they are no longer needed in
the current or subsequent programs. The DATASAVE DC CLOSE statement closes a
file by setting the starting, ending, and current sector addresses associated
with its file number in the Device Table equal to zero. When the file is
closed, a disk statement referencing that file causes an ERROR 86 (File Not
Open) to be displayed.

If the #n parameter is used, the single file associated with that file
number is closed. If the ALL parameter is used, every open file is closed.
If neither parameter is used, the currently open file associated with the
default file number (#0) is closed.

The DATASAVE DC CLOSE statement should not be confused with DATASAVE DC
END. The latter writes an end-of-file record at the end of a newly written
file. The end-of-file record should always be written prior to executing
DATASAVE DC CLOSE.

It is good programming practice to close a file with DATASAVE DC CLOSE
upon completion of processing, since it insures that subsequent disk users
will not erroneously access the file and possibly destroy data. Likewise,
DATASAVE DC CLOSE can be used at the beginning of a program to initialize file
parameters to zero before they are set by DATASAVE DC OPEN or DATALOAD DC
OPEN. DATASAVE DC CLOSE does not remove disk device addresses from the Device
Table.

Examples:
900 DATASAVE DC CLOSE
900 DATASAVE DC CLOSE #3

900 DATASAVE DC CLOSE ALL
900 DATASAVE DC CLOSE #A

82

DATASAVE DC OPEN

General Form:

Fl
DATASAVE DC OPEN R]T [$] [#n,]
U
where: DC = A parameter specifying Disk Catalog Mode.
F = Fixed platter, Drive #1, Drive #3.

R = Removable platter, Drive #2.

old file name, | new file name
expression,
TEMP, expression 1, expression 2

T = 'F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read after write.

#n = A file number to which the disk is currently assigned (‘n’ is an
integer or numeric variable whose value is from Q to 6).

old file name = The name of an existing scratched program or data file which is
cataloged on the specified disk platter. The name can be from one
to eight characters in length, expressed as an alphanumeric
variable or literal string in quotes.

expression = The number of sectors to be reserved for the new file.

new file name = The name of the data file being opened, expressed as an alpha-
numeric variable or a literal string in quotes from 1 to 8 characters
in length.

TEMP

expression 1

A temporary work file is to be established.

Truncated value is the starting sector address of a temporary
work file.

expression 2 Truncated value is the ending sector address of a temporary

work file.

Purpose:

The DATASAVE DC OPEN statement is used to reserve space for cataloged
files in the Catalog Area, and to enter appropriate system information in the
Catalog Index. It is also used to reserve space for temporary work files
outside the Catalog Area, and to reuse space in the Catalog Area occupied by
scratched files.

Data files can be opened on any disk platter by including the proper
parameter ('F' or 'R') in the DATASAVE DC OPEN statement. Each data file must
be opened initially with a separate DATASAVE DC OPEN statement; if multiple
files are to be open simultaneously, each file must be assigned a different
file number. Since there are seven file numbers available (0-6), a total of
seven data files can be open simultaneously.

The '$' parameter specifies that a 'read-after-write' verification test
be performed to ensure that all file control information is written correctly
in the Catalog Index. This test helps to protect against disk write errors,
but also doubles the time required for the DATASAVE DC OPEN operation.

83

The '#n' parameter is the file number which identifies the newly-opened
file in the Device Table. The disk on which the file is stored, along with
the file's starting, ending, and current sector addresses, are entered in the
Device Table in System 2200 memory. The information in the Device Table is
identified only by the file number assigned to the file in the DATASAVE DC
OPEN statement. A file number must be included in the DATASAVE DC OPEN
statement if more than one file is to be open at one time. If no file number
is specified, or if #n = #0, the system automatically assigns the newly opened
file to the default slot (#0) in the Device Table. Subsequent reference to a
file number in a disk catalog statement or command automatically provides
access to the current sector address of the associated file. (For a detailed
discussion of the Device Table and the use of file numbers, see Chapter 3.)

The 'old file name' parameter specifies the name of a previously
scratched cataloged file (either program or data) which is to be renamed and
reused. If the 'old file name' parameter is used in place of the 'expression'
parameter, the new file 1is given the space previously occupied by the
scratched file.

If the 'expression' parameter is used instead of 'old file name', the
new file is appended at the current end of the Catalog Area, and given a total
number of sectors equal to the truncated value of the 'expression'.

NOTE:

The last sector of each cataloged data file is reserved for
systems information. Therefore, the number of sectors
available for data storage is always at least one less than
the number of sectors reserved for the file.

The 'new file name' parameter is the name of the new data file being

opened. If 'mew file name' is being stored in space previously occupied by a
scratched cataloged file ('old file name'), then 'new file name' can be
identical to 'old file name'. Otherwise, 'new file name' must be unique.

The TEMP parameter is used to specify a temporary work file. Temporary
files are not cataloged and cannot be located in the Catalog Area. 1f
temporary files are to be used, sufficient space must be left outside the
Catalog Area to accommodate them (see SCRATCH DISK).

The 'expression 1' and ‘'expression 2' parameters identify the starting
and ending sectors of the area reserved for a temporary file. An error
results if the value of 'expression 1' is less than or equal to the last
(highest) sector of the Catalog Area.

Examples:

100 DATASAVE DC OPEN R 100, "DATFIL 1"

100 DATASAVE DC OPEN R #1, A*2, '"I/O DATA"

100 DATASAVE DC OPEN F #2, "DATFIL 1", "DATFIL 2"
100 DATASAVE DC OPEN F TEMP 1000, 2000

100 DATASAVE DC OPEN T #4, 200, A$

84

DBACKSPACE

General Form:

BEG

DBACKSPACE [#n,] .
expression [S]

where: #n = A file number to which the data file is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0O to 6).
BEG = Backspace to beginning of file.

expression = Truncated value equals the number of logical records or sectors
to be backspaced.

w
il

Backspace absolute number of sectors.

Purpose:

The DBACKSPACE statement is used to backspace over logical records or
sectors within a cataloged disk file. If ‘'expression' is used alone, the
system backspaces over a number of logical records equal to the truncated
value of the 'expression', and the Current Sector Address of the file in the
Device Table is updated to the starting sector of the new logical record. For
example, if 'expression' = 1, the Current Sector Address is set equal to the
starting address of the previous logical record. If the BEG parameter 1is
used, the Current Sector Address is set equal to the Starting Sector Address
of the file (that is, the starting address of the first logical record in the
file).

If the 'S' parameter is used, the truncated value of the expression
equals the total number of sectors to backspace. The Current Sector Address
of the file in the Device Table 1is decremented by the number of sectors
specified. If the amount specified is too large, the Current Sector Address
is set to the starting Sector Address of the file. The 'S' parameter is
particularly useful in files where all the logical records are of the same
length (i.e., have the same number of sectors per logical record).
Backspacing with the 'S' parameter is much faster than backspacing over
logical records in a file, since the system merely decrements the Current
Sector Address in the Device Table by the specified number of sectors, and no
disk accesses are required. However, the user must be certain that he knows
exactly how many sectors are in each logical record.

Examples:

100 DBACKSPACE BEG
100 DBACKSPACE 2*X

100 DBACKSPACE #2, 58
100 DBACKSPACE #1, BEG
100 DBACKSPACE #A, 10

85

DSKIP

General Form:

END
expression [S]

DSKIP [#n,] {

where: #n = A file number to which the data file is currently assigned (‘n’ is an
integer or numeric variable whose value is from O to 6).

END = Skip to current end-of-file.

expression = Truncated value equals the number of logical records or sectors to
be skipped.
S = Absolute number of sectors are to be skipped.

Purpose:

The DSKIP statement is used to skip over logical records or sectors in a
cataloged disk file. If 'expression' is used alone, the system skips over a
number of logical records equal to the truncated value of 'expression', and
the Current Sector Address for the file is updated to the starting address of
the new logical record. If the 'END' parameter is used, the system skips to
the end of the file; i.e., the current sector address for the file is updated
to the address of the end-of-file trailer record. Once a DSKIP #n, END
statement has been executed, data can be added to the end of the file using
DATASAVE DC statements. Note that the DSKIP END statement cannot be used
unless a trailer record has previously been written in the file with a
DATASAVE DC END statement. DSKIP END results in an Error 82 (No End of File)
if no trailer record can be located in the file.

If the 'S' parameter is used, the truncated value of the expression
equals the total number of sectors to be skipped. The Current Sector Address
of the file is incremented by the number of sectors specified. If the amount
specified is too large, the Current Sector Address is set to the Ending Sector
Address of the file. The 'S' parameter is particularly useful in files where
all logical records are of the same length (i.e., have the same number of
sectors per logical record). Skipping with the 'S' parameter is much faster
than skipping logical records in a file, since the system merely increments
the current address by the specified number of sectors, and no disk accesses
are necessary. However, the user must be sure that he knows exactly how many
sectors are in each logical record.

Examples:

100 DSKIP 4

100 DSKIP #2, END
100 DSKIP END

100 DSKIP #3, 4*X
100 DSKIP #A, 208

86

LIMITS

L - I -
General Form: F
LIMITS R [#n,] [name,] variable 1, variable 2, variable 3
T
where: F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

= Either ‘'F’ platter or ‘R’ platter, depending on device type specified
in the device address.

#n = A file number to which the disk address is currently assigned ('n’ is
an integer or numeric variable whose value is from 0 to 6).

name = The name of the cataloged data or program file whose limits are to
be retrieved. The name is from 1 to 8 characters and is expressed as
an alphanumeric variable or literal string in quotes. If ‘name’ is not
specified, limit information on a currently open file (in a file slot)
is to be retrieved.

variable 1 = A numeric variable designated to receive the starting sector address
of the file.

variable 2 = A numeric variable designated to receive the ending sector address
of the file.

variable 3 = A numeric variable designated to receive the number of sectors used

by the file, or current sector address of the file.

Purpose:

The LIMITS statement obtains the Beginning and Ending Sector Address as
and the Current Sector Address or number of sectors used for a cataloged file.

If 'name' is specified in the statement, information is taken from the
Catalog Index entry for the named file. 1In this case, variable 3 is set equal
to the total number of sectors used by the file.

If 'name' 1is not specified, information is retrieved from the Device
Table entry for the currently open file associated with either the specified
file number (if #n is specified), or the default file number (if #n is not
specified). In this case, variable 3 1is set equal to the Current Sector
Address of the file.

LIMITS can be used within a program to find out how much remaining space
is left in a file or to get sector address limits of a file.

87

Limits of a Cataloged File ('name' specified)

If a file name is specified, the LIMITS statement finds the named
program or data file on the specified disk and sets variable 1 equal to the
Starting Sector Address of the file, variable 2 equal to the Ending Sector
Address of the file, and variable 3 equal to the number of sectors currently
used by the file. The number of sectors currently being used by the file is

accurate only if an end-of-file record has been written in the file. An
end—of-file record is written in a data file with a DATASAVE DC END
statement. Therefore, in order to be able to tell how many sectors are used

in a data file, the file must be ended with an end—of-file record.

Note that this form of the LIMITS statement alters the file parameters
in a slot in the Device Table. If a file number #1 - #6 is included in the

LIMITS statement, the parameters in the associated slot are altered. If no
file number is used, or if n=0, the parameters in the default slot are
altered. The second form of LIMITS, discussed below, does not alter the

Device Table.
Examples:
100 LIMITS F "PAYROLL", A,B,C
100 LIMITS T A$, S,E,A
100 LIMITS T #A, "DATFIL 1", X,Y,2(3)
100 LIMITS F #1, "“SAM", A,B,C

Limits of a Currently Open File ('name' Not Specified)

If a file name is not specified, the LIMITS statement gives the
Starting, Ending and Current Sector Addresses of the file currently open at #n
or in the default slot. Variable 1 = Starting, variable 2 = Ending, variable
3 = Current. The 'T' parameter must be specified when seeking the LIMITS of a
currently open file.

Examples:
100 LIMITS T #A(1l), Al,A2,A3

100 LIMITS T #5, A,B,C
100 LIMITS T X,Y,Z(2)

88

LIST DC

General Form:

LISTDC <R [n J
T /XXX

where: DC = A parameter specifying Disk Catalog Mode.
= Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.
= ‘F’ platter or ‘R’ platter, depending on device type specified.

#n = A file number to which the disk address is currently assigned
{('n’ is an integer or numeric variable from O to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system default
disk address is 310.

Purpose:

The purpose of the LIST DC statement is to display or print out a
listing of the information contained in the Catalog Index. When the LIST DC
statement is executed, the following information is displayed on the currently
selected LIST device:

a. The number of sectors in the Catalog Index.
b. The address of the last sector reserved for the Catalog Area.
c. The address of the last used sector in the Catalog Area.

For each cataloged file, the LIST DC statement outputs the following data:

The file name.

The file status (S if scratched).

The file type (program (P) or data (D)).

The Starting Sector Address.

The Ending Sector Address.

The number of sectors currently used in the file. For a data file,
this value is originally set to one, and is updated only when an
end-of-file record is written in the file.

O AN TP

Depressing the HALT/STEP key terminates printout of the catalog.
Examples:

LIST DC F
LIST DC F #2
LIST DC R
LIST DC T #A
LIST DC F/320

89

LOAD DC

(COMMAND ONLY, NOT PROGRAMMABLE)
General Form:

FL [#
LOADDC <R [”'] name
T /XXX,

where: DC = A parameter specifying Disk Catalog Mode.
= Fixed platter, Drive #1, Drive #3.

R = Removable platter, Drive #2.

= ‘F' platter or ‘R’ platter, depending on device type specified in the
device address.

#n = A file number to which the disk address is currently assigned ('n’ is
an integer of numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

name = The name of the cataloged program to be loaded; the name must be
from 1 to 8 characters in length, specified either as an alphanumeric
variable or literal string in quotes.

Purpose:

The LOAD DC command is used to load BASIC programs or program segments
from the disk. This command causes the system to locate the named program in
the catalog, and append it to the program text currently in memory. Programs
can be loaded into memory from any disk platter.

LOAD DC can be used to add to program text currently in memory or, if
executed following a CLEAR command, to load a new program. An error results
if the requested file is not a program file, or if it is not present in the
catalog.

Examples:

LOAD DC F "PROG 1"

LOAD DC R #2, "TESTL/0O"
LOAD DC R /320, "OUTPUTL"
LOAD DC T A$

LOAD DC T #Al, B$

90

LOAD DC (Statement)

General Form:
F #n
LOAD DC{R / ! name [line number 1] [, line number 2]
T XXX,

where: DC = A parameter specifying Disk Catalog Mode.
= Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ’F’ platter or ‘R’ platter, depending on device type specified in the
device address.

#n = A file number to which the disk address is currently assigned
(‘'n" is an integer or numeric variable whose value is from O to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

name = The name of the cataloged program file to be loaded into memory,
expressed either as an alphanumeric variable or a literal string in
quotes. The name can be from 1 to 8 characters in length.,

line number 1 = The number of the first program line to be deleted from the pro-
gram currently in memory prior to loading the new program. After
loading, execution continues automatically at this line number.
An error results if there is no line with this number in the newly
loaded program.

line number 2 = The number of the last program line to be deleted from the pro-
gram currently in memory before the new program is loaded.

Purpose:

The LOAD DC statement loads a BASIC program or program segment into
memory from the disk, and automatically executes it. LOAD DC 1s a BASIC
statement which in effect produces an automatic combination of the following
BASIC statements and commands:

STOP (stop current program execution)

CLEAR P (clear program text from memory, beginning at 'line number
1' (if specified) and ending at 'line number 2' (if
specified); if no line numbers are specified, clear all
currently stored program text from memory)

CLEAR N (clear all non-common variables from memory)
LOAD DC (load new program or program segment from disk)
RUN (run new program, beginning at 'line number 1', if

specified, or at the lowest program line in memory, if no
line numbers are specified)

91

If only 'line number 1' is specified, the remainder of the currently
stored program is deleted, starting with that line number, prior to loading
the new program from disk, and execution continues automatically with 'line

number 1' of the newly loaded program. If both line numbers are specified,
all program lines in memory between and including these lines are cleared
prior to loading the new program. If no line numbers are specified, all

currently stored program text is cleared, and the newly loaded program is
executed from the lowest line number. In all cases, all non-common variables
are cleared prior to loading the new program.

The LOAD DC statement permits segmented programs to be run automatically
without normal user intervention. Common variables are passed between program
segments. If LOAD DC is included on a multistatement line, it must be the
last executable statement on the line.

In Immediate Mode, LOAD DC is interpreted as a command (see LOAD DC
command) .

Programs can be loaded from any disk platter by including the proper
parameter in the LOAD DC statement. If 'T' is used as a parameter, the
program is loaded from the disk platter designated by the device type in the
disk device address (device type 3 designates the 'F' platter; device type B
designates the 'R' platter).

Examples:

100 LOAD DC R "PROG 1"

100 LOAD DC F #2, "I/OMSTR"

100 LOAD DC F/320, '"I/OSUB1" 250, 299
100 LOAD DC R "I/OCNTRL" 500

100 LOAD DC T A$ 100

100 LOAD DC T #X, B$S

92

MOVE

General Form:

MOVE [#n, J FR
/XXX, RF

where: #n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from O to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system disk default address is 310.

FR = Move and compress the catalog area from the ‘F’ platter to the
'R’ platter.

RF = Move and compress the catalog from the ‘R’ platter to the ‘F’ platter.

Purpose:

The purpose of the MOVE statement is to copy the entire catalog from one
disk platter to the other, deleting all scratched files from the Catalog Area,
and removing the scratched file names from the Catalog Index. After the
scratched files are removed, the still-active files are moved up to fill in
the vacated sectors in the Catalog Area, and the Starting, Ending, and Current
Sector Addresses of all relocated files are automatically altered to reflect
the files' new positions in the Catalog. In effect, the MOVE command copies
the Catalog Area and Catalog Index, squeezing out all deleted files.
Temporary files are not copied.

If the 'FR' parameter is used, the contents of the 'F' platter are
compressed and copied to the 'R' platter. If the 'RF' parameter is used, the
process takes place from the 'R' platter to the 'F' platter.

Following a MOVE, the user can execute a VERIFY statement to insure that
the entire catalog was copied correctly.

When MOVE is executed as either a command or program statement, 1024
bytes of memory must be available for buffering (not occupied by a BASIC
program or variables); otherwise, an error results and the MOVE is not
performed. The 1large buffer minimizes the time required for the MOVE
operation.

NOTE TO OWNERS OF THE
MODELS 2270-1, 2270A-1, 2270-3, and 2270A-3:

On the Models 2270-3 and 2270A-3, it 1is not possible to
MOVE the catalog from Platter #3 to Platter #1 or #2, or

vice versa. In order to move the catalog to or from
Platter #3, the platter must be physically removed from
drive #3 and inserted in drive #l1 or drive #2. On the

Models 2270-1 and 2270A-1, MOVE is illegal.

93

Examples:

10 MOVE FR

10 MOVE /320, RF
10 MOVE #2, FR
10 MOVE #C, RF

94

MOVE END

General Form:
F
#n .
MOVE END § R / = expression
T XXX
where: = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.
= ‘F’ platter or ‘R’ platter, depending on the device type specified in
the device address.
/xxx = The device address of the disk.
#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from O to 6).
If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.
Purpose:

The MOVE END statement is used to increase or decrease the size of the
Catalog Area on a disk platter. The upper limit of the Catalog Area is
initially defined by the END parameter in the SCRATCH DISK statement (see
SCRATCH DISK). Once the limit of this area has been set, it can be altered
using the MOVE END statement. The truncated value of the ‘'expression'
specifies the sector address of the new end of the Catalog Area. An error
results if a previously cataloged file resides at this address, or if the
address is higher than the highest legal address on the platter. Note that
MOVE END does not alter the size of the Catalog Index.

Examples:

MOVE END F = 9800
MOVE END R = .5%L
MOVE END T = X+Y
MOVE END R/320 = 10200

95

SAVE DC

(COMMAND ONLY, NOT PROGRAMMABLE)
General Form:

F .
SAVE DC _? [$] [(dzxz'l':s;;or:e)][ji';rx] [P] new file name [line number 1] [, line number 2)

where: DC = A parameter specifying Disk Catalog Mode.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read after write.

expression = Truncated value equals the number of sectors to reserve in addition
to the number required to store the program.

old file name = The name of a currently scratched program or data file.

#n = A file number to which the disk address is currently assigned (‘n’
is a digit or numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is used, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

P = Set the protection bit on the file to be saved.

The name of the program to be saved. The name must be from 1
to 8 characters in length, and may be expressed as an alphanumeric
variable or as a literal string in quotes.

new file name

line number 1 The first line of program text to be saved.

line number 2 The last line of program text to be saved.

Purpose:

The SAVE DC command causes BASIC programs, or portions of programs, to
be recorded on the designated disk platter. The file name, file type (program
file), starting sector address, and ending sector address are entered in the
Catalog Index, and the program is automatically stored, starting in a location
determined by the system on the basis of the current entries in the Catalog
Area.

The 'S' parameter specifies that a 'read-after~write' verification test
be performed to ensure that all program text 1s written correctly to the
disk. The read-after-write check effectively doubles the time required for
the SAVE DC operation, however.

96

Inclusion of the 'expression' parameter instructs the system to reserve
a number of sectors in addition to the number actually needed to store the
program at the end of the program file. These additional sectors can be used
for future expansion of the program. The truncated value of 'expression'
equals the number of extra sectors to be reserved. A new program also can be
stored over a scratched program or data file on the disk, if the 'old file
name' parameter is used. The 'old file name' parameter specifies the name of
the scratched file, and the 'new file name' parameter indicates the name of
the new program which is to be stored in its place. 1If the scratched file
identified by 'old file name' does not occupy adequate space to hold the new
program, an error results. When replacing an old program with a new one on
disk, it is possible for 'old file name and 'new file name' to be identical.
Otherwise, 'new file name' must be unique.

If neither the 'old file name' nor the ‘'expression' parameter is
included in the SAVE DC command, the system uses only the exact number of
sectors required for the program being stored, and appends the new program
file at the current end of the Catalog Area.

The 'new file name' parameter, which specifies the name of the program
being saved, can be from one to eight characters in length, expressed as a
literal string in quotes (i.e., "PROG 1"), or as the value of an alphanumeric
variable (e.g., if A$ = "PROG 2", then A$ can be included as the 'new file
name' parameter and the file is automatically named PROG 2).

The 'P' parameter indicates that the program is protected, and cannot be
listed or resaved, although it can be loaded and run.

NOTE:

In order to save or list any program after a protected
program has been loaded, it is necessary to clear all of
memory either by executing a CLEAR command with no
parameters, or by MASTER INITIALIZING the system (switching
the main power switch OFF and then ON).

'Line Number 1' and 'line number 2' specify the first and last lines,
respectively, of the program in memory which is to be saved. Both of these
parameters are optional; if only 'line number 1' is included in the SAVE DC
command, all program lines in memory beginning with that line are saved on
disk. If neither line number is specified, all program text in memory 1is
saved.

Examples:

SAVE DC F '"CONVERT"

SAVE DC R "OQUTPUT" 300, 500

SAVE DC T $ (100) #2, "ouTrPUT 2"
SAVE DC F (A$) /320, B$

SAVE DC T #A, "COORD"

SAVE DC F ("OLD") "NEW"

SAVE DC FP "PROG 1"

97

SCRATCH

General Form:

F
SCRATCH R [?n] name [,name] ...
T XXX,

Fixed platter, Drive #1, Drive #3.

where:
R = Removable platter, Drive #2.

= ‘F’ platter or ‘R’ platter, depending on device type specified in the
device address.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

name = The names of one or more cataloged files (program or data) to be
scratched from the catalog. Each name must be from 1 to 8
characters long, and may be expressed as an alphanumeric variable
or as a literal string enclosed in quotes.

Purpose:

The SCRATCH statement is used to set the status of the named disk
file(s) to a scratched condition. The SCRATCH statement does not remove the
files from the catalog; a subsequent listing of the catalog shows the normal
information for both scratched and non-scratched files, as well as which files
have been scratched. The program text or data in the scratched files is not
altered or destroyed by the SCRATCH statement. Once files have been
scratched, they cannot be accessed by DATALOAD DC OPEN or LOAD DC statements.
They can, however, be renamed by DATASAVE DC OPEN statements or SAVE DC
commands, and the sectors utilized by scratched files can be reused to save

new programs or data files.

The SCRATCH statement is generally used prior to a MOVE statement. When
a MOVE statement is executed, information concerning all scratched files is
deleted from the Catalog Index, and the corresponding program text or data is
deleted from the Catalog Area (see MOVE).

NOTE:

Until a MOVE is executed, all scratched file names remain
in the Catalog Index, even if the space occupied by the
files in the Catalog Area has been renamed and reused. In
the latter case, the scratched file name no longer appears
in a listing of the Catalog Index, but it continues to
occupy space 1in the Index. A scratched file name is
removed from the Index only when it is renamed with the
same name, or when a MOVE is executed.

98

Examples:

SCRATCH F "HEADER"
SCRATCH R #2, "FLD4/15", "FLD10/7"
SCRATCH R/320, '"COLHDR"

10 SCRATCH F A$, B§, C$

10 SCRATCH F #2, "TEMP 1", A$

10 SCRATCH F #A2, "SORT", 'MERGER"

99

SCRATCH DISK

General Form:

F
SCRATCH DISK <R q/l#n, [LS = expression 1,] END = expression 2
T XXX,

where: F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.
T = Either ‘F’ platter or ‘R’ platter, depending upon the device type

specified in the device address.

#n = A file number to which the disk address is currently assigned ('n’
is an integer or numeric variable whose value is from O to 6).

/xxx = The device address of the disk.

If neither #n nor /xxx is specified, or if n = 0, the defaultdisk address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

LS = A parameter specifying the number of sectors to be set aside for
the Catalog Index.

expression 1 = An integer or expression whose truncated value is from 1 to 255.
If the ‘LS’ parameter is not included, the size of the Catalog Index
is set automatically at 24 sectors.
END = A parameter specifying the last (highest) sector address in the
Catalog Area.
expression 2 = An expression whose truncated value must be less than or equal
to the last (highest) sector address on the disk.
Purpose:

The SCRATCH DISK statement is used to reserve space for the Catalog
Index and Catalog Area on a disk platter (each disk platter must be
initialized separately) prior to saving program files or data files on the
disk. This space must be reserved prior to the use of any other catalog
statement; otherwise, an error is indicated.

When the SCRATCH DISK statement 1is executed, the system reserves a
number of sectors, starting with sector number O on the specified platter, for
a disk catalog. The 'LS' parameter defines the size of the Catalog Index, and
the truncated value of ‘'expression 1' specifies the number of sectors to be
reserved. A maximum of 255 sectors (sectors 0-254) can be reserved for the
Index. If the 'LS' parameter is not included in the SCRATCH DISK statement,
24 sectors (sectors 0-23) are reserved automatically for the Index. The entry
for each cataloged file in the Catalog Index consists of the file's name and
associated sector address parameters; each sector of the Index can hold 16
file entries, with the exception of sector 0, which holds 15 entries (a small
portion of sector number O contains systems information used to maintain
the catalog). When the catalog is initially established, the remainder of
sector number 0 and all other sectors reserved for the Catalog Index are
filled with zeroes.

100

The END parameter defines the limit of the Catalog Area on disk. The
truncated value of 'expression 2' specifies the address of the last sector to
be used for storing cataloged files. The END parameter is particularly useful
when temporary work files are to be established, since temporary files must be
established outside the Catalog Area. An error will result if the user
attempts to establish a temporary file within the Catalog Area.

The end of the Catalog Area can be altered with the MOVE END statement
(see MOVE END).

NOTE:

Although, in general, the Catalog Area can be expanded or
retracted when necessary with the MOVE END statement, the
size of the Catalog Index cannot be altered once specified
without reorganizing the entire catalog. Take special
care, therefore, to provide ample space for future
expansion when specifying the size of the Catalog Index in
the 'LS' parameter.

Examples:

SCRATCH DISK R END = 9791

SCRATCH DISK F LS = 4, END = 1000
100 SCRATCH DISK F/320, END = X*2
100 SCRATCH DISK T #X, LS = L, END = E

101

VERIFY

General Form:
F #n
VERIFY R / ! {expression 1, expression 2)
T XXX,
where: = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.
= ‘F’ platter or ‘R’ platter, depending on the device type specified
in the device address.
#n = A file number which the disk address is currently assigned {'n’
is an integer or numeric variable whose value is from 0 to 6).
/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default address
{stored opposite #0 in the Device Table) is used. The system
default disk address is 310.
expression 1 = An expression whose truncated value equals the address of the
first sector to be verified.
expression 2 = An expression whose truncated value equals the address of the
last sector to be verified.
Purpose:

The VERIFY statement reads all sectors within the specified range from
the designated disk platter, and performs cyclic and longitudinal redundancy
checks to ensure that information has been written correctly to those
sectors. The truncated value of 'expression 1' specifies the address of the
first sector to be verified, and the truncated value of 'expression 2'
specifies the address of the last sector to be verified. If a cataloged
platter is to be verified, 'expression 1' should be zero (the first sector
address on the platter), while 'expression 2' should be set equal to the last
sector in the Catalog Area. The ending sector address of the Catalog Area can
be obtained by listing the Catalog Index (see LIST DC).

If one or more errors are detected, a list of the erroneous sectors 1is
written on the currently selected Console Output device. The HALT/STEP key
can be used to terminate the printout of erroneous sectors.

NOTE:

VERIFY can be used in both Automatic File Cataloging and
Absolute Sector Addressing modes.

102

Examples:

ERROR OUTPUT:

10 VERIFY F #2, (500,500+L)
10 VERIFY T #A(1), (100,200)
10 VERIFY R (0,1023)

10 VERIFY F/320, (0,2000)

ERROR IN SECTOR 1097
ERROR IN SECTOR 8012

103

CHAPTER 6
ABSOLUTE SECTOR ADDRESSING

6.1 INTRODUCTION

The Absolute Sector Addressing Mode comprises nine BASIC statements and
commands which enable the programmer to read or write information in specific
sectors on the disk. No catalog or Catalog Index can be established or
maintained in Absolute Sector Addressing Mode (except by user-supplied
software), nor is it possible to name programs or data files. Files are
identified only by reference to their starting sector addresses. Similarly,
individual records must be saved into, or loaded from, a file by specifying a
starting sector address. All file addressing information must be maintained
by the programmer; such information is not maintained automatically by the
system. Because the disk statements in Absolute Sector Addressing Mode
provide direct access to individual sectors, they are referred to as "direct
addressing' statements.

The direct addressing statements provide the programmer with a means of
writing customized disk operating systems and special file access procedures
such as binary searches, sorting routines, etc. which cannot be done
efficiently - and, in some cases, which cannot be done at all - with catalog
procedures alone. Two classes of statements are available in Absolute Sector
Addressing Mode: the DA statements (where "DA" is a mnemonic for ‘''direct
address") and the BA statements (where "BA" is a mnemonic for "block
address"). Both permit direct access to specific sectors on the disk.

The DA statements can be used to write or read programs or data records
beginning at a specified sector on the disk. Multi-sector programs and data
records are automatically read or written, just as they are with DC
statements. All records saved with a DA statement or command are
automatically formatted to contain the standard System 2200 control
information (see Chapter &4, Section 4.6), and records loaded with a DA
statement or command must contain this format information. Records created by
DA statements or commands are, therefore, identical in format to records
created by DC (catalog) statements or commands, and records saved in one mode
may be retrieved in the other.

104

The BA statements comprise a special class of statements which read and
write exactly one sector (256 bytes) of unformatted data. Records created
with a DATASAVE DC or DATASAVE DA statement are automatically formatted by the
system to contain certain control information. (Refer to Chapter 7, Section
7.6, for a discussion of the control information automatically included in
each sector of a logical record.) When a data record is read from the disk
with a DATALOAD DC or DATALOAD DA statement, the system expects to find the
control information; a record which does not contain the expected control
information cannot be read with a DC or DA statement. When a record is
created with a DATASAVE BA statement, however, no control information is
written by the system. 1In this special case, the programmer is free to write
his own control information in each record, and to format his records in a way
best suited for his application. Records with a non-standard format can be
read with a DATALOAD BA statement; they cannot be read with DC or DA
statements. DATALOAD BA can also be used to read sectors (program or data)
written originally with a DC or DA statement.

Although no catalog or Catalog Index is established or maintained in
Absolute Sector Addressing Mode, the Device Table is used as an intermediate
storage location for certain sector address parameters used and returned by
each direct addressing statement.

The information stored in the Device Table consists of the following
items:

1. The starting sector address specified in the direct addressing
statement. This value is stored in the Starting Sector Address
location in a Device Table slot.

2. The highest possible sector address in the system (32767). This
value is stored in the Ending Sector Address location in a Device
Table slot.

3. The next sequential sector address (returned to a designated return
variable in the direct addressing statement following statement
execution). This value is stored in the Current Sector Address
location in a Device Table slot.

If a file number (#1-#6) is included in the direct addressing statement,
the above values are recorded in the associated slot in the Device Table;
otherwise, they are stored in the default slot. Suppose, for example, a
program occupying 10 sectors is saved with the command SAVE DA F (101, D).
Following execution of this command, the default slot in the Device Table
contains the following values:

START = 101
END = 32767
CURRENT = 111

105

Although this information is not much use to the programmer, it is
important to realize that the Device Table is used in this way by direct
addressing statements. The programmer must take precautions to avoid a
conflict between catalog statements and direct addressing statements in their
use of Device Table slots, since the parameters of a currently open cataloged
file will be clobbered if the file number associated with those parameters is
used in a direct addressing statement.

In addition to reading and writing information on the disk, Absolute
Sector Addressing Mode also provides the capability to perform
platter-to-platter copy operations and verify the transferred data. The
Absolute Sector Addressing statements and commands are:

SAVE DA

LOAD DA (command)
LOAD DA (statement)
DATASAVE DA
DATALOAD DA
DATASAVE BA
DATALOAD BA

COoPY

VERIFY

6.2 SPECIFYING SECTOR ADDRESSES

When a data record or program 1is saved or loaded with a direct
addressing statement or command, the starting sector address must be specified
by the programmer. The address may be supplied in the form of an expression,
or as the value of an alphanumeric variable. If the address is supplied as
the value of an alpha variable, the binary value of the first two bytes of
that variable 1is interpreted as the sector address. The value of the
expression or alpha variable must, of course, be less than or equal to the
last (highest) sector address on the disk platter. After the statement is
processed, the system automatically returns the address of the next available
sector. A second alpha or numeric variable must be included in the statement
to receive this address.

SAVE DA F (100, A)
t t
Specifies the After execution of
address of the the SAVE DA command,
first sector on this variable contains
the 'F' platter the address of the next
to be used to available sector on the
store the 'F' platter.

saved program.

106

In order to economize on the use of memory and disk space, and to
facilitate address calculations in binary, the beginning sector address and
the next available sector address may be expressed as two-byte binary values
(i.e., as the first two bytes of alphanumeric variables). A sector address
expressed as a two-character binary number occupies only two bytes of memory
or disk storage, while the same address expressed as a decimal value requires
eight bytes of memory and nine bytes of disk storage. The savings in storage
space gained by expressing the sector address in binary can become appreciable
when, for example, key files are established to facilitate random access
operations. Typically, a key file contains a list of keys along with the
sector addresses of records identified by those keys. In a key file
containing, say, 9,000 keys and sector addresses, some 7,000 bytes of disk
storage (about 27 sectors) are saved by expressing the sector addresses in
binary rather than decimal. If the starting sector address is to be expressed
as a binary number, it must be specified as the value of an alphanumeric
variable (the first two bytes are used). If the next available sector address
is to be returned as a binary number, the receiving variable must be specified
as an alphanumeric variable of at least two characters in length.

6.3 STORING AND RETRIEVING PROGRAMS ON DISK
IN ABSOLUTE SECTOR ADDRESSING MODE

In Absolute Sector Addressing Mode, the programmer himself must keep
track of each program's location on the disk. The starting sector address of
the program must be directly specified by the programmer when writing or
reading a program on disk; it becomes the responsibility of the programmer,
therefore, to ensure that information already recorded on disk 1is not
overwritten by each new program, and that the location of each program is
saved for future reference. Because the advantage gained in direct addressing
program operations does not usually offset the added complexities involved,
program storage and retrieval are not commonly done in Absolute Sector
Addressing Mode.

Apart from the important fact that a direct addressing statement must
specify an absolute sector address rather than a file name, the SAVE DA and
LOAD DA instructions are not remarkably different from their cataloging
counterparts, SAVE DC and LOAD DC. Specifically, the format of a program file
written on disk with SAVE DA is almost identical to that of a cataloged file
written with SAVE DC. In both cases, the program file begins with a
one-sector header record, and ends with a trailer record. (In cataloged
program files, the header record contains the file name; in program files
created with SAVE DA, the header record contains a field of blanks in place of
a file name.) An additional sector of control information, the end-of-file
control record, is writtem at the end of every cataloged program file by SAVE
DC. This control record is not written in program files recorded with SAVE DA.

107

The close similarity between the formats of cataloged program files and
those created with direct addressing statements makes it possible for programs
recorded in catalog mode (with SAVE DC) to be read in direct addressing mode
(with LOAD DA). LOAD DA, like LOAD DC, begins reading a program at the header
record (the starting sector address of the program must, therefore, be known);,
and terminates reading when it encounters the trailer record. In this way,
the entire program file is automatically read and loaded into memory. 1In
normal operations, there is no advantage to loading cataloged programs with
LOAD DA; it is generally safer and easier to use LOAD DC. The only situation
in which it could be advantageous to employ LOAD DA for cataloged program
files is recovery from an accident which destroys entries for one or more
program files in the Catalog Index, without harming the programs themselves.
In such a situation, the programs can be accessed with direct addressing only.

The LOAD DC statement cannot be used to read non-cataloged files
recorded with SAVE DA. SAVE DA does not record the file name and sector
address parameters in the Catalog Index when a file is saved, and LOAD DC
cannot access a program without this information.

Saving Programs on Disk with SAVE DA

Programs are stored on disk in Absolute Sector Addressing Mode with a
SAVE DA command. The following items of information must be included in the
command :

1. The disk platter on which the program is to be stored (specified as
'F', 'R', or 'TY).

2. The address of the first sector on the disk in which the program is
to be stored (specified as an expression or alphanumeric variable).

3. A numeric or alphanumeric return variable designated to receive the
address of the first free sector following execution of the SAVE DA
command.

4. Optionally, one or two line numbers identifying the program lines
which are to be saved on disk. If one line number is specified, all
program lines beginning at that line are saved on disk. If two line
numbers are specified, all program lines between and including those
two lines are saved. If no line number is specified, all resident
program text is saved.

Example 6-1: Saving Program on Disk with SAVE DA
(No Line Numbers Specified)

SAVE DA F (1250,L}

108

This command (SAVE DA is not programmable) causes all program lines
currently in memory to be saved on the 'F' disk platter, beginning
at sector 1250. As many sectors are used as are needed to store the
resident program text. Following execution of the command, the
address of the next available sector is returned to numeric variable
L as a decimal value. For example, if the program required 10
sectors on disk (sectors 1250-1259), then L = 1260 following
execution of the command.

Example 6-2: Saving a Program on Disk with SAVE DA
(Two Line Numbers Specified)

SAVE DA R (1300,N) 100, 750

SAVE DA causes lines 100 through 750 to be recorded on disk starting
at sector 1300, and uses as many sectors as it needs to store the
program. When the program is recorded, the address of the next

available sector is returned to variable N.

Retrieving Programs from Disk with LOAD DA

The LOAD DA instruction, like its catalog counterpart LOAD DC, is a
hybrid having two distinct forms, the LOAD DA command and the LOAD DA
statement. As with LOAD DC, the two forms of LOAD DA have significantly
different functions, and must be discussed separately. In both forms of LOAD
DA, however, the starting sector address of the program to be loaded must be
specified. It is important to note in this context that LOAD DA always
expects to read a complete program, beginning with a header record, including
one or more program records, and ending with a trailer record. For this
reason, it is not possible to begin program loading in the middle of a
program, or at any point beyond the program header record. For example, if
the starting sector address of a program is sector #100, and the starting
address specified in a LOAD DA instruction is 101 or beyond, the program is
not loaded. 1In some cases, this situation causes LOAD DA to search forward on
the disk for the next sequential program header record, and to automatically
load that program; in other cases, the processor simply hangs up, and must be
reinitialized with RESET. 1In any case, this is not a recommended procedure.

The LOAD DA Command

The LOAD DA command causes a program to be read from disk, beginning at
a specified sector address, and appended to existing program text in memory.
Program lines in memory having the same numbers as lines in the newly loaded

program are cleared and replaced by the new lines. Resident program lines
with different line numbers are not cleared, however, and remain in memory
following the LOAD DA operation. For this reason, resident program text

should generally be cleared with a CLEAR or CLEAR P command prior to loading
in the new program.

Example 6-3: Loading a Program from Disk with LOAD DA
Command

CLEAR
LOAD DA F (100, D)

109

The LOAD DA command causes the system to load a BASIC program from
the 'F' platter beginning at sector 100 (if sector 100 does not
contain a program header record, the results of statement execution
are unpredictable). When the program has been loaded, the address
of the next sequential sector following the trailer record is
returned to variable D. (For example, if the program trailer record
resides at sector #112, D = 113 following execution.)

The LOAD DA Statement

The operation of the LOAD DA statement is analogous to that of the LOAD
DC statement. LOAD DA permits programs to be loaded from a specified sector

location on disk under program control. Prior to loading the program from
disk, LOAD DA automatically clears out all or a specified portion of the
resident program text, as well as all noncommon variables. (Common variables

are not cleared.) Once loaded in memory, the new program 1is executed
automatically.

The LOAD DA statement contains the following parameters:
1. A platter parameter ('F', 'R' or 'T').

2. The starting sector address of the program to be loaded, specified
as an expression or alpha variable. This address must be the
address of the program header record.

3. A numeric or alphanumeric return variable designated to receive the
address of the next sequential sector following the program trailer
record. (Note: This variable must be a common variable.)

4. Optionally, one or two program line numbers defining the portion of
resident program text which is to be cleared prior to loading the
new program. Inclusion of one line number causes all program lines
beginning at that line to be cleared. 1Inclusion of a pair of line
numbers causes all program lines between and including the two
specified lines to be cleared. Omission of both line numbers causes
the totality of resident program text to be cleared.

Example 6-4: Loading Programs from Disk with a LOAD DA
Statement (No Line Number Specified)

10 COM D
50 LOAD DA F (24,D)

Statement 50 causes a program to be loaded from the 'F' platter
beginning at sector 24. Prior to loading in the new program, all
program text in memory 1s cleared, along with all non-common
variables. After the new program has been loaded, program execution
begins automatically at the lowest program line. The address of the
next sequential sector following the program trailer record 1is
returned as a decimal value to numeric variable D. For example, if
the program trailer record is located in sector #33, then D = 34
following execution of statement 50. (Note: D must have been
specified as a common variable in a COM statement prior to execution
of the LOAD DA statement.)

110

Note that the return variable ('D' in the above example) must be a
common variable; otherwise, it is cleared along with all other noncommon
variables before the program is loaded, and an ERROR 87 (Common Variable
Required) is signalled.

The LOAD DA statement, like LOAD DC, can be used to load program
overlays from disk and append them to an existing program in memory. In this
case, one or both of the optional line number parameters are specified to
define the portion of resident program text which must be cleared prior to

loading the program overlay. Note that when one or both line numbers are
included, execution of the overlay begins automatically at the first line
number specified in the LOAD DA statement. If the new program does not

contain a line having the first line number specified, an ERROR 11 (Missing
Line Number) is signalled.

If the program overlays are stored in sequential areas of the disk, it
is possible to use the same variable to contain the starting sector address
and receive the address of the next available sector following statement
execution. In this way, the starting sector address is automatically updated
to the address of the next available sector every time the LOAD DA statement
is executed. This technique must be modified if cataloged programs are read,
since a cataloged program has an additional system end-of-file sector
following the trailer record which is not read as part of the program by LOAD
DA, and the address of this sector will be returned by the LOAD DA statement.
For normal processing, it is recommended that cataloged programs be read only
with the catalog instruction LOAD DC.

Example 6-5: Loading Program Overlays from the Disk with
the LOAD DA Statement (Two Line Numbers
Specified)

80 COM D
90 D = 24

500 LOAD DA F (D,D) 500,500

Statement 500 causes a program to be loaded into memory from the 'F'
platter, starting at the sector whose address 1is stored in D.
Prior to loading the program overlay, program lines 100 through 500
are cleared from memory, along with all non-common variables. After
the program has been loaded, program execution begins automatically
at line 100. Following statement execution, the address of the next
available sector is returned to D (however, D must have been
specified as a common variable). When Statement 500 is executed a
second time, the new value of D is the starting sector address of
the second program overlay (assuming that the overlays are stored
sequentially on the disk, and that they are not cataloged files.)
The second overlay is automatically loaded over the first overlay,
and run from line 100. The process can be continued in this way for
as long as necessary.

111

6.4 STORING AND RETRIEVING DATA ON DISK IN ABSOLUTE SECTOR ADDRESSING MODE

In Absolute Sector Addressing Mode, named data files are not maintained
by the system, nor are the file parameters stored in the Catalog Index or
Device Table. However, the system does write certain sector address
information in the default slot (or in one of the other slots, #1 - #6, if a
file number is specified in the statement) in the Device Table every time a
logical record is saved or loaded with a DA statement. If the referenced file
number happens also to be associated with a currently open cataloged file, the
parameters of the cataloged file will be wiped out. To avoid this problem,
always use different file numbers for direct addressing statements and catalog
statements when the two modes are utilized concurrently.

Storing Data on the Disk With DATASAVE DA

Data is stored on the disk in Absolute Sector Addressing Mode with the
DATASAVE DA statement. At least four items of information must be provided in
the statement:

1. The disk platter on which the data is to be saved (specified by 'F',
'R', or 'T").

2. The address of the first sector on that platter in which the data is
to be stored (specified as an expression or alphanumeric variable).

3. A numeric or alphanumeric variable which is to receive the address
of the next available sector following statement execution.

4. The data which is to be saved in a record on the disk.

Each DATASAVE DA statement (like DATASAVE DC) saves one logical record,
consisting of enough sectors on disk to store all data specified in the
argument list. Records saved on the disk with DATASAVE DA are identical in
format to those created by DATASAVE DC, and contain the standard System 2200
format information. Records initially saved with DATASAVE DC can therefore be
loaded with DATASAVE DA. Note, however, that when DATASAVE DA is used to
write a record in a cataloged data file, it does not update the file
parameters in the Catalog Index. In normal processing operations, the use of
direct addressing statements to alter cataloged files is not recommended.

Example 6-6: Storing Data on Disk with a DATASAVE DA
Statement

100 B$ = HEX(O1lEQ)
150 DATASAVE DA R (B$,x$) A, B(), c()

112

Statement 150 causes the value of numeric variable A and arrays B()
and C() to be stored on the 'R' platter, starting at sector 480 (480
is the decimal equivalent of HEX(0lEQ), which is the value of B$).
One logical record is written containing enough sectors to store all

data specified in the argument list. Following the execution of
statement 150, X$ is set equal to the binary address of the next
available sector. For example, if A, B(), and C() require nine

sectors on the disk, the value of X$ following statement execution
is HEX(01lE9) (decimal equivalence, 489).

If a number of records are to be saved or loaded in sequential sectors
on the disk, it is possible to use the same variable to contain the starting
sector address and receive the address of the next available sector following
statement execution. In this way, the starting sector address is
automatically updated to the address of the next available sector following
each save or load operation.

Example 6-7: Saving a Number of Data Records in Sequential
Areas of the Disk

200 DIM B(25)

210 Al = 50

220 FOR I = 1 TO 25

230 INPUT "VALUES FOR THIS RECORD", B(I)
240 NEXT I

250 DATASAVE DA F(Al,Al) B()

300 GOTO 220

The starting sector address (Al) is initially set to 50. At line
230, the values to be stored in the first record are entered. The
first time through the loop, line 250 saves array B() on the 'F'
platter beginning at sector 50. When the record has been written,
the address of the next available sector 1is returned in Al.
Assuming that B() required ten sectors, Al is set equal to 60
following execution of statement 250. The second time through the
loop, array B() is saved on the 'F' platter beginning at sector 60,
since this 1is the new value of Al. The process may be continued in
this way in order to store records in sequential areas of the disk.

After all data records have been saved in a file, the file should be
ended with an end-of-file trailer record, which can be used subsequently to
test for the end-of-file if the records are read sequentially for processing.
In Absolute Sector Addressing Mode, the trailer record is the programmer's
only way of protecting himself from reading beyond the legitimate data in a
file (unless he designs his own trailer record), since the data file has no
absolute limit (as it does in catalog mode). If no trailer record is written,
the program may read beyond the limit of legitimate data in the file and
retrieve meaningless data from the subsequent, unused sectors. An end-of-file
record is written in Absolute Sector Addressing Mode exactly as it is written
in Catalog Mode, by specifying the "END" parameter instead of an argument list
in a DATASAVE DA statement:

113

Example 6-8: Writing an End-Of-File Record in a Data File
with a DATASAVE DA END Statement

180 DIM B(25)

190 FOR I=1 TO 25

200 INPUT "VALUES FOR THIS RECORD", B(I)

210 NEXT I

220 DATASAVE DA R (Al,Al) B()

230 INPUT "IS THIS THE LAST RECORD? (Y OR N)", F$
240 IF F$ = "Y" THEN 350

250 GOTO 210

350 DATASAVE DA R (Al,Al) END

This routine illustrates a simple input loop in which the operator
is asked after entering each record if it is the last record. If a
response of "N" (or any response other than "Y") is entered, the
routine loops back to input another record. When a response of "Y"
is entered, however, the routine branches to line 350 and writes an
end-of-file record in the file.

When a new record is written into a file which has been ended with a
trailer record, the trailer record should be overwritten, and a new trailer
record created following all subsequent data saving operations. For example,
if the trailer record occupies sector 497 in a file, the next data record
should be saved beginning at sector 497, and a new trailer record written
following the save operation.

Retrieving Data from Disk with DATALOAD DA

Data is retrieved from a data file on the disk in Absolute Sector
Addressing Mode with a DATALOAD DA statement. Four items of information must
be specified:

1. The disk platter on which the data is stored (specified by 'F', 'R',
or 'T').
2. The address of the first sector on that platter from which data is

to be read (specified as an expression or alphanumeric variable).

3. A numeric or alphanumeric return variable designated to receive the
address of the next sequential logical record following statement
execution.

4. An argument list consisting of one or more alpha or numeric
receiving variables, arrays, or array elements designated to receive
the data read from the disk.

Example 6-9: Retrieving Data from a Data File on Disk with
a DATALOAD DA Statement

300 DATALOAD DA R (481,B2) A,B,C

114

Statement 300 causes the system to load data from the 'R' platter
beginning at sector 481, and store the data in numeric variables A,
B, and C in memory. Enough data is read from the disk to fill all
variables specified in the argument list (unless the trailer record
is encountered, at which point reading stops). However, it is
recommended that exactly one 1logical record be read with each
DATALOAD DA statement. 1In order to read one logical record, the
argument list of the DATALOAD DA statement must correspond to the
argument list of the DATASAVE DA statement which originally saved
the record. If only the first few fields in a logical record are
loaded, the remaining fields in the record are read but ignored. 1If
the argument list contains more receiving arguments than there are
fields in a logical record, values are read from the next sequential
logical record until the argument list is filled. The remainder of
the second record is then read and ignored. Following statement
execution, the return variable B2 is set to the address of the next
sequential logical record. Thus, if the record occupies three
sectors (481, 482, 483), B2 = 484 following statement execution.

If an end-of-file (EOF)record has been written in the data file, it is
possible to test for the end-of-file condition with an IF END THEN statement.
The IF END THEN statement is useful when processing records sequentially from
a file, since it terminates reading and initiates a branch to a specified line
number when the EOF record is read. The EOF record is not transferred into
the DATALOAD DA argument list, and the value of the return variable in the
DATALOAD DA statement is set to the address of the EOF record rather than to
the next sequential sector. The system is therefore positioned to save a new
record over the EOF record if additional data is to be stored in the file.

Example 6-10: Testing for the End-0f-File Condition in a
Non-Cataloged Data File

400 DATALOAD DA R (B2,B2) A()
410 IF END THEN 500

490 GOTO 400
500 sTOP

Statement 400 1loads one 1logical record from the 'R' platter,
beginning at the sector whose address is stored in B2, and stores
the data in array A(). Statement 410 checks for an end-of-file
trailer record (previously written with a DATASAVE DA END
statement). If the trailer record is detected, the program skips to
statement 500 and stops. If no trailer record is detected, program
execution continues normally, with data in A() being processed
until, at statement 490, the system is instructed to loop back and
load in another record. Note that when the trailer record is read,
the receiving variable (B2) is set to the address of the trailer
record, not the address of the next consecutive sector.

115

6.5 THE 'BA' STATEMENTS

Two special statements, DATASAVE BA and DATALOAD BA, enable the
programmer to save and load records that do not contain the standard System
2200 control information (such records cannot be saved or loaded with DC or DA
statements). Since records saved or loaded with a BA statement are not
formatted automatically with System 2200 control information, the programmer
is free to write his own control information, and format his records in a
manner appropriate to his application. Records which are saved with a
DATASAVE BA statement must be loaded with a DATALOAD BA statement. The
DATALOAD DC and DATALOAD DA statements cannot be used to read a record which
was saved initially with DATASAVE BA. However, DATALOAD BA can be used to
read sectors which were written initially with DC or DA statements or commands.

The DATASAVE BA statement writes exactly one sector (256 bytes) of
unformatted data from an alphanumeric array into a specified sector on the
disk. A single alphanumeric array must be used in the DATASAVE BA argument
list; alpha variables, as well as numeric variables and arrays, are illegal.
Multiple arguments are not permitted. It is not possible to write a
multi-sector record with a single DATASAVE BA statement. If the alpha array
in the DATASAVE BA argument list contains more than 256 bytes of data, the
additiondl data is ignored. If the array contains fewer than 256 bytes, the
remainder of the sector being addressed is filled with meaningless data.
Therefore, it is always advisable to specify an array which contains at least
256 bytes of data in the DATASAVE BA argument list. Four items of information
must be specified in the DATASAVE BA statement:

1. The disk platter on which the data is to be stored (specified by
'F', IRI’ or 'T').

2. The address of the sector in which the data is to be written
(multi-sector records are not written automatically);

3. A numeric or alphanumeric return variable designated to receive the
address of the next consecutive sector following statement execution.

4. One alphanumeric array containing the data to be saved on the disk.
(It is recommended that the array contain 256 bytes of data.)

Example 6-11: Writing an Unformatted Sector with DATASAVE
BA

200 DATASAVE BA F (L$,L$) A$(Q)

Statement 200 causes 256 bytes of unformatted data to be transferred
from array A$() into the sector on the 'F' platter whose address is
stored in alpha variable L$. If A$() contains more than 256 bytes
of data, the additional data is ignored. If A$() contains fewer
than 256 bytes of data, the remainder of the sector is filled with
garbage. Following statement execution, the address of the next
consecutive sector is returned to L$ (i.e., if L$ = HEX(OlEQ) prior
to execution of statement 200, then L$ = HEX(0lEl) following
statement execution).

116

The DATALOAD BA statement loads exactly one sector (256 bytes) of data
from a specified sector on the disk into a specified alphanumeric array in
memory (numeric arrays, as well as alpha and numeric variables and array
elements, are illegal). The receiving array must be dimensioned to contain at
least 256 bytes. If the array contains fewer than 256 bytes, an error is
signalled and the data is not transferred; if the array contains more than 256
bytes, the additional bytes are undisturbed. It is not possible to read
multi-sector records with the DATALOAD BA statement. The DATALOAD BA
statement must include the same four elements specified in the DATASAVE BA
statement (i.e., disk platter to be accessed, address of sector to be loaded,
variable specified to receive address of next consecutive sector, and alpha
array specified to receive data read from disk).

Example 6-12: Reading a Sector from Disk with DATALOAD BA

240 DIM A$(16)16
250 DATALOAD BA F (20,L) A$()

Statement 250 causes all information stored in sector 20 on the 'F'
platter (256 bytes) to be loaded into alpha array A$() in memory.
A$() is dimensioned at line 240 to contain 256 bytes of data. If
A$() held fewer than 256 bytes, an error (Error 60) would be
signalled. Following execution of the statement, the address of the
next consecutive sector is returned in numeric variable L (i.e.,

following statement execution, L=21). If A$() were dimensioned
larger than 256 bytes, the additional bytes of A$() would remain
unaltered.

NOTE:

As with the DA statements, the BA statements utilize the
default slot in the Device Table (or one of the other
slots, #1 - #6, if a file number is specified) to store
sector address information. BA statements must, therefore,
be assigned different file numbers from DC statdments when
the two modes are used concurrently.

117

6.6 PLATTER-TO-PLATTER COPY

Absolute Sector Addressing Mode provides the capability to copy all or
part of the contents of one disk platter onto the other with the COPY
statement. Unlike MOVE (see the discussion of MOVE in Chapter 2), COPY
transfers all information located on the portion of the disk platter which is
to be copied (including scratched and temporary files) to the corresponding
sectors on the second platter. The beginning and ending sector addresses of
the portion of the disk platter which is to be copied must be specified. If
the entire disk platter is to be copied, the starting sector address should be
0 and the ending sector address should be the highest sector address on the
platter. If the catalog is to be copied, the Catalog Index must be copied
along with the Catalog Area. In this case, the starting sector address must
be 0, and the ending sector address must be the last sector in the Catalog
Area. The ending sector address of the Catalog Area can be determined by
listing the Catalog Index. However, it is recommended that MOVE be wused
instead of COPY when transferring the catalog from platter to platter (since
in that case scratched files are automatically deleted).

Example 6-13: Copying a Disk Platter with the COPY Statement
10 COPY RF (0, 5000)

Statement 10 causes the contents of sectors zero through 5000 to be
transferred from the 'R' disk platter to the corresponding sectors
(0 - 5000) on the 'F' disk platter.

If it is convenient, the starting and ending sector addresses may be
expressed as the values of numeric variables or expressions.

Example 6-14: Copying a Disk Platter with the COPY Statement

5 A =10
10 COPY/320, FR (A,A*100)

Statement 10 causes sectors 10 (the value of A) through 1000 (the
value of A*100) to be transferred from the 'F' disk platter to the
same sectors of the 'R' disk platter. Both platters are located in
the disk drive with address 320.

Following a COPY operation, the transferred information should be
checked, with a VERIFY statement, to ensure that it has been transferred
correctly. If the entire contents of the disk platter are copied, the entire
platter can be checked by executing a VERIFY statement which specifies sector
0 as the starting address, and the address of the last sector on the platter
as the ending address. If only a specific portion of a platter is
transferred, the VERIFY statement can be used to verify only that portion of
the second platter.

118

Example 6-15: Verifying Data Transfer Following a COPY
Operation

10 COPY RF (0,1000)
20 VERIFY F (0,1000)

Statement 10 copies sectors zero through 1000 from the 'R' platter
to the same sectors on the 'F' platter. Statement 20 verifies the
newly-copied sectors 0 - 1000 on the 'F' platter.

If the check performed by VERIFY is positive, the system returns the CRT
cursor and colon to the screen, indicating that the information has been
copied accurately. If one or more errors are discovered, the system returns
an error message indicating which sector(s) did not copy properly, e.g.,:

ERROR IN SECTOR 946.
If you encounter an error following a COPY operation, repeat the COPY.
Repeated failure could indicate a faulty disk platter. If the error persists

with another platter, call your Wang Service Representative.

VERIFY can be used to verify any portion of a disk platter, or an entire

platter, for any reason. It need not be used only in conjunction with COPY.
It may be useful, for example, to verify data on a previously recorded platter
before the platter is reused. Many programmers verify each platter at the
beginning of daily operation. The cyclic redundancy check and longitudinal

redundancy check performed by VERIFY provide an extra measure of protection
against the accidental use of invalid data in important applications (see

Appendix B).

WARNING:

It is important that backup copies of important disk-based
data files be maintained and kept up to date. Like other
storage media, disk platters can be worn out with repeated
use, and they are, of course, subject to accidental damage
or destruction. To avoid the necessity of recreating your
data base following such a potential disaster, you should
always maintain one or more backup platters containing all
important files. Non-cataloged files can be copied to a
backup platter with the COPY statement. For cataloged
files, the MOVE statement should be used.

119

NOTE TO OWNERS OF THE
MODELS 2270-1/2270A-1, 2270-3, and 2270A-3:

On the Modes 2270-1 or 2270A-1, the COPY statement 1is
illegal. It is not possible to COPY information from one
Model 2270-1 (or 2270A-1) to a second disk unit,

On the Model 2270-3 or 2270A-3, it is illegal to attempt a
COPY operation to or from the #3 drive. If the diskette in
the #3 drive is to be copied, it must be physically removed
from the #3 disk drive and inserted into drive #1 or #2.

NOTE TO OWNERS OF THE
MODELS 2260BC-2, and 2260C-2:

It is not possible to directly COPY the contents of either
platter in the slave drive to either platter in the master
drive, or vice versa.

6.7 USING ABSOLUTE SECTOR ADDRESSING STATEMENTS IN CONJUNCTION WITH CATALOG
PROCEDURES (BINARY SEARCH)

In the concluding paragraph of Chapter 4, it was pointed out that
Absolute Sector Addressing statements can be used in conjunction with catalog
procedures to develop more versatile and efficient file access techniques.
One of the data retrieval techniques most commonly used on data files is the
binary search technique. The System 2200 provides a special BASIC verb,
LIMITS, which can be used in conjunction with direct addressing statements to
perform a binary search on cataloged files. (LIMITS is discussed in Chapter
4, Section 4.7.)

A binary search is a technique for locating a particular record in a
file by searching successively smaller segments of the file until the record
is found. The procedure is basically as follows: the highest and lowest
records in the file are first checked; if neither of them is the desired
record, the middle record in the file is checked. If the middle record is not
the desired record, then the sought-after record must be located either in the
top half of the file (that is, between the highest record and the middle
record), or in the lower half of the file (between the lowest record and the
middle record). The middle record in the appropriate half is then checked,
and the process of performing successive bifurcations continues until the
record is found (or until it is determined that no such record exists in the
file). Clearly, a binary search cannot efficiently be performed if the file
is not sorted in ascending or descending order.

The use of a binary search can be 1illustrated with an example from
industry. Consider a small company which maintains a customer file on disk.
In the simplest case, each record in the file might contain only three fields,
a three-digit customer I.D. number, the customer's name, and the customer's
credit rating:

120

CREDIT
I.D.# NAME RATING

062 JOHN D. ROCKA Al

Figure 6-1. Typical Entry in Customer Credit File

The customer credit file is a cataloged file named CREDIT, in which each
record occupies a single sector. The file begins at Sector #100, and is
sorted in ascending order on the customer I.D. numbers.

SECTOR # I.D.# NAME CREDIT
100 007 FRANKLIN, FREDERICK A-2
101 011 DRAINE, FARRAH B-1
102 012 .

103 013 .

104 017 .

105 022

106 025

107 037 .

108 039 .

109 052 . .
110 055 FRACK, ALFRED R. A-1
111 062 .

112 073

113 101

114 111 . .
115 123 RAPPE, VIRGINIA S. B-2
116 128 WALSH, RACHEL c-3

Figure 6-2. Typical Customer Credit File (Sorted in
Ascending Order)

As you can see, the file contains 17 records. Suppose, now, that one of
the customers, Alfred R. Frack, applies for additional credit. Before
granting this credit, the credit manager will want to check Mr. Frack's credit
rating. One way to locate Mr. Frack's record is to search sequentially
through the file until his customer I.D. (055) is found. 1In the sample file,
this technique involves reading and checking 11 records, or slightly more than
one half the total number of records in the file. A faster and more efficient
way to find the record is to search the file with a binary search. The
procedure is as follows:

1. Begin by checking the first (lowest) record in the file and the last
(highest) record, to see if either of them is the desired record.
In this case, neither the first record (I.D.#007) nor the last
record (I.D.#128) is the desired record.

121

2. Check the middle record in the file. To find the sector address of
this record, add the sector address of the last (highest) record in
the file (116) to the sector address of the first (lowest) record in
the file (100), and take the integer value of the average:

INT((H+L)/2)
INT((116+100)/2)
= 108

]

M
M
M

For the first search, the highest address is 116 (H=116), and the
lowest 1is 100 (L=100). Thus, M=108. The first sector to be
accessed is sector 108.

3. Compare the key of this record (I.D. #039) with the desired key
(I.D. #055). Since the desired key 055 is greater than the middle
key 039, it must be located in the top half of the file (that is,
between sectors 108 and 116).

4., Using the middle sector address (l08) as the new low sector address,
find the middle record in the top half of the file, midway between
sector 108 and sector 116. 1In this case, INT((108+116)/2)=112.

5. Retrieve sector 112 and compare its key (I.D. #073) with the desired
key (I.D. #055). Since 073 is larger than 055, the desired record
must be in the lower quarter of this half of the file (i.e., between
sector 108 and sector 112). Using sector 112 as the new high
address, find the sector midway between 108 and 112.
INT((108+112)/2)=110. Compare the key of sector 110 (I.D. #055)
with the desired key (I.D. #055). Since the keys match, sector 110
contains the desired record, and the search is finished.

lst Search

Sector
Address Key

100 007
101 011
102 012
103 013
104 017
105 022
106 025 2nd Search
107 037

middle ——»108 039 108 039
109 052 109 052
110 055 110 055 3rd Search
111 062 111 062
112 073 middle —»112 073 108 039
113 101 113 101 middle 109 052
114 111 114 111 and —>»110 055
115 123 115 123 desired 111 062
116 128 116 128 record 112 073

Figure 6-3. Binary Search Technique

122

Although this example presumed an odd number of records in the file, the
technique is the same for a file which contains an even number of records. A
more serious problem is presented by files in which each record consists of
two or more sectors. In such a case, the number of sectors in each record
must be taken into account when calculating the record addresses on each
search. It is impossible to conduct a binary search if the number of sectors
per record is not constant.

In order to conduct a binary search on a file, then, there are three
requirements:

1. The file must be sorted.
2. The number of sectors per record must be comnstant.

3. The limits of the file (i.e., beginning and ending sector addresses)
must be known.

For cataloged files, the beginning and ending sector addresses can be obtained
under program control with the LIMITS statement.

It may be obvious that the ending sector address of a cataloged file
should not be used as the upper limit of the file, unless the file is filled
with data. Use of the ending sector address as the upper limit when the file
is not full decreases the efficiency of the binary search, since one or more
searches may be wasted searching the empty sectors between the end-of-file
trailer record and the last sector of the file (or, those unused sectors may
contain meaningless data - including old program text - which would cause an
error when the DATALOAD DA statement attempts to read it). It is generally
safer and more efficient to use the address of the last data record as the
upper limit of the file in a binary search, since all sectors between the
beginning of the file and the last data record are certain to contain valid
data. The address of the last data record in a file 1is computed by
subtracting 1 from the address of the end-of-file trailer record. The address
of the trailer record can be computed by first executing a LIMITS on the file
(with the file name specified), then subtracting 2 from the number of sectors
used in the file, and adding this value to the starting sector address of the
file. Thus, to determine the address of the trailer record in the file
"CREDIT", first execute a LIMITS:

20 LIMITS F "CREDIT", Al, A2, A3

Since the file name is specified rather than a file number, LIMITS accesses
the Catalog Index on the 'F' platter and retrieves the Starting and Ending

sector addresses, and Number of Sectors Used, for CREDIT. Variable Al
contains the starting sector address, variable A2 the ending sector address,
and variable A3 contains the number of sectors used. The address of the

trailer record then is computed with the following formula:

Starting + (Used -2)
Al + (A3-2)

T
T

123

The address of the trailer record is stored in variable 'T'. The sector
address of the last data record in the file may now be found merely by
subtracting one from the address stored in 'T':

H = T-1

Here the address of the last data record is stored in variable 'H'. This
address is used as the upper limit of the file for the first dichotomy in the
binary search. The following example program illustrates the binary search
described above on the customer credit information file, "CREDIT".

Example 6-16: Performing a Binary Search on a
Cataloged Data File

5 REM **%xx% BINARY SEARCH ROUTINE *¥***%

10 DIM R$3, A$3, F$26, C$4

20 LIMITS F “CREDIT",A1,A2,A3

25 REM ***xx%x COMPUTE ADDRESS OF LAST DATA RECORD *#**¥%x
30 T = A1+(A3-2)

40 H=T-1

50 REM ****x* ENTER KEY OF DESIRED RECORD ***%i%

60 INPUT "DESIRED I.D.",R$

70 REM **%**x% READ & CHECK LOWEST RECORD **%***

80 DATA LOAD DA F (A1,S) A$,F$,C$

90 IF A$ = R$ THEN 260

100 REM ****** READ & CHECK HIGHEST RECORD ***#x

110 DATA LOAD DA F (H,S) A$,F$,C$

120 IF A$ = R$ THEN 260

130 REM *¥*%%* COMPUTE MIDDLE SECTOR ADDRESS ***x%

140 M = INT((A1+H)/2)

150 REM **%*%* READ & CHECK MIDDLE RECORD **#*#*#x

160 DATA LOAD DA F (M,S) A$,F$,C$

170 IF A$ = R$ THEN 260

180 REM *¥**%*x 1S DESIRED KEY HIGHER OR LOWER THAN KEY READ? *#¥*
190 IF R$ < A$ THEN 210

200 Al = M
201 GOTO 230
210 H=M

220 REM *#*%x% HAVE ALL RECORDS BEEN CHECKED? **k#x*
230 IF H = M#1 THEN 280

240 GOTO 140

250 REM ***%x* RECORD FOUND - PRINT RECORD *%#k

260 PRINT A$,F$,C$

265 STOP

270 REM ****%x RECORD NOT FOUND - PRINT ERROR MESSAGE *#*kx

280 STOP "RECORD NOT IN FILE"

124

Statement 20 performs a LIMITS on the cataloged file CREDIT; the
starting sector address of CREDIT is returned to Al, the ending
sector address to A2, and the number of sectors used, to A3.
Statement 30 calculates the address of the trailer record in CREDIT
by subtracting 2 from the number of sectors used (A3), and adding
this value to the starting address (Al). The resultant address is
stored in T. Statement 40 computes the address of the last data
record by subtracting 1 from 'T'. Line 60 is an INPUT statement
which requests the key for the desired record. Line 80 loads in the
first record of the file; its key is checked against the specified
key. If there is no match, the highest record in the file is loaded
(line 110), and its key is checked (line 120). If neither the first
nor the last record is the desired record, the address of the middle
record is computed (line 140), and this record is read and checked.
If the middle record does not hold the desired key, the process is
repeated on the upper or lower half of the file, depending upon
whether the desired key is larger or smaller than the middle record
key (lines 190, 200). The process continues either until the
desired record is found (in which case it is printed), or until it
is determined that no such record exists in the file (in which case
an error message is displayed).

6.8 CONCLUSION

Direct addressing statements and commands can be used in conjunction
with catalog procedures to develop an efficient and versatile data management
system. One technique which might be used in such a system is the binary
search technique discussed in the preceding section. A variety of different
techniques also are available, and the interested reader is directed to the
bibliography in Appendix C for a list of texts which discuss disk file access
techniques. The direct addressing statements need not, of course, be regarded
as merely supplemental to and supportive of catalog procedures. On the
contrary, highly sophisticated and complex data management systems can be
constructed in Absolute Sector Addressing Mode exclusively. The bibliography
in Appendix C also lists a number of texts which discuss disk management
system design concepts and philosophies.

125

CHAPTER 7
ABSOLUTE SECTOR ADDRESSING STATEMENTS AND COMMANDS

7.1 INTRODUCTION

This chapter contains descriptions of and General Forms for the
following Absolute Sector Addressing statements and commands, listed
alphabetically for ease of reference:

COPY

DATALOAD BA
DATALOAD DA
DATASAVE BA
DATASAVE DA

LOAD DA (command)
LOAD DA (statement)
SAVE DA

7.2 STATEMENT/COMMAND DISTINCTION AND GENERAL RULES OF SYNTAX

Refer to Chapter 5, Section 5.2, for an explanation of the distinction
between System 2200 BASIC statements and commands.

Refer to Chapter 5, Section 5.3, for a list of the rules of syntax and
notation used in the General Forms.

126

COPY

General Form:
#n, RF . .
COPY /xxx,] {FR (expression 1, expression 2)
where: #n = A file number to which the disk address is currently assigned (‘n’
is an integer or numeric variable whose value is from 0 to 6).
/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.
RF = Copy the specified sectors from the ‘R’ disk platter to the ‘F’ disk
platter.
FR = Copy the specified sectors from the ‘F’ disk platter to the ‘R’ disk
platter.
expression 1 = An expression whose truncated value equals the address of the
first sector to be copied.
expression 2 = An expression whose truncated value equals the address of the
last sector to be copied.
Purpose:

The purpose of the COPY statement is to copy information from one disk
platter to another. The truncated value of ‘expression 1' represents the
address of the first sector to be copied, and the truncated value of
'expression 2' represents the address of the last sector to be copied. The
information is copied from the first platter to the same sectors on the second
platter. If the 'RF' parameter is used, the copying is from the 'R' platter
to the 'F' platter. If 'FR' is used, the copying is from the 'F' platter to
the 'R' platter.

The COPY statement 1is generally wused to make backup copies of
non-cataloged files. When files are copied from one disk to another using
COPY, no deletion of scratched files occurs. If COPY is used to copy a
catalog, the Catalog Index must be copied along with the entire Catalog Area;
'expression 1' is set to zero in this case, while 'expression 2' is set to the
ending sector address of the Catalog Area. The ending sector address of the
Catalog Area can be obtained by executing a LIST DC statement. However, it is
recommended that MOVE be used instead of COPY to back up a catalog.

When COPY is executed as either a command or program statement, 1024
bytes of System 2200 memory must be available for buffering (that is, at least
1,024 bytes of memory must not be occupied by a BASIC program or variables);
otherwise, an error message results and the COPY is not performed. The large
buffer minimizes the time required for the COPY operation.

Following the COPY, a VERIFY statement can be executed to insure that
the specified information was copied correctly.

127

NOTE:

COPY can be used in both Automatic File Cataloging Mode and
Absolute Sector Addressing Mode.

Examples:

10 COPY RF (0,49)

10 COPY #2, RF (0,X+4)

10 COPY /320, FR (Y*2, Y*2+100)
10 COPY #A, FR (0,1700)

NOTE TO OWNERS OF THE
MODELS 2270-1, 2270A-1, 2270-3, and 2270A-3:

On the Models 2270-1, and 2270A-1 COPY 1is an 1illegal
statement. On the Models 2270-3 and 2270A-3, it 1is not
possible to COPY the contents of platter #3 to platter #1
or #2, or vice versa. In order to COPY platter #3, it must
be physically removed from drive #3 and inserted into drive
#1 or #2.

NOTE TO OWNERS OF THE
MODELS 2260BC~2, and 2260C-2:

It is not possible to directly COPY the contents of either
platter in ‘the slave drive to either platter in the master
drive, or vice versa.

128

DATALOAD BA

General Form:

F
DATALOAD BA §R #n, sector address, L alphanumeric array designator
T /XXX, LS

where: BA A parameter specifying Absolute Sector Address Mode and block

data format.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = 'F' platter, or ‘R’ platter, depending on device type specified in the
selected device address.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from O to 6).

[xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the sector address of the record to be read. The value of
the expression or alpha variable must be less than or equal to the
last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next sequential
sector after the DATALOAD BA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next sequential sector when the DATALOAD BA statement
is processed.

alphanumeric
array designator = An alphanumeric array name followed by closed parentheses,
e.g., AS().

Purpose:

The DATALOAD BA statement is used to load one sector of unformatted data
from the disk into System 2200 memory. The 'BA' parameter specifies Absolute
Sector Addressing Mode and block data format, and is not normally used when
the referenced file is a cataloged file. The DATALOAD BA statement reads one
sector from the specified disk and sequentially stores the entire 256 bytes in
the designated alpha array. No check is made for control bytes normally found
in System 2200 data records. An error results if the alpha array is not large
enough to hold at least 256 bytes. If the array is larger than 256 bytes, the
additional bytes of the array are not affected by the DATALOAD BA operation.

129

After the statement 1is executed, the system returns the address of the
next consecutive sector, either as a decimal value if a numeric return
variable is specified ('L' parameter), or as a two-byte binary value if an
alphanumeric return variable is specified ('L$' parameter). This address can
be used in a subsequent disk statement or command to provide sequential access
to data stored on the disk.

Execution of the DATALOAD BA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #1
- #6, if a file number is used in the statement).

Examples:
100 DATALOAD BA F (20,L) A$()
100 DATALOAD BA T #2, (B$,B$) BS$()

100 DATALOAD BA F /320, (c,c) J$(Q)
100 DATALOAD BA T #A, (A,B) 2$()

130

DATALOAD DA

General Form:

F
#n, L
DATALOAD DA 'I; [/xxx,] (sector address, { L$}) argument list

where: DA A parameter specifying Absolute Sector Address Mode and

standard System 2200 data format.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2,

T = 'F’ platter, or ‘R’ platter, depending on device type specified in
the device address.

#n = A file number to which the disk address is currently assigned (‘'n” is
an integer or numeric variable whose value is from O to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the record to be loaded.
The value of the expression or alpha variable must be less than or
equal to the last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the DATALOAD DA statement is processed.

L$ = A two-byte string variable which is set to the binary address of the
next available sector when the DATALOAD DA statement is
processed.

alphanumeric variable
argument list = numeric variable ,
alpha or numeric array designator

array designator = An array name followed by closed parenthesis, e.g., A(), B$().

Purpose:

DATALOAD DA reads one or more logical records from the disk, starting at
the absolute sector address specified. (The records must be formatted with
standard System 2200 control information.) The 'DA' parameter specifies
direct addressing mode and generally is not used when the referenced data file
is a cataloged file. However, Absolute Sector Addressing can be used with
cataloged files and may be useful for certain applications (see Section 6.8).
The data to be read must be in standard System 2200 format, including the
necessary control information (i.e., the data must have been written onto the

disk by a DATASAVE DA or DATASAVE DC statement).

131

The DATALOAD DA statement reads a logical record from the specified disk
and assigns the values read to the variables and/or arrays in the argument
list sequentially; arrays are filled row by row. If the argument list is not
filled, another logical record is read. Data in the logical record not used
by the DATALOAD DA statement is read but ignored. If the DATALOAD DA argument
list requires more data than is contained in the logical record being read,
data is automatically read from the next logical record until the argument
list is satisfied. The remainder of the next record is then read but
ignored. If an end-of-file (trailer record) is encountered while executing a
DATALOAD DA statement, no additional data is read, the next available sector
is set to the sector address of the trailer record, and the remaining
variables in the argument list remain at their current values. An IF END THEN
statement will then cause a valid program transfer.

After the DATALOAD DA statement is executed, the system returns the
address of the next sequential logical record, either as a decimal value if a
numeric return variable is specified ('L' parameter), or as a binary value if
an alphanumeric return variable is specified ('L$' parameter). This address
can be used in a subsequent disk statement or command to provide sequential
access to data stored on disk.

Data can be read from any disk platter by including the proper parameter
('F' or 'R') in the DATALOAD DA statement. If the 'T' parameter is specified,
the platter to be accessed is determined by the device type (3 or B) in the
disk device address.

Execution of the DATALOAD DA statement alters the sector address
parameters in the Device Table default slot (or in one of the ather slots, #1
- 6, if a file number is used in the statement).

Examples:

100 DATALOAD DA R (A$,L$) X, Y (), z2§ O
100 DATALOAD DA T #3, (20,C) A$, B2$() , M2
100 DATALOAD DA F /320, (D,D) F$() , J

100 DATALOAD DA R (B$,B$) A,B,SQ)

100 DATALOAD DA T #A, (E, D,) X$(0)

132

DATASAVE BA

General Form:

F
DATASAVEBA {qRp [$] #n, sector address, L alphanumeric array designator
T /XXX, L$

where: BA = A parameter specifying Absolute Sector Address Mode and block
data format.

F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read-after-Write.

#n = A file number to which the disk address is currently assigned ('n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.

If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the sector address at which the record is to be saved. The
value of the expression or alpha variable must be less than or equal
to the value of the last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next sequential
sector after the DATASAVE BA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next sequential sector when the DATASAVE BA statement
is processed.

alphanumeric
array designator = An alphanumeric array name followed by closed parentheses,
e.g., A$().

Purpose:

The DATASAVE BA statement is used to save unformatted data on the disk.
The 'BA' parameter specifies Absolute Sector Addressing Mode and generally
should not be used when the referenced data file is meant to be cataloged.
'BA' also specifies block data format; each DATASAVE BA statement writes one
sector with no control information. If the alpha array in the argument list
contains more than 256 bytes, only the first 256 bytes are written on disk.
If the array contains fewer than 256 bytes, the remainder of the sector is
filled with meaningless data.

133

The DATASAVE BA statement writes data from the specified alpha array
into the specified sector on disk. After the statement is executed, the
system returns the address of the next sequential sector, either as a decimal
value if a numeric return variable is specified ('L' parameter), or as a
two-byte binary value if an alphanumeric return variable is specified ('L$'
parameter). This address can be used in a subsequent disk statement to permit
sequential storage of data on the disk.

Data can be written on any disk platter by including the proper
parameter ('F' or 'R') in the DATASAVE BA statement. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

The '$' parameter specifies that a 'read-after-write' verification check
be made on all data written to the disk. This verification check provides
added insurance that data is written accurately on the disk, but also doubles
the execution time of the DATASAVE BA statement.

Since information writtenm with DATASAVE BA contains no control
information, it can be read back only with a DATALOAD BA statement.

Execution of the DATASAVE BA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #1
- #6, if a file number is used in the statement).

Examples:
100 DATASAVE BA F (L$,L$) A$(Q)
100 DATASAVE BA R $ #3, (20,L) B$()

100 DATASAVE BA F $ /320, (2*1,L) F$()
100 DATASAVE BA T #2, (Q,Q) D$()

134

DATASAVE DA

General Form:

F
DATASAVE DA < R S [$] ’7”' (sector address, 4 =, b)JEND
T XXX, LS argument list

where: DA = A parameter specifying Absolute Sector Address Mode and
standard System 2200 data format.

F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read-after-write.

#n = A file number to which the disk address is currently assigned {‘n’
is an integer or numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the record to be saved. The
value of the expression or alpha variable must be less than or equal
to the last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the DATASAVE DA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next available sector after the DATASAVE DA statement
is processed.

alphanumeric variable
. literal string
argument list = . ,
expression

alpha or numeric array designator

array designator = Array name followed by closed parentheses, e.g., A{ }, B$().

Purpose:

The DATASAVE DA statement 1is used to save data on the disk in Absolute
Sector Addressing Mode. The 'DA' parameter indicates a direct addressing
operation; the statement therefore is not generally used when the referenced
data file 1is a cataloged file, since there 1is a risk the wuser may
unintentionally destroy part of the catalog information. However, direct
addressing statements can be used with cataloged files for certain
applications (see Section 6.8). The 'END' parameter in a DATASAVE DA
statement should never be used for records stored in a cataloged file. There
are two important considerations which must be kept in mind when writing a
record into a cataloged file with DATASAVE DA. First, the system provides no
automatic boundary checking; hence, records can be written past the end of one
file and into the beginning of the next without system detection. Second, the

135

"number of sectors used" is not updated in the Catalog Index when a trailer
record is written with DATASAVE DA END. Therefore, DSKIP END cannot be used
to skip to the end of the file.

The 'DA' parameter specifies that the data in the argument list is to be
written in standard System 2200 format, including the necessary control
information. Each DATASAVE DA statement writes a logical record conmsisting of
one or more sectors. The DATASAVE DA statement causes the values of

variables, expressions, and array elements to be written sequentially onto the
specified disk. Arrays are written row by row.

NOTE:

Each numeric value in the 'argument list' requires 9 bytes
on disk; each alphanumeric variable requires the maximum
number of characters for which the variable is dimensioned

plus 1. Each 256-byte sector also requires three bytes of
control information.

If the 'END' parameter is used, a data trailer record is written for the
file. This record can be used to test for the end of a file during processing
with an IF END THEN statement.

The DATASAVE DA statement writes the data from the argument list onto
the disk beginning at the specified sector address. After the statement is
executed, the system returns the address of the next available sector, either
as a decimal value if a numeric return variable is specified ('L' parameter)
or as a two-byte binary value if an alphanumeric return variable is specified
('L$' parameter). This address can be used in subsequent disk statements to
provide sequential access to data on the disk.

Data can be written on any disk platter by including the proper
parameter ('F' or 'R') in the DATASAVE DA statement. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

The '$' parameter specifies that a '‘read-after-write' verification test
be made on all data written to the disk. This verification check provides
added insurance that data is written accurately on the disk, but also doubles
the execution time of the DATASAVE DA statement.

Execution of the DATASAVE DA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #1
- #6, if a file number is used in the statement).

Examples:

DATASAVE DA F (20,B) X, Y(), z$()

DATASAVE DA R $ /320, (c,c) F$(O), AQ
DATASAVE DA T ¢ #2, (B$,B$) M$(), "P.ROSE"
DATASAVE DA F (2*M+1,L) J(), K1

DATASAVE DA T (Q,Q) END

DATASAVE DA T #A, (A,B) END

136

LOAD DA

(COMMAND ONLY, NOT PROGRAMMABLE)

General Form: F
LOADDA < R ¢ | #n. sector address, 4 -
T /XXX, LS

where: DA
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

A parameter specifying Absolute Sector Address Mode.

T = ‘F’ platter or ‘R’ platter, depending on device type specified
in device address.

#n = A file number to which the disk address is currently assigned {‘n’
is an integer or numeric variable whose value is from O to 6).
/xxx = Device address of disk.

If neither #n nor /xxx is specified, or if n = 0, the default disk
address {stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the program to be loaded.
The value of the expression or alpha variable must be the address
of the program header record, and must be less than or equal to the
last (highest) sector address on the disk platter.

sector address

L = A numeric variable which is set to the address of the next available
sector after the LOAD DA command is processed.

LS A two-byte alphanumeric variable which is set to the binary address
of the next available sector when the LOAD DA command is

processed.

Purpose:

The LOAD DA command is used to load BASIC programs or program segments
from the disk in Absolute Sector Addressing Mode. When the LOAD DA command is
executed, the program which begins at the specified 'sector address' is read
and appended to the current program in memory. (Note that 'sector address'
must be the address of a program header record.) The LOAD DA command can be
used to add program text to a program currently in memory or, if entered after
a CLEAR command, to load a new program from the disk.

After the LOAD DA command is executed, the system returns the address of
the next available sector, either as a decimal value if a numeric return
variable is specified ('L' parameter), or as a two-byte binary value if an
alphanumeric return variable is specified ('L$' parameter). This address can
be used in a subsequent disk statement or command to permit sequential access
to programs on the disk.

137

Execution of the LOAD DA command alters the sector address parameters in

the Device Table default slot (or in one of the other slots, #1 - #6,
file number is used in the command).

if a

LOAD DA can also be used as a program statement to chain programs or

subroutines (see LOAD DA statement).

Examples:

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

DA R (24,D)

DA F (A$,BS)

DA R /320, (L$,L$)
DA T #2, (A,B)

DA R (24,L%)

DA R (A$,B)

DA T #A, (C,D)

138

LOAD DA (statement)

General Form:

F
#n L
LOAD DA R ’ . .
{T}[/XXX,] (sector address, { L$}> [line number 1] [, line number 2]

where: DA = A parameter specifying Absolute Sector Addressing Mode.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on device type specified
in the device address.

#n = A file number to which the disk address is currently assigned {‘n’
is an integer or numeric variable whose value is from O to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the program which is to
be loaded. The value of the expression or alpha variable must be
the address of the program header record, and must be less than
or equal to the last (highest) sector address on the disk platter.

line number 1 = The line number of the first line to be deleted from the program
currently in memory before loading the new program. After
loading, execution continues automatically starting at this line
number. An error results if there is no line with this number in
the new program.

line number 2 = The number of the last text line to be deleted from the program
currently in memory before loading the new program.

L = A numeric variable which is set to the address of the next available
sector after the LOAD DA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next available sector when the LOAD DA statement is
processed.

[Note: L or L$ must be a common variable.

Purpose:

The LOAD DA statement is used to load programs from a specified location
on the disk. (Note that the 'sector address' specified must be the address of
the program header record.) The 'DA' specifies direct addressing; therefore,
the LOAD DA statement 1is not generally used to load cataloged programs from
the disk. LOAD DA is a BASIC program statement which, in effect, produces an
automatic combination of the following:

139

STOP (stop current program execution)

CLEAR P (clear program text from memory, beginning at 'line number
1' (if specified) and ending at 'line number 2' (if
specified); if no line number is specified, clear all
program text from memory)

CLEAR N (clear all non-common variables from memory)
LOAD DA (load new program or program segment from disk)
RUN (run new program, beginning at 'line number 1' (if

specified); if no line number is specified, run new program
from lowest statement line)

The two 'line number' parameters may be used to cause the system to
clear a specified portion of resident program text prior to loading in the new
program. If both line numbers are specified, all program lines between and
including the two specified lines are cleared prior to loading the new
program, and execution of the new program begins automatically at 'line number
1'. If only 'line number 1' is specified, the remainder of the resident
program is deleted starting with that line number, and execution continues
with 'line number 1' of the newly loaded program. If no line numbers are
specified, the entire resident program is deleted, and the newly loaded
program is executed from its lowest line number. In every case, all
non-common variables are cleared. LOAD DA permits segmented programs to be
run automatically without normal user intervention, with common variables
passed between program segments. If included on a multi-statement line, LOAD
DA must be the last executable statement on the line.

In Immediate Mode, LOAD DA is interpreted as a command (see LOAD DA
command) .

Programs can be loaded from any disk platter by including the proper
parameter ('F' or 'R') in the LOAD DA statement. If the 'T' parameter 1is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

After the program is loaded, the system returns the address of the next
sequential sector either as a decimal value, if a numeric return variable is
specified ('L' parameter), or as a two-byte binary value, if an alphanumeric
return variable is specified ('L$' parameter). This address can be used in a
subsequent statement to permit sequential access to programs on the disk.

Execution of the LOAD DA statement alters the sector address parameters
in the Device Table default slot (or in one of the other slots, #1 - #6, if a
file number is used in the statement).

Examples:

100 LOAD DA F (40,L)

50 LOAD DA R /320, (L$,L$) 310,450
530 LOAD DA T #2, (N$,L$) 570

700 LOAD DA F /320, (L,L)
1020 LOAD DA F (2*I+1,L$) 400

140

SAVE DA

(COMMAND ONLY, NOT PROGRAMMABLE)

General Form:

F
SAVE DA {R [$] [#)r(lxx] [(P] (sector address, t$)[Iine number 1] [, line number 2]
T)
D

where: A = A parameter specifying Absolute Sector Addressing Mode.

F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F' platter or ‘R’ platter, depending on device type specified in the
device address.

$ = Read-after-write.

#n = A file number to which the disk address is currently assigned ('n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default device
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

P = Set the protection bit on the file to be saved.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the program to be saved. The
value of the expression or alpha variable must be less than or
equal to the last (highest) sector address of the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the SAVE DA command is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next available sector when the SAVE DA command is
processed.

line number 1 = The number of the first program line to be saved.

line number 2 = The number of the last program line to be saved.

Purpose:

The SAVE DA command is used to save programs on the disk beginning at a
specified location. Because the 'DA' specifies Absolute Sector Addressing
Mode, this command should not be used if the program is to be saved under
catalog procedures. The SAVE DA command causes BASIC programs (or portions of
BASIC programs) to be recorded on the designated platter beginning at the
specified sector address. The program cannot be named and can be loaded back
into memory only with a LOAD DA statement or command.

After each program is saved, the system returns the address of the next
available sector, either as a decimal value if a numeric return variable is
specified ('L' parameter), or as a two-byte binary value if an alphanumeric
return variable is specified ('L$' parameter). This address can be used in a
subsequent disk command to permit the sequential storage of programs on disk.

141

Execution of the SAVE DA command alters the sector address parameters in
the Device Table default slot (or in one of the other slots, #1 - #6, if a
file number is used in the command).

Programs can be saved on any disk platter by including the proper
parameter ('F' or 'R') in the SAVE DA command. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

The '$' specifies that a 'read-after-write' verification check be
performed on all information written to the disk. This verification check
provides added insurance that the program is recorded accurately, but also
doubles the execution time of the SAVE DA command.

The 'P' parameter permits the user to protect saved programs. A
protected program can be loaded and run, but cannot be listed or resaved.

NOTE:

In order to save any program on disk after a protected
program has been loaded, the user must enter a CLEAR
command with no parameters, or Master Initialize the system
(i.e., turn main power switch OFF, then ON).

Examples:

SAVE DA F (3,L)

SAVE DA R $ /320, P (L,L)
SAVE DA R #2, (A$,A$) 200
SAVE DA T #2, P (A$,A$)
SAVE DA F (2+X,L)

142

CHAPTER 8
THE DISK MULTIPLEXER (MODEL 2230MXA-1/MXB-1)

8.1 INTRODUCTION

When more than one CPU is allowed to share a common disk data base, a
multi-plexed disk environment exists. Multiplexing adds an important
dimension to disk ownership. A single disk unit can be apportioned among
several offices or departments. Each office or department will have access to
the disk data base while retaining its own system in a convenient location.
The participating systems may share a common data base on disk, or each system
may have a specified portion of the disk reserved for its own use. In either

case, the disk receives maximum utilization. Each user is provided with a
random-access mass-storage capability, and the costs incurred by any one user
are reduced. The disk operations from multiple 1inquiring systems are

interleaved, and disk time is allocated among the inquiring systems in a
manner which provides all systems with virtually concurrent access to the disk.

With the Model 2230MXA-1/MXB-1 up to four independent CPU's can be
multiplexed to the same disk unit. The Model 2230MX is a 'daisy-chain"
multiplexer which consists solely of a series of special multiplexer
controller boards. The 2230MXA-1 "master" board, installed in the primary
CPU, controls all access to the disk unit. The 2230MXB-1 '"slave" boards are
installed in participating CPU's, and the slave CPU's are connected together
to form a chain. Only the system with the master board connects directly to
the disk drive.

NOTE:
The following disk drives can be multiplexed:
2260BC

2270
2270A

143

8.2 THE MODEL 2230MX MULTIPLEXER

Figure 8-1. Model 2230MXA-1 Master Board and
2230MXB-1 Slave Boards

The Model 2230MX Multiplexer is a 'daisy chain" multiplexer consisting
of a single 2230MXA-1 master controller board, and one to three 2230MXB-1
slave controller boards. The 2230MXA-1 master board and 2230MXB-1 slave
boards are purchased separately. The number of slave boards required is
determined by the size of the total installation: a master board and one
slave board permit two stations to share the disk, a master board and two
slave boards permit three stations to share the disk, a master board and three
slave boards permit four stations to share the disk.

The master board has a 50-pin input connector, labeled "MUX OUTPUT", and
a 36-pin connector labeled "DISK". Each slave board has a 36-pin input
connector labeled '"MUX IN", and a 50-pin output connector labeled "MUX OUT".
The PCS—-ITIA and 2200 workstations have a built-in slave board with a DISK
connector jack. A T-connector cable must be used unless the system is at the
end of the multiplexer chain (See Figure 8-2).

=

T-connector Cable Multiplexer Chain

PCS-lIA
or 2200
Workstation

Figure 8-2. T-connector Cable in Multiplexed System
144

The connector cables correspondingly have two plugs, one of 36 pins and
one of 50 pins. The systems are connected by running cables from the MUX OUT
jack of one CPU to the MUX IN jack of the next consecutive CPU to form a
chain. At the beginning of the chain is the master system (the CPU with the
2230MXA~-1 master board). The disk connector cable plugs into the DISK jack on
the master board to complete the chain. (See Figure 8-4.) The master system
is the only system which connects directly to the disk unit.

In addition to the standard 12-foot (3.7m) connector cable shipped with
each slave board, longer extension cables are available in lengths of 50, 100,
and 200 feet (15.5, 31, and 61 meters). The extension cable part numbers are
listed below:

Cable length Part #

50 ft (15.5m) 120-2225-50
100 ft (31m) 120-2225-100
200 ft (61lm) 120-2225-200

These cables are '"extension cables" in a literal sense since they serve
as extensions for the standard connector cables; an extension cable cannot be
used by itself to connect two systems. Each extension cable has two 36-pin
plugs, one male and one female. The male plug is inserted in the MUX IN jack
of a slave board, while the female plug must be connected to the 36-pin male
plug on a standard connector cable. The 50-pin plug on the other end of the
standard cable 1is then inserted in the MUX OUT jack of a second board.
Because the extension cable 1s combined with the standard cable in this
manner, the total length of the cable between two units 1is always equal to the
extension cable length plus 12 feet. (See Figure 8-3.)

In special cases, it is possible to connect two or more extension cables
together to create an extension longer than 200 feet. However, the maximum
permissable distance between two systems is 512 feet, and the maximum distance
between the first and last systems in the chain is 536 feet. The cable
connecting the disk unit to the master CPU is approximately ten feet (3
meters) in length, and cannot be extended.

M

M M F

a :
/

Standard Extension Cable

MUX OUTPUT Cable (12°) (50, 10, or 200°) MUX INPUT

Figure 8-3. Connecting Extension Cable with
Standard 12-foot Cable

145

8.3 INSTALLING THE MODEL 2230MX

Unpacking and Inspection

Carefully unpack your equipment and inspect it for damage. 1If a unit is
damaged, notify the shipping agency at once. Be certain that you have one
2230MXA-1 master board, and the expected number of 2230MXB-1 slave boards.

Installation Procedure

NOTE:

If a connector cable is to be routed through a conduit or
any tight space requiring removal of a plug, it is
important that the plug be disconnected and reconnected by
a qualified Wang Service Representative. Reconnection of
the plug is a delicate job which, if done improperly, can
impede or prevent data transmission along the line.
Contact your Wang Field Service Office to install your
multiplexer system.

= 2

12 c

=3 50 36 x
CPU#1 2 2 CPU#2
“MASTER" = 2 “SLAVE"

[

b4 X

3 o 36 — so A

a C

3

12/
DISK 12

z || 2

& X 36 36 X

s P-4

12

CPU #4 - 2 CPU #3
“SLAVE" 5 2 “SLAVE"

Q o 50 X

0 Ix o)

2 [em

= -

Figure 8-4. Typical System Configuration: Model 2230 MX
Multiplexer, Disk Unit, and Four Attached CPU's.

1. Install the 2230MXA-1 master controller board in CPU #1 (the system
nearest the disk). Install 2230MXB-1 slave boards in the remaining
systems. In systems which already have a disk controller board, the
multiplexer board replaces the disk board.

146

Plug the disk I/0 cable into the jack marked "DISK" on the 2230MXA-1
master board.

Insert the 50-pin connector cable plug in the jack labelled "MUX
OUTPUT" on the master board. If no extension cable is used, insert
the 36-pin plug on the other end of the cable into the MUX IN jack
in the slave board in CPU #2 (or into the T-connector cable if the
next system is a PCS-IIA or 2200 workstation). If an extension
cable is used, plug the standard cable into the extension cable, and
plug the extension cable into the MUX INPUT jack. Repeat this
procedure for all attached systems.

Be sure that all attached systems are properly set up and ready for
operation.

Plug all power cords into grounded (three-hole) wall sockets.

NOTE:

When routing the multiplexer connector cables between
participating systems, take care to avoid exposing a cable
to intense electric or magnetic fields, or sources of
electronic noise, since they may interfere with data
transmission over the cable. In general, you should try to
keep the connector cable away from electrical trunk lines,
fluorescent lights, and electrical office equipment (such
as electric typewriters and tape recorders). If you have a
specific question about routing a cable, contact your Wang
Service Representative.

Power-On Procedure
1. Switch ON the power switches on all system peripherals, including
the disk unit.
2. Switch ON the Main Power switches on all system CPU's.
3. The POWER light should illuminate on the disk unit. The CRT display

at each station looks like this:

READY

147

NOTE:

When several systems are multiplexed to the same disk with
the 2230MX Multiplexer, the master CPU (the CPU with the
2230MXA-1 master board) must be powered ON before any other

system can access the disk. However, one or more of the
slave CPU's may be OFF without disturbing the operation of
the other CPU's. Powering on or off while the disk is in

use may cause disk errors to occur.

Touch RESET on the keyboard of the master system to initialize the
controller. The disk may now be accessed via the multiplexer from
any attached system. Turn to Section 8.4 for an explanation of how
the multiplexer operates, and a discussion of some programming
considerations.

NOTE:

If you experience difficulty in maintaining valid data
transmission between the disk and one or more systems, the

problem may lie in the connector plugs. A coating
sometimes forms on the pins of a plug during extended
periods of disuse. To remove this coating, which may

inhibit transmission, simply insert and remove the plug in
a jack several times, or cut a piece from an ink-type
eraser small enough to fit between the pins, and use it to
clean the surfaces of the pins. (Transmission problems
also can be created by electrical and magnetic interference
in the cables.)

148

8.4 MULTIPLEXER OPERATION

The disk multiplexer controls all communication between participating
systems and the disk unit. The multiplexer automatically "polls" each system,
beginning with system (or '"station") #1, until it finds a system which is
attempting to access the disk. At that point, the multiplexer permits the
inquiring station to execute one disk statement or command. Following
execution of the statement or command, the multiplexer resumes its polling
until it encounters another system trying to access the disk. The multiplexer
does not monitor the amount of time required to execute each statement, nor

does it limit the number of sectors transferred by a statement. A single
statement may read or write only one sector, but it is equally possible to
carry out multi-sector transfers with one statement. (A MOVE or COPY

statement, for example, might transfer an entire disk platter to a second
platter.) It is recommended, however, that major file maintenance operations
be executed only by a station in Hog Mode (see Sectin 8.5). 1In any case, the
system which is executing the statement retains use of the disk until
statement execution is completed. Control is then transferred to the next
inquiring station. The Model 2230MX provides no external indication of which
system has access to the disk.

In normal operation, the multiplexer imposes no special demands or
conditions upon the programmer. The disk is simply addressed as usual with
the appropriate disk statements and commands. If no other systems are
accessing the disk, the total execution time of a multi-statement disk
operation is not noticeably affected by the Multiplexer. If more than one
multi-statement disk operation is being carried on at once, however, the time
required for each operation is roughly equal to the total time required to
execute all operations, since one statement from each system is executed on
each pass by the multiplexer.

Although in general all systems attached to the multiplexer gain access
to the disk on a statement-by-statement basis, there are cases in which it is
desirable to give one system a period of exclusive and uninterrupted access to
the disk. During certain critical file maintenance or update procedures, for
example, it is important that other systems be prevented from accidentally
interfering in the routine, since they might unknowingly overwrite valuable
data or pointers, or otherwise confuse the situation. Because operators on
remote stations have no way of knowing that critical maintenance procedures
are being carried out at any given time, it is necessary to prevent them from
unknowingly interrupting a routine by locking them out. A system which
monopolizes the disk in this way is said, somewhat picturesquely, to be
"hogging" the disk. Note that every disk platter in the disk unit is hogged
when the disk unit is hogged. Whenever a system is granted access to a disk
platter, it automatically gains control of all platters associated with that
disk drive.

149

8.5 HOG MODE

The Hog Mode feature enables any station plugged into the multiplexer to
seize control of the disk under program control, and lock out all other
stations. The disk drive may be hogged by either of two methods: $GIO hog,
or address hog. $GIO hog consists of a series of microcommands directed from
the CPU to the MXA-1 controller board. In hog address, the disk is accessed
using special disk addresses, called "hog mode addresses". The disk remains
hogged until a disk statement accesses the disk with the normal disk address.

The $GIO hog is recommended since it instructions the multiplexer to hog
or unhog the disk without actually performing a disk operation. Furthermore,
with $GIO hog the program need not be concerned with two sets of disk
addresses since the normal disk addresses are always used with this form of
disk hog; unhogging is done with the $GIO DISK RELEASE statement.

$GIO Hog
The general form of $GIO hog is as follows:

a) to hog the disk:

file number
$GI0 DISK HOG or (4480, alpha variable)
disk device address

b) to release the disk:

file number

$GIO DISK RELEASE { or } (4400, alpha variable)
disk device address

In either case, the alpha variable is required to satisfy the general
syntax of $GIO statements, and must be at least 10 bytes long. File numbers
are values which are assigned within programs to replace disk device
addresses. For example, SELECT #1/B10 assigns #1 to disk device address BIlO.
Disk device addresses are not programmer selectable, but are preset within
each disk controller board.

Example 8-1: Entering and Leaving Hog Mode Using $GIO Hog

110 REM OPEN FILE IN NON-HOG MODE
120 SELECT #1/B20
130 DATA LOAD DC OPEN T#1, "DATAFILE"
(processing)
270 DBACKSPACE #1, BEG
280 DSKIP #1, N S : REM SKIP N SECTORS
290 REM UPDATE RECORD IN HOG MODE
300 $GIO DISK HOG #1 (4480, A$):REM ENTER HOG MODE
310 DATA LOAD DC #1, A,B,C :REM READ RECORD
320 DBACKSPACE #1, 1 S
330 DATA SAVE DC #1, A, B+K, C:REM UPDATE
340 $GI0 DISK RELEASE #1 (4400, A$):REM LEAVE HOG MODE

150

This example illustrates a typical update routine in which hog mode is
activated temporarily during the actual updating (from the time the record is
read until its updated version is written.) The file is opened with the disk
drive in non-hog mode (line 130). Lines 270 and 280 locate the desired record
also while in non-hog mode. Hog mode is entered upon execution of line 300.
(The multiplexer ceases its polling of the stations upon entering hog mode.
This station maintains exclusive access to the entire disk drive until
executing line 340, when hog mode is left. (The hogging station also loses
control of the disk drive if RESET is keyed on the Station's Keyboard.)

Address Hog

When using address hog, a special disk address, called a "hog mode
address", must be used for all disk statements. When, during normal mode
operation, the multiplexer finds a station waiting to execute a disk statement
with a hog mode address, it gives that station hog mode control of the disk
drive, and normal station-polling ceases. The hogging station maintains
control of the disk drive until it executes a disk statement with a non-hog
mode address (or RESET is keyed on the station's keyboard). As soon as a
hogging station completes execution of a disk statement with a non-hog mode
address, hog mode is released, and the normal mode station-polling resumes.

For any multiplexed disk device, the hog mode address can be calculated
by adding HEX(80) to the device address. Sample non-hog and hog mode
addresses are:

NORMAL

(NON-HOG) HOG MODE

ADDRESS ADDRESS
310 390
B10 B90

The hog-mode addresses refer to the same disks as do their non-hog
versions. Thus, if the disk drive normally addresses as 320 is a multiplexed
disk, then 3A0 refers to this same disk. The only difference is that when a
disk statement is executed at address 3A0, it signifies to the multiplexer
that the station executing the disk statement wishes to hog the disk drive.

151

Example 8-2: Entering and Leaving Hog Mode Using Address Hog

290 REM UPDATE RECORD IN HOG MODE

300 SELECT #1/BAO :REM HOG MODE ADDRESS

310 DATA LOAD DC #1, A,B,C :REM ENTER HOG MODE AND READ RECORD
320 DBACKSPACE #1, 1 §

330 SELECT #1/B20 :REM NON-HOG ADDRESS

340 DATA SAVE DC #1, A, B+K, C:REM UPDATE, THEN LEAVE HOG MODE

In the above example line 300 substitutes the hog mode address, BAO, for
its non-hog version, B20, in the device table. Note that this does not affect
the file parameters, and that, of itself, this does not cause the disk drive
to be hogged. Line 310 loads the record, and, since a hog mode address is in
file number #1, activates hog mode for the disk drive. After line 310 is

executed, the multiplexer ceases its polling of the stations. This stations
maintains exclusive access to the entire disk drive, until it executes a disk
statement at a non-hog address. Line 320 backspaces one sector. This disk

statement takes place at a hog mode address (in file number #1), so hog mode
is maintained. Line 330 selects a non-hog address in preparation for leaving
hog mode after the next statement. Line 340 updates the record, and, since
file number #1 now contains a non-hog address, it returns the disk drive to
normal mode after execution is complete.

The following points should be noted in regard to the operation of hog
and non-hog mode:

1. When a multiplexed disk drive is hogged, the entire disk unit (all
platters) is hogged.

2. Only the stations which activates hog mode can deactivate it.
3. If a station attempts to execute a disk statement while another
stations is hogging the disk drive, the station simply waits, with

the processing light on, until hog mode is released.

4. Hog mode is deactivated if RESET is keyed at the hogging station.

152

APPENDIX A
DISK ERROR CODES

CODE 57
Error: ILLEGAL DISK SECTOR ADDRESS
Cause: Ilegal disk sector address specified; value is negative or greater
than 32767. (The System 2200 cannot store a sector address greater
than 32767.)
Action: Correct the program statement in error.
Example: 100 DATASAVE DAF (42000,X) A,B,C,
t+ ERR 57
100 DATASAVE DAF (4200,X) A,B,C (Possible Correction)
CODE 58
Error: EXPECTED DATA RECORD
Cause: A program record or header record was read when a data record was
expected.
Action: Correct the program.
Example: 100 DATALOAD DAF(0,X) A,B,C
T ERR 58
CODE 59
Error: ILLEGAL ALPHA VARIABLE FOR SECTOR ADDRESS
Cause: The alphanumeric string variable designated to receive the next
available address following execution of the DA or BA instrucion is
not at least two bytes long.
Action: Dimension the alpha variable to be at least two characters long.
Example: 10 DIM A$l
100 DATASAVE DA R (F$,A$) X,Y,Z
TERR 59
10 DIM A$2 (Possible Correction)

153

CODE 60

Error: ARRAY TOO SMALL

Cause: The alphanumeric array specified in a DATALOAD BA statement does
not contain enough space to store the sector of information (256
bytes) being read from the disk. The array must contain at
least 256 bytes.

Action: Increase the size of the array.

Example: 10 DIM A$(15)
20 DATALOAD BA R (1000,L) A$()

T ERR 60

10 DIM A$(16) 16 (Possible Correction)

CODE 61

Error: DISK HARDWARE ERROR

Cause: The disk did not recognize or properly respond to the System
2200 during a read or write operation in the proper amount of
time.

Action: Run program again. If error persists, re-initialize the disk.
If failure recurs, contact a Wang Service Representative.

Example: 100 DATASAVE DCF X,Y,Z

1 ERR 61

CODE 62

Error: FILE FULL

Cause: The disk sector being addressed is not located within the
specified catalog file boundaries. When writing data in a
cataloged file, Error 62 signifies that the file is full; Error
62 is also generated if a DSKIP or DBACKSPACE operation has set
the current sector address beyond the limits of the file.

Action: Correct the program.

Example: 100 DATASAVE DCT#2, A$(), B$(), C$Q)

1+ ERR 62

154

CODE 63

Error: MISSING ALPHA ARRAY DESIGNATOR
Cause: An alpha array designator (e.g., A$()) was expected. (Block
operations for disk require an alpha array argument.)
Action: Correct the statement in error.
Example: 100 DATALOAD BA A$
T ERR 63
100 DATALOAD BA A$() (Possible Correction)
CODE 64
Error: SECTOR NOT ON DISK
Cause: The disk sector being addressed is not on the disk. (Maximum
legal sector address depends upon the model of disk used.)
Action: Correct the program statement in error.
Example: 100 MOVEEND F = 10000
+ ERR 64
100 MOVEEND F = 9791 (Possible Correction)

155

CODE 65

Error: DISK HARDWARE MALFUNCTION

Cause: A disk hardware error has occurred (i.e., the disk is not in
file ready position). This could occur, for example, if the
Model 2260 series is in STOP mode or power is not turned on. On
the Model 2270 and 2270A series, the error could result if a
disk platter does not move freely within its jacket.

Action: Insure disk is turned on and properly set up for operation. For
the Model 2260 series, set the disk into STOP mode and then back
into START mode, with the START/STOP selection switch. The
fault light should then go out. For the Model 2270 and 2270A
series, make sure that the disk platter moves freely within its
jacket and that the drive door is tightly shut. If the error
persists, call your Wang Service Representative.

Example: 100 DATALOAD DCF A$,B$

1 ERR 65

CODE 66

Error: FORMAT KEY ENGAGED

Cause: The disk format key is engaged. (The key is normally engaged
only when formatting a disk platter.)

Action: Turn off the format key.

Example: 100 DATASAVE DCF X,Y,Z

1+ ERR 66

CODE 67

Error: DISK FORMAT ERROR

Cause: A disk format error was detected during a disk read or write
operation. The disk 1is not properly formatted so that sector
addresses can be read.

Action: Format the disk again. If the error persists, replace the
platter.

Example: 100 DATALOAD DCF X, Y Z

+ ERR 67

156

CODE 68

Error: LRC ERROR

Cause: A disk longitudinal redundancy check error occurred when reading
a sector. The data may have been written incorrectly, or the
System 2200/Disk Controller could be malfunctioning.

Action: Run program again. If error persists, re-write the bad sector
or replace the platter. If error still persists call a Wang
Service Representative.

Example: 100 DATALOAD DCF A$()

1 ERR 68

CODE 71

Error: CANNOT FIND SECTOR/PROTECTED PLATTER

Cause: A disk seek error occurred; the specified sector could not be
found on the disk. On the Model 2270 and 2270A series, Error 71
is also signalled if an attempt is made to write on a protected
diskette. No data programs can be recorded on a protected
diskette.

Action: Run program again. If error persists, re-initialize (reformat)
the disk platter, or replace it. If error still occurs, call a
Wang Service Representative. For a Wang diskette, make sure
Write Protect hole is covered.

Example: 100 DATALOAD DCF A$()

+ERR 71

157

CODE 72

Error: CYCLIC READ ERROR

Cause: A cyclic redundancy check disk read error occurred; the sector
being addressed has never been written to the disk, or the
sector was incorrectly written on the disk (i.e., the disk
platter was never initially formatted).

Action: Format the disk if it 1is not formatted. If the disk 1is
formatted, re-write the bad sector, or reformat the disk. If
error persists, call a Wang Service Representative.

Example: 100 MOVE END F = 8000

1+ ERR 72

CODE 73

Error: ILLEGAL ALTERING OF A FILE

Cause: The user is attempting to create a file with a name which is
already in the Catalog Index, or is attempting to rename or
write over an existing scratched file without using the proper
syntax.

Action: Use the proper form of the statement. The scratched file name
must be referenced.

Example: SAVE DCF ''SAM1"

TERR 73
SAVE DCF (''SAM1") '"SAM1" (Possible Correction)

CODE 74

Error: CATALOG END ERROR

Cause: The end of Catalog Area falls within the Catalog Index area, or
has been changed by MOVE END to fall within the area already
occupied by cataloged files; or there is no room left in the
Catalog Area to store more information.

Action: Correct the SCRATCH DISK or MOVE END statement, or increase the
size of the Catalog area with MOVE END.

Example: SCRATCH DISK F LS=100, END=50

1+ ERR 74

SCRATCH DISK F LS=100, END=500 (Possible Correction)

158

CODE 75

Error: COMMAND ONLY (Not Programmable)
Cause: A command is being executed on a numbered statement line within
a BASIC program. Commands are not programmable.
Action: Do not use commands as program statements.
Example: 10 SAVE DC R "PROG 1"
t ERR 75
CODE 77
Error: STARTING SECTOR GREATER THAN ENDING SECTOR
Cause: The starting sector address specified is greater than the ending
sector address specified.
Action: Correct the statement in error.
Example: 10 COPY FR(1000, 100)
1t ERR 77
10 COPY FR(100,1000) (Possible Correction)
CODE 78
Error: FILE NOT SCRATCHED
Cause: The user 1is attempting to rename a file which has not been
scratched.
Action: Scratch the file before renaming it.
Example: SAVE DCF ("LINREG") "LINREG2"

T ERR 78

SCRATCH F"LINREG" (Possible Correction)
SAVE DCF ("LINREG") "LINREG2"

159

CODE 79

Error: FILE ALREADY CATALOGED

Cause: An attempt was made to catalog a file with a name that already
exists in the Catalog Index.

Action: Use a different name.

Example: SAVE DCF "MATLIB"

t ERR 79

SAVE DCF "MATLIB1" (Possible Correction)

CODE 80

Error: FILE NOT IN CATALOG

Cause: The user is attempting to address a non-existing file name, or
load a data file as a program, or open a program file as a data
file.

Action: Make sure you are using the correct file name; make sure the
proper disk platter is mounted. (List the contents of the
Catalog Index on the platter to determine the proper names for
all cataloged file.)

Example: LOAD DCF "PRES"

t+ ERR 80

LOAD DCR "'PRES" (Possible Correction)

CODE 81

Error: /XXX DEVICE SPECIFICATION ILLEGAL

Cause: The /xxx device specification cannot be used in this statement.

Action: Correct the statment in error.

Example: 100 DATASAVE DC /310, X

t ERR 81

100 DATASAVE DC #1, X (Possible Correction)

160

CODE 82

Error: NO END OF FILE

Cause: No end-of-file record was recorded on file and therefore could
not be found in a DSKIP END operation.

Action: Correct the file by writing an end-of-file record (with a
DATASAVE DC END or DATASAVE DA END statement).

Example: 100 DSKIP END

T ERR 82

CODE 83

Error: DISK HARDWARE FAILURE

Cause: A disk address cannot be properly transferred from the System
2200 to the disk when processing MOVE or COPY.

Action: Run program again. If error persists, replace the platter. If
replacing the platter does not correct the problem, call a Wang
Service Representative.

Example: COPY FR(100,500)

T ERR 83

CODE 84

Error: NOT ENOUGH SYSTEM 2200 MEMORY AVAILABLE FOR MOVE OR COPY

Cause: A 1K buffer is required in memory for MOVE or COPY operation,
(i.e., 1024 bytes must be available which are not occupied by
program text or variables).

Action: Clear out all or part of program or variables before MOVE or
COPY.

Example: COPY FR(0, 9000)

t+ ERR 84

161

CODE 85

Error: READ-AFTER-WRITE ERROR

Cause: The comparison of read-after-write to a disk sector failed. The
information was not written properly.

Action: Write the information again. If error persists, replace the
platter. If replacing the platter does not correct the problem,
call a Wang Service Representative.

Example: 100 DATASAVE DCF$ X, Y, Z

1 ERR 85

CODE 86

Error: FILE NOT OPEN

Cause: The file was not opened.

Action: Open the file before reading from it.

Example: 100 DATALOAD DC A$

t ERR 86
10 DATALOAD DC OPEN F "DATFIL" (Possible Correction)

CODE 87

Error: COMMON VARTABLE REQUIRED

Cause: The variable in the LOAD DA statement, used to receive the
sector address of the next available sector after the load, is
not a common variable.

Action: Define the variable to be common.

Example: 10 LOAD DAR (100,L)

4+ ERR 87
5 COM L (Possible Correction)

162

CODE 88
Error:
Cause:

Action:

Example:

CATALOG INDEX FULL
There is no more room in the Catalog Index for a new name.

Scratch any unwanted files and compress the catalog using a MOVE
statement, or mount a new disk platter.

SAVE DCF '"PRGM"
1 ERR 88

163

APPENDIX B

A GLOSSARY OF DISK TERMINOLOGY

absolute sector
address

Absolute Sector

access

argument

argument list

Automatic File

binary address

binary search

blocked records

Catalog Area

Catalog Index

An address permanently assigned to a address disk sector.

A mode of disk operation which enables the programmer to
address individual sectors on disk. Also referred to as
'direct addressing' mode.

See 'disk access' and 'file access'.

In a DATASAVE DC or DA statement, a discrete value,
specified directly (as a numeric value or literal string
in quotes) or indirectly (as the value of a variable or
array element). Each argument occupies a single field
in the record on disk, and 1is separated from
neighboring fields by a Start-of-Value (SOV) byte. 1In a
DATALOAD DC or DA statement, each receiving variable or
array element which receives one value when the record
is read from disk is regarded as a receiving argument.
For the most part, multiple arguments in a statement
must be separated by commas; however, when an array
designator is used to specify an entire array, each
element of the array is regarded as a separate argument.

The 1list of all arguments in a DATASAVE DC/DA or
DATALOAD DC/DA statement.

A mode of disk operation in which the Cataloging Mode
names and locations of files on disk are maintained
automatically by the system in a Catalog Index.

A sector address expressed as a two-byte binary number.

A dichotomizing search in which the number of records in
the file is divided into two equal parts at each step in
the search.

Two or more short records stored in one sector. Since
the minimum length of any record is, from the system's
point of view, one sector, the blocking of multiple
records in a single sector must be a function of user's
software.

The area on a disk platter reserved for the storage of
cataloged files.

An index containing names and pointers for each
cataloged file in the Catalog Area.

164

command

control byte

cyclic redundancy
check (CRC)

cylinder

data file

data record

default address

default file

device address

A BASIC instruction which provides the operator with
control of a major system function directly from the
keyboard. Commands are entered and executed immediately
by the operator; they cannot be stored in memory as part
of a program.

Any of several special bytes created automatically by
the system to help it keep track of data stored on the
disk, and which are completely transparent to the user's
software. See also 'start-of-value control byte' and
'sector control byte'.

A special checksum test automatically check performed by
the disk wunit on all data read from the disk.
Abbreviated CRC.

On the Model 2260 series, the number of sectors which
can be accessed without repositioning the access arm (96
sectors).

A collection of related data records treated as a
logical unit. For example, an inventory file contains a
number of inventory records, each of which in turn
consists of specified items of information about a
particular item in the inventory. In catalog mode, a
data file can be opened or reopened by name.

See 'logical data record'.

The device address for a System 2200 peripheral which is
used automatically by the system when no other address
is specified for the disk wunit, the system default
address is 310. The disk default address 1is always
stored opposite the default file number (#0) in the
Device Table, and may be changed temporarily with a
SELECT DISK statement. However, the system default
address (310) is automatically returned to the default
slot upon Master Initialization. See also 'device
address'.

The file number in the Device Table number automatically
used by the system when a disk statement or command is
executed which does not specify a file number. The
default file number 1is always #0, and cannot be

changed. The default disk address is always stored in
the slot opposite the default file number. See also
'default address', 'Device Table', and 'file number’.

A three-digit hexadecimal code wused by the CPU to
identify each peripheral device. The device address is
set in the controller board for each peripheral either
at the factory or by a Wang Service Representative, and
should be clearly printed on the top surface of the
controller board. See also 'default address', 'device
type', and 'unit device address'.

165

Device Table -

device type -

disk access -

disk drive -

disk latency period

A special section of memory used to store disk device
addresses and sector address parameters for currently
opened files on disk. It consists of seven rows, or
"slots", identified by file numbers #0 - #6. A device
address and a set of sector address parameters for an
open file can be stored in each slot. The slots
opposite file numbers #1 - #6 are also used for other
I/0 devices in addition to the disk (such as paper tape
readers, and card readers). The default slot (opposite
#0) is used only for the disk, however. Default
addresses for other 1/0 devices are stored in another
section of memory. See also 'default address', 'default
file number', and 'file number'.

The first digit of the three-digit device address. For
the disk unit, the device type can be either '3' or 'B'
(e.g., 3XX, or BXX). When used in conjunction with the
'T' parameter, the device type determines which disk
platter in a multi-platter disk unit is to be accessed.
In this case, a device type of '3' identifies the 'F'
disk platter, while a device type of 'B' identifies the
'R' disk platter. For the Model 2270-1 or Model 2270A-1
Single Removable Diskette Drive, and for the third
platter of the Model 2270-3 or Model 2270A-3, a device
type of 'B' is illegal. See also device address' and
'unit device address'.

Any disk read or write operation. See also ‘'file
access'.

1. Broadly, a disk unit containing one or more disk
platters.

2. More specifically, the assembly (consisting of drive
motor, spindle, and access arm(s)) which drives the
disk platter(s) and is activated by a single disk
command. In the Model 2260BC, C series, both
platters are driven by a single disk drive; in the
Model 2270 and 2270A series, each platter is driven
by an independent drive. See also 'disk platter'.

- The period of time which elapses from period the
time the read/write head positions itself to a track
until the desired sector in that track rotates to
the read/write head's position. Disk latency time
is determined by the rotation speed of the disk
unit. Latency time may be important for random
access operations; it is generally negligible in
sequential access operations. See also 'track
access time'.

166

disk platter -

ending sector -
address

end-of-file trailer -

expression -

field -

file -

file access -

The flat, circular plastic or metal plate which is
coated on 1its recording surface with a magnetic
substance such as iron oxide, and which serves as the
storage medium in a disk unit. Each platter in the
Model 2260BC, C series has two recording surfaces;
each platter in the Model 2270 and 2270A series has
only a single recording surface.

The address of the last sector in a file or multi-
sector logical record. See 'starting sector address'
and 'absolute sector address'.

A special record, one sector in length, which marks
the end of currently stored data in a data file. The
end-of-file record is created with a DATASAVE DC END
or DATASAVE DA END statement. Creation of an
end-of-file trailer record 1in a cataloged file
automatically causes the 'used' columm in the Catalog
Index to be wupdated, and enables the programmer to
check for the end-of-file with an IF END THEN
statement, or to skip to the end-of-file of a
cataloged file with a DSKIP END statement.

A numeric value (e.g., '1234'), operation (e.g.,
'A*¥B'), variable (e.g., 'N') or array element (e.g.,
'N(3)').

1. An individual item of data within a logical data
record on the disk. Each argument in the DATASAVE
DC or DATASAVE DA argument list is recorded as a
single field (marked off by SOV control bytes) in
the logical record created by the statement.

2. A specified section of a record reserved for a
particular type of information. For example, a
'key field' consists of a number of bytes located
at a specific place in a record which always holds
the key value for the record.

A collection of related records treated as a logical
unit. Files may be of two types, program files and
data files. 1In catalog mode, files can be created and
accessed by name. See 'data file' and 'program file'.

1. Any disk operation in which information (programs
or data) is read from or written in a file on disk.

2. Any disk operation which results in positioning
the read/write head to a location preparatory to
reading or writing information in a file. See
also 'disk access'.

167

file number -

hashings technique -

header record -

Hog Mode -

key field -

key value -

logical data -

logical record -

longitudinal -
redundancy check
(LRC)

multiplexing -

One of the seven numbers #0 - #6 associated with slots
in the Device Table, and used to identify currently
opened files on disk. File numbers #1 - #6 are also
used to identify non-disk files. A file number 1is
always preceded by a "#" symbol. See 'default file
number' and 'Device Table'.

A technique for storing and accessing information on
disk 1n which a specialized algorithm, called a 'hash
function'", is used to convert a record's key value into
an absolute sector address, which is then used as the
location at which the record is stored. This technique
is used by the system in catalog mode to store file
names in the Catalog Index.

A record containing special control information and
preceding all other records in a file. Every program
file saved on disk begins with a one-sector header
record. In cataloged programs, the header contains the
program name, along with catalog system control
information. Data files on disk have no header record,
but cataloged data files do have a system control record
at the end of the file which serves the same purpose as
a header. See 'trailer record' and 'system control
record’'.

A mode of disk multiplexer operation in which one
station obtains exclusive access to the disk, while all
other stations are locked out.

A field in a record on the disk consisting of one or
more bytes, and containing the key value for that
record. See 'field' and 'key value'.

A numeric or alphanumeric value in a record wused to
identify the record for purposes of access and control.
See 'key field', 'sort', and 'hashing technique'.

A data record on the disk created by a record DATASAVE
DC or DATASAVE DA statement which occupies one or more
sectors, and contains all of the data from the DATASAVE
DC or DATASAVE DA argument list. See also 'record' and
'data tile'.

See 'logical data.'
A checksum test performed by the system on each sector

of data read from the disk. Abbreviated LRC.

A process of allocating disk time to a number of systems
by sequentially interleaving disk operations from the
various inquiring systems.

168

multi-volume

parameter

pointer

program file

program record

protect parameter

protected program

read-after-write
verification

read/write head

A file occupying two or more disk file platters (or tape
cassettes). Each separate platter 1is considered a
different '"volume" of the file. Each volume must be
carefully identified with a file name and a volume
number.

An element in a BASIC statement or command which follows
the BASIC verb, and whose function and meaning are
defined for the purposes of the statement. Parameters
may be of two types, constant (or fixed) and variable.
The value of a fixed parameter is predefined and cannot
be altered by the wuser. The value of a variable
parameter is specified by the user, although there are
normally certain limitations imposed upon the range of
values which may be assigned to a particular parameter.
A fixed parameter is always indicated in the general
form of a statement or command as an uppercase letter
(e.g., 'P', 'DC', 'S', etc.), while a variable parameter
is indicated with a lowercase letter (e.g., 'xxx', 'n')
or described with a lowercase literal string (e.g.,
'name', 'sector address', etc.).

An absolute sector address or displacement which
"points" to the location of a record on the disk.

A file on disk consisting of a single BASIC program or
program segment, and optionally also containing extra
sectors reserved for possible future expansion of the
program. A program file always begins with a header
record and ends with a trailer record. 1In catalog mode,
a program file can be saved and loaded by name.

A sector in a program file between the header record and
the trailer record which contains program text. See
'header record' and 'trailer record’.

A special parameter ('P') used to protect programs saved
on disk.

A program on disk or tape which can be loaded and run,
but cannot be listed or resaved.

An optional verification check which

can be performed on each sector of data as it is written
on the disk. The read-after-write check is specified by
including the dollar sign ('$') parameter in a disk
statement or command. However, a read-after-write check
effectively doubles the execution time of the disk
operation.

An electromagnetic recording head which reads and writes
information on the recording surface of a disk platter.

169

record

sector

gsector control
bytes

sort

starting sector

start-of-value
control byte

statement

system control
record

A collection of related items of data treated as a
logical unit. See 'logical data' and 'data file'

The basic unit of storage on a disk platter, consisting
of a data field with a fixed length of 256 bytes, an
absolute sector address, and certain control
information. Each sector is regarded as a discrete
unit, and is directly accessible by the system.

Special control bytes containing system bytes control
information which are written automatically by the
system into each sector of a logical data record and
each program record stored on disk. Each sector in a
logical data record contains three sector control bytes;
each one-sector program record in a program file
contains two sector control bytes. The sector control
bytes are transparent to the user's are.

1. To arrange data sequentially in ascending or
descending order.

2. To sequentially order logical data records in a file
based upon the key values of the records.

3. The act of performing a sorting operationm.

The address of the first sector in a address file or
multi-sector logical record. See also 'ending sector
address'

A control byte created automatically by the system inde-
pendent of user software, and preflxed to each field in
a logical record when the record is written with a
DATASAVE DC or DATASAVE DA statement. This control byte
separates fields within a record and marks the beginning
of each new field. The start-of-value bytes are not
automatically written when a DATASAVE BA statement is
executed. Abbreviated SOV.

Broadly, a generic term for all Wang BASIC programmable
instructions. Every line in a BASIC program consists of
one or more statements, each of which directs the system
to perform a specific operation or sequence of
operations. Although statements are, by definition,
programmable instructions, most statements also can be
executed in Immediate Mode simply by entering them
without a preceding line number.

A special record one sector in length which always occu-

.pies the last sector of a cataloged data file, and

contains control information and pointers for the file.

A system control record is automatically created and
updated by the system for each data file maintained 1n
catalog mode; it is completely transparent to the user's
software.

170

temporary files

track

track access
time

trailer record

unit device
address

work files

Files established outside the Catalog Area on a disk,
generally for the storage of transient data. Temporary
files cannot be named, and no entry is listed for them
in the Catalog Index. They can, however, be accessed
with catalog procedures.

Any of the concentric circular electromagnetic paths
into which the recording surface of a disk platter is
divided. Each track, in turn, is subdivided into a
number of sectors. The number of tracks on a platter
differs according to the disk model and configuration.
See 'sector' and 'disk platter’.

The time required for the access assembly to move the
read/write head from its current position to the track
containing the desired sector. For random access
operations, the track access time may become significant
if the sectors to be accessed are scattered on widely
separated tracks. For most sequential access
operations, however, the track access time is
negligible. See also 'disk latency time'.

1. In program files, the sector immediately following
the 1last program record. The trailer record
contains control information, written automatically
by the system, along with the last few lines of
program text.

2. In data files, a special record created by
specifying the 'END' parameter in a DATASAVE DC or
DATASAVE DA statement, to mark the limit of wvalid
data in the file. Also referred to as an
"end-of-file" trailer record. See 'end-of-file
trailer record'.

The last two digits of the three-digit device address
(e.g., X10, X20, X50, etc.), which identify individual
disk units when more than one is attached to the same
system. See 'device address', and 'device type'.

See 'temporary files'.

171

APPENDIX C
BIBLIOGRAPHY

The techniques involved 1in creating, maintaining, and accessing
disk-based data files are the subjects of an extensive number of textbooks and
articles. The authors included in this bibliography approach the programming
problems associated with disk storage from a variety of different
perspectives, and with varying degrees of sophistication. In general,
however, the bibliography has been heavily weighted toward the relative
novice, although in all cases some background in programming is required.

It is suggested that the programmer with little or no experience in disk
operations begin with a text which provides a general survey of the standard
types of disk file structures and access techniques. (The titles identified
with asterisks provide such a survey at an introductory or intermediate
level.) The number of disk storage and access techniques which have been
developed over the last 10 or 15 years is considerable, even if one restricts
oneself only to the '"standard" techniques, and each has particular strengths
and weaknesses which make it suitable for some applications and most
unsuitable for others. Armed with an overview of the available systems and
techniques, the programmer will be in a position to determine which of them
most appropriately suit his own application. He can then proceed to a
textbook or article which treats the chosen technique(s) in greater depth.

1. Bosco, R.L., Data Bases, Computers, and the Social Sciences
(Wiley-Interscience, New York, 1970).

2. Brooks, F.P., and K.E. Iverson, Automatic Data Processing (John
Wiley and Sons, New York, 1963).

3. Clemenson, W.D., "File Organization and Search Technigques," Annual

Review of Information Science and Technology, Volume 1, Ed. C.

Cuadra (John Wiley and Sons, New York, 1966).

4, Daley, R.C., and P.G. Newmann, '"A General Purpose File System for
Secondary Storage," Proceedings of the AFIPS 1965 Fall Joint
Computer Conference, Volume 27, Part 1 (Spartan Books, New York).

5. Dodd, G.G., "Elements of Data Management Systems," Computer Surveys,

Volume 1, No. 2, June 1966.

*6. Forsythe, A.I., and T.A. Keenan, E.I. Organick, and W. Stenberg,
Computer Science: A First Course (John Wiley and Sons, New York,

1969).

7. Gear, C.W., Computer Organization and Programming (McGraw Hill, New
York, 1969).

8. Gruenberger, F. (Ed.), Critical Factors in Data Management

(Prentice-Hall, Englewood Cliffs, N.J., 1969).

172

10.

11.

12.

13.

14.

*15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

*25.

Hsiao, D. and Harary, F., "A Formal System for Information Retrieval
from Files," Communications of the ACM, Volume 13, Number 2
(February, 1970).

Hull, T.E. and D.F. Day, Computers and Problem Solving
(Addison-Wesley (Canada) Ltd., Don Mills, Ontario, 1970).

Iverson, K.E., A Programming Language (John Wiley and Sons, New
York, 1962).

Johnson, L.R., "Indirect Chaining Method for Addressing on Secondary
Keys," Communications of the ACM, Volume 4, Number 4 (May 1961).

Korfhage, R.R., Logic and Algorithms (John Wiley and Sons, New York,
1966).

Knuth, D.E., The Art of Computer Programming, Volumes I and III
(Addison-Wesley, Reading, Mass., 1968).

Lefkowitz, D., File Structures for On-Line Systems (Spartan Books,
New York, 1969).

Lowe, T.C., "The Influence of Data-Base Characteristics and Usage on
Direct Access File Organization," Journal of the ACM, Volume 15,
Number 4 (October, 1968).

Martin, J., Design of Real-Time Computer Systems (Prentice-Hall,
Englewood Cliffs, N.J., 1967).

Mauer, W.D., "An Improved Hash Code for Scatter Storage,"
Communications of the ACM, Volume 11, Number 1 (January, 1968).

Mcllroy, M.D., "A Variant Method of File Searching," Communications
of the ACM, Volume 6, Number 1 (January, 1963).

Meadow, C.T., The Analysis of Information Systems (John Wiley and
Sons, New York, 1967).

Morris, R., "Scatter Storage Techniques,"” Communications of 'the ACM,
Volume 11, Number 1, (January, 1968).

Peterson, W.W., "Addressing for Random-Access Storage,'" IBM Journal
of Research and Development, Volume 1 (1957).

Rosove, P.E., Developing Computer-Based Information Systems (John
Wiley and Sons, New York, 1967).

Williams, W.F., Principles of Automatic Information Retrieval (The
Business Press, Elmhurst, Illinois, 1968).

Yourdon, E., Design of On-Line Computer Systems (Prentice-Hall,
Englewood Cliffs, N.J., 1972).

*Titles marked with an asterisk are intermediate-level texts recommended for
programmers with limited background in disk operations.

173

APPENDIX D
DISK FILE BACK-UP

INTRODUCTION

Probably the most common form of the file security is file backup. File
backup is simply maintaining a backup copy of important files. Backing up
important files is an area that should be given high priority.

Disk storage devices are basically very reliable. However, like any
other storage media, disk platters are subject to accidental damage or
destruction. Losing power during an update, dropping a disk cartridge, and

exposing the disk to a magnetic device are just a few of the things that could
cause the destruction of data.

Most computer users cannot afford the cost and inconvenience associated
with the reconstruction of a destroyed disk file. Some companies have been
severely crippled when a critical file was accidentally destroyed because they
did not adhere to rigid backup procedures for all essential programs and data
files.

Many small computer users think that the cost and time associated with
maintaining backup files is high. The only cost associated with file backup
is the price of an extra storage device such as a disk platter or diskette.
The time involved backing up a file is minimal when the alternatives are
considered.

FREQUENCY

There is no absolute rule governing backup frequency. It normally
depends upon several factors. One important factor is the amount of activity
or the number of transactions processed against a master file. With high
activity, a user may wish to back up a data file daily. With fewer

transactions, a frequency of once or twice a week may be sufficient.

Another important factor is time. For example, to back up a full 2260
series disk platter can take up to 30 minutes. Therefore, this time should be
weighed against the time it would take to reconstruct the data if the file
were destroyed. While doing so, the user should also consider the overall
effect the time spent reconstructing a critical file would have on his
business.

Each user, therefore, should carefully evalute the factors relating to

his own business and data processing requirements. As a general rule, it 1is
recommended that important files be backed up with a frequency that matches
the processing activity of that file. 1In other words, if a file 1is updated

daily, it should be backed up daily; if a file is updated weekly, it should be
backed up weekly.

It is also a good practice to create an extra copy of a backup platter

and/or keep more than one generation of these platters. Very often, the
backup platter can be ruined by the same problem that destroyed the original
platter. Having this extra backup platter provides an additional measure of

protection against time-consuming and costly data reconstruction,

174

Some companies also periodically store backup files at an off-premise
location. By doing so, they protect themselves against the danger of fire,
explosions, or some other disaster.

PROCEDURE

The procedure for backing up files varies from one application to
another. With Wang-provided application software, it is normally a matter of
mounting a backup diskette or disk platter, loading the proper module, and
following the instruction prompts provided.

A user may back up a disk platter in one of the three following ways:
1. COPY statement

MOVE statement
COPY/VERIFY Utility

W

COPY Statement

The COPY statement copies the entire contents of a disk platter, or a
specified portion of 1ts contents, to another disk platter in the same disk
unit. The COPY statement is the only "Absolute Sector Addressing™ mode, BASIC
statement that should be used in backing up a file.

Example:

10 coPY FR (0, 2000)
20 VERIFY R (0, 2000)

Statement 10 copies sectors zero through 2000 from the fixed (F) platter
to the same sectors on the removable (R) platter. Statement 20 verifies

through longitudinal and cyclical redundancy checking (LRC + CRC) that the
data recorded on the backup disk cartridge is valid.

Starting and ending sector addresses of the information to be copied
should always be included in the COPY statement. If the entire contents of a
disk platter are copied, the beginning sector address should be zero and the
ending address should be the last sector on the platter.

If an error is encountered following a COPY operation, the process
should be repeated. Repeated failure could indicate a faulty disk platter.
If the error persists with another platter, a Wang Service Representative
should be called.

Additional information concerning the use of the COPY statement can be
found in Chapter 6 of this manual.

MOVE Statement

The MOVE statement, used only with cataloged files, provides another
means of backing up disk files. 1In addition to copying the catalog index and
data files, it also provides one additional function. The MOVE statement
eliminates scratched files from the catalog and compresses still-active files
into the available space.

175

Since it only copies active files, the MOVE statement results in a
faster copy than the COPY statement. However, caution should be exercised
when using MOVE that only cataloged files, are on the disk platter. Any other
files will be lost unless a COPY statement is used.

Example:

10 MOVE FR
20 VERIFY F

Statement 10 copies all catalog information from the "F" disk platter to
the "R" disk platter. Statement 20 checks the "R" disk platter to ensure that
all information has been copied correctly.

Additional information concerning the use of the MOVE statement can be
found in Chapters 2 and 5 of this manual.

When using either the COPY or MOVE statements, it is very critical that
the "F" and '"R" parameters are positioned correctly. Reversing these two
characters will destroy the original files. To avoid this occurrence, a small
utility can be written, incorporating the MOVE and COPY statements, which
provides the necessary prompts on the CRT and other safeguards to prevent the
accidental destruction of a disk platter that is to be copied.

COPY/VERIFY Utility
There is one other way to back up important files. This final method
utilizes the ISS utility COPY/VERIFY and can be used by those customers who

have purchases Wang's Integrated Support System (ISS) software packages.

The COPY/VERIFY utility offers more flexibility than the COPY and MOVE
statements and offers the following features:

1. Copied files may be renamed and may replace existing files on the
output disk.

2. Selected files or all files may be copied without altering files on
the output platter.

3. Copying is allowed between any two platter/disk addresses.

4. Copying is accomplished by read/write operations rather than COPY or
MOVE statements.

5. The verify operation actually compares the data read from the input
file to the data written on the output file to insure that it has
been copied correctly.

6. Additional sectors may be added to the copied file.

The operating instructions for the COPY/VERIFY utility are outlined in
Chapter 6 of the Integrated Support System User Manual.

176

With all diskette devices, accidental destruction of data can be avoided
by the proper use of the Write Protect feature. A small notch along the edge
of the diskette's plastic jacket controls the Write Protect mechanism. When
this notch is uncovered, the diskette is (write) protected. No information
can be recorded on it, nor can it be formatted.

In conclusion, file backup is extremely important to all data processing
installations. Unless adequate precautions are taken now, serious
consequences may result later. We hope this discussion will help avoid any
serious and costly problems resulting from inadequate backup.

177

Address .
Argument
Argument List .

Backup Platters, Importance of

Basic Rules of Syntax .
Binary Search .

Catalog .
Catalog Area
Catalog Index .

Catalog Index, Sample Llstlng .

Catalog Procedures .
Catalog, Initialization of

Chaining Programs from Disk .

Command . .
Control Informatlon .
copy

COPY Examples . .
Current Sector Address

Data File .

Data Record .

DATALOAD BA
DATALOAD BA Examples
DATALOAD DA
DATALOAD DA Examples
DATALOAD DC
DATALOAD DC Examples .
DATALOAD DC OPEN .
DATALOAD DC OPEN Examples .
DATASAVE BA . e
DATASAVE BA Examples
DATASAVE DA
DATASAVE DA Examples
DATASAVE DC
DATASAVE DC Examples
DATASAVE DC CLOSE . .
DATASAVE DC CLOSE Examples
DATASAVE DC END . .
DATASAVE DC END Examples
DATASAVE DC OPEN .
DATASAVE DC OPEN Examples .
DBACKSPACE . .
DBACKSPACE Examples .
Default Disk Address
Default File Number .
Device Selection

Device Table

Device Type . ..

Disk Device Address .

DSKIP .

DSKIP Examples

INDEX

S T

178

7, 165

22, 165
24, 165
120, 175
76, 127
121

6, 7

7, 8

7, 8

14

6, 7

8

13

75, 166

68

119, 128
119, 129
47

15, 21

18, 21, 68
117, 130
118, 131
115, 132
115, 133
26, 78

27, 78

24, 79

25, 80
117, 134
117, 135
113, 136
113, 137
18, 81

18, 82

50, 83

50, 83

19

19

16, 66, 84
17, 66, 85
28, 52, 86
31, 52, 86
38, 56

38

39

38

53

38, 53, 56
28, 52, 87
28, 52, 87

'"END' Parameter .
End-of-File Trailer Record
Ending Sector Address .

'F' Parameter .

Field .

File Numbers . e
Fixed Disk Platter . .

Hierarchy of Data .
Hog Mode

IF END THEN .
Indirect Addressing of DlSk Unlt
Inter-Field Gaps

LIMITS .

LIMITS Examples . e e e e e
LIST DC e e e e e e
LIST DC Examples

LOAD DA Command

LOAD DA Examples

LOAD DA Statement

LOAD DC Command . e e e .
LOAD DC Command Examples . .
LOAD DC Statement . e e e e
LOAD DC Statement Examples
Logical Record .

'LS' Parameter

MOVE . .
MOVE END
MOVE Examples .

Multiple Disk Units, Addresslng

Scheme for .
Multiplex Operations

Overlaying Programs from Disk .

Program File
Protect Parameter .

'R' Parameter .
Read-After-Write

'S' Parameter

SAVE DA

SAVE DA Examples
SAVEDC

SAVE DC Examples
SCRATCH

SCRATCH DISK .o
SCRATCH DISK Examples .
Scratched File

179

19, 115

19, 115
168

1, 2

22

38, 44
1, 2

15

151

32

40, 41
70

71, 88
72, 89
14, 90
14, 90
110, 138
110, 139
111, 140
11, 91
11, 91
12, 92
13, 93
16, 23, 116
8

34, 94
96

34, 95
57

150

13, 112
9, 61, 108
98, 143
1, 2

82, 97, 135, 143
52

109, 142
110, 143
9, 97
10, 98
33, 99
8, 101
8, 102
33, 165

Scratched Files, Reusing
Sector Address . e

Sector Control Bytes . .

Sector Numbering

'T' Parameter .

Temporary Work Files

T-connector .

Trailer Record «
Unformatted Records

Unit Device Address
Variables, Used to Store File Numbers
VERIFY

180

106,

35,

65

1
68
53

53
62
145
19
117
53
46
103

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

700-31591

TITLEOF MANUAL WANG BASIC DISK REFERENCE MANUAL

COMMENTS:

Fold

Fold

{Please tape, Postal regulations prohibit the use of staples.}

(WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Lowell, Mass.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

Fold

Printed in U.S.A.

13-1019

Cut along dotted line.

North America:

\

Alabama District of Louisiana New Hampshire Oregon Virginia
Birmingham Columbia Baton Rouge East Derry Beaverton Newport News
Mobile Washington Metairie Manchester Eugene Richmond
Pennsylvania i
Alaska Florida Maryland :m "Jersey Pennsyt :::::mgton
Anchorage Ja.cks‘on\n“e Rockville Mountainside Camp Hill Spokane
Miami Towson Erie W
Arizona Orlando New Mexico Philadelphia isconsin
Phoenix Tampa rassach"““s Albuquerque Pittsburgh Brookfield
Tucson . oston vy Madison
Y } Georgia E_urllington Tew York ayne Milwaukee
California Atlanta ittleton Ibany Rhode island
- Lowell Buffalo Cranston
Fresno Hawaii Tewksbury Lake Success
Inglewood Honolulu Worcester New York City South Carolina
Los Angeles — . Rochester Charleston
Sacramento |||l-n0|s Michigen Syracuse Columbia
San Diego Chicago Grand Rapids .
San Francisco Morton Okemos North Carolina Tennessee
San Mateo Park Ridge Southfield Charlotte Chattanooga Canada
Sunnyvale Rock Island Greensboro Knoxville Wang Laboratories
Tustin Indi Minnesota Raleigh Memphis (Canada) L.td.
Ventura '“?“““’ i Eden Prairie Ohio Nashville Don Mills, Ontario
Indianapolis o i T Calgary, Alberta
Colorado South Bend Missouri glr:cmrt\,atsl A::ti.ns Edmonton, Al
olumbu o :
Denver Kansas Creve Coeur Middleburg Heights Dallas oannineg, Manitoba
Connecticut ‘%z:;:d Park (h)lr::;:ska Toledo g w?m . Montre’al, Quebec
New Haven Oklahoma an Antonio Burnaby, B.C.
Stamford Kentucky Nevada Oklahoma City Utah
Wethersfield Louisville Reno Tulsa Salt Lake City
International Subsidiaries:
Australia Great Britain Republic of South Africa International Representatives:
Wang Computer Pty. Ltd. wWang Electronics Lid. Wang Computers
Sydney, NSW Northwood Hills, Middiesex (South Africa) (Pty.) Ltd. .
Melbourne, Vic. Northwood, Middlesex Bordeaux, Transvaal Arqepuna Kenya
Canberra, A.C.T. Harrogate, Yorkshire Durban Bolivia Korea
Brisbane, Qid. Glasgow, Scotland Capetown g:f;ary islands Lebanon
Adelaide, S.A. Uxbridge, Middlesex e Liberia
Perth, W.A. 9 Sweden Colombia Malaysia
Darwin, N.T. Hong Kong Wang Skandinaviska AB Costa Rica Mexico
’ o Solna Cyprus Mor:
Austria n’::gg:g:gﬂc Ltd. Gothenburg Denmark Nicac:;;ga
Wang Gesellschaft M.B.H. Arloev Dominican Republic Nigeria
Vienna Japen Vasteras Ef:uador Norway
Belgium Wang Computer Ltd. Switzerland z':'a“d Pakistan
Wang Europe, S.A. Tokyo Wang $.A./A.G. ana Pe'}‘ .
Brussels Zurich greece \ Philippines
Erpe-Mere Netherlands Bemn uatemala Portugal
i Wang Nederland B.V Pully iceland Saudi Arabia
Brazil "vang Nederland B.V. India Spain
Wang do Brasil lisselstein West Germany Indonesia Sri Lanka
Computadores Ltda. Wang Laboratories GmbH Iran Syria
Rio de Janeiro New Zealand Berlin Ireland Thailand
Sao Paulo Wang Computer Ltd. Cologne Israel Tunisia
. Grey Lynn, Auckland Duesseldorf ltaly Turkey
China . Fellbach Jamaica United Arab Emirates
¥v?n9 lr%dgstnal Co.. Ld. panama Frankfurt/M., Japan Venezuela
aipei, Tawan Wang de Panama Freiburg/Brsg. Jordan Yugoslavia
France (CPEC) S.A. Hamburg
Wang France S.A.R.L. Panama Hannover
Bagnolet " . Kassel
Ecully Republic of Singapore Munich
Nantes Wang Computer Pte., Ltd. Nuernberg
Toulouse Singapore Stuttgart
wa NG LABORATORIES, INC.)
ONE INDUSTRIAL AVENUE. LOWELL. MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343.8789, TELEX 94-7421 Printed in U.S.A,
700-31591
4-79-2,.5M

Price: see current list

	Table of Contents
	Chapter 1: Accessing a Disk Drive
	Chapter 2: Automatic File Cataloging Procedures
	Chapter 3: Disk Device Selection and Multiple Data Files
	Chapter 4: Efficient Use of the Disk
	Chapter 5: Automatic File Cataloging Statements and Commands
	DATALOAD DC
	DATALOAD DC OPEN
	DATASAVE DC
	DATASAVE DC CLOSE
	DATASAVE DC OPEN
	DBACKSPACE
	DSKIP
	LIMITS
	LIST DC
	LOAD DC (Command Only; Not Programmable)
	LOAD DC (Statement)
	MOVE
	MOVE END
	SAVE DC (Command Only; Not Programmable)
	SCRATCH
	SCRATCH DISK
	VERIFY

	Chapter 6: Absolute Sector Addressing
	Chapter 7: Absolute Sector Addressing Statements and Commands
	COPY
	DATALOAD BA
	DATALOAD DA
	DATASAVE BA
	DATASAVE DA
	LOAD DA (Command Only; Not Programmable)
	LOAD DA (Statement)
	SAVE DA (Command Only; Not Programmable)

	Chapter 8: The Disk Multiplexer (Model 2230MXA-1/MXB-1)
	Appendix A: Disk Error Codes
	Appendix B: A Glossary of Disk Terminology
	Appendix C: Bibliography
	Appendix D: Disk File Back-Up
	Index

