$14.95°

. a...wum

IMPLEMENTING

+ How BASICs Work @

i

QWﬂham Payne & Patricia Payne, .

Implementing BASICs
How BASICs Work

Implementing BASICs
How BASICs Work

William Payne
and
Patricia Payne

RESTON PUBLISHING COMPANY, INC.

A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data

Payne, William H,
Implementing BASICs,

Includes index.
1. Basic (Computer program language)

1. Payne, Patricia, 1940- . IL Title.
QA76.73.B3P259 001.64'24 81-23451
ISBN 0-8359-3045-9 AACR2

ISBN 0-8359-3044-0 (pbk.)

© 1982 by

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book may
be reproduced in any way, or by any means,
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

To four Ph.D.’s well-educated in the computing discipline

H. Blair Burner
Richard J. Hanson
Theodore G. Lewis
John S. Sobolewski

Contents

Preface ...t e e e e e e ix
Acknowledgementsttt i xi
Chapter 1

Language Commands, Statements,

and Their Variables iinnnn, 1
Chapter 2

Microcomputer Data Structuresccovvvveve.... 15
Chapter 3

Variable Table Structureccvveeiiiieneenennn.. 20
Chapter 4

Common Variablesc.cciiiiiiiiennnnieinnnn, 30
Chapter 5

Lexical Analysis, Text Atomization,

and Syntax Analysis ittt 35
Chapter 6

Program Resolutionttt 80
Chapter 7

Program Text Coordinatescovvvivennennnnnns 89
Chapter 8

Interpreted Program Executioncc0vivevienn. 93
Chapter 9

Compiled BASICS ..ottt e et 139
Chapter 10

Verb Failures, User-Defined Verbs,

and BASIC Line Editor i, 152
Chapter 11

Timesharing Language Systemsccovveevienn.. 157

vil

vili CONTENTS

Chapter 12

Language System Code and Its Systems Verbs 175
Chapter 13

How to Write a Language Systemccvvenvivnn.. 183
Chapter 14

Conclusions and Referencescccooeeeiiaaaaaaa.. 190
APPENAIX .\ttt e e e 193
Annotated Glossary of Technical Termsccovevunn.. 195
Index ..o s 207

Preface

Most schools do not teach techniques for implementing high-level
computer languages for microcomputers directly from microcode or ma-
chine language. These techniques have been developed in the commercial
world. BASIC, because of its simplicity and arbitrary set of verbs, is the
most frequently and directly implemented high-level language.

Applications programming that uses these BASICs, which are built
using new language design and implementation techniques, is considerably
different from applications programming that uses languages based on
older principles. Writing applications programming using verbs such as
HEXPACK, SOUND, COLOR, MATSEARCH, LOAD, MATSORT,
DATASAVE, PAINT, and so on offers exciting new challenges. Manip-
ulating high-level language stacks, and writing either microcode or ma-
chine language subprograms in the high-level language, give the appli-
cation programmer the power to make computers easily perform tasks
that were considered difficult by previous standards.

Many microprocessors have rich instruction sets. Those with many
addressing modes and other hardware features present programmers with
the problem of how to develop quality software at a reasonable cost.
Understanding the techniques used by commercial microcomputer sys-
tems programmers to simplify the complex is valuable for all computer
programmers.

The purpose of this book is to help an individual working with the
BASIC language to achieve better software system designs and more
efficient programming techniques. This book achieves its purpose by ex-
ploring principles and techniques used in microcomputer high-level lan-
guage design and implementation.

Acknowledgements

Some of the more significant events which led to the writing of this
book occurred over a 15-year period in both academic and commercial
settings. In the mid-1960s, I participated as a committee member on Terry
Hamm’s masters thesis on interpreters at Washington State University
in Pullman, Washington. Blair Burner, who was on the computer science
faculty at W.S.U., directed Terry’s thesis work. Two of my graduate
students at the time, Dave Anderson and Ted Lewis, took Blair’s compiler
course, and both gave me detailed accounts of the course content. Shortly
thereafter, I observed how Blair and some of Blair’s students brought up
a state-oriented timesharing system on an Interdata minicomputer, and
was struck by the amount of work it involved.

In 1972, Jim Robertson, a professor of computer science at the
University of Illinois, gave me a copy of Bruce DeLugish’s Ph.D. thesis.
DeLugish’s thesis developed continued product algorithms for evaluation
of elementary functions. The following year I taught a graduate course
at W.S.U. on microcomputer algorithms.

In 1974, I directed two W.S.U. graduate student’s masters projects
on language development. Stephen Choi implemented a mobile language
system, and Dave Gruhn wrote a BASIC interpreter system he called
BASIC MINUS.

In the spring of 1976, I taught a graduate seminar on language de-
velopment for microcomputers. Charles Moore demonstrated FORTH to
me in November of 1976.

In 1976, Patty and I also began working commercially on software
using Wang 2200 computers. Jon Estep and Mike Korach had introduced
us to turnkey applications systems, and we all became expert in prob-
lems of software development. These problems include distribution;
maintenance—for instance, fixing software bugs or isolating hardware
failures; user training; and the high costs involved.

Dale Swenson, Larry Stein, Stan Wagner, and Pat Corey helped
firm up our ideas on how software-engineered systems must be built. We

x|

xii ACKNOWLEDGMENTS

used P. Polgar’s software standards manual for Boeing 757/767 airplanes
to clarify our thoughts.

John Brackett, the president of Softech Microsystems in San Diego,
is in the process of trying to show that it may be possible to earn a living
selling language and operating systems for microcomputers.

Application systems programmers Wally Stricklin, Bonnie Meyer,
Monti Mecham, Celina DeQuadros, Ron Bayley, and John Robertson all
showed us how productive programmers can be when equipped with Wang
BASIC-2 language systems.

In 1976, Joe Sidowski suggested that I write an academic article on
high-level language development techniques for microcomputers. After
about four years and several attempts, we decided to get serious about
this project, abandon writing an article for some obscure academic journal,
and write this book.

William Payne

Language
Commands,
Statements, and
Their Variables

The purpose of Chapter 1 is to explain how commands, statements,
and their variables are stored and processed in microcomputer memory.

In the case of a BASIC Language System, the microcomputer mem-
ory is partitioned into distinct functional regions. Each memory region
is controlled by the Language System microcomputer programs. These
programs place statements, commands, and variables in particular regions
of the microcomputer’s memory.

Within the confines of this first chapter, we will discuss three regions
of microcomputer memory. They are: the program text area, the variable
table, and the systems tables. Statements, commands, and their variables
present information in the variable table and program text area of micro-
computer memory. The systems tables of microcomputer memory contain
information concerning the variable table and the program text area.

Microcomputer memory layout is diagrammed from an applications
standpoint in Figure 1. Language statements, language commands, and
variables determine how the program text area and the variable table are
filled.

2 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

Top of Memory <— Smallest Memory Address

Program Text
Expands

Variable Table
Expands
Bottom of Memory <—| argest Memory Address

Figure 1: Rough diagram of microcomputer memory layout. Program text ex-
pands upward in memory as statements are added to the computer program.
Memory storage area for the variables expands from high order memory address
to lower addresses as variables are defined in the computer program.

LANGUAGE COMMANDS

Language commands are sometimes referred to as immediate mode
commands or, simply, commands. Commands are entered into the mi-
crocomputer from a keyboard. When the carriage return (CR) is keyed,
the command is immediately executed by the microcomputer’s BASIC
Language System.

In our first example, entry of the command:

PRINTA (CR)

causes the Language System to search the variable table for the variable
A. If the variable is not found, then the Language System adds it to the
variable table and sets it at an initial value. The initial value for a number
in most BASIC systems is 0; the initial value for a character string is all
blanks. When the value of A has been set, its number is printed on the
device selected for PRINT. Although this print device is usually some
type of cathode ray tube (CRT), it could well be some other instrument,
such as a printer.

If a command references a variable, the Language System w1ll enter
it in the variable table, provided it is not there already. Command text
is executed immediately and never entered into the program text region.
Hence, there is no reason to save it there.

LANGUAGE COMMANDS 3

Some commands do not reference any variables. An example is:
SELECT PRINT 215(132)

This particular command selects the address of a print device and also
the maximum number of print spaces that can be allocated before a CR
and line feed are automatically generated. When such a command is ex-
ecuted, the contents of the variable table are not affected.

Suppose the Language System was initialized prior to issuing the
PRINT A command. Remember that Language System initialization oc-
curs at the time when the computer is powered up or when the Language
System is loaded from a permanent storage device. Now suppose the two
commands:

PRINT A (CR)
B=2 (CR)

were both issued. The Language System searches the variable table for
variable A; when A is not found, it is placed in the variable table and is
given the initial value of 0. When the command B =2 is accepted by the
Language System, the system then searches the variable table. Because
B is not found either, B, like A, is added to the table. B is then initialized,
or set to 0. Scan of the command B =2 is continued and eventually the
value of B is set to 2.

Figure 2 is a diagram of the contents of microcomputer memory
following the entry of these two commands. The important points to note
are: 1) Nothing is stored in the program text region of memory, and 2)
each of the variable names and its value is added to the variable memory
region, beginning at the bottom and expanding backwards through the
memory.

If variables other than A and B are referenced in commands, then
they and their values are added to the variable table behind, rather than
ahead of, those which preceded them.

Commands are useful for two reasons. The first is because the Lan-
guage System can resemble a calculator. An example of this is the com-
mand:

PRINT 3'2+4 (CR)

This command would cause 10 to be printed on the device selected
for print output. Commands are also useful for printing or changing vari-
ables during program debugging.

4 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

Top of Memory ~<— Smallest Memory Address

+ Program Text Area

4 variable Table
B 2
A 0
Bottom of Memory Largest Memory Address

Figure 2: Rough diagram of the microcomputer memory after the PRINT A and
B=2 have been processed by the Language System in the variable table.

LANGUAGE STATEMENTS

Language statements (or just statements) resemble commands, but
with one important difference: statements must be preceded by a label.
In BASIC the label is a number, but in other languages the label may be
an alphanumeric character string.

Figure 3 shows the formats of commands as they compare with
statements. One difference between the two is that in some highly inter-
active languages, commands are distinguished from statements by the
presence or absence of a label. The language FORTH is different because
the entire statement must be enclosed in a : ; sequence.

Unlike commands, statements are not executed immediately, but
are placed first in the program text region of memory. To accommodate
additional statements the size of the region is increased in a forward
direction.

Another difference between commands and statements concerns
variables. They are not placed in the variable table at the same time
statements are being entered into the program text region, but rather at
a later time, called program resolution.

Suppose the Language System is initialized such that the program
text region and variable table are empty. If the statements:

10 X =3 (CR)
30 PRINT Q,X (CR)
20 Z,Q = X'8 (CR)

LANGUAGE STATEMENTS 5

are entered into the Language System, then statement 10 is placed in the
program text region first, with statement 30 directly following. BASIC
program statements are ordered by increasing line number, so, when
statement 20 is entered, the Language System moves statement 30 to
allow room for 20.

A rough diagram of the microcomputer memory holding this program
is shown in Figure 4.

Example Number Command Statement
1 A=1 10 A=1
2 B$="SANDIA” 20 B$ = "SANDIA”
3 1Al :TEN1 A,

Figure 3: Comparisons of commands and statements in several languages.
BASIC-like commands and statements are compared in examples 1 and 2: 10 and
20 are the labels. A FORTH command is compared with the statement in example
3. TEN is a label {called a “word” in FORTH). FORTH requires that a statement
must be enclosed in a : ; sequence of delimiters. All commands and statements
are terminated by a carriage return (CR). Language Systems often acknowledge
a CR with a line feed.

Top of Memory <— Smallest Memory Address

10 X=3

20 Z,Q=X"'8
30 PRINTAQ, X
Program Text Area

f Variable Table
Bottom of Memory ~¢— |argest Memory Address

Figure 4: Rough diagram of computer memory after a three line program has
been entered. BASIC statements must be preceded by a line number. The Lan-
guage System orders lines by their number and also performs any necessary text
insertion. The variable table is not constructed when statements are entered, but
at a later time, called resolution.

6 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

The program shown in Figure 4 can be run by entering the RUN
command into the Language System. When RUN is entered, the Language
System performs a series of operations, called program resolution, on the
statements contained in the program text area of memory, One of the
functions of program resolution is to scan the program statements for
variable names and then place the names and initial values of the variables
in the variable table. Another function of resolution is to mark the program
text executable if no obvious errors have been found in the statements
by the Language System. This process occurs ‘‘before’’ the program is
actually run. The RUN command has more functions associated with it
other than merely causing the program to run; it also performs the series
of operations that together constitute program resolution.

Figure 5 provides a rough diagram of the memory that would appear
following resolution, but before running the program shown in Figure 4.

When the Language System enters the run phase of the RUN, pro-
gram execution begins. Statement 10 causes the Language System to
search the variable table for the variable named X. When X is found, its
value is changed to 3. Statement 20 causes the Language System to search
the variable table for variables Z, Q, and X. The values of variables Z
and Q are then replaced by 24, which is the product of X*8. Statement

Top of Memory <— Smallest Memory Address

10 X=3

20 Z,0=X"8
30 PRINTQ, X
Program Text Area

4 Variable Table
Q 0
z 0
X 0
Bottom of Memory -«— Largest Memory Address

Figure 5: Rough memory diagram of the program seen in Figure 4 after both
the RUN command has been entered, and the resolution of the program statements
has occurred, but before the program has been executed.

INTERSPERSION OF COMMANDS AND STATEMENTS 7

30 will result in Q and X being searched for in the variable table. When
the values of these variables are found, they are sent to the PRINT device.

Figure 6 is a rough memory diagram of the program seen in Figure
5 when execution is complete.

Top of Memory ~— Smallest Memory Address

10 X=3

20 Z,Q=X"8
30 PRINTQ, X
Program Text Area

b Variable Table
Q 24
Z 24
X 3
Bottom of Memory -— Largest Memory Address

Figure 6: Rough memory diagram of the program seen in Figure 5 when program
execution is complete. Program execution was initiated by entering the RUN com-

mand.

INTERSPERSION OF COMMANDS AND
STATEMENTS

Commands and statements may be interspersed. To better explain
how this interspersion is carried out, we here give several examples.
Suppose that the Language System has been initialized and that this series
of commands and statements is entered:

R=2 (CR)
10P,Q=T+R (CR)
T=3 (CR)

PRINTQT,R (CR)
20 PRINT S,P (CR)

8 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

R=2 is a command—so when it is entered, the Language System
scans the variable table to try to find R. R is not found, so it is entered
into the variable table and its value is setat2. 10 P,Q =T + R is a statement,
soitis placed in the program text area. T =3 is a command and is executed
immediately. The name T is searched for in the variable table. Since T
is not found, its name is entered into the table and its value is set at 3.
PRINT Q,T,R is a command so it is executed immediately. The Language
System searches for Q. Since Q is not found, it is entered into the variable
table, and its value is initialized at 0. Because both T and R are found in
the variable table, the values of Q, T, and R (which are 0, 3, and 2
respectively) are sent to the device selected for PRINT. 20 PRINT S,P
is a statement, so it is added to the statements in the program text area
of memory.

Figure 7 is a rough diagram of the microcomputer memory after all
of the above statements have been entered through the keyboard.

Variables S and P are not included in the variable table because
program resolution, initiated by the RUN command, has not yet been
performed.

Top of Memory Smallest Memory Address

20 PRINTS,P

10 P,Q=T+R
l Program Text Area

b Variable Table
Q 0
T 3
2
Bottom of Memory Largest Memory Address

Figure 7: Rough diagram of computer memory after entry of three commands
and two program statements. Variables Q, T, and R are included in the variable
table because these variables were referenced in commands. Statements 10 and
20 are in memory, but variables S and P are not entered in the variable table as
program resolution has not yet occurred.

INTERSPERSION OF COMMANDS AND STATEMENTS 9

Top of Memory Smallest Memory Address

10 P,Q=T+R
20 PRINTS, P
Program Text Area

Variable Table
s 0

0
0
0
0

v |IO0]|H|>D

Bottom of Memory Largest Memory Address

Figure 8: Rough diagram of the resultant memory after the program text seen
in Figure 7 is resolved. Program resolution was initiated by entry of the RUN
command.

Entry of the RUN command into the Language System causes three
actions to occur:

1. the variable table is cleared of all variables;
2. program resolution is performed;
3. the program is executed.

When RUN is entered from the console input device, usually a
keyboard, all the variables are cleared from the variable table.

If the Language System detects no obvious errors in the program
text, the program is marked *‘executable’” and the Language System will
begin to orchestrate execution of the program text. Figure 8 is a rough
diagram of computer memory following completion of the resolution phase
of RUN for the program text seen in Figure 7.

During program resolution, the program text is scanned and ana-
lyzed. Proceeding from first to last, each and every statement is scanned
and analyzed from left to right. During program resolution the variables
are identified, placed in the variable table, and then initialized.

10 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

For statement 10 P,Q =T +R, the Language System has decided that
P is a variable. P is searched for in the variable table. No P was found,
so it is added to the variable table, and its value initialized at 0. Q is
identified as the next variable. No Q is found, so it, like P, is entered into
the variable table and its value initialized at zero. T and R are also iden-
tified as variables, placed in the variable table and their values initialized
at zero.

Statement 20 is processed next. Variable P is found in the variable
table, so no action is taken. Variable S is not found in the variable table,
so it is entered and its value set at 0.

When the program is run, the variable table does not change, since
zeros are added to zeros. Only two zeros, the values of S and P, are
printed.

Suppose the command:

ZR=5

is now entered and executed by the Language System. Figure 9 presents

Top of Memory Smallest Memory Address

20 PRINTS, P

10 P,Q=T+R
l Program Text Area

Variable Table
<— End of Variable Table

[B4 5
S 0
R 5
Q 0
T 0
P 0

Bottom of Memary <— Largest Memory Address

Figure 9: Rough memory diagram of the result after the program text seen in
Figure 8 has been executed and the command Z,R=5 has been entered and
executed.

INTERSPERSION OF COMMANDS AND STATEMENTS 11

the variable table after this command has been executed. The variable
table is searched for variable Z. It is not found, so it is entered into the
table. The variable table is searched for variable R. It is found. Both Z
and R are then set to the value 5.

Suppose that by entering the RUN command, the program text seen
in Figure 9 is run once again. As a consequence of the program resolution
phase, all variables are removed from the variable table, reentered again,
and reinitialized.

Suppose the command Z,R=5 is issued again, but that by issuing
the command GOTO 10 followed by a CONTINUE command, the pro-
gram is rerun. The program text region of memory has not been changed,
so re-resolution of the program does not have to be made. A rough diagram
of the program text region of memory and the variable table is shown in
Figure 10.

The variable table was not reconstructed and reinitialized when this
method of rerunning the program was used. If the program text region of
memory was changed in any manner, then the Language System would

Top of Memory Smallest Memory Address

20 PRINTS, P

10 P,Q=T+R
Program Text Area

Variable Table
~+— End of Variable Table

4 5
S 0
R 5
a 5
T 0
P 5

Bottom of Memory -— Largest Memory Address

Figure 10: Rough memory diagram of the result after the program text seen in
Figure 9 has been run for a second time, after Z,R =5 was executed, and initiating
execution with a GOTCO 10 and CONTINUE commands.

12 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

require a resolution of the program via entry of a RUN command.
Initiation of program execution by a GOTO-CONTINUE command
sequence is a valuable procedure when debugging programs.

INTRODUCTION TO SYSTEMS TABLES

Four numbers are necessary to locate the variable table and the
program text area. These numbers are:

1. Pointer to the start of the program text area.
2. Pointer to the end of the program text area.

3. Pointer to the end of the variable table.

4. Address of the beginning of the variable table.

All four of these numbers are kept in the systems tables of micro-
computer memory by the Language System. Three of these numbers are
somewhat arbitrary. The word ‘‘somewhat’’ is necessary here since the
pointer to the end of the program text area must be numerically smaller
than the pointer to the end of the variable table.

The address of the beginning of the variable table is the largest
existing address of memory. Memory can usually be added to computers.
A microcomputer might be able to address 1,000,000,000,000,000,000,000
bytes of memory, but may only have 1,000 bytes of memory plugged into
its boards.

One can write a program to calculate the largest address of existing
memory. Suppose a microcomputer which can address 16 memory lo-
cations is used as the host computer. Microcomputer memory contains
a certain number of memory locations; each memory location contains
I byte or 8 bits. The existing memory contains less than 16 locations. The
problem is to write a computer program for the host microcomputer al-
lowing it to discover the address of the largest existing memory location.
The program first attempts to load the contents of memory location 9 into
one of its registers. If this operation fails, the microcomputer returns an
addressing error, and the conclusion is that less than 9 memory locations
exist. Suppose the operation failed. The next step is to address location
5. Suppose this operation was successful. The conclusion is that the mem-
ory contains somewhere between 5 and 8 locations. The next step is to
attempt to address location 7. Suppose this is successful. This leads to
the conclusion that there are either 7 or 8 memory locations. The last step
is to attempt to address location 8. Suppose this fails. The conclusion is
that the microcomputer system has 7 memory locations. The number of
memory access attempts needed to locate the maximum address of ex-
isting memory is roughly the base 2 logarithm of the maximum address
size of the microcomputer.

SUMMARY 13

The address of the beginning of the variable table should always be
calculated by the Language System whenever the microcomputer system
is ‘‘powered up’’ because more memory might have been added since the
last power up.

For many reasons, the pointer to the start of the program text area
is almost never the lowest address of computer memory. Some computers
reserve low order addresses for hardware functions. Also, the Language
System uses some memory in front of the program text area for its systems
tables.

Figure 11 contains a more detailed yet still rough diagram of com-
puter memory; it shows the addition of the systems tables region of mem-
ory.

The systems tables region of microcomputer memory, unlike the
variable table and program text regions, is of fixed size.

SUMMARY

Microcomputer memory, when activated by the BASIC Language
System, is divided into distinct regions. So far, the variable table, the
program text area, and the systems tables have been identified as parts
of the BASIC Language System. The address of the beginning of the
variable table is the largest existing address of memory.

The Language System processes commands in one way and state-

Top of Memory ~— Smallest Memory Address

Systems Tables

l Pragram Text Area

T Variable Table
Bottom of Memory Largest Memory Address

Figure 11: Rough diagram of microcomputer memory showing inclusion of the
systems tables region of memory. The systems tables region of memory is of fixed
size. Arrows show the directions the program text area and variable table expand.

14 LANGUAGE COMMANDS, STATEMENTS, AND THEIR VARIABLES

ments in another. Command variables are first initialized, and then given
values in the variable table. Commands are executed immediately; state-
ments are not. The latter are placed first in the program text area and are
not executed immediately. The variable table is constructed not when
statements are entered but at a later time, called resolution. Program
resolution occurs after the RUN command has been entered from the
input device.

Some of the functions of program resolution are to remove command
defined variables from the variable table, scan the program statements for
variable names and place discovered names and initial values of the vari-
ables in the variable table. If no obvious errors have been found in the
statements during program resolution, then the program is marked exe-
cutable. All of this occurs before the program is run. Program execution
is initiated by the RUN command.

The systems tables of the Language System contain a pointer to the
start of the program text area, a pointer to the end of the program text
area, a pointer to the end of the variable table, and the address of the
beginning of the variable table. The systems tables region, unlike the
variable table and program text regions, is of fixed size.

2

Microcomputer Data
Structures

In this chapter we explain the four types of data structures, or
variables, that are used by microcomputers, and the information needed
to define them.

Four different basic types of variables are needed for microcom-
puters:

1. Numeric scalar variables:
Examples: A, A0, Al, . ..Z7,78,7Z9

2. Numeric array variables:
Examples: AQ, A0(), A1Q, . . . Z70), Z8(), Z9()

3. Alphanumeric scalar character string variables:
Examples: AS$, A0S, A1S, . .. Z73%, Z8%, Z9%

4. Alphanumeric character string array variables:
Examples: A$(0), A0S0, A1$(), . . . Z7$0, Z85%(), 2930

Numeric scalar and numeric array variables have numeric values.
For example:

B=2
B is a numeric scalar variable, and 2 is the numeric value of B. The

exact format of numeric values will vary depending both on the language
and the microcomputer implementation. All numeric values will, however,

15

16 MICROCOMPUTER DATA STRUCTURES

have a length measured in bytes associated with them. The length of a
numeric value is the number of bytes of memory needed to store the
numeric value in memory. Integer numeric value lengths are often 2 or
4 bytes. Real numeric value lengths are often 4 or 8 bytes. Throughout
this book we have chosen to assign the length of 8 bytes for numeric
values. (Numeric values are initialized in memory to zeros.)

The numeric value representation for a variable depends on the
application, there is no one ‘‘best’’ numeric value representation. Func-
tional requirements for these values must be met by implementing BASIC.

Alphanumeric scalar character strings and alphanumeric character
string arrays consist of a contiguous sequence of bytes. Associated with
each is the name of the variable and its maximum length. If no maximum
length is specified, a default value of 16 bytes is often assigned. Alpha-
numeric scalar character string and alphanumeric character string array
values are initialized to all blanks.

Numeric array variables and string arrays can be of either one or
two dimensions. Several examples of valid array references are: A(10),
B6(8,4), Z8%(100,200), R$(16555), Also, numeric array values are
initialized to all zeros while string array values are initialized to all blanks.

Readers may initially be distressed by the apparent lack of data
types for the newer languages but no alarm is necessary. The reason is
that many different data types, such as logical, binary, and packed dec-
imal, are all subsumed under the string data type.

Explicit lengths for string variables are usually specified by decla-
ration. An example of specifying the maximum length of 80 for a string
variable named B#$ is:

DIM B$80

where DIM means dimension. An example of specifying the maximum
length of each element of a double dimensioned string array named R$()
as 32, where the row X column maximum dimensions are 2 X 3, is:

DIM R$ (2,3)32

Information required to define attributes of any variable is:

I. Name: The name of the variable. Some examples are A, A0, Al,
... 27,78, 79.

2. Type: The variable type is numeric scalar, alphanumeric scalar
character string, single dimensioned numeric array, double dimen-
sioned numeric array, single dimensioned alphanumeric character
string array, double dimensioned alphanumeric character string ar-

MICROCOMPUTER DATA STRUCTURES 17

ray . . . (The dots in the last sentence were included to indicate that
other variable types could be added if required.)

Variable type specifications can be conveniently represented in a
single byte by a binary number. Since definition of more than 256
different data types is unlikely, a single byte will often suffice to
contain the variable type attribute value. These variable type at-
tribute values are arbitrarily selected.

To facilitate example construction in later portions of this book,
values and definitions of variable types will be defined now.

Hexadecimal

Attribute Value Variable Type
00 Numeric scalar
01 Alphanumeric scalar character string
02 Single dimensioned numeric array
03 Single dimensioned alphanumeric character

string array

04 Double dimensioned numeric array
05 Double dimensioned alphanumeric character

string array

3. Length: The length attribute is the maximum length (measured in
bytes) required for storage of the variable in computer memory.
Lengths of both numeric and string variables should be stored in
computer memory.

4. Dimension: The maximum value of a single dimensioned array, or
the values for the maximum dimensions of a double dimensioned
array variable, must be stored in computer memory.

Double dimensioned arrays are usually specified by row X column
coordinates. A table of the coordinate indexes, I, J, of an array with
maximum row X column dimensions of M X N is shown in Figure 12.

Elements in a double dimensioned array are usually stored in a linear
reverse order by row in computer memory. The orderis 1,1 1,2 ... 2,1
22...... M,1 M,2 . . . M,N. A specific example of the storing order
of elements of a 2 X 3 maximum dimensioned array is given in Figure 13.

A single offset (an offset is a pointer) from the beginning of the
array’s storage can be calculated from knowledge of the coordinates of
the array elements. This offset pointer is used to help retrieve or store
array elements and is given by the array mapping function. For an array
with row X column coordinates of I and J and with maximum row X

18 MICROCOMPUTER DATA STRUCTURES

column dimensions of M X N, the array mapping function is:

K = LENGTH*(N*(1-1) + J—1)
Offset

An example of calculation of K for the various values of I and J is
given in Figure 13.

Indexes of double dimensioned arrays have the restriction that
1<=1<= Mand 1 <=] <= N. Indexes should be checked before

J Column Index

11 1,2 1,2 1, N

I 2,1 2,2 2,3 2,N
Row
Index

M, 1 M, 2 M, 3 M, N

Figure 12: Row and column double dimensioned array coordinate specification
conventions. The maximum dimensions of the array are M X N (rows x columns).

Top of Memory
IJ K
2,3 5
2,2 4
2,1 3
1,3 2
1,2 1
1,1 0

Bottom of Memory

Figure 13: Example of element storage of a 2 x 3 array. The value of the array
mapping function K = 1*(3*(1-1) + J—1) is given for each value of | and J.

SUMMARY 19

array elements are accessed to insure they are within the proper limits.
Indexes should be truncated to integers before use.
The array mapping function for a single dimensioned array is

K = LENGTH*(J—1) where 1 <= J <= N.

The variable type concatenated with the attribute value defines
unique variables. Thus a double dimensioned array could be distinguished
from a single dimensioned array with the same name. In practice, allowing
double dimensioned and single dimensioned arrays within the same pro-
gram is not allowed. The reasons for this are:

A. Matrix statements such as
MAT A=0

where A is a matrix are usually allowed in the languages. Double
dimensioned and single dimensioned variables could not be distin-
guished in such statements;

B. Alphanumeric literal string matrix statements such as

B$() = "THIS IS A VERY LONG STRING WHICH NEEDS TO BE
STORED IN AN ARRAY”

could not be used because there could be both a single and double
dimensioned B$().

SUMMARY

The four basic types of data structures for microcomputers are:
numeric scalar, alphanumeric scalar character string, numeric array, and
alphanumeric character string array. In memory, numeric values are in-
itialized to zeros, and alphanumeric values are initialized to all blanks.

The attributes of any variable are: name, type, length, and dimen-
sion. The array mapping function is used to compute a single offset pointer
from the knowledge of the array elements coordinates and is used to help
retrieve or store array elements.

3

Variable Table
Structure

This chapter demonstrates the procedure by which variables are
stored in the variable table. Variable attribute information is stored with
the value of variables in the variable table. Some of this information can
be modified with statements, such as MATREDIM.

The variable table begins at the bottom of memory and expands
toward the top. The limits of the variable table region in memory are
defined by two numbers:

1. The address of the beginning of the variable table. This address is
the highest location existing in the microcomputer memory.

2. The address of the end of the variable table. This number decreases
in value as variables are added to the variable table.

Information about variables is placed in the variable table in one of
the two following formats:

1. For numeric scalar or alphanumeric scalar character string variables:
Data

Length

Type

Name of variable

Pointer to the next variable in the variable table

FwODm

20

VARIABLE TABLE STRUCTURE 21

2. For alphanumeric character string or numeric array variables:

Name of variable
Pointer to the next variable in the variable table

G. Data

F. Maximum column dimension Maximum dimension for
or

E. Maximum row dimension single dimensioned variable

D. Length

C. Type

B.

A.

The pointer to the next variable in the variable table has two or four
bytes of memory allocated for its storage. This number is usually binary.
One byte of storage is commonly allocated for storage of the type attribute
value.

The length is usually allocated one byte of storage. The length is
usually stored as a binary number. A length of zero is commonly used for
a special purpose, so normal variables can have lengths between 1 and
255. Numeric values have been assigned a length of 8 bytes. Alphanumeric
values have been assigned a default value of 16 bytes if no length is
specified.

The maximum row dimension and the maximum column dimension
for double dimensioned arrays are usually 255. The maximum dimension
for a single dimensioned array is often 655535 = 256*256-1. In either case,
two bytes of storage will be sufficient to contain dimension information.

These simplified diagrams of six variable tables make clear how
information can be stored. A denotes a blank.

1. Example: Z=3

Bytes Value Comments

6-13 3 Eight byte number

5 8 LENGTH

4 0o TYPE

2-3 ZA NAME

0-1 Pointer Pointer explained later
2. Example: B9%$=‘SANDIA”

Bytes Value Comments

6-21 SANDIAAAAAAAAAAA Variable value

5 16 LENGTH

4 01 TYPE

2-3 B9 NAME

0-1 Pointer Pointer explained later

22 VARIABLE TABLE STRUCTURE

3. Example: DIM Y2(4)

Bytes Value Comments

32-39 0 Initial value Y(4)

24-31 0 Initial value Y(3)

16-23 0 Initial value Y(2)

8-15 0 Initial value Y(1)

6-7 4 Maximum array dimension

5 8 LENGTH

4 02 TYPE

2-3 Y2 NAME

0-1 Pointer Pointer explained later
4. Example: DIM T0$(3)4

Bytes Value Comments

16-19 ADAAD Initial value T0$(3)

12-15 JAVAVAYAY Initial value T0$(2)

8-11 AAAA Initial value TO$(1)

6-7 3 Maximum array dimension

5 4 LENGTH

4 03 TYPE

2-3 TO NAME

01 Pointer Pointer explained later
5. Example: DIM F4(2,2)

Bytes Value Comments

32-39 0 Initial value F4(2,2)

24-31 0 Initial value F4(2,1)

16-23 0 Initial value F4(1,2)

8-15 0 Initial value F4(1,1)

7 2 Maximum column dimension

6 2 Maximum row dimension

5 8 LENGTH

4 04 TYPE

2-3 F4 NAME

0-1 Pointer Pointer explained later
6. Example: DIM Z6%(3,2)3

Bytes Value Comments

23-25 AAA Initial value Z6%(3,2)

20-22 AAA Initial value Z6%$(3,1)

17-19 ANA Initial value Z6%(2,2)

14-16 MDA Initial value Z6$(2,1)

11-13 AAA Initial value 26%$(1,2)

VARIABLE TABLE STRUCTURE 23

6. Example: DIM Z63(3,2)3—Continued

Bytes Value Comments

8-10 AAA Initial value Z6$(1,1)

7 2 Maximum column dimension
6 3 Maximum row dimension

5 3 LENGTH

4 05 TYPE

2-3 26 NAME

0-1 Pointer Pointer explained later

Suppose the address of the beginning of the variable table is 1000.
This value would be calculated by a Language System program. When
the Language System is initialized:

Variable table beginning address = Variable table end address.

A rough diagram of microcomputer memory after entry of the two
commands

PRINT A
B=2

was given in Figure 2. A more detailed diagram of the variable table for
these two commands is given in Figure 14.

A function of the pointers is to point to the microcomputer memory
address where the next variable definition begins or the last memory is
located.

Although the variable table expands backwards through memory,
the variable search sequence proceeds in a forward direction. The last
variable entered in the variable table is the first variable found, while the
first variable entered in the variable table is the last variable found.

A detailed analysis of the variable table for a more complex series
of commands will further clarify how the Language System constructs the
variable table. The series of commands:

DIM P2$(2,3)4,A4(4)
:FOR7=1TO 2

: A4(17),H6(17) = 100

: P2$(17,17) ="ABCD”
: NEXT 17 (CR)

24 VARIABLE TABLE STRUCTURE

can be entered as a single string of characters through the console input
device. Carriage return (CR) is keyed only after the last character, a 7,
is entered. The Language System will process the entered commands in
the command mode.

The Language System will first identify P2$(2,3)4. The Language
System searches the variable table for P2$() and does not find it. As a
result, the P2$() variable information and initialized data are placed at the
beginning of the variable table. The Language System next identifies
A4(4). The variable table is searched for A4() and it is not found. The
A4() descriptive information and the array initialized to zero are added
to the variable table. The Language System identifies 17, in the command
FOR 17=1 TO 2, as a variable. The variable table is searched for 17 and
it is not found. 17 descriptor information and value initialized to zero are
added to the variable table. The Language System then searches for both
A4() and 17 and finds these variables in the variable table; thus no action
is taken.

The Language System now searches for H6() in the variable table
and does not find it. H6() is now entered into the variable table and a
default value of 10 is assigned for the single dimension. The data elements
of H6() are also initialized to zeros.

End Address of Variable Table

Memory Address Memory Contents Comments
~ inBytes Value
L 972-971 986 Pointer to Variable B
i 980-973 2 Value of B
8 LENGTH
00 TYPE

BA NAME

1000 Pointer to Last Memory Location
0 Value of A

8 LENGTH

00 TYPE

AA NAME

1000-999 971 Pointer to End Address of Variable
4 \ Table

\ Vanable Table End Address

Beginning Address of Variable Table

Variable Table Expands

Figure 14: Diagram of the variable tabie for the two commands PRINT A and
B=2. The address of the beginning of the variable table is 1000 and the end of
memory address is 971. 971-972 is the beginning of the storage area if another
variable is added to the variable table. The last existing two bytes of memory
contain the variable table end address.

VARIABLE TABLE STRUCTURE 25

If a double dimensioned array element is accessed for an undimen-
sioned array, the default dimension values of 10 X 10 are commonly
assigned row X column dimension values.

The Language System then searches for the variables 17, P2$(), and
in the last command, NEXT I7. All variables are found in the variable
table; thus no action is taken by the system.

Figure 15 shows a diagram of microcomputer memory after the
command program has been run.

A six byte overhead of memory storage requirements is associated
with either a numeric scalar variable or an alphanumeric scalar character
string variable. An eight byte overhead of memory storage requirements
is associated with an array variable.

For a numeric scalar or an alphanumeric scalar character string
variable, the number of bytes of memory required to contain the variable
overhead information and the variable data is given by:

6 + LENGTH

bytes.
For single dimensioned variables, the memory requirements for stor-
age of both the variable overhead and variable data is given by:

8 + LENGTH*DIMENSION

where DIMENSION is the value of the single dimension.
For a double dimensioned variable, the memory requirements for
storage of both the overhead information and variable data is given by:

8 + LENGTH*ROW*COLUMN

where ROW is the value of the row dimension, and COLUMN is the
value of the column dimension.

The data area length of any variable can be computed from a knowl-
edge of the address value of the pointer to the variable, the pointer value
itself, and the overhead, depending on the variable type.

For example, the length of the H6() data area seen in Figure 15 is:

Comments
916 Value of pointer to H6()

828 Value of memory address of pointer to H6()

88
__8 Overhead for an array
80 Length of data area of H6()

26 VARIABLE TABLE STRUCTURE

Memory Address Contents Comments
{in Bytes) (Value)

828-827
836-829
844-837
852-845
860-853

915 Pointer to H6()
0 H6(10)
0 H6(9)

0 H6(8)

0 H6(7)
0
0
0
0

H6(6)

H6(5)

H6(4)

H6(3)

H6(2)

H6(1)
Maximum Dimension Value
LENGTH

TYPE

NAME

Painter to I7
Value of I7
LENGTH

TYPE

NAME

Pointer to A4()
A4(4)

A4(3)

A4(2)

Ad(1)

LENGTH

TYPE

NAME

Painter to P24()
P24(2, 3)
P24(2, 2)
P2$(2, 1)
P24(1,3)
P24${1,2)
P2${1, 1}
Maximum Column Dimension
Maximum Row Dimension

Variable Table Expands

LENGTH
TYPE
998-997 NAME
1000-999 827 Pointer to End of Variable Table

Beginning of Variable Table Address

Figure 15: Diagram of the variable table after execution of a command sequence.
Variable H6() was assigned a dimension default value of 10.

VARIABLE TABLE STRUCTURE 27

The number of bytes of storage required to contain variable P2$(),
which is also seen in Figure 15, can be computed from:

Comments
1000 Value of pointer to P2%()

_968 Value of address of pointer to P2$()
32

__8 Overhead for an array
24 Length of data area of P2$()

This value can be checked by multiplying LENGTH*ROW*COLUMN
for P2$() which is 4* 2*3 = 24

The ability of the Language System to calculate the length in bytes
of available storage for an array variable is very important.

Newer languages often include the verb:

MATREDIM

which allows redimensioning of both single and double dimensioned ar-
rays. Execution of the verb causes the Language System to search for
the variable in the variable table. The dimension value (or values) are
replaced in the variable overhead area by the redimensioned value (or
values) provided that

LENGTH*NEW_DIMENSION <= Originally dimensioned data space

where NEW _DIMENSION is the redimension value for a single dimen-
sioned array, and

LENGTH*NEW_ROW*NEW_COLUMN < = Originally dimensioned data
space

where NEW ROW and NEW COLUMN are the redimensioned values
for the row and columns. -

For example, the variable P2$() seen in Figure 13 could be redi-
mensioned by the statement

MATREDIM P2$(2,2)4
toa 2 x 2 array since 4*2*2 = 16. Redimensioning P25$() to

MATREDIM P2$(1,6)4

28 VARIABLE TABLE STRUCTURE

is also valid since 4*1*6 = 24, but redimensioning P2$() by
MATREDIM P2$(4,2)4

would be signaled as an error, because 4%4*2 > 24,

A dimension statement can be placed anywhere in a program pro-
vided the statement precedes the first array element reference. This re-
striction is required because referencing an array element would cause
an automatic array definition in the variable table and thus a later dimen-
sion statement would contradict the previous definition.

SUMMARY

The variable table begins at the bottom of memory and expands
toward the top of memory. The highest memory address is at the beginning
of the variable table. Both numeric scalar and alphanumeric scalar char-
acter string variables are placed in the variable table in the following
format:

Data

Length

Type

Name of variable

Pointer to the next variable in the variable table

>waoum

Both alphanumeric character string and numeric array variables are
placed in the variable table in the following format:
1 Data

Maximum column dimension Maximum dimension for
or
Maximum row dimension single dimensioned variable

Length

Type

Name of variable

Pointer to the next variable in the variable table

>@wO0m WO

Two to four bytes of memory are usually allocated for storing the
pointer to the next variable in the variable table.

One byte of storage is usually allocated for storing the type attribute.

The length is usually allocated one byte of storage. For the purposes
of this book the values of the numeric variables have been assigned a

VARIABLE TABLE STRUCTURE 29

length of 8 bytes. If no dimension is specified, the length of the values of
the alphanumeric variables have a default value of 16 bytes. Storage for
variable dimension information is two bytes.

Variable overhead information is used in calculating the length of
the data area of a variable for storage. A six byte overhead is associated
with either a numeric scalar variable or an alphanumeric scalar character
string variable. An eight byte overhead is associated with an array vari-
able.

The verb MATREDIM allows the redimensioning of both single and
double dimensioned arrays. The dimensioned value or values are replaced
by the redimensioned values or values provided

LENGTH*NEW_DIMENSION <= ORIGINALLY DIMENSIONED DATA
SPACE.

Common Variables

Common variables, and their placement in the variable table, are
presented in Chapter 4. The variable table includes both common and
non-common variables. Techniques can be used to make common vari-
ables, non-common, and to make non-common variables, common. Pro-
gram resolution removes all non-common variables from the variable ta-
ble, but leaves the common variables in the table.

The variable table memory region is defined by two numbers:

1. The address of the beginning of the variable table. This number is
the greatest existing memory address.

2. The address of the end of the variable table. This number is the
address of the pointer to the last variable stored in the variable table
area.

Large applications software systems usually consist of a number of
small software modules. During system runs, these modules are overlaid
in the program test area of memory.

One method of passing information between system modules is to
leave data in a common variable subregion of the variable table. When
software module overlay occurs, the variable table is cleared of all non-
common variables; but common variables are left in the variable table.

The technique used to implement common variables is to subdivide
the variable table into non-common and common variable regions. The
common variable region occupies a contiguous block of memory at the
beginning of the variable table. Figure 16 displays a rough diagram of the
variable table with the common variable feature included.

A third address referencing variable table boundaries is needed to

30

COMMON VARIABLES 31

Top of Memory

-<—Smallest Memory Address

Systems Tables

1 Program Text Area

~-—End of Variable Table
4 Non-Common Variables

-+—End of Common Subarea of

the Variable Table
Common Variables

Bottom of Memory Beginning of the Variable Table

Largest Memory Address

Figure 16: A rough diagram of microcomputer memory showing inclusion of a
common variable subarea of the variable table. A third address, in addition to the
beginning and end of the variable table, is required to define the common area.

give the address of the pointer to the last variable entered in the common
variable subregion of the variable table. This address is kept in the systems
tables.

Declaration of common variables is made with a COM statement.
A detailed variable table diagram for the statements

10 COM A0,P9$5,C2(4),F7$(2,2)4
20 DIM R0,T0,Q2%$(2,2)3

after this program is run is seen in Figure 17.

The address of the pointer to the last variable entered in the common
area is 911.

If the program text area of memory were either cleared or partially
cleared by a software module overlay, the end address of the variable
table would be set equal to the end of common subarea address. This is
the method used to clear the non-common variables from memory.

A language statement, such as:

COMCLEAR

Memory Address Value Comments

860-859 ,B83 Pointer to Q2$()

864-861 AAA Q24(2, 2) 4
868-865 AAA Q2%(2, 1)
872-869 AAA Q24(1, 2)

876-873 AAA Q24(1, 1)

Column Dimension
Row Dimension
LENGTH

TYPE

NAME

Pointer to TO
Value of TO
LENGTH

TYPE

NAME

Pointer to RO
Value of RO
LENGTH

TYPE

NAME

Pointer to F7$() End of Common Subarea
F7$(2,2)]
F7$(2,1)
F7$(1,2)
F7%(1,1)

Column Dimension
Row Dimension
LENGTH

TYPE

NAME

975 Pointer to C2(}
C2(4)

C2(3)

C2(2)

c2(1)

Dimension
LENGTH

TYPE

NAME

Pointer to P9$

P9s$

LENGTH

TYPE

NAME

Pointer to AQ
Value of AQ
LENGTH

TYPE

NAME

Pointer to the End of the Variable Table

Non-Common Variabel Subarea

Variable Table Expands

936-935
944-937
952-945

Common Variable Subarea

Figure 17: Layout of a variable table with both common and non-common vari-
ables included. F7$() is a common variable while RO is a non-common variable.
The end of common subarea address is 911.

32

COMMON VARIABLES 33

should be included in the language system to allow the applications soft-
ware engineer to move the common subarea address. Non-common vari-
ables could then be made common, or common variables could then be
made non-common.

For example, the command:

COMCLEAR F7$()

would change the end of common subarea address to 935 for the variable
table layout given in Figure 17. All variables below, and including F7$()
(F78(0), RO, TO, Q2%()), would be made non-common variables. On the
other hand, the command:

COMCLEAR TO

would change the common subarea address to 897. Thus R0, F7$(), C2(),
P9$(), and A0 would be made common variables. Q2$() and TO would be
non-common variables.

Language System BASICs often allow commands, such as:

CLEARN

which cause all noncommon variables to be cleared from memory. A
statement such as:

CLEARV

would clear all variables from the variable table, but leave the program
text region unaltered.
A statement such as:

CLEAR

would clear both the variable table and program text regions of memory.
A statement such as:

CLEARP 10, 1000

would cause all program text between lines 10 to 1000 to be removed from
the program text region of memory.

Program resolution does not cause common variables to be cleared
from the variable table. Only non-common variables are cleared during
program resolution.

34 COMMON VARIABLES

SUMMARY

The variable table of memory consists of common and non-common
variables. The common variable region occupies a contiguous block of
memory at the beginning of the variable table. Non-common variables
reside at the end of the common subarea of the variable table.

Declaration of common variables is made with a COM statement.

Non-common variables can be cleared from memory by clearing the
program text area of memory, or by using an overlay to partially clear
the program text area. Program resolution also causes all non-common
variables to be removed from the variable table but leaves the common
variables in the variable table. Non-common variables can be made com-
mon, or common variables can be made non-common, with the language
statement COMCLEAR.

S

Lexical Analysis,
Text Atomization,
and Syntax Analysis

The specific functions of lexical analysis, text atomization, and syn-
tax analysis are covered in Chapter 5. These functions are Language
System programs which operate on both statements and commands in the
buffer area. The buffer area is located between the program text and the
variable table regions of microcomputer memory. Software rules which
apply to all software code blocks, modules, and systems are presented
in this chapter. Examples of verb and value stacks are used in this chapter
to demonstrate syntax analysis.

For every line of text which is entered into the Language System,
the console input device is scanned by software routines, or programs,
which do the following:

1. Attempt to identify verbs, variable names, arrays, numeric constants
and literals. This is called lexical analysis.

2. Compress commonly used multicharacter verbs into a one or two
byte encoding. This is called text atomization.

3. Check commands/statements for correct grammar. This is called
syntax analysis.

Most program text is stored in computer memory as seven bit ASCII
characters. There are 128 different ASCII characters defined. The defi-
nition of these characters is seen in Figure 18.

35

36 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

The high order bit of an ASCII eight bit character is often used as
a parity bit redundancy measure of the seven bit character for data com-
munications purposes.
If the high order bit is not used for a parity redundancy measure,
then 128 additional symbols can be added to the ASCII character set.

ASCII Code®

LEGEND FOR ASCil CONTROL CHARACTERS

NUL '
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT

LF
vT
FF
CR
so
sl

Null

Start of Heading
Start of Text

End of Text

End of Transmission
Enquiry
Acknowledge

Bell laugible or attention signal)
Backspace

Horizontal Tabulation
{punched card skip}
Line Feed

Vertical Tabulation
Form Feed

Carriage Return

Shift Qut

Shift In

DLE |
DC: |
DC2
DC3
DCa
NAK
SYN
ETB
CAN
M

SuB
€SC
FS

Gs

RS

us

DEL

Data Link Escape
wevice Control 1
Gcevice Control 2
Device Contro! 3
Device Controt 4
Negative Acknowledge
Synchronous ldle

End ot Transmission Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator

Unit Separator

Delete

Figure 18: ASCI| code table showing characters and their definitions.

K taworaer In. ¢ v Ty
o een [0 1% 1%, (%, |21, {1, (%1, [%, {To, |%0, {0, Yo, [T, | M1, [Y9, | M
., dom 01 "0, Tol 00 0, o Wi O | 0 ol 00 0, o M
Hgh hes
order \\dngnl
tew 0 1 2 3 4 5 6 7 8 9 A 8 c o) E F
4 oy digent
] NUL (sOH |stx | Erx | eoT | eno | ack [eer | es HT LF vr | fF crR | sa st
0000| O
I 12 13 1 5
[Gs | Rs us
0001| 1
| 28] 29) 3] n
{dash)
0010 2 c= I /
a“ 45 4| a
< = > ?
0011 3
80 61 62 63
0100| 4 LIM([N}O
76])24 L] 79
1 (ug\d:m
0101 5 \] el
92| 93 84 95
0110| bgmilnjo
108| tos] w0 119
oM 7 H } ~ |o&0
12| 1k 114 n_sj 1" 117] 124 |1_S| 126 127!
*Numbers in the lowar right corner of each box rep the decimal equi of the binary
and the hoxadecimal code for tha character shown in the box, e.g., A = (41),, = (01000001), = (65),,.

LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS 37

These additional digits begin with 80 hexadecimal (HEX(80)), and extend
through FF hexadecimal (HEX(FF)). These additional one byte symbols
can be conveniently used for program text compression and delimiter
purposes in Language Systems.

ASCII symbols, associated with hexadecimal digits HEX(00)
through HEX(1F), are often used for control characters. Symbols, such
as SOH, STX, ETX, ENQ, ACK, DLE, NAK, SYN, ETB, CAN, ESC,
and DEL are often used as computer network communications control
characters.

A Language System'’s display characters range from HEX(20), a
blank, to HEX(7E), a ~. Not all of these characters may be enterable
from a keyboard, but all are usually printable.

The command:

Lefs|-u]e[x]ca[afe]¢])]

would be processed by the Language System and entered into the micro-
computer memory as:

Lels]-[o2]2]a]s[r]) [oo]

The HEX(D2) is a Language System text atom representing the
ASCII character string HEX(. All commands/statements are terminated
by a carriage return (CR), a HEX(0D).

The left parentheses are ‘‘atomized out’’ of many functions. Some
examples are: SIN(, COS(, TAN(, STR(, POS(, BIN(, VAL(, NUM(,
LENC(. . . Appendix A contains a list of text atoms used for the powerful
Wang BASIC-2 Language System.

Line numbers can be delimited by a special symbol. For example
the statement:

[1]ofs[eafe]-]3]

would be stored in microcomputer memory as:
[Fr{10[s6| a|6|=]3]op

The HEX(FF) delimits a line number which is stored in packed
binary coded decimal (BCD).

Atomization of commonly used verbs and functions serves several
purposes:

38 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

I. Memory requirements for storage of program text are reduced.

2. The value of the text atom can be used to facilitate a branch to the
subroutine which implements the verb or function associated with
the atom.

3. Microcomputer memory can be searched simply for line numbers,
verbs, or functions. The reason is that verbs or function atoms lie
between HEX(80) and HEX(FE), while line number delimiters must
be preceded by HEX(FF). This is a particularly useful design con-
sideration when the Language System is implemented on a micro-
coded microcomputer.

Display characters in the range HEX(20), a space, to HEX(7E), the
~, can be grouped into several classes:

1. Operators: Some examples are;

Symbol Definition
+ Addition of numerics
- Unary minus (example: Y= — A) or numeric
subtraction

* |

Multiplication of numerics

/ Division of numerics
1 Exponentiation
& Concatenation of two character strings
< Less than—for either strings or numerics
= Equais—for either strings or numerics
> Greater than—for either strings or numerics
The operators of <, =, and > can be concatenated to give
<> Not equal to—for either strings or numerics
<= Less than, or equal to—for either strings or numerics
>= Greater than, or equal to—for either strings or nu-
merics

The left and right parentheses used in algebraic notation act very much like
operators in evaluation or numeric expressions.

(Left parenthesis

) Right parenthesis

, Variable and separators of other symbols

; Symbol separators

2. Delimiters: Some examples are;
Symbol Definition

Separates statements on the same line
Delimits strings of characters
% Delimits picture formats for PRINTUSING verbs

”

LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS 39

3. Functions, verbs, and data:

Symbols Definition
$ 0 1 These symbols may be concatenated together to
2 3 45 6 form names of variables, verbs, functions, and data.
78 9 0 A
B CDEF
GHI JK
LMNOFP
QRS TU
VWXYZ
abcde Lower case alphabetic characters are usually used
f g h i |j only for alphanumeric literal string data.
I mn o p
qr s tu
VWX Yy z

Blanks not enclosed in quotation marks are ignored but not usually
removed during lexical analysis. As an example,

Lol fof [s] [-]-[a] [8]~]cr]

would be stored in microcomputer memory as

el [of [s] [-]-]a[[e]~]oo]

The variable B0$ would be recognized, even though it contained
embedded blanks. The blanks would not be removed.
However, the entered statement

Ldlzilelr 2 s -1 n]le[[x[[c][e]Te]]cr]

would be stored in memory as:

|FFI09|70[T[]2| |$[|=| |D2IFF|)|OD|

If this statement were recalled from memory for display on the console
output device, statement:

Lolzfof [« [2] [s] [-T Twlefx[eTelr[n]

would be displayed. The reason is that the statement number would have
to be reconstructed from its three byte (FF 09 70) delimiter and packed

40 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

binary coded decimal representation, and the HEX(would also have to
be inserted in display text for the atom HEX(D2).

In summary, blanks are not normally removed from input state-
ments/commands unless those blanks are embedded within verbs, line
numbers, or some function arguments.

The statements/commands entered from the keyboard and displayed
on the console output device are first placed in the buffer area of memory.

Each line entered into the Language System is:

1. Atomized if possible during lexical analysis.
2. Subjected to syntax analysis.

The purpose of syntax analysis is to check each input line for any
errors detectable from just an analysis of the input character string. An
example is:

A = B$
TERR

for the reason that a numeric variable cannot be set equal to a string
variable. A second example is:

Y = Xz
1 ERR

for the reason that the syntax of the language does not permit the operator
/ to immediately follow the * operator.

The time the Language System is given to perform lexical and syntax
analysis extends from:

1. the time the Language System user keys carriage return (CR) until

2. the input line is accepted by the Language System and marked as
apparently error free, or

3. the Language System returns the character string to the console
output device flagging the first error found in the line with 1 ERR.

The lexical and syntax analysis programs work in conjunction with
each other. Thus, only the first of several errors on a line will be flagged.
As soon as the first error is corrected, then the second error will be
flagged. This interactive attribute of the Language System makes it un-
necessary that the syntax analyzer catch all errors in a line simultaneously.
Thus, the design of the syntax analyzer is more simple than those which
must try to catch all errors on a single line or even in an entire program.

LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS 41

A practical question is: How much time can be allowed to elapse
between the instant the language system user keys CR and the instant the
system responds by either flagging an error or by indicating a successful
line entry? Even in the worst case, perhaps a little less than a second
delay would be judged acceptable by most Language System users. Please
note that the longer the acceptable time, the more inefficient (simpler and
more reliable) the lexical and syntax software that can be tolerated.

Designing engineering grade software for Language Systems re-
quires a disciplined approach. Software standards must be established.
Rather than enumerating software standards policy rules all at one time,
these rules will be given as they are needed.

Three fundamental software rules that apply to all software code
blocks, modules, and systems are:

1. Each software code block and module must perform a clearly de-
fined, and simple intended function.

2. Each software code block and module should minimize the possi-
bility of performing any unintended function, whether harmful or
not.

3. Each software code block and module must provide adequate warn-
ing in event of failure.

Software code blocks which perform Language System functions
such as syntax and lexical analysis resemble parts of a machine more than
they do computer programs. Data in these code blocks is always kept
separate from computer code. Extensive tables in a code block’s data
area describe what the computer code accomplished during and after its
execution. This type of system implementation is often called table driven
for the reason that tables, instead of a computer code, can be examined
to determine what action a code block took.

Appendix A gives several examples of verbs and their respective
atomizations. Quite a few of these verbs can be represented by a single
byte atom. This number is, of course, less than 128, since we have only
hexadecimal 80 to FF available for atomization symbols. To give a couple
of examples: HEX (can be atomized by the single byte D2 and HEXOF(
by F6. Compound verbs, however, require two byte atomizations. The
compound verbs:

HEXPRINT
HEXPACK
HEXUNPACK

are atomized as follows: HEX by ES5, PRINT by A0, PACK by E2, and

42 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

UNPACK by E6. Examples of simple and compound verbs are given in
Figure 19.

Simple Verb Hexadecimal Atom
HEX(D2

HEXOFR(F6

PACK E2

UNPACK E6

PRINT A0

PRINTUSING A7

HEX E5

MAT A8

ARC CB

SIN(: Do

COS(D1

Compound Hexadecimal Atoms
Verb

HEXPACK E5E2

HEXUNPACK E5E6

HEXPRINT E5AQ

MATPRINT ABAQ

ARCSIN(CBDO

ARCCOS(CBD1

Figure 19: Example atomization of simple and compound verbs. Verbs HEX and
ARC are only used with other verbs. MAT, which stands for matrix operations, can
be used alone; for example, MAT A=B.

Constructing the software code blocks necessary to locate valid
verbs in the input buffer requires that all of the possible verbs and their
atomizations be stored in a portion of the systems area of memory. Figure
20 presents a diagram of the verb atomization table using the verbs and
their atomizations given in Appendix A.

The verb atomization table contains three essential types of infor-
mation:

1. The verb name.
2. The verb atomization hexadecimal value.
3. The length in characters of the verb name.

To calculate the length in characters of the verb name, begin the
search at the start of the verb name to locate the next byte whose value
is greater than hexadecimal 7F.

Starting the search in index position 7, the beginning of CLEAR

LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS 43

-+———— Top of System Area Memory Region
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 18 20 21 22 23 24
lao]Ll1|s|T|81|c|L[E|A|R|82|n|UIN]33|RIE|NIUIM[B|E|R|---

Bottom of Systems Area Memory Region —

o [Frfm]a]x] e[m]] (Jre[m[o]p] (]

Figure 20: Diagram of the layout of memory for storage of the verb atomization
table, using the sample verbs and atoms seen in Appendix A. The verb atomization
table resides in a portion of the systems area of memory. All atoms have values
in the range hexadecimal 80 tc FF. All program command/statement characters
have values in the range hexadecimal 20 to 7F.

(seen in Figure 20) for the next byte whose value is greater than 7F gives
a final search index value of 12; this points to the hexadecimal 82. The
length of CLEAR is 12-7=5 characters.

Valid verbs are identified by comparing increasingly longer contig-
uous strings of characters taken from the buffer with valid verb names
contained in the verb atomization table. All blanks in the buffer are ig-
nored. Several examples should make the verb identification process
clear.

If the input buffer contains:

1 7 8 9 10

2 3 4 5 6
[L] [eef [afa] [e]

and the scan for a verb begins at index position 2 (which contains **C"’),
then the following steps must be taken to determine if a valid verb can
be found.

1. The table seen in Figure 20 is searched repeatedly for the following
character strings:

Character string Result
a)C Found
b) CL Found
c) CLE Found
d) CLEA Found
e) CLEAR Found

f) CLEARP Not found

44 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

2. A search for a byte value greater than 7F is begun at index value
7 in the verb atomization table. Index value 7 was the beginning
index where the last ‘*Found’’ character string was found. A hex-
adecimal 82 is found at index position 12. Thus the length of the
verb is 12-7 =35 characters.

3. The verb candidate, CLEAR, and the verb, CLEAR, both contain
five characters. The conclusion is that the verb candidate is valid
and its hexadecimal atom is 81.

If the buffer contained
1 2 3 4 5

[Tel Telel T+l+]

then the steps for the search for a valid verb would be:

1. The verb atomization table seen in Figure 20 is repeatedly searched
for the character strings:

Character string Result
a)C Found
b) CL Found
c) CLE Found
d) CLEA Found
e) CLEAP Not found

2. A search for a byte value greater than hexadecimal 7F is begun at
index position 7 of the verb/function atomization table. Index po-
sition 7 was the position where the last successfully found string,
CLEA, was found. A hexadecimal 82 is found at index position 12.
Thus the length of the verb is 12-7=35 characters. The length of
CLEA is 4 which is not equal to 5. The conclusion is that no valid
verb was found.

Appendix A contains nearly 128 verb atoms. Since new verbs will
likely be required as additions to any language, a technique must exist to
add new verbs to any evolving language.

Hexadecimal FA through FE are labelled ‘‘reserved’’ in Appendix
A. Suppose a new verb, SPEAK, is to be added to the language repre-
sented in the verb atomization table of Appendix A. A possible solution
to the problem of extending the verb atomization table is concatenate a
“‘reserved’’ hexadecimal FA with a previously used atom to create a new
two byte atomization. As an example, the verb atomization table seen in
Figure 20 could be modified to read

LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS 45

[sofrafs|e|efa]|x[aofc]|s|[7]|a]|c|L]|e|a]r] -

A single byte atom of a verb was stored one byte before the beginning
of the ASCII verb name. If this atom byte is found to be a hexadecimal
FA, then the language system would access the memory location two
bytes before the beginning of the ASCII verb name to complete the two
byte verb atomization. This technique allows for blocks of 128 verbs to
be added with each ‘‘reserved’ character or multiple ‘‘reserved’’ char-
acters.

The intended function of VERB ATOMIZER software code blocks
is to search a portion of buffer memory area for a valid verb. If a valid
verb or function is found, then the atomization of the verb must be given.
The VERB ATOMIZER software must return an index which points to
the character in the buffer which caused its scan to be stopped. An out-
come status must also be returned.

A data area for VERB ATOMIZER software is seen in Figure 21.

VERB ATOMIZER software is able to access the addresses of both
the start and the end of the buffer; both are located in the systems area.

Byte Position Null Value Definition and Comments

1-2 HEX(0000) Binary pointer in the range of 1 to 656535
to where the scan of the buffer is to begin.

3-18 ALL(™ ") Accepted ASCII verb substrings plus the

character which stopped the scan. The
verb ALL (means that bytes 3-18 are all
set to the value within the parentheses
which is a blank.

19 HEX(00) Binary count of accepted ASClI characters.

20-22 HEX(000000) Atomization of verb.

23 HEX(00) Binary length of atomization.

24-25 HEX(0000) Binary pointer in the range of 1 to 65535
to the character in the buffer which stopped
the scan.

26 HEX(C0) Status of search;

00 Null

01 Buffer limit overrun

02 Begin scan pointer is zero
03 No verb found

FF Valid verb found

Figure 21: Data area for the software code blocks VERB ATOMIZER. VERB
ATOMIZER software attempts to locate valid verbs in the buffer.

46 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Suppose the buffer contains the command:

7 10 11 12 13 14 15
I ILI FIISI ITISIDIT?*I [2]o]cr]

and the verb atomizer software is invoked with the pointer, which marks
where the scan is to begin, set at 2; this is also the location of the “‘L’’.
A table representing VERB ATOMIZER’s data area after it has executed
is seen in Figure 22.

Byte Position Value Comments

1-2 HEX(0002) Start of scan index

3-18 LISTS Accepted verb substring ASCII characters
plus the character which stopped the scan.

19 HEX(04) Length of accepted ASCI| characters

20-22 HEX(800000) Atomization of LIST

23 HEX(01) Length of atomization

24-25 HEX(0008) Index value of 8 which points to the “S" in

the buffer. “S” was the character which
stopped the scan.
26 HEX(FF) Verb was successfully found

Figure 22: Example of VERB ATOMIZER's data area after the command L IS
TSD 3,20 was processed by VERB ATOMIZER with the scan beginning with the
letter “L".

Atomization of verbs and packing line numbers causes a reduction
in the number of characters needed to define a line of text in the buffer.
The input line can almost be reconstructed from the atomized text. The
exception is reconstruction of embedded blanks within line numbers or
verbs. Suppose the statement/command line:

Ll [[of [2] Tof To] TsT T-T [-T [z~ T-TtTas]]cn]

were entered into the buffer. The lexical analyzer would transform the
information in the buffer to read:

|reforfer] Jef [z [s] [-T [T [z[-]:[ee[oo]

Some newer computer console input devices have a RECALL key
which causes a line in the buffer to be converted from atomized form to
. ASCII representation. The RECALL key is essential because the lexical

SYNTAX ANALYZER 47

and syntax analyzers only identify one error at a time. If an error is found,
then the programmer can depress the RECALL key to bring the line in
error back on the screen for editing.

If the RECALL key were depressed for the line above, then:

Lrlslz] Jof f2] [s] [-{ [-] [z[-]:]e]r]s]T]

would appear on the screen. The RECALL routine would not be able to
reinsert the embedded blanks in the line number or in the verb LIST. The
RECALL routine searches the verb table for hexadecimal 80 to find the
ASCII text string LIST. All atomized text must be reconverted to ASCII
since all characters in the line must be subject to editing.

For a summary example, the statements:

10 INPUT A: 20 IF A=0 then 10: ELSE PRINT A: GOTO 10

would be atomized in the buffer by the lexical analyzer to

[reJoo]10]o8] A : [or] a] =]o]e1[rFoo]t0] : [r2]ac] a]oc|FFioo[10] 0p]

using the atomization table seen in Appendix A.

The lexical analyzer works in conjunction with the syntax analyzer.
A line in the buffer is not completely analyzed by the lexical analyzer
before being subjected to the syntax analyzer. Both the lexical analyzer
and the syntax analyzer may find errors. If all lexical analysis were per-
formed prior to syntax analysis, the possibility arises that the lexical
analyzer might find an error at the end of a line. When this error is
corrected, then the syntax analyzer might find an error at the beginning
of the line. This situation is undesirable as all discoverable errors should
be detected and corrected as the scan of the buffer proceeds, character
by character, from left to right.

SYNTAX ANALYZER

The syntax analyzer performs a ‘‘mock execution’’ of the line. The
syntax analyzer references the program text region of memory to check
for valid line number references.

The syntax analyzer does not reference the variable table since the
variable table is not constructed or augmented until run time program
resolution.

48 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

The syntax analyzer examines:

1. data types (numeric or string variables)
2. verbs
3. delimiters

to assure that they appear in an order consistent with the definition of the
language. If combinations of verbs, data types, and delimiters are found
which violate rules of the language, then an error is flagged so that a
programmer can correct the fault.

Two arrays, called stacks, are used to aid in syntax analysis:

1. The syntax analyzer’s verb stack.
2. The syntax analyzer’s value stack.

A rough diagram of the syntax analyzer’s value and verb stacks is
seen in Figure 23.

~«——Top of Systems Area of Memory Bottom of Memory ——
Syntax Analyzer's . ‘ Syntax Analyzer's
Verb Stack Expands ? ‘ Value Stack Expands
4 J A
Bottom of Syntax Top of Top of Bottom of Syntax
Analyzer's Verb Stack Syntax Analyzer's Syntax Analyzer's Analyzer’s Value Stack
Verb Stack Value Stack

Figure 23: The syntax analyzer's verb stack is located in the systems area of
memory. The syntax analyzer's value stack is located above the variable table,
but below the program text region of computer memory. The verb stack expands
toward the bottom of memory and shrinks toward the top. The value stack expands
toward the top of memory and shrinks toward the bottom. One element of the
value stack occupies one byte. One element of the verb stack usually occupies
two bytes.

The value and verb stacks expand and contract as the lines are
syntactically analyzed. Each element in the value stack need only be one
byte in length. Each element in the value stack identifies: a numeric scalar
variable, numeric array, an alphanumeric scalar character string, or an
alphanumeric character string array. A convenient hexadecimal coding
for each of these elements is given in Figure 24.

The elements contained in the verb stack are either verbs or a left
parenthesis (**("’) delimiter. Many verbs exist, so it is advisable to allow
each element on the verb stack to occupy two bytes.

SYNTAX ANALYZER 49

Stack Element Value Definition

HEX(00) Null

HEX(C1) Numeric scalar

HEX(02) Numeric array

HEX(03) Alphanumeric scalar character string
HEX(04) Alphanumeric character string array
HEX(05) True or false logical

HEX(06) Line number

Figure 24: Example of a hexadecimal coding for the type of element which can
appear on the syntax analyzer's value stack. These value types are used by the
syntax analyzer to aid it in verifying the correctness of the structure of a statement/
command.

Associated with each verb are two value stack frames: the before
stack frame and the after stack frame. The stack frame concept is best
explained by example. The verb ** +°’ which causes addition of two num-
bers, has before-after stack frames:

Before Frame

Verb Stack ; Example Value Stack Variables ; Value Stack Type , Comments

l + I A HEX(01) Numeric Scalar
B HEX({01) Numeric Scalar

After Frame
HEX(01) Numeric Scalar

The value stack of the before frame for the verb ** + '’ contains two
numeric elements. When the verb *‘ +’ is executed, the value stack after
frame will contain a single numeric. It might be said that the verb **+’
uses two and leaves one when referring to the value stack before and after
frames.

The example value stack variables diagram should not be interpreted
literally; the diagram is presented to help the reader conceptualize what
is taking place. Conceptually, the values of variables A and B may be
thought of as being placed on the value stack. The verb ** + '’ causes these

50 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

two values to be replaced by their sum. When this is done the ** +” is
removed from the verb stack.

The importance of only identifying the variable type placed on the
value stack is that of being able to catch such errors as:

Buffer command Error
A+B$ A string variable cannot be added to a numeric
1 ERR variable.
B3 +A Addition of a string variable to a numeric variable
T ERR is prohibited.

The conceptual diagram of the value stack for the before and after
frames is much easier to understand than a diagram containing only value
stack variable types. For this reason, conceptual diagrams will be used
in many explanations.

Figure 25 presents a diagram of value stack before and after frames
for common arithmetic verbs.

Verb Value Stack Before Frame Value Stack After Frame Definition
+ A Addition
8
Unary — Unary Minus

Subtraction

Multiplication

.
>
> , >
- > +
w (=]

B

/ A A/B Division
B

t A AtB Exponentiation
B

Figure 25: Conceptual diagram of value stack before and after frames for com-
mon mathematical verbs. The variable types for A and B must be numeric scalar
variables. The result is always a number. All these verbs except unary minus “use
two and leave one.” Unary minus “uses one and leaves one.”

SYNTAX ANALYZER 51

Mock evaluation of arithmetic expressions requires that the syntax
analysis scanner look one verb or delimiter ahead. The decision of whether
an “‘after’’ frame can replace a ‘‘before’’ frame on the value stack depends
on the value of the next symbol.

For example, compare syntax analysis steps for the buffer command:

1t 2 3 4 65 6
Scanner Pointer rAl—lB +|Cl|CR)|

Scanner Pointer Verb Stack Value Stack
1 - —
2 -1 [~ |
3 | - | A

where (CR) stands for carriage return.

1 2 3 4 5 6
Scanner Pointer |A|~|B|' |C|(Cﬂl

Scanner Pointer Value Verb Stack Value Stack

1 —

52 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer Value Verb Stack Value Stack
4 - A
5 - A
L]
(o
6 a) | - | A
B+C

b) — [a-e-q]

In the latter example, the minus sign had to be stacked in the verb
stack until the multiply was done.

The syntax analyzer has to make one of two decisions when ex-
amining the next symbol:

1) Create after frames for the verb and value stacks, or
2) Stack the symbol.

This decision is based on the values of:

1) The next symbol.
2) The last symbol on the verb stack.

A precedence table for the arithmetic verbs is shown in Figure 26.

Last Symbol on Verb Stack

Unary — + - . / t
Unary — | Stack Stack Stack Stack Stack Stack
+ | Create Create Create Create Create Create
5 g — | Create Create Create Create Create Create
> . Create Stack Stack Create Create Create
/ Create Stack Stack Create Create Create
t | Stack Stack Stack Stack Stack Stack

Figure 26: A precedence table for arithmetic operators. “Create” signifies cre-
ating an after frame from a before frame on the value and verb stacks when
encountering the “Next Verb” given the “Last Symbol on Verb Stack”. “Stack”
means that the “Next Symbol” must be placed on the verb stack and the syntax
analysis scan resumed.

SYNTAX ANALYZER 53

The arithmetic expression

Scanner Pointer 1 2 3 4 5 6 8 9
[—|A|t|a|'Ic|+|DltCR)|

is conceptually analyzed in the following steps:

~

Scanner Pointer Value Verb Stack Value Stack Comments

—u is Unary Minus

[

3 -u

4 a)

b}

>
-

| | 1

Ol > > @ | > > >
| |=] |-
@W| |@| || | @

c)

6 a)

U EJEEE

b} -AtB+C

~AtB+C

8a) -AtB+C

~
II

b) ~A1B+C+D

I |

No ‘“‘Last Symbol on Verb Stack’ exists for the scanner pointer
value of 1, so the unary minus, denoted —u, is placed on the verb stack.

64 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

The syntax analyzer determines that the next symbol in the buffer is a
variable, so it is placed on the value stack. The scanner pointer is set to
3. The next verb is 1. Column 1 of Figure 26 shows that when the last
verb was a unary minus and the next verbisa 1, the unary minus cannot
be immediately executed and must be stacked. The 1 is placed on the
verb stack. The syntax analyzer then identifies the variable, B, and places
it on the syntax value stack. When the syntax analyzer identifies the *,
the table in Figure 26 is consulted. The last symbol in the verb stack is
1, the next verb is *, so the rule ‘‘create’” that produces after stack
frames from before stack frames is followed. This creation continues as
long as the verb-stack can be processed. Examples of this successive
reduction of the verb-stack are seen in steps 4 a, b, and c; 6 a and b; and
8 a and b. No examples of verbs which stop creation of after stack frames
from before stack frames have been given yet.

The * is placed on the verb stack. C is identified as a variable and
placed on the syntax value stack. + is then identified as the next verb.
The last symbol on the verb-stack was a *. The precedence table in Figure
26 is consulted. The rule is ‘‘create’”, so the steps seen in 6 a and b are
performed. The + is placed on the verb stack. The syntax analyzer iden-
tifies the D and places it on the syntax analyzer’s value stack. The last
symbol encountered is a carriage return (CR), a hexadecimal 08. CR is
a verb and triggers a ‘‘create’”. The results are seen in steps 8 a and b.

Examination of Figure 26 reveals that such expressions as: ---A,
A+ —B, A/—-A, . .. are permitted. No theoretical problems follow un-
restricted use of unary minus. Most syntax analyzers, however, permit
use of unary minus only in such expressions as A=—-B, A=B| —-C, or
A=B¥*(—-C).

This rough conceptual explanation of the verb and syntax value
stacks were designed to give the reader an introduction to the *‘two stack’’
method of checking for the correctness of the grammar of BASIC. Ex-
planation of how parentheses are processed will be given by this same
rough conceptual method.

Left parentheses are processed in a manner similar to arithmetic
verbs. Right parentheses are processed similar to a carriage return (CR).

The expression:

Scanner Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[al-[cfcfefefelr[rfof-Te]]en]

is processed by the following steps

SYNTAX ANALYZER 55

Scanner Pointer Value Verb Stack Value Stack Comments

1

3 . | A] Always Stack Left
{ Parentheses

4 * ’ A I Always Stack Left
{ Parentheses
{

5 ' A
(B
(

6 * A
(
{
+

7a) * A Next Verbis a }so
(B “Create’’ After
(c Stack Frames
+

b) * A After Stack Frames

((B +C) have now been Created
(

8 . A Processing the Right

Parenthesis Causes Remaoval
((B + C) of a Left Parenthesis from
{Continued on next page) the Verb Stack

56 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Painter Value Verb Stack Value Stack Comments
9 N A
((B + C)
/
10 a)) A The Next Verb isa —
so a “‘Create” is Performed.
({8+0C) See / Followed by — Precedence
/ D in Figure 26
b) * A
((B + C)/D
1 * A
((8 + C}/D
12 a) . A .
The Next Verbis a) and
({8 + C}/D Causes a “Create”’ to be
Performed
- E
b) * A
((B+C)/D-E
13 a) | . I A Pracessing the) Causes a
+ -E (to be Removed from the
(8 +CiD Verb Stack. The Next Verb

isa (CR) so a ""Create” is
b} A+ ((B + C)/D - E) Performed

Left parentheses, as seen in scanner pointer steps 8 and 13, serve
as verb stack markers. These markers bind the number of verbs which
can be processed when a right parenthesis is found in the buffer.

The equal sign (=) is also a verb. The equal sign has two before-
after stack frame configurations:

Example Verb Stack Verb Stack Value Stack Value Stack
Assignment Before After Before After

CONFIGURATION 1

A=8 - -
= 8]

SYNTAX ANALYZER 57

Example Verb Stack Verb Stack Value Stack Value Stack
Assignment Before After Before After

CONFIGURATION 2

A B=C B E

In configuration 1, the value stack only contains two elements. The
equal sign is removed from the verb stack, and the two elements are
removed from the value stack.

In configuration 2 the value stack contains more than two elements.
The equal sign is left on the verb stack, and the top two elements of the
value stack are replaced by the top element of the value stack. This feature
allows using multiple variable names on the left hand side of an assignment
statement.

As an example of = sign processing the command

ScannerPointer 1 2 3 4 5 6 7 8 9 10 11 12

AL T Te - Te [en

Scanner Pointer Verb Stack Value Stack Comments

—
? (-]
3 E —u is the Unary Minus Symbol
-u
a -] V]
] (A |
5 -] E
En A
t
|
s -] [v]
d 4]
["]
[]

58 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer

7

b)

10 a)

b)

11 a)

Verb Stack

|EECLT]

Value Stack

v
4]

ClLeleJ=l=Tel U f=fe e U f=T=-Te e [=]=fe] Jle [~]= 2]

(-B-C)

Comments

The Next Verb is — so the Rule
is "'Create’’

The After Stack Frames have
been Created

The Next Verb is a) so the
Rule is “’Create’’ After Stack
Frames from before Stack Frames

Processing a Right Parenthesis Causes
Left Parenthesis to be Removed from
the Verb Stack. The Next Verb is
(CR) so the Rule is “‘Create”

SYNTAX ANALYZER 59

Scanner Pointer Verb Stack Value Stack Comments
1 b) [- | Y
- At{-B-C)
G v
-At(-B-C}
d) _— —_— Both the Verb and Value Stacks are

Cleared when an = Sign with only
Two Elements on the Value Stack
is Processed

Syntax analyzers often operate on the principle of expectation or
nonexpectation. The syntax analyzer either expects or does not expect
to see one of several types of characters at each scan pointer value. If
the syntax analyzer’s expectations are not fulfilled, then the syntax ana-
lyzer will signal an error by pointing to the character in the buffer which
caused the scan to stop. Sent to the console output device are: the line
of text in the buffer, a pointer (1) pointing to the character on which the
scan stopped, and an error message.

An example of the expectation-nonexpectation principle can be
given that will show what happens when the scanner pointer value is 3.
The previous verb, at scanner pointer value 2, was an =. The syntax
analyzer expects a(n):

a) alphabetic character

b) left parenthesis

C) unary minus

d) digit

e) quote (for enclosing a character string)

but does not expect a:

a) +
b) *
c)y/
a1
e)’
H!
g) %
h) &

60 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

The syntax analyzer is usually written so as to check the ‘‘expec-
tation’” or ‘‘nonexpectation’’ list containing the fewest number of alter-
natives. In this example, the ‘‘expectation’’ list would be selected.

An expanded precedence table is shown in Figure 27. The verbs,
carriage return (CR) and), are never placed on the verb stack. These
verbs only cause a ‘‘create’” producing after stack frames from before
stack frames. Examples of this ‘‘create’’ action of these verbs are seen
in scanner pointer steps 8, 10, and 11.

The command

Scanner Pointer 2 3 4 5 6

1
L Te[-Teen

has syntax analysis steps

Scanner Pointer Value Verb Stack Value Stack Comments

1 —

is a Delimiter Used to
Separate Symbols

I T

Configuration 2 =

|
[e[>] [eT=]3] [=]>] [=I>] [>] =]

=z

Configuration 1 =, Both
“Creates’’ were Initiated by
the Next Verb (CR)

The importance of this example is that it shows the = sign is not
removed from the verb stack until only two elements remain on the value
stack. The multiple configuration before-after stack frame conventions for
the = sign allows multiple assignments of a variable.

Syntax analysis is performed on a command/statement only basis;

SYNTAX ANALYZER 61

Last Verb on Stack

Unary - + - - / t (=

Unary-| Stack Stack Stack Stack Stack Stack Stack Stack

k] +| Create Create Create Create Create Create Stack Stack
:é * | Create Stack Stack Create Create Create Stack Stack
£ /| Create Stack Stack Create Create Create Stack Stack
ﬁ t| Stack Stack Stack Stack Stack Stack Stack Stack
Z (| Stack Stack Stack Stack Stack Stack Stack Stack
2) | Create Create Create Create Create Create Create ERR

(CR)| Create Create Create Create Create Create ERR Create

Figure 27: Precedence table for arithmetic verbs, (,), =, and (CR). (CR)
and) are never stacked. Expressions such as A =(B (CR) or beginning with A=B)
are flagged in error (ERR). Variables or constants are sometimes required to be
between verbs (for example A + B — C), but sometimes these verbs can be adjacent
(for example A=(B) or A= —B).

it does not bridge commands/statements. The command program
FOR A=1TO 10: PRINT A

is syntax correct even though the program contains an error of a missing
NEXT A.

The rough conceptual method will continue to be used to explain
how the lexical and syntax analyzers work to analyze a more complicated
command.

The lexical and syntax analysis steps required for analysis of the
command:

Scanner
Pointer 123456 789101112131415161718192021222324252627 28

LFlolr|a]o]-[2[*[e]o[s]]e]»[o[e[+]-Te[s[T[e] o[[e[icm]

are
Verb Value

Scanner Pointer Value Stack Stack Comments

1 —_— —_— Not a Statement Because
“’F*" is Not a Digit.

2 _— _— Not a Variable Name
Because ‘'O is Not a Digit

3 _ _ FOR is Found in the Verb

Table. FORA is Not Found
in the Verb Table. FOR is
a Length 3 and Thus is a
Valid Verb. Hexadecimat
9E is the Atomization for
FOR Given in Appendix A.

62 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

A code block in the lexical analyzer now atomizes FOR in the buffer
to

Scanner
Pointer 123456 78 910111213141516171819202122232425 26 2728

[oelalo]=[2]*|c]o]s[[e]s]r]ofc]t]-[o[s|v|e]e[s]*[e]cn]] |

The command in the buffer is underoing a compression resulting
from text atomization. The contents of the entire buffer should be left
shifted the appropriate amount during atomization and filled out with
blanks.

A verb was located and atomized. The command was compressed
in the buffer. With the scanner pointer reset to | the syntax analyzer is
called. The syntax analyzer can identify the text atom of FOR, a hexa-
decimal 9E. The syntax analyzer will be looking for stack frames in the
format required by the FOR-TO-STEP command/statement. This form is:

Verb Stack Value Stack
FOR Number of Start Index
TO End of index Number
STEP Step Increment/Decrement Number

The analysis resumes

Scanner Pointer Value Verb Stack Value Stack Comments
| —

To determine what the next sequence of symbols represents the
lexical analyzer is called with the scanner pointer set to 2. These mean-
ingful sequences of symbols, such as verbs, variables, constants, literals,

. ., are often called tokens.

Scanner Pointer Value Verb Stack Value Stack Comments

?

3 [ron] [m] Gadireoros

May be a Variable

The lexical analyzer reports that it has found a variable. The syntax
analyzer ensures that the variable is placed on the value stack. The scanner
pointer is advanced to 4. The ‘‘="" verb is identified, and then placed on

SYNTAX ANALYZER 63

the verb stack.

Scanner Pointer Value Verb Stack Value Stack Comments

4 FOR

(1)

The syntax analyzer expected the ‘‘="" so it passes approval by
advancing the scanner pointer. The syntax analyzer now expects to en-
counter a number, a variable, or an expression that will eventually produce
a number.

Scanner Pointer Value Verb Stack Value Stack Comments

5 FOR AO Next Symbal *+" Stops
Scan for Number
= 2
6 FOR A0
= 2
7-10 FOR AC The Lexical Analyzer identifies
= 2 COS(as a Valid Verb

COS(is atomized to a hexadecimal C3 which is found in Appendix
A. The buffer becomes

Scanner
Pointer 1 23456 7 8 910111213141516171819202122 23

el [o]-[2]*[ede s [r[o]c[+]-[o[s[[e[e[s[*[eccm]

The scanner pointer is reset to 7 and syntax and lexical analysis
resumes.

Scanner Pointer Value Verb Stack Value Stack Comments
7 FOR A0
= 2

COos(

64 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer Value Verb Stack Value Stack Comments
8 a) FOR A0 The Variable B is Recognized
and Placed on the Value Stack.
= 2 The Next Symbol **)" Causes a
. B *“Create’” to Occur.
COS(
b) FOR A0
= 2
* COS{(B)

When the scanner pointer is 9, the lexical analyzer must know the
next meaningful sequence of symbols (token).

The *“TO” is recognized as a verb with hexadecimal atom B2. The
buffer is compressed to

Scanner
Pointer 1 2 34 56 7 8 9101112131415161718192021 22

felalo]-[2] *[cale]) e cf t]-[o]s[r[e[eTs[- [e]tcn]

When the next symbol is a *“TO”’, the ‘‘create’’ produces an after
stack frame from a before stack frame. This is a suboperation within a
FOR-TO-STEP.

Before Verb Stack Before Value Stack After Verb Stack After Value Stack

FOR Number 1 '

= Number 2

The purpose of this “‘create’’ is to place the start of the loop index
value on the value stack, while eliminating the index name and ** ="’ verb
from the verb stack. The ‘‘="" verb in the FOR-TO-STEP context is
handled in an entirely different manner than was the *‘="" in an assign-
ment. The ““="" in a FOR-TO-STEP can always be distinguished from
an ‘‘="" in an assignment (example of an assignment: A=B) because a
FOR precedes it on the verb stack. The *“TO’" triggers the following steps
since it is the next token when the scanner pointer is 9.

Scanner Pointer Value Verb Stack Value Stack Comments

9 a) FOR A0
= 2+COS(B)
b) FOH] B‘COS(B) I The FOR = is Reframed. This

was Caused by Encountering the
“TO" as the Next Token

SYNTAX ANALYZER 65

The syntax analyzer resumes its scan at pointer value 10. The syntax
analyzer examines the verb stack, and sees the last verb as ‘*“FOR"’. This
is the condition it expects. The syntax analyzer examines the value stack
and sees one number on it. The syntax analyzer also expected to see this
condition.

Scanner Pointer Value Verb Stack Value Stack Comments
10 FOR 2+COS(B)
TO
1 FOR 2+COS(B) Next Verb is t so the Rule is
“Stack”
TO Cc
12 FOR 2+C0s(8)
TO C
t
13 FOR 2+COS(8) The Symbol for Unary —is —u
TO C and it is Stacked
1
-u
14 a) FOR 2+C0OS(B)
TO c
1 D
-u
b} FOR 2+COS(8B) The Next Token, the Verb STEP,
Causes ""Create’’s to Occur.
T0 Cc
1 -D
c) FOR 2+COS(B)
TO ct-D

“STEP"’ is recognized as a verb with the text atom hexadecimal BO.
The buffer is compressed to

Scanner

Pointer
1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19

lse|[a]o|=]2]"- |03|B|)|BZIC|1‘|—-—| leo] 3] - Jefiwcn]

66 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

The syntax analyzer sees that the previous verb on the stack is
““TO” and also that there are two numbers on the value stack. Thus
**STEP”’ is a legitimate verb. The scanner pointer value is reset to 15 and
syntax analysis resumed.

Scanner Pointer Value Verb Stack Value Stack Comments
15 FOR 2+COS(B)
TO ct-D
STEP
16 FOR 2+COS(B)
TO ct-D
STEP 3
17 FOR 2+COS(B}
TO ct-D
STEP 3
18 a) FOR 2+COS(B) (CR) Causes “Create’’s to Begin
TO ct-D
STEP 3
* E
b) FOR 2+COS(B)
TO ct-D
STEP 3+E

The syntax analyzer checks the value stack to make sure that only
three elements are on it. Since this is the case, all the expectations the
analyzer had for a FOR-TO-STEP compound verb have been fulfilled. In
addition, all of the expectations it had pertaining to the arithmetic expres-

sions within the FOR-TO-STEP were also satisfied.
The value stack frames used for syntax analysis are simpler than

those required for program execution. More information has to be placed
on the value stack for the FOR-TO-STEP stack frame for program exe-
cution than the three numbers seen in the above example.

Single dimensioned arrays have the verb and the value before and

SYNTAX ANALYZER 67

after stack frames.

Before Verb Before Value Stack Frame After Verb After Value Stack Frame
Stack Frame Stack Frame
l { I @ I Array Variable Name | Array Variable Value I
Number

where is a symbol placed on the verb stack showing that an array
was encountered. The two byte symbol na could be called the verb
“*Array’’. This verb forces the value of an array element to be placed on
the value stack when a terminating **)*’ is found.

Double dimensioned arrays have the verb and the value before and
after stack frames.

Before Verb Before Value Stack Frame After Verb After Value Stack Frame
Stack Frame Stack Frame
I (| @ | Array Variable Name | Array Variable Value—l
Number
Number

The **array’’ verb is generated by the syntax analyzer and placed
on the verb stack when an array reference is discovered.
The lexical and syntax analysis steps for the command

Scanner
Pointer 12 34567 8910111213141516171819202122232425 26
(A= e] J2]-[e]e][o]p[. e[[. [P [e[[*[e] en
are
Scanner Pointer Value Verb Stack Value Stack Comments

1
: =
: 0 =

4-5 = A The Array Variable Name Token
B(is Recongnized and Placed on
(B(the Value Stack. (@ is Placed

on the Verb Stack

68 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer Value Verb Stack Value Stack Comments
6 = A
(B(
(@ 2
7 = A
{ B(
@ 2
8 = A
(B(
(® 2
(
9 = A
(B(
(@
. c
{
10 = A
(B(
(@
. Cc
(
+
11 a) = A The Next Symbol is **)’* which
Causes a “’Create’’ Sequence
{ B(to Commence
(@
. c
(
+

SYNTAX ANALYZER 69

Scanner Pointer Value Verb Stack Value Stack Comments
11 b} = A
{ B(
@ 2
bt c+D
{
12 = A Processing *)’* Causes *'{"”
to be Removed from the
(B(Verb Stack
(@ 2
- cC+D
13 = A The Delimiter *'.”” Acts in
a Manner Similar to (CR) in
(B(“Create”s to Begin. The ("
on the Verb Stack Stops the
@ 2¢(C+D) Sequence of “Create’’s

14-15 = A The Array Variable Name Token
B(is Recognized and Placed on
{ B{ the Value Stack
@ 2+(C+ D)
(@ B{
16 = A
(B(
(@ 2+(C + D}
@ B(
1
17 = A . is a Delimiter Separating
(py the Two Index Numbers of B(
(@ 2«(C+ D)
(@ B{

1

70 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer Value Verb Stack Value Stack Comments
18 = A The Next Symbol is ““}’. This
Triggers a Create and the (@
(B(Verb is Executed
(@ 2+(C + D)
-
(@ B(
‘l >
2
19 = A
{ 8(
}.
@ 2+(C + D)
8(1,2)
20 = A The *')"* Causes a Create and

(B(2+(C + D), B{1, 2)) the (@ is Processed

21 = A
(B{2+(C + D}, B{1, 2))

+
22 a) = A
(B{2+(C + D), B{1, 2}}
+ E
b) = A
(B(2+(C + D), B{1,2)} + E
23 | = | A
B(2+{C + D), B(1, 2)) +E
24 = A
. B{2+(C + D), B{1, 2)) +E
25 a) = A
* B(2+*{C + D), B(1, 2)) +E
3

SYNTAX ANALYZER 71

Scanner Pointer Value Verb Stack Value Stack Comments

b) |=| A

(B{2+{C + D), B(1, 2)) +E)}+3

c)

Notice that in this example an array reference causes the syntax
analyzer to generate an ‘‘Array”’ verb, (@, and places this verb on the
verb stack.

The syntax analyzer is unable to catch array dimensioning errors
such as:

= B(1)*B(2,3)

where B() is illegally single and double dimensioned.
An example of a statement which involves true/false logic is:

Scanner
Pointer 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19

L J°|‘|F|Al [efofafcf<fofrinjeln]rjz]wn]

has lexical and syntax analysis steps:

Scanner Pointer Value Comments

1-2 A Line Number is Identified by the
Lexical Analyzer. The Line Number
is Converted to Packed and Marked
by the Hexadecimal Atom FF

Scanner
Pointer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(e[(T e [a L= [eTo [e <[o[*[*[e[v]] 2[cH

The scanner pointer is reset to 4, and the lexical analyzer identifies
the verb “IF”’. The hexadecimal atom for “‘IF’’ is 9F as shown in Ap-
pendix A. The buffer line is compressed to:

Scanner
Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19

r]00|10|9F|A]js|o|alc|<|D|T|H]E|N|1|2|(cn)]

72 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner Pointer Value Verb Stack Value Stack Comments
4

o
u-T-.n?,HB
EI

7 a) A
B
b) [IF—l | A ‘—'?I The Token ““OR’ is Treated as

a Delimiter which Causes a
“Create’” for the Verb Sequence
IF =, The Element A = B has
Values TRUE or FALSE

The before and after stack frames for comparisons are:

Definition Verb Before Verb After Value Before Value After
Stack Frame Stack Frame Stack Frame Stack Frame
IF I IF | Numeric | Logical '
or
Equal = Character
or String
Less Than or = Nug:er'c
Equal or Character
String
Greater than or =
Equal
or
Greater Than >
or
Less Than <
or
Not Equal <>

The top two elements in the before value stack frame have to be of
the same types. A=B or A$=BS$ are valid statements, but the syntax
analyzer would catch the invalid comparison:

IF A=B$ THEN 10
1 ERR

SYNTAX ANALYZER 73

The *‘IF verb on the verb stack can be followed by any of the
comparisons. Any of the comparisons can also be preceded by the logical
verbs or AND, OR, NOT, and XOR (for exclusive OR), provided these
verbs are preceded by an “‘IF".

The lexical analyzer identifies ‘‘OR™ as a valid verb with hexa-
decimal text atom 8B (see Appendix A). The buffer is compressed to

Scanner
Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LFF[00|10|9F[A|=|B|aB|c|<|D|T|H|E]N|1|2|(cn)]

and the scanner pointer value is set to 8.

Scanner Pointer Value Verb Stack Value Stack Comments

8 IF | A=8 |
OR

9 IF A=8B
OR Cc

10 IF A=B
OR C
<

11 a) IF A=8B
OR C
< D

The lexical analyzer is called to determine what the next token in
the buffer is. The lexical analyzer discovers the ““THEN’’ which in turn
triggers a series of ‘‘create’’s back to the “IF” verb.

Scanner Pointer Value Verb Stack Value Stack Comments
11 b) IF A=8B The Top Two Elements on the Value
Stack are of Logical Type
OR cC<D
) [F | [A=80R C<D| The Etement on the Value Stack

is of Logical Type

The ““THEN" has hexadecimal text atom BI so the buffer is com-
pressed to

74 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

Scanner
Pointer 1 2 3 4 5 6 7 10 11 12 13 14 15

LloolwlgFIAl |B|aa|c [<] p{e1] 1] 2 [ica)]

and the scanner pointer is set to 12.

Scanner Pointer Value Verb Stack Value Stack Comments
12 IF l A=BORC<D
THEN

The lexical analyzer is called to identify the next token. A line
number, which is expected by the syntax analyzer, is found. The line
number is packed and the buffer changed to read

Scanner
Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lrrloo[10[sr] A - T8]e8] c [<] o[e1]rr[oo[12]ic)

where the hexadecimal FF indicates the beginning of a line number.

Scanner Pointer Value Verb Stack Value Stack Comments
13 IF A=BORC<D
THEN Line # 12

The syntax analyzer has been satisfied; the verb and value stack
frames are in a legitimate format.

Logical verbs *‘AND"’, *“OR"”, and **XOR”’, when preceded by the
verb “IF’" on the verb stack, have the before and after stack frames

Before Verb After Verb Before Value After Value
Stack Frame Stack Frame Stack Frame Stack Frame
IF IF Logical l Logical]
or or -
\F IF Logu:al
NOT NOT
AND
or
OR
or
XOR

The verb ‘*“NOT*’ has the before and after stack frames

SYNTAX ANALYZER 75

Before Verb After Verb Before Value After Value
Stack Frame Stack Frame Stack Frame Stack Frame

IF I IF I l Logical l | Logcial 1

NOT

The syntax analyzer must be able to verify the correctness of struc-
tures such as:

IF NOT A=B XOR NOT C=D THEN 20

which would be stacked when the scanner pointer was pointing at D

Verb Stack Value Stack

IF A=8
NOT C=0D
XOR
NOT

The importance of the ‘‘IF” preceding these logical verbs is that
byte-wise logical statement/commands are allowed in BASICs. An ex-
ample is:

IF A$=B$% AND NOT C$ XOR D$ THEN

Parentheses within the logical structure of an ““IF" can be imple-
mented using rules similar to those used for evaluation of arithmetic
expressions. Including this capability in the language may be of doubtful
value when cost/benefit is weighed. As a result of cost/benefit analysis
few BASICs allow parentheses within logical expressions.

Rough conceptual explanations of how the syntax analyzer works
was given to increase the reader’s insight into the mock execution method.

An example of step-by-step syntax analysis using the variable types
defined in Figure 24 of the statement

Scanner
Pointer 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

l1I!I lAllIAI‘IBI’['I [valc[efas]o]r]u]e]n]zfen]

76 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

using both the conceptual method and actual method of lexical and syntax
analysis is:

Scanner Conceptual Actual Concsptual Actual Comments
Pointer Verb Verb Value Vealue
Value Stack Stack Stack Stack
Lexica! Analyzer ldentifies 1" as
1 i — b e a Line Number and hes if Packed in
the Buffer
Scanner

Pointer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

[refoofor[i [efacfalcfe PV [-Tv aTe T Ta s [ne]z Jen]

Scanner Conceptual Actual Conceptual Actual Comments
Pointer Verb Verb Value Value

Value Stack Stack Stack Stack

4-5 e — -_— — The Verb “IF* is Identified

by the Lexical Analyzer then is
Atomized. Hexadecimal 08 is a
{CR)
Scanner
Pointer 1 2 3 4 5 § 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ll°°|°1I9FIAI<IAI¢IBl'I’l -[v[alcJJalsorTn]en] 2o
« [[y

5-6 E 9F00 & I Al] T Hexadecimal 02 Represents a Numeric
Array. (@ is the “Array” Verb
(@ Generated by the Syntax Analyzer
7-8 E] 900 || [A 02
@ Al 02
@
9 a) @ 9FQ0 ‘ Al 01 Next Tokenis “)”. Thereisa
— Valid Stack Freme Configuration
@ A{ 02 for a Numeric Array. “Create” an
@ a E After Stack Frame on the Value Stack
bl [¥] orao || [A)
[{] A(B) 02
10 a) E 9F00 ‘ Al 01 Process ')’
@ A(B) 02
b) 9F00 A(A(B) .)" Next Token Triggers a *’Create”.
E l] ; l I m f There is a Vatid Numeric Stack
Frame on the Value Stack
" [F] (oo} [Camen | [0t prosesss
12 900 || [awen | }
3D00 An "=" has Hexadecimal Value 3D
13-18 The Verb VALY is |dentified by

the Lexical Analyzer. VAL(is
Atomized to a Hexadecimal DC

SYNTAX ANALYZER 77

Scanner
Painter 1 2 3456 6 7 8 910111213 14151617 1819 20 21 22

[Felooforfera] (jalcfef s [[-joclalsr]r]u]e[n]2]oef

Scanner Conceptual Actual Conceptual Actual Comments
Painter Verb Verb Value Value
Value Stack Stack Stack Stack
12 G oroo | | [_aa@n | [o1]}
= 3p00
VAUl DCOo
14-15a | IF oroo | |[ataen | [o3]
= 8D00 As 01
VAL(DCoo
o [IF oroo | || awmen | [o1}4
= apoo |4 vauas) | [o1]
162 F 9F00 aaeh | [or]4 1 is Processea
- apoo| 4| vauas | [o1]
o [F] [sroo]}[an@n=| [05]4 the Next Taken “THEN" Triggered
VAL{AS} this Create

17-19 “THEN" is Atomized to a
Hexadecima! B1

Scanner
Pointer 123 45 6 7 8 9101112131415 16 17 18 19

|[Frloojor[or[al ¢ [alc[ef 1)] =]oc] a]s]]e1] 2]os]

A(A(B) = {

VAL(AS)

17 IF SF00
THEN 8100

—~———

18 The Valid Line Number 2" is
Packed

Scanner
Pointer 1 23 45 6 7 8B 910111213 14151617 18 19 20 21

|Fe{oojorfse[a[([a] ([a] []=Joc[a] 5] 1 JB1]rFfoofoz] o8]

Scanner Conceptual Actual Conceptual Actual Comments
Pointer Verb Verb Value Value
Value Stack Stack Stack Stack
18-20 IF 9F00 A{A(B)) =
VALI(AS)
THEN 8100 0002 05|

The arrows were drawn beside the Actual Value Stack to

serve as a reminder that the syntax analyzer’s value

stack, located above the variable table but below the

program text region of computer memory, expands toward

the top of memory and shrinks toward the bottom of memory.
This diagram was seen in Figure 23, The arrows drawn

beside the Actual Verb Stack show that the verb stack
axpands toward the bottom of the systems area of memory.

78 LEXICAL ANALYSIS, TEXT ATOMIZATION, AND SYNTAX ANALYSIS

The lexical and syntax analysis program module is a collection of
code blocks. Each code block is a short subroutine which should contain
no more than about 10-20 machine language statements. No subroutine
arguments are passed to these blocks. The reason for this is because each
code block obtains any information it needs from a knowledge of values
such as: the top and bottom of the verb stack addresses, the top and
bottom addresses of the syntax analyzer’s value stack, the type and value
of the next token, . . . High level syntax and lexical analysis code blocks
primarily consist of subroutine calls to these low level code blocks. Each
code block performs its intended functions, minimizes the possibility of
performing any unintended functions, and returns a status indicating the
action it took. High level code blocks call the low level code blocks,
analyze the returned status, and, depending on the value of the status,
call other low level code blocks.

The next step in constructing the lexical and syntax analysis module
is to write a detailed design document specifying the function of each
code block required to aid in the analysis of each verb defined in the
language functional requirements document. This task is not, however,
a function within the scope of this design document.

SUMMARY

The Language System with its many programs scans the applications
programmer’s software program. Three programs and their functions are:

1. Lexical analysis, which attempts to identify verbs, variable names,
arrays, numeric constants, and literals.

2. Text atomization, which compresses multicharacter verbs into a one
or two byte encoding.

3. Syntax analysis, which checks commands/statements for correct
grammar.

The lexical analysis, text atomization, and the syntax analysis pro-
grams operate in the buffer area of memory. The buffer area’s approximate
location is between the end of the program text region and the end of the
variable table.

Three fundamental software rules which apply to all software code
blocks, modules, and systems are:

1. Each software code block and module performs a clearly defined
intended function.

2. Each software code block and module minimizes the possibility of
performing either adverse or benign unintended functions.

SUMMARY 79

3. Each software code block and module must provide adequate warn-
ing in event of failure.

The verb atomization table is stored in a portion of the systems area
of memory. The verb atomization table contains three essential types of
information:

1. The verb name.
2. The verb atomization hexadecimal value.
3. The length in characters of the verb name.

Two arrays, called stacks, are used to aid in syntax analysis:

—

. The syntax analyzer's verb stack.
2. The syntax analyzer’s value stack.

The syntax analyzer's verb stack is located in the systems area of
memory. The syntax analyzer’s value stack is located above the variable
table but below the program text region of computer memory. Associated
with each verb are two value stack frames: the before stack frame and
the after stack frame.

6

Program Resolution

An analysis of program resolution is the topic of Chapter 6. Program
resolution occurs after the RUN command has been entered from the
input device. When the RUN command is entered, the variable table is
cleared of all non-common variables. During program resolution, state-
ment variables are identified, placed in the variable table, and initialized.
Program resolution has other intended functions which are discussed in
this chapter.

The intended functions of program resolution are:

1. Allocation of memory space in the variable table for all referenced
variables in a command sequence or program text.

2. Verification that both double and single dimensioned array refer-
ences with the same name do not occur in the same command se-
quence or program text. An example of this error which can be
identified at program resolution time is the command sequence

DIM A(2,2): A(1)=1 (CR).
1 ERR

The array A() cannot be referenced as both double and single di-
mensioned.

3. Verification that line number labels or line number references do not
appear in command sequences. An example of a line number label
illegally appearing in a command sequence is:

PRINT A: 10 B=1 (CR).
1 ERR

An example of a line number reference appearing illegally in a com-

PROGRAM RESOLUTION 81

mand sequence is:

PRINT A: IF B=1 THEN 10 (CR).
1 ERR

. Verification of line number references in programs against existing
line numbers for validity. For example, the BASIC program

10 INPUT A
20 IF A<=0 THEN 40
30 PRINT “A IS GREATER THAN 0"
40 GO TO 5

1 ERR

contains existing line numbers 10, 20, 30, and 40. THEN 40 is a
valid line number reference since line number 40 exists. The line
number reference GO TO 5 is an invalid reference since no line
number 5 exists.

. Repetition of lexical and syntax analysis. Program text with iden-
tifiable errors in lexical content and syntax are stored in the program
text area of memory. Programs containing such errors can be stored
on permanent storage device such as magnetic disk or tape for the
presumed intention of later correcting the program text in error. An
example of an attempt to run a program which contains a syntax
error is:

10 A0O==1 (CR)
1 ERR
RUN (CR)
10 A0==
1 ERR

The statement at line number 10 was entered and the second
**="" sign was flagged as a syntax error. The RUN command was
entered in an attempt to execute the program text at line number
10. When syntax and lexical analysis was redone during program
text resolution, line number 10 was displayed on the console output
device and the syntax error was identified.

. Possible construction of auxiliary tables which are used to speed
program execution. Some BASICs use a technique whereby the

82 PROGRAM RESOLUTION

program text region of memory is partitioned into, say, 16 segments.
BASICs usually search the program text region of memory to de-
termine where execution should resume as a result of a transfer of
control to a line number reference. A ‘‘coarse’’ search of an auxiliary
table which contains some label line numbers and their associated
pointers indicating where these line numbers reside is made before
searching the program text region segment of memory containing
the sought line number. The ‘‘coarse’ search of the auxiliary table
eliminates the necessity of searching all of the program text area of
memory to find the line number. For the program text statement:

GO TO 99
the auxiliary table:

Pointer to Program
Label Line Number Text memory area

10 0

30 54

80 160

120 245

would be searched locating line number 99 in the segment of Program
Text memory beginning at relative position 160. The search for line
number 99 would be started at 160 rather than 0 which would be
required if no auxiliary table were used.

If a program or command sequence successfully passes program
resolution, it is first marked executable, and then execution begins. If an
error is found during program resolution, the program is marked not
executable; program resolution is aborted and control is returned to the
entry phase. Entry phase is defined as accepting input from the console
input device.

Once a program has been successfully resolved, there is no need to
resolve it again each time it is run, provided that the program text remains
unchanged. If program text is modified in any way, then the status of
program resolution is set by the Language System to not executable.

Suppose the statements:

10 PRINT “TEN"
20 PRINT “TWENTY"

are entered into the Language System. The command:

PROGRAM RESOLUTION 83

GO TO 20 (CR)
1 ERR

would be marked in error with the reason of ‘‘unresolved program’’. Now
if the command

RUN (CR)
were entered,

TEN
TWENTY

would be printed on the console output device. Now if the command:
GOTO 20 (CR)

were entered, it would be accepted without error. The reason is that the
program has been marked executable at the time of the previous run.
When the HALT/STEP key or its equivalent (the HALT/STEP key either
stops execution of the program or causes one statement at a time to be
executed each time the Key is depressed) is depressed,

TWENTY

will appear on the console output device.

These examples illustrate that once a program has been successfully
resolved it is unnecessary to do so again unless the program text has been
modified.

Techniques used for lexical and syntax analysis have been covered
in Chapter 5. Techniques used for inspection and additions to variables
in the Variable Table have been explained in Chapters 3 and 4.

When the Variable Table is queried for the presence of a variable
previously located in a program statement or command, the type of the
variable is checked against the type of an already existing variable. This
check is used to discover (the error of) whether an array variable is both
double and single dimensioned.

Suppose that the BASIC program

10 INPUT AO

20 IF AO<OTHEN10
30 PRINT"AQ0>=0"
40 GOTO10

84 PROGRAM RESOLUTION

Start of
Program Text

Program Text Region of Memory Expands

End of
Program Text

Program
Text
Offset

—_—

O 0O ~NOOOOHWN-=0

W WWWowowwaowewaNNNDNDNDNDNNNRNND=S = = 2 22—
O N HWN—-0 O0O~NOODO B WN-—-0OLwO~NOTOHWN=0

—» 39

Program

Text Comments

FF Start of Line Number
00

10 Line # 10

99 Atomization of INPUT
A

0 Variable AO

0D Carriage Return

FF Start of Line Number
00

20 Line # 20

9F Atomization of IF

A

0 Variable AO

< Less Than

0 Number 0

B1 Atomization of THEN
FF Start of Line Number
00

10 Line # 10

0D Carriage Return

FF Start of Line #

00

30 Line # 30

A0 Atomization of PRINT
A

0

>

0 “AQ>=0"

[0]s] Carriage Return

FF Start of Line Number
00

40 Line # 40

96 Atomization of GOTO
FF Start of Line Number
00

10 Line # 10

0D Carriage Return

J
]

)

-

- 10INPUT AO

- 20IFAQ <OTHEN10

F 30PRINT “A0> = 0"

L 4060TO10

PROGRAM RESOLUTION 85

Variable Variable
Table Table
Offset Contents Comments
End of .
Variable Table 88-89 0000| Pointer to B{)
80-87 0 B(10) Value
' 0 B(9) Value
0 B(8) Value
0 B(7) Value
2 0 B(6) Value
§ 0 B{5} Value
S 0 B(4) Value
K 0 B(3) Value
@ 0 B(2) Value
fé 0 B(1) Value
S 10 Maximum Array Dimension
5 8 LENGTH
4 02 TYPE
2-3 BA NAME
Bottom of Memory 0-1 0088 Pointer to the End of the Variable Table
Value of the Pointer to the End of Common
Variables in the Variable Table 0000
Value of the Pointer to the End of Non-
Common Variables in the Variable Table 0088

Figure 28: Diagram of computer memory prior to program resolution, but after
a four statement program has been entered without lexical or syntax errors. The
commands DIM B(10): PRINT B(2) have also been executed. The verb atomization
values are taken from the table seen in Appendix A.

has been entered without error into the program text region of memory.
Suppose the commands

DIM B(10): PRINT B(2)

have also been executed. The program text region of memory and variable
table for this sequence of events are seen in Figure 28.

The steps for resolution of this program begin when the command
RUN is entered at the console input device.

The first step is to set the pointer, which indicates the end of the
variable table, equal to the value of the pointer, which indicates the end
of the non-common defined variables. This step effectively eliminates all
non-common variables from the variable table. In Figure 28, variable table
offset locations 0-1 are set to zero.

86 PROGRAM RESOLUTION

It must be emphasized that just the non-common variables are re-
moved from the variable table at resolution time. Variable values are only
initialized when a variable is first entered into the variable table. If all
variables were cleared from the variable table at the beginning of reso-
lution, then information could not be passed between BASIC program
overlays because each new overlayed program must be resolved prior to
its execution.

When lexical and syntax analysis are begun, the program text pointer
is initially set to 0. The lexical and syntax analyzers must be written so
that they will accept both atomized and plain text since either form is
acceptable. All program text that was entered without syntax or lexical
errors will be expressed in atomized form in the program text region of
memory.

As the program text pointer progresses from 0 to 2, as in the example
given in Figure 28, a valid line number is discovered. A valid verb atom-
ization is discovered when the program text pointer is set to 3.

A0 is identified as a numeric scalar variable. A0 is assigned
TYPE =00 and LENGTH =8. The variable table is searched for AQ. The
search begins at the end of the variable table. Since the variable table
contains no entries, A0 is not found. A0 is entered into the variable table,
and its value is initialized to 0. At this point the diagram of the variable
table is

Offset Value Comments

»-14-15 | 0000 Painter to AC

6-13 0 AQ Value

8 Length

00 Type

10 Name

0- 1 0014 Pointer to the End of the Variable Table

The program text pointer is advanced to 15 and the Carriage Return
found. The statement labelled 10 has been successfully processed.

The syntax for line number 20 is correct and the program text pointer
is advanced to 10. Atomization of IF is HEX(9F) and the syntax is correct.
A0 is identified as a variable. The variable table is searched and A0 is
found, so no action is taken. Verb and value stacks for syntax analysis
are constructed for the remainder of the statement. When both line number
10 is placed on the syntax analyzer’s value stack, and THEN, a HEX(B1),
is on the syntax analyzer’s verb stack, the resolution phase software
recognizes that a valid reference to line number 10 has been made. Pro-
gram resolution software then initiates a sequential search, beginning at
the Start of Program Text and ending either at the End of Program Text
or at the point line number 10, during which a HEX(FF0010) is found in

SUMMARY 87

the program text. If a statement label corresponding to the line number
reference is not found, then an error is signaled. This is an unresolved
line number reference error. Syntax analysis of the statement
30PRINT"A0> =0" reveals no errors.

At one point during the syntax analysis of the statement 40GOTO10,
the verb stack of the syntax analysis will contain the atomization of
GOTO, a HEX(96), and the syntax analyzer’s value stack will contain the
line number 10, a HEX(FF0010). This situation identifies a line number
reference. A search for a statement label HEX(FF0010) is begun at the
Start of Program Text. Some care must be taken to insure that a statement
label line number satisfies only the line number reference and not any
other. Valid line number labels occur only at the beginning of the program,
or must be preceded by a Carriage Return, a HEX(0D).

In the program seen in Figure 28, there are three line number 10s
and a HEX (FF0010). Of these line numbers, only the first will satisfy a
line number reference.

No errors have been found in the program in Figure 28, so it is
marked executable, and program execution is begun. This program does
not need to be resolved again until the program text region of memory
has been modified.

Applications programmers occasionally resort to keying RUN, key-
ing Carriage Return, then immediately keying HALT/STEP in an attempt
to halt the BASIC program after resolution, but before the first instruction
of the program has been executed. Accomplishing this allows the pro-
grammer to ‘“‘single step’’ the BASIC program, a possible aid in debugging
the program.

Program resolution can be an involved process, resembling source
code compilation. Auxiliary tables, which will enhance program execution
speed, may be constructed at resolution time.

SUMMARY

Program resolution occurs after the RUN command has been entered
from the input device. The intended functions of program resolution are:

1. Allocation of memory space in the variable table for all referenced
variables in a command sequence or program text.

2. Verification that all double and single dimensioned array references
with the same name do not occur in the same command sequence
or program text.

3. Verification that line labels or line number references do not appear
in command sequences.

88 PROGRAM RESOLUTION

4. Verification of line number references in programs against existing
line numbers for validity.

5. Repetition of lexical and syntax analysis when errors in program
text are stored in the program text area of memory.

6. Possible construction of auxiliary tables which are used to speed
program execution.

Once the program or command sequences succeeds in passing pro-
gram resolution, each is then marked executable, and the execution is
begun. If an error is found during program resolution, the program is
marked not executable; program resolution is aborted and control is re-
turned to the entry phase.

7

Program Text
Coordinates

The three program text coordinates are assigned to each character
in a BASIC program statement. Presented in this chapter is a discussion
of: the use of the colon; the execution of LIST in conjunction with S,D,
and SD; and the entering of a RUN command when accompanied by a
line number and a statement number within a line number.

Many BASICs allow more than one statement on a line. Statements
within a line are separated by ‘*:”’, colon. For example, the BASIC pro-
gram:

10 PRINT “10,1”: PRINT “10,2”: PRINT “10,3" (CR)
20 PRINT “20,1”: PRINT “20,2" (CR)

is entered in two lines.

The next step is the execution of LIST or LIST S (S stands for
“scroli’’). Scrolling means that a full screen of program text is displayed
each time the Carriage Return is keyed following entry of LIST S. Doing
this would cause:

10 PRINT “10,1": PRINT “10,2”: PRINT "10,3”
20 PRINT “20,1”: PRINT “20,2"

to be displayed on the console output device.
Execution of the BASIC command LIST D (D stands for decom-
pressed) or LIST SD (SD stands for (S) scroll and (D) decompress) would

90 PROGRAM TEXT COORDINATES

Modified
Program Program Program
Text Program Text Text
Offset Text Coordinates Coordinates Comments
0 FF 10, 1,1 0,00 Line # 10
1 00 10,1,2 0,01
2 10 10,1, 3 0,02
3 A0 10,1,4 0,03 Atomization of PRINT
4 * 10,1,5 0,04
5 1 10,1,6 0,05
6 0 10,1.7 0,0,6
7 , 10,1,8 0,0,7
8 1 10,1,9 0,0,8 “10,1"
9 v 10,1,10 0,0,9
10 : 10,2,1 0,1,0 Statement Separator
1" A0 10,2,2 0,1,1 Atomization of PRINT
12 " 10,2,3 0,1,2
13 1 10,2,4 0,1,3
14 0 10,2,5 0,1,4
15 , 10, 2,6 0,1,5
16 2 10,2,7 0,1,6 10, 2"
17 " 10, 2,8 0,17
18 : 10,3, 1 0,2,0 Statement Separator
19 A0 10, 3,2 0,21 Atomization of PRINT
20 " 10,3,3 0,22
21 1 10,3, 4 0,23
22 0 10,3,5 0,24
23 . 10,3,6 0,2,5
24 3 10,3,7 0,2,6 “10,3”
25 " 10, 3,8 0,27
26 oD 10,3,9 0,28 Carriage Return
27 FF 20,1,1 1,00 Line # 20
28 00 20,1,2 1,01
29 20 20,13 1,02
30 A0 20,1,4 1,0,3 Atomization of PRINT
N " 20,1,5 1,0,4
kY] 2 20,1,6 1,0,5
33 0 20,1,7 1,0,6
34 , 20,1, 8 1.0.7
35 1 20,1,9 1,0,8 "20,1"
36 '’ 20,1,10 1,0,9
37 H 20,2,1 1,10 Statement Separator
38 AD 20,2,2 1, 1,1 Atomization of PRINT
39 - 20,2,3 1,1,2
40 2 20,2,4 1,1,3
1 0 20,2,5 1,14
42 , 20,2,6 1,156
43 2 20,2,7 1,1,6 ~20, 2"
44 v 20,2,8 11,7
45 oD 20,2,9 1,1,8 Carriage Return

Figure 29: Example of assignment of coordinates to a BASIC program.

PROGRAM TEXT COORDINATES 91

cause:

10 PRINT “10,1”
:PRINT “10,2”
:PRINT “10,3"

20 PRINT “20,1"
:PRINT “20,2”

to be displayed on the console output device.
Execution of the RUN command would cause the program to be
resolved and

10,1
10,2
10,3
20,1
20,2

to be printed on the console output device.
A RUN command can be designed to have two numerical arguments:

RUN Line Number, Statement Number within Line Number.
Execution of RUN 20 would cause

20,1
20,2

to be printed on the console output device.
Execution of RUN 10,3 would cause

10,3
20,1
20,2

to be printed on the console output device.
A diagram of this program as it resides in the program region of
memory is shown in Figure 29.

Each character in a BASIC program can be identified by these three
coordinates:

92 PROGRAM TEXT COORDINATES

(Line Number, Statement Number with Line Number, Character
Position within Statement)

An example of this coordinate system is likewise shown in Figure
29.

BASIC line number labels are in numerical order. Line number
labels need not be consecutive numbers, but a one-to-one correspondence
between line numbers and non-negative integers can be established. A
modified program text coordinate system based on the establishment of
a one-to-one correspondence between the original coordinate and the non-
negative integers is also shown in Figure 29.

BASIC syntax could allow two part line references. Consequently,
statements such as:

GOTO 10,2

would allow transfer of control to a statement in a line which follows the
first statement on the line.

SUMMARY

e,

The colon **:*” can separate statements within a line.

LIST or LIST S and then a carriage return produces a full screen
of text.

LIST D or LIST SD produces a full screen of text which has been
decompressed with each line on the screen containing program text lo-
cated between two colons.

The RUN command, when accompanied by a certain line number,
a comma, and a statement number within that line number, produces the
results of that line number, that statement number (within the line number)
and any other remaining results of the program text.

Each character in a BASIC program statement can be identified by
three coordinates:

1. line number,
2. statement within the line number, and
3. character position within the statement.

BASIC line number labels are in numerical order. Line number
labels need not be consecutive numbers, but a one-to-one correspondence
between line numbers and the non-negative integers can be established.

8

Interpreted Program
Execution

The five states of a Language System are explained in Chapter 8.
Also examined are processing numeric and character string data during
program execution; and, working with the verbs GOSUB/RETURN,
FOR-TO-STEP/NEXT, RETURNCLEAR, and READ/RESTORE/
DATA.

A Language System is comprised of five states:

. Language System initialization
. Entry phase

. Resolution phase

. Language System self-test

. Interpreted execution phase

oW N

Language System initialization occurs when the computer is pow-
ered up. The Language System is either loaded into random-access mem-
ory (RAM) (from a permanent storage device), or it may be contained in
read-only memory (ROM). Many tasks, one of which is to discover the
bottom of memory address, are completed during Language System ini-
tialization.

The entry phase is the state during which the Language System is
either awaiting or accepting command or statement input from the console
input device.

The resolution phase is the state of the Language System during
which program text is being resolved. This phase is initiated by the com-
mand RUN.

As the Language System self-test proceeds, the Language System

93

94 INTERPRETED PROGRAM EXECUTION

enters the state during which the computer senses an abnormal condition,
such as a momentary power loss or memory failure. If, in the course of
checking itself, the Language System detects an error in its computer
code or tables, then it will request (on the console output device) that it
be reloaded or, if possible, it will leave a message pointing to a failed part
for a hardware engineer.

The interpreted execution phase is entered directly after successful
program resolution. Program resolution is initiated by executing a RUN
command.

Interpreted execution means a BASIC program is being executed
by a Language System program called an interpreter.

The interpreter scans BASIC program text and invokes appropriate
Language System modules that cause the program to be executed. Like
the syntax analyzer, the interpreter uses two stacks: verb and value. The
interpreter invokes some of the syntax analyzer’s code blocks. Tokens
must be identified and placed on either the verb or value stacks. The
syntax analyzer has code blocks that perform this function.

A diagram of computer memory showing the verb and value stacks
is shown in Figure 30.

The memory area reserved for storing both the verb stack and syntax
analyzer’s verb stack is of fixed size. The syntax analyzer’s verb stack
is used only during the Entry and Resolution phases. In neither phase
does the verb stack change in size. Only during the Execution phase does
the verb stack grow and shrink.

As program text is added, the BASIC program text region of memory
expands toward the bottom of memory, and shrinks toward the top of
memory if program statements are removed.

Size of the variable table is determined at the time of program res-
olution. During the Execution phase the value stack is used; that phase
must follow the Resolution phase. The value stack may contain some

Figure 30: Diagram of Language System computer memory. A fixed size region
of memory is allocated for storage of immediate mode command sequences. Two
hundred and fifty-six characters of storage is a common value used for this memory
area. The memory area allocated for storage of the verb stack and syntax ana-
lyzer's verb stack is of fixed size. The syntax analyzer's verb stack “floats” on top
of the verb stack, but cannot extend beyond the end of the verb stack memory.
The BASIC program text region of memory begins at a fixed memory location and
expands toward the bottom of memory. The variable table begins at the bottom
of memory and expands toward the top of memory. The value stack floats on top
of the variable table. The syntax analyzer's value stack floats on top of the value
stack. The work buffer is allocated what memory space remains. The work buffer
is allocated a minimum number of memory locations. An error is displayed on the
console output device if an entry is made which would cause the work buffer to
contain less than a minimum number of memory locations. _

INTERPRETED PROGRAM EXECUTION 85

common variables at the time of resolution. These common variables are
retained at program resolution.

The unused computer memory located between the end of the pro-
gram text region of memory and the top of the syntax analyzer’s value
stack is used as a Work Buffer. The Entry phase uses the Work Buffer

Top of Memory - 0
Computer Reserved Memory
Beginning of -« Fixed
Systems Area Other System Tables

Command
Buffer

Fixed p Fixed
—— | Command Sequences Size
Fixed

4

Beginning of
Verb Stack Verb Stack

Top of Verb
Stack + 1 =
Beginning of e —t=— Floating .
Syntax Analyzer’s ! Fixed .

Size
Verb Stack Syntax Analyzer's Verb Stack

Top of Syntax
Analyzer's Verb ———8 - - - - - - - - - - - - ——— — — ~— Floating

Stack Remaining Memory for

End of Verb Verb Storage

Stack Memory Fixed
Area

B

Beginning of
Program Text
Region of Memory BASIC Program Text
End of Program
Text Region of Memory

+ 1 = Beginning of
Work Buffer

____________________ — Floating

Work Buffer Minimum

Size
End of Work Buffer
+1=TopofSyntax —»f-----—--~------————~ ~T<— Floating

Analyzer's Value Stack

Beginning of Syntax

Analyzer’s ValueStack _____ ' __ _______ .
—1 = Top of Value Stack T Floating
Beginning of Value Stack
-1 = End of Variable — e — e —<— Floating
Table

Variable Table

Determined by
Existing Memory

Bottom of Memory

86 INTERPRETED PROGRAM EXECUTION

to store commands or statements which are entered from the console
input device.

A minimum size is assigned for the Work Buffer. Although the size
of the Work Buffer cannot be less than that assigned, it can be greater.
The reason for this is that it would be possible to enter a program and yet
not have sufficient room left in the Work Buffer to type the command
RUN, or other commands used to save the program on a permanent
storage device. (The Buffer described in Chapter 5 is the Work Buffer.)

Command sequence programs often cannot be executed in the Work
Buffer. A separate memory region, located in a Systems Area of memory
called the Command Buffer, must be allocated to contain some command
sequences.

The command

PRINT A

as entered into the Work Buffer is

Pointer 1 2 3 4 5 6 7
v [PTn [T[ALen

and is atomized to

Paointer

1 2 3
Work A0
Work
where HEX(AO) is the atom for PRINT and HEX(08) is Carriage Return.
This line is sent to the Command Buffer. The contents of the Work Buffer
and Command Buffer are:

Painter 1 2 3
Buffer
Command m

Buffer

The interpreter begins execution of the command in the Command
Buffer. The variable table is searched for variable A. Suppose A is not
found. A is entered into the variable table and its value is set at 0. Suppose
the number representation in the variable table is eight byte floating point
binary coded decimal. A 0 is represented as HEX(GC00000000000000).
The console output device usually displays only valid ASCII characters.

The PRINT command has to be responsible for seeing that the eight

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 97

byte floating point 0 is converted to an ASCII 0, which is a HEX (30).
Part of the execution of PRINT causes the work buffer to be filled with:

Paointer 1 2 3
worc (30]oo]on]
Buffer

which is ASCII 0, followed by Carriage Return (HEX(0D)), followed by
Line Feed (HEX (0A)).

The Command Buffer is required for the execution of some command
sequences since the interpreter needs the Work Buffer to execute verbs,
such as INPUT and PRINT.

The Command Buffer is usually given a reasonable size of about 256
bytes. If the Work Buffer is filled with a command sequence of more than
256 bytes, then only the first 256 are transferred to the Command Buffer.

The Command Buffer is available to Language System software
engineers for uses other than command sequence storage.

PROGRAM EXECUTION: NUMERICAL
COMPUTATIONS

The applications programmer can cause the contents of the

Program Text Region
Variable Table

Work Buffer

Command Sequence Buffer
Value Stack

to be altered by entering either BASIC program statements or commands
into the Language System. The contents of the Variable Table and Work
Buffer can be modified during the execution of a BASIC program. A
diagram of the arrangement is seen in Figure 31.

Character string data can be fetched from any one of these five
regions of microcomputer memory. Numeric data, on the other hand, can
only be fetched from the Variable Table and Value Stack. Processing
character string data is more complicated than processing numerical data.
Therefore, numerical computation procedures will be explained first.

The basic principle conveyed in Figure 31 is that memory regions
containing either program statements or commands can only be, from the
applications programmer’s standpoint, read during program execution.
This statement is not entirely accurate since the application programmer

98 INTERPRETED PROGRAM EXECUTION

may be able to issue a BASIC statement in a program which causes more
program text to be read into the program text region of memory. This is
called an overiay.

When executed by the Language System, BASIC programs can
cause both reads and writes into the Value Stack, the Variable Table, and
the Work Buffer. The Language System’s programs do the reading and
writing to these memory areas on behalf of the application programmer’s
BASIC programs.

Stack frame formats used for BASIC program execution have the
format:

| cHain | FRamE JLocaTion] vaLue |

Chain is a two byte binary number specifying the number of bytes
occupied by CHAIN, FRAME, LOCATION, and VALUE.

Value is either a pointer or a value itself.

Frame is a one byte binary number which specifies the frame type.
The values of FRAME are

Command
Sequence |[«—— Fetch Only
Buffer

Program
Text — Fetch Only
Region

Wark
Buffer [<— Fetch and Store

gta;:: t-«—— Fetch and Store
V_?;lgllzie -+—— Fetch and Stare

Figure 31: Diagram of microcomputer memory from the applications program-
mer’s standpoint of whether a BASIC program causes information to be read or
written from the various regions while it is executing.

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 88

FRAME Frame description

. 00 Null
01 Four byte binary pointer pointing to a name in the variable table
02 A four byte binary pointer pointing to a character string value, fol-

lowed by a four byte binary string starting position, followed by a
four byte binary string length

03 Four byte binary pointer pointing to a numeric value in the variable
table

04 Numeric value

05 Character string value

Location is a single byte number indicating where the data resides.
Binary LOCATION definitions are

LOCATION Location Definition Permissible VALUE
00 Null
01 Program Text Region Pointer
02 Variable Table Pointer
03 Work Buffer Pointer
04 Command Bulifer Pointer
05 Value Stack Numeric or character string

Null indicates that 00 is assigned before the values 01-05.

The best way to understand how stack frames for BASIC program
execution are constructed is by example.
The BASIC command sequence,

A=1:B=A (CR),

Command Buffer, and Variable Table layout is shown in Figure 32.
This diagram was made just after program resolution, but prior to exe-
cution. To increase clarity, the specified pointer values to the next variable
in the Variable Table are somewhat imprecise. This imprecision resulted
from the convention of numbering pointers to Variable Table fields be-
ginning with 0.

Program execution begins with the Language System scanning the
Command Buffer. Recall that the Verb stack expands from the top of
memory toward the bottom of memory. The Value stack, however, ex-
pands from the end of the Variable Table toward the top of memory.

In order to understand just what occurs during program execution,
diagrams of the direction(s) in which both the Verb and Value stacks
expand during program execution are important.

100 INTERPRETED PROGRAM EXECUTION

Command Verb Value
Buffer Stack Verb Stack
Pointer Index Stack Value Stack Index Comments
1 8 | t 67 CHAIN: Eight Byte Subframe
03 5 FRAME: Pointer
02 4 LOCATION: Variable Table
6 0-3 Pointer Value to A
2 0-1 I = | 08 A 6-7 Equal Sign Verb is
il Placed on the Verb
i 03 5 Stack
02 | 4
6 0-3
3a) 0-1 | = | 16 22-23 | CHAIN: 16 Byte Subframe
02 21 FRAME: Pointer, Start, and Length
| 04| 20 L LOCATION: Command Buffer
i _0_3_ 16-19 Pointer to *’1*’ in Command Buffer
01 12-15 Start of the *'1”
01 8-11 J Length of the ‘1"
08 6-7] Subframe Pointing to the
----- Value of A
03 5
- - 1 >
02 4
- - — -
6 0-3]

Since a command sequence is being executed, the Language System
processes text in the Command Buffer. If program statements were to be
executed, then the Language System would turn its attention to the Pro-
gram Text region of memory.

A is identified as a variable. A pointer to the value of A is placed
on the value stack. When the scanner pointer to the Command Buffer is
two, the equal sign is identified as a verb, and placed on the Verb Stack.

When the scanner pointer has three for a value, the **1"’ is identified
as a number. *‘1’’ is a character string in the Command Buffer; *‘1°* begins
at pointer position 3, and has a length of one character. This information
is placed in a value stack subframe whose length is CHAIN = 16. The
pointer and the length and start of the character string occupy the VALUE
portion of the stack subframe.

The **:" at scanner position 4 triggers an ‘‘execute’” of the *‘=""

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 101

verb. The ‘="’ verb examines the character string ‘‘1’’ and realizes that
a conversion from the ASCII ‘1"’ to a numeric 1 is required. The *‘=""
pushes a ‘‘convert from ASCII"" verb on the verb stack, and then invokes
a ‘‘convert from ASCII"’ verb.

The remaining steps in the execution of ‘‘="" are:

Command Verb Value
Buffer Stack Verb Stack
Pointer Index Stack Value Stack Index Comments
3b) 0-1 E 12 | 4 18-19) CHAIN: 12 Byte Subframe
_04 17 FRAME: Numeric
] d
05 16 LOCATION: Value Stack
1 8-15 | Eight Byte Numeric 1
08 6-7 |
N _0_3_ | 5 | Subframe Pointing to the Value
02 4 of A
- — -
6 | | 03 |
c Assignment Execution Completed

Command Buffer

1 2 3 4 5 6 7 8 9
[al=T+1:1 [e]-]aloo|
Bytes Value Comments
28-29 14 Pointer to the Next Variable in the Variable Table
§ T :20-27 0 Eight Byte Number Value of B
3 ‘ 8 LENGTH
o 1 00 TYPE
2 - BA NAME
= 0 Pointer to the Next Variable in the Variable Table
% 0 Eight Byte Number Value of A
2 8 LENGTH
3 00 TYPE
AA NAME
28 Pointer to End of Variable Table

Figure 32: Diagram of microcomputer memory just after program resolution has
occurred, but before execution begins for the BASIC command sequence A=1:
B=A (CR).

102 INTERPRETED PROGRAM EXECUTION

The CHAIN information is required so that a verb can determine
where the next noun information on the value stack begins, and what the
length of the VALUE portion of the subframe is.

In summary, sufficient information exists on the Value Stack for
any verb processing module to locate and analyze subframes required for
its successful execution.

Execution of the command sequence seen in Figure 32 resumes.

Command Verb Value
Buffer Stack Verb Stack
Pointer Index Stack Value Stack Index Comments
4 Skip Over the ":"
5 Skip the Blank
6 08 | } 67 CHAIN: Eight Byte Subframe
03 5 FRAME: Pointer
02 4 LOCATION: Variable Table
20 0-3 Pointer to Value of B
7 0-1 | = | o8 [4 67 The =" Verb is Pushed
""" Onto the Verb Stack
03 5
02 4
20 0-3
8 0-1 = 08 ‘} 14-15 CHAIN: 8 Byte Subframe Length
03 13 FRAME: Pointer
02 12 LOCATION: Variable Table
6 8-11 Paointer to Value of A
08 6-7
03 5 Subframe Pointing to the
""" Value of B
02 4
20 | 0-3
cl (CR) Triggers Execution of

the Assignment Code Block.
The Assignment has the
Responsibility to Pop Both
the Verb and Value Stacks

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 103

Comparison of processing A=1 to B=A revealed that the only
difference was that A=1 required both moving one number from the
Value Stack to the Variable Table and moving an ASCII number to an
internal number format conversion, while B = A required a move of eight
bytes between two different locations in the Variable Table.

Two important points of program execution are:

1. The variable attributes of CHAIN, FRAME, and LOCATION need
to be placed on the Value Stack along with frame VALUE.
2. The Language System verb processing modules must have sufficient

“‘intelligence’’ to determine which type of data needs to be pro-
cessed.

Step by step execution of the BASIC program:
10 DIM A(2):D=A(1)*(C—-B) (CR)

should clarify the process of numerical computation program execution.
This program is atomized and placed in the Program Text Region of
memory to:

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22

[Frloo[rofss]afcf2]r]:fof-Jalc][1] [[¢]c]-Te]) [o]

where HEX(93) is the atom for DIM. DIM, not DIM(, must be atomized
because character strings can have their lengths changed by using a state-
ment, such as 10 DIM A$64, which would change the default length of
A$ (often 16) to a length of 64 bytes.

When program resolution has been completed, but before execution
begins, the variable table is:

Bytes Value Comments
66-67 Pointer 1o Next Variable in the Variable Table
58 65 / Value of B
LENGTH
\56 TYPE
4§;-/55 BA NAME
5 Pointer to Next Variable in the Variable Table
A Value of C
LENGTH
TYPE
NAME

! Pointer to Next Variable in the Variable Table
30-37 > /0 Value of D

104 INTERPRETED PROGRAM EXECUTION

Comments

LENGTH

TYPE

NAME

Pointer to Next Variable in the Variable Table
Value of A(2)

Value of A(1)

Maximum Dimension

LENGTH

TYPE: Single Dimensioned Numeric Array
NAME

Pointer to the End of the Variable Table

Program resolution was initiated by entering the RUN command.

The scanner pointer must now point to the Program Text Region of
computer memory to begin execution of BASIC statements.

Program execution proceeds:

Program
Text
Pointer

1-3
4-9

10

1"

12-13

Verb
Stack
Index

0-1

2-3

Verb
Stack

Array

Value
Stack
Value Stack Index Comments
Skip Over Line Number
— Skip Over DIM: DIMs
Processed at Program
Resolution Time
o8 6-7 CHAIN: Eight Byte Subframe
03 5 FRAME: Pointer
02 4 LOCATION: Variable Table
30 30 Pointer to Value of D
08 6-7]-= Verb Pushed on Verb Stack
03 5 Subframe Pointing to the
M~ = " Value of D
02 4
30 0-3
08 14-15 | CHAIN: 8 Byte Subframe Length
01 13 FRAME: Variable Name Pointer
----- >
02 12 LOCATION: Variable Table
2 8-11 | Pointer to A{

Program Verb
Text Stack
Pointer Index

12-13-Continued

14 a) 0-1
2-3
14 b) 0-1
2-3

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 105

Verb
Stack

Value Stack

Array

Array

Value
Stack
Index Comments
6-7 |
5 | Subframe Pointing to the
4 Value of D
03 |
30-31) CHAIN: 16 Byte Subframe
29 FRAME: Pointer and Length
28 LOCATION: Program Text Region
24-27 >Pointer to ASCIl 1"
20-23 | Start of ASCII "1
16-19] Length of ASCII 1"
14-15)
13 s Pointer to Name of A(
12
8-11 £
6-7
5 L Subframe Pointer to the
Value of D
4
03 |
26-27] CHAIN: 12 Byte Subframe
25 FRAME: Numeric
24 }LOCATION: Value Stack
16-23) Numeric 1"
14-15)
13 > Pointer Pointing to Name A({
12
8-11 3
6-7
5 }Subframe Painting to the
4 Value of D

0-3 J

106 INTERPRETED PROGRAM EXECUTION

Program
Text
Pointer

14 ¢c)

15

16

17

Verb
Stack
Index

0-1

0-1
2-3

0-1

4-5

Verb
Stack

Value Stack

[ﬂ

Value
Stack
Index Comments

14-15 | CHAIN: 8 Byte Subframe

13 FRAME: Pointer
>

12 LOCATION: Variable Table

8-11 Pointer Value of 8 Pointing
“ to A(1) in Variable Table

6-7

5 | Subframe Pointing to the
4 Value of D

0-3)

The *)*" is Skipped Over but Triggered the Array Evaluation

in Step 14

08

03

02

03

02

30

\
14-15 | The Multiplication Verb, *'+*
13 is Placed on the Verb Stack
%
12 Pointer Pointing to Value
of A(1) inVariable Table
8-11)
6-7)
5 Subframe Pointing to the Value
r of D
4
0-3

14-15 | The **(” is Placed on the

Verb Stack
13
>
12 Subframe Pointing to the Value
of A{1)
8-11 |
67 |
5

bSubframe Pointing to Value
4 of D

0-3

7

Program Verb
Text Stack
Pointer Index

18 0-1
2-3
4-5

19 0-1
2-3
4-5
6-7

20 a) 0-1
2-3
4-5
6-7

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 107

Verb
Stack

Value Stack

Value
Stack
Index Comments

A
22-23 | CHAIN: Eight Byte Subframe
21 FRAME: Painter

>
20 LOCATION: Variable Table
16-19J Pointer to Value of C
14-15)
13 Subframe Pointing to the Value
>
12 of A(1}
8-11 |
6-7)
5 ’Subframe Pointing to the
4 Value of D
0-3
22-23 | Push “~" on the Verb Stack
21
20 rSubframe Pointing to the Value
of C
16-19
14-15
13 Subframe Pointing to the Value
fA(1

12 \ of A(1)
8-11

b
6-7
5 ! Subframe Pointing to the Value
4 of D
0-3)

s
30-31 | CHAIN: Eight Byte Subframe
29 FRAME: Pointer
28 [LOCATION: Variable Table

24-27 J

Pointer to Value of B

108 INTERPRETED PROGRAM EXECUTION

Program Verb Value
Text Stack Verb Stack
Pointer Index Stack Value Stack Index Comments
20 a) -Continued 08 22_23\
| _[33_ i 2 Subframe Pointing to the
02 20 ¢ Value of C
a4 16-19 J
08 14-15 |
| *0_3_ J 13 , Subframe Pointing to the
02 12 Value of A(1)
8 8-11 J
08 6-7
N _(23_] 5 | Subframe Painting to the
02 4 Value of D
30 0-3
b) 0-1 = 12 26-27 | CHAIN: 12 Byte Subframe
2-3 . 04 25 FRAME: Numeric Value
““““ >
4-5 (05 24 LOCATION: Value Stack
0 16-23‘ Eight Byte Vatue of C-B
08 14-15
L 03 13 Subframe Pointing to the
_0_2_ 1 12 " Value of A(1)
8 | &n |
08 6-7
__0_3_ | 5 | Subframe Pointing to the
02 4 Value of D
30 | 03 |
21 0-1 = 12 26-27W The “}** Causes the (" to be
————— Popped Off the Verb Stack
2-3 * 04 25 .
05 24 Value of C-B Located on the
"""" Value Stack

0 16-23 |

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 109

Program Verb Value
Tpxt Stack Verb Stack
Pointer Index Stack Value Stack Index Comments
21- Continued 08 14-15 |
<_93__ - s Subframe Pointing to the
02 12 Value of A“]
8 8-11 |
08 6-7 |
| 03_ 5 Subframe Pointing to the
-—=1 >
02 4 Value of D
30 0-3
22a) 01 E, 12 18—191 (CR) Causes Processing of the
v “»* py the Language Syst
04 17 [y guage System
05 16 Value of A(1)*{C — B) Located
“““ J on the Value Stack
0 8-15 3
08 6-7
B _09_] 5 Subframe Pointing to the
02 4 Value of D
30 0-3

22 b}

{CR) also Causes the ‘=" to be
Processed by the Language System

The Language System ="' Processing
Code Block is Responsible for
Popping Both the Verb aiid Value
Stacks

Now that the execution of statements has been diagrammed, a de-
tailed explanation of the steps of execution will be given. The scanner
pointer must be directed toward the program text region of memory since
a program, as opposed to a command sequence, is being executed.

When the RUN command was keyed, it was entered into the Work
Buffer. From there, the RUN command was transferred to the Command
Buffer for execution. Execution of the command caused the two line
BASIC program to be resolved. Resolution involved a sequential scan of

110 INTERPRETED PROGRAM EXECUTION

the entire program for the purpose of allocating storage for the variables
in the variable table. The variables A(), D, C, and B were stored in the
same order as they were discovered in the program.

Execution of the BASIC program begins with the Language System
looking for successive meaningful symbols. Because the BASIC program
survived lexical and syntax analysis and resolution, the Language System
expects meaningful program text.

While scanning program text positions 1-4, the Language System
will identify a line number. No processing of this is required. At position
4, a DIM atom is identified and the Language System skips to end of the
line at position 9, and then begins to process the symbol(s) at position 10.

The variable D is identified and the Language System searches the
variable table for D. The Language System creates a value stack subframe
pointing to the value of D. The Language System searched the variable
table for the name D, but then created a pointer pointing to the value of
D. The length of the value stack subframe is always CHAIN. This knowl-
edge is very important to the Language System software engineer or the
applications programmer since a program can be written to ‘chain’ through
the value stack examining value stack subframes. This traversal has to
begin with the stack subframe located at the top of the value stack because
the first CHAIN is located there.

At scanner pointer position 11, ‘="' is identified as a verb and
placed on the verb stack. The Language System always examines the next
token to decide whether to perform a stacking operation, or do one or
more computations.

The array name A() is found at positions 12—-13. A pointer to the
name of A() is placed on the value stack. A value of A() cannot be
pointed to since the index of A() has not yet been determined. Discovery
of an array name also causes a Language System generated verb called
‘‘Array’’ to be pushed on the verb stack.

At scanner position 14 the number 1 is found. This number is a one
digit ASCII character. The Language System converts the character string
beginning at position 14 in the program text region of memory having a
length of one character to an eight byte numeric 1 and places the numeric
1 on the value stack along with its header information.

The next token is a **)’" and matches the Array verb on the verb
stack. This informs the Language System that the array reference is to
be evaluated. As diagrammed below in a rough conceptual way, a single
dimension array reference has the before and after stack frames:

Befare After

Array Name Array Element Pointer

Number

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 111

The Language System compares the index value against the maxi-
mum array dimension to check if a legal reference was made. If the index
is outside the range of allowable subscripts (here 1 and 2), then the state-
ment is displayed on the console output device; an arrow extends from
the next line toward the offending index; and an error code is shown.
Program execution is terminated.

Advanced BASIC Language Systems allow BASIC programs to
intercept any error which might stop program execution. Notice that an
out-of-bounds index might not necessarily stop program execution. Some
applications programmers might use the error detection mechanism of the
Language System to sense a failing operation and then take action to
correct the situation.

Index values in BASIC are truncated to integers. X(3.45) is a spec-
ification of X(3).

At step l4c, the array name pointer and index subframes are replaced
by a pointer to the indexed array element. In this case, the pointer is to
A(l).

The **)"" is skipped over and the “‘** is identified as a verb and
placed on the verb stack at step 16.

The *‘(” is identified as a verb at position 17 and is placed on the
verb stack.

In step 18, C is found in the variable table. A value stack subframe,
including a pointer to the value of C, is placed at the top of the value
stack.

In step 19, *“ =" is identified by the Language System as a verb,
and it is placed on the verb stack.

At step 20a, B is identified as a variable. The variable table is
searched for the name B, B is found, and a subframe containing a pointer
to the value of B is placed on the value stack.

The next symbol at step 20 is a *‘)’’. This causes the Language
System to invoke the code block which processes the ‘-’ verb. The
result of this is seen in step 20b.

Processing the **)’ in step 21 causes only the *“(’’ to be popped from
the verb stack.

Discovery of the carriage return at scanner position 22 first causes
the **** multiply verb to be executed. The execution leaves the product
at the top of the value stack.

The *‘="" verb can be interpreted by the Langugage System. This
event causes both the verb and value stacks to be moved back to the
positions they occupied at the time execution of the statement began. This
is most important. Much of the time, execution of a statement or command
will begin with the value and verb stacks empty. This will not be the case
when a statement is enclosed in a FOR/NEXT loop, or in a subroutine
reached with a GOSUB statement or command.

LX)

112 INTERPRETED PROGRAM EXECUTION

Rules for processing arrays may still be confusing. For this reason
the two commands PRINT (A(I,J)) and PRINT A((1+1J)) will be executed
in a rough conceptual manner.

The command PRINT (A(I,J)) has the command buffer atomization:

1 2 3 4 56 6 7 8 9 10

ol e Jafcfre]. [a]o]]oo]
and execution steps:
Step Verb Stack Value Stack
1
2 AO

(

3-4 A0 | A
(

Array
5 AQ Al
(I
Array
6-7 a) A0 A(
(I
Array J

7h) A0 (a0 |

8a) AD [aua |

8b)

The important steps in this process is to observe that A(and Array
are pushed onto the value and verb stacks respectively in step 3-4 and
A(I,J) located when ‘)’ was the next token which matched Array on the
verb stack.

PRINT A((I+1J)) has the command buffer atomization

and execution steps:

Step

1

2-3

7a)

7b)

8 a)

8b)

PROGRAM EXECUTION: NUMERICAL COMPUTATIONS 113

1 5 6 7 8 9 10

F\OIAI‘l‘i [+]s])]]oo]

Verb Stack Value Stack
-
Array
-
Array
{
A0 Al
Array 1
(
AO Af
Array [
{
+
AOD A(
Array 1
{ J
+
AO Al
Array I+J
(
AO Al
Array 1+
| a0 | [Au1+am |

114 INTERPRETED PROGRAM EXECUTION

There are two important points in this example. First, discovery of
the array reference A(at scanner pointer values 2-3 resulted in the Lan-
guage System placing the verb ‘‘Array’’ on the verb stack at the same
time that A(was placed on the value stack. The second important point
is that the *“)" in step 8 was identified as the closing right parenthesis of
a numeric expression because a corresponding left parenthesis was located
on the verb stack.

GOSUB/RETURN AND FOR-TO-STEP/NEXT
PROCESSING

Both the verb and value stacks expand and contract during the
execution of commands and statements. In most cases the top of stack
pointers for the verb and value stacks will be the same values at the end
of execution as they were at the beginning for each line of code executed.
Several examples of such statements are:

A=B*(C+D)
or
PRINT A,8*(A+2)

BASICs contain at least two statements, GOSUB and FOR-TO-
STEP, for which the verb and value stack pointers are not returned to
their original positions after execution of these commands or statements.
For each of these statements or commands it takes a second verb to cause
the verb and value stack pointers to be returned to the values they had
at the beginning of the execution. The verbs GOSUB/RETURN and FOR-
TO-STEP/NEXT operate in pairs. Some BASICs have verb pairs, such
as WHILE/ENDWHILE. The principle of how these verb pairs work is
the same. Execution of the first of the pair causes the verb and value
stacks to be loaded with some information. Execution of the second of
the verb pair may cause the information already placed on the verb and
value stacks to be removed. This removal is not a certainty; some con-
dition might have to be met before the information is removed from the
two stacks. An example is:

FORA=1TO 3 STEP .5
:NEXT A

/

Execution of NEXT A removes the information placed on the verb

GOSUB/RETURN AND FOR-TO-STEP/NEXT PROCESSING 115

and value stacks only when FOR A=1 TO 3 STEP .5 was executed at
a time when A is greater than or equal to 3.
The BASIC program:

10 GOSUB 20: STOP
20 PRINT A: GOSUB 30: RETURN
30 PRINT B: RETURN

is atomized to:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F:FIOOIIOIQA‘FFIOOIZOI : |95|00|FF|00]20]A0| Al : |94l

18 19 20 21 22 23 24 25 26 27 28 29 30 31

IFF|00|30| : |93|OD|FF|00]30'A0| B | : |93Eﬂ

where FF is the hexadecimal header of a packed decimal line number,
and 9A is the hexadecimal atomization of GOSUB, 9B of RETURN, A0
of PRINT, and 95 of STOP. These hexadecimal atomization values are
given in Appendix A. The hexadecimal O0D’s are the carriage returns at
the end of each line.

Program execution is initiated by entering the RUN command. Be-
fore program execution the RUN command causes program resolution
take place, and A and B are entered in the variable table.

A series of rough conceptual diagrams of both the verb and value
stacks during execution of this program will make more comprehensible
the processing of the GOSUB/RETURN verb pairs.

The GOSUB verb has the before/after stack frames

Before Verb Stack Frame Before Value Stack Frame

GOsSuB . .
Binary Pointer to the Program

Text in the Subroutine

Binary Pointer to the Program
Text which is to be Executed Following
the Return from the Subroutine

After Verb Stack Frame After Value Stack Frame

Binary Painter to the Program
Text which is to be Executed Following
the Return from the Subroutine

116 INTERPRETED PROGRAM EXECUTION

Execution of this program is

Interpreter
Scanner Verb Value
Pointer Stack Stack Comments
1-3 Line Number Label Discovered and Skipped
Over
GOsuB GOSUB Atom Placed on Verb Stack

Line Number Reference to 20 was
Discovered. The Program Text Region
was Searched for Line Number Label 20,
Label Line Number 20 was Located in
Pasitions 11-13. 14 Points to the
Beginning of the Statement on Line 20.

i
gl

5-7 GOsuB

The Next Program Statement Following
the GOSUB Begins at Program Text Region
Position 9.

8a)

b) GOSUB is Processed and the Interpreter’s

Scanner Pointer is set to 14

14 PRINT PRINT Verb is Placed on the Verb Stack

A Pointer to A in the Variable Table

is Placed on the Value Stack. Carriage
Return is the Next Symbol and Triggers
a Verb Execution

15a) PRINT

The Value of A is Printed an the Console
b) Output Device

16 The ;" is Skipped Over

17 GOSUB GOSUB is Placed on the Verb Stack

Line Number Reference 30 is Identified

The Program Text Region of Memory is
Searched for Line Number Label 30. Line
Number 30 is Found at Positions 24-26

in the Program Text Region of Memory.

The Pointer to the Beginning of the Statement
on Line 30 has Value 27

i
[e]e] [e] [e] [xle] [e] [e] [o]=]

18-20 GOosuB

The Statement Following this
GOSUB Begins at Position 22
in the Program Text Region
of Memory

21 a) Gosus

[R[8]e]
~

GOSUB/RETURN AND FOR-TO-STEP/NEXT PROCESSING

Interpreter
Scanner Verb Value
Painter Stack Stack
21b) 9
2]
27 PRINT 9
22
28 a) PRINT 9
22
B
9
b) —
22
29 9
22
30a) RETURN 9
22
) [¢]
222a) RETURN E]
b)
b)

Comments

The GOSUB is Executed and
the Interpreter‘s Scanner
Pointer is Set to 27

PRINT is Placed on the
Verb Stack

A Pointer to the Value of B
Located in the Variable Table
is Placed on the Value Stack

The Next Symbol is “:*’ and
Triggers an Execution of the
Verb. The Value of B is Printed
on the Console Qutput Device

The "':" is Skipped by the
Interpreter

The RETURN is Placed on the
Verb Stack. The Next Symbol
is a Carriage Return and
Triggers an Execute. The
Interpreter’s Scanner Pointer
is Set to Value at the Top

of the Value Stack

The RETURN is Placed on the Verb
Stack. The Carriage Return is
Next and Triggers an Execute

Both the Verb and Value Stacks are
Popped and the Scanner Pointer of
the Interpreter is Set to 9

The Next Symbol is a Carriage Return
and Triggers an Execute

The STOP is Executed by the
Interpreter. The Language System
is Placed in the Entry State

17

118 INTERPRETED PROGRAM EXECUTION

The RETURN verb has the before/after stack frames

Before Verb Stack Frame Before Value Stack Frame

RETURN Binary Pointer to the Program

Text which is to be Executed Following
the Return from the Subroutine

After Verb Stack Frame After Value Stack Frame

This means that the after value stack frame for the GOSUB verb
matches the before value stack frame. This is why GOSUBs are usually
paired with RETURNEs. .

The word *‘usually’’ was required in the last sentence because some
BASICs define a RETURNCLEAR verb. Execution of this verb causes
the binary pointer on the value stack to be popped, but the interpreter’s
scanner pointer is not set to this value. Instead, the interpreter executes
the next sequential instruction.

A called subroutine normally returns control to the program, whether
it is the main program or another subroutine which called it. The RE-
TURNCLEAR verb is valuable because it allows this normal return trans-
fer of control to be altered. This is a useful feature when a serious error
occurs within a subroutine. In this case a GOTO might be used to pass
program control to another program.

Value stack frames that give a detailed analysis of the program
execution performed in the previous example would have to include:
CHAIN, FRAME, LOCATION, and VALUE. In this previous example
the LOCATION would be 01, the Program Text Region of memory;
FRAME would be 02, Binary Pointer, for the pointers contained on the
value stack.

The FOR-TO-STEP verb has before/after stack frames:

Before Verb Stack Frame Before Value Stack Frame

FOR Pointer to Value of the
Index in the Variable Table

Initial Value of the

Index
TO Final Value
STEP Step increment or Decrement

Pointer to Command or Statement
Following FOR TO STEP

GOSUB/RETURN AND FOR-TO-STEP/NEXT PROCESSING 119

After Verb Stack Frame After Value Stack Frame

Pointer to the Value of the
Index in the Variable Table

Final Value

Step Increment or Decrement

Pointer to Command or Statement
Following FOR TO STEP

The index’s initial value, final value, and step increment or decre-
ment can be values either on the stack or pointers to variables whose
values are stored in the variable table.

The NEXT verb has before stack frames:

Before Verb Stack Frame Before Value Stack Frame

NEXT Pointer to the Value of the

Index in the Variable Table

Final Value

Step Increment or Decrement

Pointer to Command or Statement
Following FOR TO STEP

Pointer to the Value of the
Index in the Variable Table

The NEXT verb has two alternate after stack frames. Which stack
frame is selected depends on whether the final condition of the FOR-TO-
STEP has been satisfied.

If the final condition has not been satisfied, then stack frames are
the same as the FOR-TO-STEP after stack frames. If the final condition
has been satisfied, then the NEXT after stack frames are:

After Verb Stack Frame After Value Stack Frame

The NEXT verb has the responsibility of both updating the index
and making the required comparisons. The top and last elements of the
value stack frame are the same so that NEXT can verify it is processing
the correct FOR TO STEP. Using these two elements, the commands:

120 INTERPRETED PROGRAM EXECUTION

FOR A=1TO 2: NEXT B
1 ERR

would be checked during execution. This check is quite important as an
error would not be caught at syntax analysis time. Syntax analysis ex-
amines each command and statement, line by line.

The command sequence:

FOR A=1TO 2: NEXT A
is stored in the Command Buffer as

CABNCARDRE

Upon keying carriage return, this command sequence is analyzed
for syntax errors, the command sequence is resolved, and the interpreter
is invoked with its scanner pointer pointing to the beginning of the com-
mand buffer.

9E is the hexadecimal atomization of FOR, B2 of TO and 9D of
NEXT. 0D is a carriage return.

The step by step execution of this command sequence is

Interpreter’s Verb Value Comments
Scanner Stack Stack
Pointer

1 FOR Verb is Pushed on the Verb Stack

A Pointer to the Value of A
which is Located in the Variable
Table is Pushed on the Value Stack

o
M
n | O
]
BRI E N EI e

= Verb is Pushed on the Verb Stack

The ASCII 1 is Converted to a Number
and this Number is Pushed on the
Value Stack

TO Verb is Pushed on the Verb
Stack

GOSUB/RETURN AND FOR-TO-STEP/NEXT PROCESSING 121

Interpreter’s
Scanner Verb Value
Pointer Stack Stack Comments

The ASCII 2 is Converted to a Number
This Number Represents the Final Value.
It is Pushed on the Value Stack

6 a) FOR

TO

The Next Symbol is :""; The

Interpreter Realizes from this that

there is No STEP so it Creates a

STEP Verb and an Increment of 1

and Pushes these, Respectively, on the

Verb and Value Stacks. The Interpreter

also Pushes a Pointer Pointing to the
Command which Follows the FOR TO STEP
onto the Value Stack

b) FOR

TO
STEP

The FOR TO STEP is Executed.
The Initial Index Value is no
Longer Needed so it was Remaved
from the Value Stack Frame

c) _—

The ;" is Skipped Over by the
Interpreter

:

NEXT Verb is Pushed on the Verb Stack

A Pointer Pointing to the Value of A
which is Located in the Variable Table
is Pushed on the Value Stack. This
Pointer Value is Checked to see if

it is the Same as the Pointer Value

of the Index. If it is Not, an Error

is Flagged and the Language System
Enters the Entry State

b} - The Comparison Between the Index and
the Final Value is Made. The Comparison
is of False Condition. Variable A is
Incremented and the Interpreter’s Scanner
Pointer is Set to 8. The Carriage Return
was the Next Symbol and Triggered the
NEXT Verb's Execution

B =] I == I [2] [= 1=~]= =] [~ [=]>]

122 INTERPRETED PROGRAM EXECUTION

Interpreter’s Verb Value Comments
Scanner Stack Stack
Pointer

NEXT Verb is Pushed on the Verb Stack

:

A Pointer Pointing to the Value of A
which is Located in the Variable Table
is Pushed on the Value Stack. This
Pointer Value is Checked to Insure
that it is the Same Painter Value

as the Index's

9 a)

l=f=]~]>] [=][-]~]>]

b) —

A Comparison of the Index and Final
Value is Made. The Index is Greater

Than or Equal to the Final Value so

True Condition is Found. Variable

A is Incremented by 1, the Step,

and the Scanner Pointer is Advanced to
10. OD Signais the End of the Command
Sequence and the Language System Enters
the Entry State

Most BASICs always increase or decrease the index after the com-
parison regardless of how it turns out.

The FOR-TO-STEP/NEXT and GOSUB/RETURN are part of a
family of verbs used for program flow control. Also included in this class
is the GOTO, IF THEN, IF THEN ELSE, ON GOTO, ON GOSUB, ON
GOTO ELSE, and ON GOSUB ELSE verb sequences. They all work in
a manner similar to the FOR-TO-STEP/NEXT and GOSUB/RETURN.
Care should be exercised when searching the program text region of
memory for line number labels which are different from line number
references.

A line number label will occur at either the beginning of the program
text region of memory, or will be preceded by a hexadecimal 0D, a carriage
return.

The LOCATION for the pointer value 8 has value 04 indicating the
Command Buffer. Its frame TYPE is 02, a binary pointer.

CHARACTER STRING PROCESSING 123

CHARACTER STRING PROCESSING

Processing character strings is more complicated than processing
numeric variables or flow control verbs. One of the reasons for this is
that character strings can be read from the

. Program Text Region
. Variable Table
. Work Buffer
. Command Buffer
and, but undesirably, the
5. Value Stack.

W N -

Character strings can be written to the

. Variable Table
2. Work Buffer

and, but undesirably, the
3. Value Stack.

Character strings can be very long. Placing them on the value stack
is expensive because of duplicated string storage; it is also often unnec-
essary.

Character strings are defined in terms of three pieces of information:

—

1. A pointer pointing to the beginning of the string.
2. The starting position of the string.
3. The length of the string.

1 is usually a binary pointer pointing to the beginning of the string; 2 and
3 are both numbers.
The command

A$ ="Computer Systems Documentation”

is stored in the Command Buffer

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20

[alsT-T-Tele[mlelultJele] [s[v]elefelm[=] |

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[ofoclum[e[nfeJefe]i[o]n]"]or]

124 INTERPRETED PROGRAM EXECUTION

The LOCATION of the string *‘Computer Systems Documentation”’
is the Command Buffer. Its TYPE is a character string. The pointer to
the string has a value of 5. The *“C”" is the start of the character string
and has numeric position value 1. The length of the string is 30. This can
be verified by counting or by calculation of 34 — 5+ 1=30. The beginning
“ and ending " are not part of character strings.

Some BASICs allow ” to appear between those of the beginning and
ending”s. This is accomplished by removing one ” when two " (" ") appear
together. The command PRINT "This is a ” “ would cause This is a ” to
be printed on the console output device.

In summary, strings are defined by a LOCATION and a triple in the
form (Binary pointer, number 1, number 2). Number 1 must be in the
range | to the length of the string. Number 2 must specify a length which
does not run beyond the terminating ”. The triple (5,10,7) specifies the
string (sometimes called a substring):

Systems
The triple (5,22,6) defines the string
mentat

The triple (5,28,4) is invalid. Position 28 contains the i, and a string
of length 4 would be ion”. This is invalid for the reason that the length
overruns the terminating ”.

The variable table structure for the command containing A$ is:

Offset Value Comments
22-23 0 Pointer to the Next Variable in the
Variable Table
16 Blanks Value of the Variable A$
16 LENGTH
01 TYPE
A NAME
0-1 22 Pointer to the Beginning of the Variable
Table

The value stack expands backward through memory. Working a
detailed example of execution of the string command in this ‘‘backward”’
mode would be confusing. For this reason a rough step by step command
execution will be shown allowing the value stack to expand in a forward
direction.

The interpreter’s scanner pointer is pointing to the first location in
the Command Buffer.

CHARACTER STRING PROCESSING 125

Scanner Verb Value Length Comments
Pointer Stack Stack
1-2 I 08 2 CHAIN: 8 Byte Subframe Length
01 1 FRAME: Variable Name Pointer
D2 1 LOCATION: Variable Table
2 4 Pointer to A$ Name in Variable Table

The value stack subframe points to the name of A$ in the variable
table. The LENGTH of A$ will have to be consulted when the assignment
is made and thus a pointer to its value is insufficient.

Extraordinary measures should be taken so that character strings
themselves do not appear on the value stack as these strings can be many
thousands of bytes long. If at all possible only use pointers, starting values,
and string lengths to describe character strings.

Scanner Verb Value Length Comments
Pointer Stack Stack
3 El 08 2 The =" Verb is Placed on the
01 1 Verb Stack
02 1 Subframe Pointing to the Name AS
2 4 in the Variable Table
4-35 a) IZ] 08 2
01 1 Subframe Pointing to the Name AS
02 1 in the Variable Table
2 4
16 2 CHAIN: 16 Byte Subframe
D02 1 TYPE: Character String Pointer
04 1 LOCATION = Command Buffer
5 4 Pointer to Begining of Character String
1 4 Start Position of String
30 4 Length of String

The Carriage Return Triggers an
Execute of the =

b) _ -

Character strings are usually moved, one by one, from left to right,
from the source to the destination. In this case the source is the string
‘*Computer Systems Documentation’’ and the destination is A$. Here the
length of the destination is shorter than the length of the source. Thus,
if PRINT A$ were executed,

126 INTERPRETED PROGRAM EXECUTION

Computer Systems

would be printed. This string contains 16 characters.

If the destination length is longer than the source, it is customary
to fill the unused trailing character positions with blanks.

The string function STR(, MID$(, SEGS$ are the same functions but
with different names depending on the BASIC used. MID$(has the form:

MID$(String variable name, Start position of string, Length of
string).

The string variable name in some BASICs can be an array name;
for example A$().
Let

A$="ABCDEFGH"

then:

MID$(A$,3,2) is "CD”
MID$(A$,1,4) is "ABCD"
MID$(AS,5) is "EFGH”

MID$(A$,10,7)
T ERR because A$ has length of 16
MID$(A$,7,4) is "GH ”

Realization has come to some designers of BASIC that if MID$(is
allowed to appear on the left hand side of the equal sign, then verbs such
as LEFT$(and RIGHT$(are unnecessary. Several examples are (always
beginning with A$ ="ABCDEFGH")

MID$(A$,2,3) =MID$(A$,5) gives A$ ="AEFGEFGH"
MID$(AS,4,4) = MID$(A$,2,2) gives A$ ="ABCBCFGH".

The command:
2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ll [o]s T(IAI$| [af . Jalr[-[wfi]o]s]cfafs].]

22 23 24 25 26

oeang

is processed:

Step Verb
Stack

Value
Stack

1-5
[os(

6-8 MIDS(

08

02

9-10 a) IMIDS(I

9-10 b)

08
01
02

02
04

- -

08
01
02

12

05

11-12 a) MIDS(;

01
02

12

05

Length

F QRN

B wan

W = =N F N NY N O)

W = a e M

CHARACTER STRING PROCESSING 127

Comments

CHAIN: B Byte Subframe

FRAME: Pointer to Name of AS
LOCATION = Variable Table

Pointer to the Name A$

Pointer to the Name AS in the
Variable Table

CHAIN: 16 Byte Subframe

FRAME: Character String Pointer and Length and Start
LOCATION: Command Buffer

Pointer to the 4"

Start of the 4"
Length of the "4

Pointer to the Name AS in the
Variable Table

CHAIN: 12 Byte Subframe
FRAME: Numeric Value
LOCATION: Value Stack

Eight Byte Numeric “4"

Pointer to the Name AS in the
Variable Table

Numeric Value of 4 on Value Stack

128 INTERPRETED PROGRAM EXECUTION

Step Verb
Stack

11-12 a) — Continued

Value
Stack

11-12 b) |MID$(|

11-12 ¢) _

08
()]
02

12
04
05

12
04
05

02
02

E -

16
02
02

B]

14-18 =
MIDS(

02
02

R)]

Length

S DB = 2N

S A D 2 =N G O e e 3 %) 00 —= = N 0 —= = N H = a N

LA =N

Comments

CHAIN: 16 Byte Subframe

FRAME: Character String Pointer and Length and Start
LOCATION: Command Buffer

Pointer to the Second ‘4"
Start of the ‘4"
Length of the 4"

Pointer to the Name AS in the
Variable Table

Numeric Value of 4 on Value Stack

Numeric Value of 4 on Value Stack

CHAIN: 16 Byte Subframe
FRAME: Character String Value Pointer Length and Start

LOCATION: Variable Table
Pointer to Value of A$

Start Within AS

Length of String Within AS

Pointers to the Start of the Substring
Within AS and Length of the Substring

Pointer to the Start of the Substring
Within A$ and Length of the Substring

Step

19-21

22-23 a)

22-23 b)

Verb
Stack

Value
Stack

MIDS(

16
02
02
6
4
4

08
01
02

2

MIDS(

02
02

SO

08
01
02

16
02
04
22

MID$(

o8
01
02

Length

[N NN

Ao aN

H = =N H Db b=

HE D= 2N

L N L N

Bo AN

CHARACTER STRING PROCESSING

Comments

Pointers to the Start of the Substring
Within A$ and Length of the Substring

Pointer to the Name of A$ Located in
the Variable Table

Pointers to the Start of the Substring
Within ASand Length of the Substring

Pointer to the Name of AS Located in
the Variable Table

Pointers and Length to the 2" Beginning
in Pasition 22 of the Command Buffer

Pointers to the Start of the Subtsring
Within AS and Length of the Substring

Pointer to the Name of A$ Located in
the Variable Table

129

130 INTERPRETED PROGRAM EXECUTION

22-23 b) — Continued

24-25 a)

24-25 b)

12
04
05

2

MID$(

MIDS(

16
02

02

01
02

12

05

16
02

24

00 — - N

0= =N DN DB S =N

&b h =N

&b bH =N

QPR

0 = =N

Numeric Value of 2 on Value Stack

Pointers to the Start of the Substring
Within A$ and Length of the Substring

Pointer to the Name of A$ Located in
the Variable Table

Numeric Value of 2 on Value Stack

Pointers and Length of the ‘2" Beginning
in Position 24 of the Command Buffer

Pointers to the Start of the Substring
Within A$ and Length of the Substring

Pointer to the Name of A$ Located in
the Variable Table

Numeric Value of 2 on Value Stack

CHARACTER STRING PROCESSING 131

24-25 b) — Continued 12 2 Numeric Value of 2 on Value Stack
04 1
05 1
2 8
24-25 c) I = |
16 2 Pointers to the Start of the Substring
02 1 Within A$ and Length of the Substring
02 1
6 4
4 4
4 4
16 2 Pointers to the Start of the Substring
02 1 Within AS and Length of the Substring
02 1
6 4
2 q
2 4
26 The CR Triggers Evaluation of the **="

Steps 11-12¢ and 24-25c are important because the MID$(verb
must check the LENGTH stored with A$ to ensure that the new start
and length are valid.

Expressions such as MID$(A,2 + B¥*(COS(C + D)) are permitted. In-
clusion of the variable FRAME and LOCATION in stack frames are
required for evaluation of expressions of the type given in the previous
sentence.

Storing intermediate number results on the value stack was permitted
in numerical computations. In fact, this operation was quite necessary.
The question arises of whether it is ever necessary to store intermediate
results with character string manipulation. The answer is ‘‘Almost, but
not quite’’.

Let AS="ABCD" and B$="EFG". The verb ‘‘concatenate’’ is often
denoted by ““&’’. PRINT A$&B$ would cause:

ABCDEFG
to be printed. PRINT B$&A$ would cause:

EFGABCD

132 INTERPRETED PROGRAM EXECUTION

to be printed.
A rough conceptual diagram of the verb and value stacks at a time

immediately previous to evaluation of the PRINT and & in PRINT A$&B$
is:

Verb Stack Value Stack

PRINT Pointer to AS
Start of AS
& Length of A$
Pointer of BS
Start of 8%
Length of BS

Two choices are available:

1. Evaluate the & and move *“‘ABCDEFG”’ onto the value stack, or

2. Evaluate the & and PRINT in one step and thus move the **ABCD”’
then the *‘EFG”’ to the work buffer for output.

Choice number 1 is simpler, but number 2 may be preferable from
a storage requirements standpoint. In either case, the stack frames are
the same; the only difference is in processing them.

PRINT"AB"&"CD"&"EF” is also allowable so the & processing verb,
which searched backwards through the verb stack, would have to be
reasonably complicated.

An even more complicated problem with character string concaten-
ation occurs with the command:

A$ =B$&AS

which has verb and value rough conceptual stack frames:

Verb Stack Value Stack

= Pointer to A$
Start of AS
& Length of AS

Pointer to B$
Start of BS
Length of BS

Pointer to AS
Start of AS$
Length of AS

The simplest procedure would be to place the concatenated B$&A$
on the value stack. It could then be moved to AS$.

CHARACTER STRING PROCESSING 133

Some BASIC implementers would, in this case, shift A$ to the right
by three positions to get:

ABCABCD
then move B$ into A$, which gives:
EFGABCD

Such techniques do not require intermediate storage of character
strings, but the tradeoff is increased complexity of the Language System’s
interpreter.

Because of the intermediate storage problem with character strings,
most BASICs do not allow parentheses in string operations. However,
seemingly complex string operations such as

A$,STR(B$(),20,C)=AND D$ & HEX(FFOOEE11) ADDC(05)

where ADDC is a binary add with a carry, and AND is a bitwise logical,
are easily evaluated by an interpreter using the techniques previously
described in this chapter.

BASICs contain a READ statement which works in a somewhat
different manner than other BASIC instructions.

The BASIC program

10FORA=1T02
‘READ A%
:NEXTA
:DATA"ONE","TWO"

is atomized:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|reloofrofoe[a| =] 1[s2] 2] : e8] aA[s]:[eo]a]: [o7]

19 20 21 22 23 24 25 26 27 28 29 30
Lo lofw]ef"[["[T]w]of" o]

where FF is the hexadecimal delimiter for a packed line number, 9E for
FOR, B2 for TO, 98 for READ, 9D for NEXT, and 97 for DATA. The

134 INTERPRETED PROGRAM EXECUTION

atomization table is found in Appendix A.

Immediately before the Program Text Region of memory is a mem-
ory area called the ‘‘Bookkeeping’’ area. Several different types of tables
are kept in this area. These tables pertain to the BASIC program which
directly follows them. One such table located in this area is called the
DATA pointer table. The DATA pointer table has the form:

READ Index

Location

Pointer to Indexed Datum

Length of Datum

When the above program is RUN and the first READ executed, the
DATA pointer table reads:

02
20

where 1 is the index, an eight byte number. 20 is a binary pointer pointing
to the variable table which is LOCATION 02. 3 is the length of the
character string ‘‘ONE’’. DATA statements can be used in commands so
allowance must be made to specify a LOCATION.

Whenever a READ is executed, the READ index is incremented.
A search is begun for a DATA element. If a valid element is found, then
a pointer to its start and its length are placed in the DATA pointer table.
If a valid data element is not found, then a READ error is signaled.

When the second read in the BASIC program is executed, the DATA
pointer table would read:

2
02
26

3

The index, LOCATION, and text pointer are pointing to the second
data item, the “TWO”’.

CHARACTER STRING PROCESSING 135

The RESTORE command/statement is often of the form:

Examples
1. RESTORE RESTORE
2. RESTORE <expression> RESTORE 2

3. RESTORE LINE = <Line Number, [expression]> RESTORE LINE = 10,2

where the angular brackets denote required information and the square
brackets indicate optional information. The value of the expression in
form 2 must be equal to, or greater than, 1.

When a RESTORE is executed, the DATA pointer table is filled
with the index and other information pointing to a valid data item.

READ/RESTORE/DATA are important because some information
required for their processing is obtained from the Bookkeeping area of
memory.

Many BASICs allow GOSUB’s in marked or labelled subroutines.
An example of a marked GOSUB is:

10 GOSUB'5
: STOP

20 DEFFN’'5
:RETURN

The interpreter processes GOSUB'5 by searching the program text
region of memory for 'S in order to locate the entry point of the subroutine.
An example of a similar labelled subroutine is:

10 GOSUB FIVE
: STOP

20 DEFFN FIVE
:RETURN

Arguments often can be passed into, but not out of, marked sub-
routines. An example is:

10 GOSUB'1 (A,2)
:STOP

20 DEFFN'1 (B,C)
:RETURN

In this example the GOSUB'] creates the stack frames:

136 INTERPRETED PROGRAM EXECUTION

Verb Stack Value Stack

Gosue’ Pointer to Value of A in Variable Table

Numerical Value 2 on Value Stack

Pointer to STOP in Program Text
Region of Memory

The DEFFN'’ creates the stack frames:

Verb Stack Before Value Stack
Gosus’ Painter to Value of A in Variable Table
DEFFN’ Numerical Value 2 on Value Stack

Pointer to STOP in Program Text
Region of Memory

Pointer to Value of B in Variable Table

Pointer to Value of Cin Variable Table

and causes a ‘‘create’’ and execute, which copies the values of A into the
value of B, and the value 2 into the value of C. The DEFFN’ causes
creation of the *‘after’’ stack frames:

Verb Stack After Value Stack

Pointer to STOP in the Text
Region of Memory

This “*after’” stack frame is precisely what the RETURN expects.
BASICs generally do not allow arguments to be passed back from
subroutines. Consider the compiled BASIC program:

10 GOSUB’'3 (4)
: PRINT 4
: STOP

20 DEFFN'3 (A)

A=2 The Value of A is Passed Back
RETURN

might cause 2 to be printed rather than the intended value of 4.

BASICs, particularly interpreted ones, cannot handle the problem
of passing back variable values gracefully because of the executing verb
nature of the DEFFN’, the line by line execution mode, and the structure
of the variable table.

SUMMARY 137

SUMMARY

A Language System comprises five states:

. Language System initialization
. Entry phase

. Resolution phase

. Interpreted Execution phase
Language System self test

b Wi -

Interpreted execution means that a BASIC program is executed by
a Language System program called the interpreter. The interpreter scans
BASIC program text and invokes appropriate Language System modules
which cause the program to be executed. The interpreter uses two stacks:
the verb stack and the value stack. The value stack frame format used
for BASIC program execution contains the variable attributes of CHAIN,
FRAME, LOCATION, and VALUE.

The work buffer stores commands and statements at the entry phase.
Execution of a command sequence is processed in the command buffer
by the Language System. Program statements are executed in the program
text region of memory.

Character string data can be fetched or read from the program text,
variable table, work buffer, command buffer, and value stack regions of
memory; numeric data can only be fetched or read from the variable table
and the value stack.

Two important points of program execution are:

1. The attributes of CHAIN, FRAME, and LOCATION need to be
placed on the value stack along with a pointer to variable value or
the value itself.

2. The Language System verb processing modules must have sufficient
““intelligence” to determine which type of data needs to be pro-
cessed.

Because character strings can be very long, processing them is more
complicated than processing numeric variables or flow control verbs.
Placing them on the value stack is expensive because of duplicated string
storage. If at all possible, use only pointers, starting values, and string
lengths, in addition to the CHAIN, FRAME, and LOCATION, to describe
character strings in the value stack.

The verbs GOSUB/RETURN and FOR-TO-STEP/NEXT operate
in pairs. Execution of the first of a verb pair causes the verb and value
stacks to be loaded with some information. Execution of the second of
the verb pair may cause the information on the verb and value stack to
be removed.

138 INTERPRETED PROGRAM EXECUTION

The RETURNCLEAR verb is valuable because it allows control to
be returned to some program other than the calling program.

READ/RESTORE/DATA are important because some information
required for their processing is obtained from the Bookkeeping area of
memory, located immediately before the program text area.

Compiled BASICs

A BASIC compiler is a computer program which converts a BASIC
program into a program written in another language. The BASIC Lan-
guage System’s interpreter is one type of program that executes the ap-
plications programmer’s program. One of the major goals of the compiler
is to eliminate the interpreter’s complex analysis of the applications pro-
gram text during execution. This can be done by converting the source
program to ‘‘Reverse Polish’. The relative advantages and disadvantages
of the complied BASIC and the BASIC Language System’s interpreter
are evaluated in this chapter.

Some seeming objections to interpreted execution, as it was de-
scribed in the previous chapter, are:

¢ The work required to analyze the program text and place it on the
verb and value stacks appears to be excessive. This is particularly
true when evaluating a complex arithmetic expression in the middle
of a loop.

o Searching the variable table for a value each time the variable is
accessed appears wasteful in the time it consumes.

e Searching the program text region of memory each time a line ref-
erence appears to be a slow process.

e Requiring processing programs for those verbs not used in a program
seems wasteful with memory.

¢ Retaining variable names and array bounds in the variable table also
appears wasteful with memory, since they may not be used during
program execution.

Compiled BASICs seek to remedy some of the seeming problems
of interpreted BASICs.

139

140 COMPILED BASICS

The compiler approach to BASIC is to process source BASIC pro-
gram statements and produce an output program that performs the func-
tions of the source BASIC. The output BASIC may not very closely
resemble the source BASIC.

The two major goals of the compiler are to:

1. Stop searching for variables and line references during execution.
2. Stop the complex analysis of the program text during execution.

There are many different kinds of compilers that, with varying suc-
cess, would accomplish these goals. The second goal can reasonably be
met by converting the source program to what is called ‘‘Reverse Polish®’.
How this conversion to Reverse Polish is carried out is best explained by
a rough conceptual diagram. One stack and one queue are used:

1. The operator stack.
2. The output queue.

The statement:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Llef-Te[al+Te[h]-T«TeT-To o]

is processed by a compiler

Operator Output
Step Stack Queue Comments

1 —_— The Line Number is Skipped Over
2 Variable E Label and Push Variable an Qutput Queue

Variable E Push Operator on Operator Stack

L]]

4 = Variable E Push ““(** Operator on Operator Stack
(]
[
5 = Variable E Label and Push Vaiable or
— 1 - Qutput Queue
(Variable A
6 = Variable E Push "'+ Operator on the Operator
— Stack
{ Variable A
+

Step

7-8 a)

b}

10

1"

12

Operator
Stack

LI

Qutput
Queue

Variable E

Variable A

Variable B

Variabte E

Variable A

Variable B

Operator +

Variable E

Variable A

Variable 8

Operator +

Variable E

Variable A

Variable B

Operator +

Variable E

Variable A

Variabel B

Operator +

Variable C

Variable E

Variable A

Variable B

Operator +

Variable C

COMPILED BASICS

Comments

Label and Push the Variable E
on the Output Queue

The *)’* Causes a Process, Similar
to an Interpreter ‘‘Execute’’, which
Moves the Operator to the Output
Queue

Push “** on the Operator Stack

Push Operator (" on the Operator Stack

Label and Push Variable C on the
Qutput Queue

Push Operatar “—*’ on the Operator Stack

141

142 COMPILED BASICS

Operator Output
Step Stack Queue Comments

13-14 3) Variable € Label and Push Variable D on Output Queue

Variable A

Variable B

Operator +
Variable C

Variable D

b) Variable £ The *’)""Caused a Process which Moved
**~" to the Qutput Queue

Variable A

Variable B

Operator +

Variable C

Variable D

Operator —

c) Variable E The End-of-Line Causes the Remainder
- of the Operator Stack to be Transfered
Variable A to the Output Queue

Variable B

Operataor +

Variable C

Variable D

Operator —

Operator *

Operator =

This part of the compile process is similar to both syntax analysis
and interpreter execution. It appears that the verb is placed on the value
stack when it is to be executed. This is a rough analogue to what the
compiler does.

The output queue can be written

1 2 3 4 5 6 7 8 9

Lefale]~fofe]-T-]-]

COMPILED BASICS 143

and said to be in ‘‘Reverse Polish™.

Execution of the Reverse Polish queue requires that a value stack,
but not a verb stack, be maintained. The reason is that a verb is imme-
diately executed when it is encountered.

The execution steps of this queue are:

Value
Step Stack
1 [e]
2 E
A
3 E
A
B
4 E
A+B
5 E
A+B
c
6 E
A+B
(o4
D
7 E
A+B
c-D
8 E
(A +8)+«(C—D}

The reader might ask the question, ‘“Wouldn’t BASIC be simple to
implement and efficiently executable if statements and commands were

144 COMPILED BASICS

written in Reverse Polish?"’ The answer is: **Yes.”” The FORTH language
requires commands and statements to be written in Reverse Polish.
FORTH maintains a value stack and one other stack for GOSUB/RE-
TURN and FOR-TO-STEP/NEXT-type statement/command return in-
formation.

Construction of the variable table for a compiled BASIC program
is carried out while the program text is being separated onto the operator
stack and output queue and then recombined on the output queue.

The compile steps for the BASIC program

12 3 456 7 8 910
[al=[a[-T2]r[e]+]2]oo]

are roughly diagrammed

Compile Operator Output Variable Variable Variable
Step Stack Queue Table Table Length
Name Offset

[0 8 |

1

b)

) CLICET [I0] |

Lis[=[>] [s[2[2] [M2]2] [212] [215] (3] (2]

Hn

Compile Operator

Step Stack

7 a) =

o [

]]

Value
Queue

o]z (=] o[>]>]

) ET=

*

TG =

L e lo]~]=

COMPILED BASICS 145

Variable Variable
Table Table Variable
Name Offset Length
A 0 8
2 8
B 16 8
A 0 8
2 8
B 16 8
A 0 8
2 8 8
B 16 8
A o] 8
8
B 16 8

At step 1, the variable table is searched for the variable name A. A
is not found, so it is entered into the variable table. A has a length of
eight bytes. A begins at relative position 0 in the variable table. Constants
and literal strings are treated much like variables. The compiler searches

146 COMPILED BASICS

the variable table for *‘2'* at step 5. It is not found, so its name is entered
into the variable table and its value begins at relative location 8 in the
table. *‘2"’ is assigned a length of eight bytes.

At step 7 the variable B is processed. B is not found in the variable
table, so it is added to the variable table and its value begins at relative
position 16. B’s value occupies eight bytes.

At steps 3 and 9, both A and *‘2”" were found in the variable table
by the compiler. Thus, the compiler did not have to add a new variable
in the variable table for these two symbols.

By making only pointer references, compilers usually remove all
references to variables by name. In this example, A is referred to by 0,
‘2" by 8, and B by 16. The variable table may be viewed:

Relative Location Contents Comments
0 00000000 Value of A

8 00000002 Value of “2"
16 00000000 Value of B

The symbolic compiled program queue is:

sls]af+]-]

but the compiler would change this to:

NIE

»

I PushOI PushOI Push8| * IPushlS[/ |Push8| + I =]

where “‘push’ indicates that the value or pointer to the value of the
position in the variable table is pushed onto the value stack.

The hardware of some computers is not stack oriented. Reverse
Polish queues are not evaluated according to one circumscribed method.
Some compilers produce very efficient output code while the output code
of other compilers must be interpreted on a host computer.

The above example gives a very rough picture of what a compiler
does. One discrepancy between how a compiler actually works and what
is shown in the example it is the location of **2’’ in the variable table.
Compilers allocate space at the beginning of the variable table to those
variables that must be assigned initial values other than 0 or blanks. The
allocation is done in this fashion because the compiled program module
need not contain the entire variable table. Only those variables which are
assigned nonstandard (other than 0 or blanks) need to have values included
in the variable table.

COMPILED BASICS 147

The variable table for compiled BASIC must be organized in a man-
ner similar to that of a Language System’s variable table. A compiler’s
variable table usually begins directly after the compiled program and
expands toward the bottom of memory.

Compiled BASICs require the BASIC programmer to run a program,
called the BASIC compiler, which accepts as input a BASIC program,
and produces as output the BASIC object code (the text in the output
queue), a listing of the BASIC program, and a listing of compiler messages.
Requests to run the BASIC compiler are made to a program called an
Operating System.

An Operating System has as its primary functions to:

1. Schedule program execution.
2. Perform Input/Output for programs.
3. Assist with file oriented commands.

Once BASIC compilations are completed, another program called
the Linkage Editor must be run; this is accomplished by making a request
to the Operating System. A primary function of the linkage editor is that
of linking the code required to execute some of the BASIC program’s
verbs. Functions such as COS(, SIN(, . . . and even MID$(are not gen-
erally compiled into the BASIC object code. Subroutine calls are made
to many of these called functions. These subroutines reside in a file of
systems subroutines, sometimes called the Systems Library. Only those
subroutines which are called by the BASIC program are linked to it. This
is different from a Language System because that computer code, which
is used to evaluate all verbs, is always resident in a computer running a
Language System.

When a BASIC object program has undergone a successful linkage
edit, a program loader is run. This loads the BASIC object program and
its system supplied ancillary routines into computer memory in prepa-
ration for a BASIC program execution by the computer.

A request to the Operating System to run the BASIC program can
now be made. In summary, the steps of

1. compile

2. linkage edit
3. load

4. run

must be made in sequence to cause a BASIC program to execute in a
BASIC compiler environment.

Should the BASIC program cause itself to be terminated on an error
condition, then control is returned to the Operating System. The Operating
System has the responsibility of informing the user what caused the pro-

148 COMPILED BASICS

gram to terminate. Language Systems simply display the offending state-
ment with an arrow pointing to the offending symbol within the statement.
Many Operating Systems do not have the capability of reconstructing
BASIC source code from BASIC object code. The source symbols are
often not kept with the object code, so reconstruction of the source code
is not possible.

Writing a program to reconstruct source code from object code is
a difficult matter. The key to solving this problem is to analyze object
code queue output by looking at both ends of the queue.

Operating System compiled BASICs are orders of magnitude more
complicated than Language System interpreted BASICs.

Writing a BASIC compiler requires about 5,000 to 20,000 lines of
computer code. The linkage editor and loader are less complicated to
write, but still require many thousands of lines of computer code. De-
pending on its level of sophistication, the Operating System may require
many thousands of lines of code to implement. Operating System modules
are usually kept small, and are fetched off disk only when they are needed
to provide a service for an executing BASIC program.

Requests for services from the Operating System are made by en-
tering Job Control Language (JCL) commands. Issuing JCL commands
within an executing BASIC program is sometimes very difficult. JCL's
can be very complicated and can resemble a computer language. Some
of these JCL's are not unlike an interpreted BASIC Language System.
In fact, almost all JCL’s are interpreted. BASIC Language Systems in-
corporate most operating system JCL functions within the BASIC lan-
guage. JCL verbs are added to the BASIC language in Language Systems.

Compiled BASICs meet the goal of reducing the amount of work
expended on language overhead during program execution.

Compiled BASICs are only partially successful in reducing the
amount of computer memory used during program execution. The amount
of memory required for a Language System executing any sized BASIC
program is always the same. Neither the length of the BASIC program,
nor the statements it contains, influence the size of a Language System.
When a BASIC program is executing, Operating Systems use very little
memory space and they load only those verbs required for execution into
memory. Speed of execution is partially obtained by duplicating code for
verbs, such as +, —, *and /. Practical experience has shown that memory
requirements are less for compiled BASIC short programs, but greater
for large BASIC programs compared to an interpreted BASIC Language
System. A rough diagram of this relationship is shown in Figure 33. Lan-
guage System overhead is great for small programs while compiler code
duplication is great for longer programs.

COMPILED BASICS 149

Developing a program on an Operating System compiled BASIC
takes much longer than it does on a Language System interpreted BASIC,
making compiled BASIC computer code more expensive to use than com-
puter interpreted BASIC code. Some of the reasons for this difference
are accounted for in these comparisons:

Compiled BASIC Interpreted BASIC
1 Edit-compile-linkage edit-load-run Edit-run program text revision cycle
program text revision cycle

2 Source statement in error displayed

3 Single step source execution possible

4 Interactive variable examination and
change used in combination with single
step execution.

5 Extensive run time error checking (i.e.
array bounds checking)

Comparisons 2-5 on the compiled BASIC side were left blank for
the reason that while most compiled BASICs do not provide the services

Large
Compiled BASICs

]
c
£
£ Interpreted BASICs
E
L
«
e
o
€
Q
2

Little

Small Large

BASIC Program Length

Figure 33: Rough diagram plotting the total memory requirement for compiled
and interpreted BASICs as a function of the length of BASIC programs. Overhead
of the BASIC interpreter is great for small BASIC programs. Code duplication
becomes a significant factor for large compiled BASIC programs.

150 COMPILED BASICS

routinely provided by interpreted BASICs, there is no reason, other than
complicated programming, why they cannot provide such services.

Language Systems or Operating Systems BASICs that offer such
program development services are called *‘friendly.”’

Operating System BASICs often make it difficult for job control
language statements to be issued within an executing BASIC program.
They also often fail to provide good program development services. For
these reasons, Operating Systems have been viewed by some application
BASIC programmers as ‘‘unfriendly’’.

Compiled BASIC programs exceed Language System BASICs in
speed of execution and in reduced memory requirements for short BASIC
programs, Compilers are usually so large that total memory requirements
for Operating System BASICs are equal to those of a Language System.

Interpreted BASICs can be made to run about the same speed as
compiled BASICs. This is accomplished by employing several different
processors (within the computer) to analyze the BASIC text, and to search
for variables and line number reference labels.

In most cases, a systems disk must be mounted each time an Op-
erating Systems BASIC is running. A Language System is completely
resident at all times, so all disk drives can be used for applications pro-
grams and data.

The point of these comparisons between Opersting Systems and
Language Systems BASICs is to emphasize that there are two distinct
categories of BASICs. There are advantages to both types of systems.
The greatest advantage of Operating Systems is that they allow languages
other than BASIC to be run on a computer. A Language System restricts
the programmer to two languages. One of these might be BASIC, or
COBOL, or ADA, or FORTH, or ?!; the other would be microcode or
machine language.

SUMMARY

The compiler approach to BASIC is to process source BASIC pro-
gram statements and produce an output program which performs the
functions of the source BASIC. The output BASIC may not very closely
resemble the source BASIC.

Two major goals of the compiler are to

1. Stop searching for variables and line references during execution.
2. Stop the complex analysis of program text during execution.

The second goal can reasonably be met by converting the source
program before execution to what is called ‘*Reverse Polish’’. Converting

SUMMARY 151

to Reverse Polish requires an operator stack and an output queue. This
compile process is similar to both syntax analysis and interpreter exe-
cution. Execution of the Reverse Polish output queue requires that a value
stack, but not a verb stack, be maintained. The reason is that a verb is
immediately executed when it is encountered. The construction of the
variable table for a compiled BASIC program is carried out while the
program text is being separated onto the operator stack and output queue
and then recombined on the output queue. By making only pointer ref-
erences, compilers usually remove all references to variables by name.
A compiler’s variable table commonly begins directly after the compiled
program, and expands toward the bottom of memory.

Requests to run the BASIC compiler are made to a program called
an Operating System. The Operating System:

1. schedules program execution
2. performs Input/Output for programs
3. assists with file oriented commands.

After a request has been made to the Operating System, the following
steps:

1. compile

2. linkage edit, which links code required to execute some of the BASIC
program’s verbs

3. load, which loads the BASIC object program in preparation for
execution

4, run

must be made in sequence to cause a BASIC program to execute in a
BASIC compiler environment.

Compiled BASICs do meet the goal of reducing the amount of work
expended on language overhead during program execution. Compilers are
usually so large that total memory requirements for Operating System
BASICs are equal to those of a Language System. Memory requirements
are less for compiled BASIC short programs, but greater for large BASIC
programs. Language System overhead is rather substantial for small pro-
grams, while compiler code duplication incurs larger costs for longer
programs.

The greatest advantage of Operating Systems is that they allow
languages other than BASIC to be run on a computer. The BASIC Lan-
guage System restricts the programmer to two languages at a time.

10

Verb Failures, User-
Defined Verbs, and
BASIC Line Editor

The information presented in this chapter deals with two different
classes of verbs, the methods of handling verb failures, three types of
interactive input verbs, and a BASIC line editor.

VERBS AND VERB FAILURES

Each software module should:

1. perform a simple intended function;

2. minimize the possibility of performing benign or adverse unintended
functions; and

3. provide adequate warning in the event of failure.

Each verb should return a status when it returns to the interpreter.
The values of the status may range from indication of a successful ter-
mination to notification of minor difficulties discovered. If a verb exe-
cution totally fails, then control may be returned to some part of the
Language System other than the interpreter. Possible verb execution fail-
ures must be checked at run time.

Verbs in Language Systems fall into two classes:

1. BASIC Language System implemented verbs.
2. User-defined machine language or microcode implemented verbs.

152

VERBS AND VERB FAILURES 153

The methods of returning verb status and handling total verb failures
are slightly different for the two classes of verbs.
The intended function of the BASIC program:

10 INPUT "A = “,A: B=1/A: PRINT "1/A = ";B.GOTO10

is to compute the reciprocal of a number and then print this value. An
adverse unintended function would be that of stopping the program’s
execution. If the value of 0 is entered for A, then:

A=70
10 INPUT "A = ",A: B=1/A: PRINT "1/A = ";B:GOTO10
T ERR

would appear and the Language System would return to the entry state.
Division by zero caused the **/** verb to fail.

Some BASICs incorporate an ERROR flag and ERR function which
are used to allow control to be retained within a BASIC program rather
than have execution stopped. The BASIC reciprocal program can be
rewritten:

10 INPUT "A = “",A: B=1/A: ERROR C=ERR: IF C 27
THEN STOP "ERR other than 27": PRINT "A was
0, please enter another value.”: GOTO10

20 PRINT "1/A = ";B: GOTO10

If the **/”> verb does not return a failure status, then all of the
statements following the ERROR flag on the same line are skipped. If the
statement B=1/A fails for any reason, then the remaining statements
following the ERROR flag are executed.

Some BASIC Language Systems allow a BASIC programmer to
define a verb in terms of either microcode or machine language. An ex-
ample of such a user-defined verb is

EXECUTE #A,(440AA000440C,BS$())CS$()

where A is a variable whose value points to a data path, 440AA000440C
is a sequence of microcode instructions, B$() is an array which contains
microcode register contents, and C$() is a source or destination data
array. The microcode sequence usually can be placed in a character string
and the character string can then be executed in an alternate form of an

154 VERB FAILURES, USER-DEFINED VERBS, AND BASIC LINE EDITOR

EXECUTE verb. (EXECUTE is a BASIC verb which helps the user-
defined machine language or microcode verb to execute.) If the EXE-
CUTE verb fails, then verb failure is handled in the normal way by the
Language System. Status is returned to the user in B$() in the form of
- dumped computer registers. Some of B$() may also be used to input
information for the user-defined verb.

Most user-defined verbs are directed to providing software for spe-
cial purpose input/output devices. These device drivers usually must be
written in either machine language or microcode. BASICs provide an easy
way to integrate such code into the Language System without making
changes in the Language System itself.

Operating System BASICs usually require that device drivers be
integrated into the operating system. This is often a complex and time
consuming task.

INPUT VERBS

BASIC:s often have three types of interactive input verbs, which are
also BASIC Language System implemented verbs.

1. INPUT
2. LINEINPUT
3. INKEYS or KEYIN

INPUT is used to interactively input numbers into numeric variables.
Numbers must be in a valid format or an INPUT error is signaled.
LINEINPUT is used to interactively input character string values into a
character string variable. INKEYS or KEYIN is used to intercept single
characters from an input device interactively.

BASIC LINE EDITOR

BASIC text is edited line-by-line. Entry of a line number is used to
recall a line of BASIC text. This line can contain, of course, multiple lines
of BASIC code. Some of the functions of a BASIC line editor should
include:

. Movement of the cursor to the right or left

. Movement of the cursor up or down in a multiple line display line
. Deletion of characters

. Insertion of characters

. Erasing all characters to the right of the cursor

. Concatenation of two lines of BASIC text.

AN hH W -

SUMMARY 155

The editor must also be able to edit command sequences.

The editor can be expanded to edit character strings entered in a
LINEINPUT statement.

Input to a Language System or BASIC is on a line basis for BASIC
program text entry and edit and for INPUT and LINEINPUT. This means
that the Language System does not need to know anything about what
is happening in the edit phase until a carriage return is keyed which ends
the line of text.

In a nontimesharing Language System editing can be done by the
same computer which executes the interpreter. For a Timesharing Lan-
guage System it is highly desirable to have a separate computer (micro-
processor) handle both input and editing. Implementation of an edit, IN-
PUT, or LINEINPUT becomes a matter of checking whether a full line
is ready to be moved to the Work Buffer of the Language System. If a
full line is not ready, control is passed to the next partition.

BASIC Language Timesharing Systems take great advantage of in-
expensive hardware and costly software by distributing the intelligence
of the Language System.

Arithmetic, mathematical elementary function, graphics, and audio
verbs are often best handled by special purpose microprocessors. Imple-
mentation of these verbs on the main Language System computer becomes
a matter of implementation of a communications interface with a special
purpose microprocessor.

INKEYS or KEYIN cannot be handled on a line basis since each
keystroke output must be intercepted and placed in the variable table.

SUMMARY

The BASIC Language System has two classes of verbs: the BASIC
Language System implemented verbs, and those implemented by the user-
defined machine language or microcode. Most user-defined verbs are di-
rected to providing software for special purpose input/output devices.
Each verb should return a status when it returns to the interpreter. If the
verb execution totally fails, then control may be returned to some part
of the Language System other than the interpreter. EXECUTE is a BASIC
verb which helps the user-defined machine language or microcode verb
to execute. If the EXECUTE verb fails, then verb failure is handled in
the normal way by the Language System.

BASICs often have three types of interactive input statements which
are also BASIC Language System implemented verbs:

1. INPUT which is used to interactively input numbers into numeric
variables.

156 VERB FAILURES, USER-DEFINED VERBS, AND BASIC LINE EDITOR

2. LINEINPUT which is used to interactively input character string
values into character string variables.

3. INKEYS or KEYIN which is used to intercept single characters
from an input device interactively.

BASIC text is edited line by line. Entry of a line number is used to
recall a line of BASIC text. Command sequences must also be able to be
edited. A Timesharing Language System should have a separate computer
(microprocessor) to handle both input and editing. Nontimesharing Lan-
guage System editing can be done by the same computer which executes
the interpreter.

11

Timesharing
Language Systems

The purpose of Chapter 11 is to explain to the reader how a
Timesharing Language System works. In many situations a computer that
has the ability to perform several different functions at the same time is
desirable. A Timesharing Language System makes this possible.

Most microcomputer systems are used as stand alone systems. Only
one BASIC program is executing at one time or one user is using the
Language System in its Entry state.

Timesharing Language Systems can be so written as to create the
appearance that one physical computer system looks similar to several
independent computer systems. This capability is desirable for several
reasons:

1. Two or more users can use the same computer simultaneously either
interacting with BASIC programs or with the Language System.

2. Two or more BASIC programs can run independently, perhaps co-
operatively, on the same computer.

BASIC programs which service such input/output as communica-
tions systems must be constantly on the alert for incoming messages.
Inclusions of such programs within a large applications program would
be undesirable since these communications programs would have to be
called after every few BASIC statements within the applications program.
These repeated calls are required so that incoming messages are not lost
due to inattention. Practice has shown that these communications pro-
grams are best left continually running in a separate part of the Language
System. These communications BASIC programs are frequently rich with

157

158 TIMESHARING LANGUAGE SYSTEMS

user-defined verbs which handle the communications low level protocol.

A second example, demonstrating the usefulness of having two pro-
grams executing simultaneously, occurs where one program is listing the
contents of a file while the other program, the Language System itself,
is being used to help a user develop a BASIC program. In other words,
the user is both listing a file and developing a BASIC program simulta-
neously on the same computer.

Understanding how a Timesharing BASIC Language System works
is more difficult than comprehending how a single Program Text memory
region Language System works. For this reason, it is important to con-
centrate on understanding only those aspects of the Language System
which pertain directly to Timesharing.

The essence of how a Timesharing Language System works is that
there are several dissimilar copies of the Other Systems Tables (see Figure

Top of Memory
Systems Area of Memory

Timesharing Bookkeeping
Area of Memory

Partition # 1 Bookkeeping
Switched by

Partition d Program Text 1 Language System
#1 | pP-—— = — == — - — —
Variable Table 1
e
(Partition # 2 Bookkeeping _—T
Partition < Program Text *
#2) == e

Partition Program Text \
I B \

Variable Table ?

N
<
©
2
=
=4
)
=
1)
=
®
b

Bottom of Memory Terminal # 5

r

Figure 34: Rough diagram of the memory layout of a Timesharing Language
System. A terminal, assigned at partition configuration, is assigned to each par-
tition. Partitions one and two are both assigned to Terminal #4. Terminal #4 is
first assigned to Partition #1 but can later be released to Partition #2.

SIMPLE TIMESHARING 159

34) through the variable table region of memory. Each of these dissimilar
copies is called a partition. Each copy has the same overall organization
but the contents of each copy differs as a result of the programs being
executed or entered in that partition.

The Language System also reserves about a 3K byte memory area
at the end of the Systems Area, called the Timesharing Bookkeeping
memory area. A rough diagram of this memory layout for three partitions
is seen in Figure 34. The DATA pointer table resides in the partition
Bookkeeping areas of memory; actually, there is one DATA pointer table
for each partition. Separate verb stacks and Command Sequence Buffers
reside in each partition.

A terminal must be attached to each partition. This terminal is used
for console input and output. Verbs such as PRINT, LIST, INPUT,
LINEINPUT, or INKEY either attempt to send their output or seek their
input from this terminal. If a terminal is attached to more than one par-
tition, then the partition wishing to either send to, or receive from, this
terminal will wait until the terminal is attached. A terminal cannot be
attached to more than one partition at a time.

SIMPLE TIMESHARING

Explanation of how Timesharing works with Language Systems is
best approached by analysis of several examples. The three partitions
seen in Figure 34 contain the three programs:

5 SRELEASE TERMINAL TO 2

10A=1 Partition # 1 Program Text
20 GOTO 10
308=2

Partition # 2 Program Text
40 GOTO 30
50C=1

Partition # 3 Program Text
60 GOTO 50

Partition #1 and #2 are attached to the same terminal. The terminal
is initially attached to Partition #1. When the RUN command is entered,
the statement SRELEASE TERMINAL TO 2 causes the terminal to be

160 TIMESHARING LANGUAGE SYSTEMS

attached to Partition #2. The program will continue to run since it does
not need a terminal for input or output. The two statements at line numbers
10 and 20 are repeatedly executed.

Terminal #4 is now attached to Partition #2. The program in Par-
tition #2 is caused to begin execution by entering the RUN command.

Terminal #5 is a distinctly different physical terminal from #4. Entry
of the RUN command causes the program residing in Partition #3 to begin
execution.

All three programs are now executing. It appears that all three pro-
grams are executing simultaneously but they are not. Rather, the Time-
sharing Language System jumps from partition to partition executing at
least one, but, perhaps, several lines of program text from each partition.

A more detailed rough diagram of computer memory showing the
essential parts of these three partitions is seen in Figure 35. Sample values
are entered in some of the tables. The Timesharing Bookkeeping Tables
govern control of what partition is currently executing BASIC program
text. Control is successively rotated from Partitions 1, 2, 3, 1, 2, 3, 1,
.+ .. At least one line numbered statement or group of statements is
executed in each partition each time control is passed to that partition.
All statements following the line number are executed. This means that
more than one statement may be executed before control is returned for
another examination of the Timesharing Bookkeeping Tables.

Figure 35 shows execution taking place in Partition #2. Only 15
milliseconds of a maximum of 30 milliseconds has been used executing
statements in Partition #2. Statements will continue to be executed in
Partition #2 until the time exceeds the maximum alloted time. When this
occurs, BASIC program text statements located in Partition #3 will be
processed until the time limit is again exceeded.

The Partition Systems Tables contain the pointer to the next instruc-
tion to be executed. In this example, this pointer is in terms of the
program text coordinate of the next instruction to be executed.

The essence of Timesharing is that multiple copies of a single par-
tition Language System are kept in memory. Control is rotated through
each partition on a timely basis.

The maximum time limit of 30 milliseconds for executing statements
in any partition was selected on the basis of how long a wait would be
acceptable to either an applications program operator or a BASIC pro-
grammer. The appearance of ‘‘instantaneous’ response should be main-
tained.

The Timesharing example given in Figure 35 is very simple. How-
ever, Timesharing, in practice, is considerably more complicated. As an
example, one of the partitions, say Partition #3, could be used for program
development while the other two are running BASIC programs. In this

Top of Memory
Computer Reserved Memory

Other Systems Tables and Perhaps Computer Code

Timesharing Bookkeeping Area of Memory

15 Time Spent in Current Partition
Maximum Time to Spend in
30ms | 4 partition
3 Number of Next Partition
to Participate in Execution

Pointer to Partition # 1 Systems
#1—> | Tables
Pointer to Partition # 2 Systems
Tables
#3—» | Pointer to Partition # 3 Systems
Tables

#2—»

#1-—>r 3

Partition # 1 Systems Tables

Program Text Coordinate
10, 1 of Next Instruction to be
Executed

4 Terminal #

Partition # 1
I:I DATA Table > Bookkeping

Area
Plus Other Tables

Partition # 1 Command Sequence Buffer

#1 Partition # 1 Verb Stack

Partition] 1

5 $ RELEASE TERMINAL TO 2
10A=1
20 GOTO 10

Partition # 1 Work Buffer

Partition # 1 Value Stack T

A Variable Table T

~

Figure 35: Rough diagram of a three partitioned Timesharing Language System.
Example program text coordinates are given for each of the three partitions. Ex-
ample values are also entered in Timesharing Bookkeeping Tables.

161

Partition # 2 <

Partition # 3 <

Bottom of
Memory

Partition # 2 Systems Tables

Program Text Coordinate
40,1 of Next Instruction to be
Executed

4 Terminal #

‘:I DATA Table

Plus Other Tables

Partition # 2 Command Sequence Buffer

Partition # 2 Verb Stack

40 GOTO 30

l
R

Partition # 2 Work Buffer

Partition # 2 Value Stack T

B Variable Table T

Partition # 3 Systems Tables

Program Text Coordinate
50, 1 of Next Instruction to be
Executed

5 Terminal #

,:, DATA Table

Plus Other Tables

Partition # 3 Command Sequence Buffer

Partition # 3 Verb Stack l

60C=1
60 GOTO 50

Partition # 3 Work Buffer

Partition # 3 Value Stack T

C | Variable Table T

Figure 35: Concluded.

162

Partition # 2
> Bookkeeping
Area

Partition # 3
> Bookkeeping
Area

PARTITION INTERACTION 163

case Partition #3 would be in the entry state. Tables have to be maintained
on the states of each partition.

The $ preceding the SRELEASE has a hexadecimal atomization of
EA given in Appendix A. Statements such as SRELEASE are sufficiently
infrequently encountered in program text that they are not atomized.
$SRELEASE TERMINAL TO 2 is stored in computer memory as

Ealrlelclefalsle] Trleln]u]i[n]alc]

[Irfof [2]oo]

PARTITION INTERACTION

The basic idea of how a Timesharing Language works is not partic-
ularly difficult to comprehend. The next step is to explain how BASIC
can access variables in other partitions and use BASIC program text
which resides in other partitions.

Wang Laboratories 2200 series MVP, LVP, SVP computers run a
BASIC Language Timesharing Language System. Wang Laboratories is
a current leader in development of such Timesharing Language Systems.
For this reason Wang Laboratories verb names and variable naming con-
ventions will be used to explain how partition interaction works.

A partition can declare itself global. This means that BASIC pro-
grams in other partitions may be able to access both variables and program
text in the global partition. There may be more than one global partition.
Each global partition has a unique name.

The statement:

10 DEFFN @PART “GLOBAL"

would cause a partition to declare itself global with a name *‘GLOBAL”
when the DEFFN @PART verb was executed. The DEFFN @PART is
an executable BASIC statement and must be executed so that the partition
is given the name following the @PART.

Global variables are preceded by an @. Some examples of global
variable names are:

@A, @A$, @A(B), @A%(B)

Global variables are distinct from regular variables. Global variables

164 TIMESHARING LANGUAGE SYSTEMS

are only entered into the variable table if they are explicitly defined in a
DIM or COM statement. References to global variables in a nonglobal
partition will, of course, not be entered into the variable table in the
nonglobal partition.

A SELECT @PART verb is used to select a global partition in a
BASIC program residing in a nonglobal partition. More than one partition
can declare itself global so long as a unique partition name is used. An
example of the SELECT @PART verb is:

20 SELECT @PART “GLOBAL”

An example will make the use of global variables, global partitions,
and DEFFN and SELECT @PART reasonably clear.
The BASIC program:

10 SELECT @PART "GLOBAL”
20 A=1
30 B=@A

is located in Partition #1. Its variable table just after program resolution
but before the program is run is of the form:

BDT
Alo

where the arrow shows the direction of expansion of the variable table.
Zeros are the null values of scalar numerics.
The BASIC program:

10 DIM @A

20 A=2

30 @A=3

40 DEFFN @PART “GLOBAL"

is located in Partition #2. Its variable table is of the form:

AOT
ol

@A

just after resolution but before the program is run.

PARTITION INTERACTION 165

The program in Partition #2 must be run before the program in
Partition #1 is run. The reason is that the global @A must be entered
into the variable table of Partition #2, and Partition #2 must be defined
as global so that the SELECT @PART * ‘GLOBAL” statement in Partition
#1 can be satisfied from the execution of the DEFFN @PART
“GLOBAL”.

When the BASIC program in Partition #2 is run, its variable table

becomes:
Al 2
@A | 3

When the program in Partition #1 is run, its variable table becomes:

8 3
A 1

This means that when the statement B = @A was executed, the value
of @A was retrieved from the variable table located in Partition #2. The
variables A in both Partitions #1 and #2 are distinct variables.

Global variables can be defined in a partition which is never made
global by a DEFFN @PART. This effectively gives the possibility of
having a second set of variables since those variables preceded by @ are
distinct from those not beginning with the @. The only difference is that
all of the @ variables would have to be declared in DIM or COM state-
ments.

Within the Systems Tables for each partition there is a table com-
posed of:

Program text coordinate 10,1
of next instruction to
be executed

Current partition # 1
Global partition # 1
DATA partition # 1
Qriginating partition # 1

Terminal # 4

166 TIMESHARING LANGUAGE SYSTEMS

At program resolution time, the numbers in the above table represent
the state of the table for Partition #1. When statement 10 was executed
the contents of the table became:

»

Program text coordinate 20,1
of next instruction to

be executed

Current partition # 1
Global partition # 2
DATA partition # 1
Originating partition # 1
Terminal # 4

This is the way global variable references are satisfied. When @A
was discovered, this table was consulted and the variable table in global
Partition #2 was searched for its value.

Only the Global partition number entry was used to resolve global
variable references. Table entries of Current partition #, DATA partition
#, and originating partition # are used for sharing program text and DATA
for READ’s.

How sharing program text works can be explained by use of three
BASIC programs. Partition #1 contains the program:

10 A=1:B=2

20 SELECT @PART “SHARE": ERROR $BREAK 10: GOTO 20
30 GOSUB'1

40 STOP

which has the variable table:

after program resolution but prior to execution. Partition #2 contains the
program:

PARTITION INTERACTION 167

10 A=2:B=3

20 SELECT @PART "SHARE"
30 GOSUB'1

40 STOP

which has the variable table:

A 0 |

after program resolution but before execution. Partition #3 contains the
program:

10 D=1

20 DEFFN @PART “SHARE”: STOP
30 DEFFN'1

40 C=A+B

50 RETURN

which has the variable table:

after execution but before it has been referenced by the programs in either
Partitions #1 or #2.

RUN'’s are executed in the order of Partition #1, #3, then #2. Even
though the program in Partition #3 is not running, the program in Partition
#1 will continue to wait at Statement #20 for the error condition (of not
having a DEFFN @PART executed in another partition) to clear. The
$BREAK 10 releases Partition #1 for 10 time slices of 30 milliseconds
before the Language System returns to execute another statement in this
partition. If the ERROR handling procedure was not used, then Partition
#1 would be placed in the entry state; and an error code pointing to the
SELECT @PART would be displayed on the console output device.

When the B=2 statement is executing the Systems Table for Par-
tition #1 contains:

168 TIMESHARING LANGUAGE SYSTEMS

Program text coordinate 20,1
of next instruction to

be executed

Current partition # 1
Global partition # 1
DATA partition # 1
Originating partition # 1
Terminal # 4

When the SELECT @PART **SHARE" command is executed, the
Systems Table for Partition #1 contains:

Program text coordinate 30,1
of next instruction to

be executed

Current partition # 1
Global partition # 3
DATA patrtition # 1
Originating partition # 1
Terminal # 4

which means that the function of the SELECT @PART “*‘SHARE"’ was
to search partition systems tables to find which partition was defined the
global share.

When the GOSUB'I has just finished executing, the systems table
in Partition #1 contains:

Program text coordinate 30,1
of next instruction to
be executed

Current partition # 3
Global partition # 3
DATA partition # 1
Originating partition # 1

Terminal # 4

PARTITION INTERACTION 169

The 30,1 is pointing to the DEFFN statement in Partition #3. The
current partition will now be 3, since program control is being transferred
to this partition.

In Partition #3, only D appears in the variable table since no vari-
ables following a DEFFN @PART are entered into that partition’s vari-
able tables.

When RETURN at Statement #50 in Partition #3 has finished ex-
ecution, the systems table in Partition #1 contains:

Program text coordinate 40,1
of next instruction to

be executed

Current partition # 1
Global partition # 3
DATA partition # 1
Originating partition # 1
Terminal # 4

Execution of RETURN returns control to calling Partition #1. The
local variables following the DEFFN @PART refer to those variables
located in the calling partition’s variable table. For this reason the variable
table in Partition #1, just after execution of the C= A + B, contains:

C 3
B 2
A 1

Statements 30-50 in Partition #3 appear to be located in Partition
#1. Another way of looking at these statements is as an extension of
Partition #1.

The program located in Partition #2 is similar to the one located in
Partition #1. The execution steps are similar as is the systems table in
Partition #3. When this program finishes execution, its variable table will
contain:

C 5
B 3

170 TIMESHARING LANGUAGE SYSTEMS

The important part of this example is the sequence of instruction
execution. The programs in Partitions #1 and #2 share the same code in
Partition #3. A possible sequence of code execution is:

Program text

Coocrdinate Originating Partition Current Partition
10,1 1 1
10,2 1 1
10,1 2 2
20,1 1 1
10,2 2 2
30,1 1 1
20,1 2 2
30,1 1 3
30,1 2 2
30,1 2 3
40,1 1 3
40,1 2 3
50,1 2 3
50,1 1 3
40,1 2 2
40,1 1 1

This could occur since the Language System round-robin rotates
through the partitions executing BASIC statements. The STOP in line
20,2 in Partition #3 stopped execution of BASIC statements in the par-
tition, so no time slice is given for execution of statements.

The important point in this example is that Partitions #1 and #2 are
**simultaneously’’ executing code from Partition #3. This code should
not modify values in the variable table in Partition #3 for the reason that
would be unclear which Partition, #2 or #3, made the modification. Code
which can be shared in this manner is called reentrant.

The function of the DATA partition # pointer can be explained from
the execution of two programs. The first program is in Partition #1 and
is:

10 READ A$

20 PRINT A$

30 SELECT @PART “KFAB”
40 GOsuB"1

50 DATA "ONE",“TWO"

The second program is located in a global Partition #2 and is:

10
20
30
40
50
60
70
80
90

PARTITION INTERACTION 171

DATA “ALPHA"

DEFFN @PART “KFAB”: STOP
DEFFN'1

READ A$

PRINT A$

RESTORE

READ A$

PRINT A$

RETURN

The systems table in Partition #1 is:

Program text coordinate 10,1
of next instruction to

be executed

Current partition # 1
Global partition # 1
DATA partition # 1
Originating partition # 1
Terminal # 4

when the program in Partition #1 begins execution.
When the DEFFN'’ statement in Partition #2 is executed, the sys-
tems table in Partition #2 contains:

Program text coordinate 40,1
of next instruction to
be executed

Current partition # 2
Global partition # 2
DATA partition # 1
Originating partition # 1

Terminal # 4

172 TIMESHARING LANGUAGE SYSTEMS

When the RESTORE at line number 60 has just finished execution
the systems table in Partition #1 reads:

Program text coordinate 70,1
of next instruction to

be executed

Current partition # 2
Global partition # 2
DATA partition # 2
Originating partition # 1
Terminal # 4

Execution of the RESTORE causes the DATA partition number to
be set equal to the Current partition number. Thus these two programs
would cause:

Comments
ONE Statement 20,1, Partition #1 caused this.
TWO Statement 50,1, Partition #2 caused this.
ALPHA Statement 80,1, Partition #2 caused this.

When control is passed back to the BASIC program in Partition
#1, the systems table in Partition #1 contains:

Program text coordinate 50,1
of next instruction to
be executed

Current partition # 1
Global partition # 2
DATA partition # 2
Originating partition # 1
Terminal # 4

Restoration of the DATA partition pointer to 1 would require that
a RESTORE be issued in Partition #1.

PARTITION INTERACTION 173

Global variables can be used in nonglobal partitions. Whenever a
SELECT @PART statement is executed, all references which follow this
statement will refer to global variables located in the variable table in the
global partition. An example should make this clear. Partition #1 contains
the program:

10 DIM @A

20 @A=1

30 SELECT @PART “PANTEX”
40 PRINT @A '

while Partition #2 contains the program:

10 DIM @A
20 @A=2
30 DEFFN @PART "PANTEX"

The program in Partition #2 is run before the program in Partition
#1. The PRINT statement located at Line 40 will cause

2

to be printed rather than 1. The reason for this is that the SELECT
@PART statement caused the global partition pointer to be changed from
1 to 2.

Timesharing BASIC Language Systems require several other verbs
to solve problems which arise with Timesharing. One problem is that two
BASIC programs located in two different partitions both may wish to use
the printer at the same time. If it were the case that both programs could
do this, then their respective output line might be interleaved on the
hardcopy.

The verb SOPEN allows a partition to **hog’’ (‘‘Hog’’ is a technical
term meaning ‘‘to have exclusive use’’) an output device. The verb
$CLOSE allows a hogged device to be released for use by a program in
another partition.

The $PSTAT function returns information, including the partition
system table, for examination of any partition’s state. #PART returns the
number of the partition of the currently executing BASIC program.

The $INIT statement or command allows a BASIC program to de-
termine the number and sizes of partitions of the computer.

Timesharing Language Systems are relatively new. They are con-
siderably simpler than Timesharing Operating Systems. Benchmark trials

174 TIMESHARING LANGUAGE SYSTEMS

have shown that Timesharing Language Systems have outrun Timesharing
Operating Systems by a large amount.

SUMMARY

Timesharing Language Systems can be written where the appearance
is created that one physical computer system looks similar to several
independent computer systems.

The essence of how a Timesharing Language System works is that
there are several copies of user’s portion of microcomputer memory which
extends from the Other Systems Tables region of memory to the variable
table. Each of these copies is called a partition. Each partition has the
same overall organization, but the contents of each partition differ as a
result of the programs being executed or entered in that partition.

The Language System reserves about a 3K byte memory area at the
end of the Systems Area for the Timesharing Bookkeeping memory area.

A terminal must be attached to each partition. This terminal is used
for input and output information. A terminal cannot be attached to more
than one partition at a time.

The programs in the partition do not execute simultaneously. The
Timesharing Language System jumps from partition to partition executing
at least one, and perhaps several lines of program text from each partition.

A partition can declare itself global. This means that BASIC pro-
grams in other partitions may be able to access both variables and program
text in the global partition. There may be more than one global partition.
Each global partition has a unique name. Global variables are preceded
by an @ and are distinct from regular variables. Global variables can be
used in nonglobal partitions.

12

Language System
Code and its
Systems Verbs

Three topics will be covered in this chapter: The Language System
code, systems verbs, and the computer power up stage. The Language
System code examines and changes the Language System tables. The
systems verbs are code blocks which reside in the Language System code
area in memory and are not usually accessible by the user's BASIC pro-
gram. When the power is first applied to the computer, the Language
System code is in either read-only memory or in random-access memory.

LANGUAGE SYSTEM IMPLEMENTATION
CODE

A Language System is completely described in tables beginning at
the systems tables area of memory. The computer code which examines
and changes these tables may reside at different locations in computer
memory. The location depends on the implementation of the Language
System.

One alternative is to place the Language System computer code in
the same memory space as all of the Language System tables.

A rough diagram of this arrangement is seen in Figure 36.

A second alternative is to place this code in a different memory
space than that used to contain the Language System tables. A rough
diagram of this arrangement is seen in Figure 37.

175

176 LANGUAGE SYSTEM CODE AND ITS SYSTEMS VERBS

Q0—>

Computer Reserved Memory

Language System Code

Language System Tables

Beginning of Last Partition's —
Variable Table

Figure 36: Example layout of microcomputer memory where the Language Sys-

tem implementation code is kept in the same memory space as the Language
System tables.

The Language System tables include all Bookkeeping tables, BASIC
programs, verb and value stack, variable tables, and all other tables re-
quired by the Language System.

One fundamental principle applies to the Language System Code
area:

¢ Data operated on by the Language System Code is kept in an area
of memory separate from the Language Systems Code.

A computer system which intermingles data and computer code is

called a vonNeumann machine. Language Systems should not intermingle
data and computer code.

0 > 0

Computer

Reserved

Memory Language

System

Language Tables

System

Code Beginning of Last
Partition’s o
Variable
Table

Figure 37: Example microcomputer memory layout where the Language System
code is kept in memory space separate from the Language System tables.

SYSTEMS VERBS 177

SYSTEMS VERBS

Systems verbs are short code blocks of computer code which are
written as subroutines in microcode or machine language. These code
blocks reside in the Language System code area in memory. These verbs
are usually not directly accessible by a user BASIC program, and so are
called systems verbs.

Some examples of systems verb functions are:

1. Search the program text region of memory for a line number label
and return a pointer to the position following the label.

2. Search the variable table for a reference to a character string or
numeric scalar variable and return a pointer to its value.

3. Search the variable table for a reference to an array variable. Return
a pointer to the value of this variable or indicate an out-of-bounds
reference.

Many systems verbs’ function is to create value stack frames for
BASIC verbs to process. Many others function to aid the syntax analyzer
in analyzing Work Buffer text.

Making changes to verbs does not create a major unfavorable impact
on the Language System for the reason that all data references are made
to the Language System tables area of memory.

Each verb should have a simple intended function. Each verb should
be able to contain about a maximum of 30 lines of machine language or
microcode instructions. Complex systems verbs should be constructed
by calling elementary systems verbs.

Systems level programs, such as the interpreter, syntax analyzer,
or partition execution scheduler also reside in the Language System code
region of memory. Since these programs are more complex than the sim-
pler verbs, they will reside toward the bottom of this region. These more
complex systems programs will consist mostly of GOSUB-like statements
to other systems verbs.

A Language System code value stack will have to be established to
contain RETURN:-like addresses to code blocks calling verbs.

A rough diagram of this arrangement is seen in Figure 38.

A critically important feature of the Language System code region
of memory is that its contents do not change when the Language System
is in operation.

178 LANGUAGE SYSTEM CODE AND ITS SYSTEMS VERBS

0
Computer
Reserved
Memaory
Language
System
Code
Value
Stack
Verb # 1
Verb #2 |_Program
Contents of Verb # 3 Text
Language
System Code
Region Should 4
Not Change
when the Language Syntax
System is in Analyzer
Operation Interpreter
Partition 1
Scheduler _‘
Language
System Data
Tables

Figure 38: Rough diagram of a Language System with emphasis on the structure
of the organization of the Language System code region of memory.

This statement must be tempered. The contents of this region are
not supposed to change when the Language System is in operation, but
momentary power fluctuations or failing memory chips can cause the
contents of the code region of memory to be altered.

One of the states of the Language System is the self-test state. A
redundancy measure of the computer code in the Language System code
memory region should be computed and stored with the computer code
in this region. The redundancy measure could be a simple arithmetic
modulo sum of the code, or possibly a more complex cyclic redundancy
check. The purpose should not be just to report that the code in this area
is likely in error, but to report the chip in which the error was detected.
This requires design of a more complicated redundancy measure scheme.
This information would be displayed on the console output device in the
event a failure occurred. Troubleshooting hardware costs can be reduced
using this technique.

POWER UP 179

The hardware self test should be invoked upon system initialization
or when a power failure condition is detected by the microcomputer.

POWER UP

When the power is first applied to a Language System computer
system, either:

1. The Language System Code region is in read-only memory and thus
contains the Language System at power up, or

2. The Language System Code region is in random access memory and
must be loaded from a peripheral external device.

Option #1, experienced has shown, has several disadvantages:

o Language System software cannot be developed on the Language
System computer directly since the read-only memory cannot be
easily modified.

¢ Design and implementation errors in the Language System can be
expensive to fix.

Containment of the Language System Code in read-only memory has
been, and still is, a viable option. This is particularly a useful practice for
reducing cost for mass distributed Language System computer systems.

If option #2 is selected, then a permanent storage device must be
selected from which the Language (short for Language System code) will
be loaded into the Language System code region of memory.

The permanent storage device is most likely some form of a disk
but may be a tape or some other permanent storage device such as a
bubble or read-only memory cartridge. The Language may even be loaded
over a communications link.

Mass storage devices often have their media formatted by the Lan-
guage. Disks often have a directory of file names and associated pointers
pointing to where the contents of the file reside on disk.

The Language System must have a bootstrap program which loads
the Language into the Language System Code region. This bootstrap
program should be contained in read-only memory and should be able to
load the Language System code region of memory from files formatted
for regular user use. This is important because the file containing the
Language can be copied using Language System commands.

When the computer system is powered up, a message to the effect:

KEY ESCAPE

180 LANGUAGE SYSTEM CODE AND ITS SYSTEMS VERBS

should appear on the console output device. ESCAPE is the name of a
special key on the console input device. When ESCAPE or a similar key
is depressed, the bootstrap loader should make a check of itself to rea-
sonably assure itself that it is correct. A modulo sum or cyclic redundancy
check of its text is an appropriate measure. Memories do fail, so this
check is important to make.

If the partial redundancy measure of program correctness fails, then
a message should be printed on the console output device explaining this
failure. If the bootstrap program appears to be accurately written in mem-
ory, then the bootstrap loader should inquire on the console output device:

KEY LOGICAL DEVICE ADDRESS

The response required to this prompt is entry of a logical address
of a device which contains the code for the Language System.

An example configuration of a microcomputer system is shown in
Figure 39. Letters A, B, C, . . . are used for the logical device addresses.
The importance of allowing a selection of devices is that the Language
System can be loaded from a different device in the event of a device
failure, or even from a different medium.

When the Language System has been loaded, a self test is invoked.
Successful completion of the self test will result in a:

READY
or similar message being displayed on the console output device.

For Language System development inclusion of a special key se-
quence, for example

lesc|s[v[s[s]a]v]e]

which causes the contents of the Language System code region of memory
to be stored back in Language System files is valuable.

Once the Language System has been loaded from files, the medium
containing the files, say a flexible diskette, can be removed from the
physical device since it will not be referenced until the next power up.
A “‘'systems disk’’ does not need to be mounted in any drive when a
Language System is in operation. Most Operating Systems require use
of a “*systems disk’’ for the reason that Operating Systems contain many
more lines of code than do Language Systems.

Console
Output
Device

Console
Input
Device

POWER UP 181

Hard

Disks \/

Floppy Disks

Microcomputer
Central

Processing Unit

—

=]

O

=l

|
O

~_

Minifloppy Disks

-

OeO

OrO

~_

Tapes

4

Telecommunications
Controller

Figure 39: Example of logical device addresses which can be used to load a
Language System. The bootstrap loader must be able to recognize the physical
unit or the logical structure of the Language System'’s file must be the same for

all devices.

182 LANGUAGE SYSTEM CODE AND ITS SYSTEMS VERBS

SUMMARY

The Language System code is that computer code which makes
BASICs work. The Language System’s code examines and changes the
various Language System tables. This Language System computer code
can be placed in the same memory space as the Language System tables,
or in a different memory space.

Systems verbs are short code blocks of computer code written as
subroutines in microcode or machine language and are located in the
Language System code area of memory. These verbs are usually not
directly accessible by a user BASIC program. Many of these verbs create
value stack frames for BASIC verbs to process. Others aid the syntax
analyzer in analyzing work buffer text. The Language System code region
of memory also contains the Language System’s programs, such as the
interpreter, syntax analyzer, or partition execution scheduler.

When the power is first applied to a Language System computer,
either the Language System code region is in read-only memory (i.e., in
memory at power-up time), or the Language System code region is in
random access memory (i.e., must be loaded from a peripheral external
device). If the Language System code resides in random access memory,
a bootstrap loader is required to load the Language System code into the
Language System code region of memory from a permanent storage de-
vice. The bootstrap loader should be contained in read-only memory.
After the Language System code self-test, the Language System code
initializes the Language System which includes the systems tables through
the variable table. When the Language System code has been loaded,
self-test successfully passed, and the Language System tables initialized,
a “‘READY" or similar message will be displayed on the console output
device. Once the Language System has been loaded from the file, the
medium containing the file, such as a flexible diskette, can be removed
from the physical device since it will not be referenced until the next
power up.

13

How to Write a
Language System

Knowledge of how Language Systems are written contributes to
knowledge of how BASICs work.

Language Systems are considerably simpler than Operating Sys-
tems. Distinctions between Language and Operating Systems may become
blurred in a complex Timesharing Language System. Clearly there is an
“‘operating system’’ managing partition program execution in a Time-
sharing Language System. Some of the features and differences of Lan-
guage and Operating Systems are enumerated in the chart on page 184.

Implementation of Operating Systems requires writing many
hundreds of thousands of lines of code in most cases. Implementation of
an Operating System requires writing: '

. the operating system proper
. compilers

. linkage editors

. loaders, and

. system utilities

Wb W -

Operating systems proper vary considerably in the amount of code
required to implement them. Control Data’s SCOPE 2 Operating System
contains about 700,000 to 1,000,000 lines of computer code. Digital Equip-
ment Corporation’s RSX-11M Operating System required about 300 man
years to develop.

A reasonable guess is that a compiler requires about 50,000 bytes
of memory. Another reasonable guess is about 16,000 to 15,000 lines of
code are required to implement the compiler. The UCSD p-System BASIC

183

184 HOW TO WRITE A LANGUAGE SYSTEM

Operating System

Language System

Complex software system

Many lines of computer code required
to implement a operating system

On-line systems disk required for op-
eration

Multiple user languages such as
BASIC, FORTRAN, COBOL, ADA,
PASCAL, Assembler can be run

Operating system job control language
is separate from user languages

Edit-compile-linkage edit-load-run pro-
gram development cycle may be re-
quired

Assembly language usually requried

Minimum RUN time system memory re-
quirements

Fast execution for compiled language
programs

Simple software system

Few lines of computer code required to
implement a language system

System entirely contained in computer
memory

Two user languages are the only lan-
guages allowed. These are the high
level and machine language.

Job control language, which includes
input/output verbs, is included in the
single user high level language

Edit-run program development cycle

No assembler required, only machine
language or microcode and the high
level language

Constant system memory requirements

Usually slow execution speeds

compiler is written in about 11,000 lines of PASCAL code. Compilers are
often written in languages other than assembler.
Linkage editors are usually about one-half to four-fifths the size of

a compiler, so 5,000 to 12,000 lines of code is a justifiable estimate of
implementation size. A loader is approximately about one half the size
of a linkage editor so a rough estimate has its implementation requiring
about 2,500 to 6,000 lines of code.

Systems utilities, such as file copies, cannot be accurately estimated
for the reason that there can be arbitrarily many different utilities. An
editor is considered a utility and can be written in about 6,000 to 10,000
lines of code. Such an editor would be a very complete editor as opposed
to a simple BASIC line editor.

A conservative estimate of the number of lines of code required for
implementation of a reasonably complete Operating System-based com-
puter software system is:

HOW TO WRITE A LANGUAGE SYSTEM 185

Line of Code Function
10,000 Operating System proper
10,000 One compiler
5,000 Linkage Editor
2,500 Loader
6,000 Editor
33,500 Total

This estimate of the total number of lines required to implement an
Operating System software system is, as was mentioned previously, some-
what conservative. Lines of code required to implement an assembler
(about the same as a compiler) and library routines (such as SIN, COS,
.. .) have not been included in this estimate.

The largest Timesharing Language System, on the other hand, re-
quires about 21,000 lines of code to implement. Some smaller BASIC
systems can be implemented in about 2,700 lines of code. This includes
a simple line editor, all of the library routines, and some utility verbs.

Operating System and compiler code is expensive to produce. An
experienced systems programmer may produce about 5 lines of such code
per day. Thus an experienced systems programmer may produce about
2,000 lines of such code per year. This means that production of the
example Operating System software system could take roughly 17 man
years of labor.

In 1980 in America a fully burdened systems programmer costs about
$70,000 per year. This price includes such costs as the building required
to house the programmer and the cost of the programmer’s computer.

This means that it could cost about 1.4 million dollars, conservatively
estimated, to produce the Operating System software system! Any person
or corporation which might harbor the intention to write a new Operating
System software system should keep this cost estimate in mind.

The amount of work required to write a new Language System is
considerably less than that required to write an Operating System software
system. Several reasons account for this:

1. Not as many lines of code are required.

2. An edit-run program development cycle can be used to bring up a
Language System on the target computer.

An Operating System software system is usually required to write
an Operating System software system. As an example, a Digital Equip-
ment VAX computer and ADA compiler are currently required to write
computer code for Intel’s iAPX 432 microcomputer.

186

HOW TO WRITE A LANGUAGE SYSTEM

A Language System can be bootstrapped up on a target computer

system. The edit-run capability can be used to produce computer code

at a

daily rate in excess of 5 lines of code per day. The cost of a micro-

computer system is also considerably cheaper than a large Operating
System computer system required to develop an Operating System.

One of the main attractions of a microcomputer system is its low

cost. For this reason only a strategy on how to write a Language System

will

be examined.
A minimal microcomputer system on which to develop a Language

System should include peripherals:

1

2
3.
4

. A keyboard console input device.

. A cathode ray tube console output device.

Two floppy or minifloppy disk units.

. A printer with a minimum printing rate of 100 characters per second.

The overall strategy for bringing up the Language System includes:

. Writing a text editor which has the capability of editing all of mi-
crocomputer memory. Insertions, changes, and deletions of char-
acters in either hexadecimal or ASCII should be supported.

- Writing a bootstrap loader and saver which will load and save the
Language System code region of memory on a flexible diskette.

. Implementing the Language System in machine language or micro-
code.

Number three can be broken down into:

A. Writing a BASIC line editor for entry, recall, and edit of BASIC
text for the command sequence buffer and program text region
of memory.

B. Writing verbs of SAVE and LOAD which will allow the contents
of the program text region of memory to be SAVEJ in a disk
file or LOADed from disk files. SAVE and LOAD are both

commands and thus are executed from the command sequence
buffer.

C. Writing enough of the *‘monitor’’ part of the Language System
to allow the system to enter the states of Language System
Initialization, Entry Phase, Language System Self Test, and
Execution. Writing a complete Resolution Phase can be left to
later.

D. Writing the remainder of the Language System.

The important point to keep in mind is that there are two editors.

HOW TO WRITE A LANGUAGE SYSTEM 187

One editor is used to edit both the Language System code region of
memory and systems tables. Edit means examine and possibly change the
contents of these regions of memory. The second editor enters, recalls,
and edits information contained in either the command sequence buffer
or program text region of memory. The editing takes place in the work
buffer.

The second editor, at least, can be written with BASIC verbs. Much
of BASIC can be written in BASIC.

There are also two loaders and two savers. The first loader/saver
loads and saves microcode or machine language program text located in
the Language Systems code region of memory in disk files.

The plural, ‘‘files,”” is used because systems verbs should be de-
composed into classes. String handling, mathematical elementary func-
tion, numerical matrix, and so forth are possible classes of verbs. Verbs
in each class are kept in a separate file. This facilitates development of
a Language System by a team effort. Members of the team can thus make
changes to their class of verbs with minimal impact on the work of other
team members.

The second loader/saver loads and saves BASIC program text lo-
cated in the program text region of memory in user named disk files.

There is a fundamental principle involved in any type of text de-
velopment. This fundamental principle is:

¢ Enter text only once. Recall and edit after the initial entry.

Application of this principle supposes that LOAD and SAVE have
been implemented.

The requirement of two disks for a minimal system is for making
back up copies of disks. A command to the effect:

COPY <disk #1> TO <disk #2>

should be implemented at the beginning of Language System project so
that back up copies of the increasing expensive Language System software
can be made.

The printer is required for three reasons:

1. A printed back up copy of the Language System can be kept.

2. Some Language System errors are best diagnosed by studying a
printed listing of program text.

3. Development of printer verbs.
Systems verbs are developed towards the beginning of the Language

System project. Toward the end of the project, some verbs can be written
in terms of other BASIC verbs. The numerical MAT verb such as MAT

188 HOW TO WRITE A LANGUAGE SYSTEM

A=0, MAT A=B*C, MAT A =1, and so forth are a class of verbs which
lend themselves to be written in BASIC. At the end of a Language System
project, it is found that BASIC is largely written in BASIC.

One principle in implementation deserves continued emphasis:

¢ Program text must be kept physically separate from data accessed
by the program.

This principle applies to quality applications systems code as well
as to Language Systems code.

Figure 40 contains a diagram of this principle applied to a BASIC
Language System. The essential importance of this figure is that computer
code, no matter what the language level, manipulates data stored in tables.

ILanguage System Text Editor,

Has as its Data

/\

Language System Code | ‘ BASIC Line Editor '

/ Has as its Data
Command Sequence Buffer} BASIC Program Text

%s its Data

| BASIC Variable Tabﬂ

Figure 40: Diagram emphasizing that data must be kept separate from computer
code. The Language System Text Editor has all regions, excluding its own, of
microcomputer memory as its data area. The BASIC line editor edits text located
in the Command Sequence Buffer and BASIC program text region of memory but
also has some of its tables in the Systems Tables.

SUMMARY

The amount of work required to write a new Language System is
considerably less than that required to write an Operating System for two
reasons. First, not as many lines of code are required. Second, an edit-
run program development cycle can be used to bring up a Language
System on the target computer.

SUMMARY 189

A minimal microcomputer system on which to develop a Language
System should include the following peripherals:

1. A keyboard console input device.

2. A cathode ray tube output device.

3. Two floppy or minifloppy disk drives.

4. A printer with a minimum print rate of 100 characters per second.

The overall strategy for bringing up the Language System is:
1. Write a text editor which has the capability of editing all of micro-

computer memory.

2. Write a bootstrap loader and saver which will load and save the
Language System code region of memory on a flexible diskette.

3. Implement the Language System in machine language or microcode.

An important principle for implementation is that program text must
be kept physically separate from data accessed by the program.

14

Conclusions and
References

How do BASICs work? How do FORTRANs, COBOLs, PASCAL:,
ADAs, . . . work? They all work about the same way: they are composed
of many different types of tables. Such systems are called table driven.
Most of the newer systems are stack oriented as compared to link list
oriented. IBM language implementations are mostly link list oriented.

Why are BASICs so popular? BASICs are easy to learn but more
important:

e New verbs can be added to the langauge when technological ad-
vances require their addition.

Most high level computer languages have a set number of verbs and
cannot adapt. Most high level computer languages are insufficiently rich
in verbs that they require an Operating System to add verbs (JCL state-
ments) so that they can work. BASICs include Operating System verbs
as part of it.

BASICs are relatively inexpensive to write. Hardware manufactur-
ers have to competitively market complete computer systems. Develop-
ment of expensive Operating System software systems drive up the price
of their product. Language Systems, on the other hand, do about every-
thing an Operating System does, but can be produced with less cost.
Language Systems only run two languages: The high level and microcode
or machine language. COBOL or FORTRAN might be selected as the
high level language for a Language System, but proponents of both lan-
guages are not particularly receptive to the idea of addition of new verbs

180

CONCLUSIONS AND REFERENCES 191

to their language. This is one reason why BASICs are selected by many
software system implementers—no language standards.

BASIC Language Systems are still expensive to develop. For this
reason some of their implementers encrypt their Language Systems on
disk. The Language System is deciphered when the bootstrap loader loads
the system into memory. The implementation information presented in
this book was obtained from a wide variety of sources. This information
was not stolen from any Language System software vendor.

Some literature on Language System implementations is beginning
to appear. A more general book on this subject than this book is:

 Writing interactive compilers and interpreters by P. J. Brown, John
Wiley and Sons, 1979.

Another excellent source of Language System implementation tech-
niques is:

« Dr. Dobb’s Journal of COMPUTER Calisthenics & Orthodontia.

Dennis Allison, happy lady and friends authored an excellent early
article on Tiny BASICs in a 1976 issue of this journal.

Wang Laboratories 2200 series computers software engineers have
written the most elegant and sophisticated Timesharing Language System.
Their

e BASIC—2 language reference manual

presents an excellent conceptual overview of both single user and Ti-
meshared Language Systems.

The Microsoft Corporation has produced simple Language Systems
for a variety of inexpensive microcomputers. Their recent release of the
Language System for the Radio Shack Extended (16K) BASIC for the
Color Computer is a significant step forward in Language System design.
Microsoft recently completed the BASIC for Convergent Technologies
Intel 8086 based software system. System layouts for the Operating Sys-
tem are well documented in the publication

 Convergent Technologies, Technical summary, Information pro-
cessing systems, Convergent technologies, 1980

Convergent Technologies product is an Operating System software
system as opposed to a Language System. Their product is a very ad-
vanced Operating System and may not suffer the problems of other Op-
erating System BASICs.

BASICs and Operating Systems do not get along well. If the BASIC
works well, then the Operating System usually does not. And conversely.

192 CONCLUSIONS AND REFERENCES

About 30 beginning business BASIC students using Stanford BASIC sig-
nificantly degraded the performance of an Amdahl V6 IBM compatible
big computer system.*

How do BASICs work? We feel that the contents of this book give
you a good idea of how they work. The better BASICs work, the lower
the cost of applications software. BASICs are beginning to incorporate
high level record access methods and sort procedure verbs. Applications
programmers can write more complex systems faster which means less
expensively.

BASICs become the native machine language in a Language System.
BASIC:s are well suited to this task. Perhaps better suited to this task than
any other language.

*Large mainframe computer compiler design is described in Principle of Compiler Design,
A. V. Aho and J. D. Ullman (Addison-Wesley, 1977).

APPENDIX

The BASIC keyword atomization table included in this appendix is
used by BASIC-2 which was developed by Wang Laboratories. The table
on the following page serves as an example of a typical BASIC text
atomization. This table is referenced: Technical note #2602, dated July
7, 1976 and authored by Bruce Patterson.

Only 128 text direct text atomizations are possible using this scheme.
The $ (EA) is used to delimit a special class of Language System verbs
such as SRELEASE, $BREAK,

The number of verbs in BASICs is steadily increasing. Perhaps two
byte atomization might be more appropriate today.

TECHNICAL NOTE #2602

Author: Bruce Patterson

Date: July 7, 1976

Subject: BASIC-2 TEXT ATOMIZATION

In order to conserve memory and optimize program line interpretation,
BASIC-2 atomizes program text when RETURN (EXEC) is pressed. Most
BASIC words are replaced by single byte codes, called text atoms (see
following page). The text atom is an 8-bit code with high order bit on; the
lower 7-bits specify the particular BASIC word. Line numbers and line
number references are stored in pack decimal form (2 bytes) preceded by
the text atom FF.

Most atoms can be used to enter the associated BASIC word for
Console Input or INPUT operations. However, ES,s and E6,6 are inter-
preted differently. ES s represents line erase for CI, INPUT, and LINPUT
operations. E6,¢ represents the statement number key and causes a new
line number to be generated for CI mode; E6,¢ is ignored by INPUT and
LINPUT.

Programs saved on disk are stored in atomized form.

193

80 LIST

81 CLEAR

82 RUN

83 RENUMBER
84 CONTINUE
85 SAVE

86 LIMITS

87 COPY

88 KEYIN

89 DSKIP

8A AND

8B OR

8C XOR

8D TEMP

8E DISK

8F TAPE

BO STEP
B1 THEN

B2TO

B3 BEG

B4 OPEN

BS [SELECT] CI
B6 [SELECT] R
B7 [SELECT] D
B8 [SELECT] CO
B9 LGT(

BA OFF

BB DBACKSPACE
BC VERIFY

BD DA

BE BA

BF DC

EOLS=

E1 ALL

E2 PACK
E3 CLOSE
E4 INIT

ES HEX

E6 UNPACK
E7 BOOL
E8 ADD

E9 ROTATE
EA $ [stmt]
EB ERROR
EC ERRA

ED DAC

EE DSC

EF SuB

BASIC-2 TEXT ATOMS

90 TRACE
91 LET

92 FIX(

93 DIM

94 ON

95 STOP
96 END

97 DATA

98 READ
99 INPUT
9A GOSUB
98 RETURN
9C GOTO
9D NEXT
9E FOR

9F IF

COFN
C1 ABS(
C2 SQR(
C3 COS(
C4 EXP(
C5 INT(
C6 LOG(
C7 SIN(
C8 SGN(
€9 RND(
CA TAN(
CB ARC
CC #PI
CD TAB(
CE DEFFN
CF [ARC] TAN(

FO LINPUT
F1 VER(
F2 ELSE
F3 SPACE
F4 ROUND
F5 AT(

F6 HEXOF(
F7 MAX(

F8 MIN(

F9 MOD(
FA reserved
FB reserved
FC reserved
FD reserved
FE reserved

FF packed-line-number

194

A0 PRINT

A1 LOAD

A2 REM

A3 RESTORE
A4 PLOT

A5 SELECT

A6 COM

A7 PRINTUSING
A8 MAT

A9 REWIND

AA SKIP

AB BACKSPACE
AC SCRATCH
AD MOVE

AE CONVERT
AF [SELECT] PLOT

DO [ARC] SIN(
D1 [ARC] COS(
D2 HEX(

D3 STR(

D4 ATN(

D5 LEN(

D6 RE

D7 [SELECT] #
D8 % [image]
D9 [SELECT] P
DA BT

DB [SELECT] G
DC VAL(

DD NUM(

DE BIN(

DF POS(

Annotated Glossary
of Technical Terms

Address: A number which points to each byte location in a microcom-
puter memory.

Alphanumeric character string array variable names and values: Names
consist of a $ which is preceded either by a single alphabetic letter
or by a single alphabetic letter with a single digit 0 through 9 and
parentheses, which signify a one or two dimensional array. Each
byte in an alphanumeric character string array variable contains one
of 256 different binary values (HEX(00) through HEX(FF)); these
values are stored in memory on a character by character basis.
Examples of alphanumeric character string array variable names
are: A$(), A0S(), AI$(), . .. Z8%(), Z93().

Alphanumeric scalar character string variable names and values: Names
consist of a $ which is preceded either by a single alphabetic letter
or by a single alphabetic letter with a single digit 0 through 9. Each
byte of an alphanumeric scalar character string variable value takes
on one of 256 different binary values (HEX(00) through HEX(FF));
these values are stored in memory on a character by character basis.
Examples of alphanumeric scalar character string variable names
are: A%, A0S, AlS, . . . Z83, Z95.

Applications programmer: An individual who designs, produces, and
implements computer programs for use by application systems users.

Array mapping function: Used to compute a single offset pointer from

knowledge of coordinates of an array element. The offset pointer
points to the value of the array element.

195

186 ANNOTATED GLOSSARY OF TECHNICAL TERMS

Assembly Language: A low-level high-level language which allows writ-
ing symbolic machine language. If a machine’s language is high-
level, an assembly language is not needed. One of the major purposes
of this book is to explain how high-level languages can be developed
into a computer’s machine language.

Assembler: A computer program which translates an assembly language
program into machine language.

BASIC compiler: A computer program which converts a BASIC program
(source code) into a program written in another language (object
code). The other language can be the machine language or another
high-level language. For example, Softech’s BASIC compiler is
written in PASCAL and the BASIC programs are compiled into p
code. P code, the machine language for abstract computers, is in-
terpreted on the host computer.

BASIC Language System: Also referred to as the Language System. A
set of programs which process the applications programmer’s pro-
gram and commands. These programs can be contained in the com-
puter’s read only memory or can be loaded from a permanent storage
device, such as a flexible diskette, into random access memory.
Language System programs are written in either machine language
or preferably microcode.

Binary coded decimal (BCD): Uses the hexadecimal digits of 0 through
9 to represent decimal digits. A diagram of the binary weighting for
all 16 combinations of the hexadecimal digits is

8 00 0 000 0 0 1 1 1 1 1 1 1 {1
4 0 0 0 O 111 0 0 0 0 1 1 1 1
2 001 1 0 0 11 00 1 1 0 0 1
101 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 A B C D F

The extra six hexadecimal digits A, B, C, D, E, F have been used to
denote signs for binary coded decimal numbers. IBM uses B or D
for — and A, C, E, or F for +.

Bootstrap Loader: A read only program that loads the Language System
code into the Language System code’s region of memory. The Lan-

ANNOTATED GLOSSARY OF TECHNICAL TERMS 197

guage System should be stored in several different files since it can
be developed by different teams working in parallel. Each team
keeps its portion of the Language System in a separate file so that
its modifications to the Language System will not interact with the
information in the files of other teams.

The development of a Language System also requires a “bootstrap saver’’
which takes the Language System from the microcomputer control
memory and places it back in the files from which it came. The
Language System development teams use a “systems editor’" to edit
the Language System during its development. Language Systems
implementation teams use ‘‘edit-run’’ program development cycles
in much the same way as applications programmers use the *‘edit-
run’’ capability of a Language System to rapidly produce software
products.

Buffer: A temporary storage area in the Language System used for per-
forming BASIC program input/output. See Command Buffer and
Work Buffer for more information on individual buffers.

Byte: A sequence of adjacent binary bits that can be treated as a unit
within a binary fixed word. In most computers, a byte is eight bits
long. The preferred word for an eight bit byte is octet.

Calling program: A program which calls a subroutine in memory. The
routine is called the called program.

Character string: Any combination of characters, letters, or hexadecimal
digit pairs. It can be BCD, ASCII, etc. Interpretation is left up to
the user.

Code blocks: Short program subroutines which generally contain no
more than 10 to 20 statements.

Command: An instruction that is entered into the microcomputer from
the keyboard and is executed immediately after a carriage return is
entered. This instructs the Language System to perform a certain
immediate operation or operations.

Command buffer: Located in the systems area of memory. Contains
command sequences that are executed by the interpreter. The com-
mand buffer is usually given a reasonable size of about 256 bytes.

Compiler: See BASIC compiler.

198 ANNOTATED GLOSSARY OF TECHNICAL TERMS

Console input device: Generally a keyboard. Other devices can be used
but care must be taken in selecting them.

Console output device: Usually a cathode ray tube. A printer is occa-
sionally selected for the same purpose.

CR: Abbreviation for carriage return.

DATA pointer table(s): Resides in bookkeeping area of memory. Con-
tains a pointer to the next DATA item to be read by a READ state-
ment. Multiple DATA pointer tables need to be maintained in
Timesharing Language Systems.

Data structures: Used in BASIC to denote numeric and alphanumeric
values which participate in their appropriate operations. The data
structures are: numeric scalar variables, alphanumeric scalar char-
acter string variables, numeric array variables, and alphanumeric
character string array variables.

Data types: Same as Data Structures. See Data Structures.

Delimiters: Symbols which separate the parts of a statement. Some ex-
amples of delimiters are: :, *,), and CR.

Editor: There are two editors in the BASIC Language System. One
editor is used to examine and change the contents of the Language
System and the systems tables. Another editor is used to edit in-
formation contained in either the command sequence buffer or the
program text region of memory.

Encrypt: Process of scrambling information according to a key so that
it cannot be read without decrypting it. Decrypting requires knowl-
edge of the key.

Entry phase: One of the five states of the Language System. The entry
phase uses the work buffer to store commands, statements, or data
which are entered from the console input device.

Execution phase: One of the five states of the Language System. The
execution phase directly follows the successful resolution of a pro-
gram.

Fetch: Process of reading information from computer memory.

ANNOTATED GLOSSARY OF TECHNICAL TERMS 199

Floating point: Numbers which consist of both an exponent and a man-
tissa (fraction) and signs for both the exponent and mantissa. Nu-
meric values are usually stored in memory as floating point numbers.

Global partition: Division of main storage in a Timesharing System so
that both variables and program text in one partition can be accessed
by BASIC programs in other partitions.

Global variables: In a Timesharing System, a given set of variables are
preceded by an @. Global variables are distinct from regular vari-
ables in that global variables can be used in nonglobal partitions.

HALT/STEP: Key that either stops the execution of the program or
causes one statement or command to be executed each time the
HALT/STEP key is depressed.

Hexadecimal: Numbering system with a base of 16 that incorporates the
digits 0 through 9 and the alphabetic letters A through F.

Hog: Denotes exclusive use of a peripheral computer device.

Interpreter: A Language System program which executes the applica-
tions programmer’s BASIC program.

Job Control Language (JCL): Commands that request services from the
Operating System.

Language: Short version of Language System code.

Language System: Amalgamation of a small Operating System (some-
times called a monitor) and a high-level computer language.

Language System computer code: Examines and changes the Language
System’s tables. These tables range from the systems tables to the
start of the variable table and are used to process the applications
programmer’s program.

Language System initialization: State in which the Language System in-
itializes or gives first values to all of its tables and also checks on
available microcomputer memory. This state follows memory load-

ing.

200 ANNOTATED GLOSSARY OF TECHNICAL TERMS

Language System self test: One of the five states of the Language System.
The self test may be invoked as a result of an abnormal computer
condition, such as a momentary power loss or memory failure.

Lexical analyzer: Identifies verbs, variable names, arrays, numerical
constants, and literals. Lexical analysis of commands and statements
occurs in the work buffer area of memory.

Linkage editor: Part of an Operating System that links together both
programs which have been compiled separately and call system li-
brary programs. When these programs have been linkage edited,
they can be loaded into computer memory to be run.

Linked list: Information linked together through computer memory by
means of pointers which point to the next information in the list.

Literal: A character string within quotes.

Loader: An Operating System program that takes the output of the link-
age editor, i.e. linked computer programs, and loads it into computer
memory for execution. Some computer systems allow a ‘‘compile
and GO procedure by which the loader accepts input from the
compiler and bypasses the linkage edit step.

Machine Language: Native language of a computer. Machine language
can be a high level language which is often interpreted in microcode.
(See Microcode.) Machine language instructions do not usually
check data structures as is always done in BASICs.

A machine language instruction set, such as that found in the IBM 360/
370, has a large portion of its instructions implemented in microcode.
Other instructions are ‘‘hardwired’’ in electronics. New supermini
computers, such as DEC’s VAX, have microcoded instructions but
do not have a Language System in microcode. In Language Systems,
BASIC is a sophisticated and advanced machine language.

MATREDIM: A language verb which allows redimensioning of both
single and double dimensioned arrays.

Matrix: An array of numeric or string variables in rows and/or columns.

Memory locations: Storage units in microcomputer memory which each
contain one byte, or eight bits.

ANNOTATED GLOSSARY OF TECHNICAL TERMS 201

Microcode: Base level machine language with instruction formats that
can vary in form from computer to computer. Many microcode
words are of fixed length: 19 or 32 bits are not uncommon, and some
are only eight bits. Microcode instruction sequences are used to load
microcode registers, set latches, send character strings down a bus,
and so forth. Operations at this level can frequently occur in parallel.

BASIC Language Systems, unlike traditional machine language, can allow
an applications programmer to issue microcode instructions via
BASIC using an EXECUTE-type instruction.

Microcomputer memory: Electronic storage medium. Microcomputer
memory is queried or set by certain programs in a BASIC Language
System.

Microprocessor: A sophisticated processing unit. Generally a chip of
silicon imprinted with transistors and circuits. One or more micro-
processors is combined with memory, timers, and other components
to make a microcomputer.

Numeric array variable names and values: Names consist of a single
alphabetic letter or a single alphabetic letter with a single digit 0
through 9 and parentheses, which signify a one or two dimensional
array. Numeric array variables have a range of numeric values; the
values are usually stored in memory as floating point numbers. Nu-
meric array variables participate in arithmetic operations. Examples
of numeric array variable names are: A(), A0 (), . . . Z8(), Z9().

Numeric scalar variable names and values: Names consist of a single
alphabetic letter or a single alphabetic letter with a single digit 0
through 9. Numeric scalar variable values are often stored in memory
as floating point numbers. Numeric scalar variables participate in
arithmetic operations. Examples of numeric scalar variable names
are: A, A0, Al, ... Z8, Z9.

Numeric variable: Refers to numeric scalar variable names and/or nu-
meric array variable names. See Numeric Scalar Variable Names
and Values and Numeric Array Variable Names and Values for more
information.

Object code: A code in machine language or a high level language that
has been translated by the compiler from the source code and can
be loaded into memory and executed.

202 ANNOTATED GLOSSARY OF TECHNICAL TERMS

Offset: A pointer which takes on consecutive integer values.
Operands: Data and variables that are operated on.

Operating System: Schedules program execution, performs input/output
for programs, assists with file oriented commands, and can be used
to invoke compilers, linkage editors, loaders, and utilities. It exe-
cutes a language called Job Control Language (JCL).

Operators: Synonymous with verbs. Symbols which indicate that action
is to be performed. Examples of operators are; +, —, */, =, and
>.

Overhead information: Information associated with storage of a variable
in microcomputer memory. Provides knowledge of the variable type,
variable length, array dimension, and location to Language System
verbs.

Overlay: Program text which is read into the program text region of
memory by an executing BASIC program.

Parity bit redundancy measure: Some microcomputer memory boards
allow 9 bits instead of 8 to store each byte. The ninth bit is used as
a parity bit to tell whether the 8-bit byte contains an even or odd
number of bits. Some memory errors can be detected through the
use of the parity bit.

Partition: In a Timesharing System, one of the several regions of mi-
crocomputer memory that can contain a BASIC program. Each par-
tition appears to be a Language System and is considered a complete
storage area.

Pointer: An index number which specifies a particular piece of infor-
mation is located in the microcomputer memory.

Pop: Removal of an element from a stack.

Program resolution: Occurs when RUN key is pressed. The following
process takes place: All non-common variables are removed from
the variable table. Lexical and syntax analysis are redone. Line
numbers are checked for validity. The variable table is constructed
and initialized. If no errors are found during program resolution, the
program is marked executable and program execution begins.

ANNOTATED GLOSSARY OF TECHNICAL TERMS 203

Push: Placement of a new element on a stack.

Queue: A list where information placed first in a queue is the information
first removed from the queue. A queue is also referred to as First
in - First out (FIFO).

Random-access memory (RAM): Computer memory which can be both
read from and written into.

Read: To retrieve or fetch information from computer memory.
Read-only memory (ROM): Computer memory which can only be read.

Reentrant BASIC code: Language System code that can be simultane-
ously shared by other BASIC programs which reside in partitions
of a Timesharing System.

Reverse Polish: Program notation in which an operator is written after
its operands. Operators are executed immediately after they are
encountered. Programs written in Reverse Polish are executed much
faster than those that are not.

Resolution Phase: See Program Resolution.

Round-Robin: Programs in each memory partition are allowed to suc-
cessively execute for a period of time.

Source cede: Computer code written by applications programmers which
may require translation into another computer language before it is
run on a computer.

Stack: An array or contiguous list where information last placed on the
stack is the first removed. Stacks are said to be Last in - First out
(LIFO) information storage configurations. Compare Queue.

Stack frames: Groups of information placed on a stack as opposed to
single pieces of information placed on a stack.

Stack subframe: Complete verb and value stack frames must be con-
structed before a verb processing code block can be invoked to
execute the verb. Stack subframes are completed data plus header
information (LENGTH, TYPE, LOCATION, . . .) which has been
placed on a value stack.

204 ANNOTATED GLOSSARY OF TECHNICAL TERMS

Stack-oriented: Description of computers or languages which perform
most of their operations on stacks. A stack-oriented computer or
language can be compared to a list-oriented computer or language.

Statements: Resemble commands but must be preceded by a numeric
label. A statement is stored in the program text region of memory.

Store: To write information into computer memory.

String variable: Refers to an alphanumeric scalar character string vari-
able and/or an alphanumeric character string array variable. See
Alphanumeric Scalar Character String Variable Names and Values
and Alphanumeric Character String Array Variable Names and Val-
ues.

Syntax analyzer: Examines data types, verbs, and delimiters to make
sure they appear in an order consistent with the BASIC Language
definition.

Systems disk: Disk which contains a Language System.

Systems library: A library of computer programs used by an Operating
System and its associated compilers, linkage editors, and loaders.

Systems verbs: Short blocks of computer code that are written as sub-
routines in microcode or machine language and that reside in the
Language System code area in memory. These verbs are not usually
directly accessible by a BASIC user program. Some of these verbs
create value stack frames for BASIC verbs to process. Others aid
the syntax analyzer in analyzing the work buffer text.

Systems tables: Located in microcomputer memory. Size is fixed. Con-
tain information required to aid in the execution of a BASIC pro-
gram.

Table driven: Description of software system in which complete infor-
mation on the state of the system is contained in tables.

Text atom: Compressed representation of an ASCII verb name.
Timesharing: A central processing unit is shared by several different

firms or individuals, each of whom may be unaware of the other
users.

ANNOTATED GLOSSARY OF TECHNICAL TERMS 205

Tokens: Symbols representing verbs, variables, constants, and literals.
Value stack: Stack which contains data, not verbs.

Variable: A structure which can assume any appropriate value. Can
include numeric scalar variable, alphanumeric scalar character string
variable, numeric array variable, or an alphanumeric character string
array variable.

Verb stack: Stack which contains verbs, not data. Compare with Value
Stack.

Write: To store information.

Work buffer: Contains the input characters of statements, commands,
or data and is located between the end of the program text region
and the end of the variable table. BASIC program input/output is
frequently done via the work buffer.

INDEX

Address, 2-3, 12-14, 20-23, 30-31, 93

Alplhanumeric character string array
variables, 15-18, 21-29, 48, v6-
72, 95, 137, 154

Alphanumeric scalar character string
variables, 15-17, 19-21, 2§, 28-
29, 48, 95, 137, 154

Applications programmer, 97-98, 192

Applications systems code, 188

Array default values, 24-25

Array mapping function, 17-19

ASCII characters, 35-37, 46-47, 96-101

Assembler, 184

Assembly language, 184

Auxiliary tables, 81-82, 87-88

BASIC Language System, 1-2, 13,
111, 151, 153, 188, 190-191. See
also Language System

BASIC line editor, 154-156, 185-189

BASIC programs, 5, 7, 94-95, 97-98,
139, 147, 189

BASICs, 190, 192

Binary coded decimal (BCD), 37, 39-
40, 96

Bookkeeping area, 134-135, 137

Bootstrap loader, 179-182, 186-187,
189, 191

Bootstrap saver, 186-187, 189

Buffer area, 35, 40, 42-43, 45-47, 51,
62, 96. See also Work buffer

Calculator, 3
Carriage return (CR), 2, 5, 37, 60, 61

Cathode ray tube (CRT), 2, 186, 189.
See also Console output device

Character string, 2, 40, 43-44, 97, 99,
124-137, 154, 156

CLEAR, 33

CLEARN, 33

CLEARP, 33

CLEARY, 33

Colon, 89, 92

COM, 31, 34, 164

COMCLEAR, 31, 34

Command buffer, 94-97, 160-101, 137,
186-188

Commands, 1-5, 7-11, 13-14, 24, 37,
40, 51, 57, 60-62, 94-96, 137

Common variables, 30-31, 33-34, 95

Compiled BASIC, 147-151. See also
Compiler

Compiler, 139-140, 142, 144-148, 150-
151, 183-184. See also Compiled
BASIC

Console input device, 9, 35, 40, 80,
82, 93, 96, 181, 186, 189

Console output device, 40, 91, 94, 96,
178, 180-181, 186, 189. See also
Cathode ray tube (CRT)

Control Data, 183

Create, 52, 55-56, 60-61, 64-66, 68-70,
72, 76-77

DATA pointer table, 134
Data structures, 15-19, 48, See also
Alphanumeric scalar character

207

208 INDEX

string, Alphanumeric character
string array, Numeric scalar,
and Numeric array variables

Debugging, 3, 12, 87

Delimiters, 5, 38, 48, 60, 69, 72

Digital Equipment Corporation
(DEQ), 183

DIM, 16, 164

Disk drives, 186, 189

Entry phase, 82, 93, 95, 137, 157. See
also BASIC Language System,
Language System, and
Language System states

Errors, 40, 41, 48, 59

EXECUTE, 153-155

Execution, 82. See also Interpreted
execution, Interpreter,
Operating Systems, Reverse
Polish, and Program execution

Expectation-Nonexpectation
Principle, 59-60

FORTH, 4-5, 144

FOR-TO-STEP, 62-66

FOR-TO-STEP/NEXT, 118-122, 137

Global partition, 163-174. See also
Timesharing Language Systems

Global variables, 163-165, 173-174.
See also Timesharing Language
Systems

GOSUB'/DEFFN’, 135-136

GOSUB/RETURN, 114-118, 122, 137

GOTO, 83, 118, 122

GOTO-CONTINUE, 11-12

HALT/STEP, 83, 87

*‘Hog'’, 173

IF, 71-77

Immediate mode commands, 2. See
also Commands

Initial value, 2-3, 9-10, 14, 16, 19, 86

INKEYS, 154-155

INPUT, 154-155

Interpreted execution, 93-94, 97-137.
See also Interpreter

Interpreter, 94, 98, 137, 139, 177, 182.
See also Interpreted execution

Interspersion, commands and
statements, 7-11

Job Control Language (JCL), 148,
150, 190

Keyboard, 2, 9, 40, 186, 189. See also
Console input device

Language commands, -2, See also
Commands

Language statements, 1, 4. See also
Statements

Language System, 1-13, 24, 27, 35,
37-38, 45, 93-95, 97-100, 103,
110-111, 134, 137, 147-148, 150-
151, 153-155, 175-191. See also
BASIC Language System

Language System code, 175-182, 186-
189

Language System initialization, 3, 23,
93, 137, 179

Language System states, 93, 137, 186

Language System text editor, 186, 188

Lexical analysis, 35, 39-41, 61-64, 81,
88. See also Lexical analyzer

Lexical analyzer, 46-47, 62, 64, 67-74,
76-79, 86. See also Lexical
analysis

LINEINPUT, 154-155

Line numbers, 4-5, 37-39, 46, 71, 74,
76, 80-82, 87-88, 92, 115, 122,
133, 177. See also Statement
labels

Linkage editor, 147, 183-184. See also
Operating System

Linked list, 190

LIST, 89, 92

LISTD, 89, 92

LOAD, 186-187

Loader, 147, 183-184. See also
Operating System

Machine language, 153-154, 177, 182,
184, 186, 190, 192

MATREDIM, 27-29

Microcomputer central processing
unit, 181

Microcode, 153-154, 177, 182, 186, 190

Microcomputer memory, 1-13, 20, 23,

31, 35, 93, 98, 134, 175-176, 184,
187, 189, 191

Microsoft Corporation, 191

Monitor, 186. See also Language
System

Non-common variables, 30-31, 33-34,
80, 85-86

Number, 2, 50, 62-67, 154-155. See
also Numeric variables and
numeric data

Numeric array variables, 15-19, 21,
24-25, 27-29, 48, 66-67, 95, 137,
154

Numeric data, 95, 137. See also
Number

Numeric scalar variables, 15-20, 25,
28-29, 48, 50, 95, 137, 154

Numeric variable, 40, 95, 137, 154.
See also Numeric scalar and
numeric array variables

Object code, 147-148, 150. See also
Compiler

Offset pointer, 17-19

Operating System, 147-151, 154, 180,
183-185, 188, 190-191

Operator stack, 140-142, 144, 151. See
also Compiler, Reverse Polish,
and Verb stack

Operators, 38, 40. See also Verbs

Output queue, 140-144, 151, See also
Compiler and Reverse Polish

Overlay, 30-31, 34, 86, 89

Parentheses, 54-55, 60-61

Partition, 158-163, 174. See also
Timesharing Language Systems

PASCAL, 184

Peripherals, 186, 189

Pointers, 12-14, 20-21, 23, 28, 51-61,
82, 86, 96-97, 99-109, 114-115,
123, 132, 134, 136, 160, 170,
172, 177, 179

Power up, 179-182

PRINT, 96-97

Printer, 2, 186-187

Program debugging, 3, 12

Program execution, 6-12. 14. See also

INDEX 209

Interpreted execution,
Interpreter, Operating System,
and Reverse Polish
Program resolution, 4-6, 14, 33-34, 47,
80-88, 95. See also Resolution
Program text area, 1, 4-14, 31, 33, 81-
82, 88, 94-95, 137, 177, 187-188
Program text coordinates, 89-92

Random access memory (RAM), 93,
175, 179, 182

Read-only memory (ROM), 93, 175,
179, 182

READ/RESTORE/DATA, 134-135,
138

RECALL key, 46-47

Redimension, 27-29

Redundancy measure, 178, 180

Reentrant, 170

Resolution, 5-6, 14, 93, 109, 137. See
also Program resolution

RETURNCLEAR, 118, 138

Reverse Polish, 139-144, 150

Reverse Polish execution, 143, 150

RUN, 6-7, 9, 11, 14, 80, 83, 85, 91-93,
109

SAVE, 186-187

Self test, 93, 137, 178-180. See also
Language System states

Software code blocks, 41-45, 78

Software rules, 41, 78-79, 152

Source BASIC program, 140, 148, 150

Stack, 52-55, 61, 65

Stack frames, 48-54, 56-57. 60, 62, 66-
67, 72, 74-77, 98-101, 115-119,
132. See also Interpreted
execution and syntax analysis

Stack oriented, 190

Statement label, 4-5. See also Line
number

Statements, 1, 4-8, 13-14, 37, 40, 71,
80, 89, 92, 137

Storage, 17-21, 25, 27-29, 43

String variable, 40. See also
Alphanumeric scalar character
string and Alphanumeric
character string array variables

210 INDEX

Syntax analysis, 35, 40-41, 46-48, 52-
53, 60-61, 81, 88, 120. See also
Syntax analyzer

Syntax analyzer, 47-54, 59, 62-63, 65-
79, 86, 94, 177, 182. See also
Syntax analysis

Syntax analyzer’s value stack, 48-53,
56-60, 62-77, 94-95

Syntax analyzer’s verb stack, 48-53,
56-60, 62-77, 94-95

Syntax array stack frames, 66-71

Systems disk 179-182

Systems library, 147. See also
Operating System

Systems tables, 1, 12-14, 31, 42-43,
45, 48, 96, 186, 187, 188. See
also BASIC Language System
and Language System

Systems verbs, 177, 182, 187

Table driven, 41, 190

Terminal, 158-160, 174

Text atom, 37-38, 41, 62, 65, 193. See
also Text atomization

Text atomization, 35, 38-41, 45-47, 62-
64, 96. See aiso Text atom

Timesharing Language Systems, 155-
174, 185

Tokens, 62, 72, 94

UCSD p-System, 183

Unary minus, 50, 52-54

Value stack, 94-95, 97-109, 111-122,
125, 127-129, 137. See also

Interpreter and interpreted
execution

Variable data area length, 25, 27, 29

Variable overhead, 25, 27, 29
Variable table, 1-14, 20-32, 34, 47, 80,
86, 94-95, 97, 177. See also

Syntax analysis, Syntax
analyzer, Interpreted execution,
and Interpreter

Variable type attributes, 16-17, 19-21,
49, 98-99, 103, 137. See also
Variable table, Syntax
analyzer’s value stack, Value
stack, and Interpreted execution

Variables, 1-16, 20-23, 25, 27-31, 33-
34, 40, 62-63, 86. See also
Alphanumeric scalar character
string variables, Alphanumeric
character string array variables,
Numeric scalar variables,
Numeric array variables, Syntax
analyzer's value stack, and
Value stack

Verb atomization, 37-38, 42-47, 62-65,
71, 73-74, 76-79, 193

Verb atomizer software, 45-46

Verb failures, 152-153, 155

Verb stack, 94-95, 99-122, 125, 127-
128. See also Interpreter and
interpreted execution

Verbs, 39, 41, 48-52, 55-57, 60-62, 67,
72-73, 75, 97, 110-111, 114-119,
122, 131-132, 152, 154, 159, 163-
164, 173. See also Operators

Verbs, interactive input, 154-155

Verbs, user defined, 152-155, 158

vonNeumann machine, 176

Wang Laboratories, 163, 191, 193

Work buffer, 95-97, 137, 177, 187

IMPLEMENTING BASICs:
HOW BASICs WORK

Payne and Payne

Anyone with a little knowledge of BASIC can
benefit from reading IMPLEMENTING BASICs:
HOW BASICs WORK. This book enables you
to: '

e write better programs and
e write more advanced programs
with less effort.

Here's your comprehansive guide which clearly explains the
structure, functions, afd capabilities of BASIC language. By
using the stack-oriegited method, you can develop table
driven software and garn the specific techniques used in
microcomputer language design and implementations that
you need.

TABLE OF CONTENTS

Language Commands, Statements, their Variables. Microcomputer
Data Structures. Variable Table Structure. Common Variables. Lexical
Analysis, Text Atomization, and Syntax Analysis. Program Resolution. -
Program Text Coordinates. Interpreted Program Execution. Compiled
BASICs. Verb Failures, User-Defined Verbs, and BASIC Line Editor.
Timesharing Language Systems. Language System Code and Its Sys-
tems Verbs. How To Write a Language System. Conclusions and
Reference.

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company 0-83%59-3044-0
Reston, Virginia 22090 e

Cover Design by Lee Forman

¥

	Cover
	Table of Contents
	Preface
	Acknowledgements
	1 - Language Commands, Statements, and Their Variables
	2 - Microcomputer Data Structures
	3 - Variable Table Structure
	4 - Common Variables
	5 - Lexical Analysis, Text Atomization, and Syntax Analysis
	6 - Program Resolution
	7 - Program Text Coordinates
	8 - Interpreted Program Execution
	9 - Compiled BASICs
	10 - Verb Failures, User-Defined Verbs, and BASIC Line Editor
	11 - Timesharing Language Systems
	12 - Language System Code and its System Verbs
	13 - How to Write a Language System
	14 - Conclusions and References
	Appendix
	Annotated Glossary of Technical Terms
	Index

