NO. 2

7180/7279 REPAIR

1. INTRODUCTION

ŧ

.

2

This MRG contains technical information concerning the microprocessor for the PCS-II and 2210 minifloppy disk drives. It includes descriptions of the basic components of the microprocessor, an explanation of the instruction set (software), a theory of operation (hardware), schematic drawings and a troubleshooting section.

TABLE OF CONTENTS

1.	INTRODUCTION								
2.	7180	/7279 MI	CROPRO	CESSOR		1			
	2.1 SIMPLIFIED THEORY OF OPERATION								
		2.1.1	Read (Only Memory		3			
		2.1.2	Randor	n Access Memory		4			
			6						
		2.1.4	Regist	ter Structure		6			
	2.2 THE INSTRUCTION SET - H		ON SET - HARDWARE CONTROL VI.	A SOFTWARE	9				
		2.2.1	Genera	al		9			
		2.2.2	Instr	uction Categories		11			
		2.2.3	Instr	uction Set Summary		13			
		2.2.3	3.1	Introduction		18			
		2.2.3	3.2	Instruction Set Examples		25			
		2.2.3	3.3	Typical Microprogram		35			
		2.2.4	Model	PCS-II/2210 Microprogram		40			

WANG)

LABORATORIES, INC.

Printed in U.S.A.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-8769, TELEX 94-7421

2.3.1	Introduction	60
2.3.2	Timing	60
2.3.3	Input to Microprocessor from CPU	61
2.3.4	Output of Microprocessor to Disk	62
2.3.5	Input from Disk to Microprocessor	63
2.3.6	Output from Microprocessor to CPU	63
2.3.7	Disk Control Operations	64
2.3.8	Index/Sector Separator	65
2.3.9	Cyclic Redundancy Check	66
2.3.10	Format Routine	66

60

67

77

2.4 TROUBLESHOOTING PROCEDURES

	2.4.1	Introduction	67
	2.4.2	Equipment Required	68
	2.4.3	Lightboard Installation Procedure	68
	2.4.4	Operational Use of Lightboard	70
	2.4.5	7180/7279 Repair	72
2.5	MODEL	7180/7279 BLOCK DIAGRAM AND SCHEMATICS	74

2.6 7180/7279 SIGNAL MNEMONICS

ii

March 10, 1978 CORRECTIONS AND UPDATES TO MODULE REPAIR GUIDE NO. 2

1. GENERAL

Module Repair Guide No. 2 contained a lower revision microprogram than the program currently being used. This addendum contains a listing of the updated program along with a few additional pages from MRG No. 2 that have had some major typographical corrections made. The following pages, including the listing of the microprogram, should be inserted into MRG No. 2 and the old pages removed.

2. 7180/7279 MICROPROCESSOR

2.1 SIMPLIFIED THEORY OF OPERATION

Being similar to most general purpose microprocessors, a typical Wang Labs' disk microprocessor is comprised of the following elements (Refer to Figure 1):

A Read-Only-Memory (ROM); used to control all disk microprocessor operations.

A Random-Access-Memory (RAM); normally used as a transitional working register.

An Arithmethic/Logic Unit (ALU)

Two general purpose registers: The A register, and the K register.

Two Status registers; ST_0 and ST_1 , actually control indicators which sense and set various disk and disk microprocessor conditions.

The 7180 board contains the entire microprocessor logic for the PCS-II disk drives. Figure 1 shows the simplified block diagram for the 7180 board.

2

WRITE DATA FLOW --------

READ DATA FLOW -----

FIGURE 1 SIMPLIFIED BLOCK DIAGRAM

Read/Write Data Flow

When data is written on the disk (refer to Figure 1), data is strobed into the K register from the CPU and clocked into the A bus multiplexer. The output of the multiplexer is applied to the ALU and sent to the RAM. The RAM outputs the data to the A register which sends the data to be written to the disk.

When data is read from the disk, it is applied to the A register, the bus multiplexer and on to the ALU. The ALU applies the data to the RAM and finally to the CPU.

The extra lines shown in Figure 1 are not used during a read/write sequence but are used for data manipulation and housekeeping functions before, during and after the read/write sequence.

2.1.1 READ ONLY MEMORY

The ROM is the heart of the microprocessor and contains the microprogram for the microprocessor. The 7180 utilizes two INTEL 2708 Programmable Read Only Memory (PROM) Integrated Circuits. Each PROM contains a 1024 x 8 bit matrix.

Since a ROM Instruction requires 16 bits, both PROMs are simultaneously selected to provide a 16 bit output. With this configuration, the total ROM capacity is 1024 bytes or steps. See Figure 2.

The steps in the ROM are expressed in hexadecimal notation. The steps are 0000_{16} to $03FF_{16}$ (0-1023). The ROM is addressed by an instruction counter (IC) which normally increments the ROM one step after an instruction has been decoded and performed. Ten bits, ICq-o are applied to the ROM from the IC, the address. The IC can cause the ROM to branch from the increment operation to any address by a branch instruction.

The 16 bit ROM output, $RI_{15} - RI_0$, is latched into D-latches and becomes bits $R_{15} - R_0$.

FIGURE 2 READ ONLY MEMORY

2.1.2 RANDOM ACCESS MEMORY

The RAM consists of four 2101-1 Integrated Circuits with a capacity of 256 x 4 bits resulting in a total storage capacity of 512 bytes. See Figure 3. The RAM address counter addresses the RAM with $AD_8 - AD_0$ bits and can increment, decrement or preset the RAM to any address. Information can only be loaded into the RAM from the ALU, $C_7 - C_0$, but the output can be transferred to the A register, ALU or the CPU. The RAM is divided into two sections: Locations $8COO_{16} - 8CFF_{16}$ (these are locations 0-255 - the reason for this notation will be explained later) are used for the read/write buffer and various locations between $8DOO_{16} - 8DFF_{16}$ (256-511) are used as a work buffer. Refer to the RAM allocation chart below.

RAM ALLOCATION

LOCATION	DESCRIPTION
*C00 - 8CFF	Read/write buffer
8 DOF	Zero sent to the 2200
8D10	2200 Address byte #1
8D11	2200 Address byte #2
8D12	2200 Address byte #3
8D20	Header byte #1 (track from disk)
8D21	Header byte #2 (sector from disk)
8D2 5	Disk track #l (track currently under head)
8D26	Disk track #2 (track currently under head)
8D30	Error count
8D31	Internal status
8D32	Address sent to 2200
8D33	Format retries
8D40	Disk #2 operation count
8D41	Disk #1 operation count
8DD4 - 8DE7	20 Bytes of zeroes
8DE8	03 Byte
8DE9	Header byte #1 (track desired)
8DEA	Header byte #2 (sector desired)
8DEB - 8DFE	20 Bytes of zeroes
8DFF	03 Byte INCREMENT DECREMENT RS-ROFOR

÷

*

3

-

2.1.3 ARITHMETIC/LOGIC UNIT

Two 74181 integrated circuits, designed to perform specific arithmetic or logical operations, as directed by the ROM Microinstruction sequence, comprise the ALU.

This ALU responds to sixteen instructions. Basic ALU inputs consist of the A bus, the B bus, a Carry-In bit, and a function select code decoded from the ROM.

The A bus is the output of a multiplexer, incorporating the A register, the K register, and Status registers St_0 or ST_1 as selectable inputs.

The B bus is the output of a two-part register, incorporating the eight low order ROM bits $(R_7 - R_0)$, or the eight bit RAM output $(M_7 - M_0)$.

The ALU output is the C bus $(C_7 - C_0)$; data on this bus can be stored in the A register, K register, RAM, or can be transferred to the status registers ST_0 or ST_1 . Again, ALU manipulations are directed by the ROM instruction set.

2.1.4 REGISTER STRUCTURE

1) K Register:

The general purpose K register stores data from either the controlling CPU $(KS_7 - KS_0)$, or from the disk microprocessor ALU $(C_7 - C_0)$; i.e., whichever source is selected by the ROM for input to the K register.

When commanded by the ROM, the contents of the K register is transferred to the AUL.

ŝ

The general purpose A register stores data from (1) the disk microprocessor RAM ($M_7 - M_0$), which is data to be written on the disk, (2) the disk data (a READ), (3) the cyclic redundancy check (CRC) circuitry (verifies disk data accuracy), and (4) the ALU ($C_7 - C_0$). The contents of the A register may be used by the ALU, or may be used as a transitional register for each data byte written on the disk.

3) Status Registers (ST₀, ST₁):

Status register ST₀ reports eight disk/CPU conditions to the disk microprocessor, as follows:

Word Ready STO-1 (Bit 1) - The 4th bit of a four-bit binary counter, used to indicate when each byte is ready to be transferred from disk to RAM, via the A register and ALU (WRITE). Word Ready is also used to indicate when each byte is ready to be transferred from RAM to disk via the A register.

Address Bit 8 STO-2 (Bit 2) - The 9th (highest order) RAM address bit; $(2^9 = 512$ byte addresses).

40 ms Delay STO-3 (Bit 3) - The output of an integrated circuit (active for 40 ms). This delay is used to allow time for proper disk access.

HM STO-4 (Bit 4) - A signal indicating to the microprocessor that the motor of Disk Drive #1 has been turned on and that the R/W head has been loaded.

CAX STO-5 (Bit 5) - Made up of the 2200 Addresses Bus terms AB_6 and AB_8 . CAX distinguishes a select address from a data transfer operation.

Calculator Input Strobe STO-6 (Bit 6) - A strobe from 2200 to disk microprocessor which must accompany each address or data byte from the 2200 to the K register. This status bit indicates that one byte is ready to be transferred from the K register to RAM via the ALU.

 HM_2 STO-7 (Bit 7) - A signal indicating to the microprocessor that the motor of Disk Drive #2 has been turned on and that the R/Q head has been loaded.

Calculator Busy STO-8 (Bit 8) - The Ready/Busy indicator from the 2200 CPU.

These bits are sampled by the ALU via the A Bus inputs when ROM bits R_9 and $R_8 = 10_B$ ($R_9 = 1$; $R_8 = 0$).

Status register ST₁ reports four disk/disk microprocessor conditions back to the microprocessor as follows:

SMO ST1-1 (Bit 1) - This bit is the index pulse from the disk. (There is one pulse for every 10 sectors on the disk). It is used to determine sector 0 during a format operation.

ST1-2 through 4 (Bits 2, 3, 4) - These bits are not used in a PCS-II disk microprocessor.

SECTOR MARK PULSE ST1-5 (Bit 5) - Ultimately the sector mark pulse (SM) from the disk. (There is one pulse for each sector on the disk). It is used to denote the beginning of each sector.

Tract 00 ST1-6 (Bit 6) - A line from the Disk Drive which indicates when the R/W head is positioned at track zero (the outer most track).

Carry ST1-7 (Bit 7) - This is the carry bit for arithmetic operations. It is gated to the ALU for ROM microinstructions specifying carry, and receives that resultant carry.

ST1-8 (Bit 8) - This bit is not used in a PCS-II disk microprocessor.

These bits are sampled by the ALU via the B Bus inputs when ROM bits R_9 and $R_8 = 11_2$.

2.2 THE INSTRUCTION SET - HARDWARE CONTROL VIA SOFTWARE

2.2.1 GENERAL

2

Control is implemented via 16-bit ROM instructions, as explained in Section 2.1.1. This 16-bit output (bits $R_{15} - R_0$) is distributed throughout the disk microprocessor, and is subsequently decoded as instructions to perform specific logic operations and data manipulations.

ROM output is formatted such that type of operation, registers involved, destination of resultant data, information source(s), and other control factors are defined by a single 16-bit instruction. The assembled sequence of "microinstructions" is referred to as the microprogram for the peripheral's microprocessor.

There are 26 basic instructions in the 7180 instruction set with each instruction having variables resulting in literally thousands of unique instructions available for data manipulation. The microprocessor hardware is designed so that it can execute every instruction with the end result predictable in every case.

Each of the instructions are comprised of two parts: the operation code and the operand. The operation code is defined as a portion of a computer instruction that indicates which action is to be performed by the computer. ROM bits $R_{15} - R_8$ are used as the operation code. Operand is defined as any one of the quantities entering into or arising from an operation. ROM bits $R_7 - R_0$ comprise the operand.

Operation code bits indicate the following, depending on which instruction category (to be explained later) is applicable:

- 1) Function to be performed.
- 2) Register (A, K, ST₀, ST₁) used in performing this function.
- Whether to increment/decrement RAM address, or allow current RAM address to remain unchanged.
- Selection of destination for resultant information (function performed). That is, store these results either in a register (A, K, ST₀, ST₁) or back into the current RAM location.
- 5) Whether high order bits (7-4) or low order bits (3-0) of the register designated (A, K, ST_0 , ST_1) will be used for comparisons involved in conditional branch instructions.

Operand code bits indicate the following (again depending on which instruction category is applicable):

1) Use operand (via microprocessor ALU B Bus) as mask bits, along with bits (via microprocessor ALU A Bus) from a register $f(A, K, ST_0, ST_1)$ designated by ROM bits R₈ and R₉.

10

- 2) Use operand bits $R_7 R_4$ as a mask for 4-bit Conditional Branch instructions.
- 3) Use operand bits $R_3 R_0$ or $R_7 R_0$ as a destination branch address for Conditional Branch instructions.
- 4) Use operand bits $R_7 R_0$ plus operation code bits R_8 and R_9 as a destination address for Unconditional Branch instructions.
- 5) Use operand bits $R_7 R_0$ plus operation code bit R_8 as a new RAM address to be preset via Load Auxiliary instruction in the microprogram.

2.2.2 INSTRUCTION CATEGORIES

The 7180/7279 disk microprocessor instruction set can be arranged into five major categories.

1) Register Instructions:

2

An operation using 8 bits of RAM output $(M_7 - M_0)$ contained at the current RAM address, and 8 bits contained in a register (A, K, ST_0 , ST_1) designated by ROM bits R_9 and R_8 . The results of such instructions are either stored into the current RAM location or stored back into the register designated by ROM bits R_9 and R_8 . The RAM address can be incremented, decremented or remain unchanged by bits R_{11} and R_{10} .

There are eight register instructions as explained below:

INSTRUCTION EXPLANATION No operation. Used as a filler command NOOP and has no effect but to cause the ROM address to increment. B to M B to memory. Transfers contents of B (buffer register A,1 K, STO or ST1) to memory and causes RAM address to increment, decrement or remain unchanged. M to B Memory to B. Transfers contents of memory to B (buffer register A, K, STO or ST1) to memory and causes RAM address to increment, decrement or remain unchanged. Add w/o carry Binary add without carry bit. A binary add of the contents of B (buffer register A, K, STO or ST1) and RAM with result to RAM or B and causes RAM address to increment, decrement or remain unchanged.

OR

XOR

Logical OR function. ORs the contents of B (buffer register A, K, STO or ST1) with RAM with result to RAM or B and causes RAM address to increment, decrement or remain unchanged.

Exclusive OR function. Same as OR function except contents of **B** and **RAM** are exclusive ORed.

EXPLANATION

Add with carry

Binary add with carry bit. Same as add without carry instruction.

AND

Logical AND function. ANDs the contents of B (buffer register A, K, STO or ST1) with contents of RAM with result to RAM or B and causes RAM address to increment, decrement or remain unchanged.

2) Immediate Instructions:

An operation using 8 bits of ROM output $(R_7 - R_0)$ contained at the current ROM address, and 8 bits contained in a register (A, K, ST₀, ST₁) designated by ROM bits R_8 and R_9 . The results of such instructions are stored back into the designated register (R_8, R_9) .

There are four immediate instructions as explained below:

INSTRUCTION

3

EXPLANATION

OR Immediate

Logical OR function. The contents of a register (A, K, STO or ST1) are ORed with the eight least significant bits of ROM with the result stored back into the register.

XOR Immediate

Exclusive OR function. Same as OR Immediate except contents are exclusive ORed.

EXPLANATION

Add w/carry Imm.

Binary add with carry bit. The binary add w/carry bit of a register (A, K, STO or ST1) with the eight least significant bits of ROM with the result stored back into the register.

AND Immediate Logical AND function. Same as OR Immediate except contents are ANDed.

3) Branch Instructions:

These instructions are divided into two categories: conditional branch and unconditional branch. The conditional branch instructions allow from 0 to \pm 15 microprogram step jumps; or from 0 to \pm 255 microprogram step jumps (depending on which conditional branch instruction is performed). The unconditional branch instructions causes a jump to any step within the microprocessor's microprogram.

There are ten branch instructions as explained below:

INSTRUCTION

EXPLANATION

Br if Reg. = 0

Branch if register = 0. Conditional branch to step indicated by the eight least significant bits of ROM if register (A, K, STO or ST1) equals zero. Maximum number of steps is + 255.

Br. if Reg. $\neq 0$

Branch if register $\neq 0$. Same as above if register does not equal zero.

Br. if True L,H

Branch if True Low or Branch if True High. Conditional branch to step indicated by ROM bits $R_3 - R_0$ if the 4 least significant bits (Low) or the 4 most significant bits (High) of register (A, K, STO or ST1) equal any corresponding true ROM bits $R_7 - R_4$. Maximum number of branch steps is +15.

Br. if False L,H Branch if False Low or Branch if False High. Conditional branch to step indicated by ROM bits $R_3 - R_0$ if the 4 LSB (Low) or the 4 MSB (High) of register f(A, K, STO or ST1) equal any corresponding false ROM bits $R_7 - R_4$. Maximum number of branch steps is +15.

Br. if = Mask Branch if equal to Mask. Conditional branch to step indicated by ROM bits $R_3 - R_0$ if either the 4 LSB or 4 MSB (selected by a bit of the instruction code) of a register (A, K, STO or ST1) equal the mask of ROM bits $R_7 - R_4$. Maximum # of branch steps is +15.

Br. if *f* Mask Branch if not equal to Mask. Same as above if register does not equal mask.

UB to steps 0-255 Unconditional Branch to steps 0-255. In the form of HEX 88YY, causes the microprogram to branch to the address contained in YY to one of the first 256 steps of the microprogram (steps 0-255).

UB to steps 256-511 Unconditional Branch to steps 256-511. In the form of HEX 89YY, causes the microprogram to branch to the address contained in YY to one of the second 256 steps of the microprogram (steps 256-511).

UB to steps 512-767 Unconditional Branch to steps 512-767. In the form of HEX 8AYY, causes the microprogram to branch to the address contained in YY to one of the third 256 steps of the microprogram (steps 512-767).

UB to steps 768-1023 Unconditional Branch to steps 768-1023. In the form of HEX 88YY, causes the microprogram to branch to the address contained in YY to one of the fourth 256 steps of the microprogram (steps 768-1023).

4) RAM Address Instructions:

These two instructions allow the ROM outputs $R_8 - R_0$ to preset the RAM address.

INSTRUCTION

EXPLANATION

Load Aux. (0-255)

Load Auxiliary. Enables the ROM bits $R_8 - R_0$ to preset the RAM to any address between 0-255 (the data buffer). The instruction takes the form of HEX 8CXX where XX is the RAM address.

Load Aux. (256-511) Load Auxiliary. Enables the ROM bits $R_8 - R_0$ to preset the RAM to any address between 256 and 511 (the work buffer). The instruction takes the form of 8DXX where XX is the RAM address.

5) Control Instructions:

Control instructions initiate disk functions such as disk head movement, read, write, format, etc. These instructions are decoded directly from ROM outputs to peripheral interfacing hardware in the microprocessor. The ALU is not involved in these instructions.

There are 12 control functions used in the PCS-II microprocessor.

INSTRUCTION

EXPLANATION

Control 1

Takes the form of HEX ECXX where EC01 - Turn on read gate (RDG) EC02 - Turn on write gate (WTG) EC04 - Not used EC08 - Not used EC10 - Head direction Select (HD DIR) EC20 - Preset CRC (PRC) EC40 - Head step (HD ST) EC80 - Clear drive #2 (HM₂) ED00 - Clear drive #1 (HM₁)

Control 2

Takes the form of HEX FCXX where FC01 - Select drive #1 (DK_1) FC02 - Select drive #2 (DK_2) FC04 - Set drive #1 (DK_1) FC08 - Not used FC10 - Strobe to 2200 (IBS) FC20 - 40 ms delay FC40 - Not used FC80 - Not used

2.2.3 INSTRUCTION SET SUMMARY

2.2.3.1 Introduction

Tables 1, 2 and 3 summarize the 26 instructions of the 2210/PCS-II microinstruction set. Table 1 lists all the instructions and is divided into three major columns. The first column labeled "instruction category" contains the instruction names arranged by category as explained in Section 2.2.2. The second major column is labeled "operation code bits" and lists in binary the eight most significant bits of ROM output. This is the first half of any instruction, the operation code. The third major column is labeled "operand code bits" and lists in binary the eight least significant bits of ROM output. This is the second half of any instruction, the operand.

Referring to the second major column, it is noted that ROM bits $R_{15} - R_{12}$ are fixed ones and zeroes for the register instructions but that bits $R_{11} - R_8$ may vary. The I/D heading under ROM bits R_{11} and R_{10} indicates increment or decrement of RAM address depending upon the status of these two bits.

It is at this point that Table 2 is required; Table 2 is an expansion of all the abbreviations used in Table 1. Referring to Table 2, the I/D bits are expanded into the four possible configurations. For example, if I/D bits R_{11} and R_{10} are a one and zero respectively for a register instruction, the result of the operation is stored in RAM and the RAM address is decremented one location.

TABLE 1

PCS-II/2210 DISK MICROPROCESSOR INSTRUCTION SET

	OPERATION	CODE BITS-	-(R ₁₅ -R ₈)	OPERAND CODE BITS-(R7-R0)			
INSTRUCTION CATEGORY	15 14 13 12	11 10	98	76543210			
REGISTER INSTRUCTIONS	INSTRUCTION CODE	I/D	REG.	OPERAND			
NO-OP B to Memory Memory to B Binary ADD w/carry OR XOR - Exclusive OR Binary ADD wo/carry AND	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ID ID ID ID ID ID ID ID	B B B B B B B B	Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used			
IMMEDIATE INSTRUCTIONS	INSTRUCTION	CODE	REG.	IMMEDIATE OPERAND (B BUS)			
OR Immediate XOR Immediate Binary ADD wo/carry Imme AND Immediate	1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1	1 0 1 0	B B B B	I I			
BRANCH INSTRUCTIONS (Conditional; 8 bit)	INSTRUCTION	CODE	REG.	BRANCH ADDRESS (B BUS)			
Branch if Register = 0 Branch if Register ≠ 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc}1&1\\1&1\end{array}$	B B	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y			
MASK BRANCH INSTRUCTIONS (Conditional; 4 bit)	INSTRUCTION	CODE H/L	REG.	MASK BRANCH ADDRESS			
Branch IF True Branch IF False Branch IF = Mask Branch IF / Mask	$\begin{array}{cccccccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}$	0 S 0 S	B B B B	M M M M Y Y Y Y M M M M Y Y Y Y M M M M			
UNCONDITIONAL BRANCH	INSTRUCTION	CODE		BRANCH ADDRESS			
TO STEPS 0-255 (0000-00FF) TO STEPS 256-511 (0100-01FF) TO STEPS 512-767 (0200-02FF) TO STEPS 768-1023 (0300-03FF)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 1 0	0 0 0 1 1 0 1 1	Y Y			
RAM ADDRESS INSTRUCTIONS	INSTRUCTION	CODE		RAM ADDRESS LOADED			
LOAD AUX (DATA BUFFER) LOAD AUX (WORK BUFFER)	$\begin{array}{cccc} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$	_	0 0 0 1	x x x x x x x x x x x x x x x x			
CONTROL INSTRUCTIONS	INSTRUCTION	CODE	1	CONTROL OPERAND			
Control 1 Control 2	$\begin{array}{rrrrr}1&1&1&0\\1&1&1&1\end{array}$	1 1	Z Z Z Z	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			

Again referring back to Table 1, the last two bits of the operation code (bits R_9 and R_8) determine what register is to be used in the operation. This column is headed by "REG." which is an abbreviation for register. Observing Table 2, the two bits decode one of the four registers. For example, if ROM bits R_9 and R_8 are both low during a register instruction, the A register is the selected register.

Table 3 allows the reader to disregard Tables 1 and 2 since Table 3 is a breakdown of all the instructions in hexadecimal form. For example, if a 1700_{16} code is encountered in the program, the reader would be forced to convert the hexadecimal code to binary (0001011100000000), refer to Table 1 for the type of instruction, and finally to Table 2 to determine the register used and whether or not the RAM address is incremented or decremented. However, by utilizing Table 3, the reader can instantly determine that a 1700_{16} code is a B to M instruction involving register ST1 and incrementing the RAM address.

TABLE 2

EXPLANATION OF LETTER DESIGNATIONS FOR INSTRUCTION SET BITS

I/D = Increment/decrement of RAM Address

00 = Result to original RAM address; no increment or decrement

01 = Result to original RAM address then increment (+1)

10 = Result to original RAM address then decrement (-1)

11 = Result to selected register (B) and increment RAM address

REG. = Selected register	I = Immediate Operand (R _O				
00 = A register	- R ₇ Mask)				
01 = K register	M = Mask; a unique				
10 = Status Reg. 0	configuration of binary				
11 = Status Reg. 1	bits.				
	Y = Branch Address				

S = High order or Low order 4-bits of MASK Branch Instruction. 0 = Low order (Bits 0 - 3) 1 = High order (Bits 4 - 7)

X = New R. A. M. Address for LOAD Aux

```
Z = Control Operand
Control 1 (ECZZ<sub>16</sub>) X or (EDZZ<sub>16</sub>:
```

EC01 - Turn on Read Gate; RDG - (CNTRL1 AND R_0) EC02 - Turn on Write Gate; WTG - (CNTRL1 AND R_1) EC04 - Not used - (CNTRL1 AND R_2) EC08 - Not used - (CNTRL1 AND R_3) EC10 - Head Direction Select; HD DIR - (CNTRL1 AND R_4) EC20 - PRC - (CNTRL1 AND R_5) EC40 - Head Step; HD ST - (CNTRL1 AND R_6) EC80 - Clear drive #2; HM₂ - (CNTRL1 AND R_7) ED00 - Clear drive #1; HM₁ - (CNTRL1 AND R_8) Control 2 (FCZZ) FC01 - Select Drive #1 - (CNTRL2 AND R_0) FC02 - Select Drive #2 - (CNTRL2 AND R_1) FC04 - Set Drive #1 - (CNTRL2 AND R_2) FC08 - Not used FC10 - Strobe to 2200 - (CNTRL2 AND R_4) FC20 - 40 ms. Delay - (CNTRL2 AND R_5) FC40 - Not used - (CNTRL2 AND R_6) FC80 - Not used - (CNTRL2 AND R_7)

TABLE 3

EXPANDED BREAKDOWN OF MICROPROCESSOR OPERATION CODES

В То М

1.	A	К	St0	Stl	
	1000	1100	1200	1300	No RAM I/D
	1400	1500	1600	1700	AD + 1
	1800	1900	1A00	1800	AD - 1

M To B

2.	A	к	St0	Stl	
	2000	2100	2200	2300	No RAM I/D
	2400	2500	2600	2700	AD + 1
	2800	2900	2A00	2B00	AD - 1

Add With Carry (RAM)

3.

Α	K	St0	Stl	
3000	3100	3200	3300	No RAM I/D
3400	3500	3600	3700	AD + 1
3800	3900	3A00	3B00	AD - 1
3C00	3D00	3E00	3F00	AD + 1 Result to B

OR (RAM)

4.	A	K	St0	Stl	
	4000	4100	4200	4300	No RAM I/D
	4400	4500	4600	4700	AD + 1
	4800	4900	4A00	4800	AD - 1
	4C00	4D00	4E00	4F00	AD + 1 Result to B
			Exclus	ive OR (RA	M)
5.	A	K	St0	Stl	
	5000	5100	5200	5300	No RAM I/D
	5400	5500	5600	5700	AD + 1
	5800	5900	5A00	5 B 00	AD - 1
	5 C 00	5D00	5E00	5F00	AD + 1 Result to B
		:	Add Witho	ut Carry (RAM)
6.	A	K	St0	Stl	
	6000	6100	6200	6300	No RAM I/D
	6400	6500	6600	6700	AD + 1
	6800	6900	6A00	6B00	AD - 1
	6C00	6D00	6E00	6F00	AD + 1 Result to B
			AN	ID (RAM)	
7.	A	К	St0	Stl	
	7000	7100	7200	7300	No RAM I/D
	7400	7500	7600	7700	AD + 1
	7800	7900	7A00	7B00	AD - 1
	7C00	7D00	7E00	7F00	AD + 1 Result to B
			OR	Immediate	
8.	C811	C9 11	CAII	CBII	•

9.	D811	D911	DAII	DBII		
		Add	Without	Carry Imm	ediate	
10.	E8II	E9II	EAII	EBII		
	•		AND I	Immediate		
11.	F8II	F9II	FAII	FBII		
			Branch	n Commands		
12.	A	K	St0	Stl		
	80MY	81MY	82MY	83MY	= Mask L	
	84MY	85MY	86MY	87MY	= Mask H	
	90MY	91 MY	92 MY	93MY	≠ Mask L	
	94 M Y	95MY	96MY	97MY	≠ Mask H	Can only branch
	AOMY	AIMY	A2MY	A3MY	True L	within a ± 15 step
	A4MY	. A5MY	A6MY	A7MY	True H	area
	BOMY	BIMY	B2MY	B3MY	False L	
	B4MY	B5MY	B6MY	B7MY	False H	
	CCYY	CDYY	CEYY	CFYY	= 0	Can branch within
	DCYY	DDYY	DEYY	DFYY	≠ 0	a ±255 step area.
13.	Uncondi	tional Br	anch = 88	YY steps () - 255 in	microprogram
				-		microprogram
				-		microprogram
			8B	YY steps 7	768-1023 i	n microprogram
14.	Load Au	xiliary	= 80	XX - RAM () - 255 (D	DATA BUFFER)
		Ĩ	8D	XX - RAM 2	256-511 (W	ORK BUFFER)
15.	Control	1	= EC	ZZ or EDZ	Z (See Tab	ole 2)
1).	Control			ZZ (See Ta		/
	Soucioi	- -				

2.2.3.2 Instruction Set Examples

1) Register Instructions

The following two examples are typical of Register Instruction decoding:

EXAMPLE: $10XX_{16}$ (B to M)

Binary Valu

	HEX 1				HEX O				n/a				n/a			
alue	0	0	0	1	0	0	0	0	Х	Х	X	X	Х	Х	X	X
	R ₁₅	R ₁₄	R ₁₃	R ₁₂	r ₁₁	^R 10	R ₉	^R 8	R ₇	^R 6	R ₅	R ₄	R ₃	R ₂	R ₁	R ₀

Where: 0 = low (+0V) 1 = high (+5V) X = don't care

In the above register instruction, $R_{15} - R_{12}$ identify a Register-to-Memory command (sometimes referred to as B-to-M, in notation form). ROM bits R_{11} and R_{10} indicate that RAM address will not be incremented and that the contents of the A register (designated by ROM bits $R_{9,8} = 00_2$) will be stored at the current RAM location. ROM bits $R_7 - R_0$ are not used in register instructions. The above information can be verified by using Tables 1 and 2. However, by referring to Table 3, the $10XX_{16}$ code is immediately recognized as a B to M with the A register and no RAM increment or decrement.

EXAMPLE: 65XX₁₆ (Add with Carry)

Binary Value

	HEX 6					HEX	K 5			n/	a		n/a					
alue	0	1	1	0	0	1	0	1	X	X	X	X	Х	X	X	Х		
	R ₁₅	^R 14	^R 13	R ₁₂	R_{11}	^R 10	R ₉	^R 8	R ₇	^R 6	R ₅	R ₄	R ₃	R ₂	R ₁	R ₀		

For this instruction, $R_{15} - R_{12}$ designate that a Binary Add with Carry will be performed between the 8 bits at the current RAM location, and the 8-bit contents of the register designated by ROM bits R_9 , R_8 . In this case, R_9 and $R_8 = 01_2$, designating the 8-bit register. The Binary Add with Carry is performed, and R_{11} and R_{10} indicate that the result is stored at the current RAM location and then the RAM address is incremented. Referring to Table 3, the 65XX code is decoded as an Add with Carry instruction involving the K register and incrementing the RAM address.

Generally speaking, a Register instruction is an operation performed between an eight bit register (A, K, ST_0 , ST_1) designated by R_9 , R_8 and the eight bits stored at the current RAM address.

2) Immediate Instructions

The following example is typical of Immediate Instruction decoding:

EXAMPLE: F8AA₁₆ (AND Immediate)

В	í	nary	Val	ue

		HE	ΧF			HE	X 8			HE	XA		HEX A				
lue	1	1	1	1	1	0	0	0	1	0	1	0	1	0	1	0	
	R ₁₅	R ₁₄	^R 13	R ₁₂	R ₁₁	R ₁₀	R ₉	^R 8	1	R ₆	R ₅	R ₄	R ₃	^R 2	R ₁	^R 0	

All Immediate Instructions are performed using the 8 bits contained in a register (A, K, ST_0 , ST_1) designated by R_9 and R_8 , and the 8-bit mask presented in $R_7 - R_0$. The results of Immediate Instructions are transferred back to the designated register (A, K, ST_0 , ST_1).

For the example Immediate Instruction F8AA, ROM bits R_{15} - R_{10} designate an AND IMMEDIATE operation. The result of this AND IMMEDIATE is stored back into designated register A (R_9 , $R_8 = 00_2$). This can be verified by using Table 3.

The 8-bit mask present in bits $R_7 - R_0$ (10101010) are the bits that are ANDed in the ALU with the present contents of RAM.

As an example, if the RAM contains a bit configuration of 11110000 and this AND Immediate is executed, the final result in the A register would be a bit configuration of 10100000 (10101010 ANed with 11110000 = 10100000).

3) Branch Instructions

The various Branch instructions are explained individually:

First, there are eight 4-bit Branch instructions; they cause a branch from 0 to + 15 steps from the current microprogram step if a specified condition is met. These eight 4-bit instructions belong to the conditional category of Branch instructions.

Four ROM bits $(R_3 - R_0)$ determine the Branch address; therefore, there are 16 (2⁴) unique combinations of those binary bits possible. Thus (for example) if the current ROM address is 0000_{16} , and the Branch address specified by $R_3 - R_0$ is 1111₂, a jump of +15 steps is performed, branching the microprogram to ROM address $000F_{16}$. Conversely, if the current ROM address is $000F_{16}$ and the Branch address specified by $R_3 - R_0$ is $000F_{16}$ and the Branch address specified by $R_3 - R_0$ is $000O_2$, a jump of -15 steps is performed, branching the microprogram to ROM address 0000_{16} . These 4-bit conditional branch instructions compare the contents of a

register designated by R_9 and R_8 to a mask presented by bits $R_7 - R_4$. If the conditions of the branch are met, branch to a step (ROM address) designated by $R_3 - R_0$ is made. If the conditions of the branch are not met, the microprogram continues sequentially to the next step in that routine.

Since these instructions can only compare four bits of a register specified by R_9 and R_8 with the four mask bits $(R_7 - R_4)$, either the four high order bits or the four low order bits of the designated register is specified by ROM bit R_{10} . If R_{10} = high, or logical "one", compare bits 7-4 of the designated register with mask bits $R_7 - R_4$; if R_{10} = low, or logical "zero", compare bits 3-0 of the designated register with mask bits $R_7 - R_4$.

The following examples are typical of each four bit conditional branch instruction.

EXAMPLE:
$$805A_{16}$$
 (Br A = ML)

										MAS	SK			BR	ANCH		
		HEX	٢ 8			HEX O				HEX		HEX A					
Binary Value	1	0	0	0	0	0	0	0	0	1	0	1	1	0	1	0	
	^R 15	R ₁₄	^R 13	^R 12	^R 11	^R 10	R ₉	^R 8	R ₇	R ₆	R ₅	R ₄	R ₃	^R 2	R ₁	R ₀	
									(COMPA	ARE						
Contents	of A	Reg	iste	r:	X	X	X	X	0 1 0			1	1 x=irrelevant				
					A ₇	A ₆	А ₅	A ₄	A ₃	A_2	A ₁	A ₀		valu	e		
					1	High	Ord	er	Lo	w 01	der		-				

This instruction causes a branch by changing the current set up of $IC_7 - IC_0$. Actually, the only bits of ROM address that change from the current address are IC_{0-3} . This ROM address modification takes place only if the low order bits of the A register $(A_3 - A_0)$ are identical to the mask presented in $R_7 - R_4$. With the A register in the state indicated above, the condition sought is met and a branch is performed.

If the current ROM step (address) was:

The new address would be:

Since the new address = 010_{10} (=A₁₆) And the previous address = 07_{10} (= 7_{16})

Subtract -

Branch to address OA (a jump of +3) occurs when specified conditions are met.

The above example microinstruction, 805A, is a typical "Branch if A = Mask Low" conditional branch in the microprocessor.

EXAMPLE: 8426_{16} (Br. A = MH)

										MA	SK			BR.	ANCH	
		HE	X 8		HEX 4					HE	X 2		HEX 6			
Binary Value	1	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0
	^R 15	^R 14	^R 13	R ₁₂	R ₁₁	^R 10	^R 9	^R 8	R ₇	^R 6	R ₅	R ₄	R ₃	R ₂	R ₁	^R 0
										сомр.	ARĘ					
<pre>x = irrelevant Contents of A register:</pre>											1	0	X	Х	х	X
value	value									А ₆	A ₅	А ₄	A ₃	A ₂	A ₁	A ₀

This instruction causes a branch to the ROM address designated by $R_3 - R_0$ if the high order bits of the A register $(A_7 - A_4)$ are equal to the mask presented in $R_7 - R_4$. Again, the specified condition is met and the branch is performed. The ROM address is changed in the same manner as the previous $805A_{16}$ example.

The example microinstruction 8426 is a typical "Branch if = Mask High" conditional branch in the microprocessor.

EXAMPLE: $AOCF_{16}$ (Br A = TL)

						-				MA	SK			BR	ANCH	I
		HE	ХА			HEX	κ Ο			HE		HEX F				
Binary Value	1	0	1	0	0	0	0	0	1	1	0	0	1	1	1	l
	R ₁₅	^R 14	^R 13	^R 12	R ₁₁	R ₁₀	^R 9	^R 8	R ₇	^R 6	^R 5	R ₄	R ₃	R ₂	R ₁	R ₀
				,									_			
x = irrel	levan	t			x	Х	Х	X	1	1	Х	Х]			
value	2				А ₇	А ₆	^A 5	A ₄	A ₃	A ₂	A ₁	А ₀]			

This instruction causes a branch only if the configuration of TRUE (ON; logic '1') bits presented in the $R_7 - R_4$ mask match the configuration of TRUE (ON; logic '1'; high) bits contained in the four low order bits (3-0) of a register designated by ROM bits R_8 and R_9 . ROM bits $R_{15} - R_{11}$ designate Branch if True; bit R_{10} (=0) designates four low order bits of the register selected by R_8 and R_9 , which in this case is the A register.

Generally speaking, this is called a Branch if True Low (Branch if A register low order TRUE bits match $R_7 - R_4$ TRUE bits). If any one of the TRUE mask bits $R_7 - R_4$) do not match up to a corresponding true bit in $A_3 - A_0$, no branch occurs.

ROM address is modified for branch in the same manner as the previous $805A_{16}$ example.

Since only TRUE mask bits are being compared, any other TRUE bits in the selected register not corresponding to TRUE bits in the mask are ignored.

If "Branch IF True High" is the instruction, the four high order bits of the A register would be used to compare with the TRUE mask bits presented in $R_7 - R_4$.

EXAMPLE: $B03F_{16}$ (A = FL)

										MAS	SK		BRANCH					
		HE	KB			HEX	٢٥			HEX	κ 3		HEX F					
Binary Value	1	0	1	1	0	0	0	0	0	0	1	1	1	1	1	1		
	R ₁₅	R ₁₄	R ₁₃	R ₁₂	R ₁₁	R ₁₀	R ₉	^R 8	R ₇	^R 6	R ₅	R ₄	R ₃	^R 2	R ₁	^R 0		
													•					
Content	s of	A R	egis	ter:	x	X	X	Х	0	0	X	X	x	(_= i	rrel	evant		
					A ₇	A ₆	A ₅	A 4	A ₃	A ₂	A ₁	A ₀]					

This instruction causes a branch if the configuration of false (low; 0) bits presented in the $R_7 - R_4$ FALSE mask bits (bits R_7 and R_6 in this case) match up to corresponding low order FALSE bits in the A register (A_3 and A_7 in this case).

A "Branch IF False High" instruction follows the same format as the above example. The only difference being that the FALSE high order bits of the selected register (the A register in this example) would be compared.

The two remaining conditional branch instructions have the capability to branch 0 to ± 255 steps from the current step in the microprogram. This is achieved by changing $IC_7 - IC_0$. Unlike the 4 bit conditional branch instructions which actually can modify only the four low order ROM address bits ($IC_3 - IC_0$), all 8 ROM address bits can be changed to the address contained in bits $R_7 - R_0$. These instructions cause a branch only if all eight bits of the register designated by R_9 and R_8 are either =0 or $\neq 0$.

These two instructions are as follows:

BRANCH IF REGISTER =0 1 1 0 0 1 B B Y Y Y Y Y Y YBRANCH IF REGISTER =0 1 1 0 1 1 B B Y Y Y Y Y Y Ywhere B = selected register

EXAMPLE: $DD2C_{16}$ (Branch IF Reg $\neq 0$)

		HE	ΚD			HE	K D			HE	X 2		HEX C				
Binary Value	1	1	0	1	1	l	0	1	0	0	1	0	1	1	0	0	
	^R 15	^R 14	^R 13	^R 12	^R '11	^R 10	^R 9	^R 8	R ₇	^R 6	^R 5	R ₄	R ₃	^R 2	R ₁	R ₀	
The example causes a branch from the current step, to step 002C or 012C, (depending on whether the current step lies within steps 0000 - 00FF or within 0100 - 01FF) if register K ('B' = 01) is any value other than zero.

The last Branch Instruction category is the Unconditional Branch. These instructions cause a direct branch to any step in the microprogram, subject to no conditions.

These two instructions are as follows:

UNCONDITIONAL BRANCH 88YY

(to 0000 thru 00FF) 1 0 0 0 1 0 0 0 Y Y Y Y Y Y Y Y

UNCONDITIONAL BRANCH 89YY

(to 0100 thru 01FF) 1 0 0 0 1 0 0 1 Y Y Y Y Y Y Y Y

UNCONDITIONAL BRANCH 8AYY

(to 0200 thru 02FF) 1 0 0 0 1 0 1 0 Y Y Y Y Y Y Y Y

UNCONDITIONAL BRANCH 8BYY

(to 0300 thru 03FF) 1 0 0 0 1 0 1 1 Y Y Y Y Y Y Y Y

EXAMPLE: 89C5₁₆ (UB)

Binary Valu

		HE	K 8			HE	K 9			HE	хс			HE	X 5	
alue	1	0	0	0	1	0	0	1	1	1	0	0	0	1	0	1
	^R 15	^R 14	R ₁₃	R ₁₂	R ₁₁	^R 10	R ₉	R ₈	R ₇	^R 6	R ₅	R ₄	R ₃	^R 2	^R 1	^R 0

This example causes a direct branch to step OlC5 in the microprogram without meeting any logic conditions.

4) Ram Address Instructions

Load auxiliary instructions unconditionally preset a RAM address specified by $R_7 - R_0 (AD_7 - AD_0)$, using $R_g (AD_g)$ as a chip enable.

The LOAD AUXILIARY instructions are as follows:

```
LOAD AUXILIARY 8CXX
(DATA BUFFER): 1 0 0 0 1 1 0 0 X X X X X X X X
```

LOAD AUXILIARY 8DXX

(WORK BUFFER): 1 0 0 0 1 1 0 1 X X X X X X X X Where X = new RAM address bits.

EXAMPLE: 8D20₁₆ (Load Auxiliary; Work Buffer)

Binary Value

HEX 8 HEX D HEX 2 HEX 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 ^R15 ^R14 Ř₈ **R**₁ R₁₃ R₁₂ R₁₀ R₉ R₆ R₄ R₀ R₁₁ R₇ R₅ R 2 R

This example presets RAM address to 20_{16} ; bit $R_8 = 1$ selects the Work Buffer RAM integrated circuits. Location 20 in the Work Buffer is the location for storage of the track header byte read from each disk sector. $8CXX_{16}$ presets to any location within the R/W Data Buffer in RAM.

5) Control Instructions

Control instructions are used to perform operations external to the microprocessor, such as sending a strobe to the 2200 CPU, or loading a R/W head in a Shugart disk drive.

The Control instructions are as follows:

 CONTROL 1
 1
 1
 0
 1
 1
 0
 0
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z

CONTROL 2 1 1 1 1 1 1 0 0 Z Z Z Z Z Z Z Z FCZZ

EXAMPLE: FC10 (Control 2)

Binary Value

		HEX	KF			HEX	K C			HE	X 1			HE	X 0	
lue	1	1	1	1	1	1	0	0	0	0	0	1	0	0	0	0
	R ₁₅						-	-		-	-	R ₄		_	_	-

This instruction causes one strobe and one byte of data input to be sent to the CPU, as specified by the Control Operand 10_{16} .

2.2.3.3 Typical Microprogram

The following microprogram is the prime routine for the PCS-II disk microprocessor. The prime routine consisting of 27 steps is initiated whenever the disk unit is turned on, the RESET key on the 2200 is depressed or the format button is depressed. Refer to text at end of program for a more detailed explanation of some of the actions that occur in the program.

SAMPLE MICROPROGRAM: PCS-II DISK PRIME ROUTINE

STEP	HEX		
(IN HEX	CODE	INSTRUCTION	COMMENT
0000	FC04	CNTRL 2/04	Select Disk #1
0001	F800	A AND IMM	Clear A Register (Immediate Operand = 0's).
0002	8D00	Load Auxiliary	Select RAM address 00 in the Work Buffer.
0003	1400	A to M(+1)	Take zeroes in A register and transfer to current RAM location then increment (+1) to next RAM address. This clears locations OO-FF of the Work Register.

0004	A223	BOTL	(Branch to 0003 IF STO-2 (AD ₉) is ON). This causes a loop which increments and clears each RAM location in the work buffer (256-511) per step 0003 comments.
0005	1400	A to M(+1)	Same as step 0003 except clear data buffer (RAM locations 0-255). Note that when RAM address =111111111, adding (incrementing) RAM address brings the clear operation to RAM location 000000000 (MSB carry not used).
0006	B2D5	BOFL	(Branch to step 0005 IF STO-2 (AD ₈) is OFF). This causes a loop similar to steps 0003 and 0004. Per comments for step 0005 the RAM data buffer is cleared.
0007	C803	A OR IMM	Immediate Operand = HEX 03; therefore, HEX 03 is transferred to the A register.
0008	8DE8	LOAD AUXILIARY	RAM address is preset to location E8 ₁₆ (or 488 ₁₀) which is the lst HEX O3 byte for disk sector format.
0009	1000	A to M(N)	Transfer HEX O3 to current RAM location (Work Buffer, step 488 ₁₀). No change (N) in RAM address.

000	8DFF	LOAD AUXILIARY	RAM address is preset to location FF_{16} (or 511_{10}) which is the HEX 03 byte for disk sector Write operations; this is also the second HEX 03 in sector format.
000B	1000	A to M(N)	HEX 03 (per comments for step 000A) transferred to RAM work buffer location 511 ₁₀ .
000C	A74E	BlTH	Branch to step 000E IF bit 7 (carry) is ON, indicating that Format Button has been depressed.
000D	88C8	Ū.B.	Assuming FORMAT has not been initiated, unconditionally branch to step 00C8 to continue PRIME routine.
00C8	FBOO	ST1 AND IMM	Immediate Operand =00 ₁₆ to clear carry.
00C9	0000	NOOP	No operation is performed.
00CA	8D30	LOAD AUXILIARY	Location of Error Count.
ООСВ	F800	A AND IMM	Clear A register.
00CC	F900	K AND IMM	Clear K register.
OOCD	1400	A to M(+1)	Clear Error Count.
OOCE	E901	K ADD IMM	Add 1 to the K register.

.

00CF	919D	Br K = ML	Branch to step OOCD if the low order bits of the K register do not equal 9. This clears all the status locations in RAM.
0000	8DE9	LOAD AUXILIARY	Location of track address.
00D1	1400	A to M(+1)	Clear track address.
.00D2	FC00	CNTRL 2/00	Clear drive select.
00D3	8D0F	LOAD AUXILIARY	Location of 00 byte to be sent to CPU.
00D4	89E1	U.B.	Branch to step 01E1.

The comments provide a basic explanation of what the instruction does, however the reasons are not always evident. This paragraph helps explain the reasons behind the steps executed in a prime routine.

STEP REASON

0000 Disk #1 is always selected. It is assumed that disk #1 will be used.

0001 Clears the A register. A clearing process has now begun to set all pertinent registers to zero.

0002 Selects location 00 of the RAM's work buffer area. The next instruction will start a routine that will clear the 256 locations in the RAM.

0003 Takes the zeroes from the A register and transfers them to location 00 of the RAM then increments RAM address.

- 0004 Branch 0 = TL. Branch to step 0003 if STO-2 is on (AD8). The 23 of the code A223 indicates a mask of 2 and a branch to 3. The AD8 is always turned on by a Load Aux. command and this was done in step 0002. L78-3 turns on AD8 during a Load Aux. to the work buffer. This branch command causes a loop between steps 3 and 4 to clear the 256 locations per step 3 comment.
- 0005 Same as step 0003 except clear data buffer (RAM locations 0-255). Note that when RAM address = 11111111, adding (incrementing) RAM address brings the clear operation to RAM location 000000000 (LMSB carry not used).
- 0006 (Branch to step 0005 IF bit 2 of ST₀ (AD₈) is OFF). This causes a loop similar to steps 0003 and 0004. Per comments for step 0005 the RAM data buffer is cleared.
- 0007 The value HEX 03 is transferred to the empty A register by an OR Immediate. (The 03 is used when formatting a disk; this code is written in every sector as an aid in locating data on a write and read.)
- 0008 The RAM address is preset to location 8DE8 (488) which is the first HEX 03 byte for disk sector format.
- 0009 Transfers the 03 to the present RAM location without increment or decrement.
- 000A The RAM address is preset to location 8DFF (511) which is the 03 byte for disk write; this is also the second 03 in sector format.

000B Same as step 0009 but location 8DFF (511).

000C Branch to step 000E if bit 7 of ST1 register is on (the carry bit). The carry bit has several uses, one of which is being a flag to indicate that the format button was depressed. If the carry bit is on, the program branches to step 1030 to continue the format routine, otherwise continue.

- 000D Assuming format has not been initiated, unconditionally branch to step 00C8 to continue prime routine.
- When the microprogram was first written, steps C8 and C9 contained the operations that steps D3 and D4 now contain; however, due to necessary modifications in the microprogram, codes were added to
 00D2 steps C8 through D2 for use in another routine. Consequently, the unconditional branch to C8 from 0D was never changed to read
 "branch to D3." Therefore steps C8 through D2 are executed during a prime routine but are not necessary.
- 00D3 This Load Aux. presets the RAM address to location 8DOF preparing to recieve a strobe from the 2200.
- 00D4 Branch to step 01E1 and wait 10 sec. for 2200 strobe. If no strobe within 10 sec. turn motor off.

2.2.4 MODEL PCS-II/2210 MICROPROGRAM

This section contains the complete PCS-II/2210 disk microprogram. To aid in following the Format, Write and Read routines, these routines are listed in abbreviated form below.

FORMAT - WITH MOTOR OFF

- 1) Prime 0000-000B.
- 2) Format 000C, 000E-000F.
- 3) 400 MSEC Delay 0230-0236.
- 4) Format continued 0010, 0012.
- 5) Turn motor #1 on with 1 sec. delay 018F-0196, 0198.
- 6) Zero Head 001F-0025, 0027.
- 7) Look for sector 0 to write 01CB-01D0.
- 8) Write format 0031, 0034-003A, 0013-0016, 003B-0040.
- 9) Check and increment sectors for format write 0041-004A, 0033.
- 10) When sector 9 formatted, increment track 0046.
- 11) Check and increment tracks for format write 004D-0056.

- 12) Branch to write next track 0055.
- 13) Look for sector 0 to read 0057, 01CC-01D0.
- 14) Read header bytes and check for error 0031-0032, 0058-006B.
- 15) Set status loc. 80 bit 006C-0070.
- 16) Read format 0075-0079, 0017-001B, 007A-007D, 0080-0088.
- 17) Check CRC 0089-008D.
- 18) Check and increment sectors for format read 008F-0096, 0030-0032.
- 19) When sector 9 read decrement track 0092.
- 20) Check and decrement tracks for format read 0097-00A1.
- 21) Branch to read next track 00A2.
- 22) Stop format when at track 0 009C-009E.
- 23) Prime 0000-000D, 01DE-01EE.

WRITE-WITH MOTOR OFF

- 1) Prime 0000-000D.
- 2) Stop motor IF no 2200 strobe within 10 sec. 01DE-01EE.
- 3) Three initial address bytes from 2200 00D5-00D7, 00C2-00D4, 01DE-01EE, 00D5-00E0.
- 4) Check for illegal address OOE1-OOE6, O1B5-O1BC.
- 5) Address conversion 00EA-00F6, 00F3-01F8, 00F7-00FF, 0240-0250.
- 6) Select Desired Disk turn motor ON 0100-010B.
- 7) 1 Sec. motor on delay 0190-0197.
- 8) Check for platter 010C-0110.
- Select appropriate track address & zero head (if needed) 0111-0125.
- 10) Zero head (if needed) 001F-0026.
- 11) Step head to desired track 0126-013B.
- 12) Head moved previously? Possible retry 013C-0140.
- 13) Answer last address byte 0143-0147.
- 14) Data from CPU (write) 014C-0153, 01CO-01C2.
- 15) Accept LRC byte from CPU and compare 01C3-01C9, 0157-0158, 0028-002A.
- 16) Read header bytes and store in memory 0058-0062.
- 17) Compare header bytes with requested address 0063-00D4.

- 18) Write routine 017B-018D.
- 19) First and last (error) strobe to CPU 00C4-00D4.
- 20) Clear drives if no 2200 strobe within 10 sec. OlDE-OlEE.

READ-WITH MOTOR ON

- 1) Prime 0000-000D.
- 2) Stop motor IF no 2200 strobe within 10 sec. 01DE-01EE.
- 3) Three initial address bytes from 2200 00D5-00D7, 00C2-00D4, 01DE-01EE, 00D5-00E0.
- 4) Check for illegal address 00E1-00E6, 01B5-01BC.
- 5) Address conversion 00EA-00F6, 01F3-01F8, 00F7-00FF, 0240-0250.
- 6) Select desired disk 0100-0109.
- 7) Clear disk if drive is not accessed within 8 sec. of last operation of that drive 0200-0214.
- 8) Check for platter 010C-0110.
- 9) Select appropriate track address and zero head (if needed) 0111-1014.
- 10) Zero head (if needed) 001F-0026.
- 11) Step head to desired track 0126-013B.
- 12) Head moved previously. Possible retry 013C-0140.
- 13) Answer last address byte 0143-0147, 0148-014B, 0157-0158 0028-002A.
- 14) Read header bytes and store in memory 0058-0062.
- 15) Compare header bytes with requested address 0063-0073.
- 16) Read routine 0075-0088.
- 17) Check CRC 0089-008E.
- 18) RAM location OF contains a 00 byte 0159-0163.
- 19) Send data and LRC on read 0164-016D.
- 20) Clear drives if no 2200 strobe within 10 sec. OlDE-OlEE.

	STEP	CODE	KEY	COMMENT
	0000	FC04	CNTRL-2	SELECT DISK #1
	0001	F800	A AND IM	CLEAR A REG.
	0002	8000	LA (ADDR = $01XX$)	M TO 256
	0003	1400	A TO M(+1)	CLEAR 256-511
	0004	A223	BOTL	BR. AD8 ON
田	0005	1.400	A TO M(+1)	CLEAR 0-255
PRIME	0006	B2D5	BOFL	BR. AD8 OFF
PF	0007	C803	A OR IM	03 TO A REG.
	8000	8DE8	LA (ADDR = 01XX)	M TO 488
	0009	1000	A TO M(N)	03 TO 488
	000A	8DFF	LA (ADDR = 01XX)	M TO 511
	000B	1000	A TO M(N)	2ND 03 TO 511
the second s	0000	A74E	B1TH	BR. CARRY ON
NO FMT.	the second s	89DE	$\frac{\text{UB}(\text{IC} = 01XX)}{\text{CTI}(0)}$	BR. TO BEGINNING
	000E	FB00	ST1 AND IM	CLEAR CARRY
	000F 0010	8A30	UB (IC = 10XX)	BR. TO 400 MSEC. DELAY
	0011	A742 8800		BR. CARRY ON
	0012	898F	UB (IC = 00XX) $UB (IC = 01XX)$	BR. TO PRIME
	0012	E901	<u>UB (IC = 01XX)</u> K ADD IM	BR. TO 1 SEC. DELAY
WRITE FORMAT CONT .	0013	DD13	BR K \bigcirc 0	K+1 BR. <> 819.2 MSEC.
WRITE FORMA CONT -	0015	EC26	CNTRL-1	PRESET CRC
FC WE	0014 0015 0016	883B	UB (IC = OOXX)	FREDET URU
	0017	F900	K AND IM	CLEAR K REG.
NE .		E901	K ADD IM	K+1
READ ROUTINE CONT.	0018 0019 001A	9568	BR K <> MH	BR. <> 563.2 MSEC.
	001A	F900	K AND IM	CLEAR K REG.
H	001B	887A	UB (IC = $OOXX$)	
	001C	FFFF		
	001D	FFFF		
	001E	FFFF		
9	001F 0020 0021 0022 0023	FC23	CNTRL-2	START 40 MSEC.
臣	0020	A240	BOTL	BR. 40 MSEC. DN
	0021	B7D5	B1FH	BR. = TRACK 00
ER	0022	EC10	CNTRL-1	SET DIRECTION
N	0023	EC50	CNTRL-1	STEP -> TRACK 00
	0024	881F	UB (IC = OOXX)	
	0025	A747	B1TH	BR. CARRY ON
	0026	8926	UB (IC = 01XX)	BR. READ/WRITE
	0027	89CB	UB (IC = $01XX$)	
	0028	A718	B1TH	BR. SECTOR MARK ON
	0029	B7E9	B1FH	BR. SECTOR MARK OFF
	002A	8858	UB (IC = $OOXX$)	
	002B	8A20	UB (IC = $10XX$)	
	0020	FFFF		
	002D	FFFF		
	002E	FFFF		
	002F	FFFF		

.

		0030 0031 0032	B7E0 A584 8858	B1FH BKTH UB (IC = OOXX)	BR. SECTOR MARK OFF BR. TO WRITE FORMAT BR. TO READ FORMAT
		0033	B7E3	B1FH	BR. SECTOR MARK OFF
		0034	8DD4	LA (ADDR = $01XX$)	WRITE FORMAT
		0035	EC26	CNTRL-1	WRITE GATE ON
		0036	EC26	CNTRL-1	PRESET CRC
	臣	0037	F900	K AND IM	CLEAR K REG.
	WRITE	0038	E901	K ADD IM	K+1
	W	0039	DD38	BR K <> 0	BR. <> 819.2 MSEC.
	E	003A	8813	UB (IC = OOXX)	
	ΨΨ	003B	A22B	BOTL	BR. AD8 ON
	FORMAT	0030	B2DC	BOFL	BR. AD8 OFF
	Ē	003D	E901	K ADD IM	K+1
		003E	BSBD	BKFH	BR. <> 103.4 MSEC.
		003F	F900	K AND IM	CLEAR K REG.
		0040	EC24	CNTRL-1	STOP WRITE
		0041	0000	NOOP(N)	
f	T 1	0042	0000	NOOP(N)	
į	~ =	0043	8DEA	LA (ADDR = 01XX)	SECTOR LOCATION
		0044	2000	M TO A(N)	SECTOR LOC. TO A
i	S Ž S	0045	D809	A XOR IM	
ļ	A H K	0046	800D	BRA = ML	BR. = SECTOR 9
Ì		0047	2000	M TO A(N)	SECTOR TO A
i		0048 ′	E801	A ADD IM	SECTOR +1
Ì	S .	0044 0045 0046 0047 0048 0049	1000	A TO M(N)	NEXT SECTOR TO M
		<u>004H</u>	8833	UB (IC = OOXX)	BR. TO WRITE NEXT SECTOR
		004B	0000	NOOP(N)	
	ы	004C	0000	NODP(N)	
	L L	004D	1800	A TO M(-1)	SECTOR O TO M
	E K	004E	2000	M TO A(N)	TRACK LOC. TO A
	E H	004F	E801	A ADD IM	TRACK +1
		0050	A426	BATH	BR. = TRACK 32
	ъĸ	0051	1000	A TO M(N)	NEXT TRACK TO M
	F KS	0052	EC44	CNTRL-1	STEP -> TRACK 34
	TRACK RING	0053	FC23	CNTRL-2	START 40 MSEC.
	R II	0054	A244	BOTL	BR. 40 MSEC. ON
		0055	89CB	UB (IC = $01XX$)	BR. TO SECTOR O NEXT TRACK
		0030	9031	BR A <> ML	BR. TRACK <> 35
		0057	8900	$\frac{\text{UB (IC = 01XX)}}{\text{UB (IC = 01XX)}}$	BR. TO READ SECTOR O
		0058	8D20	LA (ADDR = 01XX)	TRACK BYTE LOCATION
	EADER AND MEMORY	0059	F900	K AND IM	CLEAR K REG.
	A A A	005A	E901	K ADD IM	K+1
	READ HEADER BYTES AND RE IN MEMOI	005B	95CA	BR K <> MH	
,	EAD HI BYTES LE IN	005C	EC15	CNTRL-1	READ GATE ON
	E B K	005D	EC35	CNTRL-1	PRESET CRC
	REA BY STORE	005E	A21E	BOTL	BR. WRDY = 1
	S.	005F	1400	A TO M(+1)	TRACK BYTE TO M

	0060	B2E0	BOFL	BR. WRDY = 0
	0061	1400	A TO M(+1) CNTRL-1	SECTOR BYTE TO M
	0062	EC35	CNTRL-1	PRESET CRC
S S		8D20		TRACK BYTE
(EADER 11 TH ADDRESS	0064	2100	LA (ADDR = 01XX) M TO K(N)	TRACK RYTE TO V
HEADER WITH ADDRE	0065	8DE9	LA (ADDR = $01XX$) K XOR M(+1)RTB	TRACK ADDRESS
HEADI WITH ADDI	0066	5D00	K XOR M(+1)RTB	1
H A O	0067	DDA3	BR K $\langle \rangle$ 0	TRACK ERROR
TE ES	0068	2100		SECTOR ADDRESS TO K
COMPARE BYTES EQUESTEI	0069	8D21	BR K <> 0 M TO K(N) LA (ADDR = 01XX)	SECTOR BYTE
Mo	006A	5D00		2
COMPARE H BYTES W REQUESTED	006B	DDA8		SECTOR ERROR
	0060	8D31		
		C980		CRC ERROR BIT
		4900		
	0065	F900		CLEAR K REG.
	0070	A745	B1TH	BR. CARRY ON
		8D10		
		2100		IST BYTE TO K
		8585		BR. IF READ
		897B		
		F900		CLEAR K REG.
		8000		
E-I		E901		K+1
FORMAT	0078			BR. <> 563.2 MSEC.
OR		8817		
	007A			PRESET CRC
NG	007B	A21B		BR. WRDY = 1
DI	0070	1400		
5	007D	8880		
INCLUDING	007E	C904	K OR IM	DR. TO CHECK HDO
	007E	8804	UB (IC = OOXX)	BR. SEND CRC ERROR
NE	0080	A225		BR. ADS ON
E	0081	H225 B2E1	BOTL BOFL	BR. WRDY = 0
ROUTINE	0082		A TO M(+1)	
RC	0082	1400	BOTL	BR. ADS ON
EAD		A225	UB (IC = $OOXX$)	DR. HUO UN DD. TO HAIT HDDV
(EA	0084	887B	$\frac{1}{100} (10 = 0000)$	BR. TO WAIT WRDY
14	0085	A215	BOTL	BR. WRDY = 1 (1ST CRC)
	0086	1400	A TO M(+1)	CRC TO M
	0087	B2E7	BOFL	BR. WRDY = 0 (2ND CRC)
	0088	EC10	CNTRL-1	STOP READ
CRC	0089	2401	M TO A(+1)	1ST CRC TO A
	008A	DC2B		BR. IF CRC ERROR
Č	008B	2001	M TO A(N)	2ND CRC TO A
CHECK	0080	DC2B		BR. IF CRC ERROR
	008D	<u>A74F</u>	B1TH	BR. CARRY ON
	008E	8959	UB (IC = $01XX$)	
	008F	8DEA	LA (ADDR = 01XX)	SECTOR LOCATION

XOR REQUESTED TRACK WITH TRACK READ
 XOR REQUESTED SECTOR WITH SECTOR READ

•

Į

SECTORS COUNTED FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ	2000 D809 8007 2000 E801 1000 8830	M TO A(N) A XOR IM BR A = ML M TO A(N) A ADD IM A TO M(N) UB (IC = 00XX)	SECTOR TO A BR. = SECTOR 9 SECTOR TO A SECTOR +1 NEXT SECTOR TO M BR. TO READ NEXT SECTOR
0097	1800	A TO M(-1)	SECTOR O TO M
0098	2000	M TO A(N)	TRACK LOC. TO A
A 0099	E8FF	A ADD IM	TRACK -1
Ëg 009A	1000	A TO M(N)	NEXT TRACK TO M
TRACKS COUNTED FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ FORMAT READ	D8FF	A XOR IM	
ප <u>ි</u> 009C	DC9F	BR A $<>$ 0	BR. <> TRACK 0
S 🖣 009D	FBOO	ST1 AND IM	CLEAR CARRY
5 M 009E	8800	UB (IC = $OOXX$)	BR. TO PRIME
A C 009F	EC54	CNTRL-1	STEP HEAD -> TRACK O
- UUHU	FC23	CNTRL-2	START 40 MSEC.
00A1	A241	BOTL	BR. 40 MSEC. DN
00A2	8900	$\frac{\text{UB}(\text{IC} = 01XX)}{\text{OUTEL}}$	BR. TO SECTOR O NEXT TRACK
00A3	EC04	CNTRL-1	STOP READ
00A4	8D31	LA (ADDR = 01XX) M TO A(N)	STATUS LOCATION
00A5	2000	11 1 1 1 1 1 1 1 1 1 1	STATUS TO A
0046	C808	A OR IM	TRACK ERROR BIT
00A7 00A8	1000 EC04	A TO M(N) CNTRL-1	TRACK ERROR TO M
0048	F900	K AND IM	STOP READ
0047	8030	LA (ADDR = $01XX$)	CLEAR K REG. ERROR COUNT
00AB	2000	M TO A(N)	ERROR COUNT TO A
0040	E801	A ADD IM	A+1
00AD	1400	A TO M(+1)	ERROR COUNT TO M
0045	0000	NOOP(N)	
E OOAF	0000	NOOP(N)	
Еоово	B7B2	BIFH	BR. CARRY OFF
00B1	89A3	UB (IC = 01XX)	
00B2	8424	BR A = MH	BR. 32 ERRORS
ANTER 000000000000000000000000000000000000	8828	UB (IC = $OOXX$)	BR. REREAD SECTOR
ឌ្ឍ 00B4	2000	M TO A(N)	STATUS TO A
H 00B5	F900	K AND IM	CLEAR K REG.
00B6	B478	BAFH	BR. FORMAT BYTE ERROR
0087	887E	UB (IC = OOXX)	
00B8	A08B	BATL	BR. TRACK ERROR
0089	C902	K OR IM	SECTOR ERROR BIT
00BA	8804	UB (IC = OOXX)	SECTOR ERROR TO 2200
00BB	A419	BATH	BR. IF HEAD MOVED
OOBC	C810	A DR IM	
OOBD	1000	A TO M(N)	HEAD MOVED STATUS TO M
OOBE	8D10	LA (ADDR = 01XX)	
00BF	2000	M TO A(N)	1ST ADDRESS BYTE TO A

	0000	C820	A OR IM	
-	00C1	8911	$\underline{UB} (IC = O1XX)$	BR. TO ZERO HEAD
	00C2	0000	NOOP(N)	
	0003	F800	ST1 AND IM	CLEAR CARRY
	00C4	8030	LA (ADDR = 01XX)	ERROR LOCATION
	00C5	F800	A AND IM	CLEAR A REG.
	00C6	F90F	K AND IM	MASK OUT HIGH ORDER
	00C7	1400	A TO M(+1)	ERROR COUNT
ы	00C8	E910	K ADD IM	
IZ	0009	9597	ВR К <> МН	
REINITIALIZE	00CA	8DE9	LA (ADDR = 01XX)	
LI.	00CB	1400	A TO M(+1)	CLEAR TRACK
I		F90F		MASK OUT HIGH ORDER
II.		FC00	CNTRL-2	CLEAR SELECT
RE	00CE	8D32	LA (ADDR = 01XX)	×
	00CF	1100	K TO M(N)	
	00D0	A612	BOTH	BR. NOT REINITIALIZE
	00D1	89D8	UB (IC = $01XX$)	
	00D2	8672	BOFH	WAIT KBD
	00D3	FC13	CNTRL-2	STROBE TO 2200
	00D4	89DE		
	00D5	B6D5		LOOK END STROBE
	00D6	A618		BR. NOT REINITIALIZE
S		8802		BR. TO REINITIALIZE
ADDRESS BYTES FROM 2200	00D8	0400		MEMORY +1
D0 BY	00D9	1100	K TO M(N)	ADDRESS BYTE TO M
DDRESS BY FROM 2200	OODA	E801		A+1
ES.	OODB	B67B		WAIT KBD
N OS	OODC	FC13		STROBE TO 2200
E	OODD	A03F		BR. = $3RD$ BYTE
e G	OODE	89EE	UB (IC = 01XX)	
• •	OODE	A24F		LOOK NEXT BYTE
			BOTL	BR. 40 MSEC. DN
·		0000		DELAY
CHECK FOR ILLEGAL ADDRESS	00E1		LA (ADDR = 01XX)	1ST ADDRESS BYTE
ES. ES.		2400		1ST BYTE TO A
R E K	UUES	9007	BR A <> ML	BR. ILLEGAL ADDRESS
	UUE4	2400	M TO A(+1)	2ND BYTE TO A
5	0015	9407	BR A <> MH	BR. ILLEGAL ADDRESS
	00E6	<u>8985</u>	$\frac{\text{UB}(\text{IC} = \text{O1XX})}{\text{UB}(\text{IC} = \text{O1XX})}$	BR. NOT ILL. ADDR.
ILL. ADDR. TO	00E7	F900	K AND IM	CLEAR K REG.
	00E8	C901	K OR IM	01 -> K
	<u></u>	8804	$\frac{\text{UB}(\text{IC} = \text{OOXX})}{\text{UB}(\text{IC} = \text{OOXX})}$	ILL. ADDR. TO 2200
	OOEA	8D11	LA (ADDR = 01XX)	2ND ADDRESS BYTE
	OOEB	2400	M TO A(+1)	2ND BYTE TO A
	OOEC	2100	M TO K(N)	3RD BYTE TO K
	OOED	1800	A TO M(-1)	
	OOEE	1100	K TO M(N)	
	00EF	F800	A AND IM	CLEAR A REG.

*ADDRESS, ERROR OR REINT TO 2200

. 2

j

IRSION	00F0 00F1 00F2 00F3 00F4	C8F6 C9FF FB00 8D11 3C00	A OR IM K OR IM ST1 AND IM LA (ADDR = 01XX) A PWC M(+1)RTB	F6 -> A FF -> K CLEAR CARRY RESULT TO A
SECTOR CONVERSION	00F5 00F6 00F7 00F8	3D00 3D00 89F3 8DE9 2100	K PWC M(+1)RTB UB (IC = 01XX) LA (ADDR = 01XX) M TO K(N)	RESULT TO K
TRACK + SEC	00F9 00FA 00FB 00FC	E901 1100 88EF E80A	K ADD IM K TO M(N) UB (IC = OOXX) A ADD IM	K+1 A+10
TRA	00FD 00FE 00FF 0100	8DEA 1000 8A40 2000	LA (ADDR = 01XX) A TO M(N) UB (IC = 10XX) M TO A(N)	SECTOR LOC.
ED DISK TOR ON EAD)	0101 0102 0103 0104	A417 B275 FC01 8A00	BATH BOFL CNTRL-2 UB (IC = 10XX)	BR. DISK #2 BR. MOTOR OFF (#1) SELECT #1
SELECT DESIRED DISK AND TURN MOTOR ON (LOAD HEAD)	0105 0106 0107 0108	FC01 8990 B6BA FC02	CNTRL-2 UB (IC = 01XX) BOFH CNTRL-2	SELECT #1 BR. TO 1 SEC. DELAY BR. MOTOR OFF (#2) SELECT #2
	0109 010A 010B 010C	8A10 FC02 8990 FC23	UB (IC = 10XX) CNTRL-2 UB (IC = 01XX) CNTRL-2	SELECT #2
CHECK FOR PLATTER	010D 010E 010F 0110	A24F 88E7 B7ED A240	BOTL UB (IC = OOXX) B1FH BOTL	BR. 40 MSEC. ON ERROR BR. SECTOR MARK OFF BR. 40 MSEC. ON
TRAČK C IF ROED	0111 0112 0113 0114	0000 8DE9 2100 0000	NOOP(N) LA (ADDR = 01XX) M TO K(N) NOOP(N)	TRACK ADDRESS TRACK TO K
<u></u>	0115 0116 0117 0118	A41C 8D25 A42E 2000	BATH LA (ADDR = 01XX) BATH M TO A(N)	BR. DISK #2 DISK #1 TRACK LOC. TRACK ERROR, ZERO HEAD TRACK LOC. TO A
SELECT APPROPRIATE ADDRESS AND CHECI HEAD SHOULD BE ZI	0119 011A 011B 011C	A48D 8821 0000 8923	BATH UB (IC = 00XX) NODP(N) UB (IC = 01XX)	ALREADY ZEROED HEAD BR. TO ZERO HEAD
SEL Al HI	011D 011E 011F	8925 F800 1000	UB (IC = 01XX) A AND IM A TO M(N)	CLEAR A REG. SET TRACK LOC. TO 00

•

	0120	8821	UB (IC = OOXX)	BR. TO ZERO HEAD
	0121	0000	NOOP(N)	
	0122	0000	NOOP(N)	
	0123	8D26	LA (ADDR = 01XX)	DISK #2 TRACK LOC.
	0124	8917	$\frac{\text{UB (IC = 01XX)}}{\text{UB (IC = 01XX)}}$	MARK OUT DA DIT
	0125	F87F	A AND IM	MASK OUT 80 BIT
	0126	C980	K OR IM	80 -> K (HEAD ZEROED)
	0127	1100	K TO M(N)	•
	0128	D87F	A XOR IM	
	0129	3000	A PWC M(+1)RTB	RESULT TO A
TRACK	012A	A74D	BITH	BR. CARRY ON
¥. ₹	012B	D8FF	A XOR IM	
E	0120	89D1	UB (IC = 01XX)	· · ·
DESIRED	01.2D	E801	A ADD IM	A+1
R E	012E	EC00	CNTRL-1	SET DIRECTION -> TRACK 34
[S]	012F	EC40	CNTRL-1	STEP HEAD
	0130	FC23	CNTRL-2	START 40 MSEC.
TO	0131	A241	BOTL	BR. 40 MSEC. ON
	0132	E8FF	A ADD IM	A-1
AD	0133	CC39	BR A = O	
HEAD	0134	8786	B1FH	BR. CARRY OFF
പ	0135	892E	UB (IC = $01XX$)	
STEP	0136	EC10	CNTRL-1	SET DIRECTION -> TRACK 00
S	0137	EC50	CNTRL-1	STEP HEAD
	0138	8930	UB (IC = $01XX$)	
	0139	FBOO	ST1 AND IM	CLEAR CARRY
	013A	FC23	CNTRL-2	START 40 MSEC.
	013B	<u>A24B</u>	BOTL	BR. 40 MSEC. ON
HEAD MOVED	013C	8D31	LA (ADDR = $01XX$)	STATUS LOCATION
A E D	013D	2000	M TO A(N)	STATUS TO A
HEAD MOVED VIOUSI	013E	0000	NOOP(N)	
E L	013F	0000	NOOP(N)	
	0140	<u>B4E3</u>	BAFH	BR. HEAD NOT MOVED
AST BYTE	0141	8828	UB (IC = $OOXX$)	BR. READ/WRITE
LAST 5 BYT]	0142	88C2	UB (IC = $OOXX$)	BR. TO REINT.
Ξ, Ľ	0143	8D10	LA (ADDR = $01XX$)	1ST ADDRESS BYTE 🖕
ANSWER L. ADDRESS	0144	2800	M TO A(-1)	
SWE BRE	0145	8675	BOFH	WAIT KBD
NUC	0146	FC13	CNTRL-2	STROBE TO 2200
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0147	<u>A44C</u>	BATH	BR. IF WRITE
	0148	A628	вотн	WAIT 2200 STROBE
<u>କ</u> ଲ	0149	B6D9	BOFH	WAIT END STROBE
A FROM (WRITE)	014A	B6E2	BOFH	REINITIALIZE
E Z	014B	8957	UB (IC = 01XX)	
DATA FROM PU (WRITE	014C	F800	A AND IM	CLEAR A REG.
DAT CPU	014D	8000	LA (ADDR = OOXX)	DATA BUFFER
сь п	014E	A62E	вотн	WAIT 2200 STROBE
	014F	B6DF	BOFH	WAIT END STROBE

1

*

	0150	A612	BOTH	BR. NOT REINT.
	0151 0152	88C2 1100	UB (IC = 00XX) K TD M(N)	BR. TO REINT. Data byte to m
-	0153	8900	$\frac{1}{\text{UB} (\text{IC} = 01\text{XX})}$	BR. TO GENERATE LRC
	0154	0000	NOOP(N)	
	0155	0000	NODF(N)	
	0156	0000	NOOF(N)	
	0157	EC04	CNTRL-1	STOP READ
	0158	8828	UB (IC = OOXX)	BR. TO WRITE
	0159	F900	K AND IM	CLEAR K REG.
AD	015A	8D10	LA (ADDR = $01XX$ )	1ST ADDRESS BYTE
READ	015B	2800	M TO A(-1)	
NO	015C	B67C	BOFH	WAIT KBD
0	015D	FC13	CNTRL-2	STROBE TO 2200
LRC	015E	0000	NOOF(N)	DELAY
L -	015F	0000	NOOP(N)	DELAY
	0160	0000	NOOP(N)	DELAY
A	0161	8000	LA (ADDR = $00XX$ )	DATA BUFFER
SEND DATA AND		A48E	BATH	BR. IF COMPARE
DA		F800	A AND IM	CLEAR A REG.
e		B674	BOFH	WAIT KBD
E		FC13	CNTRL-2	STROBE TO 2200
01		0000	NOOF (N)	DELAY
		0000	NOOF(N)	DELAY
		6000	A ADD M(+1)RTB	GENERATE LRC
		B2D4	BOFL	BR. AD8 OFF
	016A	1000	A TO M(N)	LRC TO MEMORY
	016B	B67B	BOFH	WAIT KBD
	016C	FC13	CNTRL-2	LRC TO 2200
	016D	89DE	$\frac{\text{UB}(\text{IC} = 01XX)}{\text{DOTU}}$	BR. TO BEGINNING
	016E	A62E	BOTH	WAIT 2200 STROBE
24	016F	B6DF	BOFH	WAIT END STROBE
С H	0170	5D00	K XOR M(+1)RTB	1 (RESULT TO K)
AR		CD73 C8FF	BR K = 0	BR. DATA COMPARE
1 2200 FOR COMPARE		A225	A OR IM Botl	BR. AD8 ON
82	0173	896E	UB (IC = 01XX)	BR. TO COMPARE
S	0175	A625	BOTH	WAIT 2200 STROBE
E	0176	B6D6	BOFH	WAIT END STROBE
DATA FRC WRITE	0177	8009	BR A = ML	BR. NO ERROR ON COMPARE
LAC	0178	88E7	UB (IC = $OOXX$ )	BR. SEND ERROR
н	0179	F900	K AND IM	CLEAR K REG.
	017A	898A	UB (IC = $01XX$ )	
	0178	EC04	CNTRL-1	STOP READ
	0170	F800	A AND IM	CLEAR A REG.
	017D	F900	K AND IM	CLEAR K REG.
	01.7E	E901	K ADD IM	K+1
	017F	959E	BR K <> MH	BR. <> 460.8 MSEC.

ŧ

1. XOR DATA READ WITH DATA FROM 2200

,

0181 0182 0183 0184 0185 0186 0187 0188 0187 0188 0189 0180 0180	89D3 EC26 EC26 B7E6 EC00 88E7 A223 0000 B7E8 EC00 B2D5 0000 F900 88C4 0000	CNTRL-1 CNTRL-1 B1FH CNTRL-1 UB (IC = OOXX) BOTL NOOP(N) B1FH CNTRL-1 BOFL NOOP(N) K AND IM UB (IC = OOXX)	WRITE GATE ON PRESET CRC BR. SECTOR MARK ON STOP WRITE BR. TO SEND ERROR BR. AD8 ON BR. SECTOR MARK OFF STOP WRITE BR. AD8 OFF CLEAR K REG. LAST BYTE TO 2200
018F	FC05 F900	CNTRL-2	SELECT DISK #1 CLEAR K REG.
Q 0191	FC23		START 40 MSEC.
	A242		BR. 40 MSEC. ON
· · · · · · · · · · · · · · · · · · ·	E901	K ADD IM	K+1
	9511	BR К <> МН	
^ମ ଟ୍ର 0195	9141	BR K <> ML	BR. $<>$ 1 SEC.
· · · · · · · · · · · · · · · · · · ·	A748	BITH	BR. CARRY ON
	8900	UB (IC = 01XX)	BR. READ/WRITE
ន <u>្</u> ច 0198	881F		BR. FORMAT
S 0198 II 0199 LI 019A 2019B	0000	NOOF(N)	
튭 019A	0000	NOOP(N)	· · · · · · · · · · · · · · · · · · ·
	A74D	B1TH	BR. CARRY ON
LUNDO 190 190 190 190 190 190 190 190	88E7		ERROR TO 2200
2 019D	8D33	LA (ADDR = 01XX)	FORMAT RETRIES
· 019E	2000	M TO A(N)	A . 1
C 019F	E801 1000	A ADD IM A TO M(N)	A+1
01A1	A043	BATL	BR. = 4 RETRIES
01A2	8980	UB (IC = 01XX)	
	F800	A AND IM	CLEAR A REG.
0164	E801	A ADD IM	A+1
		CNTRL-2	START 40 MSEC.
H 01A6	A246	BOTL	BR. 40 MSEC. ON
1 01A7	90F4	BR A <> ML	
S 01A8	F800	A AND IM	CLEAR A REG.
2 01A9	FC00	CNTRL-2	TURN OFF DISK #1
H9IT LWW201A5 01A6 01A7 01A8 01A8 01A8 01AA 01AB 01AC 01AD	E801	A ADD IM	A+1
	FC23	CNTRL-2	START 40 MSEC.
V 01AC	A24C		BR. 40 MSEC. ON
문 01AD 01AE	90FA	BR A <> ML	CELECT DICK HI
01AF	FC01 89A3	CNTRL-2 UB (IC = 01XX)	SELECT DISK #1
<u></u>	0780		

01B0 01B1 01B2 01B3 01B4	F800 8DE9 1400 1400 881F	A AND IM LA (ADDR = 01XX) A TO M(+1) A TO M(+1) UB (IC = 00XX)	CLEAR A REG. TRACK LOC. CLEAR TRACK CLEAR SECTOR
01B6 01B7 01B8 01B9 01BA 01BB	88E7 BOEC F800 C8A2 3C00 A746	UB (IC = OOXX) BAFL A AND IM A OR IM A PWC M(+1)RTB B1TH	BR. <> ILL. ADDR. BR. TO ERROR BR. <> ILL. ADDR. CLEAR A REG. RESULT TO A BR. CARRY ON TO CONVERSION
01BD 01BE 01BF 01C0 01C1 01C2 01C3 01C4 01C5 01C4 01C5 01C6 01C7 01C8 01C7 01C8 01C9 01CA 01CD 01CC 01CD 01CC	FFFF FFFF 6C00 A223 894E A623 B6D4 8D34 1100 5C00 DCCA 8957 88E7 C980 F980 B3ED A31E B7EF	A ADD M(+1)RTB BOTL UB (IC = 01XX) BOTH BOFH LA (ADDR = 01XX) K TO M(N) A XOR M(+1)RTB BR A <> 0 UB (IC = 01XX) UB (IC = 00XX) K OR IM K AND IM B1FL B1FL B1FH	GENERATE LRC BR. AD8 ON BR. TO NEXT BYTE WAIT 2200 STROBE WAIT END STROBE LRC LOCATION LRC TO MEM. * (RESULT TO A) BR. LRC ERROR BR. TO WRITE BR. TO SEND ERROR 80 -> K (HEAD ZEROED) MASK OUT BR. INDEX OFF BR. INDEX ON BR. SECTOR MARK OFF
01D1 01D2 01D3 01D4 01D5 01D6 01D7 01D8 01D7 01D8 01D9 01DA 01DB 01DC 01DD 01DE	CC3C 8934 F900 E901 9594 8DF9 8981 F900 C9C0 1100 B67B FC13 89F9 FC00	BR A = 0 UB (IC = 01XX) K AND IM K ADD IM BR K <> MH LA (ADDR = 01XX) UB (IC = 01XX) K AND IM K OR IM K TO M(N) BOFH CNTRL-2 UB (IC = 01XX) CNTRL-2	CLEAR K REG. K+1 CLEAR K REG. CO -> K CO -> MEM. WAIT KBD STROBE TO 2200
	01B1 01B2 01B3 01B4 01B5 01B6 01B7 01B8 01B9 01BA 01B9 01B0 01B0 01B5 01C0 01C1 01C2 01C3 01C4 01C5 01C6 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C6 01C7 01C6 01C7 01C7 01C8 01C7 01C8 01C7 01C6 01C7 01C7 01C8 01C7 01C8 01C7 01C7 01C8 01C7 01C8 01C7 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01C8 01C7 01D3 01D4 01D7 01D4 01D7 01D8 01D7 01D8 01D7 01D8 01D7 01D8 01D7 01D8 01D7 01D8 01D7 01D8 01D7 01D8 01D7	01B1         8DE9           01B2         1400           01B3         1400           01B3         1400           01B4         881F           01B5         B017           01B5         B017           01B6         88E7           01B7         B0EC           01B8         F800           01B7         B0EC           01B8         F800           01B7         C8A2           01B8         A746           01B0         FFFF           01B1         A746           01B2         88EA           01B5         FFFF           01B6         FFFF           01B7         FFFF           01B8         FFFF           01B7         SE00           01C2         894E           01C3         A623           01C4         B6D4           01C5         8D34           01C6         1100           01C7         SC00           01C8         DCCA           01C9         8957           01C4         88E7           01C5         F980           01C6 <td>01B18DE9LA (ADDR = 01XX)01B21400A TO M(+1)01B31400A TO M(+1)01B31400A TO M(+1)01B31400A TO M(+1)01B4881FUB (IC = 00XX)01B5B017BAFL01B688E7UB (IC = 00XX)01B7BOECBAFL01B8F800A AND IM01B7C8A2A OR IM01B8F800A AND IM01B7C8A2A OR IM01B8A746B1TH01B0FFFF01B1FFFF01C06C00A ADD M(+1)RTB01C1A223BOTL01C2894EUB (IC = 01XX)01C3A623BOTH01C4B6D4BOFH01C58D34LA (ADDR = 01XX)01C61100K TO M(N)01C7SC00A XOR M(+1)RTB01C8DCCABR A $&lt;&gt;$ O01C98957UB (IC = 01XX)01C4B8E7UB (IC = 00XX)01C5G780K AND IM01C6G780K AND IM01C7SC00B FL01D1CC3CBR A = 001D28934UB (IC = 01XX)01D3F900K AND IM01D4E901K ADD IM01D59594BR K $&lt;&gt;$ MH01D68DF9LA (ADDR = 01XX)01D78981UB (IC = 01XX)01D8F900K AND IM01D78981&lt;</td>	01B18DE9LA (ADDR = 01XX)01B21400A TO M(+1)01B31400A TO M(+1)01B31400A TO M(+1)01B31400A TO M(+1)01B4881FUB (IC = 00XX)01B5B017BAFL01B688E7UB (IC = 00XX)01B7BOECBAFL01B8F800A AND IM01B7C8A2A OR IM01B8F800A AND IM01B7C8A2A OR IM01B8A746B1TH01B0FFFF01B1FFFF01C06C00A ADD M(+1)RTB01C1A223BOTL01C2894EUB (IC = 01XX)01C3A623BOTH01C4B6D4BOFH01C58D34LA (ADDR = 01XX)01C61100K TO M(N)01C7SC00A XOR M(+1)RTB01C8DCCABR A $<>$ O01C98957UB (IC = 01XX)01C4B8E7UB (IC = 00XX)01C5G780K AND IM01C6G780K AND IM01C7SC00B FL01D1CC3CBR A = 001D28934UB (IC = 01XX)01D3F900K AND IM01D4E901K ADD IM01D59594BR K $<>$ MH01D68DF9LA (ADDR = 01XX)01D78981UB (IC = 01XX)01D8F900K AND IM01D78981<

ç

.

*LRC BYTE FROM 2200 WITH LRC BYTE GENERATED

CLEAR DRIVES IF NO STROBE WITHIN 10 SEC.	01E0 01E1 01E2 01E3 01E4 01E5 01E6 01E7 01E8 01E7 01E8 01E9 01EB 01EC 01ED 01EE 01EF	B6DF C9F8 B6DF FC23 B6DF A244 E801 B6DF DCE2 E901 B6DF DDE2 ED88 BD0F A62E 88D5	BOFH K OR IM BOFH CNTRL-2 BOFH BOTL A ADD IM BOFH BR A <> 0 K ADD IM BOFH BR K <> 0 CNTRL-1 LA (ADDR = 01XX) BOTH UB (IC = 00XX)	BR. STROBE ON BR. STROBE ON START 40 MSEC. BR. STROBE ON BR. 40 MSEC. ON A+1 BR. STROBE ON BR. <> 10 SEC. K+1 BR. STROBE ON STOP MOTOR BR. NO STROBE
CONVERSION CONTINUED	01F0 01F1 01F2 01F3 01F4 01F5 01F6 01F7 01F8	FFFF FFFF 8D11 1400 1100 B7B8 88F7 88F7 88FC	LA (ADDR = 01XX) A TO M(+1) K TO M(N) B1FH UB (IC = 00XX) UB (IC = 00XX)	BR. CARRY OFF
CLEAR DISK IF DRIVE IS NOT ACCESSED WITHIN 8 SEC. OF LAST OPERATION OF THAT DRIVE	01F9 01FA 01FB 01FC 01FD 01FE 01FF 0200 0201 0202 0203 0204 0205 0204 0205 0204 0205 0206 0207 0208 0209 020A 0209 020A 020B 020C 020D 020E 020F	0000 0000 89ED FFFF FFFF 8D40 2100 F900 1500 2100 E901 1100 A529 890C F900 1100 A529 890C F900 1100 A41E EC80 890C ED00 890C	NOOP(N) NOOP(N) UB (IC = 01XX) M TO K(N) K AND IM K TO M(+1) M TO K(N) K ADD IM K TO M(+1) M TO K(N) K ADD IM K TO M(N) BKTH UB (IC = 01XX) K AND IM K TO M(N) BATH CNTRL-1 UB (IC = 01XX)	K+1 BR. = 8 SEC. CLEAR K REG. BR. DISK #2 CLEAR DISK #2 CLEAR DISK #1

.

÷

0210 0211 0212 0213 0214	8D41 2100 F900 1900 8A04	LA (ADDR = 01XX) M TO K(N) K AND IM K TO M(-1) UB (IC = 10XX)	
0215 0216 0217 0218 0219 0218 0219 0218 0216 0210 021E 021F 0220	FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF EC04	CNTRI1	
0221 0222 0223 0224 0225 0226 0227 0228 0227 0228 0229 0228 0229 0222A 0222B 0222D 0222E 022E 022F	8D30 2000 F800 8D38 2000 E801 1000 841B 8828 887E FFFF FFFF FFFF	CNTRL-1 LA (ADDR = 01XX) M TO A(N) A AND IM A TO M(N) LA (ADDR = 01XX) M TO A(N) A ADD IM A TO M(N) BR A = MH UB (IC = 00XX) UB (IC = 00XX)	SECTOR ERROR LOC. CLEAR ERROR CRC ERROR LOC. A+1 BR. = 16 ERRORS BR. TO RETRY BR. TO CRC ERROR
0230 0231 0232 0233 0233 0234 0235 0236	F900 FC23 FB00 A242 E901 91A1 8810	K AND IM CNTRL-2 ST1 AND IM BOTL K ADD IM BR K <> ML UB (IC = OOXX)	CLEAR K REG. START 40 MSEC. CLEAR CARRY BR. 40 MSEC. ON K+1
0237 0238 0239 023A 023B 023C 023D 023E 023F	FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF		

0240	809A	BR A = ML
0241	808C	BRA = ML
0242	8046	BR A = ML
0243	BOBE	BAFL
0244	8058	BRA = ML
0245	806A	BRA = ML
0246	D806	A XOR IM
0248		
	1000	A TO M(N)
0248	8D10	LA (ADDR = 01X)
0249	8900	UB (IC = $01XX$ )
024A	D80E	A XOR IM
0248	8A47	UB (IC = $10XX$ )
0240	D80C	A XOR IM
024D	8A47	UB (IC = $10XX$ )
024E	6000	A ADD M(N)
024F	6000	A ADD M(N)
0250	8A48	$\cup$ UB (IC = 10XX)
0251	FFFF	
0252	FFFF	
0253	FFFF	
0254	FFFF	
0255	FFFF	
0256	FFFF	
0257	FFFF	
0258	FFFF	
0259	FFFF	
025A	FFFF	
025B	FFFF	
0250	FFFF	
025D	FFFF	
025E	FFFF	
025F	FFFF	
0260	FFFF	
0261	FFFF	
0262	FFFF	
0263	FFFF	
0263	FFFF	•
0265	FFFF	
0266 0267	FFFF	
	FFFF	
0268	FFFF	
0269	FFFF	
026A	FFFF	
026B	FFFF	
0260	FFFF	
026D	FFFF	
026E	FFFF	
026F	FFFF	

٦,

= 01XX) 01XX)

# 

• . . .



2.3.3 INPUT TO MICROPROCESSOR FROM CPU

Data from the 2200 enters the microprocessor via the K register L65 and L67 from here it is loaded into RAM. This is accomplished in the following manner. To begin,  $R_8$  and  $R_9$  select the K register inputs of the A Bus multiplexer L51-L54 thus presenting the K register contents to the 74181 ALU L62 and L63. ALUs are capable of performing several logic and arithmetic functions selected by L37 pins 2, 4, 10, 12 and L34 pin 6. The configuration of these pins is dependent on the output of L35 and L36 which decode ROM bits  $R_{15}$  - $R_{11}$  to determine the instruction and the ALU function necessary to perform this instruction. In this case the ALU chips will direct the data to its outputs  $(C_7 - C_0)$  unprocessed. From here the data is available for storage in the RAM L79 - L82. Data will be written in a location designated by the address contained in L75, L76 and L77. These can be incremented, decremented, or loaded in block form, thus the ROM can directly control RAM address. То actually write the data, a line designated R/W must be changed; this is done by L8 and L21. L8, L13, L14, L21, L34, L39, L50, L64 and L66, make up the ROM instruction decoder. Here is a list of Ics and their function in this decoder:

selected register and increment RAM	
selected legister and increment war	
address.	
L39 Pin 5 - Increment RAM address.	
L39 Pin 7 - Decrement RAM address.	
L39 Pin 9 - Control Command.	
L39 Pin 10 - Immediate Instruction.	
L50 Pin 4 - A register clock.	
L50 Pin 5 - K register clock.	
L50 Pin 7 - Status register 1 clock.	
L50 Pin 9 - Load Auxiliary.	
L50 Pin 10 - Unconditional Branch.	
L50 Pin 11 - Branch if the high order register bits	
meet the condition.	
L50 Pin 12 - Branch if the low order register bits	
meet the condition.	

With the data in RAM the processor is now ready to accept more data or process present data.

## 2.3.4 OUTPUT OF MICROPROCESSOR TO DISK

Data from the microprocessor makes its way to the disk in the following manner. At  $T_{01}$  the data in the current RAM address is loaded into the RAM output register; from here it is available for input to the A register L26 and L55. With write gate (WTG) on, these inputs to the A register are selected via L40-L43 and A register clock (ACU), L106 (L103) pin 11, loads the first byte of data in the A register. This data is now converted, from parallel to serial by L57, L69, L70, L89 and L91 (L90) and sent to the disk to be written in the double frequency (2F) format via L57 and L66. After the first byte, the A register is clocked by Word Ready (WDRDY) which occurs every time 8 bits have been converted from parallel to serial.

## 2.3.5 INPUT FROM DISK TO MICROPROCESSOR

Information from the disk is first converted from serial to parallel by L45 and L46. Again WDRDY clocks the data into the A register each time 8 bits have been assembled into a parallel word. From the A register the data must be loaded into RAM. This is accomplished by  $R_8$  and  $R_9$  selecting the A register inputs to the A Bus Multiplexer L51-L54 thus presenting the data to the ALU L62 and L63. Again the ROM instruction decoder has put the RAM in a write mode through L8 and L21 and the ALU Function Decoder L35 and L36 has allowed the data to pass through the ALU unchanged. When this data appears on the C Bus it is immediately stored in the memory location indicated by L75, L76, and L77. Memory address is then incremented and the processor is ready to accept the next byte from the disk.

## 2.3.6 OUTPUT FROM MICROPROCESSOR TO CPU

Once data from the disk is loaded into RAM it is ready to be transferred to the 2200 CPU. This is the path that the transfer follows. Since the RAM is normally in a read mode, the data can be accessed by simply changing the RAM address. This presents data to the RAM output register L99 and L100; at  $T_{01}$  it is loaded, thus a new byte of data can be loaded every ROM cycle (1.6 us). From the RAM output register the data is buffered through L98 and L101 which are strobed by L9 and L105 (L102 ). Since these are under ROM control, the data transfer between the processor and th 2200 is synchronized. Synchronization is necessary because the processor is faster than the 2200; the processor must wait for the 2200 to become ready which is accomplished in the microprogram. When the 2200 indicates that it is ready to accept another byte, the above process is repeated. This continues until all data is transferred.

## 2.3.7 DISK CONTROL OPERATIONS

All disk operations are controlled by the ROM with two instructions: Control 1 and Control 2. The control commands are listed below with the logic gates that decode them and a short description of each.

CNTRL1 AND RO L93-2 Turns the Read Gate (RDG) on to enable the processor to read from the disk.

CNTRL1 AND R1 L93-5 Turns the Write Gate (WTG) on to enable the processor to write on the disk.

CNTRL1 AND R2 NOT USED.

CNTRL1 AND R3 NOT USED.

CNTRL1 AND R4 L93-12 Head Direction Select (HD DIR). A high signal sets the head direction toward track 34 while a low signal sets the head direction to track 0. This control signal must be used with a disk selected while the head is loaded and in conjunction with head step.

CNTRL1 AND R5 L9-8 PRC. Used as a reset command before a read or write to clear the CRC register and preset logic that will be used for the read/write.

CNTRL1 AND R6 L1-12 Head Step (HDST). This is the output of a one-shot which moves the head one track. A disk must be selected, the head loaded and a direction chosen to properly move the head.

CNTRL1 AND R7 L17-8

CNTRL1 AND R8 L17-6

CNTRL2 AND RO L92-3

CNTRL2 AND R1 L92-6

CNTRL2 AND R2 L92-10

CNTRL2 AND R3

NOT USED.

Clear disk #2 (HM₂).

Clear disk #1 (HM₁).

Select disk #1 (DK1)

Select disk #2 (DK2).

Set disk #1 (DK1).

to this section.

CNTRL2 AND R4 L105-12 (L102-12)

CNTRL2 AND R5 L7-6

40 ms delay. Because of the speed of the ROM cycle, delays are necessary to halt the microprogram while mechanical actions take place. Any number of 40 ms delays can be used to create longer delays.

Strobe to 2200. Not applicable

CNTRL2 AND R6

NOT USED.

CNTRL2 AND R7

NOT USED.

## 2.3.8 INDEX/SECTOR SEPARATOR

The index/sector separator consists of L68 and L88 (L87). Sector pulses are outputed at L88-1 (L87-1) and the index pulse at L88-10 (L87-10). From there they are applied to L52 and L54 as bits of the ST1 register. They are then manipulated by the microprogram to determine appropriate sector locations.

## 2.3.9 CYCLIC REDUNDANCY CHECK

The CRC circuit is comprised of L27-L30. During a write command, data being written is shifted through the CRC circuitry to develop a unique 16-bit code that is written on the disk in two bytes at the end of the 256 byte data transfer. When the 256 bytes of data are read, the data is shifted through the CRC circuitry and a 16-bit CRC code is stored. This code is then compared with the CRC read from the disk and if the data was read correctly, the two 16-bit codes will be equal. No provision is made to determine if data was correctly written, therefore, if a CRC error develops on a read, it cannot be determined if data was written or read incorrectly.

## 2.3.10 FORMAT ROUTINE

When the format button is depressed, L3 ( ) is preset by pin 2. This action turns the carry bit on, which is used as an indicator by the microprogram. PF (prime/format) is generated which resets the ROM IC to step 0000. From this point, the microprogram clears the hardware for the next 12 steps which are also used during a prime routine. The 13th step of the program (step 000C) checks to see whether the carry bit is on or off. Because the carry bit was turned on, the program branches to 1030 and begins a 400 ms delay to determine whether the carry bit was legitimately turned on. If a noise spike generated the format signal, the spike will be cleared by one of the 13  $T_4$  signals applied to L3-1 during the 13 steps of the prime routine. When the 400 ms delay is completed with the carry bit still on, disk #1 is selected, the motor is turned on the head is loaded and stepped to track zero. When the correct sector is found, sector zero, on track zero, the write gate is turned on and the following data is written on the disk from these memory locations:

LOCATION

01D4 to 01E7 01E8	01E9 01	EA   01EB to 01	FE 01FF	0000-00FF	
20 Bytes 00 03 Byte	Track Sec	tor 20 Bytes 0	0 03 Byte	256 Bytes 00	CRC#1 CRC#2
Address Address					

Twenty bytes of zeroes are written immediately after the sector mark is decoded to allow fon the mechanical tolerances of the sector pick-up from drive to drive. A byte of 03 is written and is used as an indicator on a read to allow the logic time to decode the track and sector addresses. The second set of 20 bytes of zeroes is written so that on subsequent read or write commands, the logic has time to determine whether a read or write is to be executed. The second 03 byte is written and used as an indicator that data follows on a read or write. When the second 03 is decoded on a read command, the next 256 bytes (plus 2 bytes of CRC) is read data; on a write command, start writing 256 bytes of data (plus 2 bytes of CRC).

When the processor has written one sector with the above data, the process is repeated for all sectors in the track, then for all tracks on the disk. After the 35 tracks are formatted, there is a read format routine (also used during a read) that checks the track and sector addresses along with the CRC codes. This read format routine is done beginning with track 34 and ending with track 0. When the disk has been verified after a complete format routine, there is an unconditional branch to step 0000 where the microprogram does its initializing before cycling on step 01EB waiting for a 2200 strobe.

#### 2.4 TROUBLESHOOTING PROCEDURES

#### 2.4.1 INTRODUCTION

A special extender board has been designed which allows use of a 7069 lightboard for troubleshooting the 7180 and 7279 microprocessors. The purpose of the light board is to observe

internal microprocessor conditions and to exercise, via manual control, all microprocessor functions. This section explains the set up procedure for the extender and light board and also information on how to use the light board to facilitate repair of the 7180 and 7279.

## 2.4.2 EQUIPMENT REQUIRED

QTY.	DESCRIPTION	PART #
		1 J
1	Extender Board	210-7176
2	24 Pin Ribbon Cable	220-3014
1	Mini-diskette Ribbon Cable Extender	N/A
1	Mini-diskette Power Calbe Extender	N/A

## 2.4.3 LIGHTBOARD INSTALLATION PROCEDURE

Remove the two PROMS (L48, L49) from the 7180 (7279) and insert them into their appropriate connectors on the extender board L48, L49. Reference schematic of 7176. Plug the two 24 pin ribbon cables into J6 and J7 of the extender. Install the extender in the test unit. Insert 7180 (7279) into the extender with the component side facing the front of the unit (opposite of its normal position) attach J4 and J5 (wired connectors) of the extender to connectors 4 and 5 of the 7180 (7279). Plug the 24 pin ribbon cable that is connected to J6 into the L49 PROM connector on the 7180 and the other ribbon cable J7 into the L48 PROM connector. Attach the lightboard cables J6, J7, J8 (on the 7069) to J1, J2 and J3 (on the 7176) respectively.

210-7176 EXT.	7069 PCB	7180 (7279) PCB
J1	J6	
J2	J7	
J3	J8	
J4		Connector 4

J5	Connector 5
J6	L49
J7	L48

NOTE:

 Pin 1 of each lightboard cable fingerboard must plug into pin 1 of each female connector on the extender board.

2) The two 24 pin ribbon cables have to be used to allow access to the instruction counter.



Each set of light indicators (labeled accordingly) represent current outputs of the following:

1. Designated Registers A register  $(A_7 - A_0 \text{ indicators})$ K register  $(K_7 - K_0 \text{ indicators})$  $ST_0$ ,  $ST_1$  registers  $(C_7 - C_0 \text{ indicators})$ 

2. ALU Output (C₇ - C₀ indicators)

3. ROM Output  $(R_{15} - R_0)$ 

- 4. ROM Address  $(IC_8 IC_0)$
- 5. RAM Output Register  $(M_7 M_0)$
- 6. RAM Address (AD₈ AD₀)

Item 3 is actually dual purpose; indicators  $R_{15} - R_0$  can also represent a manually set ROM instruction, to be used in lieu of (supercedes) 7180 ROM outputs. Such manually introduced commands to the microprocessor are set on ROM bit switches  $S_{15} - S_0$  (See pictorials and schematics of 7069). The ROM switch at schematic coordinates H, 14 must be in the UP position to allow indicators  $R_{15} - R_0$  to display manual settings of ROM bit switches  $S_{15} - S_0$ . Use of this feature follows in proceeding text.

Item 4, ROM Address indicators  $IC_9 - IC_0$  can be used in conjunction with the Compare Switch to halt the microprogram at any step manually preset on switches  $SI_9 - SI_0$ ; AUTO/STEP in AUTO mode). Halt occurs when the indicators  $IC_{9-0} =$  switch settings. Two other switches control test unit operation: the AUTO/STEP toggle switch and the STEP pushbutton microswitch. With AUTO/STEP in the STEP mode, the microprocessor will complete one cycle each time the STEP pushbutton is depressed. When the AUTO/STEP switch is in the AUTO mode, and the STEP pushbutton is depressed once, the microprocessor begins to cycle continuously.

If a Halt was performed at a desired step by using the COMPARE switch (DOWN = ON), the microprogram will continue if the STEP Pushbutton is depressed. To disable the COMPARE halt function, turn the COMPARE switch OFF (UP). The COMPARE feature is useful for stopping the microprocessor so that key points in the microprogram may be monitored. Monitoring key points in the program sometimes reveals exactly where the microprocessor is failing. Also, some failures occur only during full speed ("on the fly") operation and may not occur during manual stepping of given routine.

Again, note that when manually stepping through the microprogram, the IC may not continue past certain locations. This condition could be normal if the present command is a conditional branch command (e.g. a situation where the microprogram branches on itself until a condition is met).

It may be desirable to do a single command repeatedly, particularly if the command is suspected of intermittent failure. To accomplish this, place AUTO/STEP in the AUTO mode, ROM switch OFF (disable ROM output; enable  $S_{15} - S_0$  manually simulated command), and depress the STEP pushbutton. The manually set ROM command will execute repetitively.

Generally speaking, a good procedure for manual checkout of the microprocessor would be to manipulate data from register to register, using Register commands and Immediate commands. Control Commands verify communication to CPU or Shugart disk drive. Load Auxiliary commands will verify contents and proper addressing of RAM.

Hands-on use is the most valuable tool for developing solid approaches to microprocessor troubleshooting with these test units.

The following items are required to aid in the repair of the 7180/7279 board:

- The outline of the microcode steps involving a format, write and read (Section 2.2.4).
- 2) The microprogram (Section 2.2.4).

By using the outline of the microcode steps and the A = Bcomparator output test point on the 7069 light board, (wire side) the subroutine in which a failure occurs can be located.

#### TROUBLESHOOTING PROCEDURE

- 1. Check board visually for shipping or handling damage.
- 2. Load the board with tested PROMs (if applicable) and RAMs.
- 3. Check voltages with oscilloscope for noise and proper level.
- 4. Operate system (attempt a format, write and read) to check for failure.
  - a. Flex board lightly while operating system to check for possible opens or shorts.
  - b. Observe 2200 for any error codes.
- 5. Insure potentiometers R43 and R56 are adjusted so that a 4 usec negative pulse is obtained from each one-shot. R43 controls L47 pin 9 and R56 controls L47 pin 7. (Perform a verify on the diskette to adjust these pots).
- 6. Install lightboard and recheck voltages to insure against intermittent errors due to increased load.
- 7. Set the light board switches as follows:
  - a. S/R switch must be down or in ROM position.
  - b. AUTO/STEP switch to AUTO (up).
  - c. ON/OFF switch to ON (Compare switch).
  - d. SI9-0 switches should be set within the failing routine, as listed in the abbreviated microprogram in Section 2.2.4.
     Preferably the SI switches should be set between the starting or lowest step and the point of failure.

The board is now ready for troubleshooting. As an example, it will be assumed that a 7180 board is failing during a format command (for this example, the board fails at step OlCD). The basic approach to locating the step that is failing is to use the abbreviated format routine listed in Section 2.2.4.

Set the IC switches at some address in the middle of the format routine, for instance, step 001F. Depress the format button on the disk. When the program reaches step 001F and stops (with the comparator switch on the light board in the ON position), this indicates that all steps up to but not including step 001F are good. Next, set the IC switches on the light board to 0041. Depressing the format switch again causes the disk to begin formatting, however, because step 01CD is faulty (no index pulse), the disk will hang-up and never reach step 0041.

As a result, the problem is known to be somewhere between steps 001F and 0041, and with the same logical approach as above, it will be found that step 01CD is failing.

## 2.5 MODEL 7180/7279 BLOCK DIAGRAM AND SCHEMATICS

Each block of the diagram is numbered; the integrated circuits which comprise each numbered block are listed below on three pages. The block diagram and the IC listing should be used to further comprehend the "HARDWARE OPERATIONAL THEORY" section of this publication. For the 7279, only the ICs with different numbers are referenced in parenthesis.

BLOCK #	INTEGRATED ICRCUITS UTILIZED
1	L68, L88-10 (L87-10), L88-1 (L87-1), L31-5
2	L56-8, L58-13, L46-15/14
3	L32-10; L32-8, L57-11, L57-5
4	(CPU)
5	L66-8
6	L66-6, L21-13, L5-8, L8-8
6A	L65, L67
7	L11, L13, L25, L23-11, L14-8, L9-6, L23-3
8	L13-8, L13-2, L13-6
9	L27, L28, L29, L30-6, L30-8; L30-11
10	L106-6 (L103-6)
11	L106-8 (L103-8)
12	L56-11
13	L40, L41, L42, L43
14	L44-3, L44-11, L44-6, L44-8, L106-3 (L103-3),
	L <b>89-</b> 11 (L88-11), L57-8, L30-3
15	L26, L55
16	L24, L54, L53, L52, L51
17	L54, L53, L52, L51
18	L24, L54, L53, L52, L51
19	L95, L97, L96
20	L59, L60, L61
21	L49, L48
22	L72-5 (Both Enables)
23	L63, L62

è

ų

.

24	L36, L35, L34-2, L37-2, L37-12, L37-4,
24	L37-10, L34-6, L37-6
25	L94, L74, L91A (L91)
26	
	L7-8, L4-6, L2-8, L6-8, L20-8, L20-6
27	L20-11
28	L26, L344
29	L3-51, L4-3, L4-11
30	L56-3
31	L57-3
32	L69-5/6
33	L70
34	L71-12, L71-6, L58-1, L71-8, L90-8 (L89-8),
	L89-6 (L88-6), L89-3 (L88-3), L90-6/5
	(L89-6/5)
35	L56-6
36	L88-4, L23-6, L78-6, L8-6-
37	L75, L76, L77, L78-3, L78-8, L73-6
38	L8-6, L82, L80, L81, L79, L21-1
39	L75-10
40	L7-11
41	L1-12
42	L66-3, L57-11, L32-8
43	L64-6, L64-8
44	L64-6, L64-8
45	L17-6/8
46	L78-11, L93-2/5/12
47	L98-6, L98-8, L98-11, L98-3, L101-8, L101-6,
	L101-11, L101-3
48	L100, L99-2/5/12/15
49	L105-12 (L102-12), L108-3 (L105-3), L87-6
	(L86-6)
50	L9-3
20	5



## 2.6 7180/7279 SIGNAL MNEMONICS

з

A0-A7	:	Output of the A register 8 bit data path for
		R/W data.
AB 1-6, 8	:	Address Bus for disk selection.
AB 6,8 for 7279		
ABS (7180 only)	:	Address Bus strobe.
ACU	:	A register clock.
AD ₀ -AD8	:	Output of RAM address counter.
ADI	:	RAM address increment.
AND	:	Logical and instruction decoded.
BR	:	Unconditional Branch.
BR ₀ , Br ₁ , Br ₃	:	Directly control the ROM address for sequential addressing as well as addressing
		for Branch command.
B to M	:	Select register to memory instruction decoded.
^C ₀ - ^C ₇	:	Output from ALU 8 bit data path known as C Bus. Carries data to selected registers as
		indicated by micro-instruction.
CA	:	Carry F/F output (used as status bit)
CABYS	:	Calculator busy.
CAPM	:	Calculator prime.
CASTIS	:	Calculator strobe to disk microprocessor.
CAX	:	Made up from terms AB ₆ and AB ₈ . They
		distinguish the select address from a data
		transfer operation.
СКС	:	Clear 7180 clock.
CLKG	•	Clock input from 7180 lightboard (if used)
CNTRL1,2	•	Control command generated by microprogram to
OWINDI,2	•	access peripheral functions.
СРВ	:	Calculator ready/busy to microprocessor.
DK1,2	•	Disk select lines from microprocessor.
EXC OR	:	Logical Exclusive OR instruction decoded.
FH	:	Indicates adder output is not equal.
FMT	:	Format pushbutton.
HDIR	:	Select R/W head direction; in or out.
HDST	:	Head step.

:	Turns disk drive motor on.
:	Input bus to CPU.
:	Input bus strobe.
:	ROM address bits.
:	Index/sector from selected disk drive.
:	The K register output. High order and low order bits from CPU or ALU microprocessor.
:	K register clock.
:	The K register inputs. High order and low order bits of an 8 bit word received from the CPU.
:	Load auxiliary instruction decoded.
:	Controls the MODE CONTROL INPUT on the ALU
	for determining if the ALU will perform a
	logic function or an arithmetic function.
:	Memory output.
:	Memory to selected register instruction
	decoded.
:	No operation 1.6 microsecond delay.
:	Output bus from CPU.
:	Output bus strobe.
:	Logical OR instruction decoded.
:	10 megahertz oscillator.
:	Prime/format.
:	Add without carry instruction decoded.
:	Add with carry instruction decoded.
:	Clears CRC
:	Prime signal.
:	l6 bit ROM output. Makes up microinstruction for microprocessor.
:	Microprocessor ready/busy to CPU.
:	Read clock and data from disk.
:	Read gate. Selects either C Bus or A
	register data as input to memory.
:	Branch if selected register = 0
:	Branch if selected register = 0
:	Branch if selected register = ROM mask.

3

\$

Ł

reg ≠ M	:	Branch if selected register = ROM mask.
REG TR	:	Branch if true bits in selected register
		match true bits in mask.
REG FS	:	Same (False instead of True)
^{RM} 0 - ^{RM} 7	:	Originates from a multiplexed selection of ROM bits or RAM bits, the B bus to the ALU.
RS	:	ROM/Switches from light board (if used).
R/W	:	Input to RAM, low for write and high for read mode.
^s ₀ - s ₃	:	Select lines to ALU for determining the output.
SM	:	Sector pulses from disk.
SMO	:	Index pulse from disk.
ST1	:	Clock for Carry F/F; results in setting of
		Carry F/F if TK O (bit 6, C ₆ ) is active.
^T 01	:	RAM/ROM buffer registers clock time.
^T 37	:	RAM R/W time.
T ₄	:	ROM address increment/branch time.
^T 78	:	RAM address increment/decrement time; also
	· 4	clocks certain status bits.
TK ₀	:	Track zero sensing indicator for selected disk drive.
WCD	:	Write clock and data.
WCLK	:	Clock for write data.
WCLK ₁	:	Clock 1 (for parallel to serial conversion during a write).
WP	:	Write protect sensing indicator from disk drive.
WRDY	:	Indicates 8 bits are ready /or a R/W.
WTG	•	Write gate.
40MS	•	40 millisecond delay /or disk access.
4000	:	40 millisecond delay /of disk access.

ð

Þ