SYSTEM 2200
ANG DISK MEMORY
° REFERENGE MANUAL

(Models 2230, 2260, 2270, 2224, and 2230MX)

el 2200

SYSTEM
2200

Disk Memory

Reference
Manual

(MODELS 2230, 2260, 2270, 2224, and 2230MX)

©Wang Laboratories, Inc., 1974

LABORATORIES, INC.
N‘ U ANG ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769. TELEX 94-7421

i

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use
of this manual or any programs contained herein.

LABORATORIES, INC.
WANG ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 861-4111, TWX 710 343-6769, TELEX 94-7421

HOW TO USE THIS MANUAL

The System 2200 Disk Reference Manual is designed to serve as an
operator's guide to the disk hardware, as a programmer's guide to disk
control, and as a reference manual for the BASIC statements which govern disk
operations. These three functions are, to the extent possible, carried out in
individual chapters or groups of chapters.

Chapter 1 provides an introduction to the concept of information
storage and retrieval on the disk, including an overview of the disk hardware
and a general discussion of the principles of disk onperation. Chapters 2 and
3 offer more specific operational data, including power-on and formatting
procedures, etc., on the two types of disk drives marketed by Wang. (The
"hard disks," Models 2230 and 2260, are covered in Chapter 2; the "flexible
disks," Model 2270 series, are covered in Chapter 3.)

The general procedures for addressing and accessing a disk drive under
program control are explained in Chapter 4. These procedures are common to
all disk models, and to both modes of disk operation.

Two modes of disk operation are provided by the System 2200, Automatic
File Cataloging Mode and Absolute Sector Addressing Mode. The sequence of
Chapters 5 through 7 constitute a "programmer's guide" to the control of disk
operations 1in the Automatic File Cataloging Mode. This mode automatically
performs many of the complex "housekeeping" tasks associated with disk file
maintenance, and is recommended for programmers with T1limited experience in
disk programming. Chapter 5 is particularly designed for the novice, serving
as a primer in the fundamental concepts of disk management.

Chapter 8 is a reference chapter for the BASIC statements which comprise
the Automatic File Cataloging Mode. Information on each statement is
presented in a brief, compact format which makes it quickly accessible to the
programmer who is already familiar with the general principles of Automatic
File Cataloging.

Chapter 9 serves as a programmer's guide for the second mode of disk
operation, Absolute Sector Addressing Mode. This mode enables the programmer
to directly access any sector on the disk, providing vast flexibility in the
design of custom file access routines. It does not, however, automatically
perform the many complex housekeeping operations provided by Automatic File
Cataloging Mode, and its use is not recommended for inexperienced programmers.
Chapter 10 is a companion reference chapter for the Absolute Sector Addressing
statements.

Chapter 11, finally, is a hybrid chapter incorporating both hardware and
programming information on the disk multiplexers (Models 2224 and 2230MXA/B),
which permit a single disk unit to be accessed by several CPU's. Multiplexer
owners should consult this chapter before attempting to install or program the
multiplexer.

Assorted information of interest to the disk user has been assembled in
the Appendices. Separate Appendices provide performance data on the various
disk models and explanations of the disk error codes, as well as a
bibliography of disk literature and a glossary of disk terminology.

ifi.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 The Development of Electronic Data Processing.
1.2 Electronic Data Processing and the Wang System 2200.
1.3 Random Access Data Storage
1.4 The Disk Unit. ¢ ¢ v v v v v v v 0 0 v i e e e e e

Models 2230 and 2260 « ¢ ¢ ¢« ¢ ¢ v v v 4 e e e e v .

Model 2270 . . & . & & i i e s e e e e e e e e e e e e e
1.5 The Disk Platter « & « .« ¢« i 0 v i e e e e e e e
1.6 Sectors. . . v v v i it e e e e e e e e e e e e e e e e e e
1.7 Track and Sector Numbering

Models 2230 and 2260 « « v ¢ ¢ ¢t e v e e e e .

Model 2270 v & i i e e e e e e e e e e e e e e e e
1.8 Disk Access TimeS. . v « v v v ¢ v v v v v v v 4 e o ot e e e
1.9 Staggered Arrangement of Sectors in a Track,
1.10 The Model 2230/2260 Cylinder Concept ¢ .« . .« . . .

CHAPTER 2: MODEL 2230 SERIES (2230 and 2260)
GENERAL INFORMATION AND FORMATTING INSTRUCTIONS

2.1 Unpacking and Inspection ¢
2.2 Installation ¢ o0 e e e e e e e e
2.3 Power-0On Procedures. . . . ¢ ¢ ¢ v ¢ v it e e e e e e e e e e
2.4 Model 2230/2260 Formatting Instructions.
Formatting the Removable Disk Platter (Disk Cartridge) . . .
Formatting the Fixed Disk Platter.
2.5 Format Errors. . . . ¢ . 0 0 i 0 e e e e e e e e e e e e e e e
2.6 Loading and Unloading the Removable Disk Platter
(Disk Cartridge) . . . « .« & . i i e e e e e e e e e e e e e
Unloading the Disk Cartridge
Loading a New Disk Cartridge
2.7 Handling and Storage of the Removable Disk Platter
(Disk Cartridge)« ¢ ¢ v i i e e e e e e e e e e e e e
2.8 Machine Interlocks ¢ o v L Lo 00 e e e e .

CHAPTER 3: MODEL 2270
GENERAL INFORMATION AND FORMATTING INSTRUCTIONS

3.1 Unpacking and Inspection ¢
3.2 Installation & ¢ ¢ v v v i e e e e e e e e e e e e
3.3 Power-On Procedure ¢ v ¢ v i v vt e e e e e e e
3.4 Loading and Formatting Diskettes
3.5 Format Errors. . . . ¢ ¢ v 0t ot e e e e e e e e e e e e e
3.6 The Write Protect Feature.o ...
3.7 Handling and Storage of Diskettes.

WWOWoOONOTWWWN —~

TABLE OF CONTENTS (Cont.)

CHAPTER 4: ACCESSING THE DISK PLATTERS (MODELS 2230, 2260, and 2270)

4.1 The 'F' and 'R' Parameters ¢ ¢ ¢ v v ¢t v e e e e e .
4.2 The Disk Device AdAress. . . . ¢ ¢« v v v « v v o v e v e e e ..
4.3 Addressing the Third Diskette (Model 2270-3)
4.4 Limitations of Certain Disk Models

CHAPTER 5: AUTOMATIC FILE CATALOGING PROCEDURES

5.1 Introduction ¢ ¢ L 0 L 0 e e e e e e e e
5.2 What Is Automatic File Cataloging?
5.3 Sectors and Addresses. . . . « . . ¢ it e e et e e e e e e
5.4 Initializing the Catalog « . ¢« ¢+ v v v v v v v o o &
5.5 Saving Programs on Disk.
5.6 Retrieving Programs Stored on Disk e e e e e e
The LOAD DC Command. e e e e e e e e e
The LOAD DC Statement. ¢« ¢ o v v«
5.7 Listing the Catalog Index. v« ¢ v o v v o o
5.8 Saving Data on Disk. « ¢ . ¢ o 0 0 0 0 e e e e e
The Hierarchy of Data.
Opening a Data Fileon Disk.
Saving Data in a Data Fileon Disk
5.9 The Structure of Data Files. o ..
Opening a Second Data Fileon Disk
5.10 Re-Opening a Data File on Disk e e e e e e
5.11 Retrieving Data from a Data File on D1sk e e e e e e e e e e
5.12 Skipping and Backspacing Over Logical Records in a Data File . .
5.13 Testing for the End of File. o o ..
5.14 Scratching Unwanted Files. « o« v v v v o o
5.15 Moving the Catalog from One Platter to Another .

CHAPTER 6: DISK DEVICE SELECTION AND MULTIPLE DATA FILES

6.1 Introduction e e e e e e e
6.2 Disk Device Selection.o 0.
The Device Table ¢ ¢ ¢ v o v v v v v v ..
Use of File Numbers in Access1ng the #3 Platter
(Mode1 2270-3 Only).
Why Use the Device Table?.
6.3 Maintaining Multiple Open Data Files on Disk .
Using a Variable to Store the File Number. e e e
6.4 The "Current Sector Address" Parameter
6.5 Closing a Data File.« o o o o . o
6.6 Sk1pp1ng and Backspacing Over Individual Sectors in a Data F11e.
6.7 The 'T' Parameter. . . .« « ¢« v v ¢ v v v v v v e e e e
Changing the Default Address e
6.8 Multiple Disk Units. « . o v o o o o000 ...
Models 2230, 2260, 2270-1, 2270 2 e e
Model 2270-3 e e e e e e e e e
Accessing Multiple D1sk Units. e e e e .

Vi

TABLE OF CONTENTS (Cont.)

CHAPTER 7: EFFICIENT USE OF THE DISK

7.1 Introduction ¢ ¢ i e e e e e e e e e e e e e
7.2 Program Files Revisited. « « « . o o v v v v oo o
7.3 Establishing Temporary Work Files on Disk.
7.4 Altering the Catalog Area. . . . « « « « ¢ ¢ v v v v v o o o &
7.5 Renaming and Re-Using Scratched Files.
7.6 Efficient Use of Disk Storage Space.
System 2200 Control Information.
Inter-Field Gaps . . . « v « ¢ v v v v v v v v e e e e e
7.7 The LIMITS Statement . . . «. « ¢« ¢ ¢« ¢ ¢« ¢ v v v v v v v o o o
Form 1 of LIMITS . . . « v v v ¢ v v v v v v vt v e v v v
Form 2 of LIMITS . . . « ¢ v ¢ « ¢ v v v v v v v v v v v o
7.8 Conclusion v v v v v vt e e e e e e e e e e e e e e

CHAPTER 8: AUTOMATIC FILE CATALOGING STATEMENTS AND COMMANDS

8.1 Introduction ¢ . L i e e e e e e e e e e e e e e e
8.2 System 2200 Statements and Commands.
8.3 Basic Rules of Syntax. ¢ ¢ ¢ v ¢ v v v v ¢ v v e v
DATALOAD DC. + & v v v v v v e o e e e e e e e e e e e e
DATALOAD DC OPEN . . & « & v & v e e e e e e e e e e e e e
DATASAVE DC. . & & v ¢ o i e e e e e e e e e e e e e e e

DATASAVE DC OPEN ¢ v v v v v v v v v v v v v o
DBACKSPACE & v v v v v i v e e v h e e e e e e e e

LIST DC. . & & ¢ i e e e e e e e e e e o e e e e e e e e e
LOAD DC (Command). . « « v v v v v v v v e e e e e e e e e
LOAD DC (Statement). . . v v v v v v v v v v v e e e e e
MOVE . . & v v e i e e e e e e e e e e e e e e e e e e e

SAVE DC. . v & v v v e e e e e e e e e e e e e e e e e e e

SCRATCH DISK « v v v v v v v v v v v v e e e e e e e e e
VERIFY .« . o o v v e e i e e s e e e s s e e e e e e

CHAPTER 9: ABSOLUTE SECTOR ADDRESSING

.1 Introduction L 0 0 e e e e e e e e e e e e e
.2 Specifying Sector Addresses. « . . ¢ . 0 4 0 e e e .
.3 Storing and Retrieving Programs on Disk in Absolute Sector
Addressing Mode. L o o 00w e e e e e e e
Saving Programs on Disk with SAVE DA
Retrieving Programs Stored on Disk with LOAD DA.
The LOAD DA Command. . . . + « v ¢« ¢ ¢ ¢ o v v v o o o o o
The LOAD DA Statement. ¢ ¢ ¢« ¢ v v v v v v o
9.4 Storing and Retrieving Data on Disk in Absolute Sector
Addressing Mode. «© ¢« ¢t i it e e e e e e e e e
Storing Data on the Disk with DATASAVE DA.
Retrieving Data from Disk with DATALOAD DA
The 'BA' Statements. ¢ ¢ i i i i e e e e e e e e .
Platter-to-Platter Copy. . . . ¢ & ¢ ¢ ¢ ¢ v v v v v e v v v u

O WO

[YoliVe]
o O

TABLE OF CONTENTS (Cont.)

9.7 Using Absolute Sector Addressing Statements in Conjunction
with Catalog Procedures (Binary Search).
9.8 ConclusSion. . . . v ¢ v i it e e e e e e e e e e e e e e e e

CHAPTER 10: ABSOLUTE SECTOR ADDRESSING STATEMENTS AND COMMANDS

10.1 Introduction © ¢ ¢ ¢« v ¢ i i e e e e e e e e e e e
10.2 Statement/Command Distinction and General Rules of Syntax. . . .
010
DATALOAD BA. . . & i v i e e e e et e e e e e e e e e e e
DATALOAD DA. . & & v v e e e e e e e e e e e e e e e e e e
DATASAVE BA. . . & & & i i e e e e e e e e e e e e e e e e
DATASAVE DA. . . & ¢ i e e e e e e e e e e e e e e e e e e
LOAD DA (Command). . . « « v v v v v v v v e e e e e e e e
LOAD DA (Statement). v v & & o v v e e e e e e
SAVE DA. . . & i i e e e e e e e e e e e e e e e e e e e

CHAPTER 11: THE DISK MULTIPLEXERS (MODELS 2224 AND 2230MXA/B)

11. Introduction L L e e e e e e e e e e e e e
11.2 The Model 2224 Disk Multiplexer.« ¢ ¢ ¢ v v v o
11.3 Installation of the Model 2224 ¢« . « . ..
Unpacking and Inspection
Installation Procedure«

Power-0n Procedure &« ¢ v v v v v v e e e e e e e

11.4 The Model 2230MXA/B Disk Multiplexer
11.5 Installation of the Model 2230MXA/B- - « « « « « « « « « « o« .
Unpacking and Inspection
Installation Procedure« v v v v v o ..
Power-0On Procedure & & « v ¢ i v v e e e e e e
Multiplexer Operation. ¢ ¢ v v v v v v v v v o
The Manual Hog Mode Switch (Model 2224 Only)
Programmable Hog Mode (Models 2224 and 2230MXA/B).

—

11.
11.
1.

[eol N Ne))

APPENDICES

APPENDIX A DISK ERROR CODES v . v v v v v v v v o o v v

Explanations of all error codes associated with disk
operation.

APPENDIX B MODEL 2230 SPECIFICATIONS. « ¢ ¢ ¢ v v v v v o &
Storage capacity, performance information, and general
specifications for the Model 2230.

APPENDIX C MODEL 2270 SPECIFICATIONS. « v « v v v v v v o
Storage capacity, performance information, and
general specifications for the Model 2260.

APPENDIX D MODEL 2270 SPECIFICATIONS. « « « o .« .
Storage capacity, performance information, and
general specifications for the Model 2270.

viii

TABLE OF CONTENTS (Cont.)

APPENDIX E MODEL 2230/2260 DISK CARTRIDGE MAINTENANCE
INFORMATION. . & v v v e v e e o e e e e e e e e e e -, 201
Tips on handling, labelling, and storing the Models
2230/2260 Removable Disk Platters (Disk Cartridges).

APPENDIX F DISK CARTRIDGE COMPATABILITY (MODELS 2230 and 2260). . . 204
Discussion of a technique for accessing a Model 2230
disk cartridge in a Model 2260 disk drive.

APPENDIX G A GLOSSARY OF DISK TERMINOLOGY « « « « . . . 209
Brief definitions of commonly-used disk terms.

APPENDIX H BIBLIOGRAPHY . . . & v & ¢ ¢ v v v v e vt e e o e e v s 219
A list of articles and textbooks which discuss disk
file access techniques and disk file design
philosophies.

APPENDIX I EQUIPMENT GUARANTEE AND PREVENTIVE MAINTENANCE
INFORMATION. . . & ¢ v v v v v e e v v e e e e e a o s 222
Your Wang guarantee, and an explanation of Wang's
Maintenance Agreement.

APPENDIX J SYSTEM 2200 ERROR CODES. . . . « v ¢« ¢ v ¢ v v v v o o 223
A complete 1listing of all System 2200 error codes.

0 225

ix

LIST OF EXAMPLES

Example

Initializing the Catalog. « ¢« o ¢ o v v v v v .
Initializing the Catalog ('LS' Parameter Omitted)
Saving a Program on Disk. . . . « « ¢ ¢« o o0 v 000w e .
Saving Part of a Program on Disk (One Line Number Specified). .
Saving Part of a Program on Disk (Two Line Numbers Specified) .
Loading a Cataloged Program File from Disk.
Attempting to Load a Non-Cataloged Program from Disk.
Chaining a Program from Disk with the LOAD DC Statement
Loading a Program Overlay from Disk
: Listing the Catalog Index ¢« . « ¢ v o v o v v v v
: Opening a Data Fileon Disk « . o ¢ v v v v v o o
: Saving Data in a Data File. ¢ ¢ v v v v v v v o .
: Writing an End-of-File (Trailer) Record to a Data File on Disk.
: Writing a Data Trailer Record after a Series of DATASAVE DC
Statements. L L e e e e e e e e e e e e e e e e e
: Reopening a Cataloged Data File
: Attempting to Reopen a Non-Cataloged Data File.
: Reading Data from a Data FileonDisk « . ¢« ¢« ¢« « « « .
: Saving and Loading One Logical Record
: Loading Portions of a Logical Record.
: Skipping Over Logical Records in a Data File.
: Backspacing Over Logical Records in a Data File
: Backspacing to the Beginning of a File.
: Skipping to the End of a File o o o o o o
: Testing for the End-0f-File Condition
: Scratching Unwanted Fileso ..
: Copying the Catalog from One Disk Platter to the Other.
: Checking the Validity of Files after a Move

]
—_— == SO ONOTT R WN —

OO OO oran
1
NOOMPLPWN—OOWONO O, DW= O ve o0 a0 ¢0 00 00 00 se o0

PYeReeERa Qe
NN NINDNON — =t

Storing Disk Device Addresses in the Device Table
Opening a New Data File with a File Number.
Referencing an Open File by File Number
Referencing an Open File by File Number
Closing a Data File by Reassigning Its File Number.
Closing a Specified File with a DATASAVE DC CLOSE Statement . .
Closing A1l Currently Open Files with a DATASAVE DC CLOSE
Statement L L L L e e e e e e e e e e e e e e
Skipping Over a Number of Sectors ina File
Backspacing Over a Number of Sectors in a File.
: Accessing More Than One Disk Platter with the 'T' Parameter . .
: Using the 'T' Parameter to Access a User-Selectable Disk
Platter . . . ¢ « & ¢ o v i e e e e e e e e e e e e e e e e e

1
— — O 00 NO O, wN—

—_— O e e

[}
—
N
c
(7]
— e
3

({a]
‘—*
=
)
|
©
=]
=
o
3
™
+
™
=
=
-
ct
=
[<3]
=
1)
=
o
®
—-f,
=4
[=
—
o+
p
o
o
=
o
(7]
[72]

Reserving Additional Sectors in a Program File.
Opening a Temporary Work File on Disk
Opening More Than One Temporary Work File
Reopening a Temporary Work File.
Changing the Size of the Catalog Area ¢ v v ¢« v ¢ o «

NNNNN (o)) (o)W e)Xo, Ne)) [e)Ne Ne Ne Ne Ne Ne,) o
] 1
NPpwn—

X1

N~ NN NN
|

1 [}
.o

O kO\f) O O
(3] w N

PP
~ o

PP
(Vo TN 0

9-10:

9-11:
: Reading a Sector from Disk with DATALOAD BA
9-13:
: Copying a Disk Platter. o o o .00 000 ..
: Verifying Data Transfer Following a Copy Operation.
: Performing a Binary Search on a Cataloged Data File

LIST OF EXAMPLES (Cont.)

Saving a Program in Space Occupied by a Scratched File.
Opening a Data File in Space Occupied by a Scratched File . . .
Opening a Data File in Space Occupied by a Scratched

Program File. & & ¢ o v v v v v v b e e e e e e e
Renaming Scratched Program File with the Same Name.

: Renaming Scratched Data File Which Is Still Viable.
: Form 1 of the LIMITS Statement ('File Name' specified).
: Form 1 of the LIMITS Statement ('File Name' and a

File Number Specified). « « ¢ ¢ v v v v v v v v o v

: Form 2 of the LIMITS Statement ('File Name' Not Specified). . .
: Form 2 of the LIMITS Statement ('File Name' Not Specified). .

Saving a Program on Disk with SAVE DA (No Line Number
Specified). . . . & & i . e e e e e e e e e e e e e e e e e e
Saving a Program on Disk with SAVE DA (Two Line Numbers
Specified). o i i e e e e e e e e e e e e e e e e e
Loading a Program from Disk with the LOAD DA Command.
Loading Program from Disk with a LOAD DA Statement

(No Line Numbers Specified) « « v v v v v v v v o . .
Loading Program Overlays from Disk with the LOAD DA

Statement (Two Line Numbers Specified).
Storing Data on Disk with a DATASAVE DA Statement
Saving a Number of Data Records in Sequential Areas of

the Disk with SAVE DA « v ¢ ¢ v v vt v v v o v o u .
Writing an End-of-File Record in a Data File with a

DATASAVE DA END Statement ¢ v v o v v o o v
Retrieving Data from a Data File on Disk with a DATALOAD DA
Statement L L o e e e e e e e e e e e e e e e e e
Testing for the End-Of-File Condition in a Non-Cataloged

Data File « ¢ ¢ v 0 i e e e e e e e e e e e e e e
Writing an Unformatted Sector with DATASAVE BA.

Copying a Disk Platter. ¢ ¢ « v v v v v v v v v ..

: Activating the Programmable Hog Mode (Models 2224 and 2230MXA/B

Disk Multiplexers). . .« .« ¢« v v v v v v v v v e e e e e e e

: Activating the Programmable Hog Mode (Models 2224 and 2230MXA/B

MUTEIpIEXers) « « ¢ v v v v v v et e e e e e e e e e e e e

: Deactivating the Programmable Hog Mode (Models 2224

and 2230MXA/B Disk Multiplexers). « « « v v « v v« . .

LIST OF FIGURES

Figure No. Page
1-1 Model 2230/2260. Both Disk Drives Utilize the Same

Physical Housing. « « « ¢« o o v o v o . e e 4
1-2 Model 2230/2260 D1sk Drive and Disk Platters. 4
1-3 Model 2230/2260 Disk Unit with Access Assembly and

Read/Write Heads. « « « v ¢ v v v v v v o c v .. 5
1-4 The Model 2270-2 Dual Removable Diskette Drive. 5
1-5 The Model 2270-3 Triple Removable Diskette Drive. 6
1-6 Model 2270 Diskette Mounted in a Disk Drive, Showing

Access Assembly, Carriage, and Read/Write Head. 7
1-7 Concentric Circular Tracks on a Disk Platter. 8
1-8 Enlarged View of Sections of Several Tracks Showing How

Information Is Stored on a Disk Platter 8
1-9: One Sector of a Track on a Disk Platter ce e 9
1-10 Cross-Section of a Disk Platter Showing Track Numbering

on the Upper and Lower Surfaces (Model 2230-1). 9
1-11 Sector Numbering on a Model 2230-1 Disk Platter 10
1-12 Track and Sector Numbering on a Model 2270 Diskette 10
1-13 Staggered Arrangement of Sectors on Model 2230 Disk P]atter .12
1-14 Staggered Arrangement of Sectors on Model 2270 Diskette 12
1-15 Staggered Arrangement of Sectors on Model 2260 Disk Platter . . 12
1-16 The Cylinder Concept (Models 2230/2260) 13
2-1 Model 2230/2260 System Configuration. B
2-2 Switches on Front Panel of Model 2230« . . 19
2-3 Opening the Cartridge Holding Clamps. 19
2-4 Removing the Dust Cover « . . « v v v v v v v v v 0w 20
2-5 Releasing the Cartridge Lock. « .« o 20
2-6 Removing the Cartridge from the Cartridge Bowl. 20
2-7 Locking the Cartridge onto the Dust Cover 21
2-8 Carrying a Sealed Cartridge « ¢ v v ¢ v v v v v o 21
2-9 Separating Cartridge from Dust Cover. 22
2-10 Aligning Cartridge in the Cartridge Bowl. 4
2-11 Cartridge Loaded in Disk Unit « 23
2-12 Cartridge Sealed and Locked in Disk Un1t 23
3-1 Model 2270 System Configuration 25
3-2 Model 2270 Diskette, with Tab Covering the wr1te Protect Ho]e . 27
3-3 Opening the Door of Drive #1. « ¢« . . v v v v v .. 27
3-4 Mounting a Diskette e e e e e e e e e e 28
3-5 Formatting a Disketteo .00 L. 29
3-6 Model 2270 Write-Protect Feature. 30
5-1 The Catalog Index Listing 45
5-2 Catalog Index Entry for DATFIL 1. 48
5-3 Catalog Index Entry for DATFIL 1. 49
5-4 Updated Catalog Index Entry for DATFIL 1. 50
5-5 Logical Record Consisting of One Sector 52
5-6 Two One-Sector Logical Records. « « « .« . . 53
5-7 Logical Record Consisting of Three Sectors. 54
5-8 Logical Records in TEST 1 « .+« ... 58
5-9 Skipping Over Logical Records in a Data File. 59
5-10 Backspacing Over Logical Records in a Data File 60
5-11 The Catalog Index Showing Scratched Files 63

xiii

LIST OF FIGURES (Cont.)

The Device Table in Memory. ¢« ¢« ¢ ¢ v v v o & o o &
The Device Table with Disk Addresses Stored Opposite

File Numbers #3 and #5. . . . « & ¢« v ¢ v ¢ v v v v v v o o o .
The Device Table with One File Open (DATFIL 1).
The Device Table with One File Open (DATFIL 2).
The Device Table with Disk Device Addresses Stored

Opposite File Numbers #3 and #5 and One Open File

(DATFIL 2). v v v i e
The Device Table with Two Open Files.« . .
The Device Table in Memory with Three Open Files.
Device Table Slot for DATFIL 2 « . ¢ «
Updated Device Table Slot for DATFIL 2.
Updated Device Table Slot for DATFIL 2. « . . .« . .
Updated Device Table Slot for DATFIL 2 Following Execution

of a DBACKSPACE BEG Statement o ¢ v o o .
The Device Table Default Slot Following Execution of a

SELECT DISK B10 Statement ¢« ¢ ¢ ¢ v v ¢ ¢ v v « o«

The Program File PROG 1 « o ¢ v v v v v v v ¢« o o
Layout of the Platter Surface Showing Catalog Index,
Catalog Area, and Non-Catalog Area (Used for Storage
of Temporary Files) . . . « ¢ ¢ v v v v v v v v v e e e e e e
One Logical Record, Showing Sector Control Bytes and
Start-of-Value Control Bytes for Each Field
Inter-Field Gap in a Multi-Sector Record.
A Multi-Sector Record with No Gaps. « . .« « . .

Typical Entry in Customer Credit File
Typical Customer Credit File (Sorted in Ascending Order). . . .
Binary Search Technique ¢ . v . . o .. .

The Model 2224 Disk Multiplexer v ¢ ¢ v ¢ ¢ « « &
Typical System Configuration for Model 2224 Disk

Multiplexer and Four Stations ¢ .« ¢ .
Model 2230MXA Master Board and 2230MXB Slave Boards
Connecting Extension Cable with Standard 12-Foot Cable
(2230MXA/B) & v v i e
Typical System Configuration: Model 2230MXA/B Multiplexer,
Disk Unit, and Four Attached CPU's.

Xiv

LIST OF TABLES

Table Page
4-1 Disk Platters and the 'F' and 'R' Parameters. 33
6-1 Disk Addresses for Models 2230, 2260, 2270-1, and 2270-2. . . . 87
6-2 Disk Addresses for Model 2270-3 ¢« « & v v v v « « « o« . 87

XV

Chapter 1
Introduction

1.1 THE DEVELOPMENT OF ELECTRONIC DATA PROCESSING

The efficient maintenance of accurate, up-to-date records is a major
problem in all areas of business and science, and has been at least since
the time of the ancient merchant who first stumbled upon the idea of
record-keeping. The antediluvian merchant's system was simplicity itself.
Every time he bought a cow, he made a mark on his stone; every time he sold
one, he scratched a mark out. If he were exceptionally clever and
industrious, he might even keep track of his profits and losses in a
separate record. The system turned out, however, to have one major
drawback: if the merchant were even halfway successful, his records
quickly got so heavy that he required a brace of oxen just to move them
from one location to another.

The shift from rocks to paper alleviated the weight problem - at
least for a while - but other problems quickly arose in its place. As
scientists' knowledge of the world increased, as businesses became

increasingly more complex and their interests more far-flung, the
increasing quantity of information which had to be dealt with dictated that
the earlier, rudimentary bookkeeping procedures be supplanted with more
sophisticated and efficient techniques. The development of new techniques
was helped along first by the invention of the abacus and much later by the
discovery of algebra. By the 17th century, the steadily rising tide of
information prompted a move by many scientists and mathematicians to
develop a "calculating machine" which might aid in bookkeeping
computations. A number of such machines were, in fact, invented and their
development continued throughout the succeeding two centuries. Despite
their usefulness in computational work, however, such devices were of
negligible value in the tedious process of recording, sorting, and keeping
track of voluminous quantities of data. The concept of a completely
mechanized system for handling and storing data remained an unrealizable
dream for businessmen and scientists until the end of the 19th century,
when Herman Hollerith developed a method for storing data on punched cards.
Hollerith's technique, which involved coding data in a pattern of punches,
was used successfully in the compiling of the United States census in 1890.
Because the punched cards could be handled, read, and stored mechanically,
the first truly mechanical data processing systems became possible.

Today, of course, Hollerith's great invention, though less than a
century old, seems to us very much like ancient history. The inexorable
increase in the quantity of information has assumed, particularly in the
last quarter century, the proportions of an information explosion, due

largely to enormous advances in the technology of communications. In the
face of this information explosion, it became clear to businessmen and
scientists alike that the traditional methods of manual bookkeeping - the
company clerk with his quill pen and massive ledger - simply were no longer
adequate in most cases to the task of maintaining accurate, up-to-date
files and records. Even mechanical data processing systems staggered
beneath the increasing influx of raw data (the population of the United
States when Hollerith introduced his new system in 1890 was, for example,
just over 23 million; by 1950, 60 years later, the population had grown to
more than 150 Million).

Under the circumstances, the advent of the computer in the 1940's and
50's was providential. The computer's importance for data processing can be
directly traced to two important features: its vast data storage
capacity, and its extremely rapid computation and data processing
capability. Continued 1improvement and refinement of techniques in both of
these areas has given rise to today's high-speed, fully automated data
processing systems, which have 1in turn revolutionized the field of data
processing. Because electronic circuitry now performs most of the storage
and processing operations previously done mechanically or by hand, modern
systems are referred to as electronic data processing (EDP) systems.

Because of its broad range of capabilities, the modern EDP system is
ideally suited to perform the basic functions required of a data processing
system. It is capable of storing large volumes of data (such as inventory
files or test records), of reading in new data (such as daily sales or
experimental results) and processing this data against the master files
(deleting items sold from the inventory 1ist, adding new test results to
established records). It is, finally, capable of outputting the results of
any or all of these operations to the user, either in the form of printed
copy or in a display.

1.2 ELECTRONIC DATA PROCESSING AND THE WANG SYSTEM 2200

Until the very recent past, an electronic data processing system had to
be built around a large, complex, and extravagantly expensive computer. Those
who could not afford the staggering «cost of such a system were
generally forced to purchase time on someone else's system (hence the
concept of time-sharing). A1l too often, however, such an arrangement
proved inconvenient to the unhappy time-sharer, who found that the system
was most available when he needed it least, and 1least available when he
needed it most.

The Wang System 2200 has been designed to provide a viable
alternative to time-sharing for small-scale data processing applications.
The System 2200 offers a fast, efficient and relatively inexpensive
electronic data processing capability for users whose applications do not
require the massive storage capacity and extreme speed of a Tlarge computer.
Because of its versatile design, the System 2200 can be purchased in a
variety of different configurations for data processing applications. A
typical data processing configuration would include an input device, a
Central Processing Unit %CPU), an output device, and a disk storage device,
which provides the access speed and storage capacity needed for large
volumes of data.

Introduction

1.3 RANDOM ACCESS DATA STORAGE

The heart of the System 2200 data processing configuration is the
disk drive unit, a random-access external storage device which provides a
high-volume data storage capacity, along with extremely fast access speed. A
major contributing factor to the disk's high access speed 1is its random
access capability. Each storage 1location on the disk has a unique
identification tag or "address," and can be directly accessed by the
system. Thus, unlike sequential-access storage devices (such as magnetic
tape drives, punched tape readers, and card readers), the disk does not
have to read sequentially through a file in order to locate a desired item of

information. Instead, the disk can skip over all intervening records and
directly access a specified storage location for data storage or
retrieval (hence random-access devices are also referred to as

"direct-access" devices).

A random access capability is most valuable when interrogating or
updating a large file, since in those cases records are not usually
accessed in sequential order. Even in sequential-processing operations
which do not make use of its random access capability, however, the disk is
significantly faster than most other external storage devices.

Wang offers two basic types of disk drives for use with its systems.
The Fixed/Removable Disk Drives (Models 2230 and 2260), also called the
"hard disks", offer extensive storage capacity and high performance for
large on-line data bases; the Removable Diskette Drives (Models 2270-1,
2270-2, and 2270-3) offer a more modest storage capacity and somewhat
slower access speeds, appropriate for applications requiring a smaller
on-line data base.

1.4 THE DISK UNIT

Model 2230/2260

The Models 2230 and 2260 Fixed/Removable Disk Units contain a pair of
disk platters mounted horizontally on a drive shaft. The platters are
mounted one above the other, somewhat as phonograph records are stacked on a
record changer (see Figure 1-2). The upper disk platter can be removed from
the disk unit and replaced; it is therefore referred to as the
Removable Disk Platter. Because it is contained in a sealed,
cartridge-1ike case to protect it from damage when it is removed from the
disk unit, the Removable Platter is also sometimes referred to as a disk
cartridge. The lower disk platter is positioned about 1 1/2 inches below
the Removable Platter on the shaft. It is an integral part of the disk
unit which cannot be removed, and is therefore called the Fixed Disk
Platter. The shaft itself is coupled to a drive motor which rotates both
disk platters at a constant speed. The rotational speed of the Model 2230 is
1500 rpm; the speed of the Model 2260 is 2400 rpm.

Figure 1-1. Models 2230/2260
Both Disk Drives Utilize the Same Physical Housing

Removable
Disk Platter
Upper Surface

Fixed Disk Platter
Upper Surface

Removable
Disk Platter
Lower Surface

Fixed Disk Platter
Lower Surface

Figure 1-2. The Model 2230/2260 Disk Drive and Disk Platters

Introduction

The disk unit also contains a comb-type access assembly consisting of
four access arms (see Figure 1-3). Attached to the end of each access arm is
a read/write head, which is fixed 1in position and cannot move
independently of the access arm. Information is recorded on or read from
the surface of a platter via the read/write head.

When a disk statement or command is executed from the System 2200
CPU, the access assembly moves the read/write heads in or out between the
disk platters as they rotate. A read/write head can then record
information on a surface of a disk platter (write) or retrieve information
from a platter (read) as the platter rotates past the head's position.

Read/Write Head

Removable
Disk Platter

Read/Write Head
\/< Read/Write Head

Fixed Disk Platter ‘ a

Read/Write Head

Figure 1-3. Model 2230/2260 Disk Unit with Access
Assembly and Read/Write Heads

Model 2270

The Model 2270 Removable Diskette Drive 1is available in three
configurations: the Model 2270-1 (not shown) holds a single diskette
drive, the Model 2270-2 (Figure 1-4) holds a pair of diskette drives, and
the Model 2270-3 (Figure 1-5) holds three diskette drives. Unlike the
Fixed/Removable disks, in which both platters are driven by a single drive,
the Model 2270 drives are mechanically independent of each other. Every
2270 diskette wunit, irrespective of the Model, has three drive slots. In
the single and dual drive configurations (2270-1 and 2270-2), the unused
slot(s) are concealed by metal panels.

Figure 1-4. Model 2270-2 Dual Removable Diskette Drive
Note That Drive Slot #3, Not Used, is Covered by Metal Panel.

Figure 1-5. Model 2270-3 Triple Removable Diskette Drive

A single diskette is vertically mounted in each drive. Each drive
contains a drive shaft and drive motor (which rotates the diskette at a
constant speed of 360 rpm), as well as an access assembly with an attached
read/write head. The read/write head is affixed to a carriage which moves it
back and forth across the recording surface of the diskette in response to
commands from the controlling System 2200. The access assembly carriage moves
the head in or out over the surface of the spinning disk, until it is
positioned at the proper location for reading or recording data. (Although
the diskette 1is sealed in a protective plastic jacket to prevent the

Introduction

accumulation of dust on its recording surface, a window in the jacket
permits the read/write head to make electrical contact with the disk
surface.) See Figure 1-6.

WRITE PROTECT

LED

NS
READ ~
HEAD

DETECTOR

WRITE HEAD
— POSITION

ACTUATOR

Figure 1-6. Model 2270 Diskette Mounted in a Diskette Drive.
Access Assembly, Carriage, and Read/Write Head
Are Shown.

1.5 THE DISK PLATTER

The storage medium of the disk unit is the magnetic disk platter, a
thin, flat, <circular plate coated on one or both sides with a magnetic
material, usually iron oxide, and which, except that it has no apparent
grooves, closely resembles a phonograph record. The disk platter utilized on
the Models 2230 and 2260 is 15 inches in diameter, or about the size of a 33
1/3 rpm photograph record. It is coated with iron oxide on both sides,
and both surfaces can be used to record data. The flexible platter, or
"diskette," wused 1in the Model 2270 is 7 1/2 inches in diameter, or about the
size of a 45 rpm phonograph record. It is coated with magnetic
material on only one side; therefore only one surface can be used to record
data.

On each recording surface, the magnetic recording material is
arranged in concentric circular magnetic tracks (see Figure 1-7).
Information recorded on the disk is stored in the form of magnetized spots of
iron oxide within a track, much the same way it is stored on magnetic tape
(see Figure 1-8).

Introduction

Figure 1-7. Concentric Tracks on a Disk Platter

Figure 1-8. Enlarged View of Sections of Several Tracks
Showing How Information Is Stored on a Disk
Platter

1.6 SECTORS

In general, it 1is desirable to be able to store and retrieve
information in units smaller than an entire track. For this reason, each
track is divided into a number of discrete segments <called ‘"sectors." A
sector is the smallest discrete unit of storage on the disk, with a fixed
storage capacity of 256 bytes. Each sector is identified by a unique
number called the "sector address," and can be directly accessed by the
system. On a Model 2230 or 2260 disk platter, each track is divided into 24
sectors; on a Model 2270 diskette, each track contains 16 sectors.

In addition to the 256 bytes 1in each sector reserved for data
storage, the sector centains several bytes of system control information,
written into the sector at the time the platter is formatted. The system
control information consists of a two-byte sector address, a two-byte
cyclic redundancy check (CRC) total, and, on the 2230 and 2260 only, a
one-byte longitudinal redundancy check (LRC) total. (See Figure 1-9.) The
sector address is, of course, needed to enable the system to uniquely
identify and access each sector. The CRC and LRC totals are the results of
checksum tests performed by the system to monitor the integrity of data
stored in the sector. (On the 2230 and 2260, the LRC total is stored in a
special byte 1in each sector; on the Model 2270, the LRC totals are
recalculated independently following each sector read or write, and are not
stored on the disk.) A1l system control information is created and
maintained solely by the disk controller, and is completely transparent and
inaccessible to the user.

A different type of control information, <called ‘'sector control
information" or "format control information," is automatically written by

Introduction

the system along with the user's data in the 256-byte data . field of the
sector. Because the format control information occupies several bytes of
the 256-byte data field, the full 256 bytes are not available for data
storage under normal conditions. The format control bytes are discussed in
detail in Chapter 7, Section 7.6. A technique for writing data on disk
without format control information is described in Chapter 9, Section 9.5.
Note that creation and interpretation of the format control information also
is an automatic function of the system, and is completely transparent to the
user's software.

o N——
v g

2-Byte 256-Byte Data Field 2-Byte Cyclic
Sector {User’s Data and Format Redundancy
Address Control Bytes) Check
1-Byte
Longitudinal

Redundancy Check

Figure 1-9. One Sector of a Track on a Disk Platter (2230and22600nly)

1.7 TRACK AND SECTOR NUMBERING

Model 2230/2260

The upper and lower surfaces of each disk platter in the Models 2230
and 2260 are isomorphic, that is, they are identical to each other.
For every track on the upper surface, there is a corresponding track on the
lower surface, and vice versa. Track numbering is sequential on each
platter, and alternates from one surface to another, starting with the
outermost track on the lower surface (which is designated as track #0), and
ending with the innermost track on the upper surface (which may be track
#99, #199, #407, or #915, depending upon the disk model; see Figure 1-10).
A1l odd-numbered tracks are located on the upper surface of a platter, and
all even-numbered tracks are located on the bottom surface. The tracks are
numbered independently on each disk platter.

1 97 99| |eg 97 5 3 1
4 /) I////{/////I///////

Figure 1-10. Cross-Section of a Disk Platter Showing Track
Numbering on the Upper and Lower Surface
(Mode1 2230-1)

Sectors on consecutive tracks are numbered sequentially, beginning at
sector #0, which 1is located at the beginning of track #0, and proceeding
from one consecutive track to the next. Sectors also are numbered
independently on each platter.

Introduction

Track # Sector #
0 0 - 23
1 24 - 47
2 48 - 71
3 72 - 95
99 2376 - 2399

Figure 1-11. Sector Numbering on a Model 2230-1 Disk Platter

Model 2270

Tracks are numbered sequentially on a Model 2270 diskette. Each
diskette contains 64 tracks, numbered 0 - 63. Because each platter has
only one recording surface, the track numbering is consecutive on that
surface, starting with the outermost track (track #0) and proceeding to the
innermost track (track #63). A diskette contains a total of 1024 sectors,
numbered sequentially from O to 1023. Sector #0 is located in track #0 and
sector #1023 is located in track #63 (see Figure 1-12). Tracks and sectors
are numbered independently on each diskette.

£
f

Track # 63
Sector # 1023

Figure 1-12. Track and Sector Numbering on a Model 2270 Diskette

1.8 DISK ACCESS TIME

Although it is useful, for purposes of general comprehension, to
understand how the recording surface is divided up into concentric tracks,
the system provides no way of addressing tracks directly. Al1l direct
addressing of data stored on the disk is done in terms of sector addresses.
When presented with a sector address, the system automatically moves to the
track which contains that sector. The exclusive use of sector addresses
alleviates needless complexity for the programmer when addressing storage
locations on the disk. ‘

In order to retrieve a piece of information from the disk, the system

must determine on which disk platter the information is stored and in which
sector(s) on that platter the information is contained. Given the platter

10

Introduction

designation and sector address, the system signals the access assembly to
move the read/write head out to the appropriate track, and access the
desired sector.

There are, therefore, two distinct operations which must be carried
out in order to access any particular sector on a disk platter:

1. The access assembly must move in or out to position the
read/write head over the appropriate track on the specified
platter. This operation is called the "track access."

2. Once positioned at the correct track, the read/write head must
wait until the desired sector rotates beneath it as the platter
revolves. This wait is known as the "disk latency period."

The time required to perform the first of these operations 1is called
the track access time; the time required to perform the second operation is
called the disk 1latency time. The duration of the track access time is
determined by the speed of the access assembly, and the number of tracks
which must be traversed by the access arm in order to locate the target
track. The average track access time therefore increases somewhat with the
size of the disk configuration. The disk latency time, on the other hand, is
determined solely by the rotational speed of the disk unit. The time
required for each operation must be included in the total time required to
access a sector on a disk platter. (The latency time 1is normally not
significant for sequential access operations; it may, however, be
significant for random access operations.) Appendices B and C provide
timing information on the Models 2230 and 2260; Appendix D provides timing
information on the Model 2270.

1.9 STAGGERED ARRANGEMENT OF SECTORS ON A TRACK

Although sectors are numbered consecutively, starting at zero, on
each disk platter, consecutive sectors 1in a track are not physically
contiguous. Instead, consecutively numbered sectors are Tlocated several
physical sectors apart within a track. On a Model 2230 platter,
consecutive sectors are six physical sectors (one-quarter track) apart
(Figure 1-13). On a Model 2270 diskette, consecutive sectors are four
physical sectors (one-quarter track) apart (Figure 1-14). On the Model
2260, consecutive sectors are located 12 physical sectors (one-half track)
apart (Figure 1-15), This "staggered" arrangement of consecutive sectors in
a track makes it possible for the disk to access several consecutive
sectors in a single vrevolution of the disk platter during certain
multiple-sector read/write operations. In particular, the
platter-to-platter MOVE and COPY operations are greatly accelerated by the
capability to pick up multiple sectors in a single revolution. On the
Models 2260 and 2270, the staggered arrangement of sectors also speeds up
the reading and writing of long multi-sector records.

11

Introduction

w

ﬁ\o

1

\\k\5‘\\$\\ﬁF-r——4’,’*,/)(;215

Figure 1-13. Staggered Arrangement of Sectors on
Model 2230 D1sk Platter

N
\J

Figure 1-14. Staggered Arrangement of Sectors on
Mode1 2270 D1skette
23

Figure 1-15. Staggered Arrangement of Sectors on
Model 2260 Disk Platter

Introduction

1.10 THE MODEL 2230/2260 CYLINDER CONCEPT

Because the Removable Disk Platter sits directly above the Fixed Disk
Platter in the Models 2230 and 2260, tracks 0 and 1 of the Removable Disk
Platter are directly above, or in the same vertical plane as, tracks 0 and 1
of the Fixed Disk Platter. If all four tracks in the same plane are connected
by imaginary lines, a cylinder is formed (see Figure 1-16).

— — —
——— -—

/ \€&———Track 5
/ i

Removable i 3

Disk Platter r\

1 X

Cylinder — i AN ———— Track 4

| \
/ lmU \«——— Track §

i | ~

\

R S =3

Fixed Disk Platter N

. —— e - —

Figure 1-16. The Cylinder Concept (Model 2230/2260)

The access assembly of the Models 2230 and 2260 is designed to access
one cylinder (four tracks) with each movement of the access arms. Since
each track contains 24 sectors, four tracks contain 96 sectors. Thus a
cylinder of information 1is the amount of information (256 x 96, or 24,576
bytes) which can be accessed with a single movement of the access assembly.
Where large quantities of data are to be transferred to or from the disk,
judicious use of cylinders can result in a significant savings in total
track access time.

13

Chapter 2
Model 2230 Series (2230 and 2260)

General Information and Formatting Instructions

2.1 UNPACKING AND INSPECTION

NOTE:

Because the disk unit is an extremely sensitive device, it
is packed using special techniques to protect it from
damage in shipping, and it should be unpacked only by
qualified Wang Service Personnel.

2.2 INSTALLATION

POWER CORD

CASSETTE cPu
CONNECTOR

CONNECTOR TO
POWER SUPPLY

)
)

CONNECTOR CORD

PERIPHERAL
CONNECTORS

ON/OFF
MAIN
POWER
SWITCH

Figure 2-1. Models 2230/2260 System Configuration

15

2230 Series General Information

Unit:

2.3

The following installation procedure should be observed for the Disk

Plug the disk drive connector cord into the connector receptacle on
the CPU chassis. The peripheral connector receptacle on the CPU is
labelled for the disk drive. After attaching the cord, make
sure that the 1lock clips are snapped into place at the CPU
connection.

Plug the disk drive power cord into a wall outlet. Input power
requirements for the disk are 115 VAC, 9 amps, 50/60 Hz + 1
cycle (or 230 VAC, 5 amps, 50/60 Hz + 1 cycle by special
request).

Plug the main power cord of the CPU chassis into the Power Supply
Unit; plug the Power Supply Unit power cord into a wall outlet.

POWER-ON PROCEDURES

1.

Be sure that the disk LOAD/RUN switch is in the LOAD position.
(To ?e safe, 1it's a good idea never to power on or off in the RUN
mode.

Switch ON the power switches on the CRT and other peripherals,
including the disk.

Switch ON the main power switch on the Power Supply Unit (the
light on the power supply unit glows on). This operation Master
Initializes the system.

On the disk, the POWER and LOAD 1ights on the upper panel, as
well as the POWER and ERROR T1ights on the 1lower panel,
illuminate. The CRT display appears as illustrated below:

READY

NOTE:

The appearance of an ERROR Tight at this time does not
indicate a disk error; it is simply a reminder that the
disk has not yet been formatted and therefore cannot yet
be used. When the formatting procedure is begun, the
ERROR T1ight goes out automatically.

Switch the LOAD/RUN rocker switch (upper left-hand panel) to the
RUN position. After about 60 seconds, the yellow READY 1light
(upper right-hand panel) glows.

The disk is now ready to be formatted (see Section 2.4).

16

2230 Series General Information

WARNING:

The Disk Unit should never be left in LOAD mode for a
prolonged period of time. Serious and permanent damage to
the disk unit may result if the LOAD/RUN switch is left in
the LOAD position for more than 30 minutes while the power
is ON.

2.4 MODEL 2230/2260 FORMATTING INSTRUCTIONS

Before either disk platter can be accessed and used, it must be
formatted. Formatting involves assigning a unique address to each sector on
the disk platter, and writing certain control information in each sector
which helps the system keep a check on the intagrity of information written to
and read from the disk. Zeros are then written into the 256-byte data field
in each sector. This entire procedure is carried out automatically by the
disk controller, which also automatically performs a verification check to be
sure that the format is valid.

The Fixed and Removable platters must be formatted separately. When a
new Removable Disk Platter (disk cartridge) is initially loaded into the disk
unit, the new cartridge must be formatted. Once formatted, a disk platter
need never be reformatted unless frequent random read/write errors are
encountered.

Formatting the Removable Disk Platter (Disk Cartridge)

1. The disk should now be in RUN mode. If it is not, switch to RUN
mode and wait for the READY light to come on (it should take
about 1 minute).

2. When the READY Tlight is on:

a. Set the REMOVABLE DISK/FIXED DISK toggle switch to REMOVABLE
DISK.

b. Turn the FORMAT LOCK key to the ON position.

c. On the system keyboard, key RESET. If the disk ERROR 1light has
been on, it should now go out.

d. On the disk front panel, press the FORMAT button. The FORMAT
light, 1located next to the button, illuminates, indicating
that the Removable Platter is now being formatted. The
formatting procedure takes about 50 seconds. When the FORMAT
1ight goes out, formatting has been completed.

e. Turn the FORMAT LOCK key to the OFF position. (Note: the
disk cannot be accessed while the FORMAT LOCK key is ON.)

Formatting the Fixed Disk Platter

1. If the disk is in LOAD mode, switch to RUN and wait about 1
minute for the READY 1light to come on.

17

2230 Series General Information

2. When the READY 1ight comes on, flip the REMOVABLE DISK/FIXED DISK
toggle switch to FIXED DISK and follow the procedure described
above for the Removable Platter (steps 2b - 2e above).

NOTE:

After a disk platter is formatted, the FORMAT LOCK key
must be turned OFF. Otherwise, the disk cannot be
accessed, The formatting procedure causes any data
previously stored on the disk platter to be erased.

2,5 FORMAT ERRORS

After formatting a disk platter, the system automatically checks the
format for validity. If a format error is encountered, the system rechecks
the format three more times. If the error persists following the fourth
check, the platter 1is automatically reformatted and rechecked four more
times. This entire procedure (reformat and four format checks) is repeated
eight times by the system. If the error stubbornly persists following the
eighth attempt, the ERROR 1ight on the lower left-hand panel of the disk is
illuminated, indicating that the formatting procedure has aborted.
Depending upon where the erroneous sector is located, this entire procedure
may take from one to eight minutes, during which time the FORMAT lamp
remains 1it. Ordinarily, if the FORMAT lamp remains on for more than a
minute during the formatting procedure, you should assume that a format
error has been discovered and the system is attempting to correct it. If
the platter cannot be formatted (i.e., if the ERROR 1ight is illuminated),
you have two courses of action:

1. If the Removable Disk Platter cannot be formatted, insert another
disk cartridge and repeat the formatting procedure. If the
second cartridge cannot be formatted, call your Wang Service
Representative.

2. If the Fixed Disk Platter cannot be formatted, call your Wang
Service Representative.

If a particular disk platter is at fault, it may be possible to
format and use the other disk platter. If the system itself is at fault,
neither disk platter can be used. You should never attempt to wutilize a
disk platter which is not properly formatted.

2.6 LOADING AND UNLOADING THE REMOVABLE DISK PLATTER (DISK CARTRIDGE)

The disk wunit contains two disk platters, one Fixed and one
Removable. The Fixed Disk Platter comes installed from the factory and
cannot be removed from the disk unit. The Removable Disk Platter, as its
name indicates, can be taken out and replaced by the operator. Because it is
encased in a protective cartridge-like case, the Removable Disk Platter is
also referred to as a disk cartridge. The following instructions are for
changing the Removable Disk Platter.

18

2230 Series General Information

Unloading the Disk Cartridge

Step 1 Switch the LOAD/RUN rocker switch on the left front panel of the
disk to the LOAD position (POWER switch must be ON). Wait for
the LOAD light (white) to come on (about 30 seconds). See Figure
2-2.

LOAD READY CHECK POWER

R

Figure 2-2. Switches on Front Panel of Model 2230/2260

If the LOAD/RUN switch is set to RUN, the disk cartridge
cannot be unloaded.

WARNING:

The Disk Drive should never be left in LOAD mode for a
prolonged period of time. Serious and permanent damage to
the disk unit may result if the LOAD/RUN switch is left in
the LOAD position for more than 30 minutes while power is
ON.

Step 2 Open the cartridge bowl by pulling back the two cartridge holding
clamps (Figure 2-3). If these clamps are locked in the closed
position, do not force them. They are Tlocked due to an
interlock (see Section 2.8, "Machine Interlocks").

Figure 2-3. Opening the Cartridge Holding Clamps

(To Toad a disk cartridge, go to Step 7.)

19

2230 Series General Information

Step 3 Remove the dust cover (Figure 2-4).

Figure 2-4. Removing the Dust Cover

Step 4 Slide the tab on the cartridge handle to the left, and hold the
tab in place while raising the cartridge handle (Figure 2-5).
This action separates the disk cartridge from the disk drive, and
the cartridge may be 1ifted out of the disk bowl (Figure 2-6).

Figure 2-5. Releasing the Cartridge Lock

Figure 2-6. Removing the Cartridge from the Cartridge Bowl

20

2230 Series General Information

Step 5 Turn the dust cover over and set the disk cartridge into it
(Figure 2-7). When the cartridge handle is lowered, it locks the
dust cover onto the disk cartridge. Both cover and cartridge can be
carried as a unit by lifting the handle again without touching the
tab (see Figure 2-8).

Figure 2-7. Locking the Cartridge onto the Dust Cover

Figure 2-8. Carrying a Sealed Cartridge

Step 6 After a disk cartridge is removed from the disk wunit, a
replacement cartridge should be loaded into its place
immediately. See "Loading A New Disk Cartridge", Step 7.

Loading a New Disk Cartridge

Step 7 Make certain that the LOAD/RUN switch is set to LOAD. A disk
cartridge cannot be loaded if the disk is in the RUN mode.

Step 8 Open the cartridge holding clamps on the disk bowl (see Figure
2-3). If these clamps are.locked in the closed position, do not
force them; they are locked due to an interlock (see Section 2.8,
"Machine Interlocks").

21

2230 Series General Information

Step 9

Step 10

Remove the new disk cartridge from its dust cover by sliding the
tab on the cartridge handle to the 1left and holding it in
position while 1ifting the handle (Figure 2-5). This action
separates the disk cartridge from the dust cover, enabling you to
1ift the cartridge away from the cover (Figure 2-9).

- G

Figure 2-9. Separating Cartridge from Dust Cover

Place the disk cartridge over the spindle hub in the cartridge
bowl. Position the cartridge so that the cartridge opening for
the head entry is located at the rear of the cartridge bowl
(Figure 2-10).

Figure 2-10. Aligning Cartridge in the Cartridge Bowl

When the cartridge is correctly located, it sets squarely in position
and does not wobble or rotate. Lower the cartridge handle to Tlock
the cartridge onto the spindle (Figure 2-11).

22

2230 Series General Information

Figure 2-11. Cartridge Loaded in Disk Unit

Step 11 Place the dust cover, open end down, over the disk cartridge, and
close the two holding clamps (Figure 2-12).

Figure 2-12. Cartridge Sealed and Locked in Disk Unit

2.7 HANDLING AND STORAGE OF THE REMOVABLE DISK PLATTER (DISK CARTRIDGE)

The following practices should be observed when handling and storing
a disk cartridge:

1. The cartridge dust cover should be on the cartridge while it is
out of the disk unit to insure a positive dust seal and to
immobolize the platter.

2. Cartridges can be stored flat or on edge. Cartridges may be
stacked on top of one another, but heavy top loading should be
avoided.

Refer to Appendix E "Model 2230/2260 Disk Cartridge Maintenance
Information", for a more complete discussion of the handling and storage of
disk platters.

23

2230 Series General Information

2.8 MACHINE INTERLOCKS

The cartridge holding clamps cannot be operated while the read/write
heads or disk cleaning brushes are positioned over the disk surfaces (i.e.,
while the disk is in RUN mode), or when equipment power is OFF.

The disk cannot be accessed 1if the cartridge dust cover is not
installed, or if the cartridge holding clamps are open.

An initial power-ON or LOAD/RUN sequence turns off the interlock
circuits to allow normal operation of the disk.

NOTE:

To ensure continuous proper disk operation, the air
filter in the disk unit must be checked by a Wang
Service Representative every three months. If your
disk is under service contract, maintenance checks will be
made automatically on a regular basis. If your disk is

not under service contract, it is your
responsibility to contact a Wang Service Representative to
perform a maintenance check at three-month

intervals. Disk failures which result from Tlack of
proper preventive maintenance may not be covered under
the warranty.

24

Chapter 3
Model 2270 General Information and Formatting Instructions

3.1 UNPACKING AND INSPECTION

Because the disk unit is an extremely sensitive device, it 1is packed
using special techniques to protect it from damage in shipping, and it
should be unpacked and installed only by qualified Wang service personnel.

MODEL 2270

CASSETTE

cPu
CONNECTOR

CONNECTOR CORD

i (ki CONNECTOR TO
POWER SUPPLY

PERIPHERA L
CONNECTORS

ON/OFF
MAIN
POWER
SWITCH

Figure 3-1. Model 2270 System Configuration

25

Model 2270 General Information

3.2 INSTALLATION

The following installation procedure should be observed for the disk
unit:

1. Plug the disk drive connector cord into the appropriately
labelled disk controller board on the CPU chassis. After
attaching the cord, make sure the lock clips are snapped into
place at the CPU connection.

2. Plug the disk drive power cord into a grounded (three-hole) wall
outlet. Input power requirements for the disk are 115 VAC, 9
amps, 50/60 Hz + 1 cycle (or 120 VAC, 5 amps, 50/60 Hz + 1
cycle by special request).

3. Plug the Power Supply Unit power cords and the electrical power
cords of all other peripherals into grounded wall sockets.

3.3 POWER-ON PROCEDURE

1. Switch ON the power switches on the disk and all other
peripherals. On the disk unit, the POWER Tamp illuminates.

2. Switch ON the main power switch on the Power Supply Unit.
3. You)can now load and format the diskettes (Sections 3.4, 3.5,
3.6 L]

3.4 LOADING AND FORMATTING DISKETTES

The procedure for loading and formatting diskettes is the same for
all versions of the 2270 (2270-1, -2, and -3). Although formatting must be
carried out initially in Drive #1, a formatted diskette may be accessed
interchangeably in any drive, and in any 2270 disk unit.

A new, unused diskette must be formatted initially before it can be
used to record data. The formatting procedure is a hardware function
entirely, and can be initiated by the operator at the touch of a button.
Once formatted, a diskette normally should never need to be reformatted.
Certain problems which may result from a bad format, such as random
read/write errors, can, in some cases, be corrected by reformatting the
diskette. It is important to note, however, that the formatting procedure
wipes out any data already stored on the diskette.

Each sector on the diskette really consists of 260 bytes (see Chapter
1). Of these, two bytes contain the sector address, and two bytes contain
control information required to perform a Cyclic Redundancy Check (CRC).
The remaining 256 bytes are available for the user's data. During the
formatting procedure, the system writes the sector address and CRC control
information in each sector. The remaining 256 bytes of each sector are
filled with zeroes.

26

Model 2270 General Information

To Toad and format a diskette, observe the following steps:

1. Remove a diskette from its envelope, and check to see that the
Write Protect hole in the diskette jacket is covered with a tab
(Figure 3-2). If the Write Protect hole is uncovered, the
diskette cannot be formatted. Refer to Section 3.6 for a
discussion of the Write Protect feature.

o)
o : o < >
<::::> <::::>
Write-Protect Enabled Write-Protect Disabled

Figure 3-2. Model 2270 Diskette, with Tab Covering the
Write Protect Hole

2. Open the door of Drive #1 by pressing against the door latch,
located immediately to the left of the door (Figure 3-3). The
door should slide open.

]

Figure 3-3. Opening the Door of Drive #1

27

Model 2270 General Information

3. Insert a diskette into the open drive slot (Figure 3-4). Push
the diskette into the drive slot far enough to catch and hold it in
the slot. The plastic jacket in which the diskette platter is
sealed is labelled with arrows indicating the proper orientation
for mounting. Before mounting, be sure that the Mylar recording
disk moves freely with its jacket. Test for freedom of movement by
pushing gently against the inner edge of the disk; it should move
and turn easily.

Figure 3-4. Mounting a Diskette

4. Close the drive door by sliding it to the Tleft until it Tocks
into place. Be sure the door is tightly closed.

5. To format the diskette, first key RESET on the keyboard. Next,
use a pen or pencil to depress the FORMAT button above Drive #1 on
the disk control panel. (The FORMAT button is surrounded by a
protective ring to prevent accidental activation of the
formatting procedure, a safety feature necessary because the
formatting operation automatically erases any data stored on the
diskette.) The button must be held in for about one-tenth of a
second, or until the format lamp above Drive #1 illuminates.

28

Model 2270 General Information

Figure 3-5. Formatting a Diskette

6. The format lamp remains illuminated throughout the formatting
operation, which normally requires between 45 and 50 seconds. At
the end of this time, the lamp should extinguish, indicating that
the formatting process is complete. If the lamp remains 1it for
longer than 50 seconds, it is an indication that the system has
experienced some difficulty with the format, and is attempting to
reformat. If for some reason the diskette cannot be properly
formatted, the format Tlamp will start to blink (refer to Section
3.5 on Format Errors).

7. To remove the diskette from the drive, depress the door Tlatch.
The drive door is automatically slid open, and a spring-loaded
release mechanism ejects the diskette about halfway out of the
drive slot. Once formatted, the diskette may be loaded into any
drive for recording programs and data.

3.5 FORMAT ERRORS

Immediately after formatting a diskette, the system automatically
checks the format to ensure that it is correct. If an error is detected in
the format, the diskette is automatically reformatted and rechecked three
more times. During this retry process, which may take between four and
five minutes, the format lamp above Drive #1 remains 1it. Should the error
stubbornly persist following the fourth format check, the system signals a
format error by causing the format light to blink rapidly on and off. At
this point, the disk controller can be reinitialized, and the format 1ight
extinguished, by touching RESET on the system keyboard.

A diskette which cannot be properly formatted should not be used for

data storage. In most cases, format errors result from one or two simple
causes:

29

Model 2270 General Information

1. Drive door not tightly closed. Make sure that the door 1is closed
tightly, and repeat the formatting procedure.

2. Write Protect hole not covered. Remove the diskette and check
the Write Protect hole to be sure that it is completely covered.
If it is uncovered, the diskette cannot be formatted.

3. Faulty diskette. Insert a new diskette, and repeat the
formatting procedure.

If the formatting operation repeatedly aborts with an error on
several different diskettes, contact your Wang Service Representative.

3.6 THE WRITE PROTECT FEATURE

Important programs and data recorded on a diskette should be
protected against accidental erasure through overwriting or formatting.
The Write Protect feature is provided for this purpose.

A small hole punched near the edge of the diskette's plastic jacket
controls the Write Protect mechanism. When this hole is uncovered, the
diskette is write-protected. No information can be recorded on a protected
diskette, nor can it be formatted. Information already stored on the
diskette can, however, be read in the normal fashion. Any attempt to write on
a protected diskette elicits an ERROR 71. Any attempt to format a
protected diskette causes the lamp above Drive #1 to blink frantically.

The Write Protect feature is inhibited by covering both openings of
the Write Protect hole with a folded tab (tabs are provided with each
diskette for this purpose). The diskette may then be protected again at
any time simply by removing the tab.

FOLD OVER BACK

TAB
\ OF DISKETTE

: =

Figure 3-6. Model 2270 Diskette Write-Protect Feature

30

Model 2270 General Information

3.7 HANDLING AND STORAGE OF DISKETTES

Diskettes are 1light and compact, and may be easily stored in filing
cabinets, on shelves, 1in boxes, etc., either lying flat or standing on
edge. A diskette should always be stored in its disk envelope to inhibit
the accumulation of dust on the recording surface.

The following suggestions apply to the handling and storage of
diskettes:

1. Replace storage envelopes when they become worn, cracked, or
distorted. Envelopes are designed to protect the disk.

2. Keep disks away from magnetic fields and from ferromagnetic
materials which might become magnetized. Strong magnetic fields
(greater than about 50 oersteds) may distort recorded data on a
disk.

3. Do not write on the plastic jacket with a ballpoint pen or lead
pencil. Use a felt-tip pen.

4, Do not expose a diskette to high temperature or humidity, or to
direct sunlight, for prolonged periods. Temperature range for
storage of diskettes is 50°F to 125°F (10°C - 52°C), and range of
relative humidity is 8% - 80%.

5. Do not smoke when handling diskettes. Heat and contamination
from a carelessly dropped ash can damage the diskette.

6. Do not touch or attempt to clean the diskette recording surface.
Abrasion to the surface may cause a loss of stored data.

31

Chapter 4
Accessing the Disk Platters
(Models 2230, 2260, and 2270)

4.1 THE 'F' AND 'R' PARAMETERS

The method of accessing individual disk platters is the same for all
disk models. In every case, the system uses two parameters - the 'F’
parameter and the 'R' parameter - to uniquely identify individual platters.
For the fixed/removable disk units (Models 2230/2260), the 'F' parameter
uniquely identifies the Fixed Platter, while the 'R' parameter identifies
the Removable Platter. For the diskette units, however, no platter has a
privileged status (since any platter may be loaded into any drive); in
these cases, therefore, the 'F' and 'R' parameters really identify separate
drives. The 'F' parameter accesses the platter loaded in Drive #1, while
the 'R’ parameter accesses Drive #2. In the case of the Model 2270-1,
which contains only a single drive, the 'F' parameter alone is used. In
the <case of the Model 2270-3, which contains three drives, the 'F'
parameter identifies both Drive #1 and Drive #3. A special device address
must be used in conjunction with the 'F' parameter in order to access Drive
#3, however (refer to Section 4.3).

Table 4-1. Disk Platters and the 'F' and 'R' Parameters

MODELS MODEL MODEL MODEL
PARAMETER 2230/2260 2270-1 2270-2 2270-3
F Fixed Disk Platter Drive #1 Drive #1 | Drive #1 or #3*
R Removable Disk Not Legal | Drive #2 | Drive #2
Platter

*Note - 'F' parameter can be used to access Drive #3 in a Model 2270-3 only
when accompanied by a special device address (see Section 4.3).

33

Accessing the Disk Platters

The 'F' or 'R' parameter must be included in a disk statement or
command to reference a particular disk platter. For example, the statement

10 LOAD DC F "PROG 1"

loads the BASIC program named "PROG 1" from the Fixed Disk Platter of a
Model 2230 or 2260, or from the platter currently mounted in Drive #1 of a
Model 2270. Alternatively, the same program might be Tloaded from the
Removable Platter of a 2230 or 2260, or from a platter in Drive #2 of a
2270, with the following statement:

20 LOAD DC R "PROG 1"

The above statement is, of course, illegal for a Model 2270-1, which
contains only a single drive, always identified with the 'F' parameter.

4.2 THE DISK DEVICE ADDRESS

Apart from the 'F' and 'R' parameters, which didentify individual disk
platters within a disk unit, the disk unit itself is identified with a
unique three-digit device address. The disk device address enables the
system to distinguish a disk from other peripheral devices (such as tape
cassette drives, output writers, card readers, etc.), as well as from other
disk units on the same system. The device address of the first or primary
disk unit in a system is 310. If the system includes two or more disk
units, the address is incremented by HEX(10) for each successive unit.
(For example, the address of the second disk unit in a system is 320.)
Section 6.8 discusses the addressing scheme for multiple disk units.

The disk device address can be included directly in certain disk
statements and commands, for example:

10 LOAD DC F /310, "PROG 1"

Notice that the address is preceded by a "/" when it is directly specified in
a disk statement. There are a number of disk statements in which it 1is not

possible to specify a disk address directly. In these cases, the
address must be referenced indirectly. The technique for dindirectly
referencing a disk address is discussed in Chapter 6. It 1is generally

unnecessary to specify the device address either directly or indirectly in a
statement, however, because the system automatically uses address 310 if no
other address is specified. Address 310 1is therefore known as the
"default disk address". The only case in which it is necessary to specify an
address in a disk statement or command is when an address other than 310 is
to be used (e.g., when a second or third, etc, disk wunit 1is being
addressed, or when platter #3 in the Model 2270-3 1is being accessed, or
when the disk 1is accessed via the Disk Multiplexer). Thus, a statement
such as

20 LOAD DC F "PROG 2"

accesses the disk just as well as statement 10 above.

34

Accessing the Disk Platters

4.3 ADDRESSING THE THIRD DISKETTE DRIVE (MODEL 2270-3)

The system recognizes only two disk platters, designated by 'F' and
'R's in each disk unit. Thus, drive #3 in a Model 2270-3 Diskette Drive
unit is regarded by the system as a separate disk unit, and is assigned a
disk device address different from that of the primary address assigned to
drives #1 and #2. In general, the address of drive #3 is determined by
adding HEX(40) to the primary address assigned to drives #1 and #2. For
example, if the primary address is 310, the address of drive #3 1is 350; if
the primary address is 320, the address of drive #3 is 360, etc.
Procedures for accessing the third diskette drive, and the complete
addressing scheme for the Model 2270-3, are covered in Chapter 6, Sections
6.2 and 6.8.

Note that the third drive is not assigned a special third parameter,
different from 'F' and 'R'. Rather, it is regarded as the 'F' platter of a
separate disk unit, and must be accessed by specifying both the 'F'
parameter and the special disk address. Attempted use of the 'R' parameter
with the special address to access drive #3 will produce an error.

4.4 LIMITATIONS OF CERTAIN DISK MODELS

In general, the discussion of disk statements and commands which
follows in Chapters 5 - 9 applies across the board to all disk models,
since all 2200 series disks share the same BASIC instruction set, There
are, however, two special exceptions to this general rule, regarding the
use of the platter-to-platter MOVE and COPY statements (covered in Sections
5.15 and 9.6, respectively). These exceptions apply to the Models 2270-1
and 2270-3:

Model 2270-1

The platter-to-platter MOVE and COPY statements are illegal on the
Model 2270-1, for the obvious reason that it holds only a single diskette.
The MOVE and COPY operations cannot be carried out between separate disk
units (i.e., between one Model 2270-1 and a second disk unit).

Model 2270-3

The platter-to-platter MOVE and COPY operations are legal for drives #1
and #2 in the 2270-3, but illegal for drive #3. Drive #3 1is regarded as
belonging to a separate disk unit, and the MOVE and COPY operations cannot be
carried out between two disk units.

35

Chapter 5
Automatic File Cataloging Procedures

5.1 INTRODUCTION

Once the disk is unpacked, inspected, installed, turned on, and
formatted, you are ready to begin storing information on it. The System
2200 provides two methods of accessing and utilizing the disk, Automatic
File Cataloging Mode and Absolute Sector Addressing Mode. Automatic File
Cataloging consists of a set of catalog procedures designed to facilitate
creating and maintaining files on the disk without concern for where the
files are actually located. Absolute Sector Addressing, on the other hand,
permits direct access to any sector on the disk; Absolute Sector Addressing
statements can be used to design a custom disk operating system, or to
write special disk operating procedures such as binary searches, sorting
routines, etc.

Chapters 5, 6, and 7 describe and explain the functions and uses of
the catalog procedures. The present chapter introduces the concept of
cataloging, and discusses the most basic catalog procedures, such as
storing and retrieving programs and data on disk, skipping over data
records in a data file, listing the contents of the catalog index for each
platter, and creating back-up copies of the catalog. Chapters 6 and 7
discuss these and other subjects in greater detail. Chapter 8 provides an
alphabetical 1listing of all catalog statements and commands with a detailed
summary of the general format and function of each.

5.2 WHAT IS AUTOMATIC FILE CATALOGING?

Automatic File Cataloging comprises a built-in set of catalog
procedures which automatically keep track of the Tocations of all cataloged
files stored on a disk platter. The catalog procedures enable a programmer to
create and access program files and data files on disk by name, without
knowing where the files are Tlocated on the platter. The system itself
automatically places each newly created file in an available 1location, and
records this location for future reference.

The catalog procedures provided in Automatic File Cataloging actually
consist of 18 BASIC statements which control the storage and retrieval of

37

Automatic File Cataloging Procedures

information on the disk along with a number of auxiliary file maintenance
operations. Prior to opening any cataloged files on a disk platter, it is
necessary to establish a catalog on the platter. The catalog consists of
two parts, the Catalog Index, and the Catalog Area.

A11 cataloged files (program and data) are stored sequentially in the
portion of the platter designated as the Catalog Area. The Catalog Index,
which normally occupies a much smaller portion of the platter than the
Catalog Area, contains the name and location of each cataloged file. When a
file is initially opened, the system automatically stores it in the first
available sequential 1location in the Catalog Area. The system then records
the file's name and location in the Catalog Index. Thus, the Catalog Index
functions much 1ike the table of contents in a textbook, while the Catalog
Area is analogous to the body of text. When the system is subsequently
instructed to access a cataloged file, it goes to the Catalog Index, looks up
the file's name and location, and moves to the appropriate Tlocation in the
Catalog Area to access the file. Because the Catalog Index is
automatically maintained and consulted by the system itself in Automatic
File Cataloging mode, the programmer never needs to know where a cataloged
file is actually located on the disk in order to access it.

5.3 SECTORS AND ADDRESSES

The Catalog Index keeps track of the location of each file in the
Catalog Area by recording the starting sector address of the file at the
time it is stored. You may recall from Chapter 1 that the sectors on each
disk platter are numbered sequentially, starting at zero. Each sector has a
unique number, or "address".

Each sector has a storage capacity of 256 bytes of information.
Thus, for example, a 1000-byte program would occupy four consecutive
sectors. Following our analogy above, the sectors can be thought of as
pages in a textbook, each with its own number. When a program or data file is
stored on the disk with the cataloging procedures, the system
automatically records the name of the file and its starting sector address -
i.e., the address of the first sector in which information belonging to that
file is stored - in the Catalog Index. When information from the file is to
be retrieved, the system reads the starting sector address 1in the Catalog
Index, moves to that location, and sequentially reads as many sectors as need-
ed to retrieve the required information.

5.4 INITIALIZING THE CATALOG

Before any information can be recorded on the disk with catalog
procedures, the catalog itself must be initialized with a SCRATCH DISK
statement. In the SCRATCH DISK statement, you must tell the system three
things:

1. The disk platter on which the catalog is to be established.
Separate and independent catalogs are established on each disk
platter, and each must be initialized independentiy. The 'F' or
‘R' parameter is used to specify the desired disk platter.

38

Automatic File Cataloging Procedures

2. The number of sectors which are to be reserved for the Catalog
Index (any number between 1 and 255 1is allowed). The 'LS'
parameter is used for this purpose.

3. The address of the last sector to be used for the Catalog Area.
(Cataloged files cannot be stored on the disk beyond this
sector.) The 'END' parameter is used for this purpose.
Obviously, you cannot reserve more sectors for the Catalog Area
than there are sectors on the disk platter; thus, the address of
the last sector in the Catalog Area must not be higher than the
address of the last sector on the disk platter. (This address
varies according to the capacity of the disk configuration.
Check one of the Appendices B through D to determine the highest
legal sector address of your Model.)

Example 5-1: Initializing the Catalog

10 SCRATCH DISK F LS=100, END=1000
- 5 ,Eaps= 102D

Statement 10 instructs the system to initialize a catalog on
the disk platter designated by ‘'‘F' ('F' designates the Fixed
Disk Platter on the Models 2230 and 2260, and Drive #1 on
the Model 2270). One hundred sectors are reserved for the
Catalog Index on this platter (LS = 100), and sector 1000 is
specified as the 1last sector in the Catalog Area (END =
1000). Note that each disk platter must be initialized
separately (i.e., with a separate SCRATCH DISK statement).

In deciding how many sectors you should allocate for the Catalog
Index, keep 1in mind the fact that the first sector of the Index (sector 0)
can store 15 file names, and each subsequent sector (up to sector 254) can
store 16 file names. Thus, if you intend to store 15 or fewer files on a
disk platter, one sector will be adequate for the Index. If you intend to
store 16 or more files, two or more sectors must be reserved for the Index.
It is important to note, however, that the size of the Catalog Index, once
fixed, cannot be altered without reorganizing the entire catalog. The
Index should therefore generally be allotted enough space to provide for
any possible future additional files.

It is not strictly necessary to specify the number of sectors to be
reserved for the Catalog Index. If you do not specify the number of
sectors to be reserved in your SCRATCH DISK statement (i.e., if the 'LS'
parameter is omitted), the system automatically reserves the first 24
sectors on the disk platter for a Catalog Index. In the first sector of
the Catalog Index (sector 0), a maximum of 15 file names (and associated
file information) can be stored. In each subsequent sector of the Index, a
maximum of 16 file names can be stored. Thus, a Catalog Index of 24
sectors provides enough space to store a maximum of 383 file names.

Example 5-2: Initializing the Catalog ('LS' Parameter Omitted)
20 SCRATCH DISK R END = 1000
Statement 20 instructs the system to establish a Catalog on
the disk platter designated by 'R' ('R' designates the

39

Automatic File Cataloging Procedures

Removable Disk Platter on the Models 2230 and 2260, and
Drive #2 on the Models 2270-2 and 2270-3; the 'R' parameter is
i1legal on a Model 2270-1). Sector 1000 is specified as the
last sector to be used in the Catalog Area (END = 1000). Since
the 'LS! parameter is omitted, the system
automatically reserves the first 24 sectors on the 'R’
platter for the Catalog Index.

5.5 SAVING PROGRAMS ON DISK

Once the catalog is initialized, cataloged information can be stored on
the disk. Information recorded on the disk must be stored in either of two
types if files, program files or data files. A data file may contain a large
collection of data. A program file, however, always contains only one
BASIC program or program segment.

The SAVE DC command is used to save program files on the disk. One
program file is created automatically whenever a SAVE DC command is
executed. A program file consists of the BASIC program or program segment
being saved, as well as certain control information which is automatically
included in the file by the system when the program is stored on disk.

When a program is recorded with a SAVE DC command, the system must be
supplied with the following required information:

1. The disk platter on which the program is to be stored ('F' or
'R'). The specified disk platter must have been initialized with a
SCRATCH DISK statement.

2. The name of the program. You must name the program so that the
system has some way of identifying it when it is stored on the
disk. The name can be from one to eight characters in length.
It may be specified as a literal string in quotes, or as the
value of an alphanumeric variable.

Example 5-3: Saving a Program on Disk
SAVE DC R "PROG 1"

This command (the term "command" indicates that SAVE DC is
not programmable) instructs the system to transfer all
program lines currently in memory to the disk platter
designated by 'R' and name this program file "PROG 1", The
file's name ("PROG 1") and location are automatically listed in
the Catalog Index.

It is also possible to save just a portion of a program currently in
memory. This is accomplished by including the appropriate 1ine numbers in
the SAVE DC command (see Examples 5-4 and 5-5).

Example 5-4: Saving Part of a Program on Disk
(One Line Number Specified)

SAVE DC R "PROG 2" 200

40

Automatic File Cataloging Procedures

This command instructs the system to transfer all program
lines in memory beginning with 1line 200 onto the disk
platter designated by 'R'. The program is named "PROG 2",
and its name and location are automatically entered in the
Catalog Index.

Example 5-5: Saving Part of a Program on Disk
(Two Line Numbers Specified)

A$ = "PROG 3"
SAVE DC R A$ 200, 500

This command transfers program lines 200 through 500 from
memory to the 'R' disk platter. The program is named "PROG
3", since that is the value of A$, and the program's
name ("PROG 3") and Tlocation are entered in the Catalog
Index.

5.6 RETRIEVING PROGRAMS STORED ON DISK

Cataloged programs are retrieved from the disk with the LOAD DC
instruction. The LOAD DC instruction produces a different sequence of
events depending upon its mode of execution. When LOAD DC is executed in
Immediate Mode, it functions as the LOAD DC command; the LOAD DC command
stimulates a specific sequence of operations. When LOAD DC is executed in
Program Mode (i.e., on a numbered program line), it functions as the LOAD DC
statement; the LOAD DC statement initiates a sequence of operations
different from those associated with the LOAD DC command.

The LOAD DC Command

The LOAD DC command is never executable in Program Mode; it s
executed in Immediate Mode only. If the LOAD DC instruction appears in a
program (i.e., on a numbered program line) it is always interpreted as a
LOAD DC statement, and the operations associated with the LOAD DC statement
are carried out by the system. The LOAD DC command instructs the system to
locate a named program on a specified disk platter, and load the program into
memory. The system checks the Catalog Index for the specified program name,
determines the program's Tlocation in the Catalog Area, and moves to that
location to load the program.

Following execution of the LOAD DC command, the newly loaded program is
appended to existing program text in memory. New program lines which have
the same numbers as program Tlines already stored in memory replace the
currently stored Tines in memory. Currently stored program 1lines which do
not have the same line numbers as new program 1lines are not cleared,
however; they remain as lines in the new program. (For example, if the old
program has lines numbered 5, 15, 25, etc., and the newly-loaded program
lines are numbered 10, 20, 30, etc., the new program in memory has lines
numbered 5, 10, 15, 20, etc.) For this reason, it is generally wise to
clear memory prior to loading the new program. A1l of memory can be
cleared by executing a CLEAR command prior to executing the LOAD DC
command. Alternatively, a CLEAR P command causes only program text to be
cleared from memory. After the new program is loaded, it is necessary to
key RUN and EXECUTE in order to execute the newly loaded program.

nl

Automatic File Cataloging Procedures

The LOAD DC command must include the following two items of
information:

1. The disk platter (either 'F' or 'R') on which the desired program is
stored.

2. The name of the program which is to be retrieved (the name may be
specified as a literal string in quotes, or as the value of an
alphanumeric variable).

Example 5-6: Loading a Cataloged Program File from Disk

CLEAR
LOAD DC R "PROG 1"

This command instructs the system to load PROG 1 from the
disk platter designated by 'R'. When the command is
executed, the system accesses the 'R' platter and searches
for the program name "PROG 1" in the Catalog Index. Upon
locating the name in the Catalog Index, the system checks
the starting sector address of the program, and moves to
that address 1in the Catalog Area to begin Tloading PROG 1
into memory. The new program is appended to existing
program text in memory (new program lines which have the
same number as program lines already in memory replace the
currently stored 1lines 1in memory). After the program is
loaded, it is necessary to key RUN and EXECUTE in order to
begin execution of the new program.

If the program name specified in the LOAD DC command ("PROG 1" in
Example 5-6 above) is not located in the Catalog Index on the specified
disk platter, an error is indicated. Note that the program name supplied in
a LOAD DC command must correspond exactly to the program name Tlisted in the
Catalog Index. Any misspelling results in an error.

Example 5-7: Attempting to Load a Non-Cataloged Program from Disk

CLEAR
LOAD DC R "PROG 1"

This command is meant to retrieve PROG 1 from the 'R' disk
platter. Because the program's name is misspelled, however
("PRAG 1" instead of "PROG 1"), the system cannot find a
program under this name in the Catalog Index. It therefore
signals an error:

LOAD DC R "PRAG 1"
AERR 80

Where Error 80 = "File Not in Catalog".
The LOAD DC Statement

Cataloged programs also can be loaded into memory from disk under
program control. The LOAD DC statement 1is used for this purpose. The LOAD DC

42

Automatic File Cataloging Procedures

statement 1is executable only in a program (i.e., on a numbered program line).
When the LOAD DC instruction is executed in Immediate Mode, it is always
interpreted as a LOAD DC command, and the sequence of operations associated
with the LOAD DC command (see above) is followed by the system.

The following sequence of operations is associated with the LOAD DC
statement:

1. Stop current program execution.

2. Clear all currently stored program text (or a specified portion of
currently stored program text) from memory.

3. Clear all noncommon variables from memory.

4. Locate the named program on the specified platter, and 1load this
program into memory (if the specified name cannot be found in the
Catalog Index, an error is signalled).

5. Run the newly loaded program.

In a LOAD DC statement, the system must be provided with the
following information, in the order indicated:

1. The disk platter (either 'F' or 'R') on which the desired program is
stored.

2. The name of the program which is to be loaded (the name may be
specified as a Tliteral string in quotes, or as the value of an
alphanumeric variable).

Optionally, a third item may be included:

3. One or two line numbers which identify the first and 1last program
lines to be cleared from memory prior to loading the new program.

If no 1ine number is specified in the LOAD DC statement, the system
clears all program text from memory prior to loading the new program from
disk. As soon as the program is loaded, execution begins automatically at
the first (Towest) program line in the newly loaded program. The LOAD DC
statement is commonly used to "chain" programs from the disk. Common
variables (so specified in a COM statement) are retained in memory for use by
each succeeding program in the chain. Noncommon variables are cleared by
the LOAD DC statement.

Example 5-8: Chaining a Program from Disk with the
LOAD DC Statement

100 LOAD DC F "PART 2"

When it is executed, statement 100 stops program execution,
clears all program text and noncommon variables from memory,
and loads in the program PART 2 from the 'F' disk platter.
Execution of PART 2 begins automatically at the first
(Towest) 1ine in the progra~

43

Automatic File Cataloging Procedures

If program segments are to be overlayed from disk, it may be
desirable to clear out only a specific portion of program text prior to
loading the new program segment. In this case, one or two program line
numbers can be included in the LOAD DC statement. Inclusion of a single
1ine number in the statement causes all program text beginning at that line to
be cleared from memory prior to loading the new program. Two line
numbers instruct the system to clear all program text between and including
the specified lines prior to loading the new program. In either case, all
non-common variables are also cleared. Execution of the newly loaded
program begins at the first 1ine number specified in the LOAD DC statement.
If this 1ine number does not appear in the newly loaded program, an ERROR 11
(Missing Line Number) is signalled.

Example 5-9: Loading a Program Overlay from Disk
200 LOAD DC F "PART 3" 300, 900

Statement 200 halts program execution and clears program
lines 300 through 900 from memory, along with all non-common
variables, prior to loading program overlay PART 3 from the
'F' platter. After PART 3 1is 1loaded, program execution
continues automatically at line 300. If PART 3 contains no
line number 300, an ERROR 11 (Missing Line Number) is
signalled.

5.7 LISTING THE CATALOG INDEX

You can obtain a 1ist of the names and Tlocations of all cataloged
files on a disk platter, as well as certain information about the catalog
itself, by executing a LIST DC statement. In the LIST DC statement, you
must specify the disk platter whose Index is to be listed. When the LIST DC
statement is executed, the following information is returned:

1. The number of sectors reserved for the Catalog Index on that disk
platter.

The address of the last sector reserved for the Catalog Area.
The current end of the Catalog Area.

The name of each cataloged file.

The file type (program or data) of each file.

The starting and ending sector addresses of each file.

N O AW N

The number of sectors used in each file.

Example 5-10: Listing the Catalog Index

50 LIST DC R

Statement 50 causes the system to 1ist the contents of
the Catalog Index from the disk platter designated by 'R'.

44

Automatic File Cataloging Procedures

This platter was initialized in Example 5-2 above, and
program files were saved in Examples 5-3, 5-4, and 5-5;
the 1isting therefore looks like this:

REMOVABLE CATALOG

INDEX SECTORS = 00024
END CAT. AREA = 01000
CURRENT END = 00132

NAME TYPE START END USED

PROG 2 P 00051 00112 00062
PROG 3 P 00113 00132 00020
PROG 1 P 00024 00050 00017

Figure 5-1. The Catalog Index Listing

There are several things which should be noticed about the
information in this 1listing. Notice, first, that all files are stored
sequentially. The Catalog Index occupies the first 24 sectors (sectors
0-23). The first file, PROG 1, is stored beginning at the first available
sector following the Index (sector 24). PROG 2 begins at the first
available sector following PROG 1 (sector 51), and PROG 3 starts with the
first sector after PROG 2 (sector 113). Notice also, however, that the
Catalog Index entries themselves are not listed in sequential order. That is
because entries in the Catalog Index are stored in a "hashed" order, which
minimizes the system's search time for finding entries in the Index.

You should observe, finally, that the USED column opposite each
program name indicates the number of sectors occupied by that program. In
the cases so far discussed, the system automatically wuses exactly enough
sectors on the disk to store each program. It is also possible to reserve
extra sectors in a program file beyond the number needed to store the program;
these extra sectors can be used subsequently for additions to the program.
The technique for reserving extra sectors in a program file is discussed in
Chapter 7.

NOTE TO OWNERS OF THE MODEL .2270:

The Catalog Index listing is always identified as the
"Fixed Catalog" or the "Removable Catalog".

On the Model 2270-2, the "Fixed Catalog" refers to the
Catalog Index Tlisting for the diskette in drive #1; the
"Removable Catalog" identifies the Catalog Index
listing for the diskette in drive #2.

On the Model 2270-1, the "Fixed Catalog" identifies the
Catalog Index 1listing for diskette #1. It 1is not
possible to generate a "Removable Catalog" listing.

On the Model 2270-3, the "Fixed Catalog" identifies the
Catalog Index Tisting for Diskette #1 and for Diskette
#3; the "Removable Catalog" identifies the Catalog
Index listing for Diskette #2.

45

Automatic File Cataloging Procedures

5.8 SAVING DATA ON DISK

The Hierarchy of Data

Unlike a program file, which always contains only a single program or
program segment, a data file normally contains several different items of
data. Obviously, it would be unwise simply to dump data on the disk in a
random or disorganized fashion, since there would then be no efficient way to
retrieve specific items when they were needed. In order to facilitate fast,
efficient retrieval of data from the disk, data stored on disk is
organized into a well-defined structure or "hierarchy."

The hierarchy of data contains two Tlevels: on the Tower level,
individual data relating to a single subject (such as a particular
customer, or a particular item in the inventory) are organized into a data
record (also known as a logical record); at the higher level, a number of
related logical records are organized into a data file (say, an inventory
file or customer file). An inventory file, for example, typically contains a
number of inventory records, each of which in turn contains information
about an individual item in the inventory (such as model number, name,
price, number 1in stock, etc.). Whenever a particular piece of information
about one of the items in the inventory is needed, the procedure js first to
locate the inventory file, then to locate the desired record within the file.

Catalog Mode permits the programmer to open a number of different
files on disk or, if it is more convenient, a single large file which
occupies the entire Catalog Area. Within each file, the individual records
can be as Tlong as necessary (but each record occupies a minimum of one
sector on disk, unless special techniques are used to "block" records in a
sector). In Catalog Mode, the system automatically keeps track of where
each file is located on the disk. It is up to the programmer, however, to
locate individual records within the file. A special disk utility, the
Wang System 2200 Keyed File Access Method (now available in two new
versions, designated KFAM-2 and KFAM-3), provides a file maintenance system
which keeps track of the location of each record in a cataloged file,
thereby facilitating access to the records. Ask your Sales Representative
for further information about KFAM-2 and KFAM-3.

Because the system itself has no way of knowing how many records will be
stored in a file, or how many sectors each record will occupy, it 1is the
programmer's responsibility to estimate how many sectors each data file will
require. The system must be instructed to reserve adequate space for the
file on a designated platter. Thus, two steps are required to save data on
the disk:

1. First, a data file must be cataloged, or "opened", with a special
statement, DATASAVE DC OPEN. In this statement, the new data
file 1is named, and the number of sectors to be reserved for the
file 1is specified. No data is actually stored in the file at
this point.

2. Once the file is opened, data records can be stored in the file
with the DATASAVE DC statement.

46

Automatic File Cataloging Procedures

Opening A Data File On Disk

A data file is opened on the disk with a DATASAVE DC OPEN statement,
which requires the following information:

1. The disk platter (either 'F' or 'R') on which the data file is to be
opened. This disk platter must have been initialized with a
SCRATCH DISK statement. (See Section 5-4.)

2. The number of sectors to be reserved for the data file. Take
care that the file does not extend beyond the limits of the
Catalog Area (if it does, an error is signalled).

3. The name of the data file. You must name the file so that the
system has some way of identifying it. The name can be from one to
eight characters in 1length, and may be specified either as a
character string 1in quotes or as the value of an alphanumeric
variable.

When the DATASAVE DC OPEN statement is executed, the specified number of
sectors are reserved for the newly-opened file in the Catalog Area. The Ilast
sector of the file is used by the system for a special control record which
marks the absolute end of the file; no data can be written in the file
beyond that point. The file's name and location are also
automatically entered in the Catalog Index.

Example 5-11: Opening a Data File on Disk
150 DATASAVE DC OPEN F 100, "DATFIL 1"

Statement 150 instructs the system to reserve 100 sectors on
the disk platter designated by 'F' for a data file, and name
this file "DATFIL 1". The file's name ("DATFIL 1") and
location are entered automatically in the Catalog Index on
the 'F' platter.

NOTE:

The system automatically allocates the 1last sector in
each data file exclusively for the system control record.
The system control record contains control
information and pointers used by the system in
maintaining the data file, and no data can be stored in
this sector. It is also generally desirable to write
an end-of-file trailer record in a data file after all
data has been stored; the trailer record 1ikewise occupies
one sector which cannot be used for data. Thus, it is
always good programming practice to reserve at least
two more sectors than are actually required for a data
file 1in order to account for the two sectors which
cannot be used. For example, if you wish to store 24
sectors of data in a file, you should reserve at
least 26 sectors (24 + 2) in the DATASAVE DC OPEN
statement.

47

Automatic File Cataloging Procedures

If a LIST DC statement is executed following 1line 150 in Example
5-11, the listing should look 1like this:

FIXED CATALOG

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199
NAME TYPE START END USED

DATFIL 1 D 00100 00199 00001

Figure 5-2. Catalog Index Entry for DATFIL 1

One hundred sectors are reserved for DATFIL 1 (000100-000199), but,
despite the fact that no data has yet been saved in the file, the USED
column for DATFIL 1 indicates that one sector is already occupied. This is
the last sector in the file, automatically set aside for system control
information in DATFIL 1. Thus, although 100 sectors were reserved for
DATFIL 1, only 99 of those sectors can actually be used for data storage.
If 100 sectors are needed for data, at least 101 must be reserved for the
data file.

NOTE:

Wang systems do not distinguish between input files and
output files in disk operations. Thus, data can be
either written in or read from a file which has been

opened with a DATASAVE DC OPEN statement.

Saving Data In A Data File On Disk

Once a data file has been opened on a disk platter, data <can Dbe
stored in the file with a DATASAVE DC statement. A1l of the data values
(or the variables and arrays containing the data values) which are to be
included in one record must be Tisted in the DATASAVE DC statement. This
information is referred to as the DATASAVE DC "argument 1list." Individual
items must be separated by commas. The system automatically groups
information from the argument 1list sequentially in a 1logical data record,
and stores this record in the currently open data file on the disk.

Suppose, for example, that you wish to create a record containing the
name, street address, and birth date of an employee, and store this record in
the file DATFIL 1. Since DATFIL 1 was recently opened with a DATASAVE DC OPEN
statement (Example 5-11), it 1is the currently open data file on disk.
Assuming that the information is stored in several variables, you can transfer
the data into DATFIL 1 simply by including the variable names in the argument
1list of a DATASAVE DC statement, as in Example 5-12:

48

Automatic File Cataloging Procedures

Example 5-12: Saving Data in a Data File

160 A$ = "PETER RABBITT"
170 B$ = "4 OAK DRIVE"
180 N = 032948

190 DATASAVE DC A$,B$,N

Statement 190 instructs the system to transfer all values
from the variables A$, B$, and N into the currently open data
file on disk (DATFIL 1). Collectively, the three items of
information "PETER RABBITT", "4 OAK DRIVE", and 032948
constitute one logical record in DATFIL 1.

If, after saving a record in DATFIL 1, you execute a LIST DC F
statement, the Index looks like this:

FIXED CATALOG

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199
NAME TYPE START END USED

DATFIL 1 D 00100 00199 00201

USED column
not yet updated

Figure 5-3. Catalog Index Entry for DATFIL 1.

Notice that the USED column has not yet been updated to reflect the
newly stored data in DATFIL 1. Since all the information in this record can
be stored in one 256-byte sector, the USED column for DATFIL 1 should read
0002, indicating that one sector in DATFIL 1 has been used for data, in
addition to the single sector reserved for system information. Why
doesn't it?

The answer is simple: The USED column in a data file is updated
only when an end-of-file record has been written in the file. The
end-of-file (or trailer) record tells the system, in effect, "no data is
stored in this file beyond this point". With this information, the system
can determine how many sectors in the file are filled with data, and can
update the USED parameter appropriately. A trailer vrecord 1is not
written 1in the file automatically, however; it must be created by the
programmer with a DATASAVE DC END statement. The USED parameter for
DATFIL 1 could be updated by following statement 190 in Example 512 with a
DATASAVE DC END statement, as shown in Example 5-13:

49

Automatie File Cataloging Procedures

Example 5-13: Writing an End-0f-File (Trailer) Record in a
Data File on Disk

200 DATASAVE DC END

Statement 200 instructs the system to write a trailer record
into DATFIL 1.

If you now perform a listing of the Catalog Index, the Index Tlooks
like this:

FIXED CATALOG

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00199

NAME TYPE START END USED
DATFIL 1 D 00100 00199 00003

A
Updated USED
now shows one sector used for
file control, one sector for end-
of-file record, and one sector
for data record.

Figure 5-4. Updated Catalog Index Entry for DATFIL 1

As you can see, the USED column is now updated. It 1is good
programming procedure to write a trailer record every time you have
finished saving data in a file so that you will always know how much of the
file is filled, and how much space remains. However, it is not necessary to
write a trailer record after every DATASAVE DC statement; instead, a single
DATASAVE DC END statement can be wused at the conslusion of a disk write
routine.

Example 5-14: Writing a Data Trailer Record after a Series of
DATASAVE DC Statements

200 DATASAVE DC A()

210 DATASAVE DC B(),N,M(3)
220 DATASAVE DC A$,T$()
230 DATASAVE DC END

Lines 200-220 instruct the system to transfer data from the
numeric and alphanumeric variables, arrays, and array
elements specified in the respective argument 1lists, and
store this data in the currently open data file (DATFIL 1) on
disk. Statement 230 instructs the system to write an
end-of-file trailer record following the last data record in
DATFIL 1, and update the USED parameter for DATFIL 1 in the
Catalog Index to indicate how many sectors have been used.

50

Automatic File Cataloging Procedures

In addition to updating the USED parameter for the file, there are
three major advantages to writing an end-of-file trailer record in a data
file:

1. The trailer record makes it possible to skip to the end of stored
data in a file in order to write new records in the file. (See
Section 5-12.)

2. The trailer record makes it possible to test for the end of
stored data (last record) in a file when reading through the file
sequentially under program control. The IF END THEN statement is
used for this purpose. (See Section 5-13.)

3. The trailer record insures against accidentally reading beyond
the last valid data record in a file.

WARNING:

Never use the RESET button to terminate program
execution during a disk write routine. RESET
causes the disk to immediately terminate any
operation and return the read/write head to the
home position, even if it is in the middle of writing
a sector. Thus, it is possible that a half-written sector
may be left in the file following a RESET operation. Any
subsequent attempt to read the half-sector results in an
error. To avoid this problem, always use the HALT/STEP
key if you wish to halt program execution during a
disk write routine. HALT/STEP permits the disk to
complete the write operation for the current sector before
terminating the data transfer.

5.9 THE STRUCTURE OF DATA FILES

Up to now the discussion has focused primarily on the mechanics of
saving data on the disk; 1little attention has been paid to the actual
manner in which data is organized and stored by the system, It will be
helpful to consider this question briefly now (a more detailed discussion is
reserved for the following chapter), prior to discussing the retrieval of
data from a cataloged data file on disk.

The major concept to be understood in connection with data files s
that of a 1logical data record. A single logical record (or data record) is
created in a file on the disk with each DATASAVE DC statement. The Tlogical
record contains all of the data included in the DATASAVE DC argument list, as
well as certain control information inserted by the system. Suppose, for
example, that the following statements are executed:

10 DATASAVE DC OPEN R 200, "DATFIL 1"
20 DATASAVE DC "PETER RABBITT", 01121,B$,N,A()

51

Automatic File Cataloging Procedures

Statement 10, as you know, opens DATFIL 1 on the 'F' platter. Statement 20
creates one Tlogical record in DATFIL 1 containing all the data in the
DATASAVE DC argument list. Notice that there are several different types of
data in the argument list. The first item is a 1literal string "PETER
RABBITT". Whenever a 1literal string is specified in a DATASAVE DC argument
list, it must be enclosed in quotes. The second item, 01121 is a numeric
value which need not be set in quotes. The third item, B$, is an
alphanumeric variable, the fourth, N, is a numeric variable, and the fifth,
A(), is a numeric array. Empty parentheses are used to indicate that the
entire array is to be saved. Thus, if array A() contains four elements, the
statement

DATASAVE DC A()
is equivalent to the statement
DATASAVE DC A(1), A(2), A(3), A(4)

Array elements are recorded in sequence (two-dimensional arrays are stored row
by row). Each individual item in the DATASAVE DC argument 1ist (including
each array element) is considered to be a single argument. Thus, if the array
A() is dimensioned to contain four elements, it is regarded as a collection of
four separate arguments, and the DATASAVE DC argument list in statement 20
consists of a total of eight arguments.

When the DATASAVE DC statement is executed, the arguments are taken in
sequence from the argument list and stored in a logical record on the disk
(if a two-dimensional array is included in the argument 1list, the array
elements are transferred row by row). Thus, if the following
assignments are assumed, the 1logical record created by statement 20
resembles the figure below.

B$ = "10 OAK DRIVE"

N = 2222

A(1) =123

A(2) = 456

A(3) = 789

A(4) = 100
BS N AQ1) A(2) A(3) A(4)
\ 4 Y Vv Vv VvV Vv

PETER RABBITT 01121| 10 OAK DRIVE| 2222 | 123 | 456 | 789 | 100 //C;C;C;Cq

Figure 5-5. Logical Record Consisting of One Sector

The arguments saved in a logical record on disk are commonly referred to
as fields within the record. In the record above, for example, "PETER
RABBITT" is the first field in the record, while '100' is the last field.
It is important to note that when a logical record is read back into memory
from disk, each field must be read into a single variable or array element; it
is never possible to read two or more fields into a single variable or array

52

Automatic File Cataloging Procedures

element, even if the receiving variable or element is large enough to contain
more than one field. Note, too, that alphanumeric fields must be read back
into alphanumeric variables or array elements, and numeric fields must be
read back into numeric variables or array elements.

In the present example, the logical record occupies somewhat Tless
than one sector. Notice in Figure 5-5 above that the remainder of the
sector is unused. The remainder of the sector contains meaningless data,
which is dignored by the system (the system provides automatic safeguards
against accidentally reading this meaningless data when the record 1is read
back into memory). If another logical record is created (with a second
DATASAVE DC statement), the new record begins at the beginning of the next
sector. The remaining unused portion of the first sector is not used for
the second record. A logical record always begins at the beginning of a
sector. This is the case even if the logical record occupies only a very
small portion of the sector. For example, consider the statements:

30 DATASAVE DC A
40 DATASAVE DC B

Each of these statements creates a single logical record containing a
single numeric value, and each occupies an entire sector on the disk:

A UNUSED B UNUSED

t, A

Figure 5-6. Two One-Sector Logical Records

Obviously, this is not a very efficient way to store data. It would surely
be more efficient to store both values in a single record, with a single
DATASAVE DC statement (e.g., DATASAVE DC A,B). In this case, both values
occupy the same sector.

On the opposite end of the spectrum, a single logical record can
occupy several sectors - as many sectors, in fact, as are required to store
all the data in the DATASAVE DC argument l1ist. Consider, for example, the
following routine:

60 DIM A(60)
70 DATASAVE DC A()

In this case, the DATASAVE DC argument list contains 60 arguments,
each consisting of a single numeric array element. Since 28 full-precision
numeric values can be stored in a sector, the data in the 1logical record

created by statement 70 occupies two complete sectors and a small portion of
a third:

53

Automatic File Cataloging Procedures

UNUSED

=

Figure 5-7. Logical Record Consisting of Three Sectors

A(1) - A(28) A(29) - A(56) A(57) - A(60

The logical record created by statement 70 requires three sectors on
disk. Remember that the next Tlogical record begins with the next
consecutive sector. The remainder of sector number three in this record
remains unused.

Opening a Second Data File on Disk

After all the necessary data has been recorded in DATFIL 1, it may be
desirable to open a second data file, DATFIL 2, which is to contain a whole
new set of records. This is done with a second DATASAVE DC OPEN statement,
for example:

250 DATASAVE DC OPEN F 500, "DATFIL 2"

However, it is important to recognize that the opening of DATFIL 2 in
effect "closes" DATFIL 1, since DATFIL 2 now becomes the currently open
file on disk, and any DATASAVE DC or DATALOAD DC statement now
automatically accesses DATFIL 2 instead of DATFIL 1. Chapter 6 introduces a
technique for keeping more than one file open on disk at the same time. For
the present, however, it 1is assumed that only one file can be the
currently open file at any given moment.

5.10 REOPENING A DATA FILE ON DISK

After a data file has been opened on disk and subsequently "closed" by
opening a second file, the data in the original file can be accessed by
reopening the file with a DATALOAD DC OPEN statement, DATALOAD DC OPEN is
used to reopen an existing file regardless of whether you intend to store
additional data in the file or to read existing data from it. The DATASAVE DC
OPEN statement, used to open a file initially, is never used to reopen an
existing file; any attempt to use this statement to reopen a file
produces an error.

In the DATALOAD DC OPEN statement, you must supply the system with
the following information:

1. The disk platter (either 'F' or 'R') on which the file s
cataloged.

2. The name of the file.

When a DATALOAD DC OPEN statement is executed, the system searches
the Catalog Index on the designated platter for the specified file name.

54

Automatic File Cataloging Procedures

The file's location is then recorded in memory for any future reference to
the file.

Example 5-15. Reopening a Cataloged Data File
300 DATALOAD DC OPEN F "DATFIL 1"

Statement 300 causes the system to search the Catalog Index on
the 'F' platter for the file name "DATFIL 1". When the name
is found, the file's location is read and stored in memory
for future reference.

Of course, the file name specified in the DATALOAD DC OPEN statement
must be the name of a data file currently cataloged on the specified
platter. If the system cannot locate the file name in the Catalog Index, an
error is signalled.

Example 5-16: Attempting to Reopen a Non-Cataloged Data File
300 DATALOAD DC OPEN F "DOTFIL 1"
AERR 80
Statement 300 attempts to reopen a data file whose name
is not listed in the Catalog Index. Since "DOTFIL 1"
is not identical to "DATFIL 1", Error 80 (File Not In
Catalog) is indicated.
Once a file has been reopened with a DATALOAD DC OPEN statement, it is

possible both to store new data in the file (with a DATASAVE DC statement),
and to read existing data from the file (with a DATALOAD DC statement).

5.11 RETRIEVING DATA FROM A DATA FILE ON DISK

Data which is stored on a disk would not have much value if it could
not be read back into memory for analysis and processing. In Catalog mode,
data is read from a currently open file on disk with a DATALOAD DC
statement. When 1loading data from the disk into memory, you must tell the
system which variable(s) and/or array(s) in memory are to receive the data.
The 1list of. receiving variables and arrays is specified in a DATALOAD DC
statement, and is known as the "argument 1ist" for that statement. As with
DATASAVE DC, it 1is possible to specify an entire array in a DATALOAD DC
argument 1ist by following the array name with empty parentheses, e.g., A(),
B$(). In this case, each element of the array is regarded as a single
receiving argument. The system reads one or more logical records from the
currently open file on disk (if no file is currently open, an error is
indicated), and stores the data in the variable(s) and array(s) specified
in the argument list. The system continues to read data from the file until
all arguments 1in the argument 1list have been filled, or until there is no
more data remaining in the file. If the argument 1ist contains more
receiving variables than there are fields in a record, the first fields of
the next sequential record are automatically read to satisfy all
unfilled variables. The remainder of the second record 1is then read and

55

Automatic File Cataloging Procedures

ignored, and the system is positioned at the beginning of the third record.
If only the first few fields in a record are read (i.e., if the argument Tist
contains fewer receiving arguments than there are fields in the record), the
remainder of the record is read but ignored, and the system is positioned at
the beginning of the next record.

Example 5-17: Reading Data from a Data File on Disk

310 DIM B(60)
320 DATALOAD DC B()

Statement 310 dimensions an array B() to hold 60 elements.
Statement 320 instructs the system to load enough data from the
currently open file on disk to fill array B().

It is in general good programming procedure to read back exactly one
logical record with each DATALOAD DC statement. For example, if a record of
60 fields is saved with a DATASAVE DC statement, the argument 1ist in the
DATALOAD DC statement should consist of 60 receiving arguments, so that the
entire logical record is retrieved.

Example 5-18: Saving and Loading One Logical Record

100 DIM A(60)

150 DATASAVE DC OPEN F 100, "DATFIL 1"
160 DATASAVE DC A()

170 DATASAVE DC END

§4o DIM B(10),c(10),D(10),E(10),F(10),G(10)
250 DATALOAD DC OPEN F "DATFIL 1"
260 DATALOAD DC B(),C(),D(),E(),F(),G()

Statement 150 opens DATFIL 1 and statement 160 stores data from
the array A() (which contains 60 elements) in DATFIL 1. In the
intervening program execution, DATFIL 1 is closed.
Statement 250 reopens DATFIL 1, and statement 260 loads one
logical record (consisting of 60 values) from DATFIL 1 into six
receiving arrays, each consisting of 10 elements. Note that it
is not necessary for the DATALOAD DC argument 1list to be
identical to the DATASAVE DC argument list, so long as both
contain the same number of arguments, of the same types (alpha
or numeric).

56

Automatic File Cataloging Procedures

Example 5-19: Loading Portions of a Logical Record

50 DIM B(20),N(30),S(40)

60 DATASAVE DC OPEN F 100 "DATFIL 1"
70 FOR I =1 TO 30

80 INPUT N(I)

90 NEXT I

100 DATASAVE DC N()

110 GO TO 70

590 DATALOAD DC OPEN F "DATFIL 1"
400 DATALOAD DC B()
410 DATALOAD DC S()

Lines 70-90 constitute an input loop used to enter data into
array N(), which contains 30 elements. At line 100, this array
is recorded in a logical record in the data file DATFIL 1. In
subsequent processing, DATFIL 1 is closed, and is reopened at
line 390. At line 400, a DATALOAD DC statement is used to read
the first 1logical record from DATFIL 1 into array B().
However, B() contains only 20 elements, while the logical
record has 30 fields. The first 20 fields are therefore read
into B(), and the remaining 10 fields are read but ignored,
since there is no place to store them in memory. At the
conclusion of this operation, the system is positioned at the
beginning of logical record #2. This record is read into array
S() at line 410. However, S() contains more receiving elements
(40) than there are fields in the 1logical record (30). The
first 10 fields of the third logical record are automatically
read to fill the last 10 elements of S(), and the system is
positioned at the beginning of logical record #4.

Other problems can result if a DATALOAD DC argument 1list does not

correspond

to the argument list of the DATASAVE DC statement which created

the record initially. In particular, you should keep the following two
points in mind:

1.

Each field in the 1logical record must be read into a single
receiving argument (variable of array element). It is not possible
to load two or more fields into one receiving argument, For
example, if your record contains two four-character alphanumeric
fields, "ABCD" and "EFGH", both fields cannot be read into a single
alphanumeric variable, even if the variable can store more than
eight characters.

Alphanumeric fields must be returned to alphanumeric receiving
arguments, and numeric fields must be returned to numeric receiving
arguments. Any attempt to read an alphanumeric value into a numeric
variable, or vice-versa, results in an ERROR 43 (Wrong Variable
Type). For example, if you save a record with the statement

50 DATASAVE DC A$,N

57

Automatic File Cataloging Procedures

then try to read it back with the statement
100 DATALOAD DC N,A$
the system generates an ERROR 43 (Wrong Variable Type).
Thus, you should be sure that the size, number, type, and order of

the receiving arguments in a DATALOAD DC argument list corresponds to the
argument list of the DATASAVE DC statement with which the record was created.

5.12 SKIPPING AND BACKSPACING OVER LOGICAL RECORDS IN A DATA FILE

An existing data file on the disk is generally reopened (with a
DATALOAD DC OPEN statement) for one of three reasons:

1. To read data from the file.
2. To store additional data in the file.
3. To change or update existing data in the file.

In any of these three cases, it is usually necessary to access one or
more specific 1logical records within the file. Two catalog statements,
DSKIP and DBACKSPACE, enable you to move to a particular record within a
file without reading through all intervening records.

The use of DSKIP and DBACKSPACE can be illustrated by considering a
file which consists of several logical records:

400 DATASAVE DC OPEN F 50, "TEST 1"
410 DATASAVE DC A()
420 DATASAVE DC B()
430 DATASAVE DC C()
440 DATASAVE DC D()
450 DATASAVE DC E()
460 DATASAVE DC END

This file, named "TEST 1", occupies 50 sectors on the 'F' platter.
Five 1logical records (statements 410-450) have been stored in TEST 1, and a
trailer record has been written following the last 1logical record.
Assuming that each 1logical record consists of two sectors, the five records
occupy ten sectors (see Figure 5-8).

One Sector
—A—
N N 2 N v J N Y J N Y J N r)
Record #1 Record #2 Record #3 Record #4 Record #5

Figure 5-8. Logical Records in TEST 1

Suppose, now, that TEST 1 is closed and subsequently reopened with a
DATALOAD DC OPEN statement. When the file 1is reopened, the system

58

Automatic File Cataloging Procedures

automatically positions itself at the beginning of the file, In order to
access any record other than record #1, the system must be instructed to
skip ahead through the file to the desired record. Logical records in a
data file are skipped with a DSKIP statement. In the DSKIP statement, you
must tell the system how many records to skip. Suppose, for example, Yyou
wish to read record #3 in the file. Since the system is currently
posigioned at record #1, it is necessary to skip two records. (See Figure
5-9.

File
Begins One
Here Sector
V—
N -~ 7 A — 7 A\ ~ J O\ " J N - g
Record #1 Record #2 Record #3 Record #4 Record #5
This is where . . .But this
the system is is where you
now. . . » want it to be.

Figure 5-9. Skipping over Logical Records in a Data File

Example 5-20: Skipping over Logical Records in a Data File

470 DATALOAD DC OPEN F "TEST 1"
480 DSKIP 2

Statement 470 reopens TEST 1. The system is positioned at
the beginning of the file. Statement 480 instructs the
system to skip two logical records (records #1 and #2), and
reposition itself at the beginning of record #3. A DATALOAD DC
statement such as

490 DATALOAD DC C()
now loads record #3 from the file into memory.

Notice that the number supplied in the DSKIP statement specifies how
many logical records are to be skipped (remember that each logical record
was created by a single DATASAVE DC statement). It does not matter how
many sectors are contained in each logical record (record #1 might contain
five sectors, for example, while record #2 contains ten, etc.). Be sure,
however, that the argument 1ist of the DATALOAD DC statement which is used to
load a record corresponds to the argument 1list of the DATASAVE DC
statement which originally created the record.

59

Automatic File Cataloging Procedures

After a logical record has been loaded, the system is positioned at
the beginning of the next logical record. Suppose that you now want to
load and check logical record #1 from TEST 1. Since the system is
currently positioned at the beginning of record #4 (having just loaded
record #3), you must backspace three logical records (see Figure 5-10).
You can do so with a DBACKSPACE statement.

File One
begins Sector
h+ere A
N s/ Ny J N S/ L. J N J/
v ' v~ ' '
Record #1 Record #2 Record #3 Record #4 Record #5
...Butthisis This is where the
where you want system is
it positioned. positioned now. . .

Figure 5-10. Backspacing over Logical Records in a Data File

Example 5-21: Backspacing over Logical Records in a Data File
500 DBACKSPACE 3

Statement 500 causes the system to backspace over three
logical records 1in the currently open file (TEST 1) on disk.
Since the system is currently positioned at the beginning of
record #4, it 1is repositioned to the beginning of record #1
following statement execution. Record #1 can now be Tloaded
with a DATALOAD DC statement such as

510 DATALOAD DC A()

It is possible to backspace to the beginning of a file from any point in
the file with a DBACKSPACE BEG statement. In Example 5-21, for example, it
would have been Jjust as easy to access record #1 by backspacing to the
beginning of the file and executing statement 510.

Example 5-22: Backspacing to the Beginning of a File

500 DBACKSPACE BEG

Statement 500 instructs the system to backspace from its
current position in the file to the beginning of the file
(i.e., the beginning of the first record of the file).

In order to store additional data in a file which has just been
reopened, it is necessary to skip to the current end of the file, and begin

60

Automatic File Cataloging Procedures

saving the new data at that point. This can be done with a DSKIP END
statement if the current end of file is marked by an end-of-file trailer
record. If no end-of-file trailer record has been written in the file,
however, an ERROR 82 (No End of File) is returned following execution of
the DSKIP END statement. The DSKIP END statement 1locates the end-of-file
trailer record, and repositions the system at the beginning of the trailer
record. A new data record can then be saved over the trailer record, and a
new trailer record written to mark the new end of the file.

Example 5-23: Skipping to the End of a File
520 DSKIP END

Statement 520 instructs the system to skip to the current
end of the currently open data file on the disk (TEST 1). A
trailer record must have been written in the file with a
DATASAVE DC END statement (statement 460) following the most
recent DATASAVE DC statement (statement 450); otherwise, an
ERROR 82 is returned. After the DSKIP statement is
executed, the system is positioned at the beginning of the
trailer record in the file. A new data record can be saved
over the trailer record, and a new trailer record written in
the file, with the following statements:

530 DATASAVE DC F()
540 DATASAVE DC END

5.13 TESTING FOR THE END-OF-FILE

If you have written a data trailer record in your file, you can use it
to test for an end-of-file condition when reading the file. For
example, suppose that you wish to read all the records from a particular
file, but you don't know exactly how many records are stored in the file.
You can set up a loop which will continue to load logical records until it
encounters a trailer record.

Example 5-24: Testing for the End-0f-File Condition

600 DATALOAD DC OPEN F "TEST 1"
610 DATALOAD DC A()
620 IF END THEN 700

660 GOTO 610
700 STOP

Statement 600 opens the file TEST 1, and statement 610 loads a
logical record from that file into A(). Statement 620 then
tests for the end-of-file record signifying that the last
data record in the file has been read. If this is the case,
the program jumps to statement 700 and stops. If it is not
the case, the data loaded into array A() is processed until, at
statement 640, the system is instructed to 1loop back and
load 1in another record. This example assumes that all records

61

Automatic File Cataloging Procedures

in TEST 1 were written using an argument 1list identical to

A().

NOTE :

When the end-of-file trailer record is detected by
the system with an IF END THEN test, the file's current
sector address 1is set to the address of the trailer
record. Thus, the IF END THEN test can be used to
cause the system to exit from an input routine
after all records have been read, and branch to an
output routine which writes additional records in the
same file. The first record saved will be written
over the trailer record. A new trailer record must, of
course, be written following the last new data record.

5.14 SCRATCHING UNWANTED FILES

After the disk has been in use for a while, you may find that a file
has outlived its usefulness. Perhaps a program 1is now hopelessly
inefficient and must be replaced, or a data file contains information which is
no longer accurate or appropriate. In either case, you may want to be sure
that the file cannot accidentally be accessed (this is true especially in the
case of a data file whose data is no longer accurate), and you may want to
store a new file in the space currently occupied by the unwanted file.
You can use the SCRATCH statement (not to be confused with 'SCRATCH DISK') to
accomplish both of these tasks.

The SCRATCH statement sets the status of the named file to a
scratched condition. A scratched file is not physically removed from the
disk. The file's name and location remain listed in the Catalog Index, but
the file 1is flagged as a scratched file. A scratched file has two
significant characteristics:

1. A scratched file cannot be accessed by a DATALOAD DC OPEN or LOAD DC
statement. That is, no programs or data can be saved in or
loaded from a scratched file.

2. A scratched file can, however, be renamed and reopened with a
DATASAVE DC OPEN statement or SAVE DC command. In this case, a
new file is created in the space previously occupied by the
scratched file. (See Chapter 7, Section 7.5.)

Example 5-25: Scratching Unwanted Files
750 SCRATCH F "PROG 1", "TEST 1"

Statement 750 sets the status of the program file PROG 1 and
the data file TEST 1 to a scratched condition; PROG 1 cannot be
loaded 1into memory with a LOAD DC statement, and TEST 1
cannot be opened to 1load or save data with a DATALOAD DC
OPEN statement. New files can be stored 1in the space

62

Automatic File Cataloging Procedures

occupied by PROG 1 and TEST 1, however. (Refer to Chapter 7
for a discussion of how to reuse the space occupied by
scratched files.)

If a LIST DC F statement 1is executed following statement 750 in
Example 5-25 above, the Catalog Index listing looks like this:

FIXED CATALOG

INDEX SECTORS = 00100
END CAT. AREA = 01000
CURRENT END = 00269
NAME TYPE START END USED
These files DATFIL 1 D 00100 00199 00002
are <:TEST1 SD 00200 00249 00001
scratched PROG 1 SP 00250 00269 00020

Figure 5-11. The Catalog Index Showing Scratched Files

Notice that under "TYPE", PROG 1 reads "SP" and TEST 1 reads "SD“. The "S" in
this case signifies that each file has been scratched. The renaming and reuse
of scratched files is discussed in Chapter 7.

5.15 MOVING THE CATALOG FROM ONE PLATTER TO ANOTHER

Catalog procedures provide a means of copying the contents of the
catalog (Catalog Index and Catalog Area) from one disk platter onto
another. The MOVE statement is used for this purpose. The MOVE statement is
generally used for two reasons:

1. To make a back-up copy of important cataloged files.

2. To eliminate scratched files from the catalog and compress
still-active files into the available space, thus making more
efficient use of the Catalog Area.

The MOVE statement copies the entire catalog from one disk platter to
the other, removing all scratched files from the Catalog Area, and deleting
scratched file names from the Catalog Index. After the scratched files are
removed, the still-active files are moved up to fill in the vacated
sectors. The Catalog Index is then revised to reflect the files' new
positions in the Catalog Area. Prior to copying any files or file
maintenance information from the first platter to the second platter, MOVE
automatically scratches the second platter, setting up a Catalog Index and
Cata]og Area identical 1in size to those which are to be moved. The only
requirement for the second platter, therefore, is that it be formatted.
The user does not need to open a catalog on the second platter with a

SCRATCH DISK statement prior to executing the MOVE, since this task is
performed automatically by MOVE itself.

63

Automatic File Cataloging Procedures

Example 5-26: Copying the Catalog from One Disk Platter to the Other
450 MOVE FR

Statement 450 copies the entire catalog from the 'F' platter to
the 'R' platter, squeezing out all scratched files. If the
'RF' parameter is specified instead of 'FR', the copy takes
place from the 'R' disk platter to the 'F' disk platter.

After the catalog has been moved from one disk platter to the other, it
is good policy perform a test which ensures that all information has been
copied accurately. The VERIFY statement can be used to perform such a test.
In the VERIFY statement, you must tell the system which platter contains
the catalog ('F' or 'R'), as well as the starting and ending sector
addresses of the entire catalog. The starting sector of the catalog is always
sector 0, since that is the first sector on each platter. The ending
sector address varies from one catalog to the next (it was initially specified
when the catalog was created with the 'END' parameter in a SCRATCH DISK
statement). The ending sector address can be obtained by executing a
LIST DC statement for the appropriate platter. The first three items
displayed (or printed) by LIST DC are INDEX SECTORS, END CAT. AREA, and
CURRENT END. The sector address shown opposite END CAT. AREA is the ending
sector address of the catalog. The starting and ending sector addresses
in the VERIFY statement must be separated by a comma, and enclosed in
parentheses. A1l sectors between and 1including the specified sectors are
checked by the VERIFY statement.

Example 5-27: Checking the Validity of Files after a Move

450 MOVE FR
460 VERIFY R (0,2399)

Statement 450 copies all catalog information from the 'F'
disk platter to the 'R' disk platter. Statement 460 checks
the 'R' disk platter to ensure that all information has been
copied correctly. Sectors 0 through 2399 are verified (2399 is
the ending sector address of the catalog).

If the test performed by VERIFY turns up no errors, the system
returns the CRT cursor and colon to the screen, indicating that the
information has been copied accurately. If one or more errors are
discovered, the system returns an error message indicating which sector(s)
did not copy properly, for example:

ERROR IN SECTOR 2027
If an error is indicated following a MOVE operation, repeat the MOVE
and VERIFY operations. Repeated errors may indicate a faulty platter.

Replace the platter and repeat the process; call your Wang Service
Representative if the error persists.

64

Automatic File Cataloging Procedures

NOTE TO OWNERS OF THE
MODELS 2270-1 AND 2270-3:

On the Model 2270-1, the MOVE statement is illegal. It is
not possible to MOVE the catalog from a disk platter in
one Model 2270-1 onto a disk platter in another disk unit.

On the Model 2270-3, it is illegal to attempt a MOVE
operation from drive #3 to drives #1 or #2, and vice
versa. In order to MOVE the catalog to or from a
diskette in drive #3, the diskette must be physically
removed from drive #3 and inserted in drive #1 or drive
#2.

VERIFY can be used at any time to check the validity of data stored
anywhere on the disk. It need not be used exclusively in conjunction with a
MOVE operation. It is often wise, for example, to verify existing data on a
platter before the platter is used. Many programmers verify important
platters regularly at the beginning of daily operation. The CRC and LRC
checks performed by VERIFY provide an extra measure of protection against
the accidental use of invalid data in important applications.

WARNING:

It is 1important that backup copies of important
disk-based files be created regularly. Like other
storage media, disk platters can be worn out with
excessive use, and they are, of course, subject to
accidental damage or destruction. To avoid the
necessity of vrecreating your data base following such a
potential disaster, you should always maintain one or
more backup platters containing duplicates of all
important files. Cataloged files can be copied to a
backup platter with the MOVE statement. The Model
2270-1, which does not have a MOVE capability, should be
backed up on tape cassette.

65

Chapter 6
Disk Device Selection and Multiple Data Files

6.1 INTRODUCTION

Chapter 5 introduced the most basic catalog procedures, including
saving and 1loading programs and data files, skipping over records within a
data file, scratching unwanted files, and moving the contents of the
catalog from one platter to the other. In the interests of simplicity and
clarity of exposition, however, a number of important but complex disk
operations were omitted from Chapter 5. Chapters 6 and 7 are therefore
designed to expand and elaborate upon the discussion of catalog procedures
bequn in Chapter 5. Probably the most significant omission in that
discussion was an explanation of how it is possible to keep more than one
data file open on a disk at the same time. This subject is especially
important because so many data processing problems involve the transfer of
data from one file to another, or the storing of data in or reading of data
from several different files 1in the course of processing transactions.
Such operations would be time consuming in the extreme if each file had to be
reopened every time a record was to be written into it or read from it.
Chapter 6 discusses the procedures for maintaining multiple open files on
disk simultaneously. The related questions of how the disk is addressed,
and how multiple disk units can be operated by a single system, also are
examined in this chapter.

6.2 DISK DEVICE SELECTION

Chapter 5 presented you with what was, essentially, a '"recipe" for
using the disk. You were told that by executing a particular statement
which included particular parameters, you could elicit a particular
response from the system. The system itself remained a black box, however,
whose internal workings were only vaguely hinted at. Although such an
approach was appropriate for the purposes of Chapter 5, it cannot safely be
followed in the present chapter. Some understanding of the internal
operations of the system, particularly those which relate to management of
the disk, 1is a necessary prelude to any discussion of how the system
maintains open data files. The first topic to be considered is the
mechanism by which the system is able to identify the disk unit and the
individual platters within it.

67

Disk Device Selection and Multiple Data Files

Whenever a disk statement or command is
immediate need for at least two items of information: the disk platter
which is to be accessed, and the disk unit which contains that platter.
The first item is supplied by specifying the 'F' or 'R' parameter in the
statement itself. Because several disk units can be attached to the same
system, however, the system must also have some way of identifying the disk
which contains the specified platter. A three-digit device address is
assigned to the disk unit as a means of identifying it.

executed, the system has

For certain disk statements and commands, the disk device address
like the disk platter parameter ('F' or 'R'), be specified directly in
For example, the statement

can,
the statement or command itself.

10 LOAD DC F /350, "PROG 1"

causes the system to access the disk unit with device address 350. On the
Model 2270-3, this statement accesses Platter #3. In general, however, it is
not necessary to specify the device address in a statement or command, since
if no address is specified, the system automatically uses the default disk
address, 310. The default address is stored by the system in a special
section of system memory called the Device Table. Whenever a disk statement
or command is executed, the system's first operation is to check the Device
Table for a disk device address (unless, of course, the address has been
specified in the statement or command itself).

The Device Table

The Device Table in memory consists of seven rows, or
which is
below).

"slots", each of
identified by a unique file number from #0 to #6 (see Figure 6-1
The default device address (310) is stored in the Disk Device

Address Tlocation in the slot opposite #0. For this reason, #0 is referred to
as the "default file number," and the slot associated with #0 is called the
"default slot."
DISK STARTING ENDING CURRENT
FILE DEVICE SECTOR SECTOR SECTOR
NUMBER ADDRESS ADDRESS ADDRESS ADDRESS
default —= #0 310 00000 00000 00000
slot
#1 000 00000 00000 00000
#2 000 00000 00000 00000
#3 000 00000 00000 00000
#4 000 00000 00000 00000
#5 000 00000 00000 00000
#6 000 00000 00000 00000
Figure 6-1. The Device Table in Memory

68

Disk Device Selection and Multiple Data Files

As you can see, however, each of the remaining six slots (#1 - #6)
also has a Tlocation for a disk device address (although this location is
currently filled with zeroes). Each slot also has Tlocations for three
other items of information: a Starting Sector Address, an Ending Sector
Address, and a Current Sector Address. The sector address parameters, used by
the system to maintain open data files on disk, are discussed in the
following section.

The default device address (310) is always stored next to the default
file number (#0) by the system itself. Even after the system 1is Master
Initialized (that is, the main power switch is turned OFF and then ON ,
thus clearing out all of memory), the system automatically returns address
310 to its location opposite #0 in the Device Table (Figure 6-1).

For this reason, it is always possible to execute a disk statement or
command without specifying a device address of 310. When, for example, a
statement such as

10 LOAD DC F "PROG 1"

is executed, the system automatically goes to the Device Table and checks
for the default address opposite #0.

It is also possible, however, to store a device address in the Disk
Device Address Tlocation opposite any one of the other file numbers (#1 -
#6) in the Device Table. In this case, the device address must Dbe
explicitly stored in the table with a SELECT statement.

Example 6-1: Storing Disk Device Addresses in the Device Table
50 SELECT #3 310, #5 310
Statement 50 instructs the system to store disk device
address 310 opposite file numbers #3 and #5 in the Device

Table. Following the execution of statement 50, the Device
Table Tooks like this:

DISK
FILE DEVICE | START END CURRENT

NUMBER | ADDRESS
Default Slot - #0 310 00000 | 00000 00000
#1 000 00000 | 00000 00000
These slots #2 000 00000 | 00000 00000
now avail- #3 310 00000 | 00000 00000
able to <: #4 000 00000 00000 00000
open new files #5 310 00000 | 00000 00000
#6 000 00000 | 00000 00000

Figure 6-2. The Device Table with Disk Device Addresses Stored
Opposite File Numbers #3 and #5

Notice that device address 310 is now stored in the Disk Device
Address Tlocation opposite file numbers #3 and #5, as well as in the default
slot (opposite #0). The file numbers #3 and #5 can now be used in a disk

69

Disk Device Selection and Multiple Data Files

statement or command to reference device address 310 indirectly. For
example, if a statement such as

60 LOAD DC F #3, "PROG 2"

is now executed, the system immediately checks the Device Table for a
device address opposite #3. Upon finding address 310, it proceeds to the
disk unit and accesses the 'F' platter. If no address were stored opposite
#3, or if the address of a device other than the disk (say, a tape cassette
drive) were stored there, the system will signal an error when the disk
statement is executed.

In summary, then, it is possible to specify a disk device address in
two ways: directly (by 1including the address itself explicitly in the
statement), or indirectly (by referencing a file number associated with the
appropriate address). Therefore, a statement of the form

10 LOAD DC F /310, "PROG 2"
is equivalent to the pair of statements

10 SELECT #3 310
20 LOAD DC F #3, "PROG 2"

Note, however, that the data file manipulation statements (DATASAVE DC
OPEN, DATASAVE DC, DATALOAD DC, etc.) do not permit the direct
specification of a device address within the statement. In these
statements, therefore, the device address must be referenced indirectly via a
file number. This restriction is important because file numbers play a most
critical role in the manipulation of cataloged data files.

Use of File Numbers in Accessing the #3 Drive (Model 2270-3 Only)

The #3 drive in the Model 2270-3 has a special device address, 350.
If this address is stored in a slot opposite one of the file numbers #1 - #6
in the Device Table, subsequent reference to the associated file number will
cause the system to access drive #3. For example, the statement

50 SELECT #2 350

causes device address 350 to be stored opposite #2 in the Device Table. A
statement which references file number #2, such as

60 LOAD DC F #2, "PROG 1"

will now indirectly reference address 350, and access drive #3 to load in
PROG 1 from the diskette mounted in that drive.

Why Use The Device Table?

It may appear somewhat inefficient to use a section of memory and a
special statement to store device addresses when the address can be supplied
in the statement or command itself or when, as in the normal case, no
address need be supplied at all. If the Device Table were used exclusively to

70

Disk Device Selection and Multiple Data Files

store device addresses, there would hardly be justification for
belaboring the reader with an explanation of its purpose and operation. In
fact, however, the Device Table serves a second and far more important
function in connection with disk operations. The slots in the Device Table
are utilized by the system to hold critical sector address information on
currently open data files. Without the Device Table, therefore, it would
not be possible to maintain multiple open files on the disk.

NOTE:

The Device Table slots #1 - #6 are used to store tape
file information as well as disk file information. A
statement of the form SELECT #1 10A, for example,
stores the tape cassette address 10A opposite file
number #1 in the Device Table. If you are using disk
and tape in conjunction, therefore, be sure to use
different file numbers for your tape and disk files.
Note, however, that the default slot (opposite #0) is
reserved for disk use exclusively; no tape address can be
stored in the default slot. The default tape
address (assigned in a SELECT TAPE statement) is stored in
another portion of memory outside the Device Table.

6.3 MAINTAINING MULTIPLE OPEN DATA FILES ON DISK

The concept of an "open" data file was introduced in Chapter 5 with
little exposition. It was pointed out simply that DATASAVE DC OPEN and
DATALOAD DC OPEN are used to "open" and "reopen" a data file on disk; the
actual procedures followed by the system in opening or reopening a file
were left as undefined and faintly magical internal operations.

In fact, of course, there is nothing magical about these operations at
all. The system follows a specific and clearly defined procedure in
opening a data file. To understand this procedure, however, you should
first consider the kinds of information the system requires in order to be
able to access a file. Such information includes:

1. The disk platter and disk unit on which the data file is (or is to
be) stored.

2. The starting sector address of the file.
3. The ending sector address of the file.

4. The current sector address of the file (i.e., where the system is
currently positioned in the file).

Although some of this information (specifically, items #2 and #3) can be
found in the Catalog Index, it is efficient for the system to have all of
it at hand in one place. As you may already have suspected, that "one place"
is the Device Table. The Device Table provides a convenient location
in memory for the temporary storage of all information required by the system

71

Disk Device Selection and Multiple Data Files

to access and maintain a cataloged data file. Such information is
automatically copied from the Catalog Index on disk into the Device Table
whenever a data file is opened initially (with DATASAVE DC OPEN) or reopened
(with DATALOAD DC OPEN). In either case, the system first checks the
default slot (or one of the other slots, #1 - #6, of a file number has been
specified in the statement) for a valid disk address. If the slot
contains no address, or an invalid address (for example, a tape address), an
error 1is signalled and execution halts. If a valid address is found, the
system proceeds to access the appropriate platter ('F' or 'R') in the
specified disk unit.

When an existing file is reopened with a DATALOAD DC OPEN statement,
the system merely copies the file's starting and ending sector addresses
from the Catalog Index into the default slot (or into one of the other
slots, 1if a file number is used) in the Device Table. The file's current
sector address initially is set equal to the starting sector address. When a
file is newly opened on disk with DATASAVE DC OPEN, the system first
reserves space on the designated platter, and enters the file's name and
sector parameters 1in the Catalog Index. Once this is done, the parameters
are copied to a slot in the Device Table. Suppose, for example, that file
DATFIL 1 1is to be opened on the 'F' platter. Statement 10 below might be
used:

10 DATASAVE DC OPEN F 100, "DATFIL 1"

One hundred sectors are reserved for DATFIL 1T on the 'F' platter.
Assuming DATFIL 1 is the first file to be opened on this platter, and
assuming that the Catalog Index occupies sectors 0 - 23, the Catalog Index
entry for DATFIL 1 looks 1ike this:

NAME TYPE START END USED
DATFIL 1 D 00024 00123 00001
Once the Catalog Index has been appropriately updated, the sector address

parameters for DATFIL 1 are immediately written to the default slot in the
Device Table, which therefore looks 1ike this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
Default Slot » #0 310 00024 00123 00024
(DATFIL 1) #1 000 00000 00000 00000
#2 000 00000 00000 00000
#3 000 00000 00000 00000
#4 000 00000 00000 00000
#5 000 00000 00000 00000
#6 000 00000 00000 00000

Figure 6-3. The Device Table with One File Open (DATFIL 1)

72

Disk Device Selection and Multiple Data Files

The parameters stored opposite #0 are those of DATFIL 1. (Note that
the current address of DATFIL 1 is equal to the starting address at this
point.) DATFIL 1 is now officially "open", and any DATASAVE DC or DATALOAD DC
statement automatically accesses it.

Suppose, however, that a second file is opened:
20 DATASAVE DC OPEN F 250, "DATFIL 2"
Execution of statement 20 causes the system to run through the same
procedure followed in opening DATFIL 1, with the result that DATFIL 1's

parameters opposite #0 in the Device Table are replaced by those of DATFIL 2.
The Device Table looks like this following execution of statement 20:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
Default Slot »| #0 310 00124 00373 00124
(DATFIL 2) #1 000 00000 00000 00000
#2 000 00000 00000 00000
#3 000 00000 00000 00000
#4 000 00000 00000 00000
#5 000 00000 00000 00000
#6 000 00000 00000 00000

Figure 6-4. The Device Table with One File Open (DATFIL 2)

DATFIL 2 becomes the currently open file on disk, and any DATASAVE DC or
DATALOAD DC statement now accesses it instead of DATFIL 1. The question then
arises: if every new file erases information on the previous file from
the default slot, how is it possible to have more than one file open at once?
The answer to this question is somewhat obvious: different slots in the
Device Table can be used to open different data files. Since there are
seven slots in the Device Table, a total of seven files can be open at the
same time.

You have already seen that the first thing the system does when a
disk statement is executed is to check the Device Table for a disk device
address. In the two examples just cited, only the default slot (opposite
#0) was used for file information. As you know, the system itself
automatically keeps the system default address (310) in that slot. Before
any of the other slots can be used to open new files, however, the disk
device address must be stored in the slot with a SELECT statement, such as
the one illustrated in Example 6-1:

50 SELECT #3 310, #5 310

73

Disk Device Selection and Multiple Data Files

As you have already seen, this statement instructs the system to store
disk device address 310 in the Device Table opposite #3 and #5. The Device
Table now looks like this:

DISK
FILE DEVICE START END CURRENT

NUMBER ADDRESS
Default Slot —¥{ #0 310 00124 00373 00124
(DATFIL 2) #1 000 00000 00000 00000
#2 000 00000 00000 00000
These slots now 9| #3 310 00000 00000 00000
available to #4 000 00000 00000 00000
open new files—p| #5 310 00000 00000 00000
#6 000 00000 00000 00000

Figure 6-5. The Device Table with Disk Device Addresses Stored
Opposite File Numbers #3 and #5, and One Open File
(DATFIL 2)

The slots opposite #3 and #5 can now be used, in addition to the
default slot, to store the sector address parameters of open files. To use
one of these slots, it is necessary only to specify its file number in a
DATASAVE DC OPEN or DATALOAD DC OPEN statement. Example 6-2 below uses
file #3 to open a second data file on the disk.

Example 6-2: Opening a New Data File with a File Number
150 DATASAVE DC OPEN F #3, 50, "DATFIL 3"

Statement 150 causes the system to check the slot opposite #3
for a device address. Upon finding address 310, the system
goes to the disk unit and accesses the 'F' platter. Fifty
sectors are reserved for DATFIL 3, and the file's name and
location are entered in the Catalog Index. The file's sector
address parameters (starting, ending, and current) are then
written in the slot opposite #3 in the Device Table:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
DATFIL 2| #0 310 00124 00373 00124
#1 000 00000 00000 00000
#2 000 00000 00000 00000
DATFIL 31| #3 310 00374 00423 00374
#4 000 00000 00000 00000
#5 310 00000 00000 00000
#6 000 00000 00000 00000

Figure 6-6. The Device Table with Two Open Files
74

Disk Device Selection and Multiple Data Files,

Obviously, the system must have some way of distinguishing DATFIL 2
from DATFIL 3 when data is to be stored in or retrieved from each file.
Since the file names are not entered in the Device Table, the system can
identify each file only by its associated file number. The file number
associated with a file must therefore be wused in any subsequent disk
statement or command which accesses that file. The default file is, of
course, automatically accessed if no file number is specified. Thus, the
statement

160 DATASAVE DC A$()

causes array A$() to be stored in DATFIL 2 (since DATFIL 2's parameters are
stored opposite #0 in the default slot), while the statement

170 DATASAVE DC #3,A$()

causes A$() to be saved in DATFIL 3 (since DATFIL 3's parameters are stored
opposite #3).

Example 6-3. Referencing an Open File by File Number

10 SELECT #5 310

20 DATASAVE DC OPEN F #5, 50, "FIRST"
30 DATASAVE DC #5, A()

40 DATASAVE DC #5, END

Statement 10 writes the disk address (310) in the slot
opposite #5 in the Device Table. Statement 20 opens FIRST
and assigns its parameters to slot #5 in the Device Table.
Statement 30 writes data from array A() intoFIRST, and

statement 40 writes an end-of-file trailer record to FIRST.
Notice that both statements reference FIRST by specifying
the file number (#5) to which it is assigned in the Device
Table. When statements 30 and 40 are executed, the system
immediately checks the slot opposite #5 in the Device Table
for a disk address. It then accesses the specified disk and
begins storing data at the sector specified in the Current
Sector Address parameter of slot #5. Following execution of
statement 40, the Device Table looks like this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
DATFIL 2 » #0 310 00124 00373 00129
#1 000 00000 00000 00000
#2 000 00000 00000 00000
DATFIL 3 —» #3 310 00374 00423 00379
#4 000 00000 00000 00000
FIRST > #5 310 00424 00473 00428
#6 000 00000 00000 00000

Figure 6-7. The Device Table in Memory with Three Open Files

75

Disk Device Selection and Multiple Data Files

Existing files reopened with DATALOAD DC OPEN also can be assigned
file numbers. It is not required that a file be reassigned its original
file number every time it is reopened; the parameters of a file are copied
anew into the Device Table each time it is reopened, and it may be assigned to
any available slot. The file FIRST, opened initially in Example 6-3 above,
might subsequently be reopened and assigned a different file number, as
illustrated in Example 6-4 below.

Example 6-4: Referencing an Open File by File Number

10 SELECT #4 310

20 DATALOAD DC OPEN F #4, "FIRST"
30 DSKIP #4, END

40 DATASAVE DC #4, B()

50 DATASAVE DC #4, END

Statement 10 writes disk address 310 in the slot opposite #4 in
the Device Table. Statement 20 opens an existing file,
FIRST, and assigns its parameters to slot #4 in the Device
Table. Statement 30 skips to the current end-of-file
trailer record in the file. Statement 40 saves a new record in
the file from array B() over the trailer record, and
statement 50 writes a new trailer record in the file.
Notice that all reference to FIRST in statements 30, 40, and 50
is in terms of the file number (#4) to which it is
assigned in the Device Table. Notice also that #4 is not
the file number originally assigned to FIRST when it was
initially opened in Example 6-3.

Note that it is possible to reopen the same file repeatedly, using a
different file number each time. In this manner, every slot Device Table
can be filled with the parameters of a single file. The practical

advantage of such an arrangement would, however, be questionable in most
cases.

Using A Variable To Store The File Number

If it is convenient, a file number may be referenced in a disk
statement as the value of a numeric variable. For example, the statements

5 SELECT #3 310
10 A =3
20 DATALOAD DC OPEN F #A, "DATFIL 1"

cause the system to reopen DATFIL 1 on the 'F' platter, and store its
parameters opposite #3 in the Device Table (since A=3). (Note that the use of
numeric variables to reference file numbers is not legal in the SELECT
statement itself. Thus, a statement of the form SELECT #A 310 is not
permitted. Similarly, the wuse of variables is illegal in tape cassette
statements.)

6.4 THE "CURRENT SECTOR ADDRESS" PARAMETER

In the discussion of skipping over logical records within data files in
Chapter 5, as well as in the recent discussion of storing data in a data file,

76

Disk Device Selection and Multiple Data Files

you have seen why it is important, in fact necessary, for the system to know
where it is positioned within a file at all times. If the system does not
know, for example, that it has just stored a record ending at sector 86 in
a currently open file, then it cannot know that the next record must
be saved in that file starting at sector 87. In such a case, the system would
obviously be incapable of maintaining data files on disk at all.

The system knows where it is positioned in a file by referring to the
Current Sector Address of the file. The Current Sector Address is updated
every time a vrecord is saved in or loaded from a file, and every time
records are skipped or backspaced in a file. The Current Sector Address
always indicates the next sequential sector following the most recent access
of a file. For example, suppose that a file DATFIL 2 1is to be saved on the
'"F' disk platter:

300 DATASAVE DC OPEN F #1, 500, "DATFIL 2"

The Device Table slot for DATFIL 2 now looks 1ike this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#1 310 00060 00559 00060
Figure 6-8. Device Table Slot for DATFIL 2

Notice that the Current Sector Address
the Starting Sector Address. This is the
reopened.

for DATFIL 2 1is identical to
case whenever a file is opened or

Suppose, now, that you store data from an array, A(), into DATFIL 2:

DATASAVE DC #1 A()

Assuming that the data from A() occupies one sector on disk, the Device
Table slot for DATFIL 2 now reads as follows:
DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#1 310 00060 00559 00061
t
Current Address now
updated to show that
sector 61 is the next
available sector.
Figure 5-9. lpdated Device Table Slot for DATFIL 2

77

Disk Device Selection and Multiple Data Files

Notice that the Current Address is now updated to show that sector 61 is
the next available sector in the file, since sector 60 (the first sector in
the file) has been filled with data.

You might now save three more arrays of data:

310 DATASAVE DC #1, B()
320 DATASAVE DC #1, ()
330 DATASAVE DC #1, D()
340 DATASAVE DC #1, END

Following execution of these statements (and assuming each array requires
one sector on disk), the Device Table looks 1like this:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS

#1 310 00060 00559 00064

Figure 6-10. Updated Device Table Slot for DATFIL 2

Figure 6-10 illustrates a special case of updating the Current Sector
Address. A total of five sectors have been recorded in the file with lines
300-340. Those five sectors are 60, 61, 62, 63, and 64 (sector #64
contains the end-of-file record written at line 340). According to the
rule set forth above, the Current Sector Address should equal the address of
the next sector at this point (sector #65). Instead, it is set to the
address of the end-of-file record (64). The creation of an end-of-file
record involves an exception to the rule governing updating of the Current
Sector Address: following creation of an end-of-file record with DATASAVE DC
END, the Current Sector Address 1is always set to the address of the EOF
record, rather than to the address of the next consecutive sector. In this
way, a subsequent DATASAVE DC statement will store the next data record
over the EOF record, and the danger of leaving an EOF record in the middle of
a file when new data records are saved is avoided.

In order to skip back from the current position to the beginning of
the file, a DBACKSPACE BEG statement is used:

350 DBACKSPACE #1, BEG
This statement instructs the system to set the value of the Current Sector

Address equal to the value of the Starting Sector Address. Following
execution of Statement 350, the Device Table looks like this:

78

Disk Device Selection and Multiple Data Files

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#1 310 00060 00559 00060
Current Address now
set back to address
of first sector in
file.
Figure 6-11. Updated Device Table Slot for DATFIL 2

Following Execution of a DBACKSPACE BEG
Statement

At this point, the first record can be read from DATFIL 2. DSKIP
functions in an analogous manner, causing the Current Sector Address to be
updated to reflect the new current location in the file following the skip.

6.5 CLOSING A DATA FILE
You should understand more clearly now the precise meanings of the
concepts of "opening" and "closing" a data file. A data file is opened (by a

DATASAVE DC OPEN or DATALOAD DC open statement) when 1its parameters are

entered in a slot in the Device Table. A data file 1is closed when its
parameters are vremoved from the Device Table, either by writing over the
parameters with another set of parameters, or by zeroing out the
parameters. There are four methods of closing a currently open data file:

1. Assigning the file number currently associated with the file to

another file.

2. Executing a CLEAR command with no parameters.

3. Master Initializing the system.

4. Executing a DATASAVE DC CLOSE statement.

Each of these four methods is explained in the following paracraphs:

1. Assigning the file number currently associated with the file to

another file causes
over the parameters
original file.

the parameters of the new file to be written
of the original file, thus closing the

Example 6-5: Closing a Data File by Reassigning Its File Number

110 SELECT #1 310
120 DATASAVE DC OPEN F #1, 110 “DATFIL 1"
150 DATASAVE DC OPEN R #1, 600 "DATFIL 2"

79

Disk Device Selection and Multiple Data Files

Statement 110 selects file number #1 to the disk. Statement
120 opens DATFIL 1, reserves 110 sectors for it on the 'F'
disk platter, and causes its parameters to be entered 1in the
Device Table in the slot opposite #1. Statement 150 opens a
new data file, DATFIL 2, and stores its parameters in slot
#1. These parameters overwrite those of DATFIL 1,
effectively closing DATFIL 1.

2. Executing a CLEAR command with no parameters causes all of memory to
be cleared, including the Device Table. All the information
in the Device Table is zeroed out, thereby closing all files.

3. Master Initializing the system (i.e., throwing the main power
switch OFF and then ON) also has the effect of clearing out
memory, thus closing all files.

4. Executing a DATASAVE DC CLOSE statement causes all sector address
parameters for the specified file or files in the Device Table to be
zeroed out, thereby closing the file(s). (DATASAVE DC CLOSE
should not be confused with DATASAVE DC END. DATASAVE DC END
causes an end-of-file trailer record to be written in the
specified file.) The disk device address stored in a slot is not
zeroed out by DATASAVE DC CLOSE, however.

Example 6-6: Closing A Specified File With A DATASAVE DC CLOSE
Statement

200 DATASAVE DC CLOSE
210 DATASAVE DC CLOSE #1

Statement 200 causes the sector address parameters
associated with the default file #0 (since no file number is
specified) to be zeroed out, thus closing the file
associated with #0. Statement 210 causes the sector address
parameters stored in slot #1 to be zeroed out, thus closing
the file associated with #1.

Example 6-7: Closing A1l Currently Open Files with a DATASAVE DC
CLOSE Statement

300 DATASAVE DC CLOSE ALL

Statement 300 causes all sector address parameters in the
Device Table to be zeroed out, thus closing all currently
open files.

It is generally good practice to close a data file once precessing of
the file is complete. In this way, another operator 1is prevented from
accidentally storing data into the file over currently stored data, and
destroying the existing data. It 1is also good policy to write an
end-of-file record 1in the file prior to closing it, since it will then be
possible to skip to the end-of-file and continue storing data in the file
when it is subsequently reopened.

80

Disk Device Selection and Multiple Data Files

When a file is closed (by whatever method) its three sector address
parameters are removed from the Device Table. When the file is
subsequently reopened with a DATALOAD DC OPEN statement, the Current Sector
Address is automatically set equal to the Starting Sector Address.

6.6 SKIPPING AND BACKSPACING OVER INDIVIDUAL SECTORS IN A FILE

In Chapter 5, the discussion of DSKIP and DBACKSPACE was confined to
the skipping of logical records within a file. It is also possible,
however, to skip individual sectors in a file. This method is a much
faster way of moving through a file than skipping records, but its value
cannot be fully understood until the process of skipping logical records is
examined in greater detail.

Remember that a logical record may consist of any number of sectors.
The first logical record in a file might, for example, contain three
sectors, while the second contains thirteen. The system has no way of
knowing in advance how many sectors are in each record; when the system is
instructed to skip or backspace over a prescribed number of records,
therefore, it must actually read those records from the file and update the
Current Sector Address after the specified number of records have been
read. Suppose, for example, that the system is currently positioned at the
beginning of DATFIL 1, and that DATFIL 1 is associated with file #1 in the
Device Table. If you want to skip three records in DATFIL 1, you would
execute a DSKIP #1,3 statement. Such a statement causes the system to run
through the following set of operations:

1. Check the Current Sector Address in slot #1 in the Device Table to
see where it is currently positioned in the file.

2. Access the disk and read three logical records, beginning at the
location specified in the Current Sector Address parameter.

3. After reading the third logical record, check the sector address of
the last sector in that record.

4. Set the Current Sector Address in slot #1 equal to one greater
than the address of the last sector in logical record #3.

At the end of this procedure, the Current Sector Address in slot #1 is
equal to the address of the first sequential sector following record #3.

Suppose, now, that you know there are three sectors in each logical
record in DATFIL 1. In this case, if you want to skip three logical
records, you can simply instruct the system to skip nine sectors. Since
the system knows exactly how many sectors are to be skipped, it need not
access the disk and read the records themselves; it simply increments the
Current Sector Address in Slot #1 by nine. The process of skipping or
backspacing through a file is greatly accelerated, since no disk accesses
are required.

The 'S' parameter is used in a DSKIP or DBACKSPACE statement to

inform the system that it is to skip a specified number of sectors rather
than logical records.

81

Disk Device Selection and Multiple Data Files

Example 6-8: Skipping over a Number of Sectors in a File
400 DSKIP #1, 20S

Statement 400 instructs the system to increment the Current
Address for the file associated with slot #1 in the Device
Table by 20. If the old Current Address was equal to X, the
new Current Address is equal to X+20. If each Tlogical
record consists of five sectors, this statement has the
effect of skipping over four logical records.

Example 6-9: Backspacing over a Number of Sectors in a File
410 DBACKSPACE #3, 25S

Statement 410 instructs the system to decrement the Current
Address for the file associated with #3 in the Device Table by
25. If the original Current Address was equal to Y, the new
Current Address is equal to Y - 25. If each logical record
consists of five sectors, this statement has the effect of
backspacing over five logical records.

When the 'S' parameter is used, it is necessary that every logical
record in the file consist of the same number of sectors; otherwise,
skipping or backspacing over a number of sectors can lead to serious
problems. If the number of sectors skipped does not represent a number of
whole records, the system may end up somewhere in the middle of a Tlogical
record. In such a case, it will automatically skip to the beginning of the
next sequential logical record and begin reading at that point.

6.7 THE 'T' PARAMETER

Until now, only two parameters have been discussed in connection with
accessing a disk platter, the 'F' parameter and the 'R' parameter. These
parameters are "absolute" in the sense that the reference of each parameter is
fixed and cannot be changed (that is, the 'F' parameter can never be used
to access the 'R' platter, and vice versa).

Such an arrangement Tlacks flexibility. It is desirable in certain
cases to be able to access both the 'F' and 'R' platters with the same disk
statement or command; the 'T' parameter provides such a capability. When
the 'T' parameter 1is specified in a disk statement or command instead of
'F' or 'R', it instructs the system to use the disk device address to
determine which platter is to be accessed.

For such a technique to be possible, however, it is evident that each
disk platter must have its own device address. This is true only in a very
limited sense. The disk device address (e.g., "310") is really a
conjunction of two distinct elements, a device type and a unit device
address. The first digit of the three-digit disk address 1is the device
type; the remaining two digits constitute the unit device address. It s
the device type which can be used to designate a particular disk platter.

82

Disk Device Selection and Multiple Data Files

3 10
v v
Device Unit
Type Device
Address
In all of the examples to this point, a single device type, "3"

(e.g., 310, 320, etc.), has been used consistently. However, a second
device type, "B" (e.g., B10, B20, etc.), is also permissable in a disk
device address. When used in conjunction with the 'T' parameter, a device
type of "3" designates the 'F' disk platter, while a device type of "B"
designates the 'R' platter:

3 10 B 10

v v v v
Designates Identifies Designates Identifies
the 'F' the disk the 'R’ the disk
platter drive platter drive
when 'T' when 'T'
parameter parameter
is used is used

For example, the statement

10 LOAD DC T/310, "PROG 1"
causes the system to access the 'F' platter, while the statement

20 LOAD DC T/B10, "PROG 2"
causes the system to access the 'R' platter. It should be emphasized that a
disk device address 1is never used by itself to access a disk platter; it is
always necessary to specify one of the parameters 'F', 'R', or T in
statements which reference a platter parameter.

No mention was made of the "B" device type in previous examples
because the device type "B" itself is significant only when the 'T'
parameter is used. The 'F' or 'R' parameter, when specified, always
overrides the device type. Thus, for example, the command

LOAD DC F/310, "PROG 1"
accesses the 'F' platter; and so too does the command
LOAD DC F/B10, "PROG 1"

In this case, the device type ("B") is overridden by the specified platter
parameter ('F'), and has no meaning to the system.

83

Disk Device Selection and Multiple Data Files

SPECIAL NOTE TO MODEL 2270-1 OWNERS:

An address of B10 is illegal when wused 1in conjunction
with the 'T' parameter, since the Model 2270-1 contains
only a single disk drive, which must be referenced as an
'F' platter (i.e., with address 310). Otherwise, an error
results.

SPECIAL NOTE TO MODEL 2270-3 OWNERS:

When the 'T' parameter is used with the Model 2270-3,
platter selection is determined by both the device type
and the device address. If the device address is the
primary address (i.e., X10, X20, X30, X40, etc.) then a
device type of "3" designates Platter #1 (i.e., 310,
320, 330, 340, etc.), while a device type of "B"
designates Platter #2 (i.e., B10, B20, B30, B40, etc.).
If, on the other hand, the device address is not the
primary address (e.g., 350, 360, 370, etc.), then
Platter #3 1is accessed. Note that the addresses B50,
B60, and B70 are not 1legal in this case, since the

diskette in drive #3 must be addressed as an 'F'
platter.

The 'T' parameter provides maximum flexibility when used in a
statement which references a file number specified as the value of a
variable. In such a case, the system obtains the specified file number
from the value of the variable, then inspects the device type in the device
address stored opposite the specified file number to determine which platter
to access. This arrangement makes it possible to wuse the same disk
statement to access all platters in the disk unit simply by changing the value
of the file number variable.’

Example 6-1: Accessing more than One Disk Platter with the
'T' Parameter

10 SELECT #3 310, #4, B10

100 GOSUB'20 (3,"DATFIL 1")

290 DEFFN'20 (A,B$)
300 DATALOAD DC OPEN T #A, B$
310 RETURN

Here statement 10 stores disk device addresses 310 and B10 in
slots #3 and #4 of the Device Table, respectively.
Subsequently, the 'GOSUB' statement at 1ine 100 passes the
values '3' and "DATFIL 1" to the marked subroutine at line 290.
Because address 310 is assigned to file number #3, the DATALOAD
DC OPEN statement at line 300 reopens DATFIL 1 on the 'F'
platter. The same subroutine could be used to open a different
file on a different platter if called from another point in the
program and passed a different set of values:

84

Disk Device Selection and Multiple Data Files

200 GOSUB'20 (4,"TEST 2")

290 DEFFN'20(A,B$)
300 DATALOAD DC OPEN T #A, B$
310 RETURN

In this case, data file TEST 2, located on the 'R’
reopened by the subroutine.

platter, is

The 'T' parameter provides the general capability to write disk
statements which can access any disk platter. This feature may prove
particularly useful for file update operations, where two versions of the
same file may vreside on different platters. Users of the Models 2230 and
2260 should find the 'T' parameter helpful in debugging file maintenance
programs written for the Fixed Platter by testing them with dummy files
stored on the Removable Platter (thus avoiding the danger of erasing
legitimate data on the Fixed Platter). Finally, Model 2270-3 owners will
find the 'T' parameter helpful because it provides them with a single
parameter which can be used to access all three disk platters. For
example, a program can be designed which makes a specific platter (and disk
unit) selectable by the operator when the program is run:

Use of the 'T' Parameter to Access a User-Selectable
Disk Platter

Example 6-11:

10 INPUT "ENTER PLATTER-NUMBER (1,2, OR 3)", A
20 INPUT "ENTER PROGRAM NAME", N$

30 ON A GOTO 30, 50, 60

40 SELECT #1 310:G0OTO 70

50 SELECT #1 B10:GOTO 70

60 SELECT #1 350

70 LOAD DC T #1, N$

Changing the Default Address

The system default disk address, 310, is a system-defined parameter
which cannot be permanently changed by the programmer. Following Master
Initialization, the system automatically returns address 310 to the default
slot. It 1is, however, possible to change the value of the default address
temporarily with a SELECT DISK statement. For example, the statement -

50 SELECT DISK B10

causes disk address B10 to be recorded in slot #0 in the Device Table:

DISK
FILE DEVICE START END CURRENT
NUMBER ADDRESS
#0 B10 00000 00000 nco00
Figure 6-12. The Device Table Following Execution of a

SELECT DISK B10 Statement

85

Disk Device Selection and Multiple Data Files

Once statement 50 1is executed, any disk statement or command
containing the 'T' parameter with no file number specified causes the
system to access the 'R' platter (based on a device type of "B"), rather
than the 'F' platter (as would be the case with the system default address,
310). Note that the default address cannot be changed with a statement of
the form SELECT #0 B10. This statement is illegal.

Example 6-12: Using the 'T' Parameter with a New Default Address

10 SELECT DISK B10
20 DATASAVE DC OPEN T 100, "DATFIL 1"

Statement 10 changes the default address (stored in slot #0)
from 310 to B10. Statement 20 causes the system to check
the default address 1in the default slot (since no file
number is specified) and, since the 'T' parameter is used, to
inspect the device type in the address. In this case, the
device type is B (B10); the 'R' platter 1is therefore used
to open DATFIL 1.

After it has been changed, the default address can be reset to 310
by:

1. Entering a SELECT DISK 310 statement, or

2. Master Initializing the system (i.e., throwing the main power
switch OFF and then ON).

6.8 MULTIPLE DISK UNITS

If only one disk unit is attached to the system, the problem of
multiple disk addresses is not a concern, since you will deal exclusively
with the primary disk addresses 310 and B10 (and, on the Model 2270-3,
350). Many installations. however, drive two or more disks with a single
CPU. (A typical configuration includes one Tlarge fixed/removable disk
drive for the data base, and a smaller diskette drive for software.) In
multiple-disk configurations, the system distinguishes different disk units by
means of the last two digits in their device address, called the ‘"unit
device address":

3/B 10

v v
Device Unit Device Address
Type (Identifies disk drive

number one)

Models 2230, 2260, 2270-1, 2270-2

On the Models 2230, 2260, 2270-1, and 2270-2, the unit device address of
each successive disk unit on the same system is computed by adding
HEX(10) to the disk device address of the primary disk. The addresses of
successive disks are listed in Table 6-1.

86

Disk Device Selection and Multiple Data Files

Table 6-1. Disk Addresses for Models 2230, 2260, 2270-1, 2270-2

Disk Unit #1 (Primary) 310 or B10
Disk Unit #2 320 or B20
Disk Unit #3 330 or B30
Disk Unit #4 340 or B40
Disk Unit #5 350 or B50
Disk Unit #6 360 or B60
Disk Unit #7 370 or B70
Disk Unit #8 380 or B80

Model 2270-3

On the Model 2270-3, the addressing scheme is somewhat different.
The unit device address of drives #1 and #2 in a second and third disk unit on
the same system is computed by adding HEX(10) to the primary disk
address (310); the addresses for four or more units are computed by adding
HEX(01) to the previous address. Similarly, the address of drive #3 is
computed for the first three units by adding HEX(10) to the primary address
(350), and by adding HEX(01) for each unit beyond the third. The addresses
for successive units are listed in Table 6-2.

Table 6-2. Disk Addresses for Model 2243

Drives #1 and #2 Drive #3
Disk Unit #1 (Primary) 310 or B10 350
Disk Unit #2 320 or B20 360
Disk Unit #3 330 or B30 370
Disk Unit #4 331 or B3l 371
Disk Unit #5 332 or B32 372
Disk Unit #6 333 or B33 373
Disk Unit #7 334 or B34 374
Disk Unit #8 335 or B35 375

NOTE:
The device addresses for disk units are set at the
factory, or by a Wang Service Representative. The address
of each disk unit should be marked on the disk
controller board for that unit. If you have questions
about addressing multiple disks 1in a system, contact
your Service Representative.

Accessing Multiple Disk Units

The techniques for accessing a disk platter with catalog procedures
are the same for additional disk units on a system as for the primary unit. A
platter can be accessed in four ways:

87

Disk Device Selection and Multiple Data Files

1.

Specifying the disk device address in a disk statement or
command, e.g.:

100 LOAD DC R /330, "PROG 1"

Statement 100 loads PROG 1 from the 'R' platter in disk unit number
three. Note that there are a number of catalog statements in
which the device address cannot be directly specified.

By selecting a disk address as the default disk address, and
referencing the default address, e.g.:

100 SELECT DISK 340
120 DATASAVE DC OPEN F 100, “DATFIL 1"

Statement 110 changes the default address from 310 to 340, and
statement 120 opens DATFIL 1 on the 'F' platter of disk unit number
four. Note that the default address reverts to the system
default address, 310, when the system is Master Initialized.

By assigning the disk address to a file number in the Device
Table, and referencing the address indirectly, via the file
number, e.g.:

100 SELECT #3 320
110 DATASAVE DC OPEN F #3, 100, "DATFIL 1"

Statement 100 stores disk address 320 in the #3 slot in the Device
Table, and statement 100 opens DATFIL 1 on the 'F' platter of disk
unit number two. In this case, the disk unit is determined
from the disk address, while the disk platter is specified 1in the
DATASAVE DC OPEN statement ('F'). Alternatively, both the
disk unit and the disk platter can be determined from the device
address:

100 SELECT #3 320
110 DATASAVE DC OPEN T #3, 100, "DATFIL 1"

In this case, both the disk unit (number two) and the disk platter
('F' platter) are determined by inspection of the device address.

By assigning the device address to a file number in the Device
Table, and referencing the file number indirectly (via a
variable), e.g.:

100 SELECT #3 B20
105 A = 3: B$ = "DATFIL 1"
110 DATASAVE DC OPEN T #A, 100, B$

Since A = 3, and address B20 is stored in slot #3 1in the Device
Table, the file DATFIL 1 is opened on the 'R' platter of disk unit
number two.

Chapter 7
Efficient Use of the Disk

7.1 INTRODUCTION

This chapter discusses several techniques designed to help you make
more efficient wuse of your disk, both in terms of optimizing the use of
disk storage space and speeding up processing time for disk files. The
following topics are covered in the chapter:

1. Reserving additional space in program files for program
expansion.

Establishing temporary work files on the disk.
Renaming and reusing scratched files.

Efficient use of disk storage space within records.

o AW N

The LIMITS Statement.

7.2 PROGRAM FILES REVISITED

The discussion of saving program files in Chapter 5 restricted itself to
cases in which the system used exactly enough disk space to hold the

recorded program lines. In many cases, however, it is advantageous to
reserve additional sectors within a program file for future expansion of
the program. If such additional space 1is reserved at the outset, the

program can subsequently be expanded and written back into its original
location in the catalog (the reuse of scratched program file locations is
described in Section 7.5). If extra space is not reserved when the file is
initially created, the expanded program will not fit into its original
space, and must be saved at a new location in the Catalog Area. In this
case, the space occupied by the old program is wasted, unless a new file
can be found to- occupy it. The SAVE DC command provides a means of

reserving extra sectors 1in a program file when the program 1is dinitially
stored on disk.

89

Efficient Use of the Disk

In order to reserve extra sectors in a program file, the number of
additional sectors to be reserved must be enclosed in parentheses and
listed in the SAVE DC command immediately before the program name. The
system then automatically adds the specified number of additional sectors at
the end of the program file when the program is recorded on disk.

Example 7-1: Reserving Additional Sectors in a Program File
SAVE DC F (10) "PROG 1"

This command instructs the system to record all program
lines currently in memory on the 'F' disk platter, and name
the file "PROG 1". In addition to the sectors needed to
store the program itself, 10 sectors are reserved for future
additions to the program (see Figure 7-1).

———————————————————————————— PROGRAM FILE “PROG 1" —_—————_—— e ——
——————————————————————— Currently Saved Program __-__-‘———____—-___h“___“W
HEADER 18T 2ND 3RD Nth TRAILER END-OF-FILE|
RECORD PROG PROG PROG PROG RECORD CONTROL
“PROG 1” RECORD RECORD RECORD RECORD RECORD

Free space available for
subsequent expansion of
program within this file
(10 sectors).

Figure 7-1. The Program File PROG 1 with Ten Extra
Sectors Reserved

7.3 ESTABLISHING TEMPORARY WORK FILES ON DISK

Temporary work files can be useful in a variety of data processing
operations. A "temporary" work file 1is opened with a DATASAVE DC OPEN
statement, but unlike a regular cataloged file, it is not Tlisted in the
Catalog Index, and not stored in the Catalog Area on disk. Its parameters
are, however, entered in the Device Table in memory. Temporary files may be
used as transaction files, to contain transactions saved over a period of
time and processed as a batch, or as scratch files, in which the results of
intermediate calculations are stored prior to final processing. They may,
in short, be used as a storage area for any type of transient data which is
not sufficiently final to warrant storage in a permanent file.

Because they are not cataloged, temporary files must be stored
outside the Catalog Area on disk. The end of the Catalog Area (that is,
the address of the last sector reserved for the Catalog Area) is specified in
the SCRATCH DISK statement when the catalog 1is established. If
temporary files are to be used, the catalog may not occupy the entire

90

Efficient Use of the Disk

platter; a number of sectors must be left outside the Catalog Area for the
temporary files. For example, the Model 2230-1 Disk Drive has 2400 sectors on
each platter. Since sector numbering starts at zero rather than one, the
highest sector address on the Model 2230-1 is 2399. If a number of sectors
(say, 100) are to be 1left available for temporary files, the address
of the last sector in the Catalog Area must be 2399 minus 100, or 2299:

100 SCRATCH DISK F LS=30, END=2299

Sectors 2300 through 2399 are left outside the Catalog Area, and may be
used for temporary files.

Non-
Catalog Catalog Catalog
Area Area Index

Track #0

Figure 7-2. Layout of the Platter Surface Showing Catalog
Index, Catalog Area, and Non-Catalog Area
(Used for Storage of Temporary Files).

Temporary files are opened and accessed with the same BASIC
statements wused to open and access cataloged files. However, temporary
files cannot be named, nor can they be accessed by name. Instead, the
special TEMP parameter, along with the beginning and ending sector
addresses of the temporary file, must be specified in the DATASAVE DC OPEN
statement when the file is opened initially, and again in the DATALOAD DC
OPEN statement when the file is reopened.

Example 7-2: Opening a Temporary Work File on Disk
300 DATASAVE DC OPEN R TEMP, 2300, 2399
Statement 300 opens a temporary work file on the 'R' disk

platter. - Sectors 2300 through 2399 are reserved for this
temporary file (these sectors must be outside the Catalog

91

Efficient Use of the Disk

Area). No information on the file is entered in the Catalog
Index; however, the temporary file's parameters are entered in
the default slot (#0) in the Device Table. Following the
execution of statement 300, any DATASAVE DC or DATALOAD DC
statement which does not specify a file number (i.e., which
references the default slot) will read or write data in the
temporary file.

Like cataloged files, temporary files can be assigned file numbers.
In this way, more than one temporary file can be open at the same time.

Example 7-3: Opening More Than One Temporary Work File

300 SELECT #1 310, #3 310
320 DATASAVE DC OPEN F #1, TEMP, 2300, 2349
330 DATASAVE DC OPEN F #3, TEMP, 2350, 2399

Statement 300 stores disk address 310 opposite file numbers #1
and #3 in the Device Table. Statement 320 opens a
temporary file on the 'F' platter, reserves sectors 2300
through 2349 for that file, and enters the file parameters in
slot #1 of the Device Table. Statement 330 opens a
second temporary file on the 'F' platter, occupying sectors
2350-2399, and assigns its parameters to slot #3 in the
Device Table. Any reference to #1 or #3 in a DATASAVE DC or
DATALOAD DC statement accesses these temporary files.

Data is stored in a temporary file just as it is stored in a
cataloged file. As with a cataloged file, a data trailer record should
always be written in the file at the completion of a data storage
operation. As with cataloged data files, the last sector of a temporary
data file is used by the system for control information; at 1least one more
;ector than the data actually requires should be reserved for the temporary

ile.

A temporary file is closed in the same way a cataloged file is
closed, and 1is reopened with a DATALOAD DC OPEN statement. The TEMP

parameter and the beginning and ending sector addresses of the file must be
specified.

Example 7-4: Reopening a Temporary Work File
500 DATALOAD DC OPEN F TEMP, 2350, 2399
Statement 500 reopens an existing temporary file beginning at

sector 2350 on the 'F' disk platter.

7.4 ALTERING THE CATALOG AREA

The upper limit of the Catalog Area is originally set with the END
parameter in a SCRATCH DISK statement when the catalog is created. If more
room 1is needed for temporary files, or if more sectors must be devoted to
cataloged files, the size of the Catalog Area can be changed with a MOVE
END statement. In this statement, it is necessary to specify only the

92

Efficient Use of the Disk

sector address which 1is to become the new ending sector address of the
Catalog Area. Note that MOVE END alters the size of the Catalog Area only; it
does not change the size of the Catalog Index.

Example 7-5: Changing the Size of the Catalog Area
100 SCRATCH DISK F LS=30, END=2299

500 MOVE END F = 2199

Statement 100 sets the 1imit of the Catalog Area at sector
2299. Statement 500 moves the 1imit back 100 sectors, to
sector 2199, thereby allowing 100 additional sectors to be
used for temporary files (outside the Catalog Area). The
Catalog Area may be expanded as well as constricted, but its
upper 1limit must never exceed the highest sector address
available on a disk platter. The size of the Catalog Index
cannot be changed with MOVE END.

7.5 RENAMING AND REUSING SCRATCHED FILES

Temporary files offer one good way to make the most efficient use of
disk storage space. Another way to get maximum use out of available disk
storage area is to reuse the space occupied by scratched files. As you saw in
Chapter 5, one way to eliminate scratched files is to execute a MOVE
operation, since MOVE automatically deletes scratched files when it copies
the catalog to a new platter. In many cases, however, it is easier and
more efficient to store a new program or new data file directly into space
occupied by a scratched file, without moving the whole catalog to a second
platter. This is true particularly in the case of revised programs. New
files are recorded in the space occupied by scratched files with the SAVE DC
command and DATASAVE DC OPEN statement. The file type of the scratched file
(program or data) is irrelevant when opening a new file in its space: a
program file may be saved in the space occupied by a scratched data file, and
a data file may be saved in the space occupied by a scratched program file.
The scratched file name must precede the new file name in the SAVE DC
command or DATASAVE DC OPEN statement.

Example 7-6: Saving a Program in Space Occupied by a
Scratched File

SCRATCH R "PROG 1"
SAVE DC R ("PROG 1") "PROG 2" 200, 500

The SCRATCH statement causes program file PROG 1 to be set to
a scratched status. SAVE DC then stores 1lines 200
through 500 1in the sectors previously reserved for PROG 1,
and names the new program "PROG 2". The new file name
("PROG 2") and Tlocation are entered in the Catalog Index.
The scratched entry for PROG 1 remains in the Catalog Index,
although it no longer appears in a listing of the Index.

93

Efficient Use of the Disk

Notice that the scratched file name must be enclosed in both quotes
and parentheses when it is referenced in a SAVE DC command.

Example 7-7: Opening a Data File in Space Occupied by a
Scratched File

10 SCRATCH F "DATAFIL 1"
20 DATASAVE DC OPEN F "DATFIL 1", "DATFIL 2"

Statement 10 scratches DATFIL 1. Statement 20 assigns the
sectors previously reserved for DATFIL 1 to DATFIL 2, and
updates the Catalog Index accordingly. DATFIL 2's
parameters (previously those of DATFIL 1) are entered in the
default slot (#0) in the Device Table. The scratched entry
for DATFIL 1 remains in the Catalog Index, although it no
longer appears in a listing of the Index.

A program file which has been scratched can be reused as a data file,
and vice versa.

Example 7-8: Opening a Data File in Space Occupied by a
Scratched Program File

10 SCRATCH F "PROG 1"
20 DATASAVE DC OPEN F #1, "PROG 1", "DATFIL 3"

Statement 10 scratches PROG 1. Statement 20 assigns the
sectors on disk previously reserved for PROG 1 to DATFIL 3,
and updates the Catalog Index accordingly. DATFIL 3's
parameters (previously those of PROG 1) are entered in slot #1
in the Device Table (the disk device address must
previously have been stored opposite #1). The scratched
entry for PROG 1 is not removed from the Catalog Index,
however, although it no longer appears in the Index 1isting.

It is entirely possible to rename a scratched file with the same
name. This feature is useful for revising program files, since the program
can be updated and then resaved into the original location with the same
name (assuming, of course, that additional space has been reserved in the
original file for expansion of the program).

Example 7-9: Renaming a Scratched Program File with the Same Name

SCRATCH R "PROG 1"
SAVE DC R ("PROG 1") "PROG 1"

The SCRATCH statement scratches PROG 1. The SAVE DC command
subsequently resaves an updated version of the program,
assigning it the same name ("PROG 1"}, and storing it in the
same location as the original PROG 1. If there is not
enough space in the file for the new program, an error is
signalled. In this case, the scratched entry for PROG 1 is
removed from the Catalog Index when the program is saved.

94

Efficient Use of the Disk

Finally, it is also possible to scratch and rename a data file
without disturbing the data in the file, if you simply want to give the
file a new name.

Example 7-10: Renaming a Scratched Data File Which Is Still Viable

10 SCRATCH "DATFIL 1"
20 DATASAVE DC OPEN F "DATFIL 1", "TEST 2"

Statement 10 scratches DATFIL 1. Statement 20 renames
DATFIL 1 with the name "TEST 2". The data in the file is
not disturbed. However, the end-of-file trailer record in
the file is lost and the USED column for TEST 2 in the
Catalog Index is reset to 1. Thus, you should note the
sector address of the trailer record in DATFIL 1 prior to
scratching it. After opening TEST 2, you can skip to that
location and rewrite the end-of-file record. Throughout
this operation, the data is unaltered.

NOTE:

Although the name of a scratched file no longer appears in
the catalog listing once the file has been renamed, the
scratched file name remains in the Catalog Index. Thus,
if a single file is scratched and renamed 16 times, only
the final name shows in the catalog listing, despite the
fact that all 16 names remain in the Catalog Index itself.
Those 16 names would occupy one entire sector of the
Catalog Index. Scratched file names can be removed from
the Index only by executing a MOVE. The single exception
to this rule is the case in which a scratched file is
renamed with the same name. In that case, the new name
occupies the slot on the Catalog Index occupied by the old
name, and no duplication occurs. If it is necessary to
scratch and rename files frequently, therefore, provision
must be made for the scratched file names when
establishing the size of the Catalog Index initially with
SCRATCH DISK. Remember that the size of the Index cannot
be altered once the catalog has been created.

7.6 EFFICIENT USE OF DISK STORAGE SPACE

The large storage capability of the disk unit may occasionally tempt
the programmer to become profligate and inefficient in his use of disk
storage space. Specifically, he may be tempted to design his records
without due care for packing a maximum amount of data in a minimum number of
sectors. Even when the available storage clearly exceeds present needs,
however, this temptation should be overcome. Files have a way of
outgrowing preliminary estimates at a faster-than-expected rate. Too, a
file which 1is compact can be searched more quickly than one which is
loosely Tlayed out and contains large amounts of wasted space. In order to
organize data within a record efficiently, it is necessary to understand

95

Efficient Use of the Disk

more precisely how the system stores data in a sector. There are two main
points to be considered:

1. Control information: The system automatically records control
information along with the data in each sector. The control
information occupies space in the data field of a sector, and
must be taken into account when calculating how much space is
required for a given amount of data.

2. "Gaps" in multisector records: Under certain conditions, gaps
may occur between fields in a multisector record. In order to
optimize the use of disk storage space, such gaps must be kept to a
minimum.

System 2200 Control Information

The System 2200 automatically writes control information in each
record created with a DATASAVE DC statement (or DATASAVE DA statement).
This information is of two types:

1. Sector control bytes.
2. Start-of-value (SOV) control bytes.

Three sector control bytes are automatically written in each sector of
a logical data record. The first two sector control bytes occupy the first
two locations in the sector. The third control byte follows the last byte in
the last field in the sector, and marks the T1imit of valid data within
that sector. Information in the sector following the last sector control
byte (also called the "end-of-block" byte) is regarded as garbage, and is
ignored by the system when the sector is read. After taking into account the
three sector control bytes, only 253 of the 256 bytes 1in a sector are
initially available for data storage.

In addition to the sector control bytes, a start-of-value (SOV)
control byte is prefixed to every field stored in the sector. The SOV byte
separates data fields within a sector, marking the beginning of each
individual value in the sector.

Consider, for example, the following statements:

10 DIM A$(2) 30
20 DATASAVE DC A$(), B$, "ABCD", 123, N

The argument 1list in statement 20 contains six separate arguments,
each of which is prefixed with an SOV control byte when saved on disk.
(Remember that each element of an array constitutes a single argument.
Since A$() has two elements, it must be counted as two arguments.) The
logical record created by statement 20 therefore looks 1ike this:

96

Effictient Use of the Disk

30 bytes 30 bytes 16 bytes 4 bytes 8 bytes 8 bytes
P A\ A y A A\ N JR
(s) AS$ (1) (s) A$ (2) (sJ 3 - . (s) (s) 8 \
v Y (9 B$ 9 ABCD v 123 v N B \ \
N "

sov sov sov Sov sSov SOV End-of data UNUSED

for for for for for for control byte
A$ (1) A$ (2) BS “ABCD"” “123" N

2 sector
control
bytes

Figure 7-3. One Logical Record, Showing SectorVContro1
Bytes and Start-of-Value Control Bytes for
Each Field

From this illustration, it can be inferred that the following disk
storage requirements hold:

a) Each numeric value, variable, or array element in the argument
list always occupies nine bytes on disk (eight bytes for the
numeric value and one byte for the SOV).

b) Each literal string in quotes occupies a number of bytes on disk
equal to the number of characters in the literal string, plus one
SOV byte.

c) Each alphanumeric variable or array element occupies a number of
bytes on disk equal to the dimensioned length of the variable or
element, plus one SOV byte.

Note that in the case of an alpha variable or array element, it is
the dimensioned size, and not the number of characters actually stored in
the variable or element, which must be counted. For example, the routine

50 DIM A$ 20
60 A$ = "ABC"

produces an alpha variable A$ which occupies 21 bytes on the disk (20 + 1),
despite the fact that A$ contains a literal string only three characters in
length. The remaining 17 bytes of A$ are blanks (spaces).

Inter-Field Gaps

In no case will the system overlap a single field from one sector to
the next. If a field does not fit completely into one sector, it is
written in its entirety into the next sequential sector. If record 1layouts
are not carefully designed, this situation often gives rise to gaps between
fields in multisector records.

97

Efficient Use of the Disk

Suppose, for example, that a logical record has been created with the
following routine:

10 DIM A$(5)50, B$(3)64, C$ 48

ioo DATASAVE DC A$(), B$(), C$

You could do some quick calculating and, making sure to add a control
byte for each argument, conclude that the total record occupies 499 bytes.
Since each sector can hold 253 bytes of data and control information (after
the three sector control bytes are subtracted),two sectors can contain a total
of 506 bytes. You might assume, therefore, that the record will fit easily
into two sectors. Unfortunately, this calculation does not take into account
the possibility of an inter-field gap. The argument list from 1ine 100 is
saved on disk in the following way:

\w ‘
A$(5) | BS(1) | B$(2)| B$(3) \ c$

AS(1} | AS(2) | AS(3)

R i el i N N S S 7 SN—— -~
51 51 51 51 49 51 65 65 65 (unused) 49 204
(Unused)
v v v
253 253 253
Sector # 100 Sector # 101 Sector # 102

Figure 7-4. Inter-Field Gap in a Multisector Record

Notice that the last field in sector 100 consists of 49 bytes, and is
marked "unused". Since A$(5) requires 51 bytes of space, it does not fit
into the remaining 49 bytes in sector 100, and the entire field is written
into the next sector (sector #101). The unused 49 bytes in sector #100
represent a "gap" of wasted space between A$(4) and A$(5). As a result of
this gap, C$ must be written in a third sector. Instead of requiring two
sectors, as the figures indicated, this record occupies three sectors. If
the file contains, say, 100 such records, it will require 100 more sectors
than were initially estimated.

The waste resulting from inter-field gaps can, in many cases, be
decreased or eliminated by careful attention to the designof the record.
In this case, for example, the record can be made to fit into two sectors
simply by rearranging the order of the arguments in the DATASAVE DC
argument list:

100 DATASAVE DC C$, A$(), B$()

The resulting logical record now looks like this:

98

Effictent Use of the Disk

Cs$ AS(1) | AS$(2) | AS(3) | AS(4) A$(5) B$(1) B$(2)
49 51 51 51 51 51 65 65 65 7
N P (Unused)
"'g v
253 253
Sector # 100 Sector # 101

Figure 7-5. A Multi-Sector Record with No Gaps

By moving C$ from the end of the argument 1ist to the beginning, the
49-byte gap in sector 100 is filled, thereby eliminating the need for a
third sector in the record.

7.7 THE 'LIMITS' STATEMENT

A special catalog statement, LIMITS, enables the programmer to obtain
the sector address parameters of a cataloged file under program control.
For catalog operations alone, LIMITS is wuseful in such ways as, for
example, keeping track of the amount of free space remaining in a file
during an input routine. When the catalog procedures are supplemented with
Absolute Sector Addressing operations {(discussed in Chapter 9), which
provide direct access to individual sectors, LIMITS becomes a truly
powerful programming tool. One important use of LIMITS in conjunction with
Absolute Sector Addressing statements is in the binary sea ~h technique
described in Chapter 9.

The LIMITS statement has two forms. In Form 1, the name of a
cataloged disk file is specified in the LIMITS statement. In this case,
LIMITS goes directly to the disk and retrieves the starting sector address,
ending sector address, and number of sectors used for the named file from
the Catalog Index. In Form 2, the file name is omitted from the LIMITS
statement. When this form 1is used, LIMITS reads the sector address
parameters from a specified slot in the Device Table (the default slot if no
file number is specified), and retrieves the starting, ending, and
current sector address parameters from that slot. In this case, the disk is
never accessed.

Form 1 of LIMITS

In Form 1 of the LIMITS statement, the following information must be
specified:

1. The disk platter on which the named file resides ('F' or 'R').
Optionally, a file number (#0-#6).

The name of the file whose parameters are to be obtained.

~ W N

Three numeric return variables designated to receive the file
parameters. Variable #1 1is set equal to the starting sector
address of the file, variable #2 1is set equal to the ending

99

Efficient Use of the Disk

sector address, and variable #3 is set equal to the number of
sectors used in the file.

Form 1 of the LIMITS statement reads the Catalog Index entry for the
named file and extracts the starting and ending addresses, and number of
sectors used. These values are written in the specified slot in the Device
Table (if a file number is included) or in the default slot (if no file
number is included), and from there are copied to the three designated
return variables.

Example 7-11: Form 1 of the LIMITS Statement
('File Name' Specified)

60 LIMITS F "TEST", A,B,C

Line 60 instructs the system to search the Catalog Index on
the 'F' platter for the file "TEST", and retrieve the
beginning and ending sector addresses of TEST, as well as
the number of sectors used. These values are transferred to
the default slot in the Device Table (since no file number is
specified in the statement), and are then stored in the
variables A,B,C, according to the following scheme:

A = Starting sector address.
B = Ending sector address.
C = Number of sectors used.

Example 7-12: Form 1 of the LIMITS Statement
('File Name' and a File Number Specified)

100 LIMITS R #2, "FILE 1", N,O,P

Line 100 instructs the system to retrieve the file
parameters of FILE 1 from the 'R' platter. The parameters
are first read into the slot opposite #2 in the Device
Table, and are then stored in the designated vreturn
variables N,0,P.

Note that because the Device Table is used as an intermediate step 1in
the retrieval of file parameters by Form 1 of LIMITS, the programmer must
take care to specify an unused file number in the LIMITS statement. If the
file number of a currently open file is specified, LIMITS will erase the
sector address parameters of that file in the process of retrieving the
requested file parameters from disk.

Form 2 of Limits

In Form 2 of the LIMITS statement, the following information must be
specified:

1. The 'T' parameter.

2. The file number (#0-#6) of a currently open file (if no file
number is specified, the default file number, #0, is used).

100

Efficient Use of the Disk

3. Three numeric return variables designated to receive the file
parameters. Variable #1 is set equal to the starting sector
address of the file, variable #2 is set equal to the ending
sector address, and variable #3 1is set equal to the current
sector address.

Form 2 of the LIMITS statement reads the sector address parameters
from a specified slot in the Device Table, and stores them in the
designated return variables. Unlike Form 1, Form 2 does not access the
disk to read the Catalog Index, nor does it alter in any way the sector
address parameters stored in the Device Table.

Example 7-13: Form 2 of the LIMITS Statement
('File Name' Not Specified)

150 LIMITS T A,B,C

Line 150 reads the sector address parameters (starting,
ending, current) from the default slot in the Device Table
(since no file number is specified), and stores them in
variables A,B,C in the following order:

A = Starting sector address.
B = Ending sector address.
C = Current sector address.

Example 7-14: Form 2 of the LIMITS Statement
('File Name' Not Specified)

200 LIMITS T #3, N,O,P

Line 200 retrieves the sector address parameters from the
Device Table slot opposite file number #3, and stores those
parameters in variables N,0,P.

Note that Form 2 of the LIMITS statement makes no check on the
validity of the information read from the Device Table. If a slot contains
meaningless parameters (as it might, for example, if its file number had
recently been used in an Absolute Sector Addressing statement), this
information is returned by LIMITS without an error. It 1is the programmer's
responsibility to ensure that the specified file number is associated with a
currently open cataloged file. Because Absolute Sector Addressing
operations do not store meaningful file parameter information in the Device
Table, LIMITS should not be used with files maintained in Absolute Sector
Addressing Mode. (LIMITS may be used in conjunction with Absolute Sector
Add;essing procedures to process a cataloged file, however; see Section
9.7).

101

Efficient Use of the Disk

7.8 CONCLUSION

The discussion of catalog procedures proper is now concluded. All of
the characteristics of the several catalog statements and commands and
their applications have, 1in greater or lesser detail, been touched upon.
The programmer who wishes to make the most efficient use of the catalog
procedures should press on, however, and read Chapter 9, which deals with
the Absolute Sector Addressing Mode. Absolute Sector Addressing statements
and procedures can be used in conjunction with cataloging procedures to
produce a more versatile and efficient disk management system. In
particular, Chapter 9 discusses the "binary search" technique for directly
accessing records in a cataloged file.

102

Chapter 8
Automatic File Cataloging Statements and Commands

8.1 INTRODUCTION

This chapter contains capsule descriptions and general forms for the
following Automatic File Cataloging statements and commands, 1listed
alphabetically for ease of reference:

DATALOAD DC LOAD DC (Command)
DATALOAD DC OPEN LOAD DC (Statement)
DATASAVE DC MOVE

DATASAVE DC CLOSE MOVE END

DATASAVE DC OPEN SAVE DC

DBACKSPACE SCRATCH

DSKIP SCRATCH DISK
LIMITS VERIFY

LIST DC

8.2 SYSTEM 2200 STATEMENTS AND COMMANDS

The distinction between a statement and a command requires some
explanation. In general, the term "statement" is a generic term which denotes
all BASIC instructions in the System 2200 BASIC language set. There are two
categories of BASIC statements:

a. Programmable statements (also referred to simply as "statements").
b. Non-programmable statements (also referred to as "commands").

In its narrower sense, therefore, the term ‘'statement' denotes BASIC
instructions which can be executed within a program (i.e,, on a numbered
program line), while the term "command" denotes those BASIC instructions which
can never be executed in a program (commands are executable in Immediate Mode
only). The set of BASIC instructions governing disk operations contains only
two commands: SAVE DC and SAVE DA (SAVE DA is discussed 1in Chapters 9 and
10). These commands cannot be executed 1in a program. A1l other disk
instructions are programmable statements, and may be executed either in
Program Mode (i.e., on a numbered program line) or in Immediate Mode.

103

Automatic File Cataloging Statements and Commands

A single exception to the command/statement distinction must be noted.
Nearly all System 2200 programmable statements can be executed either in
Program Mode or in Immediate Mode (as noted above, this is true of all disk
statements). In general, the sequence of operations associated with a disk
statement when it is executed within a program is identical to the sequence of
operations associated with the statement when it is executed in Immediate
Mode. LOAD DC (and LOAD DA) represent exceptions to this rule, however. The
sequence of operations initiated by a LOAD DC (or LOAD DA) instruction when it
is executed in Immediate Mode is significantly different from the sequence of
operations initiated by the same instruction when executed on a numbered
program line. For this reason, the LOAD DC instruction is treated as two
separate and distinct entities, distinguished by their mode of execution: the
LOAD DC statement (executed in a program), and the LOAD DC command (executed
in Immediate Mode). The LOAD DA instruction is treated similarly in Chapter
10.

8.3 BASIC RULES OF SYNTAX

The notation and rules of syntax employed in the General Forms of disk
statements follow the conventions used in the System 2200 Reference Manual.
The conventions are summarized below:

1. The following symbols must be included in an actual BASIC statement
exactly as they appear in the General Form of the statement:

a. Uppercase letters A through 7
b. Comma ’
c. Double Quotation Marks "
d. Parentheses ()
e. Pound Sign #
f. Slash /

2. Lowercase letters and words in the General Form of a statement
represent items whose values must be assigned by the programmer.
For example, if the lowercase word "name" appears in a General Form,
the programmer must substitute a specific file name (such as "PROG
1"}, or an alphanumeric variable containing the name, in the actual
statement. Similarly, where the lowercase letter n appears, the
programmer must substitute an actual file number (from O to 6) or a
variable containing a file number.

3. Three special symbols are used in the General Forms as mnemonics,
providing the programmer with required information. These symbols
are never included in an actual BASIC statement:

a. Brackets []
b. Braces { }
c. Ellipses

4. Square brackets, [], indicate that the enclcsed information is

optional, and may be included or not in the actial BASIC statement,
at the programmer's discretion.

104

Automatic File Cataloging Statements and Commands

Vertically stacked items represent alternatives, only one of which
should be included in an actual BASIC statement:

a. Square brackets, [], enclosing vertically stacked items
indicate that all of the items are optional.

b. Braces, { }, enclosing vertically stacked items indicate
that one of the items must be included 1in an actual
statement.

E1lipses, ..., indicate that the preceding item(s) may be repeated
once or several times in succession.

Blanks (spaces), used to improve the readability of the General
Forms, are meaningless to the system (unless enclosed in double
quotation marks), and may be omitted or included in an actual
statement, at the option of the programmer.

The sequence in which terms are listed in the General Form of a
statement must be followed exactly in an actual statement.

105

DATALOAD DC

General Form:

DATALOAD DC [#n,] argument list
where: DC
#n

]

A parameter specifying Disk Catalog Mode.

A file number to which the disk is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

alphanumeric variable
numeric variable , Lo
alpha or numeric array designator

array designator = An array name followed by closed parentheses, e.g.,

A(), B$().

argument list

Purpose:

The DATALOAD DC statement is used to read logical data records from a
cataloged disk file and sequentially assign the values read to the variables
and/or arrays in the argument list. Before data can be read from a cataloged
file, the file must be opened by a DATALOAD DC OPEN or DATASAVE DC OPEN
statement. Thereafter, each time a DATALOAD DC statement 1is executed, the
system begins reading data from the file at the next sequential logical record
in the file. Arrays are filled row by row. If the DATALOAD DC receiving
variable 1ist is not filled by one logical record, the next logical record, or
a portion of the next logical record, is read. If the 1logical record being
read contains more data than is required to fill all receiving variables in
the argument 1list, data not used is read but ignored. Each time the DATALOAD
DC statement is executed, the Current Sector Address associated with the file
in the Device Table is updated to the Starting Sector Address of the next
consecutive 1logical record. If an end-of-file trailer record is read, an
end-of-file condition is set, the Current Sector Address is set to the address
of the trailer record, and no data is transferred. The end-of-file condition
can be tested by a subsequent IF END THEN statement. If the user attempts to
read beyond the final sector address for the file, an error is signalled.

Examples:
100 DATALOAD DC S(), Y, Z

100 DATALOAD DC #2, A$(), B()
100 DATALOAD DC #B2, B(), C, D$

106

DATALOAD DC OPEN

General Form:

F TEMP, expression 1, expression 2
DATALOAD DC OPEN < R [#n,] name

T
where: DC A parameter specifying Disk Catalog Mode.
F = Fixed platter, Drive #1, Drive #3.

R = Removable platter, Drive #2.

T = ‘F’ or ‘R’ disk platter, depending on device type specified in
device address.

#n = A file number to which the disk is currently assigned (‘n’ is an
integer or numeric variable whose value is from O to 6).
name = The name of the cataloged data file to be located and opened.
The name is from 1 to 8 characters in length, and is expressed as
an alphanumeric variable or literal string in quotes.
TEMP = A temporary work file is to be re-opened.
expression 1 = Truncated value is starting sector address of temporary work file,

expression 2 Truncated value is ending sector address of temporary work file.

Purpose:

The DATALOAD DC OPEN statement is used to open data files that have
previously been cataloged on the disk. When the statement is executed, it
locates the named file on the specified disk platter, and sets up the
Starting, Ending, and Current Sector Addresses of the file in the Device Table
(the current address is set equal to the starting address). Any subsequent
use of the same file number in other catalog (DC) statements accesses this
file. If no file number is included, the file is assumed to be associated
with the default file number (#0) and can be accessed by subsequent DC
statements with the file number omitted, or by specifying #n = #0.

An error will result if the file name cannot be located in the Catalog
Index of the specified disk, or if the file has been scratched.

The TEMP parameter is used to reopen a temporary work file; the starting
and ending addresses must not be located in the cataloged area. Temporary
file areas can be accessed with catalog statements and commands (e.g.,
DATASAVE DC, DATALOAD DC, etc.).

The DATALOAD DC OPEN statement must be used when reopening an existing
cataloged data file; use of the DATASAVE DC OPEN statement results in an error
if the named file 1is already 1in the catalog and has not been scratched.
Therefore, DATALOAD DC OPEN is used to reopen a cataloged file irrespective of
whether data is to be written in the file with a DATASAVE DC statement or read
from the file with a DATALOAD DC statement.

107

DATALOAD DC OPEN

Examples:

100 DATALOAD DC OPEN F "HEADING"
100 DATALOAD DC OPEN R #2, A$
100 DATALOAD DC OPEN T #A, TEMP, 8000, 9000

108

DATASAVE DC

General Form:

END

DATASAVE DC [$] [#n,] { .
argument list

where: DC = A parameter specifying Disk Catalog Mode.
$ = Read after write.
#n = A file number to which the file is currently assigned {‘n’ is an

integer or numeric variable whose value is from 0 to 6).

literal string

dlphanumeric variable

expression

numeric variable

alpha or numeric array designator

argument list

array deéignator

END

An array name followed by closed parentheses, e.g., A{), B$().

Write a data trailer {end-of-file) record.

Purpose:

The DATASAVE DC statement causes one logical record, consisting of all
the data in the DATASAVE DC argument 1list, to be written onto the disk,
starting at the current sector address associated with the specified file
number (#n) in the Device Table. If no file number is specified in the
DATASAVE DC statement, the data is written into the file currently associated
with the default file number (#0) in the Device Table. The file must
previously have been opened with a DATASAVE DC OPEN or DATALOAD DC OPEN
statement. No data can be saved into an unopened file; if the DATASAVE DC
statement specifies a file number not associated with a currently open file,
an error results.

The DATASAVE DC argument 1ist may include literal strings (e.g., "JOHN
JONES") and expressions (e.g., B*C), as well as alphanumeric and numeric
variables and arrays.

The 'DC' parameter implies that the data in the argument Tist is to be
written as one Tlogical record in standard System 2200 format, including the
necessary control information. The values in the argument 1ist are stored
sequentially on the specified disk. Arrays are written row by row. Each
single logical record may consist of one or more sectors on the disk.

NOTE:

Each numeric value in the argument 1list requires 9 bytes
of storage on disk. Each alphanumeric variable requires
the maximum length to which the variable 1is dimensioned
plus 1 byte; e.g., if the 1length of A$ is set to 24
characters in a DIM A$24 statement, then A$ requires 25
(24 + 1) bytes of storage on disk. Each 256 byte sector
also requires 3 bytes of sector control information (refer
to Section 7.6).

109

DATASAVE DC

The '$' parameter specifies that a 'read-after-write' verification test
be made on all data written to the disk. This test provides an extra
safeqguard against disk write errors, but it also effectively doubles the time
required for the DATASAVE DC operation.

If the special END parameter is specified, a data trailer record is
written 1in the file, and the Catalog Index entry for the file is updated so
that the number of sectors used by the file includes all sectors up to the
trailer record just written. A cataloged file always should be ended by a
trailer record. A new data record can be stored in the file by writing over
the trailer record, and subsequently creating a new trailer record. (A DSKIP
END statement positions the system to the beginning of the trailer record; a
DATASAVE DC statement can be executed at that point to store the new record
over the trailer record, and a subsequent DATASAVE DC END statement executed
to create a new trailer record.)

Examples:

100 DATASAVE DC A,X, “CODE#4"

100 DATASAVE DC $ #2, M$, P2(), F1$()

100 DATASAVE DC $ #1, "ADDRESS", (3*1)/100, J$()
100 DATASAVE DC #3, END

100 DATASAVE DC #A, A$()

110

DATASAVE DC CLOSE

!
| General Form:

#n
DATASAVE DC CLOSE ALJ
where: DC = A parameter specifying Disk Catalog Mode.
#n = The file number associated with a currently open file which is to
be closed (‘'n’ is an integer or numeric variable whose value is
from O to 6).
ALL = All currently open files are to be closed.
Purpose:

The DATASAVE DC CLOSE statement is used to close an individual data file
or all data files which are currently open, if they are no Tlonger needed in
the current or subsequent programs. The DATASAVE DC CLOSE statement closes a
file by setting the starting, ending, and current sector addresses associated
with dits file number in the Device Table equal to zero. When the file is
closed, a disk statement referencing that file causes an ERROR 86 (File Not
Open) to be displayed.

If the #n parameter is used, the single file associated with that file
number is closed. If the ALL parameter 1is used, every open file is closed.
If neither parameter is used, the currently open file associated with the
default file number (#0) is closed.

The DATASAVE DC CLOSE statement should not be confused with DATASAVE DC
END. The Tlatter writes an end-of-file record at the end of a newly written
file. The end-of-file record should always be written prior to executing
DATASAVE DC CLOSE.

It is good programming practice to close a file with DATASAVE DC CLOSE
upon completion of processing, since it insures that subsequent disk users
will not erroneously access the file and possibly destroy data. Likewise,
DATASAVE DC CLOSE can be used at the beginning of a program to initialize file
parameters to zero before they are set by DATASAVE DC OPEN or DATALOAD DC
OPEN. DATASAVE DC CLOSE does not remove disk device addresses from the Device
Table.

Examples:
900 DATASAVE DC CLOSE
900 DATASAVE DC CLOSE #3

900 DATASAVE DC CLOSE ALL
900 DATASAVE DC CLOSE #A

111

DATASAVE DC OPEN

General Form:

F old file name, { new file name
DATASAVE DC OPEN R [$] [#n,] expression,
T TEMP, expression 1, expression 2
where: DC = A parameter specifying Disk Catalog Mode.

F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read after write.

#n = A file number to which the disk is currently assigned (‘n’ is an
integer or numeric variable whose value is from 0 to 6).

old file name = The name of an existing scratched program or data file which is
cataloged on the specified disk platter. The name can be from one
to eight characters in length, expressed as an alphanumeric
variable or literal string in quotes.

expression = The number of sectors to be reserved for the new file.

new file name = The name of the data file being opened, expressed as an alpha-
numeric variable or a literal string in quotes from 1 to 8 characters
in length.

TEMP = A temporary work file is to be established.

expression 1 = Truncated value is the starting sector address of a temporary
work file.

expression 2 = Truncated value is the ending sector address of a temporary
work file.

Purpose:

The DATASAVE DC OPEN statement is used to reserve space for cataloged
files in the Catalog Area, and to enter appropriate system information in the
Catalog Index. It is also used to reserve space for temporary work files
outside the Catalog Area, and to reuse space in the Catalog Area occupied by
scratched files.

Data files can be opened on any disk platter by including the proper
parameter ('F' or 'R') in the DATASAVE DC OPEN statement. Each data file must
be opened initially with a separate DATASAVE DC OPEN statement; if multiple
files are to be open simultaneously, each file must be assigned a different
file number. Since there are seven file numbers available (0-6), a total of
seven data files can be open simultaneously.

The '$' parameter specifies that a 'read-after-write' verification test
be performed to ensure that all file control information is written correctly
in the Catalog Index. This test helps to protect against disk write errors,
but also doubles the time required for the DATASAVE DC OPEN operation.

112

DATASAVE DC OPEN

The '#n' parameter is the file number which identifies the newly-opened
file in the Device Table. The disk on which the file is stored, along with
the file's starting, ending, and current sector addresses, are entered in the
Device Table 1in System 2200 memory. The information in the Device Table is
identified only by the file number assigned to the file 1in the DATASAVE DC
OPEN statement. A file number must be included in the DATASAVE DC OPEN
statement if more than one file is to be open at one time. If no file number
is specified, or if #n = #0, the system automatically assigns the newly opened
file to the default slot, #0, in the Device Table. Subsequent reference to a
file number in a disk catalog statement or command automatically provides
access to the current sector address of the associated file. (For a detailed
discussion of the Device Table and the use of file numbers, see Chapter 6.)

The 'old file name' parameter specifies the name of a previously
scratched cataloged file (either program or data) which is to be renamed and
reused. If the 'old file name' parameter is used in place of the 'expression'
parameter, the new file is given the space previously occupied by the
scratched file.

If the 'expression' parameter is used instead of 'old file name', the
new file 1is appended at the current end of the Catalog Area, and given a
total number of sectors equal to the truncated value of the 'expression'.

NOTE:

The last sector of each cataloged data file 1is reserved
for systems information. Therefore, the number of sectors
available for data storage is always at least one 1less
than the number of sectors reserved for the file.

The 'new file name' parameter is the name of the new data file being
opened. If ‘'new file name' 1is being stored 1in space previously occupied
by a scratched cataloged file ('old file name'), then 'new file name' can
be identical to 'old file name'. Otherwise, 'new file name' must be
unique.

The TEMP parameter is used to specify a temporary work file. Temporary
files are not cataloged and cannot be 1located in the Catalog Area. If
temporary files are to be used, sufficient space must be 1left outside the
Catalog Area to accommodate them (see SCRATCH DISK).

The 'expression 1' and 'expression 2' parameters identify the starting
and ending sectors of the area reserved for a temporary file. An error
results if the value of 'expression 1' is less than or equal to the 1last
(highest) sector of the Catalog Area.

Examples:

100 DATASAVE DC OPEN R 100, "DATFIL 1"

100 DATASAVE DC OPEN R #1, A*2, "I/0 DATA"

100 DATASAVE DC OPEN F #2, "DATFIL 1", "DATFIL 2"
100 DATASAVE DC OPEN F TEMP 1000, 2000

100 DATASAVE DC OPEN T #4, 200, A$

113

DBACKSPACE

General Form:

DBACKSPACE [#n,] { BEG
expression [S]
where: #n = A file number to which the data file is currently assigned (‘n’ is

an integer or numeric variable whose value is from 0 to 6).
BEG = Backspace to beginning of file.

expression = Truncated value equals the number of logical records or sectors
to be backspaced.

S = Backspace absolute number of sectors.

Purpose:

The DBACKSPACE statement is used to backspace over Tlogical records or
sectors within a cataloged disk file. If 'expression' is used alone, the
system backspaces over a number of logical records equal to the truncated
value of the 'expression', and the Current Sector Address of the file in the
Device Table is updated to the starting sector of the new logical record. For
example, if 'expression' = 1, the Current Sector Address is set equal to the
starting address of the previous 1logical record. If the BEG parameter is
used, the Current Sector Address is set equal to the Starting Sector Address
gf] ghe file (that is, the starting address of the first logical record in the

ile).

If the 'S' parameter is used, the truncated value of the expression
equals the total number of sectors to backspace. The Current Sector Address
of the file in the Device Table is decremented by the number of sectors
specified. If the amount specified is too large, the Current Sector Address
is set to the Starting Sector Address of the file. The 'S' parameter is
particularly useful in files where all the logical records ae of the same
length (i.e., have the same number of sectors per logical record).
Backspacing with the 'S' parameter is much faster than backspacing over
logical records in a file, since the system merely decrements the Current
Sector Address in the Device Table by the specified number of sectors, and no
disk accesses are required. However, the user must be certain that he knows
exactly how many sectors are in each logical record.

Examples:

100 DBACKSPACE BEG
100 DBACKSPACE 2*X
100 DBACKSPACE #2, 5S
100 DBACKSPACE #1, BEG
100 DBACKSPACE #A, 10

114

DSKIP

A
General Form:
DSKIP [#n] { END
expression [S]

where: #n = A file number to which the data file is currently assigned (‘n‘ is an

integer or numeric variable whose value is from O to 6).

END = Skip to current end-of-file.
expression = Truncated value equals the number of logical records or sectors to
be skipped.
S = Absolute number of sectors are to be skipped.
Purpose:

The DSKIP statement is used to skip over logical records or sectors in a
cataloged disk file. If 'expression' is used alone, the system skips over a
number of 1logical records equal to the truncated value of 'expression', and
the Current Sector Address for the file is updated to the starting address of
the new logical record. If the 'END' parameter is used, the system skips to
the end of the file; i.e., the current sector address for the file is updated
to the address of the end-of-file trailer record. Once a DSKIP #n, END
statement has been executed, data can be added to the end of the file using
DATASAVE DC statements. Note that the DSKIP END statement cannot be used
unless a trailer record has previously been written in the file with a
DATASAVE DC END statement. DSKIP END results in an Error 82 (No End of File)
if no trailer record can be located in the file.

If the 'S' parameter is used, the truncated value of the expression
equals the total number of sectors to be skipped. The Current Sector Address
of the file is incremented by the number of sectors specified. If the amount
specified is too large, the Current Sector Address is set to the Ending Sector
Address of the file. The 'S' parameter is particularly useful in files where
all logical records are of the same length (i.e., have the same number of
sectors per 1logical record). Skipping with the 'S' parameter is much faster
than skipping logical records in a file, since the system merely increments
the current address by the specified number of sectors, and no disk accesses
are necessary. However, the user must be sure that he knows exactly how many
sectors are in each logical record.

Examples:

100 DSKIP 4

100 DSKIP #2, END
100 DSKIP END

100 DSKIP #3, 4*X
100 DSKIP #A, 20S

115

LIMITS

General Form: F
LIMITS R [#n,] [name,] variable 1, variable 2, variable 3
T
where: F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

= Either ‘F’ platter or ‘R’ platter, depending on device type specified
in the device address.

#n = A file number to which the disk address is currently assigned ('n’ is
an integer or numeric variable whose value is from O to 6).

name = The name of the cataloged data or program file whose limits are to
be retrieved. The name is from 1 to 8 characters and is expressed as
an alphanumeric variable or literal string in quotes. If ‘name’ is not
specified, limit information on a currently open file (in a file slot)
is to be retrieved.

variable 1 = A numeric variable designated to receive the starting sector address
of the file.

variable 2 = A numeric variable designated to receive the ending sector address
of the file.

variable 3 = A numeric variable designated to receive the number of sectors used

by the file, or current sector address of the file.

Purpose:

The LIMITS statement obtains the Beginning and Ending Sector Address and
Current Sector Address or number of sectors used for a cataloged file.

If 'name’ is specified in the statement, information is taken from the
Catalog Index entry for the named file. In this case, variable 3 is set equal
to the total number of sectors used by the file.

If 'name' is not specified, information is retrieved from the Device
Table entry for the currently open file associated with either the specified
file number (if #n is specified), or the default file number (if #n is not
specified). In this case, variable 3 1is set equal to the Current Sector
Address of the file.

LIMITS can be used within a program to find out how much remaining space
is left in a file or to get sector address limits of a file.

Limits of a Cataloged File ('name' specified)

If a file name is specified, the LIMITS statement finds the named
program or data file on the specified disk and sets variable 1 equal to the
Starting Sector Address of the file, variable 2 equal to the Ending Sector
Address of the file, and variable 3 equal to the number of sectors currently
used by the file. The number of sectors currently being used by the file is
accurate only if an end-of-file record has been written in the file. An
end-of-file record is written in a data file with a DATASAVE DC END statement.

116

LIMITS

Therefore, in order to be able to tell how many sectors are used in a data
file, the file must be ended with an end-of-file record.

Note that this form of the LIMITS statement alters the file parameters
in a slot in the Device Table. If a file number #1 - #6 is included in the
LIMITS statement, the parameters in the associated slot are altered. If no
file number is wused, or if n=0, the parameters in the default slot are
altered. The second form of LIMITS, discussed below, does not alter the
Device Table.

Examples:
100 LIMITS F "PAYROLL", A,B,C
100 LIMITS T A$, S,E,A
100 LIMITS T #A, "DATFIL 1", X,Y,Z(3)
100 LIMITS F #1, "SAM", A,B,C

Limits of a Currently Open File ('name' Not Specified)

If a file name 1is not specified, the LIMITS statement gives the
Starting, Ending and Current Sector Addresses of the file currently open at #n
or in the default slot. Variable 1 = Starting, variable 2 = Ending, variable
3 = Current. The 'T' parameter must be specified when seeking the LIMITS of a
currently open file.

Examples:
100 LIMITS T #A(1), A1,A2,A3

100 LIMITS T #5, A,B,C
100 LIMITS T X,Y,Z(2)

117

LIST DC

General Form:

F
LIST DC {R} #n
T /XXX

where: DC = A parameter specifying Disk Catalog Mode.
= Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.
= ‘F’ platter or ‘R’ platter, depending on device type specified.

#n = A file number to which the disk address is currently assigned
(‘n’ is an integer or numeric variable from 0 to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system default
disk address is 310.

Purpose:

The purpose of the LIST DC statement 1is to display or print out a
listing of the information contained in the Catalog Index. When the LIST DC
statement is executed, the following information is displayed on the currently
selected LIST device:

a. The number of sectors in the Catalog Index.
b. The address of the last sector reserved for the Catalog Area.
c. The address of the last used sector in tiwe Catalog Area.

For each cataloged file, the LIST DC statement outputs the following data:

The file name.

The file status (S if scratched).

The file type (program (P) or data (D)).

The Starting Sector Address.

The Ending Sector Address.

The number of sectors currently used in the file. For a data file,
this value 1is originally set to one, and is updated only when an
end-of-file record is written in the file.

-0 QO oo

Depressing the HALT/STEP key terminates printout of the catalog.
Examples:

LIST DC F
LIST DC F #2
LIST DC R
LIST DC T #A
LIST DC F/320

118

LOAD DC

(COMMAND ONLY, NOT PROGRAMMABLE)

R — N

General Form:

F #
LOAD DC R [n,] name
T /xxx,

where: DC = A parameter specifying Disk Catalog Mode.
= Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

= 'F’ platter or ‘R’ platter, depending on device type specified in the
device address.

#n = A file number to which the disk address is currently assigned ('n’ is
an integer of numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

name = The name of the cataloged program to be loaded; the name must be
from 1 to 8 characters in length, specified either as an alphanumeric
variable or literal string in quotes.

Purpose:

The LOAD DC command is used to load BASIC programs or program segments
from the disk. This command causes the system to locate the named program in
the catalog, and append it to the program text currently in memory. Programs
can be Toaded into memory from any disk platter.

LOAD DC can be used to add to program text currently in memory or, if
executed following a CLEAR command, to load a new program. An error results
if the requested file is not a program file, or if it is not present in the
catalog.

Examples:

LOAD DC F "PROG 1"

LOAD DC R #2, "TEST1/0"
LOAD DC R /320, "OUTPUTT"
LOAD DC T A$

LOAD DC T #A1, B$

119

LOAD DC (Statement)

General Form:

F
LOAD DC {R} [7”’] name [line number 1] [, line number 2]
T XXX,

where: DC = A parameter specifying Disk Catalog Mode.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on device type specified in the
device address.

#n = A file number to which the disk address is currently assigned
{‘n’ is an integer or numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

name = The name of the cataloged program file to be loaded into memory,
expressed either as an alphanumeric variable or a literal string in
quotes. The name can be from 1 to 8 characters in length.

line number 1 = The number of the first program line to be deleted from the pro-
gram currently in memory prior to loading the new program. After
loading, execution continues automatically at this line number.
An error results if there is no line with this number in the newly
loaded program.

line number 2 = The number of the last program line to be deleted from the pro-
gram currently in memory before the new program is loaded.

Purpose:

The LOAD DC statement loads a BASIC program or program segment into
memory from the disk, and automatically executes it. LOAD DC is a BASIC
statement which in effect produces an automatic combination of the following
BASIC statements and commands:

STOP (stop current program execution)

CLEAR P (clear program text from memory, beginning at 'line number
1' (if specified) and ending at 'line number 2' (if
specified); if no 1line numbers are specified, clear all
currently stored program text from memory)

CLEAR N (clear all non-common variables from memory)
LOAD DC (Toad new program or program segment from disk)
RUN (run new program, beginning at ‘'line number 1', if

specified, or at the lowest program line in memory, if no
line numbers are specified)

120

LOAD DC (Statement)

If only 'line number 1' is specified, the remainder of the currently
stored program is deleted, starting with that 1ine number, prior to loading
the new program from disk, and execution continues automatically with 'line
number 1' of the newly loaded program. If both line numbers are specified,
all program lines in memory between and including these 1lines are cleared
prior to loading the new program. If no line numbers are specified, all
currently stored program text is cleared, and the newly Tloaded program is
executed from the lowest line number. In all cases, all non-common variables
are cleared prior to loading the new program.

The LOAD DC statement permits segmented programs to be run automatically
without normal user intervention. Common variables are passed between program
segments. If LOAD DC is included on a multistatement 1ine, it must be the
last executable statement on the line.

In Immediate Mode, LOAD DC is interpreted as a command (see LOAD DC
command).

Programs can be loaded from any disk platter by including the proper
parameter in the LOAD DC statement. If 'T' is used as a parameter, the
program is loaded from the disk platter designated by the device type in the
disk device address (device type 3 designates the 'F' platter; device type B
designates the 'R' platter).

Examples:

100 LOAD DC R "PROG 1"

100 LOAD DC F #2, "I/OMSTR"

100 LOAD DC F/320, "I/OSUB1" 250, 299
100 LOAD DC R "I/OCNTRL" 500

100 LOAD DC T A$ 100

100 LOAD DC T #X, B$

121

MOVE

General Form:

#n, FR
MOVE [/xxx] {RF}

where: #n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from O to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system disk default address is 310.

FR = Move and compress the catalog area from the ‘F’ platter to the
‘R’ platter.
RF = Move and compress the catalog from the ‘R’ platter to the ‘F’ platter.

Purpose:

The purpose of the MOVE statement is to copy the entire catalog from one
disk platter to the other, deleting all scratched files from the Catalog Area,
and removing the scratched file names from the Catalog Index. After the
scratched files are removed, the still-active files are moved up to fill in
the vacated sectors in the Catalog Area, and the Starting, Ending, and Current
Sector Addresses of all relocated files are automatically altered to reflect
the files' new positions in the Catalog. In effect, the MOVE command copies
the Catalog Area and Catalog Index, squeezing out all deleted files.
Temporary files are not copied.

If the 'FR' parameter is used, the contents of the 'F' platter are
compressed and copied to the 'R' platter. If the 'RF' parameter is used, the
process takes place from the 'R' platter to the 'F' platter.

Following a MOVE, the user can execute a VERIFY statement to insure that
the entire catalog was copied correctly.

When MOVE is executed as either a command or program statement, 1024
bytes of memory must be available for buffering (not occupied by a BASIC
program or variables); otherwise, an error results and the MOVE 1is not
performed. The Tlarge buffer minimizes the time required for the MOVE
operation.

NOTE TO OWNERS OF THE
MODELS 2270-1 and 2270-3:

On the Model 2270-3, it is not possible to MOVE the
catalog from Platter #3 to Platter #1 or #2, or vice
versa. In order to move the catalog to or from Platter
#3, the platter must be physically removed from drive #3
and inserted in drive #1 or drive #2. On the Model
2270-1, MOVE 1is illegal.

122

MOVE

Examples:

10 MOVE FR

10 MOVE /320, RF
10 MOVE #2, FR
10 MOVE #C, RF

123

MOVE END

General Form:

F
MOVE END {R} [7"] = expression
T XXX

Fixed platter, Drive #1, Drive #3.

-
il

where:

Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on the device type specified in
the device address.

/xxx = The device address of the disk.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

Purpose:

The MOVE END statement is used to increase or decrease the size of the
Catalog Area on a disk platter. The upper limit of the Catalog Area is
jnitially defined by the END parameter in the SCRATCH DISK statement (see
SCRATCH DISK). Once the Timit of this area has been set, it can be altered
using the MOVE END statement. The truncated value of the ‘'expression'
specifies the sector address of the new end of the Catalog Area. An error
results if a previously cataloged file resides at this address, or if the
address is higher than the highest legal address on the platter. Note that
MOVE END does not alter the size of the Catalog Index.

Examples:
MOVE END F = 4799
MOVE END R = .5*L
MOVE END T = X+Y

MOVE END R/320 = 2399

124

SAVE DC

——
{(COMMAND ONLY, NOT PROGRAMMABLE)

General Form:

F .
SAVE DC { R } [$] [(expression)]{ #n,] [P] new file name [line number 1] [, line number 2)

T old file name J|] /xxx

where: DC = A parameter specifying Disk Catalog Mode.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read after write.

expression = Truncated value equals the number of sectors to reserve in addition
to the number required to store the program.

old file name = The name of a currently scratched program or data file.

#n = A file number to which the disk address is currently assigned (‘n’
is a digit or numeric variable whose value is from 0 to 6).

The device address of the disk.

If neither #n nor /xxx is used, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

P = Set the protection bit on the file to be saved.

/xXxx

new file name The name of the program to be saved. The name must be from 1
to 8 characters in length, and may be expressed as an alphanumeric

variable or as a literal string in quotes.

line number 1 The first line of program text to be saved.

line number 2 The last line of program text to be saved.

Purpose:

The SAVE DC command causes BASIC programs, or portions of programs, to
be recorded on the designated disk platter. The file name, file type (program
file), starting sector address, and ending sector address are entered in the
Catalog Index, and the program is automatically stored, starting in a location
getermined by the system on the basis of the current entries 1in the Catalog

rea.

The '$' parameter specifies that a 'read-after-write' verification test
be performed to ensure that all program text is written correctly to the disk.
The read-after-write check effectively doubles the time required for the SAVE
DC operation, however.

Inclusion of the 'expression' parameter instructs the system to reserve
a number of sectors 1in addition to the number actually needed to store the
program at the end of the program file. These additional sectors can be used
for future expansion of the program. The truncated value of 'expression’
equals the number of extra sectors to be reserved. A new program also can be

125

SAVE DC

stored over a scratched program or data file on the disk, if the 'old
file name' parameter is used. The 'old file name' parameter specifies the
name of the scratched file, and the 'new file name' parameter indicates the

name of the new program which is to be stored in its place. If the
scratched file identified by 'old file name' does not occupy adequate space to
hold the new program, an error results. When replacing an old program
with a new one on disk, it is possible for 'old file name'and 'new file name'
to be identical. Otherwise, 'new file name' must be unique.

If neither the 'old file name' nor the 'expression' parameter is
included in the SAVE DC command, the system uses only the exact number of
sectors required for the program being stored, and appends the new program
file at the current end of the Catalog Area.

The 'new file name' parameter, which specifies the name of the program
being saved, can be from one to eight characters in length, expressed as a
literal string in quotes (i.e., "PROG 1"), or as the value of an alphanumeric
variable (e.g., if A$ = "PROG 2", then A$ can be included as the ‘'new file
name' parameter and the file is automatically named PROG 2).

The 'P' parameter indicates that the program is protected, and cannot be
listed or resaved, although it can be loaded and run.

NOTE:

In order to save or list any program after a protected
program has been loaded, it is necessary to clear all of
memory either by executing a CLEAR command with no
parameters, or by MASTER INITIALIZING the system
(switching the main power switch on the Power Supply Unit
OFF and then ON).

'Line Number 1' and 'line number 2' specify the first and last lines,
respectively, of the program in memory which is to be saved. Both of these
parameters are optional; if only 'line number 1' is included in the SAVE DC
command, all program Tines in memory beginning with that 1ine are saved on

disk. If neither 1ine number is specified, all program text in memory is
saved.

Examples:

SAVE DC F "CONVERT"

SAVE DC R "OUTPUT" 300, 500

SAVE DC T $ (100) #2, "OUTPUT 2"
SAVE DC F (A$) /320, B$

SAVE DC T #A, "COORD"

SAVE DC F ("OLD") "NEW"

SAVE DC FP "PROG 1"

126

SCRATCH

General Form:

F
SCRATCH < R f”' name [,name] ..
T XXX,

Fixed platter, Drive #1, Drive #3.
= Removable platter, Drive #2.

-n
Il

where:

T = ‘F’ platter or ‘R’ platter, depending on device type specified in the
device address.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from O to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

name = The names of one or more cataloged files (program or data) to be
scratched from the catalog. Each name must be from 1to 8
characters long, and may be expressed as an alphanumeric variable
or as a literal string enclosed in quotes.

Purpose:

The SCRATCH statement is used to set the status of the named disk
file(s) to a scratched condition. The SCRATCH statement does not remove the
files from the catalog; a subsequent listing of the catalog shows the normal
information for both scratched and non-scratched files, as well a¢ which files
have been scratched. The program text or data in the scratched files is not
altered or destroyed by the SCRATCH statement. Once files have been
scratched, they cannot be accessed by DATALOAD DC OPEN or LOAD DC statements.
They can, however, be renamed by DATASAVE DC OPEN statements or SAVE DC
commands, and the sectors utilized by scratched f11es can be reused to save
new programs or data files.

The SCRATCH statement is generally used prior to a MOVE statement. When
a MOVE statement is executed, information concerning all scratched files is
deleted from the Catalog Index, and the corresponding program text or data is
deleted from the Catalog Area (see MOVE).

NOTE:

Until a MOVE is executed, all scratched file names remain
in the Catalog Index, even if the space occupied by the
files in the Catalog Area has been renamed and reused, In
the latter case, the scratched file name no longer appears
in a listing of the Catalog Index, but it continues to
occupy space 1in the Index. A scratched file name is
removed from the Index only when it is renamed with the
same name, or when a MOVE is executed.

127

SCRATCH

Examples:

SCRATCH F "HEADER"
SCRATCH R #2, "FLD4/15", "FLD10/7"
SCRATCH R/320, "COLHDR"

10 SCRATCH F A$, B$, C$

10 SCRATCH F #2, "TEMP 1", A$

10 SCRATCH F #A2, "SORT", "MERGER"

128

SCRATCH DISK

General Form:

F
SCRATCH DISK {R} [q/f#n] [LS = expression 1,] END = expression 2
T XXX,

where: F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.
T = Either 'F’ platter or ‘R’ platter, depending upon the device type

specified in the device address.

#n = A file number to which the disk address is currently assigned ('n’
is an integer or numeric variable whose value is from 0 to 6).

/xxx = The device address of the disk.

If neither #n nor /xxx is specified, or if n = 0, the default disk address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

LS = A parameter specifying the number of sectors to be set aside for
the Catalog Index.

expression 1 = An integer or expression whose truncated value is from 1 to 255.
If the ‘LS’ parameter is not included, the size of the Catalog Index
is set automatically at 24 sectors.
END = A parameter specifying the last (highest) sector address in the
Catalog Area.
expression 2 = An expression whose truncated value must be less than or equal
to the last (highest) sector address on the disk.
Purpose:

The SCRATCH DISK statement is used to reserve space for the Catalog
Index and Catalog Area on a disk platter (each disk ptatter must be
initialized separately) prior to saving program files or data files on the
disk. This space must be reserved prior to the use of any other catalog
statement; otherwise, an error is indicated.

When the SCRATCH DISK statement is executed, the system reserves a
number of sectors, starting with sector number 0 on the specified platter, for
a disk catalog. The 'LS' parameter defines the size of the Catalog Index, and
the truncated value of 'expression 1' specifies the number of sectors to be
reserved. A maximum of 255 sectors (sectors 0-254) can be reserved for the
Index. If the 'LS' parameter is not included in the SCRATCH DISK statement,
24 sectors (sectors 0-23) are reserved automatically for the Index. The entry
for each cataloged file in the Catalog Index consists of the file's name and
associated sector address parameters; each sector of the Index can hold 16
file entries, with the exception of sector 0, which holds 15 entries (a small
portion of sector number 0 contains systems information used to maintain the
catalog). When the catalog is initially established, the remainder of sector
number 0 and all other sectors reserved for the Catalog Index are filled with
zeroes.

129

SCRATCH DISK

The END parameter defines the 1imit of the Catalog Area on disk. The
truncated value of 'expression 2' specifies the address of the last sector to
be used for storing cataloged files. The END parameter is particularly useful
when temporary work files are to be established, since temporary files must be
established outside the Catalog Area. An error will result if the user
attempts to establish a temporary file within the Catalog Area.

The end of the Catalog Area can be altered with the MOVE END statement
(see MOVE END).

NOTE:

Although, in general, the Catalog Area can be expanded or

retracted when necessary with the MOVE END statement, the

size of the Catalog Index cannot be altered once specified

without reorganizing the entire catalog. Take special

care, therefore, to provide ample space for future

expansion when specifying the size of the Catalog Index in
- the 'LS' parameter.

Examples:

SCRATCH DISK R END = 9791

SCRATCH DISK F LS = 4, END = 1000
100 SCRATCH DISK F/320, END = X*2
100 SCRATCH DISK T #X, LS = L, END = E

130

VERIFY

General Form:

F
VERIFY R 7"' (expression 1, expression 2)
T XXX,
where: F = Fixed platter, Drive #1, Drive #3.

Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on the device type specified
in the device address.
#n = A file number which the disk address is currently assigned ('n’
is an integer or numeric variable whose value is from O to 6).
/xxx = Device address of disk.

If neither #n nor /xxx is specified, or if n = 0, the default address
(stored opposite #0 in the Device Table) is used. The system
default disk address is 310.

expression 1 = An expression whose truncated value equals the address of the
first sector to be verified.

expression 2 = An expression whose truncated value equals the address of the

last sector to be verified.

Purpose:

The VERIFY statement reads all sectors within the specified range from
the designated disk platter, and performs cyclic and longitudinal redundancy
checks to ensure that information has been written correctly to those sectors.
The truncated value of 'expression 1' specifies the address of the first
sector to be verified, and the truncated value of 'expression 2' specifies the
address of the 1last sector to be verified. If a cataloged platter is to be
verified, 'expression 1' should be zero (the first sector address on the
platter), while ‘expression 2' should be set equal to the last sector in the
Catalog Area. The ending sector address of the Catalog Area can be obtained
by listing the Catalog Index (see LIST DC).

If one or more errors are detected, a 1ist of the erroneous sectors is
written on the currently selected Console Output device. The HALT/STEP key
can be used to terminate the printout of erroneous sectors.

NOTE:

VERIFY can be used in both Automatic File Cataloging and
Absolute Sector Addressing modes.

Examples:

10 VERIFY F #2, (500,500+L)
10 VERIFY T #A(1), (100,200)
10 VERIFY R (0,1023)

10 VERIFY F/320, (0,2000)

131

VERIFY

ERROR OUTPUT:
ERROR IN SECTOR 1097
ERROR IN SECTOR 8012

132

Chapter 9
Absolute Sector Addressing

9.1 INTRODUCTION

Absolute Sector Addressing Mode comprises nine BASIC statements and
commands which enable the programmer to read or write information in specific
sectors on the disk. No catalog or Catalog Index can be established or
maintained in Absolute Sector Addressing Mode (except by user-supplied
software), nor is it possible to name programs or data files. Files are
identified only by reference to their starting sector addresses. Similarly,
individual records must be saved into or loaded from a file by specifying a
starting sector address. All file addressing information must be maintained
by the programmer; such information is not maintained automatically by the
system. Because the disk statements in Absolute Sector Addressing Mode
provide direct access to individual sectors, they are referred to as "direct
addressing" statements.

The direct addressing statements provide the programmer with a means of
writing customized disk operating systems and special file access procedures
such as binary searches, sorting routines, etc. which cannot be done
efficiently - and, in some cases, which cannot be done at all - with catalog
procedures alone. Two classes of statements are available in Absolute Sector
Addressing Mode: the DA statements (where "DA" 1is a mnemonic for ‘“direct
address") and the BA statements (where "BA" 1is a mnemonic for "block
address"). Both permit direct access to specific sectors on the disk.

The DA statements can be used to write or read programs o data records
beginning at a specified sector on the disk. Multi-sector programs and data
records are automatically read or written, just as they are with DC
statements. All records saved with a DA statement or command are
automatically formatted to contain the standard System 2200 control
information (see Chapter 7, Section 7.6), and records loaded with a DA
statement or command must contain this format information. Records created by
DA statements or commands are, therefore, identical in format to records
created by DC (catalog) statements or commands, and records saved in one mode
may be retrieved in the other.

133

Absolute Sector Addressing

The BA statements comprise a special class of statements which read and
write exactly one sector (256 bytes) of unformatted data. Records created
with a DATASAVE DC or DATASAVE DA statement are automatically formatted by the
system to contain certain control information. (Refer to Chapter 7, Section
7.6, for a discussion of the control information automatically included in
each sector of a logical record.) When a data record is read from the disk
with a DATALOAD DC or DATALOAD DA statement, the system expects to find the
control information; a record which does not contain the expected control
information cannot be read with a DC or DA statement. When a record is
created with a DATASAVE BA statement, however, no control information is
written by the system. In this special case, the programmer is free to write
his own control information in each record, and to format his records in a way
best suited for his application. Records with a non-standard format can be
read with a DATALOAD BA statement; they cannot be read with DC or DA
statements. DATALOAD BA can also be used to read sectors (program or data)
written originally with a DC or DA statement.

Although no catalog or Catalog Index is established or maintained in
Absolute Sector Addressing Mode, the Device Table is used as an intermediate
storage location for certain sector address parameters used and returned by
each direct addressing statement.

The information stored in the Device Table consists of the following
items:

1. The starting sector address specified in the direct addressing
statement. This value is stored 1in the Starting Sector Address
location in a Device Table slot.

2. The highest possible sector address in the system (32767). This
value 1is stored 1in the Ending Sector Address location in a Device
Table slot.

3. The next sequential sector address (returned to a designated return
variable 1in the direct addressing statement following statement
execution). This value is stored 1in the Current Sector Address
location in a Device Table slot.

If a file number (#1-#6) is included in the direct addressing statement,
the above values are recorded in the associated slot in the Device Table;
otherwise, they are stored in the default slot. Suppose, for example, a
program occupying 10 sectors is saved with the command SAVE DA F (101, D).
Following execution of this command, the default slot in the Device Table
contains the following values:

START = 101
END = 32767
CURRENT = 111

Although this information is not much use to the programmer, it is
important to realize that the Device Table is used in this way by direct
addressing statements. The programmer must take precautions to avoid a
conflict between catalog statements and direct addressing statements in their
use of Device Table slots, since the parameters of a currently open cataloged

134

Absolute Sector Addressing

file will be clobbered if the file number associated with those parameters is
used in a direct addressing statement.

In addition to reading and writing information on the disk, Absolute
Sector Addressing Mode also provides the capability to perform
platter-to-platter copy operations and verify the transferred data. The
Absolute Sector Addressing statements and commands are:

SAVE DA

LOAD DA (command) .
LOAD DA (statement)

DATASAVE DA

DATALOAD DA

DATASAVE BA

DATALOAD BA

COPY

VERIFY

9.2 SPECIFYING SECTOR ADDRESSES

When a data record or program is saved or Tloaded with a direct
addressing statement or command, the starting sector address must be specified
by the programmer. The address may be supplied in the form of an expression,
or as the value of an alphanumeric variable. If the address is supplied as
the value of an alpha variable, the binary value of the first two bytes of
that variable is interpreted as the sector address. The value of the
expression or alpha variable must, of course, be less than or equal to the
last (highest) sector address on the disk platter. After the statement is
processed, the system automatically returns the address of the next available
sector. A second alpha or numeric variable must be included in the statement
to receive this address.

SAVE DA F (1%P, ﬁ)
Specifies the After execution of
address of the the SAVE DA command,
first sector on this variable contains
the 'F' platter the address of the next
to be used to available sector on the
store the 'F' platter.

saved program.

In order to economize on the use of memory and disk space, and to
facilitate address calculations 1in binary, the beginning sector address and
the next available sector address may be expressed as two-byte binary values
(i.e., as the first two bytes of alphanumeric variables). A sector address
expressed as a two-character binary number occupies only two bytes of memory
or disk storage, while the same address expressed as a decimal value requires
eight bytes of memory and nine bytes of disk storage. The savings in storage
space gained by expressing the sector address in binary can become appreciable
when, for example, key files are established to facilitate random access
operations. Typically, a key file contains a list of keys along with the
sector addresses of records identified by those keys. In a key file
containing, say, 9,000 keys and sector addresses, some 7,000 bytes of disk

135

Absolute Sector Addressing

storage (about 27 sectors) are saved by expressing the sector addresses in
binary rather than decimal. If the starting sector address is to be expressed
as a binary number, it must be specified as the value of an alphanumeric
variable (the first two bytes are used). If the next available sector address
is to be returned as a binary number, the receiving variable must be specified
as an alphanumeric variable of at least two characters in length.

9.3 STORING AND RETRIEVING PROGRAMS ON DISK
IN ABSOLUTE SECTOR ADDRESSING MODE

In Absolute Sector Addressing Mode, the programmer himself must keep
track of each program's location on the disk. The starting sector address of
the program must be directly specified by the programmer when writing or
reading a program on disk; it becomes the responsibility of the programmer,
therefore, to ensure that information already recorded on disk is not
overwritten by each new program, and that the location of each program is
saved for future reference. Because there are few cases in which the
advantage to be gained in direct addressing program operations offsets the
added complexities involved, program storage and retrieval are not commonly
done in Absolute Sector Addressing Mode.

Apart from the important fact that a direct addressing statement must
specify an absolute sector address rather than a file name, the SAVE DA and
LOAD DA instructions are not remarkably different from their cataloging
counterparts, SAVE DC and LOAD DC. Specifically, the format of a program file
written on disk with SAVE DA is almost identical to that of a cataloged file
written with SAVE DC. In both cases, the program file begins with a
one-sector header record, and ends with a trailer record. (In cataloged
program files, the header record contains the file name; in program files
created with SAVE DA, the header record contains a field of blanks in place of
a file name.) An additional sector of control information, the end-of-file
control record, is written at the end of every cataloged program file by SAVE
DC. This control record is not written in program files recorded with SAVE
DA.

The close similarity between the formats of cataloged program files and
those created with direct addressing statements makes it possible for programs
recorded 1in catalog mode (with SAVE DC) to be read in direct addressing mode
(with LOAD DA). LOAD DA, 1ike LOAD DC, begins reading a program at the header
record (the starting sector address of the program must, therefore, be known),
and terminates reading when it encounters the trailer record. In this way,
the entire program file 1is automatically read and loaded into memory. In
normal operations, there is no advantage to be gained by 1loading cataloged
programs with LOAD DA; it is generally safer and easier to use LOAD DC. The
only situation in which it could be advantageous to employ LOAD DA for
cataloged program files 1is recovery from an accident which destroys entries
for one or more program files in the Catalog Index, without harming the
programs themselves. In such a situation, the programs can be accessed only
with direct addressing.

The LOAD DC statement cannot be wused to read non-cataloged files
recorded with SAVE DA. SAVE DA does not record th: file name and sector
address parameters in the Catalog Index when a file is saved, and LOAD DC
cannot access a program without this information.

136

Absolute Sector Addressing

Saving Programs on Disk with SAVE DA

Programs are stored on disk in Absolute Sector Addressing Mode with a
SAVE DA command. The following items of information must be included in the
command:

1. The disk p]atter)on which the program is to be stored (specified as
lFl’ IRI’ Or. ITI .

2. The address of the first sector on the disk in which the program is
to be stored (specified as an expression or alphanumeric variable).

3. A numeric or alphanumeric return variable designated to receive the
address of the first free sector following execution of the SAVE DA
command.

4, Optionally, one or two 1ine numbers identifying the program 1lines
which are to be saved on disk. If one line number is specified, all
program lines beginning at that line are saved on disk. If two line
numbers are specified, all program lines between and including those
two lines are saved. If no line number is specified, all resident
program text is saved.

Example 9-1: Saving Program on Disk with SAVE DA
(No Line Numbers Specified)

SAVE DA F (1250,L)

This command (SAVE DA is not programmable) causes all program Tines
currently in memory to be saved on the 'F' disk platter, beginning
at sector 1250. As many sectors are used as are needed to store the
resident program text. Following execution of the command, the
address of the next available sector is returned to numeric variable
L as a decimal value. For example, if the program required 10
sectors on disk (sectors 1250-1259), then L = 1260 following
execution of the command.

Example 9-2: Saving a Program on Disk with SAVE DA
(Two Line Numbers Specified)

SAVE DA R (1300,N) 100, 750

SAVE DA causes lines 100 through 750 to be recorded on disk starting
at sector 1300, and uses as many sectors as it needs to store the
program. When the program is recorded, the address of the next
available sector is returned to variable N.

Retrieving Programs from Disk with LOAD DA

The LOAD DA instruction, like its catalog counterpart LOAD DC, is
hybrid having two distinct forms, the LOAD DA command and the LOAD DA
statement. As with LOAD DC, the two forms of LOAD DA have significantly
different functions, and must be discussed separately. In both forms of LOAD
DA, however, the starting sector address of the program to be loaded must be
specified. It is important to note in this context that LOAD DA always

137

Absolute Sector Addressing

expects to read a complete program, beginning with a header record, including
one or more program records, and ending with a trailer record. For this
reason, it is not possible to begin program 1loading in the middle of a
program, or at any point beyond the program header record. For example, if
the starting sector address of a program is sector #100, and the starting
address specified in a LOAD DA instruction is 101 or beyond, the program is
not loaded. In some cases, this situation causes LOAD DA to search forward on
the disk for the next sequential program header record, and to automatically
load that program; in other cases, the processor simply hangs up, and must be
reinitialized with RESET. In any case, this is not a recommended procedure.

The LOAD DA Command

The LOAD DA command causes a program to be read from disk, beginning at
a specified sector address, and appended to existing program text in memory.
Program lines in memory having the same numbers as lines in the newly 1loaded
program are cleared and replaced by the new lines. Resident program lines
with different 1ine numbers are not cleared, however, and remain in memory
following the LOAD DA operation. For this reason, resident program text
should generally be cleared with a CLEAR or CLEAR P command prior to Tloading
in the new program.

Example 9-3: Loading a Program from Disk with LOAD DA Command

CLEAR
LOAD DA F (100, D)

The LOAD DA command causes the system to load a BASIC program
from the 'F' platter beginning at sector 100 (if sector 100
does not contain a program header record, the results of
statement execution are unpredictable). When the program has
been loaded, the address of the next sequential sector
following the trailer record is returned to variable D. (For
example, if the program trailer record resides at sector #112,
D = 113 following execution.)

The LOAD DA Statement

The operation of the LOAD DA statement is analogous to that of the LOAD
DC statement. LOAD DA permits programs to be loaded from a specified sector
location on disk under program control. Prior to loading the program from
disk, LOAD DA automatically clears out all or a specified portion of the
resident program text, as well as all noncommon variables. (Common variables
are not cleared.) Once 1loaded in memory, the new program is executed
automatically.

The LOAD DA statement contains the following parameters:
1. A platter parameter ('F', 'R' or 'T').
2. The starting sector address of the program to be 1loaded, specified

as an expression or alpha variable. This address must be the
address of the program header record.

138

Absolute Sector Addressing

3. A numeric or alphanumeric return variable designated to receive the
address of the next sequential sector following the program trailer
record. (Note: This variable must be a common variable.)

4. Optionally, one or two program line numbers defining the portion of
resident program text which is to be cleared prior to loading the
new program. Inclusion of one 1line number causes all program Tlines
beginning at that 1ine to be cleared. Inclusion of a pair of line
numbers causes all program 1ines between and including the two
specified 1ines to be cleared. Omission of both 1ine numbers causes
the totality of resident program text to be cleared.

Example 9-4: Loading Programs from Disk with a LOAD DA Statement
(No Line Number Specified)

10 COM D
50 LOAD DA F (24,D)

Statement 50 causes a program to be loaded fromthe 'F' platter

beginning at sector 24. Prior to loading in the new program,
all program text 1in memory 1is cleared, along with all
non-common variables. After the new program has been loaded,

program execution begins automatically at the lowest program
line. The address of the next sequential sector following the
program trailer record 1is returned as a decimal value to
numeric variable D. For example, if the program trailer record
is located in sector #33, then D = 34 following execution of
statement 50. (Note: D must have been specified as a common

variable in a COM statement prior to execution of the LOAD DA
statement.)

Note that the return variable ('D' in the above example) must be a
common variable; otherwise, it 1is cleared along with all other noncommon
variables before the program is loaded, and an Error 87 (Common Variable
Required) is signalled.

The LOAD DA statement, 1ike LOAD DC, can be used to Tload program
overlays from disk and append them to an existing program in memory. In this
case, one or both of the optional 1line number parameters are specified to
define the portion of resident program text which must be cleared prior to
loading the program overlay. Note that when one or both 1ine numbers are
included, execution of the overlay begins automatically at the first line
number specified in the LOAD DA statement. If the new program does not

contain a 1line having the first line number specified, an ERROR 11 (Missing
Line Number) is signalled.

If the program overlays are stored in sequential areas of the disk, it
is possible to use the same variable to contain the starting sector address
and receive the address of the next available sector following statement
execution. In this way, the starting sector address is automatically updated
to the address of the next available sector every time the LOAD DA statement
is executed. Note that this technique must be modified if cataloged programs
are read, since a cataloged program has an additional system end-of-file
sector following the trailer record which is not read as part of the program
by LOAD DA, and the address of this sector will be returned by the LOAD DA

139

Absolute Sector Addressing

statement. For normal processing, it is recommended that cataloged programs
be read only with the catalog instruction LOAD DC.

Example 9-5: Loading Program Overlays from the Disk with the
LOAD DA Statement (Two Line Numbers Specified)

80 COM D
9 D =24

500 LOAD DA F (D,D) 100,500

Statement 500 causes a program to be loaded into memory from
the 'F' platter, starting at the sector whose address is stored
in D. Prior to loading the program overlay, program lines 100
through 500 are cleared from memory, along with all non-common
variables. After the program has been 1loaded, program
execution begins automatically at 1ine 100. Following
statement execution, the address of the next available sector
is returned to D (however, D must have been specified as a
common variable). When Statement 500 1is executed a second
time, the new value of D is the starting sector address of the
second program overlay (assuming that the overlays are stored
sequentially on the disk, and that they are not cataloged
files.) The second overlay is automatically loaded over the
first overlay, and run from 1line 100. The process can be
continued in this way for as long as necessary.

9.4 STORING AND RETRIEVING DATA ON DISK IN
ABSOLUTE SECTOR ADDRESSING MODE

In Absolute Sector Addressing Mode, named data files are not maintained
by the system, nor are the file parameters stored in the Catalog Index or
Device Table. However, the system does write certain sector address
information in the default slot (or in one of the other slots, #1 - #6, if a
file number is specified in the statement) in the Device Table every time a
logical record is saved or loaded with a DA statement. If the referenced file
number happens also to be associated with a currently open cataloged file, the
parameters of the cataloged file will be wiped out. To avoid this problem,
always use different file numbers for direct addressing statements and catalog
statements when the two modes are utilized concurrently.

Storing Data on the Disk

Data is stored on the disk in Absolute Sector Addressing Mode with the
DATASAVE DA statement. At least four items of information must be provided in
the statement:

1. The disk plﬁtter on which the data is to be saved (specified by 'F',
'R'5 or 'T').

2. The address of the first sector on that platter in which the data is
to be stored (specified as an expression or alphanumeric variable).

140

Absolute Sector Addressing

3. A numeric or alphanumeric variable which is to receive the address
of the next available sector following statement execution.

4. The data which is to be saved in a record on the disk.

Each DATASAVE DA statement (1ike DATASAVE DC) saves one logical record,
consisting of enough sectors on disk to store all data specified in the
argument list. Records saved on the disk with DATASAVE DA are identical in
format to those created by DATASAVE DC, and contain the standard System 2200
format information. Records initially saved with DATASAVE DA can therefore be
loaded with DATALOAD DC. Note, however, that when DATASAVE DA 1is used to
write a record in a cataloged data file, it does not update the file
parameters in the Catalog Index. In normal processing operations, the use of
direct addressing statements to alter cataloged files is not recommended.

Example 9-6: Storing Data on Disk with a DATASAVE DA Statement

100 B$ = HEX(O1EO)
150 DATASAVE DA R (B$,X$) A, B(), C()

Statement 150 causes the value of numeric variable A and arrays
B() and C() to be stored on the 'R' platter, starting at sector
480 (480 is the decimal equivalent of HEX(O1EQ), which is the
value of B$). One logical record is written containing enough
sectors to store all data specified in the argument 1ist.
Following the execution of statement 150, X$ is set equal to
the binary address of the next available sector. For example,
if A, B(), and C() require nine sectors on the disk, the value
of X$ following statement execution 1is HEX(O1E9) (decimal
equivalence, 489).

If a number of records are to be saved or loaded in sequential sectors
on the disk, it is possible to use the same variable to contain the starting
sector address and receive the address of the next available sector following
statement execution. In this way, the starting sector address is
automatically updated to the address of the next available sector following
each save or load operation.

Example 9-7: Saving a Number of Data Records in Sequential
Areas of the Disk

200 DIM B(25)

210 A1 = 50

220 FOR I =1 T0 25

230 INPUT "VALUES FOR THIS RECORD", B(I)
240 NEXT I

250 DATASAVE DA F(A1,A1) B()

250 GOTO 220

The starting sector address (A1) is initially set to 50. At
line 230, the values to be stored in the first record are
entered. The first time through the loop, line 250 saves array
B() on the 'F' platter beginning at sector 50. When the record

141

Absolute Sector Addressing

has been written, the address of the next available sector is
returned in Al. Assuming that B() required ten sectors, Al is
set equal to 60 following execution of statement 250. The
second time through the Tloop, array B() is saved on the 'F'
platter beginning at sector 60, since this is the new value of
Al. The process may be continued in this way in order to store
records in sequential areas of the disk.

After all data records have been saved in a file, the file should be
ended with an end-of-file trailer record, which can be used subsequently to
test for the end-of-file if the records are read sequentially for processing.
In Absolute Sector Addressing Mode, the trailer record is the programmer's
only way of protecting himself from reading beyond the legitimate data in a
file (unless he designs his own trailer record), since the data file has no
absolute 1imit (as it does in catalog mode). If no trailer record is written,
the program may read beyond the 1imit of legitimate data in the file and
retrieve meaningless data from the subsequent, unused sectors. An end-of-file
record 1is written in Absolute Sector Addressing Mode exactly as it is written
in Catalog Mode, by specifying the "END" parameter instead of an argument list
in a DATASAVE DA statement:

Example 9-8: Writing an End-Of-File Record in a Data File with
a DATASAVE DA END Statement

180 DIM B(25)

190 FOR I=1 TO 25

200 INPUT "VALUES FOR THIS RECORD", B(I)

210 NEXT I

220 DATASAVE DA R (A1,A1) B()

230 INPUT "IS THIS THE LAST RECORD? (Y OR N)", F$
240 IF F$ = "Y" THEN 350

250 GOTO 210

350 DATASAVE DA R (A1,A1) END

This routine illustrates a simple input Tloop in which the
operator is asked after entering each record if it is the last
record. If a response of "N" (or any response other than "Y")
is entered, the routine Tloops back to input another record.
When a response of "Y" 1is entered, however, the routine
branches to T1ine 350 and writes an end-of-file record in the
file.

When a new record is written into a file which has been ended with a
trailer record, the trailer record should be overwritten, and a new trailer
record created following all subsequent data saving operations. For example,
if the trailer record occupies sector 497 in a file, the next data record
should be saved beginning at sector 497, and a new trailer record written
following the save operation.

Retrieving Data from Disk

Data is retrieved from a data file on the disk in Absolute Sector
Addressing Mode with a DATALOAD DA statement. Four items of information must
be specified:

142

Absolite Sector Addressing

1. The disk platter on which the data is stored (specified by 'F', 'R',
or 'T').

2. The address of the first sector on that platter from which data is
to be read (specified as an expression or alphanumeric variable).

3. A numeric or alphanumeric return variable designated to receive the
address of the next sequential logical record following statement
execution.

4. An argument 1list consisting of one or more alpha or numeric
receiving variables, arrays, or array elements designated to receive
the data read from the disk.

Example 9-9: Retrieving Data from a Data File on Dick with
a DATALOAD DA Statement

300 DATALOAD DA R (481,B2) A,B,C

Statement 300 causes the system to 1load data from the 'R’
platter beginning at sector 481, and store the data in numeric
variables A, B, and C in memory. Enough data is read from the
disk to fill al® variables specified in the argument Tist
(unless the trailer record is encountered, at which point
reading stops). However, it is recommended that exactly one
logical record be read with each DATALOAD DA statement. In
order to read one 1logical record, the argument list of the
DATALOAD DA statement must correspond to the argument Tlist of
the DATASAVE DA statement which originally saved the record.
If only the first few fields in a logical record are Tloaded,
the remaining fields 1in the record are read but ignored. If
the argument list contains more receiving arguments than there
are fields 1in a logical record, values are read from the next
sequential logical record until the argument 1list is filled.
The remainder of the second record is then read and ignored.
Following statement execution, the return variable B2 is set to
the address of the next sequential logical record. Thus, if
the record occupies three sectors (481, 482, 483), B2 = 484
following statement execution.

If an end-of-file record has been written in the data file, it s
possible to test for the end-of-file condition with an IF END THEN statement.
The IF END THEN statement is useful when processing records sequentially from
a file, since it terminates reading and initiates a branch to a specified Tine
number when the end-of-file vrecord is read. The end-of-file record is not
transferred into the DATALOAD DA argument list, and the value of the return
variable in the DATALOAD DA statement is set to the address of the end-of-file
record rather than to the next sequential sector. The system is therefore

positioned to save a new record over the EOF record if additional data is to
be stored in the file.

143

Absolute Sector Addressing

Example 9-10: Testing for the End-Of-File Condition in a Non-Cataloged
Data File

400 DATALOAD DA R (B2,B2) A()
410 IF END THEN 500

490 GOTO 400
500 STOP

Statement 400 loads one logical record from the 'R' platter,
beginning at the sector whose address is stored in B2, and
stores the data in array A(). Statement 410 checks for an
end-of-file trailer record (previously written with a DATASAVE
DA END statement). If the trailer record is detected, the
program skips to statement 500 and stops. If no trailer record
is detected, program execution continues normally, with data in
A() being processed until, at statement 490, the system is
instructed to loop back and load in another record. Note that
when the trailer record is read, the receiving variable (B2) is
set to the address of the tra11er record, not the address of
the next consecutive sector.

9.5 THE 'BA' STATEMENTS

Two special statements, DATASAVE BA and DATALOAD BA, enable the
programmer to save and load records that do not contain the standard System
2200 control information (such records cannot be saved or loaded with DC or DA
statements). Since records saved or 1loaded with a BA statement are not
formatted automatically with System 2200 control information, the programmer
is free to write his own control information, and format his records in a
manner appropriate to his application. Records which are saved with a
DATASAVE BA statement must be 1loaded with a DATALOAD BA statement. The
DATALOAD DC and DATALOAD DA statements cannot be used to read a record which
was saved initially with DATASAVE BA. However, DATALOAD BA can be used to
read sectors which were written initially with DC or DA statements or
commands.

The DATASAVE BA statement writes exactly one sector (256 bytes) of
unformatted data from an alphanumeric array into a specified sector on the
disk. A single alphanumeric array must be used in the DATASAVE BA argument
list; alpha variables, as well as numeric variables and arrays, are illegal.
Multiple arguments are not permitted. It is not possible to write a
multi-sector record with a single DATASAVE BA statement. If the alpha array
in the DATASAVE BA argument 1ist contains more than 256 bytes of data, the
additional data 1is ignored. If the array contains fewer than 256 bytes, the
remainder of the sector being addressed is filled with meaningless data. It
is therefore always advisable to specify an array which contains at least 256
bytes of data in the DATASAVE BA argument Tlist. Four items of information
must be specified in the DATASAVE BA statement:

1. The disk platter on which the data is to be stored (specified by
IF', 'R',Of‘ lTl)-

144

Absolute Sector Addressing

2. The address of the sector in which the data 1is to be written
(multi-sector records are not written automatically);

3. A numeric or alphanumeric return variable designated to receive the
address of the next consecutive sector following statement
execution.

4. One alphanumeric array containing the data to be saved on the disk.
(It is recommended that the array contain 256 bytes of data.)

Example 9-11: Writing an Unformatted Sector with DATASAVE BA
200 DATASAVE BA F (L$,L$) A$()

Statement 200 causes 256 bytes of unformatted data to be
transferred from array A$() into the sector on the 'F' platter
whose address is stored in alpha variable L$. If A$() contains
more than 256 bytes of data, the additional data 1is ignored.
If A$() contains fewer than 256 bytes of data, the remainder of
the sector 1is filled with garbage. Following statement
execution, the address of the next consecutive sector is
returned to L$ (i.e., if L$ = HEX(O1EQ) prior to execution of
statement 200, then L$ = HEX(01E1) following statement
execution).

The DATALOAD BA statement loads exactly one sector (256 bytes) of data
from a specified sector on the disk into a specified alphanumeric array in
memory (numeric arrays, as well as alpha and numeric variables and array
elements, are illegal). The receiving array must be dimensioned to contain at
lTeast 256 bytes. If the array contains fewer than 256 bytes, an error is
signalled and the data is not transferred; if the array contains more than 256
bytes, the additional bytes are undisturbed. It is not possible to read
multi-sector vrecords with the DATALOAD BA statement. The DATALOAD BA
statement must 1include the same four elements specified in the DATASAVE BA
statement (j.e., disk platter to be accessed, address of sector to be loaded,
variable specified to receive address of next consecutive sector, and alpha
array specified to receive data read from disk).

Example 9-12: Reading a Sector from Disk with DATALOAD BA

240 DIM A$(16)16
250 DATALOAD BA F (20,L) A$()

Statement 250 causes all information stored in sector 20 on the 'F'
platter (256 bytes) to be loaded into alpha array A$() in memory.
A$() is dimensioned at line 240 to contain 256 bytes of data. If
A$() held fewer than 256 bytes, an error (Error 60) would be
signalled. Following execution of the statement, the address of the
next consecutive sector is returned in numeric variable L (i.e.,

following statement execution, L=21). If A$() weredimensioned
larger than 256 bytes, the additional bytes of A$() would remain
unaltered.

145

Absolute Sector Addressing

NOTE:

As with the DA statements, the BA statements utilize the
default slot in the Device Table (or one of the other
slots, #1 - #6, if a file number is specified) to store
sector address information. BA statements must,
therefore, be assigned different file numbers from DC
statements when the two modes are used concurrently.

9.6 PLATTER-TO-PLATTER COPY

Absolute Sector Addressing Mode provides the capability to copy all or
part of the contents of one disk platter onto the other with the COPY
statement. The entire contents of a disk platter, or any specified portion of
its contents, can be copied from one disk platter to the other. Unlike MOVE
(see the discussion of MOVE 1in Chapter 5), COPY transfers all information
located on the portion of the disk platter which is to be copied (including
scratched and temporary files) to the corresponding sectors on the second
platter. The beginning and ending sector addresses of the portion of the disk
platter which is to be copied must be specified. If the entire disk platter
is to be copied, the starting sector address should be 0 and the ending sector
address should be the highest sector address on the platter. If the catalog
is to be copied, the Catalog Index must be copied along with the Catalog Area.
In this case, the starting sector address must be 0, and the ending sector
address must be the 1last sector in the Catalog Area. The ending sector
address of the Catalog Area can be determined by listing the Catalog Index.
However, it is recommended that MOVE be used instead of COPY when transferring
the catalog from platter to platter (since in that case scratched files are
automatically deleted).

Example 9-13: Copying a Disk Platter
10 COPY RF (0, 2399)

Statement 10 causes the contents of sectors zero through 2399
to be transferred from the 'R' disk platter to the
corresponding sectors (0 - 2399) on the 'F' disk platter.

If it is convenient, the starting and ending sector addresses may be
expressed as the values of numeric variables or expressions.

Example 9-14: Copying a Disk Platter

5 A=10
10 COPY/320, FR (A,A*100)

Statement 10 causes sectors 10 (the value of A) through 1000
(the value of A*100) to be transferred from the 'F' disk
platter to the same sectors of the 'R' disk platter. Both
platters are located in the disk drive with address 320.

Following a COPY operation, the transferred information should be
checked to ensure that it has been transferred correctly. The VERIFY

146

Absolute Sector Addressing

statement is used to perform such a validation check. If the entire contents
of the disk platter are copied, the entire platter can be checked by executing
a VERIFY statement which specifies sector 0 as the starting address, and the
address of the last sector on the platter as the ending address. If only a
specific portion of a platter is transferred, the VERIFY statement can be used
to verify only that portion of the second platter.

Example 9-15: Verifying Data Transfer Following a COPY
Operation

10 COPY RF (0,1000)
20 VERIFY F (0,1000)

Statement 10 copies sectors zero through 1000 from the 'R’
platter to the same sectors on the 'F' platter. Statement 20
verifies the newly-copied sectors 0 - 1000 on the 'F' platter.

If the check performed by VERIFY is positive, the system returns the CRT
cursor and colon to the screen, indicating that the information has been
copied accurately. If one or more errors are discovered, the system returns
an error message indicating which sector(s) did not copy properly, e.g.,:

ERROR IN SECTOR 946.

If you encounter an error following a COPY operation, repeat the COPY.
Repeated failure could indicate a faulty disk platter. If the error persists
with another platter, call your Wang Service Representative.

VERIFY can be used to verify any portion of a disk platter, or an entire
platter, for any reason. It need not be used only in conjunction with COPY.
It may be useful, for example, to verify data on a previously recorded platter
before the platter is reused. Many programmers verify each platter at the
beginning of daily operation. The CRC and LRC checks performed by VERIFY
provide an extra measure of protection against the accidental use of invalid
data in important applications.

WARNING:

It is important that backup copies of important disk-based
data files be maintained and kept up to date. Like other
storage media, disk platters can be worn out with repeated
use, and they are, of course, subject to accidental damage
or destruction. To avoid the necessity of recreating your
data base following such a potential disaster, you should
always maintain one or more backup platters containing all
important files. Non-cataloged files can be copied to a
backup platter with the COPY statement. For cataloged
files, the MOVE statement should be wused. The Model
2270-1, which does not have a COPY capability, should be
backed up on tape cassette.

147

Absolute Sector Addressing

NOTE TO OWNERS OF THE
MODEL 2270-1 AND 2270-3:

On the Model 2270-1, the COPY statement is illegal. It is
not possible to COPY information from one Model 2270-1 to
a second disk unit.

On the Model 2270-3, it is 1illegal to attempt a COPY
operation to or from the #3 drive. If the #3 diskette is
to be copied, it must be physically removed from the #3
disk drive and inserted into drive #1 or #2.

9.7 USING ABSOLUTE SECTOR ADDRESSING STATEMENTS IN
CONJUNCTION WITH CATALOG PROCEDURES (BINARY SEARCH)

In the concluding paragraph of Chapter 7, it was pointed out that
Absolute Sector Addressing statements can be used in conjunction with catalog
procedures to develop more versatile and efficient file access techniques.
One of the data retrieval techniques most commonly used on data files is the
binary search technique. The System 2200 provides a special BASIC verb,
LIMITS, which can be used in conjunction with direct addressing statements to

perform a binary search on cataloged files. (LIMITS is discussed in Chapter
7, Section 7.7.)

A binary search is a technique for locating a particular record in a
file by searching successively smaller segments of the file until the record
is found. The procedure is somewhat as follows: the highest and 1lowest
records in the file are first checked; if neither of them is the desired
record, the middle record in the file is checked. If the middle record is not
the desired record, then the sought-after record must be located either in the
top half of the file (that is, between the highest record and the middle
record), or in the lower half of the file (that is, between the lowest record
and the middle record). The middle record in the appropriate half 1is then
checked, and the process of performing successive bifurcations continues until
the record is found (or until it is determined that no such record exists in
the file). Clearly, a binary search cannot efficiently be performed if the
file is not sorted in ascending or descending order.

The use of a binary search can be illustrated with an example from
industry. Consider a small company which maintains a customer file on disk.
In the simplest case, each record in the file might contain only three fields,

a three-digit customer I.D. number, the customer's name, and the customer's
credit rating:

CREDIT
I.D.# NAME RATING
062 JOHN Q. TRAPP Al

Figure 9-1. Typical Entry in Customer Credit File

148

Absolute Sector Addressing

The customer credit file is a cataloged file named CREDIT, 1in which each
record occupies a single sector. The file begins at Sector #100, and is
sorted in ascending order on the customer I.D. numbers.

SECTOR # I.D.# NAME CREDIT
100 007 FRANKLIN, FREDERICK A-2
101 011 GEROME, HERBERT B-1
102 012 . .
103 013
104 017
105 022
106 025
107 037
108 039
109 052 . .
110 055 FRACK, ALFRED R. A-1
111 062 . .
112 073
113 101
114 111
115 123 . .
116 128 MARSH, DAVID H. C-3

Figure 9-2. Typical Customer Credit File (Sorted in Ascending Order)

As you can see, the file contains 17 records. Suppose, now, that one of
the customers, Alfred R. Frack, applies for additional credit. Before
granting this credit, the credit manager will want to check Mr. Frack's credit
rating. One way to Tlocate Mr. Frack's record is to search sequentially
through the file until his customer I.D. (055) is found. In the sample file,
this technique involves reading and checking 11 records, or slightly more than
one half the total number of records in the file. A faster and more efficient
way to find the record is to search the file with a binary search. The
procedure is as follows:

1. Begin by checking the first (lowest) record in the file and the last
(highest) record, to see if either of them is the desired record.
In this case, neither the first record (I.D.#007) nor the last
record (I.D.#128) is the desired record.

2. Next, check the middle record in the file. To find the sector
address of this record, add the sector address of the last (highest)
record in the file (116) to the sector address of the first (lowest)
record in the file (100), and take the integer value of the average:

M = INT((H+L)/2)
M = INT((116+100)/2)
M =108

For the first search, the highest address is 116 (H=116), and the
lowest is 100 (L=100). Thus, M=108. The first sector to be
accessed is sector 108. ‘

149

Absolute Sector Addressing

3. Compare the key of this record (I.D. #039) with the desired key
(I.D. #055). Since the desired key 055 is greater than the middle
key 039, it must be located in the top half of the file (that is,
between sectors 108 and 116).

4. Using the middle sector address (108) as the new low sector address,
find the middle record in the top half of the file, midway between
sector 108 and sector 116. In this case, INT({108+116)/2)=112.

5. Retrieve sector 112 and compare its key (I.D. #073) with the desired
key (I.D. #055). Since 073 is larger than 055, the desired record
must be in the lower quarter of this half of the file (i.e., between
sector 108 and sector 112). Using sector 112 as the new high
address, find the sector midway between 108 and 112.
INT((1084112)/2)=110. Compare the key of sector 110 (I.D. #055)
with the desired key (I.D. #055). Since the keys match, sector 110
contains the desired record, and the search is finished.

1st Search

Sector
Address Key

100 007
101 011
102 012
103 013
104 017
105 022
106 025 2nd Search
107 037

middle - 108 039 108 039
109 052 109 052
110 055 110 055 3rd Search
111 062 111 062
112 073 middle » 112 073 108 039
113 101 113 101 middle 109 052
114 111 114 111 and > 110 055
115 123 115 123 desired 111 062
116 128 116 128 record 112 073

Figure 9-3. Binary Search Technique

Although this example presumed an odd number of records in the file, the
technique is the same for a file which contains an even number of records. A
more serious problem is presented by files in which each record consists of
two or more sectors. In such a case, the number of sectors 1in each record
must be taken into account when calculating the record addresses on each
search. It is impossible to conduct a binary search if the number of sectors
per record is not constant.

150

Absolute Sector Addressing

In order to conduct a binary search on a file, then, there are three
requirements:

1. The file must be sorted.
2. The number of sectors per record must be constant.

3. The limits of the file (i.e., beginning and ending sector addresses)
must be known.

For cataloged files, the beginning and ending sector addresses can be obtained
under program control with the LIMITS statement.

It may be obvious that the ending sector address of a cataloged file
should not be used as the upper limit of the file, unless the file is filled
with data. Use of the ending sector address as the upper 1imit when the file
is not full decreases the efficiency of the binary search, since one or more
searches may be wasted searching the empty sectors between the end-of-file
trailer record and the last sector of the file (or, those unused sectors may
contain meaningless data - including old program text - which would cause an
error when the DATALOAD DA statement attempts to read it). It is generally
safer and more efficient to use the address of the last data record as the
upper Tlimit of the file 1in a binary search, since all sectors between the
beginning of the file and the last data record are certain to contain valid
data. The address of the 1last data record in a file 1is computed by
subtracting 1 from the address of the end-of-file trailer record. The address
of the trailer record can be computed by first executing a LIMITS on the file
(with the file name specified), then subtracting 2 from the number of sectors
used in the file, and adding this value to the starting sector address of the
file. Thus, to determine the address of the trailer record in the file
"CREDIT", first execute a LIMITS:

20 LIMITS F "CREDIT", Al, A2, A3

Since the file name is specified rather than a file number, LIMITS accesses
the Catalog Index on the 'F' platter and retrieves the Starting and Ending
sector addresses, and Number of Sectors Used, for CREDIT. Variable Al
contains the starting sector address, variable A2 the ending sector address,
and variable A3 contains the number of sectors used. The address of the
trailer record then is computed with the following formula:

T
T

Starting + (Used -2)
Al + (A3-2)

The address of the trailer record is stored in variable 'T'. The sector
address of the 1last data record in the file may now be found merely by
subtracting one from the address stored in 'T':

H=T-1

Here the address of the last data record is stored in variable 'H'. This
address is used as the upper 1imit of the file for the first dichotomy in the
binary search. The following example program illustrates the binary search
described above on the customer credit information file, "CREDIT".

151

Absolute Sector Addressing

Example 9-16: Performing a Binary Search on a Cataloged Data File

REM **%*%*x BINARY SEARCH ROUTINE ***¥%*
DIM R$3, A$3, F$26, C$4
LIMITS F “CREDIT",A1,A2,A3

REM ***%**x COMPUTE ADDRESS OF LAST DATA RECQRD **¥*¥*
T = A1+(A3-2)
H=T-1

REM **#*%xx ENTER KEY OF DESIRED RECQRD ******
INPUT "DESIRED I.D.",R$

REM *#*x%x% READ & CHECK LOWEST RECQRD **¥***
DATA LOAD DA F (A1,S) A$,F$,C$
IF A$ = R$ THEN 260

100 REM ***%%* READ & CHECK HIGHEST RECORD ***kk*

110 DATA LOAD DA F (H,S) A$,F$,C$

120 IF A$ = R$ THEN 260

130 REM ***%%** COMPUTE MIDDLE SECTOR ADDRESS *****

140 M = INT((A1+H)/2)

150 REM ***%%* READ & CHECK MIDDLE RECORD **#iix

160 DATA LOAD DA F (M,S) A$,F$,C$

170 IF A$ = R$ THEN 260

180 REM ***%** IS DESIRED KEY HIGHER OR LOWER THAN KEY READ? **¥*x**
190 IF R$ < A$ THEN 210 -

200 Al =M
201 GOTO 230 ~
210 H=M

220 REM ****** HAVE ALL RECORDS BEEN CHECKED? ¥

230 IF H = M+1 THEN 280

240 GOTO 140

250 REM ****** RECORD FOUND - PRINT RECQRD *¥*¥¥x

260 PRINT A$,F$,C$

265 STOP

270 REM ***xx*x RECORD NOT FOUND - PRINT ERROR MESSAGE *¥¥***
280 STOP "RECORD NOT IN FILE"

Statement 20 performs a LIMITS on the cataloged file CREDIT;
the starting sector address of CREDIT is returned to Al, the
ending sector address to A2, and the number of sectors used, to
A3. Statement 30 calculates the address of the trailer record
in CREDIT by subtracting 2 from the number of sectors used
(A3), and adding this value to the starting address (A1). The
resultant address 1is stored in T. Statement 40 computes the
address of the last data record by subtracting 1 from 'T'.
Line 60 is an INPUT statement which requests the key for the
desired record. Line 80 loads in the first record of the file;
its key is checked against the specified key. If there is no
match, the highest record in the file is loaded (1ine 110), and
its key is checked (1ine 120). If neither the first nor the
last record is the desired record, the address of the middle
record is computed (line 140), and this record is read and
checked. If the middle record does not hold the desired key,
the process is repeated on the upper or lower half of the file,
depending upon whether the desired key is larger or smaller
than the middle record key (lines 190, 200). The process
continues either until the desired record is found (in which
case it is printed), or until it is determined that no such
record exists 1in the file (in which case an error message is
displayed).

152

Absolute Sector Addressing

9.8 CONCLUSION

Direct addressing statements and commands can be wused 1in conjunction
with catalog procedures to develop an efficient and versatile data management
system. One technique which might be used in such a system is the binary
search technique discussed in the preceding section. A variety of different
techniques also are available, and the interested reader is directed to the
bibliography 1in Appendix H for a 1list of texts which discuss disk file access
techniques. The direct addressing statements need not, of course, be regarded
as merely supplemental to and supportive of catalog procedures. On the
contrary, highly sophisticated and complex data management systems can be
constructed in Absolute Sector Addressing Mode exclusively. The bibliography
in Appendix H also 1lists a number of texts which discuss disk management
system design concepts and philosophies.

153

Chapter 10
Absolute Sector Addressing Statements and Commands

10.1 INTRODUCTION

This chapter contains descriptions of and General Forms for the
following Absolute Sector Addressing statements and commands, Tlisted
alphabetically for ease of reference:

COPY

DATALOAD BA
DATALOAD DA
DATASAVE BA
DATASAVE DA

LOAD DA (command)
LOAD DA (statement)
SAVE DA

10.2 STATEMENT/COMMAND DISTINCTION AND GENERAL RULES OF SYNTAX

Refer to Chapter 8, Section 8.2, for an explanation of the distinction
between System 2200 BASIC statements and commands.

Refer to Chapter 8, Section 8.3, for a list of the rules of syntax and
notation used in the General Forms.

155

COPY

General Form:
#n, RF . .
COPY /xxx,] { FR (expression 1, expression 2)
where: #n = A file number to which the disk address is currently assigned {‘n’
is an integer or numeric variable whose value is from O to 6).
/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.
RF = Copy the specified sectors from the ‘R’ disk platter to the ‘F’ disk
platter.
FR = Copy the specified sectors from the ‘F’ disk platter to the ‘R’ disk
platter.
expression 1 = An expression whose truncated value equals the address of the
first sector to be copied.
expression 2 = An expression whose truncated value equals the address of the
last sector to be copied.
Purpose:

The purpose of the COPY statement is to copy information from one disk
platter to another. The truncated value of 'expression 1' represents the
address of the first sector to be copied, and the truncated value of
'expression 2' vrepresents the address of the last sector to be copied. The
information is copied from the first platter to the same sectors on the second
platter. If the 'RF' parameter is used, the copying is from the 'R' platter
to the 'F' platter. If 'FR' is used, the copying is from the 'F' platter to
the 'R' platter. ‘

The COPY statement 1is generally used to make backup copies of
non-cataloged files. When files are copied from one disk to another using
COPY, no deletion of scratched files occurs. If COPY 1is wused to copy a
catalog, the Catalog Index must be copied along with the entire Catalog Area;
'expression 1' is set to zero in this case, while 'expression 2' is set to the
ending sector address of the Catalog Area. The ending sector address of the
Catalog Area can be obtained by executing a LIST DC statement. However, it is
recommended that MOVE be used instead of COPY to back up a catalog.

When COPY is executed as either a command or program statement, 1024
bytes of System 2200 memory must be available for buffering (that is, at least
1,024 bytes of memory must not be occupied by a BASIC program or variables);
otherwise, an error message results and the COPY is not performed. The 1large
buffer minimizes the time required for the COPY operation.

Following the COPY, a VERIFY statement can be executed to insure that
the specified information was copied correctly.

156

NOTE:

COPY can be used in both Automatic File Cataloging Mode
and Absolute Sector Addressing Mode.

Examples:

10 COPY RF (0,49)

10 COPY #2, RF (0,X+4)

10 COPY /320, FR (Y*2, Y*2+100)
10 COPY #A, FR (0,1700)

NOTE TO OWNERS OF THE
MODELS 2270-1 and 2270-3:

On the Model 2270-3, it is not possible to. COPY the
contents of Platter #3 to Platter #1 or #2, or vice versa.
In order to COPY Platter #3, the disk platter must be
physically removed from disk drive #3 and inserted into
disk drive #1 or #2. On the Model 2270-1, COPY is an
illegal statement.

157

COPY

DATALOAD BA

General Form:

F
#n,
DATALOAD BA 4R n sector address, L alphanumeric array designator
T /XXX, L$

where: BA = A parameter specifying Absolute Sector Address Mode and block
data format.

F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = 'F’platter, or ‘R’ platter, depending on device type specified in the
selected device address.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the sector address of the record to be read. The value of
the expression or alpha variable must be less than or equal to the
last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next sequential
sector after the DATALOAD BA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next sequential sector when the DATALOAD BA statement
is processed.

alphanumeric
array designator = An alphanumeric array name followed by closed parentheses,
e.g., A$().

Purpose:

The DATALOAD BA statement is used to 1oad one sector of unformatted data
from the disk into System 2200 memory. The 'BA' parameter specifies Absolute
Sector Addressing Mode and block data format, and is not normally used when
the referenced file is a cataloged file. The DATALOAD BA statement reads one
sector from the specified disk and sequentially stores the entire 256 bytes in
the designated alpha array. No check is made for control bytes normally found
in System 2200 data records. An error results if the alpha array is not large
enough to hold at least 256 bytes. ' If the array is larger than 256 bytes, the
additional bytes of the array are not affected by the DATALOAD BA operation.

After the statement is executed, the system returns the address of the

next consecutive sector, either as a decimal value if a numeric return
variable is specified ('L' parameter), or as a two-byte binary value if an

158

DATALOAD BA

alphanumeric return variable is specified ('L$' parameter). This address can
be used in a subsequent disk statement or command to provide sequential access
to data stored on the disk.

Execution of the DATALOAD BA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #1
- #6, if a file number is used in the statement).

Examples:

100 DATALOAD BA F (20,L) A
100 DATALOAD BA T #2, (BS$,
100 DATALOAD BA F /320, (C
100 DATALOAD BA T #A, (A,B

~rv O
Oy A

159

DATALOAD DA

General Form:

E i
#n, L)
DATALOAD DA _F; [/xxx,] (sector address, { L$}) argument list

where: DA A parameter specifying Absolute Sector Address Mode and

standard System 2200 data format.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter, or ‘R’ platter, depending on device type specified in
the device address.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the record to be loaded.
The value of the expression or alpha variable must be less than or
equal to the last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the DATALOAD DA statement is processed.

L$ = A two-byte string variable which is set to the binary address of the
next available sector when the DATALOAD DA statement is
processed.

alphanumeric variable
argument list = < numeric variable
alpha or numeric array designator

array designator = An array name followed by closed parenthesis, e.g., A(), B$().

Purpose:

DATALOAD DA reads one or more logical records from the disk, starting at
the absolute sector address specified. (The records must be formatted with
standard System 2200 control information.) The 'DA' parameter specifies
direct addressing mode and generally is not used when the referenced data file
is a cataloged file. However, Absolute Sector Addressing can be used with
cataloged files and may be useful for certain applications (see Section 9.8).
The data to be read must be in standard System 2200 format, dincluding the
necessary control information (i.e., the data must have been written onto the
disk by a DATASAVE DA or DATASAVE DC statement).

The DATALOAD DA statement reads a logical record from the specified disk

and assigns the values read to the variables and/or arrays in the argument
list sequentially; arrays are filled row by row. If the argument list is not

160

DATALOAD DA

filled, another logical record is read. Data in the logical record not used
by the DATALOAD DA statement is read but ignored. If the DATALOAD DA argument
list requires more data than is contained in the logical record being read,
data is automatically read from the next logical record until the argument
list is satisfied. The remainder of the next record is then read but ignored.
If an end-of-file (trailer record) is encountered while executing a DATALOAD
DA statement, no additional data is read, the next available sector is set to
the sector address of the trailer record, and the remaining variables in the
argument list remain at their current values. An IF END THEN statement will
then cause a valid program transfer.

After the DATALOAD DA statement is executed, the system returns the
address of the next sequential logical record, either as a decimal value if a
numeric return variable is specified ('L' parameter), or as a binary value if
an alphanumeric return variable is specified ('L$' parameter). This address
can be used in a subsequent disk statement or command to provide sequential
access to data stored on disk.

Data can be read from any disk platter by including the proper parameter
('F'" or 'R') in the DATALOAD DA statement. If the 'T' parameter is specified,
the platter to be accessed is determined by the device type (3 or B) in the
disk device address.

Execution of the DATALOAD DA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #1
- #6, if a file number is used in the statement).

Examples:
100 DATALOAD DA R (A$,L$) X, Y(), Z$()
100 DATALOAD DA T #3, (20,C) A$, B2$(), M2
100 DATALOAD DA F /320, (D,D) F$(), J
100 DATALOAD DA R (B$,B$) A,B,S()
100 DATALOAD DA T #A, (E,D,) X$()

161

DATASAVE BA

General Form:

F
DATASAVE BA <R [$] #n, sector address, 4 = alphanumeric array designator
T /XXX, L$

where: BA A parameter specifying Absolute Sector Address Mode and block

data format.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read-after-Write.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.

If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the sector address at which the record is to be saved. The
value of the expression or alpha variable must be less than or equal
to the value of the last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next sequential
sector after the DATASAVE BA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next sequential sector when the DATASAVE BA statement
is processed.

alphanumeric
array designator = An alphanumeric array name followed by closed parentheses,
e.g., AS().

Purpose:

The DATASAVE BA statement is used to save unformatted data on the disk.
The 'BA' parameter specifies Absolute Sector Addressing Mode and generally
should not be used when the referenced data file is meant to be cataloged.
‘BA' also specifies block data format; each DATASAVE BA statement writes one
sector with no control information. If the alpha array in the argument 1list
contains more than 256 bytes, only the first 256 bytes are written on disk.

If the array contains fewer than 256 bytes, the remainder of the sector is
filled with meaningless data.

The DATASAVE BA statement writes data from the specified alpha array

into the specified sector on disk. After the statement is executed, the
system returns the address of the next sequential sector, either as a decimal

162

DATASAVE BA

value if a numeric return variable is specified ('L' parameter), or as a
two-byte binary value if an alphanumeric return variable 1is specified ('L$'
parameter). This address can be used in a subsequent disk statement to permit
sequential storage of data on the disk.

Data can be written on any disk platter by including the proper
parameter ('F' or 'R') in the DATASAVE BA statement. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

The '$' parameter specifies that a 'read-after-write' verification check
be made on all data written to the disk. This verification check provides
added insurance that data is written accurately on the disk, but also doubles
the execution time of the DATASAVE BA statement.

Since information written with DATASAVE BA contains no control
information, it can be read back only with a DATALOAD BA statement.

Execution of the DATASAVE BA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #1
- #6, if a file number is used in the statement).

Examples:

100 DATASAVE BA
100 DATASAVE BA
100 DATASAVE BA
100 DATASAVE BA

F (L$,L$) A$()

R $ #3, (20,L) B$()
F$ /320, (2%1,L) F$()
T #2, (Q.Q) D$()

163

DATASAVE DA

General Form:

F
DATASAVE DA < R [$] }#n' (sector address, L -END)
T XXX, L$ argument list

where: DA

A parameter specifying Absolute Sector Address Mode and
standard System 2200 data format.

F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified in
the device address.

$ = Read-after-write.

#n = A file number to which the disk address is currently assigned (‘n’
is an integer or numeric variable whose value is from O to 6).

/xxx = The device address of the disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address {stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the record to be saved. The
value of the expression or alpha variable must be less than or equal
to the last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the DATASAVE DA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next available sector after the DATASAVE DA statement
is processed.

alphanumeric variable

literal string

expression '
alpha or numeric array designator

argument list =

array designator

Array name followed by closed parentheses, e.g., A(), B$().

Purpose:

The DATASAVE DA statement is used to save data on the disk in Absolute
Sector Addressing Mode. The 'DA' parameter indicates a direct addressing
operation; the statement therefore generally is not used when the referenced
data file 1is a cataloged file, since there is a risk the user may
unintentionally destroy part of the catalog information. However, direct
addressing statements can be used with cataloged files for certain
applications (see Section 9.8). The 'END' parameter 1in a DATASAVE DC
statement should never be used for records stored in a cataloged file. There
are two important considerations which must be kept in mind when writing a
record into a cataloged file with DATASAVE DA. First, the system provides no
automatic boundary checking; hence, records can be written past the end of one

164

DATASAVE DA

file and into the beginning of the next without system detection. Second, the
"number of sectors used" is not updated in the Catalog Index when a trailer
record is written with DATASAVE DA END. Therefore, DSKIP END cannot be used
to skip to the end of the file.

The 'DA' parameter specifies that the data in the argument 1list is to be
written in standard System 2200 format, including the necessary control
information. Each DATASAVE DA statement writes a logical record consisting of
one or more sectors. The DATASAVE DA statement causes the values of
variables, expressions, and array elements to be written sequentially onto the
specified disk. Arrays are written row by row.

NOTE:

Each numeric value in the 'argument 1list' requires 9 bytes
on disk; each alphanumeric variable requires the maximum
number of characters for which the variable is dimensioned
plus 1. Each 256-byte sector also requires three bytes of
control information.

If the 'END' parameter is used, a data trailer record is written for the
file. This record can be used to test for the end of a file during processing
with an IF END THEN statement.

The DATASAVE DA statement writes the data from the argument T1ist onto
the disk beginning at the specified sector address. After the statement is
executed, the system returns the address of the next available sector, either
as a decimal value if a numeric return variable is specified ('L' parameter)
or as a two-byte binary value if an alphanumeric return variable is specified
('L$' parameter). This address can be used in subsequent disk statements to
provide sequential access to data on the disk.

Data can be written on any disk platter by including the proper
parameter ('F' or 'R') in the DATASAVE DA statement. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

The '$' parameter specifies that a 'read-after-write' verification test
be made on all data written to the disk. This verification check provides
added insurance that data is written accurately on the disk, but also doubles
the execution time of the DATASAVE DA statement.

Execution of the DATASAVE DA statement alters the sector address
parameters in the Device Table default slot (or in one of the other slots, #]
- #6, if a file number is used in the statement).

Examples:

DATASAVE DA
DATASAVE DA
DATASAVE DA

F (20,B) X, Y(), z$()
R
T

DATASAVE DA F
I
I

$ /320, (C,C) F$(), A()

$ #2, (B$,B$) M$(), "J.DEAN"
(2*M+1,L) 3(), K1

(Q,Q) END

#A, (A,B) END

165

DATASAVE DA
DATASAVE DA

LOAD DA

(COMMAND ONLY, NOT PROGRAMMABLE)

General Form: F 4 ’
LOAD DA < R n, sector address, < -
T /xxx, LS

where: DA
F = Fixed platter, Drive #1, Drive #3.

A parameter specifying Absolute Sector Address Mode.

R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified
in device address.

#n = A file number to which the disk address is currently assigned {‘n’
is an integer or numeric variable whose value is from O to 6).
/xxx = Device address of disk.

If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the program to be loaded.
The value of the expression or alpha variable must be the address
of the program header record, and must be less than or equal to the

last (highest) sector address on the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the LOAD DA command is processed.

LS A two-byte alphanumeric variable which is set to the binary address
of the next available sector when the LOAD DA command is

processed.

Purpose:

The LOAD DA command is used to load BASIC programs or program segments
from the disk in Absolute Sector Addressing Mode. When the LOAD DA command is
executed, the program which begins at the specified ‘'sector address' is read
and appended to the current program in memory. (Note that 'sector address'
must be the address of a program header record.) The LOAD DA command can be
used to add program text to a program currently in memory or, if entered after
a CLEAR command, to load a new program from the disk.

After the LOAD DA command is executed, the system returns the address of
the next available sector, either as a decimal value if a numeric return
variable 1is specified ('L' parameter), or as a two-byte binary value if an
alphanumeric return variable is specified ('L$' parameter). This address can
be used in a subsequent disk statement or command to permit sequential access
to programs on the disk.

Execution of the LOAD DA command alters the sector address parameters in

the Device Table default slot (or in one of the other slots, #1 - #6, if a
file number 1is used in the command).

LOAD DA can also be used as a program statement to chain programs or
subroutines (see LOAD DA statement).

166

LOAD DA (Command)

Examples:

LOAD DA R (24,D)

LOAD DA F (A$,B$)

LOAD DA R /320, (L$,L$)
LOAD DA T #2, (A,B)
LOAD DA R (24,L$)

LOAD DA R (A$,B)

LOAD DA T #A, (C,D)

167

LOAD DA (Statement)

General Form:

F
LOAD DA {_I;_t} [ﬁ(nxx] (sector address, {::$}) [line number 1] [, line number 2]

where: DA = A parameter specifying Absolute Sector Addressing Mode.
F = Fixed platter, Drive #1, Drive #3.
R = Removable platter, Drive #2.

T = ‘F’ platter or ‘R’ platter, depending on device type specified
in the device address.

#n = A file number to which the disk address is currently assigned {‘n’
is an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default disk
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the program which is to
be loaded. The value of the expression or alpha variable must be
the address of the program header record, and must be less than
or equal to the last (highest) sector address on the disk platter.

line number 1 = The line number of the first line to be deleted from the program
currently in memory before loading the new program. After
loading, execution continues automatically starting at this line
number. An error results if there is no line with this number in
the new program.

line number 2 = The number.of the last text line to be deleted from the program
currently in memory before loading the new program.

L = A numeric variable which is set to the address of the next available
sector after the LOAD DA statement is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next available sector when the LOAD DA statement is
processed.

[Note: L or L$ must be a common variable.

Purpose:

The LOAD DA statement is used to load programs from a specified location
on the disk. (Note that the 'sector address' specified must be the address of
the program header record.) The 'DA' specifies direct addressing; therefore,
the LOAD DA statement is not generally used to load cataloged programs from
the disk. LOAD DA is a BASIC program statement which, in effect, produces an
automatic combination of the following:

STOP (stop current program execution)

168

LOAD DA (Statement)

-

CLEAR P (clear program text from memory, beginning at 'line number
1' (if specified) and ending at 'line number 2' (if
specified); if no 1line number 1is specified, clear all
program text from memory)

CLEAR N (clear all non-common variables from memory)
LOAD DA (Toad new program or program segment from disk)
RUN (run new program, beginning at ‘'line number 1' (if

specified); if no line number is specified, run new program
from lowest statement line)

The two 'line number' parameters may be used to cause the system to
clear a specified portion of resident program text prior to loading in the new
program. If both 1line numbers are specified, all program 1ines between and
including the two specified 1lines are cleared prior to Tloading the new
program, and execution of the new program begins automatically at 'line number
1'. If only 'line number 1' is specified, the remainder of the resident
program is deleted starting with that 1ine number, and execution continues
with 'line number 1' of the newly loaded program. If no line numbers are
specified, the entire resident program is deleted, and the newly Tloaded
program 1is executed from its Tlowest 1line number. In every case, all
non-common variables are cleared. LOAD DA permits segmented programs to be
run automatically without normal user intervention, with common variables
passed between program segments. If included on a multi-statement line, LOAD
DA must be the last executable statement on the line.

In Immediate Mode, LOAD DA is interpreted as a command (see LOAD DA
command).

Programs can be loaded from any disk platter by including the proper
parameter ('F' or 'R') 1in the LOAD DA statement. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

After the program is loaded, the system returns the address of the next
sequential sector either as a decimal value, if a numeric return variable is
specified ('L' parameter), or as a two-byte binary value, if an alphanumeric
return variable is specified ('L$' parameter). This address can be used in a
subsequent statement to permit sequential access to programs on the disk.

Execution of the LOAD DA statement alters the sector address parameters'
in the Device Table default slot (or in one of the other slots, #1 - #6, if a
file number is used in the statement).

Examples:

100 LOAD DA F (40,L)
50 LOAD DA R /320, (L$,L$) 310,450
530 LOAD DA T #2, (N$,L$) 570
700 LOAD DA F /320, (L,L)
1020 LOAD DA F (2*I+1,L$) 400
2000 LOAD DA T #B, (C,D)

169

-20 1
w125
50 7 SAVE DA
?I/‘% mwlmm)

General Form:

F
SAVE DA {R} [$] [#:;(x] [P] (sector address, {::$}) [line number 1] [, line number 2]
T !
D

A
F = Fixed platter, Drive #1, Drive #3.

where: A parameter specifying Absolute Sector Addressing Mode.

R = Removable platter, Drive #2.

T = 'F’ platter or ‘R’ platter, depending on device type specified in the
device address.

$ = Read-after-write.

#n = A file number to which the disk address is currently assigned (‘n’ is
an integer or numeric variable whose value is from 0 to 6).

/xxx = Device address of disk.
If neither #n nor /xxx is specified, or if n = 0, the default device
address (stored opposite #0 in the Device Table) is used. The
system default disk address is 310.

P = Set the protection bit on the file to be saved.

sector address = An expression or alphanumeric variable whose truncated value
specifies the starting sector address of the program to be saved. The
value of the expression or alpha variable must be less than or
equal to the last (highest) sector address of the disk platter.

L = A numeric variable which is set to the address of the next available
sector after the SAVE DA command is processed.

L$ = A two-byte alphanumeric variable which is set to the binary address
of the next available sector when the SAVE DA command is
processed.

line number 1 = The number of the first program line to be saved.

line number 2 = The number of the last program line to be saved.

Purpose:

The SAVE DA command is used to save programs on the disk beginning at a
specified location. Because the 'DA' specifies Absolute Sector Addressing
Mode, this command should not be used if the program 1is to be saved under
catalog procedures. The SAVE DA command causes BASIC programs (or portions of
BASIC programs) to be vrecorded on the designated platter beginning at the
specified sector address. The program cannot be named and can be loaded back
into memory only with a LOAD DA statement or command.

After each program is saved, the system returns the addressof the next
available sector, either as a decimal value if a numeric return variable is
specified ('L' parameter), or as a two-byte binary value if an alphanumeric
return variable is specified ('L$' parameter). This address can be used in a
subsequent disk command to permit the sequential storage of programs on disk.

170

SAVE DA

Execution of the SAVE DA command alters the sector address parameters in
the Device Table default slot (or in one of the other slots, #1 - #6, if a
file number is used in the command).

Programs can be saved on any disk platter by including the proper
parameter ('F' or 'R') in the SAVE DA command. If the 'T' parameter is
specified, the platter to be accessed is determined by the device type (3 or
B) in the disk device address.

The '$' specifies that a ‘'read-after-write' verification check be
performed on all information written to the disk. This verification check
provides added insurance that the program is recorded accurately, but also
doubles the execution time of the SAVE DA command.

The 'P' parameter permits the user to protect saved programs. A
protected program can be loaded and run, but cannot be listed or resaved.

NOTE:

In order to save any program on disk after a protected
program has been 1loaded, the user must enter a CLEAR
command with no parameters, or Master Initialize the
system (i.e., turn main power switch OFF, then ON).

Examples:
SAVE DA F (3,L
SAVE DA R $ /320, P (L,L)
SAVE DA R #2, (A$,A$) 200
SAVE DA T #2, P (A$,A$)

SAVE DA F (2+X,L)

171

Chapter 11
The Disk Multiplexers (Models 2224 and 2230MXA/B)

11.1 INTRODUCTION

The disk multiplexer permits several independent systems to share a
single disk wunit. A maximum of four independent CPU's can be multiplexed to
the same disk unit, thus enabling users with systems in physically separate
locations to share a common disk-resident data base, or to maintain
independent files on a commonly used disk.

Wang markets two types of disk multiplexers: the Model 2224 "box"
multiplexer, and the Model 2230MXA/B "daisy-chain" multiplexer. The Model
2224 consists of a multiplexer chassis into which all participating systems,
as well as the disk unit, connect. Communications between all systems and the
disk unit are controlled by the multiplexer electronics within this central
chassis. The Model 2230MXA/B is, by contrast, a '"daisy-chain" multiplexer
which has no central chassis. It consists solely of a series of special
multiplexer controller boards, one of which, the "master" board, controls all
access to the disk unit. The special boards are installed in participating
systems, and the systems are connected together to form a chain. Only the
system with the master board connects directly to the disk unit. The
multiplexers can be used with any disk model.

11.2 THE MODEL 2224 DISK MULTIPLEXER

Figure 11-1. Model 2224 Disk Multiplexer

173

The Disk Multiplexers

The Model 2224 Disk Multiplexer consists of a central chassis containing
the power supply and multiplexer electronics, along with special multiplexer
controller boards and connector cables. It is available 1in three
configurations:

Model 2224-2 - Central chassis plus two controller boards; permits
two stations to share a disk unit.

Model 2224-3 - Central chassis plus three controller boards; permits
three stations to share a disk unit.

Model 2224-4 - Central chassis plus four controller boards; permits
four stations to share a disk unit.

The standard cables provided to connect the multiplexer chassis to each
participating system are 12 feet (3.7 meters) in length. If one or more
stations must be located a greater distance from the disk, longer cables are
available as special options. The special connector cables are available in
lengths ranging from 100 feet (30.5m) to 500 feet (152.4m), in increments of
100 feet. Part numbers for these special connector cables are listed below:

Cable Part #

100 ft (30.5m) 120-2224-1
200 ft (61m) 120-2224-2
300 ft (91.5m) 120-2224-3
400 ft (122m) 120-2224-4
500 ft (152.4m) 120-2224-5

Note that two connector cables cannot be spliced together,. Each cable
has two 36-pin Amphenol plugs, one of which is inserted in a jack in the
multiplexer chassis, and the other of which is plugged into a jack on the
multiplexer controller board in a participating CPU.

11.3 INSTALLATION OF THE MODEL 2224

Unpacking and Inspection

Carefully unpack your equipment and inspect it for damage. If a unit is
damaged, notify the shipping agency at once. Check each piece of equipment
received against the purchase order. (Decals specifying model numbers can be
found on all Wang equipment, usually on the back of each unit.)

Installation Procedure

NOTE:

If a connector cable must be routed through conduit or any
tight space requiring removal of one of the Amphenol
plugs, a Wang Service Representative must be responsible
for removing and reattaching the plug. Reattachment of
the Amphenol plug is a delicate Jjob which, if done
improperly, can impede or prevent proper data transmission
along the cable. Contact your local Wang Field Service
Office for a quote on this job.

174

The Disk Multiplexers

2224 Multiplexer

=I0

NIO
IO
X

2224

Station # 1

Station # 2 Station # 3

Figure 11.2 Typical System Configuration for
Model 2224 Disk Multiplexer,
Disk Unit, and Four Stations.

1. Install the Disk Multiplexer controller board in each participating
CPU. Any available peripheral slot may be used. In systems which
already have a disk controller board, the multiplexer controller
board replaces the disk controller board.

2. Plug one end of each connector cable into the multiplexer controller
board in a CPU, and plug the other end into one of the four Jjacks
labelled "Channel 1" - "Channel 4" on the front panel of the central
chassis. Each participating CPU must be connected to the
multiplexer central chassis in this manner.

NOTE:

The system which is located closest to the disk unit
itself should be assigned to Channel #1.

3. Plug the disk connector cable into the fifth jack on the front panel
of the central chassis, labelled "I/0".

4. Install each participating system according to the procedure
described in the Reference Manual.

175

The Disk Multiplexers

Plug the power cords from the disk unit and multiplexer into
grounded wall sockets. Input power requirements for the disk and
multiplexer are 115 VAC, 9 amps, 50/60 Hz + 1 cycle. (The disk
unit s also available in a configuration which requires 230 VAC, 5
amps, 50/60 Hz + 1 cycle, by special request.)

NOTE:

When routing the multiplexer connector cables between the
multiplexer chassis and the participating systems, avoid
exposing a cable to intense electric or magnetic fields,
or sources of electronic noise, since they may affect
transmission over the cable. In general, you should try
to keep the cable away from electrical trunk lines,
fluorescent 1ights, and electric office equipment (such as
electric typewriters and tape recorders). If you have a
specific question about what to avoid when routing a
cable, contact your Wang Service Representative.

Power-0n Procedure

1.

Switch ON the power switches on the CRT's and other peripherals on
each system.

Switch ON the power switches on the multiplexer and disk unit.
Switch ON the main power switch on the Power Supply Unit (the 1light
on the Power Supply Unit illuminates) in each system. This Master
Initializes the system.

On the disk unit, the POWER 1ight comes on. The CRT display in each
station looks like this:

READY

Press the RESET button on any system keyboard to initialize the
Multiplexer/Disk Controller.

The disk unit may now be accessed via the multiplexer. For a discussion
of how the multiplexer functions, turn to Section 11.6.

176

The Disk Multiplexers

NOTE:

If you experience some difficulty in maintaining valid
data transmission over a connector cable, the problem may
lie in a coating which can form on the pins in the
Amphenol plugs during extended periods of disuse. To
remove this coating, simply insert and remove the plug in
the jack several times, or cut a piece from a white
ink-type eraser small enough to fit between the pins, and
use it to clean the surfaces of the pins. Transmission
problems can also be created by electrical and magnetic
interference in the connector cable.

11.4 THE MODEL 2230MXA/B MULTIPLEXER

Figure 11-3. Model 2230MXA Master Board and
2230MXB Slave Boards

The Model 2230MXA/B Multiplexer is a '"daisy chain" multiplexer
consisting of a single 2230MXA master controller board, and me or more
2230MXB slave controller boards. A 12-foot (3.7 meter) connector cable
accompanies each slave board. The 2230MXA board and 2230MXB slave boards are
purchased separately. The number of slave boards required is determined by
the size of the total installation: a master board and one slave board permits
two stations to share the disk; a master board and two slave boards permit
three stations to share the disk; a master board and three slave boards permit
four stations to share the disk.

Unlike the Model 2224, the Model 2230MX does not wutilize a central
chassis; instead, all necessary electronics are built into the controller

177

The Disk Multiplexers

boards themselves. (The primary electronics are in the 2230MXA master board.)
Each slave board has a 36-pin input connector labeled "MUXx INPUT", and a
50-pin output connector labeled "MUX OUTPUT". The master board has a 36-pin
jnput connector, also labeled "MUX INPUT", and a 50-pin connector labeled
"DISK".

The connector cables correspondingly have two Amphenol plugs, one of 36
pins and one of 50 pins. The systems are connected together by running cables
from the MUX INPUT jack of one CPU to the MUX OUTPUT jack of the next
consecutive CPU to form a chain. At the beginning of the chain is the master
system (the CPU which has the 2230MXA master board). The disk connector cable
plugs into the DISK Jjack on the master board to complete the chain. (See
Figure 11-5.) The master system is the only system which connects directly to
the disk unit.

In addition to the standard 12-foot (3.7m) connector cable shipped with
each slave board, longer extension cables are available in lengths of 50, 100,
and 200 feet (15.5, 31, and 61 meters). The extension cable part numbers are
listed below:

Cable Length Part #

50 ft (15.5m) ¥20-2225-50
100 ft (31m) 120-2225-1
200 ft (61m) 120-2225-2

These cables are "extension cables" in a literal sense, since they serve
as extensions for the standard connector cables; an extension cable cannot be
used alone to connect two systems. Each extension cable has two 36-pin
Amphenol plugs, one male and one female. The male plug is inserted in the MUX
INPUT jack of a slave board, while the female plug must be connected to the
36-pin male plug on a standard connector cable. The 50-pin plug on the other
end of the standard cable is then inserted in the MUX OUTPUT jack of a second
board. Because the extension cable is combined with the standard cable in
this manner, the total length of the cable between two units is always equal
to the extension cable length plus 12 feet. (See Figure 11-4.)

In special cases, it is possible to connect two or more extension cables
together to create an extension longer than 200 feet. In every case, however,
the maximum permissable distance between two systems 1is 512 feet, and the
maximum distance between the first and last systems in the chain is 536 feet.
The cable connecting the disk unit to the master CPU is approximately ten feet
(3 meters) in length, and cannot be extended.

M M F M
IIFf (=
Standard Extension Cable
MUX OUTPUT Cable (12’) (50°, 10’, or 200’) MUX INPUT

Figure 11-4. Connecting Extension Cable with Standard 12-foot Cable

178

The Disk Multiplexers

11.5 INSTALLING THE MODEL 2230MXA/B

Unpacking and Inspection

Carefully unpack your equipment and inspect it for damage. If a unit is
damaged, notify the shipping agency at once. Be certain that you have one
2230MXA master board, and the expected number of 2230MXB slave boards.

Installation Procedure

NOTE:

If a connector cable is to be routed through conduit, or
through any tight space requiring removal of one of the
Amphenol plugs, it 1is dimportant that the plug be
disconnected and reconnected by a qualified Wang Service
Representative. Reconnection of the Amphenol plug is a
delicate job which, 1if done improperly, can impede or
prevent data transmission along the 1ine. Contact your
Wang Field Service Office for a quote.

[
3 12/ g
B2 50 36 x
CPU #1 2 2 CPU #2
“MASTER" = “SLAVE"
4 x
Gl 36 — 50 5
[a] c
—'
12
DISK 12
= e
8 Ix 36 1 36 x
X =
s 2
12°
CPU#4 - = CPU#3
“SLAVE" 5 = “SLAVE”
Q (@] 50 x
© Ix o
} C
= —

Figure 11-5. Typical System Configuration:
Model 2230MXA/B Multiplexer,
Disk Unit, and Four Attached
CPU's.

179

The Disk Multiplexers

Install the 2230MXA master controller board in CPU #1 (the system
nearest the disk). Install 2230MXB slave boards in the remaining
systems. In systems which already have a disk controller board, the
multiplexer board replaces the disk board.

Plug the disk I/0 cable into the jack marked "DISK" on the 2230MXA
master board.

Insert the 50-pin connector cable plug in the Jjack 1labelled "MUX
OUTPUT" on the master board. If no extension cable is used, insert
the 36-pin plug on the other end of the cable into the MUX INPUT

jack in the slave board in CPU #2. If an extension cable is used,
plug the standard cable into the extension cable, and plug the
extension cable into the MUX INPUT jack. Repeat this procedure for
all attached systems.

Be sure that all attached systems are properly set up and ready for
operation.

Plug all power cords into grounded (three-hole) wall sockets. Power
requirements for each disk are listed in an Appendix at the back of
this manual.

NOTE:

When routing the multiplexer connector cables
between participating systems, take care to
avoid exposing a cable to intense electric or
magnetic fields, or sources of electronic
noise, since they may interfere with data
transmission over the cable. In general, you
should try to keep the connector cable away
from electrical trunk 1lines, fluorescent
lights, and electrical office equipment (such
as electric typewriters and tape recorders).
If you have a specific question about routing
a cable, contact your Wang Service
Representative.

Power-0On Procedure

1.

Switch ON the power switches on all system peripherals, including
the disk unit.

Switch ON the Main Power Switches on all system power supply units
(the 1ight on the power supply unit illuminates).

On the disk unit, the POWER 1ight should be 1illuminated. The CRT
display at each station looks 1ike this:

[’ READY

180

The Disk Multiplexers

4. Touch the RESET button on the keyboard of the master system to
jnitialize the multiplexer/disk controller boards.

NOTE:

When several systems are multiplexed to the same disk with
the 2230MXA/B Multiplexer, the master CPU (the CPU with
the 2230MXA master board) must be powered ON in order for
any other system to access the disk. However, one or more
of the slave CPU's (those with 2230MXB slave boards) may
be powered OFF without disturbing the operation of the
other CPU's.

The disk may now be accessed via the multiplexer from any attached
system. Turn to Section 11.6 for an explanation of how the multiplexer
operates, and a discussion of some programming considerations.

NOTE:

If you experience difficulty in maintaining valid data
transmission between the disk and one or more systems, the
problem may 1lie with the Amphenol connector plugs. A
coating sometimes forms on the pins of a plug during
extended periods of disuse. To remove this coating, which
may inhibit transmission, simply insert and remove the
plug in a jack several times, or cut a piece from a white
ink-type eraser small enough to fit between the pins, and
use it to clean the surfaces of the pins. Transmission
problems also can be created by electrical and magnetic
interference in the cables.

11.6 MULTIPLEXER OPERATION

The disk multiplexer controls all communication between participating
systems and the disk unit. The multiplexer automatically "polls" each system,
beginning with system (or ‘"station") #1, until it finds a system which is
attempting to access the disk. At that point, the multiplexer permits the
inquiring station to execute one disk statement or command. Following
execution of the statement or command, the multiplexer resumes its polling
until it encounters another system trying to access the disk. The multiplexer
does not monitor the amount of time required to execute each statement, nor
does it limit the number of sectors transferred by a statement. A single
statement may vread or write only one sector, but it is equally possible to
carry out multi-sector transfers with one statement. (A MOVE or COPY
statement, for example, might transfer an entire disk platter to a second
platter.) It is recommended, however, that major file maintenance operations
be executed only by a station 1in Hog Mode (see below). In any case, the
system which is executing the statement vretains use of the disk until
statement execution 1is completed. Control is then transferred to the next
inquiring station. On the Model 2224 multiplexer, a row of 1lights (one for

181

The Disk Multiplexers

each channel) on the right-hand front panel of the central chassis wink on and
off during operation, indicating which channel has access to the disk at a
given moment. The Model 2230MXA/B provides no external indication of which
system has access to the disk.

In normal operation, the multiplexer imposes no special demands or
conditions upon the programmer. The disk is simply addressed as usual with
the appropriate disk statements and commands. If no other systems are
accessing the disk, the total execution time of a multi-statement disk
operation is not noticeably affected by the multiplexer. If more than one
multi-statement disk operation is being carried on at once, however, the time
required for each operation is roughly equal to the total time required to
execute all operations, since one statement from each system is executed on
each pass by the multiplexer.

Although in general all systems attached to the multiplexer gain access
to the disk on a statement-by-statement basis, there are cases in which it is
desirable to give one system a period of exclusive and uninterrupted access to
the disk. During certain critical file maintenance or update procedures, for
example, it 1is 1important that other systems be prevented from accidentally
interfering in the routine, since they might unknowingly overwrite valuable
data or pointers, or otherwise confuse the situation. Because operators on
remote stations have no way of knowing that critical maintenance procedures
are being carried out at any given time, it is necessary to prevent them from
unknowingly interrupting a routine by locking out all systems except the one
executing the routine. A system which monopolizes the disk in this way is
said, somewhat picturesquely, to be "hogging" the disk. Both multiplexers
provide a feature which enables a single system to "hog" the disk under
program control. The Model 2224 also offers a manual switch-selectable Hog
Mode capability.

11.7 THE MANUAL HOG MODE SWITCH (MODEL 2224 ONLY)

The manual Hog Mode switch is located on the lower left-hand corner of
the Model 2224 Multiplexer front panel. When the switch is flipped up, it
activates the Hog Mode for Channel #1, closing Channels #2-#4 and locking out
the systems on those channels. Only the system plugged into Channel #1 has
access to the disk. The Hog Mode switch can thus be used to give station #1
exclusive access to the disk for important file maintenance or update
operations.

Because the manual Hog Mode switch allows only station #1 to hog the
disk, it is recommended that station #1 be used for all major file maintenance
procedures. After the procedures are completed, the Hog Mode can be
deactivated by flipping the Hog Mode switch down to its normal position. The
multiplexer then resumes its normal operation, polling each system in sequence
until it finds one trying to access the disk.

11.8 PROGRAMMABLE HOG MODE (MODELS 2224 AND 2230MXA/B)

The programmable Hog Mode feature (available on both multiplexer models)
enables any station plugged into the multiplexer to seize control of the disk
under program control, and 1lock out all other stations. A special disk

182

The Disk Multiplexers

address of 390 (or B90) 1is used to initiate the programmable Hog Mode.
Special Hog Mode device addresses can be generated for other disk units in a
system by adding a HEX(80) to the normal disk device address. When a disk
statement or command is executed which references this special address, tne
system executing that statement automatically gains exclusive control of the
disk; no other system can access the disk until the programmable Hog Mode is
turned off. For example, the statement

10 MOVE/390 FR

automatically activates the Hog Mode, locking out all other stations, and
initiates a MOVE operation from the 'F' platter to the 'R' platter.

It is also possible to store the special address opposite a slot in the
Device Table. In this case, execution of a statement referencing the
appropriate file number automatically activates the Hog Mode.

Example 11-1: Activating the Programmable Hog Mode
(Models 2224 and 2230MXA/B Disk Multiplexers)

10 SELECT DISK 390
20 MOVE FR

Statement 10 stores special disk address 390 in the default
slot (opposite #0) in the Device Table. Statement 20
references the default slot (since no file number s
specified); thus, execution of statement 20 automatically locks
out all other stations from utilizing the disk, and initiates a
MOVE operation.

Example 11-2: Activating the Programmable Hog Mode
(Models 2224 and 2230MXA/B Disk Multiplexers)

10 SELECT #1 390

200 DATALOAD DC OPEN F #1, "CUSTFILE"

Statement 10 stores special address 390 opposite #1 in the
Device Table. Statement 200 references #1, to reopen the file
CUSTFILE, thus activating the Hog Mode and Tlocking out all
other stations.

Note that the Hog Mode is turned on only when a disk statement or
command implicitly or explicitly referencing the special address is executed.
Merely storing the special address in the Device Table with a SELECT statement
does not initiate the Hog Mode. For example, the statement

SELECT #1 390

does not activate the Hog Mode. It must be followed by a disk statement which
references the Hog Mode address. Thus, the special address (390) can be
stored in a particular slot in the Device Table and referenced by a system
only when it wishes to monopolize the disk.

183

The Disk Multiplexers

NOTE:

As long as the special Hog Mode address remains in the
Device Table, any reference to its associated file number
will activate the Hog Mode. Care must be exercised,
therefore, in the use of this file number.

When a system has completed the operations requiring exclusive use of
the disk, the Hog Mode can be turned off simply by executing a disk statement
or command which implicitly or explicitly references the reqgular disk address.
For example, if the regular disk address is 310, the Hog Mode 1is deactivated
by either of the following statements:

250 LOAD DC F /310, "PROG 1"
or

300 SELECT #1 310

310 DATASAVE DC #1, END

Example 11-3: Deactivating the Programmable Hog Mode
(Models 2224 and 2230MXA/B Disk Multiplexers)

10 SELECT #1 390, #3 390
20 DATALOAD DC OPEN #1 "CUSTFILE"
30 DATALOAD DC OPEN #3 “CREDIT"

(Processing)

190 SELECT #1 310, #3 310
200 DATASAVE DC #1, END
210 DATASAVE DC #3, END

This example illustrates a portion of a processing routine
carried out 1in Hog Mode. At 1ine 10, the special Hog Mode
address is selected to file numbers #1 and #3. At lines 20 and
30, the two files to be used are opened with these file
numbers. The Hog Mode is activated when 1ine 20 is executed.
Upon completion of processing at line 190, the file numbers are
reselected to the normal disk address, 310. The Hog Mode is
not deselected at this time, however. Deselection takes place
only when the normal address is referenced in a disk statement
(1ine 200).

Notice that it is not sufficient merely to remove the special address
from the Device Table or to replace it with the normal address in the Device
Table. A disk statement or command must be executed which implicitly or
explicitly references the normal disk address in order to turn off the Hog
Mode. For example, the statement

SELECT #1 310

by itself does not deactivate the Hog Mode. It must be followed by a disk
statement referencing the regular address:

DATASAVE DC #1, END

184

The Disk Multiplexers

NOTE:

Any reference to the normal device address during Hog Mode
processing will deactivate the Hog Mode. If several file
numbers are to be used to reference different files for
processing in Hog Mode, each file number must be selected
to the special Hog Mode address (e.g., SELECT #1 390, #3
390, #4 390, etc.). The Hog Mode will be deactivated as
soon as a file number selected to the normal address is
used in a disk statement.

It is also possible to turn off the programmable Hog Mode at any point
by keying RESET on the keyboard of the system currently hogging the disk.

NOTE:

The programmable Hog Mode must be deactivated by the
system which is hogging the disk. It cannot be
deactivated by another system.

185

Appendix A

Disk Error Codes

CODE 57
Error: ILLEGAL DISK SECTOR ADDRESS
Cause: lllegal disk sector address specified; value is negative or greater than 32767. (The
System 2200 cannot store a sector address greater than 32767.)
Action: Correct the program statement in error.
Example: 100 DATASAVE DAF (42000, X) A, B, C.
+ ERR 57
100 DATASAVE DAF (4200, X) A,B,C (Possible Correction)
CODE 58
Error: EXPECTED DATA RECORD
Cause: A program record or header record was read when a data record was expected.
Action: Correct the program.
Example: 100 DATALOAD DAF(0,X) A, B, C
* ERR 58
CODE 59
Error: ILLEGAL ALPHA VARIABLE FOR SECTOR ADDRESS
Cause: The alphanumeric string variable designated to receive the next available address
following execution of the DA or BA instruction is not at least two bytes long.
Action: Dimension the alpha variable to be at least two characters long.
Example: 10 DIM A$1
100 DATASAVE DAR (F$, A$) X, Y, 2
t ERR 59
10 DIM A$2 (Possible Correction)
CODE 60
Error: ARRAY TOO SMALL
Cause: The alphanumeric array specified in a DATALOAD BA statement does not contain
enough space to store the sector of information (256 bytes) being read from the disk.
The array must contain at least 256 bytes.
Action: Increase the size of the array.
Example: 10 DIM A$(15)

20 DATALOAD BA R (1000,L) A$()
1t ERR 60
10 DIM A$(16) 16 (Possible Correction)

187

APPENDIX A

CODE 61

Error: DISK HARDWARE ERROR

Cause: The disk did not recognize or properly respond to the System 2200 during a read
or write operation in the proper amount of time.

Action: Run program again. If error persists, re-initialize the disk. If failure recurs, contact Wang
service personnel.

Example: 100 DATASAVE DCF X,Y,Z

1ERR 61

CODE 62

Error: FILE FULL

Cause: The disk sector being addressed is not located within the specified catalog file
boundaries. When writing data in a cataloged file, Error 62 signifies that the file is
full; Error 62 is also generated if a DSKIP or DBACKSPACE operation has set the
current sector address beyond the limits of the file.

Action: Correct the program.

Example: 100 DATASAVE DCT#2, A$(), B$(), C$()

1ERR 62

CODE 63

Error: MISSING ALPHA ARRAY DESIGNATOR

Cause: An alpha array designator (e.g., A$()) was expected. (Block operations for cassette
and disk require an alpha array argument.)

Action: Correct the statement in error.

Example: 100 DATALOAD BA A$

tERR 63

100 DATALOAD BA A$() (Possible Correction)

CODE 64

Error: SECTOR NOT ON DISK

Cause: The disk sector being addressed is not on the disk. (Maximum legal sector address
depends upon the model of disk used.)

Action: Correct the program statement in error.

Example: 100 MOVEEND F = 10000

tERR 64
100 MOVEEND F = 9791 (Possible Correction)

188

APPENDIX A

CODE 65
Error: DISK HARDWARE MALFUNCTION
Cause: A disk hardware error occurred (i.e., the disk is not in file ready position). This could
occur, for example, if the Model 2230 or 2260 is in LOAD mode or power is not
turned on. On the Model 2270, the error could result if a disk platter does not move
freely within its jacket.
Action: Insure disk is turned on and properly set up for operation. For the Models 2230 and
2260, set the disk into LOAD mode and then back into RUN mode, with the LOAD/
RUN selection switch. The error light should then go out. For the Model 2270, make
sure that the disk platter moves freely within its jacket and that the drive door is
tightly shut. If the error persists, call Wang Field Service Personnel. (Note: the
Models 2230 and 2260 should never be left in LOAD mode when running.)
Example: 100 DATALOAD DCF A$,B$
TERR 65
CODE 66
Error: FORMAT KEY ENGAGED
Cause® The disk format key is engaged. (The key is normally engaged only when formatting
a disk platter.)
Action: Turn off the format key.
Example: 100 DATASAVE DCF X,Y,Z
TERR 66
CODE 67
Error: DISK FORMAT ERROR
Cause: A disk format error was detected during a disk read or write operation. The disk is not
properly formatted so that sector addresses can be read.
Action: Format the disk again. If the error persists, replace the platter.
Example: 100 DATALOAD DCF X, Y, 2
TERR 67
CODE 68
Error: LRC ERROR
Cause: A disk longitudinal redundancy check error occured when reading a sector. The data
may have been written incorrectly, or the System 2200/Disk Controller could be
malfunctioning.
Action: Run program again. If error persists, re-write the bad sector or replace the platter. If
error still persists call Wang Service personnel.
Example: 100 DATALOAD DCF A$()

TERR 68

189

APPENDIX A

CODE 71

Error: CANNOT FIND SECTOR/PROTECTED PLATTER

Cause: A disk seek error occurred; the specified sector could not be found on the disk.
On the Model 2270, Error 71 also is signalled if an attempt is made to write on a
protected diskette. No data or programs can be recorded on a protected diskette.

Action: Run program again. |f error persists, re-initialize (reformat) the disk platter, or replace
it. If error still occurs, call Wang Service Personnel. For Model 2270 diskette, make
sure write protect hole is covered.

Example: 100 DATALOAD DCF A$()

TERR 71

CODE 72

Error: CYCLIC READ ERROR

Cause: A cyclic redundancy check error occurred when reading a sector; the sector being
addressed has never been written to the disk, or the sector was incorrectly written on
the disk (i.e., the disk platter was never initially formatted).

Example: 100 MOVEEND F = 8000

tERR 72

CODE 73

Error: ILLEGAL ALTERING OF A FILE

Cause: The user is attempting to create a file with a name which is already in the Catalog
Index, or is attempting to rename or write over an existing scratched file without using
the proper syntax.

Action: Use the proper form of the statement. The scratched file name must be referenced.

Example: SAVE DCF “SAM1”

TERR 73

SAVE DCF (“SAM1") “SAM1" (Possible Correction)

CODE 74

Error: CATALOG END ERROR

Cause: The end of Catalog Area falls within the Catalog Index area, or has been changed by
MOVEEND to fall within the area already occupied by cataloged files; or there is no
room left in the Catalog Area to store additional files.

Example: SCRATCH DISK F LS=100, END=50

TERR 74

SCRATCH DISK F LS=100, END=500 (Possible Correction)

CODE 75

Error: COMMAND ONLY (Not Programmable)

Cause: A command is being executed on a numbered statement line within a BASIC program.
Commands are not programmable. »

Action: Do not use commands as program statements.

Example: 10 SAVE DC R “PROG 1"

TERR 75

190

APPENDIX A

CODE 77

Error: STARTING SECTOR GREATER THAN ENDING SECTOR

Cause: The starting sector address specified is greater than the ending sector address specified.

Action: Correct the statement in error.

Example: 10 COPY FR(1000, 100)

*ERR 77
10 COPY FR(100, 1000) (Possible Correction)

CODE 78

Error: FILE NOT SCRATCHED

Cause: The user is attempting to rename a file which has not been scratched.

Action: Scratch the file before renaming it.

Example: SAVE DCF (“LINREG"”) “LINREG2"

+tERR 78
SCRATCH F “LINREG"” (Possible Correction)
SAVE DCF (“LINREG”) “LINREG2"

CODE 79

Error: FILE ALREADY CATALOGED

Cause: An attempt was made to catalog a file with a name that already exists in the Catalog
Index.

Action: Use a different name.

Example: SAVE DCF “MATLIB"

tERR 79
SAVE DCF “MATLIB1” (Possible Correction)

CODE 80

Error: FILE NOT IN CATALOG

Cause: The user is attempting to address a non-existing file name, or load a data file as a
program, or open a program file as a data file.

Action: Make sure you are using the correct file name; make sure the proper disk platter is
mounted. (List the contents of the Catalog Index on the platter to determine the
proper names for all cataloged files.)

Example: LOAD DCF “PRES”

1ERR 80
LOAD DCR “PRES"” (Possible Correction)

191

APPENDIX A

CODE 81
Error: /XXX DEVICE SPECIFICATION ILLEGAL
Cause: The /xxx device specification cannot be used in this statement.
Action: Correct the statement in error.
Example: 100 DATASAVE DC /310, X
1ERR 81
100 DATASAVE DC #1, X (Possible Correction)
CODE 82
Error: NO END OF FILE
Cause: No end-of-file record was written in the file and therefore could not be found in a
DSKIP END operation, or an end-of-file record was written with a DATASAVE DA
END statement rather than DATASAVE DC END.
Action: Correct the file by writing an end-of-file record witha DATASAVE DC END statement.
Example: 100 DSKIP END
tERR 82
CODE 83
Error: DISK HARDWARE FAILURE
Cause: A disk address cannot be properly transferred from the System 2200 to the disk
when processing MOVE or COPY. .
Action: Run program again. If error persists, replace the platter. If replacing the platter does
not correct the problem, call Wang Field Service Personnel.
Example: COPY FR(100,500)
TERR 83
CODE 84
Error: NOT ENOUGH SYSTEM 2200 MEMORY AVAILABLE FOR MOVE OR COPY
Cause: A 1K buffer is required in memory for MOVE or COPY operation. (i.e., 1024 bytes
must be available which are not occupied by program text or variables).
Action: Clear out all or part of program or variables before MOVE or COPY.
Example: COPY FR(0, 9000)
TERR 84
CODE 85
Error: READ AFTER WRITE ERROR
Cause: The comparison of read after write to a disk sector failed. The information was not
written properly.
Action: Write the information again. If error persists, replace the platter. If replacing the
platter does not correct the problem, call Wang Field Service personnel.
Example: 100 DATASAVE DCF$ X, Y, Z

TERR 85

192

APPENDIX A

CODE 86
Error: FILE NOT OPEN
Cause: The file was not opened.
Action: Open the file before reading from it.
Example: 100 DATALOAD DC A$
1ERR 86
10 DATALOAD DC OPEN F “DATFIL” (Possible Correction)
CODE 87
Error: COMMON VARIABLE REQUIRED
Cause: The variable in the LOAD DA statement, used to receive the sector address of the next
available sector after the load, is not a common variable.
Action: Define the variable to be common.
Example: 10 LOAD DAR (100,L)
1ERR 87
5COML (Possible Correction)
CODE 88
Error: CATALOG INDEX FULL
Cause: There is no more room in the Catalog Index for a new name.
Action: Scratch any unwanted files and compress the catalog using a MOVE statement, or
mount a new disk platter.
Example: SAVE DCF “PRGM”

tERR 88

193

Appendix B
Model 2230 Specifications

MODEL 2230
STORAGE CAPACITY

DISK SECTORS PER TOTAL BYTES PER TOTAL
MODEL PLATTER SECTORS PLATTER BYTES
2230-1 2,400 4,800 614,400 1,228,800
2230-2 4,800 9,600 1,228,800 2,457,600
2230-3 9,792 19,584 2,506,752 5,013,504

LEGAL SECTOR ADDRESSES

DISK SECTORS PER LOWEST LEGAL HIGHEST LEGAL

MODEL PLATTER ADDRESS ADDRESS

2230-1 2,400 000 2399

2230-2 4,800 000 4799

2230-3 9,792 000 9791
PERFORMANCE

Rotation Speed
A1l configurations e e e e e e 1500 rpm

Access Time (Position Head to Track)

Minimum (one track) 9 ms
Average (across one-half available tracks)
2230-1 e e e e e e 21 ms
2230-2 . . . e e e e e e e e 28ms
2230-3o e e e« v . 41 ms
Maximum (across all available tracks)
2230-1 . .« . o o .. e e e e e e e . 42 ms
2230-2o e e .« v e« +« . bBEmMs
2230-3 e e e e e e e e e e e . . 82 ms

Latency Time (Platter Rotation to Sector on Track)
Average (one-half revolution) 20 ms

Read/Write Time

One 256-byte sector (1nc]ud1ng CPU/contro]]er
overhead)« . 13 ms

Raw Transfer Rate 195,000 bytes/sec

195

Model 2230 Specifications

Move/Copy Time (Entire Disk Platter)

2230-1 . & . oo e e e e e e e e e e . « . Approx 1.2 min
2230-2 . . o e e e e e e e e e e e e e e e . . Approx 2.4 min
2230-3 . . i e e e e e e e e e e e e e e e . . Approx 4.9 min

Physical Dimensions

Height « ¢ « v v v v v v v oo 32.5 in. (82.6 cm)

Width « v o v o e e e e e e e e e e 17.5 in. (44.5 cm)

Depth ¢ . . o . 0 e 29 in. (73 cm)
Weight ¢ . ¢ o e e e e e e e e e e e e 126 1b (57 kg)

Power Requirements
Vol tage: 115 or 230 VAC _+10%
50 or 60 Hz + 1 cycle

Power: 800 watts start-up
425 watts running.

Cabling
10 ft (3m) cable with connector to female receptacle on the CPU

Operating Environment*
50°F - 90°F (10°C - 35°C)
20% - 80% Relative Humidity

*See Appendix E for more detailed information on Model 2230 operating

environment and the proper storage environment for Model 2230 disk
cartridges.

196

Appendix C

Model 2260 Specifications

MODEL 2260

STORAGE CAPACITY

SECTORS PER TOTAL BYTES PER TOTAL
PLATTER SECTORS PLATTER BYTES
19,584 39,168 5,013,504 10,027,008

LEGAL SECTOR ADDRESSES

TOTAL SECTORS LOWEST LEGAL HIGHEST LEGAL
EACH PLATTER ADDRESS ADDRESS
19,584 000 19583
PERFORMANCE

Rotation Speedo oo 2400 rpm
Access Time (Position Head to Track)

Minimum (one track) 4.1 ms

Average (across one-half available tracks) . . . 40 ms

Maximum (across all tracks) 80 ms
Latency Time (Platter Rotation to Sector on Track)

Average (one-half revolution) 12.5 ms
Read/Write Time

One 256-byte sector (including CPU/controller

overhead) ¢ i e e e e e e e 13 ms

Raw Transfer Rate

Move/Copy Time (Entire Disk Platter)

Physical Dimensions

Power Requirements
Voltage:

GENERAL SPECIFICATIONS

115 or 230 VAC + 10%

50 or 60 Hz + 1 cycle

197

oooooooooooooooooooooooo

Approx 10 min

29 in. (73 cm)
126 1b (57 kg)

312,500 bytes/sec

32.5 in. (82.6 cm)
17.5 in. (44.5 cm)

Model 2260 Specifications

Power: 800 watts start-up.
425 watts running.

Cabling
10 ft (3 m) cable with connector to female receptacle on the CPU

Operating Environment*
50°F - 95°F (10°C - 35°C)
20% - 80% Relative Humidity

*See Appendix E for more detailed information on the Model 2260 operating
environment, and the proper storage of Model 2260 disk cartridges.

198

Appendix D
Model 2270 Specifications

MODEL 2270
STORAGE CAPACITY
DISK SECTORS PER TOTAL BYTES PER TOTAL
MODEL PLATTER SECTORS PLATTER BYTES
2270-1 1,024 1,024 262,144 262,144
2270-2 1,024 2,048 262,144 524,288
2270-3 1,024 3,072 262,144 786,432

LEGAL SECTOR ADDRESSES

DISK SECTORS PER LOWEST LEGAL HIGHEST LEGAL
MODEL PLATTER ADDRESS ADDRESS
2270-1,2,3 1,024 000 1023
PERFORMANCE
Rotation Speed
A1l configurations 360 rpm
Access Time (Position Head to Track)
Minimum (one track)« 14 ms
Average (across one-half available tracks) . . . 363 ms
Maximum (across all available tracks) 726 ms

Latency Time (Platter Rotation to Sector on Track)
Average (one sector read/write, one-half
revolution) 83.3 ms

Read/Write Time
One 256-byte sector (including CPU/controller

overhead) 0 e e e e e e 21.8 ms
Raw Transfer Rate « . v « ¢ v v v v v v o 30,000 bytes/sec
Move/Copy Time (Entire Disk Platter) Approx 2 min

GENERAL SPECIFICATIONS

Physical Dimensions

Height « . « « v v v v v v 0. 19 in. (47.5 cm)
Width & . e e e e e e e e e e e e 17.5 in. (43.5 cm)
Depth ¢ ¢ i i e e e e e 16.3 in. (40.8 cm)

199

Model 2270 Specifications

HETGNE « & v o o e e e e e e e e e e e e e e e e 68 1b (30.6 kg)

Power Requirements
Voltage: 115 or 230 VAC + 10%
50 or 60 Hz + 1 cycle

Power: 225 Watts
Cabling
12 ft (3.7 m) cable with connector to female receptacle on disk
controller board in the CPU
Operating Environment
50°F - 95°F (10°C - 35°C)
20% - 80% Relative Humidity

Recommended Operating Environment
40% - 60% Relative Humidity

200

Appendix E
Model 2230/2260 Disk Cartridge Maintenance Information

In order to maintain the original high quality of the disk cartridges,
it is 1important that proper care be observed in their handling and storage.
This Appendix 1lists several recommended procedures for the operation,
handling, and storage of the disk cartridge, proper attention to which will
ensure the continued dependable and efficient performance of the cartridge.

1. General Handling Precautions

The following general precautions apply:

a) Reassemble the cartridge and bottom cover when the cartridge is
not installed in the disk drive.

b) Clean the covers periodically with a clean, lint-free cloth to
remove any buildup of dust.

c) Replace cracked, distorted, or otherwise damaged bottom covers.

d) Keep beverages, tobacco, and smoking accessories off the disk
unit.

e) Clean the machine room daily using a vacuum cleaner or damp mop.
Do not raise dust with cleaning implements such as brooms or
feather dusters.

f) Do not expose the cartridge to intense magnetic fields such as
those generated by high-current bus bars, cables, and welding
transformers. A field intensity of more than 50 gauss may cause
loss of information.

g) Do not store the cartridge in direct sunlight.

h) 1If you drop a cartridge, have it inspected by a Wang Service
Representative before attempting to use it on a disk drive.

The cartridge may contain information that is valuable to your installation.
Protect it as much as possible.

2. Carrying

The disk cartridge should be carried flat or on its side. To carry
the cartridge flat, simply grasp the cartridge handle. To carry a
cartridge on its side, hold it with your fingers 1in the recessed
handle compartment, with your thumb gripping the beveled edge on the
bottom cover.

201

Model 2230/2260 Disk Cartridge Maintenance Information

5.

Labeling

Cartridges may be marked for identification with either a felt tip
pen or an adhesive label. Wang recommends that the top surface of
the cartridge be used as the labeling surface. You may want to
duplicate the label on the outside of the bottom cover to facilitate
identification. However, you should refer to the label on the top
surface of the cartridge for positive identification of information
contained on the cartridge.

Use the following precautions when labeling a cartridge:

a) Use only good quality adhesive labels. Inferior 1labels could
work Tloose while the cartridge is loaded, and cause severe
damage to the read/write heads or the disk surface.

b) Mark the label before you put it on the cartridge.

c) Remove old labels.

d) 1If the cartridge has been 1labeled with a felt-tip pen, use
isopropyl alcohol and a soft, lint-free cloth to alter or remove
old markings.

Operating Environment

Disk cartridges that are in frequent use should be stored in the
machine room or in a similar environment. Cartridges that have not
been stored in the machine room should be conditioned to machine
room temperature for two hours prior to use. The conditioning time
is necessary to insure accurate track registration, data recording,
and data retrieval.

The opefating requirements are:

Temperature: 50°F (10°C) to 100°F(37.8°C)
Relative Humidity: 20% to 80%

Maximum wet bulb: 78°F (25.5°C)

Storage

A disk cartridge, locked in its bottom cover, forms a sealed storage
container. Unless cartridges are to be stored for a long period of
time, no further protection is required. Cartridges may be stacked
on top of each other (no more than five high) or stored on their
sides. Clean, dust-free cabinets made of metal or other fire
resistant material provide satisfactory storage facilities for the
cartridges.

If the cartridges are to be stored for a long period, they should be

repacked in their original shipping containers before storing. This
protects the covers from excessive dust and/or dirt accumulation.

202

Model 2230/2260 Disk Cartridge Maintenance Information

High Security Storage

Store cartridges containing vitally important data or duplicate
master records in a cabinet or storeroom that provides protection
against catastrophic damage. The cabinet or storeroom should be
insulated to prevent the internal temperature from rising above
150°F (66°C) in case of fire.

Storage Environment

a) For short term requirements, the cartridge should be stored in
the machine room or similar environment.

b) Long term storage:

Temperature -40°F to 150°F (-40°C to 66°C)
Relative Humidity: 8 to 80%

If the short term requirements are exceeded, you should
condition the cartridge to the machine room environment for two
hours prior to use.

Shipping and Receiving

Disk cartridges are protected in transit by packaging assemblies
designed to withstand normal shipping abuse. Upon receiving a
cartridge, examine the shipping container for possible shipping
damage. If you find any, have a Wang Service Representative inspect
the cartridge prior to installing it on a disk drive. This will
eliminate the possibility of damaging the drive or further damaging
the cartridge.

203

Appendix F
Disk Cartridge Compatibility (Models 2230 and 2260)

F.1 Two Types of Disk Cartridges (Removable Disk Platters)

The disk cartridges (Removable Disk Platters) used in the Models 2230
and 2260 Disk Drives are of two different types:

Cartridges approved for use in the Model 2230. These cartridges are
certified for 100 tpi (tracks per inch). The number of available
tracks on a cartridge is determined by the Model 2230 configuration
in which the cartridge is formatted:

Tracks per Recording Surface Total Tracks

Model 2230-1 50 100
Model 2230-2 100 200
Model 2230-3 204 408

On all cartridges approved for the Model 2230, tracks are spaced .0l
inch apart on a recording surface.

Cartridges approved for use in the Model 2260. These cartridges are
certified for 200 tpi (tracks per inch). In addition, they are
tested to ensure that they contain 408 wusable tracks on each
recording surface (816 total tracks). The tracks on a cartridge
approved for the Model 2260 are spaced .005 inch apart.

F.2. Ordering Information for Model 2230 and 2260 Disk Cartridges

To order disk cartridges for the Models 2230 and 2260, specify one of
the following part numbers:

Model 2230 - Approved Cartridge (100 tpi) - 177-0041
Model 2260 - Approved Cartridge (200 tpi) - 177-0062

204

Disk Cartridge Compatibility (Models 2230 and 2260)

WARNING:

Model 2260 owners should be aware that, although Wang
Laboratories tests all 408 tracks on each recording
surface of our 200 tpi cartridges, cartridges purchased
outside of Wang Laboratories may not be tested for the
entire 408 tracks (even if the cartridge is certified for
200 tpi). Since the Model 2260 utilizes every available
track on the cartridge (no tracks are reserved as
"extras"), the loss of even a single faulty track can
result in serious problems for the user. Wang therefore
recommends that disk cartridges for the Model 2260 be
obtained exclusively through Wang Laboratories.

F.3 Differences in Platter Format (Models 2230 and 2260)

Although disk cartridges for the Model 2230 and Model 2260 have the same
physical dimensions (15 inches in diameter), and are physically
interchangeable between the two disk units, there are differences both in
track density and platter format (the arrangement of tracks and sectors on the
recording surface) between the two types of cartridges. The differences
between the two cartridges are explained below in some detail. Section F.4 of
this Appendix describes a special procedure available on the Model 2260 which
makes it possible to read a disk cartridge originally formatted and recorded
in a Model 2230 disk drive.

NOTE:

Cartridges approved for use in a Model 2260 carry a
label which reads:

APPROVED FOR WANG 2260
(200 Tracks Per Inch)

Similarly, cartridges approved for use in a Model 2230
carry a label which reads:

APPROVED FOR WANG 630/730/2230

In both cases, the label is affixed in the area of the
cartridge handle.

The track density of a Model 2260-approved cartridge is twice as great
as that of a Model 2230 cartridge (200 tracks per inch as opposed to 100
tracks per inch). Correspondingly, consecutive tracks on a Model 2260
cartridge are half as far apart (.005 inch) as tracks on a 2230 cartridge (.01
inch). In addition to the difference in track densities, cartridges formatted
in the Models 2230 and 2260 have different sector arrangements.

During the platter formatting procedure (described in Chapter 2), the
number and location of the sectors on a disk platter are assigned by the disk

205

Disk Cartridge Compatibility (Models 2230 and 2260)

drive. A specified number of usable tracks (the number depending upon the
disk model) are subdivided into 24 sectors each, and each sector is assigned a
unique sector address. When a platter is formatted in the Model 2230, the
disk writes sequential sector addresses into every sixth sector (see Chapter
1, Section 1.9). Sequential sectors are therefore staggered one-quarter of a
track, or six physical sectors, apart on a platter formatted in the Model
2230. The staggered arrangement of sectors enables the system to read as many
as four sequential sectors in a single revolution during certain large data
transfer operations such as MOVE or COPY. On the much faster Model 2260,
sequential sectors are staggered one-half track, or 12 sectors, apart for the
same reason.

F.4 Accessing a Model 2230 Cartridge (Removable Platter)
in a Model 2260 Disk Drive

The different track densities of the Model 2230 and Model 2260 disk
cartridges, as well as the different platter formats employed by the two disk
models, dictate that disk cartridges used in the two disks are not compatible.
It was anticipated, however, that some Model 2230 owners might wish to trade
up to the 1larger Model 2260; for their convenience, the Model 2260 has a
special feature which makes is possible to load a Model 2230 cartridge into
the 2260 Disk Drive and access it for reading data and programs. This special
feature enables the programmer who trades in a Model 2230 for a Model 2260 to
transfer his data base (recorded on one or more cartridges) from the Model
2230 to the Model 2260. The need to recreate the entire data base for the
larger disk is thereby avoided.

In order to access a Model 2230 disk cartridge in a Model 2260 Disk
Drive, a special disk device address of 350 must be used. The special address
causes the Model 2260 to initiate a routine which simulates the Model 2230
track spacing and platter format for reading on the Removable Platter. The
programmer 1is then able to read information from the cartridge in Model 2230
format with standard disk statements, while the cartridge is loaded in a Model
2260 drive. For example, the statement LIST DC R /350 generates a listing of
the Catalog Index from a Model 2230 cartridge loaded in a Model 2260 drive,
Similarly, the special address can be assigned to a file number, and
referenced indirectly in statements which do not permit the use of a device
address. For example, the statements

SELECT #3 350
DATALOAD DC OPEN R #3, "TEST"

could be used to reopen the file TEST on a Model 2230 cartridge in a Model
2260 Disk Drive.

If the Model 2260 is the second, or subsequent, disk drive in a system,
the special address must be calculated by adding a HEX(40) to the disk device
address. For example, if the address of the Model 2260 is 320, the special
address is 360; if the normal address is 330, the special address is 370, etc.
Note that the special address should not be used to access the Fixed Platter
of the Model 2260, nor should it be wused to access a Removable Platter
formatted in the Model 2260 itself.

206

Disk Cartridge Compatibility (Models 2230 and 2260)

NOTE:

The special procedure described above applies only to
reading a 2230 cartridge in a 2260 drive; information
cannot be written on a Model 2230 cartridge by the 2260
disk unit.

F.5 Model 2260 Cartridge in a Model 2230 Disk Drive

A disk cartridge formatted and recorded in the Model 2260 Disk Drive can
be physically loaded into a Model 2230 drive, but it cannot be accessed for
reading or recording. Unlike the Model 2260, the Model 2230 has no capability
to compensate for the differences in platter format between the two disk
models. A cartridge formatted in the Model 2260 can, of course, be
reformatted in the Model 2230 and used as a standard Model 2230 cartridge.
Note, however, that the reformatting procedure wipes out all information
stored on the cartridge, and the additional tracks on the Model 2260 cartridge
are not used by the Model 2230 when the cartridge is reformatted.

F.6 Illegality of MOVE and COPY (Model 2230 Cartridge to
Model 2260 Fixed Platter)

The MOVE and COPY statements cannot be used to transfer information
between a Model 2230 disk cartridge and the Fixed Disk Platter of the Model
2260. The illegality of MOVE and COPY in this case results from the fact that
only one disk address can be specified in a MOVE or COPY statement, while two
different addresses are required to access the two platters (the special
address for the Model 2230 cartridge, and the normal disk address for the
Fixed Platter). Information can, however, be transferred between the Fixed
and Removable Platters with any one of a number of short programs. The brief
routine below utilizes the DATASAVE BA statements to copy a range of sectors
specified by the user from the Removable to the Fixed Platter, in effect
simulating a COPY RF operation.

10 INPUT "BEGINNING AND ENDING SECTOR ADDRESSES", A,B
20 DIM A$ (16) 16

30 SELECT #3 350, $4 310

40 DATALOAD BA R #3, (A,A) A$(
50 DATASAVE BA F #4, (A-1, L)
60 IF A < = B THEN 40

70 STOP "END OF COPY"

)
A$()

This routine requires only that the operator enter the first and last sectors
he wishes to copy. Al1 sectors between and including those sectors are copied
from the Model 2230-formatted Removable Platter to the Model 2260 Fixed
Platter. Note that the special address (350) is used to access the Removable
Platter, while the normal disk address (310) is used to access the Fixed
Platter. Information cannot be copied in the opposite direction (Model 2260
Fixed Platter to 2230 cartridge).

207

Disk Cartridge Compatibility (Models 2230 and 2260)

It is evident that when cataloged files are copied with this
scratched files are not automatically deleted from the catalog. In order to
delete scratched files, the Model 2230 cartridge must be replaced with a

cartridge formatted by the Model 2260, and the catalog must be moved back onto
the cartridge with a MOVE statement.

routine,

208

Appendix G

A Glossary of Disk Terminology

absolute sector address

Absolute Sector Addressing Mode

access

argument

argument 1list

Automatic File Cataloging Mode

binary address

binary search

blocked records

209

An address permanently assigned to a
disk sector.

A mode of disk operation which enables
the programmer to address individual
sectors on disk. Also referred to as
'direct addressing' mode.

See 'disk access' and 'file access'.

In a DATASAVE DC or DA statement, a
discrete value, specified directly (as
a numeric value or literal string in
quotes) or indirectly (@as the value of

a variable or array element). Each
argument occupies a single field in the
record on disk, and is separated from
neighboring fields by a Start-of-Value
(SOV) bytes. In a DATALOAD DC or DA
statement, each receiving variable or
array element which receives one value
when the record is read from disk is

regarded as a receivingargument. For

the most part, multiple arguments in a
statement must be separated by commas;
however, when an array designator is
used to specify an entire array, each
element of the array is regarded as a
separate argument.

The list of all arguments in a DATASAVE
DC/DA or DATALOAD DC/DA statement.

A mode of disk operation in which the
names and Tlocations of files on disk
are maintained automatically by the
system in a Catalog Index.

A sector address expressed as a
two-byte binary number.

A dichotomizing search in which the
number of vrecords in the file is
divided into two equal parts at each
step in the search.

Two or more short records stored in one
sector. Since the minimum 1length of
any record is, from the system's point
of view, one sector, the blocking of

A Glossary of Disk Terminology

Catalog Area

Catalog Index

command

control byte

cyclic redundancy check

cylinder

data file

data record

default address

210

multiple records 1in a single sector
must be a function of user's software.

The area on a disk platter reserved for
the storage of cataloged files.

An index containing names and pointers
for each cataloged file in the Catalog
Area.

A BASIC statement which cannot be
executed on a numbered statement 1ine.
See 'statement!.

Any of several special bytes created
automatically by the system to help it
keep track of data stored on the disk,
and which are completely transparent to
the user's software. See also
'start-of-value control byte' and
'sector control byte'.

A special checksum test automatically
performed by the disk unit on all data
read from the disk. Abbreviated CRC.

On the Models 2230 and 2260, the number
of sectors which can be accessed
without repositioning the access arm
(96 sectors).

A collection of related data records
treated as a logical unit. For
example, an inventory file contains a
number of inventory records, each of
which in turn consists of specified
items of information about a particular
item in the inventory. In catalog
mode, a data file can be opened or

reopened by name.

See 'logical data record'.

The device address for a System 2200
peripheral which is used automatically
by the system when no other address s
specified. For the disk wunit, the
system default address 1is 310. The
disk default address is always stored
opposite the default file number (#0)
in the Device Table, and may be changed
temporarily with a SELECT DISK
statement. However, the system default
address (310) is automatically returned
to the default slot upon Master

default file number

device address

Device Table

device type

211

A Glossary of Disk Terminology

Initialization. See also 'device
address'.

The file number in the Device Table
automatically used by the system when a
disk statement or command is executed
which does not specify a file number.
The default file number is always #0,
and cannot be changed. The default
disk address is always stored in the
slot opposite the default file number.
See also ‘'default address', 'Device
Table', and 'file number'.

A three-digit hexadecimal code used by
the CPU to identify each peripheral
device. The device address is set 1in
the controller board for each
peripheral either at the factory or by
a Wang Service Representative, and
should be clearly printed on the top
surface of the controller board. See
also 'default address', 'device type',
and 'unit device address'.

A special section of memory used to
store disk device addresses and sector
address parameters for currently open
files on disk. The Device Table is
located within the 696 bytes of memory
reserved for "housekeeping" purposes by
the System 2200 CPU. It consists of
seven rows, or "slots", identified by
file numbers #0 - #6. A device address
and a set of sector address parameters
for an open file can be stored in each
slot. The slots opposite file numbers
#1 - #6 are also used for other 1I/0
devices in addition to the disk (such
as tape cassette drives, paper tape

readers, and card readers). The
default slot (opposite #0) is used only
for the disk, however. Default

addresses for other I/0 devices are
stored in another section of memory.
See also 'default address', ‘'default
file number', and 'file number'.

The first digit of the three-digit
device address. For the disk unit, the
device type can be either '3' or 'B'
(e.g., 3XX, or B4X). When wused in
conjunction with the 'T' parameter, the
device type determines which disk
platter in a multi-platter disk unit is

A Glossary of Disk Terminology

disk access

disk drive

disk latency period

disk platter

Electronic Data Processing

212

to be accessed. In this case, a device
type of '3' ddentifies the 'F' disk
platter, while a device type of 'B'
identifies the 'R' disk platter. For
the Model 2270-1 Single Removable
Diskette Drive, and for the third
platter of the Model 2270-3, a device
type of 'B' dis 1illegal. See also
'device address' and 'unit device
address'.

Any disk read or write operation. See
also 'file access'.

1. Broadly, a disk unit containing one
or more disk platters. 2. More
specifically, the assembly (consisting
of drive motor, spindle, and access
arm(s)) which drives the disk
platter(s) and is activated by a single
disk command. In the Models 2230 and
2260, both platters are driven by a
single disk drive; in the Model 2270,
each platter is driven by an
independent drive. See also 'disk
platter'.

The period of time which elapses from
the time the read/write head positions
itself to a track until the desired
sector in that track rotates to the
read/write head's position. Disk
latency time 1is determined by the
rotation speed of the disk unit.
Latency time may be important for
random access operations; it is
generally negligible in sequential
access operations. See also 'track
access time'.

The flat, circular plastic or metal
plate which is coated on its recording
surface with a magnetic substance such
as 1iron oxide, and which serves as the
storage medium in a disk wunit. Each
platter in a Model 2230 or 2260 has twc
recording surfaces; each platter in the
Model 2270 has only a single recording
surface.

The storage and processing of wusually
significant volumes of data by
electronic devices such as electronic
digital computers and associated
peripheral devices. Abbreviated EDP.

ending sector address

end-of-file trailer record

expression

field

file

file access

213

A Glossary of Disk Terminology

The address of the 1last sector in a
file or multi-sector Tlogical record.
See ‘'starting sector address' and
‘absolute sector address'.

A special record, one sector in length,
which marks the end of currently stored
data in a data file. The end-of-file
record is created with a DATASAVE DC
END or DATASAVE DA END statement.
Creation of an end-of-file trailer
record in a cataloged file
automatically causes the 'used' column
in the Catalog Index tote updated, and

enables the programmer to check for the
end-of-file with an IF END THEN
statement, or to skip to the
end-of-file of a cataloged file with a
DSKIP END statement.

A numeric value (e.g., '1234'),
operation (e.g., 'A*B:42'), variable
(e.g., 'N') or array element (e.g.,

'N(3)').

1. An individual item of data within a
logical data record on the disk. Each
argument in the DATASAVE DC or DATASAVE
DA argument 1ist 1is recorded as a
single field (marked off by SOV control
bytes) in the logical record created by
the statement.

2. A specified section of a record
reserved for a particular type of
information. For example, a ‘'key
field' consists of a number of bytes
located at a specific place in a record
which always holds the key value for
the record.

A collection of related records treated
as a logical unit. Files may be of two
types, program files and data files.
In catalog mode, files can be created
and accessed by name. See 'data file'
and 'program file'.

1. Any disk operation in which
information (programs or data) is read
from or written in a file on disk.

2. Any disk operation which results in
positioning the read/write head to a
location preparatory to reading or
writing information in a file. See
also 'disk access'.

A Glossary of Disk Terminology

file number

hashing technique

header record

Hog Mode

key field

key value

logical data record

214

One of the seven numbers #0 - #6
associated with slots in the Device
Table, and used to identify currently
open files on disk. File numbers #1 -
#6 are also used to identify tape
files. A file number is always
preceded by a "#" symbol. See 'default
file number' and 'Device Table'.

A technique for storing and accessing
information on disk in which a
specialized algorithm, called a "hash
function", is used to convert a
record's key value into an absolute
sector address, which is then used as
the location at which the record is
stored. This technique is used by the
system in catalog mode to store file
names in the Catalog Index.

A record containing special control
information and preceding all other
records in a file. Every program file
saved on disk begins with a one-sector
header record. In cataloged programs,
the header contains the program name,
along with catalog system control
information. Data files on disk have
no header record, but cataloged data
files do have a system control record
at the end of the file which serves the
same purpose as a header. See 'trailer
record' and 'system control record'.

A mode of disk multiplexer operation in
which one station obtains exclusive
access to the disk, while all other
stations are locked out.

A field in a record on the disk
consisting of one or more bytes, and
containing the key value for that
record. See 'field' and 'key value'.

A numeric or alphanumeric value in a
record used to identify the record for
purposes of access and control. See
'key field', 'sort', and ‘'hashing
technique'.

A data record on the disk created by a
DATASAVE DC or DATASAVE DA statement
which occupies one or more sectors, and
contains all of the data from the
DATASAVE DC or DATASAVE DA argument

logical record

longitudinal redundancy check

multiplexing

multi-volume file

parameter

pointer

program file

215

A Glossary of Disk Terminology

Tist, See also 'record' and 'data
file'.

See 'logical data record'.

A checksum test performed by the system
on each sector of data read from the
disk. Abbreviated LRC.

A process of allocating disk time to a
number of systems by sequentially
interleaving disk operations from the
various inquiring systems.

A file occupying two or more disk
platters (or tape cassettes). Each
separate platter is considered a
different "volume" of the file. Each
volume must be carefully identified
with a file name and a volume number.

An element 1in a BASIC statement or
command which follows the BASIC verb,
and whose function and meaning are
defined for the purposes of the
statement. Parameters may be of two
types, constant (or fixed) and
variable. The value of a fixed
parameter is predefined and cannot be
altered by the wuser, The value of a
variable parameter is specified by the
user, although there are normally
certain limitations imposed upon the
range of values which may be assigned
to a particular parameter. A fixed
parameter is always indicated in the
general form of a statement or command
as an uppercase letter (e.g., 'P',
'DC', 'S', etc.), while a variable
parameter is indicated with a lowercase
letter (e.g., 'xxx', 'n') or described
with a Towercase literal string (e.g.,
'name', 'sector address', etc.).

An absolute sector address or
displacement which "points" to the
location of a record on the disk.

A file on disk consisting of a single
BASIC program or program segment, and
optionally also containing extra
sectors reserved for possible future
expansion of the program. A program
file always begins with a header record
and ends with a trailer record. In

A Glossary of Disk Terminology

program record

protect parameter

protected program

read-after-write verification

read/write head

record

sector

sector control bytes

216

catalog mode, a program file can be
saved and loaded by name.

A sector in a program file between the
header record and the trailer record
which contains program text. See
'header record' and 'trailer record'.

A special parameter ('P') wused to
protect programs saved on disk or tape.

A program on disk or tape which can be
loaded and run, but cannot be listed or
resaved.

An optional verification check which
can be performed on each sector of data
as it 1is written on the disk. The
read-after-write check is specified b

including the dollar sign ('$'

parameter in a disk statement or
command. However, a read-after-write
check effectively doubles the execution
time of the disk operation.

An electromagnetic recording head which
reads and writes information on the
recording surface of a disk platter.

A collection of related items of data
treated as a logical wunit. See
‘logical data record' and 'data file'.

The basic unit of storage on a disk
platter, consisting of a data field
with a fixed length of 256 bytes, an
absolute sector address, and certain
control information. Each sector s
regarded as a discrete wunit, and is
directly accessible by the system.

Special control bytes containing system
control information which are written
automatically by the system into each
sector of a Tlogical data record and
each program record stored on disk.
Each sector in a 1logical data record
contains three sector control bytes;
each one-sector program record 1in a
program file contains two sector
control bytes. The sector control
bytes are transparent to the user
software.

sort

starting sector address

start-of-value control byte

statement

system control record

temporary files

217

A Glossary of Disk Terminology

1. To arrange data sequentially in
ascending or descending order.

2. To sequentially order logical data
records in a file based upon the key
values of the records.

3. The act of performing a sorting
operation.

The address of the first sector 1in a
file or multi-sector 1logical record.
See also 'ending sector address'.

A control byte created automatically by
the system independent of user
software, and prefixed to each field in
a logical record when the record is
written with a DATASAVE DC or DATASAVE
DA statement. This control byte
separates fields within a record and
marks the beginning of each new field.
The start-of-value bytes are not
automatically written when a DATASAVE
BA statement is executed. Abbreviated
Sov.

1. Broadly, a generic term for all
System 2200 BASIC instructions. The
class of statements is divided into two
sub-classes: programmable statements
(also called simply 'statements'), and
non-programmable statements (generally
referred to as 'commands').

2. In a narrower sense, the term
'statement' is often used as a synonym
for 'programmable statement' to denote
only those statements which can be
executed on a numbered program Tline.
See 'command'.

A special record one sector in Tlength
which always occupies the Tast sector
of a cataloged data file, and contains
control information and pointers for
the file. A system control record is
automatically created and updated by
the system for each data file
maintained 1in catalog mode; it s
completely transparent to the user's
software.

Files established outside the Catalog
Area on a disk, generally for the
storage of transient data. Temporary
files cannot be named, and no entry is
listed for them in the Catalog Index.

A Glossary of Disk Terminology

track

track access time

trailer record

unit device address

work files

218

They can, however, be accessed with
catalog procedures.

Any of the concentric circular
electromagnetic paths into which the
recording surface of a disk platter is
divided. Each track, 1in turn, 1is
subdivided into a number of sectors.

The number of tracks on a platter

differs according to the disk model and
configuration. See 'sector' and 'disk
platter'.

The time required for the access
assembly to move the read/write head
from its current position to the track
containing the desired sector. For
random access operations, the track
access time may become significant if
the sectors to be accessed are
scattered on widely separated tracks.
For most sequential access operations,
however, the track access time is
negligible. See also 'disk latency
time'.

1. In program files, the sector
immediately following the last program
record. The trailer record contains
control information, written
automatically by the system, along with
the last few lines of program text.

2. In data files, a special record
created by specifying the "END'
parameter in a DATASAVE DC or DATASAVE
DA statement, to mark the limit of
valid data in the file. Also referred
to as an "end-of-file" trailer record.
See 'end-of-file trailer record'.

The last two digits of the three-digit
device address (e.g., X10, X20, X50,
etc.), which identify dindividual disk
units when more than one is attached to
the same system. See 'device address',
and 'device type'.

See 'temporary files'.

Appendix H
Bibliography

The techniques involved in creating, maintaining, and accessing
disk-based data files have been, and continue to be, the subjects of an
extensive number of textbooks and articles. The authors included in this
bibliography approach the programming problems associated with disk storage
from a variety of different perspectives, and with varying degrees of
sophistication. In general, however, the bibliography has been heavily
weighted toward the relative novice, although in all cases some background in
programming is required.

It is suggested that the programmer with 1ittle or no experience in disk
operations begin with a text which provides a general survey of the standard
types of disk file structures and access techniques. (The titles identified
with asterisks provide such a survey at an introductory or intermediate
level.) The number of disk storage and access techniques which have been
developed over the last 10 or 15 years is considerable, even if one restricts
oneself only to the "standard" techniques, and each has particular strengths
and weaknesses which make it suitable for some applications and most
unsuitable for others. Armed with an overview of the available systems and
techniques, the programmer will be in a position to determine which of them
most appropriately suit his own application. He then can proceed to a
textbook or article which treats the chosen technique(s) in greater depth.

1. Bosco, R.L., Data Bases, Computers, and the Social Sciences
(Wiley-Interscience, New York, 1970).

2. Brooks, F.P., and K.E. Iverson, Automatic Data Processing
(John Wiley and Sons, New York, 1963).

3. Clemenson, W.D., "File Organization and Search Techniques,"
Annual Review of Information Science and Technology, Volume 1,
Ed. C. Cuadra (John Wiley and Sons, New York, 1966).

4. Daley, R.C., and P.G. Newmann, "A General Purpose File System
for Secondary Storage," Proceedings of the AFIPS 1965 Fall Joint
Compgter Conference, Volume 27, Part 1 (Spartan Books, New
York).

5. Dodd, G.G., "Elements of Data Management Systems," Computer
Surveys, Volume 1, No. 2, June 1966.

*6. Forsythe, A.I., and T.A. Keenan, E.I. Organick, and W. Stenberg,
Comg%ter Science: A First Course (John Wiley and Sons, New York,
1969).

7. Gear, C.W., Computer Organization and Programming (McGraw Hill,
New York, 1969).

8. Gruenberger, F. (Ed.), Critical Factors in Data Management
(Prentice-Hall, Englewood Cl1iffs, N.J., 1969).

219

Bibliography

10.

11.

12.

13.

14.

*15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hsiao, D. and Harary, F., "A Formal System for Information
Retrieval from Files," Communications of the ACM, Volume 13,
Number 2 (February, 1970).

Hull, T.E. and D.F. Day, Computers and Problem Solving
(Addison-Wesley (Canada) Ltd., Don Mills, Ontario, 1970).

Iverson, K.E., A Programming Language (John Wiley and Sons,
New York, 1962).

Johnson, L.R., "Indirect Chaining Method for Addressing on
Secondary Keys," Communications of the ACM, Volume 4, Number 4
(May 1961).

Korfhage, R.R., Logic and Algorithms (John Wiley and Sons,
New York, 1966).

Knuth, D.E., The Art of Computer Programming, Volumes I and III
(Addison-Wesley, Reading, Mass., 1968).

Lefkowitz, D., File Structures for On-Line Systems (Spartan
Books, New York, 1969).

Lowe, T.C., "The Influence of Data-Base Characteristics and
Usage on Direct Access File Organization," Journal of the ACM,
Volume 15, Number 4 (October, 1968).

Martin, J., Design of Real-Time Computer Systems (Prentice-Hall,
Englewood Cliffs, N.J., 1967).

Mauer, W.D., "An Improved Hash Code for Scatter Storage,"
Communications of the ACM, Volume 11, Number 1 (January, 1968).

Mcllroy, M.D., "A Variant Method of File Searching,"
Communications of the ACM, Volume 6, Number 1 (January, 1963).

Meadow, C.T., The Analysis of Informatjon Systems (John Wiley
and Sons, New York, 1967).

Morris, R., "Scatter Storage Techniques," Communications of the
ACM, Volume 11, Number 1, (January, 1968).

Peterson, W.W., "Addressing for Random-Access Storage," IBM
Journal of Research and Development, Volume 1 (1957).

Rosove, P.E., Developing Computer-Based Information Systems
(John Wiley and Sons, New York, 1967).

Williams, W.F., Principles of Automatic Information Retrieval
(The Business Press, Elmhurst, I11inois, 1968).

220

Bibliography

*25. Yourdon, E., Design of On-Line Computer Systems (Prentice-Hall,
Englewood Cliftfs, N.J., 1972).

*Titles marked with an asterisk are intermediate-level texts recommended
for programmers with limited background in disk operations.

221

Appendix |
Equipment Guarantee and Preventive Maintenance Information

GUARANTEE

Your equipment is guaranteed from defects in materials and workmanship
for a period of ninety days (one year for State and Federal Governments).

MAINTENANCE

It is recommended that your equipment be serviced semi-annually. Wang
Laboratories offers a Maintenance Agreement which automatically ensures proper
servicing. If no Maintenance Agreement is purchased, all servicing must be
requested by the customer. A Maintenance Agreement protects your investment
and offers the following benefits:

Preventive Maintenance:

Semi-annually, your equipment is inspected for worn parts,
lubricated, cleaned, and updated with engineering changes, if any.
Preventive maintenance minimizes "downtime" by anticipating repairs
before they are necessary.

Fixed Annual Cost:

When you buy a Maintenance Agreement, you issue only one purchase
order for service for an entire year and receive one annual billing, or
more frequent billing, if desired.

Further information regarding a Maintenance Agreement can be
obtained from your local Wang Sales/Service Office.

NOTE:

Wang Laboratories, Inc. can neither guarantee nor honor
maintenance agreements for any equipment modified by the
user. Damage to equipment incurred as a result of such
modification becomes the financial responsibility of the
user.

222

Appendix J
System 2200 Error Codes

- __]}

ABBREVIATED ERROR MESSAGES

ERR 01 TEXT OVERFLOW

ERR 02 TABLE OVERFLOW

ERR 03 MATH ERROR

ERR 04 MISSING LEFT PARENTHESIS
ERR 05 MISSING RIGHT PARENTHESIS
ERR 06 MISSING EQUALS SIGN

ERR 07 MISSING QUOTATION MARKS
ERR 08 UNDEFINED FN FUNCTION
ERR 09 ILLEGAL FN USAGE

ERR 10 INCOMPLETE STATEMENT

ERR 11 MISSING LINE NUMBER OR CONTINUE ILLEGAL

ERR 12 MISSING STATEMENT TEXT

ERR 13 MISSING OR ILLEGAL INTEGER

ERR 14 MISSING RELATION OPERATOR

ERR 15 MISSING EXPRESSION

ERR 16 MISSING SCALAR

ERR 17 MISSING ARRAY

ERR 18 ILLEGAL VALUE

ERR 19 MISSING NUMBER

ERR 20 ILLEGAL NUMBER FORMAT

ERR 21 MISSING LETTER OR DIGIT

ERR 22 UNDEFINED ARRAY VARIABLE

ERR 23 NO PROGRAM STATEMENTS

ERR 24 ILLEGAL IMMEDIATE MODE STATEMENT

ERR 25 ILLEGAL GOSUB/RETURN USAGE

ERR 26 ILLEGAL FOR/NEXT USAGE

ERR 27 INSUFFICIENT DATA

ERR 28 DATA REFERENCE BEYOND LIMITS

ERR 29 ILLEGAL DATA FORMAT

ERR 30 ILLEGAL COMMON ASSIGNMENT

ERR 31 ILLEGAL LINE NUMBER

ERR 33 MISSING HEX DIGIT

ERR 34 TAPE READ ERROR

ERR 35 MISSING COMMA OR SEMICOLON

ERR 36 ILLEGAL IMAGE STATEMENT

ERR 37 STATEMENT NOT IMAGE STATEMENT

ERR 38 ILLEGAL FLOATING POINT FORMAT

ERR 39 MISSING LITERAL STRING

ERR 40 MISSING ALPHANUMERIC VARIABLE

ERR 41 ILLEGAL STR{ ARGUMENTS

ERR 42 FILE NAME TOO LONG

ERR 43 WRONG VARIABLE TYPE

ERR 44 PROGRAM PROTECTED

ERR 45 PROGRAM LINE TOO LONG

ERR 46 NEW STARTING STATEMENT NUMBER
TOO LOW

ERR 47 ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

ERR 48 UNDEFINED SPECIAL FUNCTION KEY

ERR 49 END OF TAPE

223

ERR 50 PROTECTED TAPE

ERR 51 ILLEGAL STATEMENT

ERR 52 EXPECTED DATA (NONHEADER) RECORD
ERR 53 ILLEGAL USE OF HEX FUNCTION

ERR 54 ILLEGAL PLOT ARGUMENT

ERR 55 ILLEGAL BT ARGUMENT

ERR 56 NUMBER EXCEEDS IMAGE FORMAT
ERR 57 ILLEGAL VALUE

ERR 58 EXPECTED DATA RECORD

ERR 59 ILLEGAL ALPHA VARIABLE

ERR 60 ARRAY TOO SMALL

ERR 61 TRANSIENT DISK HARDWARE ERROR
ERR 62 FILE FULL

ERR 63 MISSING ALPHA ARRAY DESIGNATOR

ERR 64 SECTOR NOT ON DISK OR DISK NOT SCRATCHED

ERR 65 DISK HARDWARE MALFUNCTION

ERR 66 FORMAT KEY ENGAGED

ERR 67 DISK FORMAT ERROR

ERR 68 LRC ERROR

ERR 71 CANNOT FIND SECTOR

ERR 72 CYCLIC READ ERROR

ERR 73 ILLEGAL ALTERING OF A FILE

ERR 74 CATALOG END ERROR

ERR 75 COMMAND ONLY (NOT PROGRAMMABLE)

ERR 76 MISSING < OR > (PLOT STATEMENT)

ERR 77 STARTING SECTOR > ENDING SECTOR

ERR 78 FILE NOT SCRATCHED

ERR 79 FILE ALREADY CATALOGED

ERR 80 FILE NOT IN CATALOG

ERR 81 /XYY DEVICE SPECIFICATION ILLEGAL

ERR 82 NO END OF FILE

ERR 83 DISK HARDWARE ERROR

ERR 84 NOT ENOUGH MEMORY FOR MOVE OR
copy

ERR 85 READ AFTER WRITE ERROR

ERR 86 FILE NOT OPEN

ERR 87 COMMON VARIABLE REQUIRED

ERR 88 LIBRARY INDEX FULL

ERR 89 MATRIX NOT SQUARE

ERR 90 MATRIX OPERANDS NOT COMPATIBLE

ERR 91 ILLEGAL MATRIX OPERAND

ERR 92 ILLEGAL REDIMENSIONING OF ARRAY

ERR 93 SINGULAR MATRIX

ERR 94 MISSING ASTERISK

ERR 95 ILLEGAL MICROCOMMAND OR FIELD/
DELIMITER SPECIFICATION

ERR 96 MISSING ARG 3 BUFFER

ERR 97 VARIABLE OR ARRAY TOO SMALL

ERR 98 ILLEGAL ARRAY DELIMITERS

ERR=1 MISSING NUMERIC ARRAY NAME

ERR=2 ARRAY TOO LARGE

ERR=3 ILLEGAL DIMENSIONS

INDEX

Access Assembly
Access Time

. . 5,6,7
.11, Appendlces B and C

Address 3,9, 10, 11, 38, 209
Amphenol Plug . 177,181
Argument . . . b2,209
Argument List . 48 51 53 55, 57-58, 209
Backup Platters, Importance of 65, 147
Basic Rules of Syntax 104-105
Binary Search . . 148-152, 209
Cartridge Bowl. .. 19
Catalog 37 38, 39
Catalog Area . 38, 39
Catalog Index . . 38, 39
Catalog Index, Sample L|st|ng .45, 63
Catalog Procedures . .. 37
Catalog, Initialization of . . 38-40
Chaining Programs from Disk . . . 43-44
Command . . 103-104, 210
Control Information9697
COPY 146-147, 156
COPY Examples . . 146, 147, 157
Current Sector Address 76-79
Cylinder Concept (Models 2230 & 2260) 13
Data File . 46, 47, 51

Data Record . .
DATALOADBA
DATALOAD BA Examples .

48 51, 62, 56, 68, 96
. 144,145, 160

. 145, 161
DATALOAD DA. . 142-144, 160
DATALOAD DA Examples . . 143, 144, 161
DATALOADDC. 55-568, 106
DATALOAD DC Examples . . 56, 57, 106
DATALOAD DC OPEN . . b4-565, 107
DATALOAD DC OPEN Examples . 55, 108
DATASAVEBA 144-145, 162
DATASAVE BA Examples 145,163
DATASAVEDA 140-142, 164
DATASAVE DA Examples . . 141, 142, 165
DATASAVEDC 46, 48-51, 109
DATASAVEDCCLOSE. 79-80, 111
DATASAVE DC CLOSE Examples . .79, 80, 111
DATASAVEDCEND.49, 50
DATASAVE DC END Examples . . . 50
DATASAVE DC Examples . 49, 50, 51, 110

DATASAVE DC OPEN 46, 47, 93, 94, 95, 112
DATASAVE DC OPEN Examples 47,94, 95, 113

DBACKSPACE . 58-60, 81-82, 114
DBACKSPACE Examples . 60,82, 114
Default Disk Address . 34, 68, 69, 85
Default File Number . 68, 69
Device Selection . . 69,70

225

Device Table 68, 70-86
Device Type e . 82-84
Direct Access . . . N

Disk Cartridge (Models 2230 &
2260) See ‘‘Removable Disk Platter’’

Disk Cartridge, Handling &
Storage of

.. . 23, Appendix E
Diskette (Model 2270)

5, 6, 26-30, 31
Diskette, Handling and Storage of I X
Disk Device Address . 34, 68, 69, 82, 83, 86, 87
Disk Latency Period A N
DSKIP . . 58 60 81-82, 115
DSKIP Examples . 59, 61, 82, 115
Dust Cover . 20, 21, 23
Electronic Data Processing (EDP)2
‘END’ Parameter . . .o 49 142
End-of-File Trailer Record . 49 51,61, 142, 218
Ending Sector Address .. .213
Extension Cables (Disk Multlplexers) . .174,178
‘F’ Parameter .33, 34
Field . . . b2
File Numbers 68 69 70 74,75, 76
Fixed Disk Platter 3,17
Format Errors {(Models 2230 & 2260) 18
Format Errors (Model 2270) 29
Formatting Procedure {Models 2230 & 2260) 17
Formatting Procedure (Model 2270) 26
Hierarchy of Data . . . 46
Hog Mode, Programmable . 182-185
Hog Mode, Manual .. .182
Hog Mode, Programmagle . 182-185
Hollerith, Herman1
IF END THEN . 61, 143, 144
Indirect Addressing of Disk Unit . 34, 69-70
Inter-Field Gaps . . 97-98
Iron Oxide, Used as a Recordmg Medlum .7,8
Keyed File Access Method (KFAM) 46
LIMITS . . 99-101, 116
LIMITS Examples . 100, 101, 117
LISTDC 44-45, 118
LIST DC Examples . . 44,118
LOADDACommand138, 167
LOAD DA Examples . 138, 139, 140, 167, 168
LOAD DA Statement . . 138, 168
LOAD DC Command . . 4142, 119
LOAD DC Command Examples . . 42,119
LOAD DC Statement 42-44, 120
LOAD DC Statement Examples . . 43,44, 121
Loading & Formatting Diskettes . . 26-29

INDEX (Cont.)

Loading Procedure, Disk Cartridge
(Models 2230, 2260)
Logical Record

. 21-23

. . . 46,48, 5153 56,
57 58, b9, 60, 141, 143, 214

'LS’ Parameter . 39
Machine Interlocks 24
Maintenance Check (Models 2230 & 2260) . 24
MOVE . . . 63-64, 122
MOVE Examples . 64, 123
Multiple Disk Units, Addressung

Scheme for 86-87
Multiplexer Operation . . 181
Overlaying Programs from Disk 44, 139

Program File
Protect Parameter

40, 89-90, 136
. 126, 171, 216

‘R’ Parameter . . 33, 34
Random Access .3
Random Access Device .3

226

Read-After-Write

Read/Write Head .
Removable Disk Platter

‘S’ Parameter

SAVE DA .

SAVE DA Examples

SAVE DC .

SAVE DC Examples
SCRATCH .
SCRATCHDISK
SCRATCH DISK Examples .
Scratched File . ..
Scratched Files, Reusing .
Sector . .

Sector Address

Sector Arrangement in a Track

Sector Control Bytes
Sector Layout .
Sector Numbering

110, 112, 125,

163, 165, 171, 216

.b6
. 3,17,18, 23,
Appendices E, F
. 81,82

. 137,170

. . . .137,170
40-41, 89-90, 125
40, 41,90, 126

. 62-63, 127

. 3840, 129

. . . 39, 130
62 63, 64, 93-95
. 93-95

. 8,216

8, 38

R

8, 96, 216
o012

9, 10, 38

:To help us to provide you with the best manuals possible, please make your comments and suggestions
¥ concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
=and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
§ name and address. Your cooperation is appreciated.

|
1
‘
1 700-3159G
E
: TITLE OF MANUAL: 2200 DISK REFERENCE MANUAL
[]
! COMMENTS:
(]
[]
[]
]
]
]
] Fold
1
)
[]
]
]
Fold

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

[BUSINESS REPLY MAIL

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

Fold

Printed in U.S.A.
13-1019

Cut along dotted line.

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 2S6
TELEPHONE (416) 449-2175
Telex: 069-66546

WANG EUROPE S.A./N.V.
(European Headquarters)
250, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/640.37.80
Telex: 12430-12398

WANG NEDERLAND B.V.
Produktiewey 1

ljsselstein, Netherlands
TELEPHONE (03408) 41.84
Telex: 47579

WANG PACIFIC LTD.

9th Floor, Lap Heng House
47-50, Gloucester Road
Hong Kong

TELEPHONE 5-274641
Telex: 74879 Wang HX

WANG EUROPE S.A./N.V.
(Belgian Sales)

350, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/648.91.00
Telex: 62691

WANG DO BRASIL
COMPUTADORES LTDA.

Praca Olavo Bilac No. 28
SL1801/1803

Rio de Janeiro, Centro, RJ, Brasil
TELEPHONE 232-7503, 232-7026

WANG COMPUTERS

(SO. AFRICA)} PTY. LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

Republic of South Africa
TELEPHONE (011) 48-6123
Telex: 960-83297

WANG INTERNATIONAL
TRADE, INC.

One Industrial Avenue
Lowell, Massachusetts 01851
TELEPHONE (617) 851-4111
Telex: 94-7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

S-171 36 Solna, Sweden
TELEPHONE 08/27 27 98
Telex: 11498

WANG COMPUTER LTD.
Shindaiso Building No. 5
2-10-7 Dogenzaka Shibuya-Ku
Tokyo, Japan

TELEPHONE (03) 464-0644
Telex: 2424909 WCL TKO J

WANG INDUSTRIAL CO., LTD.
7, Tun Hwa South Road

Sun Start Tun Hwa Bldg.

Taipei, Taiwan, China
TELEPHONE 7522068, 7814181-3
Telex: 21713

WANG GESELLSCHAFT MBH
Murlingengasse 7

A-1120 Vienna, Austria
TELEPHONE 85.85.33

Telex: 74640 Wang a

WANG GESELLSCHAFT MBH
Wiedner Hauptstrasse 68
A-1040 Vienna, Austria
TELEPHONE 57.94.20

Telex: 76424 Wang a

WANG S.A./A.G.
Markusstrasse 20

Postfach 423

CH 8042 Zurich 6, Switzerland
TELEPHONE 41-1-60 50 20
Telex: 59151

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065, Australia
TELEPHONE 439-3511

Telex: 24569

WANG ELECTRONICS LTD.
Argyle House, 3rd Floor

Joel Street

Northwood Hills

Middlesex, HA6 INS, England
TELEPHONE (09274} 28211
Telex: 923498

WANG FRANCE S.A.R.L.
Tour Gallieni, 1

78/80 Ave. Gallieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 680958F

WANG LABORATORIES GmbH
Moselstrasse 4

6000 Frankfurt AM Main
Postfach 16826

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

WANG DE PANAMA (CPEC) S.A.
Apartado 6425

Calle 45E, No. 9N. Bella Vista
Panama 5, Panama

TELEPHONE 69-0855, 69-0857
Telex: 3282243

WANG COMPUTER LTD.

302 Great North Road

Grey Lynn, Auckland

New Zealand

TELEPHONE Auckland 762-219
Telex: CAPENG 2826

WANG COMPUTER PTE., LTD.
Suite 1801-1808, 18th Floor
Tunas Building, 114 Anson Road
Singapore 2, Republic of Singapore
TELEPHONE 2218044, 45, 46
Telex: RS 24160 WANGSIN

WANG COMPUTER SERVICES
One Industrial Avenue

Lowell, Massachusetts 01851
TELEPHONE (617) 851-4111
TWX 710-343-6769

Telex: 94-7421

DATA CENTER DIVISION

20 South Avenue

Burlington, Massachusetts 01803
TELEPHONE (617) 272-8550

_J

W! G LABORATORIES, INC.
N ONE INDUSTRIAL AVENUE, LOWELL. MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A.
700-3159G
8-77-2.5M

Price: see current list

®

	Cover
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Model 2230 Series (2230 and 2260) General Information and Formatting Instructions
	Chapter 3: Model 2270 General Information and Formatting Instructions
	Chapter 4: Accessing the Disk Platters (Models 2230, 2260, and 2270)
	Chapter 5: Automatic File Cataloging Procedures
	Chapter 6: Disk Device Selection and Multiple Data Files
	Chapter 7: Efficient Use of the Disk
	Chapter 8: Automatic File Cataloging Statements and Commands
	Chapter 9: Absolute Sector Addressing
	Chapter 10: Absolute Sector Addressing Statements and Commands
	Chapter 11: The Disk Multiplexers (Models 2224 and 2230MXA/B)
	Appendices
	Appendix A: Disk Error Codes
	Appendix B: Model 2230 Specifications
	Appendix C: Model 2260 Specifications
	Appendix D: Model 2270 Specifications
	Appendix E: Model 2230/2260 Disk Cartridge Maintenance Information
	Appendix F: Disk Cartridge Compatibility (Models 2230 and 2260)
	Appendix G: A Glossary of Disk Terminology
	Appendix H: Bibliography
	Appendix I: Equipment Guarantee and Preventive Maintenance Information
	Appendix J: System 2200 Error Codes

	Index

