- TEXAS INSTRUMENTS
Improving Man’s Effectiveness Through Electronics
=)
= 1)
- - Model 990 Computer
Link Editor Reference Manual
~
MANUAL NO. 948617-9701
ORIGINAL ISSUE 15 AUGUST 1877
REVISED 15 DECEMBER 1977
INCLUDES,
CHANGE 1 15 MARCH 1978
s
g =

Digitai Systems Division

&
=

(E) Texas Instruments Incorporated 1977, 1978

A1l Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein,
are the exclusive property of Texas Instruments Incorporated.

No copies of the information or drawings shall be made without the prior consent
of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page. 3

Model 990 Computer Link Editor Reference Manual (949617-9701)

@rizinalllSSUCHEERERE SR 15 August 1977
Revised - am skl cp il o na e 15 December 1977 (ECN 419810)

Ghangch RSt SR P el 15 March 1978 (ECN 419844)

Total number of pages in this publication is 148 consisting of the following:

s CIENEE . o e e e
EoveRm s 1 SRl Al e ¢ | @@ s I
Effective Pages 1 Al s AR s e e 0 Appendix D Div. 0
T o e 1 Al e Ve e e e St l DIl D e ()
VAR e e e 0 SIS S ARG e et e 0 Appendix E Div. 1
VEVIT G e R e 1 A Esrd-Rd s s | Exli: B2 iss it |
(] R e s 0 el B A e aa 0 Appendix F Div. 1
Delie e ¢ Gl R R e 0 BslS B2 e e vt |
ke | T R S e R) Alphabetical Index Div .0
bl e e el RS e e B 1 Index | - Index 6 0
DER R | Tile T s it G 0 User’s Response |
Sl T e e 1 Appendix A Div. 0 Business Reply 0
SNE e B e 0 Az B A= 0 Cover Blank 0
R SR R SR 1 Appendix B Div. 0 Eovers i — e 0
SLAb REE e e 0 BElRREG = e 0

Appendix CDiv.0

o~

o
@ 949617-9701

PREFACE
The Link Editor provides the user of a Texas Instruments DX 10 or TX990 Operating System with
the means to combine separately generated object modules to form a single linked output.

This manual describes the use of the Link Editor and consists of seven sections and six appendices,
as follows:

I. Introduction — Provides an introduction to the Link Editor.

II. Structure and Function — Describes the structure of Link Edit processing and describes
overlays and libraries.

III. Link Editor Commands — Provides descriptions of all the Link Editor Commands and also
provides examples of command uses.

IV. Link Editor Examples — Provides examples of Link Editor runs of differing structure.
V. Link Eciitor Use on DX10 — Describes the operation of the Link Editor on a DX10 system.
VI. Link Editor Use on TXDS — Describes the use of the Link Editor or a TXDS system.
VII. Error Reporting — Describes the errors reported by the Link Editor.
The six 'appendixes are as follows:

A—Overlay Manager

B-—TXDS Linking Loader

C—Command Syntax

D—TXDS Overlay s_li.oader Routine

E—Link Editor Condition Codes Under DX10

F—Object Record Format and Tags

The following documents contain information relative to the Link Editor:

Title Part Number
Model 990 Computer DX IO Operating System 946250-9701
Volumes | through 6 94622:)-9706
‘Model 990 Computer TX990 Operating System 946259-9701
Programmer’s Guide (Release 2)
Model 990 Comuter Terminal Executive 946258-9701

Development System (TXDS) Programmer’s Guide

Change 1 i Digital Systems Division

I

@ 949617-9701
Title Part Number

Model 990 Computer TMS 9900 Microprocessor 9434419701
Assembly Language Programmer’s Guide

Model 990 Computer DX20 Operating System 946260-9701
FORTRAN Programmer’s Guide

Model 990 Computer DX10 Operating System ‘ 946266-9701
COBOL Programmer’s Guide

Model 990 Computer EX990 Operatmg System 949618-9701
Programmer’s Guide

iv Digital Systems Division

(o)
@ 949617-9701

Paragraph Title Page

TABLE OF CONTENTS

SECTION 1. INTRODUCTION

1.1 Introduction L L. L e e e e e e e e e 1-1
SECTION II. STRUCTURE AND FUNCTION
2.1 Link Editor File Structure e e e e e 2-1
2.2 Proceduresand Tasks 0 e e e e e e e e 2-1
2.3 Overlays o i L e e e e e e e e e e e e 2-2
2.3.1 Structure Considerations e e e e e e e e e e 2-2
232 Automatic Overlay Loading 2-5
233 ' User Loaded Overlays v v v uvununo.. 2-6
A 234 Promotionof Modules 2-7
' 24 Image Format e e e e e e e e e e e e e e e e e e 2-7
2.5 Link Editor Libraries v v v v et e e e e e 2-8
2.5.1 Symbol Resolution with Libraries 2-8
2.5.2 Random Libraries — DX10Only v v v v v v .. 29
2.5.3 Secondary Entry Points and Aliases — DX10Only 2-9
254 Sequential Libraries e e e e e e e e e e 2-10
2.6 Segmentation of Linked Output v vt vv v ... 2-11
Wm SECTION III. LINK EDITOR COMMANDS
3.1 Introduction L L L e e e e e e e e e e 3-1
3.2 Modules and Libraries e e e e e e e 3-1
3.2.1 INCLUDECommand v v v v v o v v e e e e e 3-1
322 - LIBRARY Command —DXI10Only v v v v v ... 32
323 SEARCH Command — DX10Only 32
3.24 NOAUTO Command — DXI10Only v v v v v v v v v .. 33
3.25 FINDCommand v v v v v v, 33
33 Procedure, Task and Overlay Linking 34
™, 3.3.1 PROCEDURE Command « . v v v v e v v ot ee e e 34
3.3.2 TASK Command v v v v v v e et e e e e e 3-5
3.33 PHASECommand v v v v uuuuowee.. 3-6
3.34 ALLOCATE Command v v v v v v e e e e i e s 3-8;
335 LOAD Command v v it e 3-25
3.3.6 NOLOAD Command v v v v e e e i i 3-27
3.3.7 SHARE Command v v v e i e, 3-27
° 3.3.8 Partial Link Edits 327
3.39 DUMMY Command v v v v i i . 3-33
3.3.10 ADJUST Command v v v v s e i e 3-35
. 34 Symbol Processing e e . 2337
34.1 SYMT Command — DX10Only v v v v v ... 3-38
34.2 NOSYMT Command v v v v e i i i i . 3-38
Change 1

v Digital Systems Divisiori

[e)
@ 949617-9701

TABLE OF CONTENTS
Paragraph Title Page
35 Execution and Listing Options v 0 0 e e e e e 3-38
35.1 FORMAT Command- v v v v v v v v o v e e e a e 3-38
3.5.2 MAP Command 0.0 o e e e e e e 340
353 NOMAP Command v v v v v v v v e e e e e e e e e 341
35.4 PAGE/NOPAGE Commands ¢ ¢« v v o v v o o v v o o 341
3.5.5 ERROR/NOERROR Commands ¢« v v v ¢« v v v v o 0 o v o 341
36 Absolute Memory Partitioning 0 . 0 0 0 e e e e e e e e 341
3.6.1 PROGRAM Command ¢ v v v v v v o o o o o v v 0 o s 342 '
3.6.2 DATACommand v v v v v v o 0 o e e e e e e e e e e 342
3.63 COMMON Command v v v v v v v v et e o e e e e e e 343
SECTION IV. LINK EDITOR EXAMPLES
b
4.1 General e e e e e e e e e e e e 4-1
4.2 DXI0LinkMap i o e e e e e e e e e e e e e 4-1
43 Link Editor Examples —DX10, 44
43.1 Single Task, No Procedure Example 44
4.3.2 Task with Two Attached Procedures Example 4-5
4.3.3 Two Procedure Example 4-8
434 Overlay Link Edit Example 4-8
44 TXDS Examples e e 4-14
44.1 Single Task, No Procedure Example ‘. 4-14
442 Single Task with Overlays Example 4-14
SECTION V. LINK EDITOR USE ON DX10
5.1 Supportéd Features 5-1
5.2 Link Editor Operation with DX10 v . v v 5-1
SECTION VI. LINK EDITOR USE ON TXDS
6.1 Supported Features N N |
6.2 Operation L e e e e e e e e e e e 6-1
6.3 Pathname Defaults 6-2
6.4 Examples L e e e e e e e e e e 6-3
I SECTION VII. ERROR REPORTING
Change 1

vi Digital Systems Division

o]
44—@3 949617-9701

APPENDICES
Appendix Title Page
A Overlay Manager (Image FormatOnly) A-1
B TXDS Linking Loader v v v i i e e e e B-1
C Command Syntaxt e e e e e e e e e e e e e e e e e C-1
D Overlay Loader Routine (TXDS) D-1
E Link Editor Condition Codes Under DX10 E-1
F Object Record Formatand Tags F-1
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Link Editor Files, 2-1
2-2 Overlay Structure Example 2-3
2-3 Random Library Structure 2-8
231 Sample Overlay Program Structure 3-8
3-2 Symbol Table for Linked Object Module o . o o v v v . .. 323
4-1 Link Map Example 4-2
4-2 Single Task, No Procedure Example 4-5
4-3 Task with Two Attached Procedures 4-6
44 Two Procedure Example 49
4-5 Overlayed Program Example 4-11
4-6 TXDS Example 4-15
4-7 TXDS Examples with Overlays 4-18
LIST OF TABLES
Table Title Page
6-1 -TXDS Pathname Defaults 6-3
7-1 Link Editor Errors — List File 7-1
7-2 Link Editor Errors — Terminal 7-4
7-3 ErrorCodes 7-6
9
Change 1 vii/viii Digital Systems Division

o]
{_@@ 949617-9701

f

SECTION 1
INTRODUCTION

1.1 INTRODUCTION

The Link Editor provides the user of the Texas Instruments TXDS or DX 10 operating systems with
the means to combine separately generated object modules to form a single linked output. The Link
Editor accepts modules that have been generated by the assembler, the COBOL compiler, the
FORTRAN compiler, or that have been produced by a previous partial link.

The major function of the Link Editor is the resolution of external definitions and references in each
of the individual unlinked or partially linked object modules. The Link Editor also provides for the
design and use of overlays, which allow the user to design memory efficient programs. The references
) to these overlays are resolved by the Link Editor.
- The information in this document pertains to both TXDS and DX 10 systems. However, some features

of the Link Editor are not available on both systems. These differences are noted within the command
descriptions, and are also detailed in Sections 5 and 6.

The following conventions are used throughout this document to define command syntax:
® Angle brackets (< >) specify a parameter that is entered by the user
W\ ® Brackets ([]) specify an optional entry ¢
® Braces ({ }) indicate that a choice of the specified options must be made
¢ Underline (—) defines a default value
e <acnm> indicates a pathname or access name.
Some of the commands require the entry of a DX10 pathname. For disc files, the pathname is a
. concatenation of the volume name (default is the system disc), the directory levels (excluding the
: volume catalog) leading to the file, and the file name itself. Components of the pathname are
separated by periods. Examples of the pathname are as follows:

VOLONE.AGENCY.RECORDS

MYDISC.MYDIRECT.MYDIRCTA.MYFILE

VOLTWO.JOE
\ DSO01.USERA.PAYROLL \
.USERA.PAYROLL Same as preceding. Default is system disc.

1-1 Digital Systems Division

[e]
@ 949617-9701

Device pathnames in DX 10 consist of the device abbreviation concatenated with the device number.
Examples are:

LPO1 Line printer one

STO02 Station (VDT or hard copy) two
DS02 Disc unit two_

CSol Cassette unit one

In addition to the pathname, DX10 files can be specified by use of a synonym. Synonyms are values
defined to be equal to a pathname by use of the DX10 System Command Interpreter command
Assign Synonym, which is defined in the DX10 Operating System Production Operation Reference
Manual, manual number 946250-9702. Synonyms are local to the station from which they are
defined.
File pathnames in TXDS are specified in the following manner:
<dev>:<file>/<ext>
Where <dev>is the four character device name, such as DSC, DSC2, etc., <file> is the seven
character name of the desired file; and <ext> is a three character file qualifier that may be used to
describe the contents of a file. The defaults are defined in Section VI. Examples include:
DSC2:AGENCY/ONE
DSC:JOE
Device pathnames in TXDS are specified as in the foilowing:

LP Line printer

LOG Logging device

12 Digital Systems Division

o
@ 949617-9701

SECTION II

STRUCTURE AND FUNCTION

2.1 LINK EDITOR FILE STRUCTURE

Figure 2-1 illustrates the relationships between the files accessed by the Link Editor and the output
of the Link Editor. The Control file, which may be on disc, diskette, tape, cards, or cassette, contains
the command stream that controls the linking process. In addition, the Control file may contain
some or all of the object modules that are to be linked. Object modules not included in the Control
file may be on disc, tape, cassette, cards, or diskette. Libraries, such as the FORTRAN runtime
library, contain object modules to be included in the Link Edit. The output of the Link Editor is a
linked object module that is written to a data file or a memory image that is wirtten to a program
file. There are three output formats, as described in the FORMAT command in Section III.

- 2.2 PROCEDURES AND TASKS

Link Editor commands allow the user to link separately installed procedure and task segments.

 Procedures can be shared among several tasks by linking the task sections and the procedures using
the Link Editor.

) PRIMARY INPUT
CONTROL.

W\) COMMANDS

AND OBJECT
MODULES

AUTOMATIC / inceD
) ' K R OBJECT
’ SPECIFIED LOAD MAP
BY "INCLUDE” LISTING
DIRECTIVES
(A)132909

Figure 2-1. Link Editor Files

2-1 Digital Systems Division

o
%@ 949617-9701

Tasks are identified to the Link Editor by the TASK command, and separately installed procedures
are identified by the PROCEDURE command. Descriptions of the commands are found in Section
II1, and examples of the use of these commands may be found in Section IV.

A task is defined as being either a complete program, containing both variable data and executable
code, or as the variable data portion of a program. Tasks are not shareable. Procedures contain the
program segment, PSEG, which may be all of a program, but is usually only the executable code and
read only data. A procedure may be shared if it is reentrant, linked by use of the PROCEDURE
command, and separately installed in the system. Refer to the DX10 Operating System Application
Programmer’s Guide, manual number 946250-9703 or the Model 990 Computer TX990 Operating
System Programmer’s Guide (Release 2), manual number 946259-9701 for complete information on
the structures of tasks and procedures.

2.3 OVERLAYS

When memory space is at a premium, the user may find it advantageous to use overlays in the
programs. Programs that do not use overlays are loaded in their entirety into the system and remain
in memory until execution completes. Programs that use overlays conserve memory space since each
overlay is resident in memory only when it is called. The total memory space required by the
program is that required to hold the root portion of the program and the longest overlay path.

In the subsequent discussion of overlays, the following definitions apply:

e Phase - The smallest functional unit that can be loaded as a logical entity during execution.
The linked object output contains one object module for each phase.

e Root Phase - The main or memory resident phase (level 0).

e Level - The point at which a new phase begins, identified by a level number in the overlay
structure. Phases having the same level number and parent phase are loaded at the same
location and are mutually exclusive (i.e., they cannot be memory resident at the same time).

e Path - A series of phases starting with the root phase and including a successive, higher
numbered phase at each level.

2.3.1 STRUCTURE CONSIDERATIONS. The structure of an overlayed program is dependent
upon the relationships between the phases in the program. Phases that do not have to be in memory
at the same time can overlay each other. These phases are considered to be independent in that they
do not reference each other either directly or indirectly. Independent phases can be assigned the
same load address and are loaded only when referenced.

When a specific phase is called, all phases in its path must be in memory, i.e., all phases between the
called phase and the root phase must be in memory. A reference from one phase to another phase
that is further from the root phase (in the same path) is a downward reference. A reference to a
phase closer to the root phase is an upward reference. When automatic overlay loading is selected, a
downward reference causes an overlay to be read into memory, if it is not currently resident, but an
upward reference does not cause an overlay to be loaded. If automatic overlay loading is not used.
the user must ensure that the overlay is in memory before referencing it.

Under DX10, the Load Overlay Supervisor call is used: under TXDS an overlay loader subroutine
(see Appendix D) is available.

Change 1 22 Digital Systems Division

949617-9701

ﬁm Figure 2-2 is an example of an overlayed program structure. The program consists of five phases at
- three levels, linked from nine object modules (eight unique modules, one used in two phases). The
root phase. ROOTPH, begins at level 0. There are two phases, LVLIA and LVLIB, at level I. These
phases are mutually exclusive. Level 2 also has two phases, LVL2A and LVL2B, which are mutually
exclusive. Three paths exist in this structure with the first path containing ROOTPH, LVLIA, and
LVL2A; the second path contains ROOTPH. LVLIA, and LVL2B; and the third path contains
ROOTPH and LVLIB.

0000
A (2CE)
ROOTPH
B (442)
0710
LVLIA c (FO)
0800
I N D (66) G (906)
“ LVL2A LvLase F(326) LvL1B
E (108) H (4E)
096E
E (108)
| 116C I
A NOTE® SYMBOLS TO THE LEFT OF THE VERTICAL L.INES OF THE TREE

(A)1.32910A

ARE PHASE NAMES: SYMBOLS TO THE RIGHT OF THE VERTICAL
LINEES ARE MODULE NAMES. VALUES IN PARENTHESES ARE
MODULE LENGTHS IN BYTES (HEXADECIMAL). HEXADECIMAL
ADDRESSES ARE SHOWN AT THE TOP OF THE TREE AND AT THE
BOTTOM OF EACH VERTICAL LINE,

Figure 2-2. Overlay Structure Example

2-3 Digital Systems Division

o
@ 949617-9701

Assuming that each object module is contained in a directory with the pathname DS01.OBJECT,
then the following is the control file to define the structure in figure 2-2.

LIBRARY DSO01.OBJECT
PHASE O.ROOTPH
INCLUDE (A),(B)
PHASE I[,LVLIA
INCLUDE (C)
PHASE 2,LVL2A
INCLUDE (D)J(E)
PHASE 2,LVL2B
INCLUDE (F)
PHASE I,LVLIB
INCLUDE (G).(H).,(E)
END

-

Note that the order of definition is top-to-bottom and left-to-right within the structure as drawn in
figure 2-2.

Figure 2-2 also serves as an example for determining the memory requirements of an overlay
program. The length of each path is as follows:

ROOTPH+LVL1A+LVL2A=096E16 bytes

ROOTPH+LVLIA+LVL2B=0B26:s bytes

ROOTPH+LVLIB =116Cjs bytes
Since the Link Editor determines the memory requirements by adding the requirements for the root
phase and the longest overlay path, this program would require 116Ci, bytes of memory. If this

program did not use overlays, it would require 1SE8,, bytes of memory. Therefore, use of an overlay
structure saves 047C,s bytes of memory.

24 Digital Systems Division

o
e‘_@@ 949617-9701

(@"“ Careful planning of overlays is essential to achieving the maximum benefit from an overlay
structure. The following considerations apply to overlay structure planning:

® Amount of memory available. The Link Editor allocates space for the longest path including
phase 0.

. T.he.ffequency of use of each phase. Callingan overlay requires time. and execution time can be
§1gmf1cantly increased if an overlay is called frequently. Code that is frequently used should be
included in the main program (task or procedure), rather than in an overlay.

e The interaction between phases. A phase that transfers control to or accesses another phase
must be in the same path as that phase.

® Transfers of control within a path or between paths. Flow of control does not necessarily
follow a tree structure (as shown in figure 2-2).

2.3.2 AUTOMATIC OVERLAY LOADING. When the Link Editor is used to produce overlayed
™. programs, the user can specify (by use of the LOAD command) that the Link Editor include an
' Automatic Overlay Manager in the linked output. The overlay manager performs automatic overlay

loading during execution of the overlayed program. The LOAD command is only applicable when
the IMAGE format is selected.

When the automatic overlay loading feature is used, the program must call overlays by using the
Branch and Load Workspace Pointer (BLWP) instruction with the operand specifying the symbolic
name of a subroutine within the overlay that is to be accessed. These references can be only one level
down from the current level; i.e., you cannot go from level I to level 3. Note that register or indexed
(m addressing cannot be used. For example, the call must be written:

BLWP @name

where ‘name’ is the symbol associated with the transfer vector (Workspace Pointer/Program
Counter) to the subroutine. Calls of the form:

BLWP *5 Register Notation-INVALID
or:
BLWP @NAME(2) Indexed Addressing-INVALID
are NOT VALID when using the overlay manager. The overlay manager replaces the BLWP

command witha BLWP into the overlay manager and indirect addressing or indexed addressing will
not work correctly.

2.5 Digital Systems Division

o :
@ 949617-9701

An example of correct usage in assembly language is: -~
IDT ‘SUBY’
REF SUBZ
BLWP @SUBZ
END

The symbol referenced (REFed), SUBZ, must be defined (DEFed) in the appropriate module as in
the following:

IDT ‘SUBX’
DEF SUBZ
SUBZ DATA. WPZENTRYZ

END
Under DX10, the overlay manager program is included in the system subroutine library, pathname
DSO1.S$SSYSLIB. When the overlay manager is to be included in the linked output, the user must
provide a LIBRARY command in the Link Editor control file to define this subroutine library.
Under TXDS, no LIBRARY command is used. The overlay manager resides on the diskette

containing the Link Editor. The structure of the overlay manager is discussed in detail in Appendix
A.

2.3.3 USER LOADED OVERLAYS. If the user does not use the automatic overlay loading
capability, overlays must be loaded by issuing a Load Overlay Supervisor call (DX10 only), or by
calling the overlay loader subroutine (TXDS). For a complete description of the Load Overlay
supervisor call, refer to the DXI0 Operating System Application Programmer’s Guide, manual
number 946250-9703. The overlay loader subroutine for TXDS is described in Appendix D.

NOTE

Do not use the Automatic Overlay Manager and user loaded overlays
in the same program. Unpredictable results may occur.

26 Digital Systems Division

o]
e@ 949617-9701

(@M 2.3.4 PROMOTION OF MODULES. In an overlayed program, any object modules not

- specifically included (by use of the INCLUDE command), but which are brought in as a result of a
library search for external reference resolution (by automatic symbol resolution, SEARCH
command, or the FIND command) can be promoted to a higher level (closer to the root) in the
overlay structure. Such a module is promoted when it is referenced in two or more mutually
exclusive phases. The module is always promoted to the lowest level phase (farthest from the root
phase) that is common to the paths of all overlays that reference the module.

For example, assume a structure consisting of a root phase, two phases (A and B) at level one, and
two phases (C and D) at level two under A. The structure is as shown in the following:

[PHAsE 1 A] [PHASE B
——
[PHASE 2 c| [PHaASE 2 D]

L Modules C and D both reference module X. Module X is included by symbol resolution and is
placed in Phase One, module A. The structure is then as follows:

ROOT

PHASE 1 A lPHASE 1 &I

X

[PHASE 2°C] [PHASE2 D]

~ The following structure shows a referenced module, X, that is promoted to the root phase. The]
structure consists of a root phase, two phases (A and B) at level one, two phases (C and D) at level -
two under A, and two phases (E and F) at level three under C. Modules B and F both reference
module X, which is included by symbol resolution and promoted to the lowest common phase,
which is the root phase. The structure is as follows:

ROOT

X
I

! 1
{PHASE 1 A| [PHASE I B (references X)]

[PHase 2 c] [pHase 2 p |
—

| PHASE 3 E| |PHASE 3 F (references X) |

2.4 IMAGE FORMAT .
The IMAGE format, selected by use of the FORMAT command, allows the Link Editor to install
T . linked output memory images directly to a specified DX 10 or TXDS program file ora DX10 image
‘ file. This feature allows the user to bypass the actual installation of tasks, procedures and overlays.
Linked output programs can replace existing programs or they can be added to the file. When the
IMAGE format is selected and the overlays, tasks, and procedures are installed on a program file, the
identifiers (IDs) of these overlays, tasks, and procedures are automatically assigned by the system. The
ID assigned appears on the Load Map for the appropriate procedure, task, or phase. In order to load
an overlay usinga Load Overlay SVC, reference the overlay by name in the calling program, as shown:

REF <ovly name>
(@W'“ DATA <ovly name>

Change 1 2-7 Digital Systems Division

@ 9496179701

The Link Editor resolves the reference and stores the assigned overlay ID as the DATA statement
operand. The ID may then be used in the supervisor call block.

NOTE

If the task name matches the overlay name, the task ID is stored in
the DATA statement.

2.5 LINK EDITOR LIBRARIES’

The Link Editor supports two types of library file structures, random libraries and sequential
libraries. Random libraries are supported only on DX 10 systems and the LIBRARY and SEARCH
commands apply to random libraries only. Sequential libraries are supported on both TXDS and
DXI10 systems, with the FIND command applying to sequential libraries only.

2.5.1 SYMBOL RESOLUTION WITH LIBRARIES. One of the foremost advantages of libraries
is the capability of the Link Editor to perform symbol resolution. Two types of resolution are
available under DX10, automatic resolution at the end of the Link Edit and resolution at a user
defined point in the Link Edit. TXDS only allows resolution at a user defined point in the Link Edit.

Automatic symbol resolution occurs at the end of the Link Edit (when the END command is
detected). Random libraries defined by the LIBRARY command are searched in the same order
they are defined*to resolve any unresolved references (REFs). Any additional unresolved references
created by modules included to satisfy references are also resolved automatically.

When an external reference (REF) is resolved by searching a library, the Link Editor searches for a
file with the same name as that referenced by the module. For example, if a REF is to ‘ABC’, the
Link Editor searches the defined libraries for a file named ‘ABC".

ONLY BOXED FILES
ARE LIBRARY ELEMENTS
I OF THE PARENT LIBRARY

(A)137647
Figure 2-3. Random Library Structure

Change 1 2-8 Digital Systems Division

@ 949617-9701

By using the SEARCH (DX10 only) or FIND (DX10 or TXDS) commands, the user can define the

P point within the Link Edit that symbol resolution is to occur. The SEARCH command applies to
DX10 random libraries only, whereas the FIND command applies to TXDS and DX 10 sequential
libraries. Use of these commands allow the user to resolve previously unresolved references at a
specific point within the Link Edit. The resolution occurs at the point within the link edit that the
SEARCH or FIND command is processed.

2.5.2 RANDOM LIBRARIES - DX10 ONLY. A random library is a set of data files specified in a
directory. Figure 2-3 is an example of the structure of a random library. A random library is
conceptual in that its members are files defined in a directory.

In figure 2-3, A, B, D and Z are directories, with Q, X, Y, M, N, C, E, and F being data files. Each
directory is a node, with the highest level (A in figure 2-3) being the root node. The root node is
referred to in DX10 as the Volume Catalog (VCATALOG), and is assigned a symbolic name when
the disc volume is installed or initialized. The VCATALOG contains pointers for each directory
(node) at the next level and pointers to any files in the level immediately below the VCATALOG. In
figure 2-3, pointers are contained in the VCATALOG for File C and directories B and D.

o~ The next level of directories consists of directories B and D, with B containing the pointers to files Q,
X.and Y, and directory D containing pointers to Files E and F. Directory B also contains a pointer
to directory Z, and directory Z contains pointers to files M and N.

Random libraries are defined to the Link Editor by use of the LIBRARY command, with the
command specifying only the pathname of a directory. For example, the following command is used
to define the library (B) that contains the pointers to files Q, X, and Y:

]

LIBRARY A.B

" The library (Z) that contéins ;yoin.ters to files M and N is defined as follows:
LIBRARY A.B.Z
The library (D) that contains pointers to files E and F is defined as follows:
LIBRARY A.D.
The library (A) that contains the pointers to file C is defined as follows:
LIBRARY A

2.5.3 SECONDARY ENTRY POINTS AND ALIASES - DXi0 ONLY. Modules in a random
library can have more than one entry point. However, these secondary entry points must be defined
to the system as aliases if automatic symbol resolution is being used since they are not contained in
the directory. If the module is specifically included (by use of the INCLUDE command), alias
definition is not required. For example, a module name CALC has two entry points, CALC and
CALC2. The module is located on disc two and is defined in directory MODS, which is defined in
directory PROGS. The Link Editor statement to define CALC as a file in the library uses the library
pathname: DSO2.PROGS.MODS. Note that CALC2 is not defined in the MODS directory.
Therefore, the user must assign CALC?2 as an alias to define it as being equal to the file name CALC.
In DX10, this is accomplished by use of the Add Alias (AA) command. The Add Alias command is
defined in the DX10 Operating System Production Operations Reference Manual, manual number]
946250-9702. The format of the command is as follows:

Change 1 29 Digital Systems Divisior

@ 949617-9701

AA
H ADD ALIAS TO PATHNAME

PATHNAME: <acnm>
ALIAS PATHNAME: <acnm>
where:
<acnm> is the pathname to the file.
Entry boints CALC and CALC2 are equated as follows:
AA
PATHNAME: DSO2.PROGS.MODS.CALC
ALIAS PATHNAME: DSO2.PROGS.MODS.CALC2

This command causes the pathname for CALC2 to be equated to the pathname for CALC. Any
REF to CALC2 can now be resolved, since CALC2 is now in the directory.

2.5.4 SEQUENTIAL LIBRARIES. Sequential libraries are available to users of both the DX10
and TXDS operating systems. A sequential library is a sequential file that contains two or more
i object modules that were generated by a partial Link Edit.

.On both DXI10 and TXDS, the FIND command is used to access a sequential library. For
example, assume that a sequential library in a DX10 system has the access name .MODS.OBJ. The
FIND command would then appear in the control file as follows:

FIND .MODS.OBJ
In TXDS, the FIND command would appear as follows for a sequential library:

FIND DSC:MODS/OBJ
where DSC defines a diskette unit, MODS specifies the file, and OBJ specifies the file extension.

Sequential libraries contain one or more concatenated files which were output by partial link edits.

I The outputs of the partial link edits are concatenated into a sequential file by use of the DX10 CC
(Copy Concatenate) System Command Interpreter command, the AF (Append File) command or
the TXDS Copy Concatenate Utility program.

Since the output of a partial Link Edit can consist of several modules, the user should note that
when that output is contained in a sequential library and is referenced in a subsequent Link Edit, all
modules are included.

Sequential libraries are searched in a different manner from random libraries. When an external
reference (REF) is to be resolved using a sequential library, the Link Editor examines each external
definition (DEF) in each module of the library in an attempt to find a corresponding value.

Change 1 2-10 Digital Systems Division

{@} 949617-9701

, 2.6 SEGMENTATION OF LINKED OUTPUT
ﬁh The Link Editor provides for reorganization of the linked output into program segments. data
segments, and common segments. The Model 990 Computer Assemblers (SDSMAC and TXMIRA)
provide a set of directives to define these segments, with PSEG defining program segments, DSEG
defining data segments, and CSEG defining common segments. If these directives are not used, the
entire object module is tagged as a program segment. The FORTRAN and COBOL compilers
automatically output tagged object that defines these respective segments.

Change 1 2-11/2-12 Digital Systems Divisior

——

ify

[o]
%@ 949617-9701

SECTION II1
LINK EDITOR COMMANDS

3.1 INTRODUCTION

This section contains the descriptions and syntax for the commands accepted by the Link Editor.
Appendix C contains an alphabetic list of the commands and their syntax. Except where noted in
the command descriptions, the commands apply to both TXDS and DX10. When using these
commands, either the entire command or only the first four characters may be specified. Any
comments used are separated from the command by a semicolon (;) delimiter.

3.2 MODULES AND LIBRARIES

The commands described in the following paragraphs are those that define the object modules that
are to be included in the linked object output module. Also described are those commands that
identify random and sequential libraries and those that specify when library searches are to be
performed.

3.2.1 INCLUDE COMMAND. The INCLUDE command defines modules or files of modules that

- are to be included in a phase. The command is required in each phase of a task or procedure, and
more than one INCLUDE command may be used, as needed. However, no INCLUDE is required
after a TASK command if the procedure defined contains data segments (DSEG) or common
segments (CSEG). These segments are included in the task by the Link Editor. The syntax for the
command is as follows:

*INCLUDE <acnm>[, <acnm>][, . .]

When the Control Stream is read from a card reader and the INCLUDE command has no operand,
the module or modules follow the INCLUDE command in the ‘control file, and each module is
terminated with a record having a colon (:) in the first character position, and the last module is
followed by an end-of-file record (/ *). When used, the <acnm> parameter (or pathname) specifies a
file or device that contains one or more of the modules for the phase. If the name is enclosed in
parentheses (DX10 only), the Link Editor searches all defined random libraries in the order they are
defined to locate a file named as the operand of the INCLUDE command.The following examples
show the use of the INCLUDE command:

INCLUDE Includes the modules(s) that follow this command in
the control file

MODULE

/* (EOF)

INCL CATA.APPL.OBJ.MODS Includes the module(s) in the DX10 file MODS on the
volume CATA.

INCL CS02 Includes the module(s) in the file on cassette unit two.

*At least one blank must precede the first <acnm>.

i

Change 1 3-1 Digital Systems Division

@ 949617-9701

INCL (X) Search DX10 random libraries for a file named X and
includes the modules in X.

INCL DSC2:FILE/OBJ Include a TXDS file (TXDS only).

3.2.2 LIBRARY COMMAND - DX10 ONLY. The LIBRARY command defines a random library
by specifying the pathname of a directory. The specified directory is automatically searched to satisfy
unresolved external references (which are treated as file names or aliases) in the module to be linked.
The syntax for the command is:

LIBRARY <acnm>[,<acnm>] [, . .]

- The <acnm> parameters define the pathname to the directory that contains the desired files. These
l files must consist of object code produced by the assembler or higher level language compilers or
previous output of the Link Editor. The following are examples of the LIBRARY command:

LIBRARY CATA.APPL.OBJ
LIBR VOLA.APPL.OBJ

In the above examples, CATA and VOLA are the volume IDs, APPL is the directory name, and
OBJ defines the directory that the files are in. Note that different directories are accessed by the
above commands even though both are named OBJ. DXI10 allows files and directories to be
differentiated by pathname. Since the volume names differ, the files are on different discs and are
independent of one another. .

3.2.3 SEARCH COMMAND - DX10 ONLY. The SEARCH command directs the Link Editor to
perform a search of a random library at this point in the control stream rather than after all the
control stream commands have been processed. The syntax of the command is as follows:

SEARCH [<acnm>] [, . . .]

with the <acnm>> parameters being the access names of the libraries that are to be searched. The
order of these definitions determines the order of the search. If no <acnm> parameters are specified
the random libraries defined by the LIBRARY commands define the search ordering.

L]

An example of the use of a SEARCH command is shown by the following example. The program
being linked requires that a particular module, MODA, be the last module included in the linked
output. Prior to the last INCLUDE command, the SEARCH command is used to resolve references -
in the random libraries. This sequence is necessary since automatic resolution occurs at the end of
the entire Link Edit, and any modules included to resolve references would otherwise have been
placed after MODA in the linked output.

LIBR VOL2.MODS.EXAMI,VOL3.MOD.EXAM2
TASK A
INCL (MODB)

3-2 Digital Systems Division

o
{@@ 949617-9701

~ INCL (MODC)
SEARCH
INCL (MODA)
END

3.2.4 NOAUTO COMMAND - DX10 ONLY. Specification of the NOAUTO command inhibits
the performing of automatic external reference resolution, even if LIBRARY commands are
included in the control stream. The NOAUTO command applies to random libraries only. The
NOAUTO command allows the user to explicitly control library searching through use of the
SEARCH command. The syntax of the command is as follows:

NOAUTO
NOAU o
- 3.2.5 FIND COMMAND. The FIND command is used to specify sequential libraries (see
paragraph 2.5.4) that contain input modules for the Link Editor. The command can be used on both
DX10 and TXDS, but it cannot specify a random library. The FIND. command specifies those
libraries that are to be searched for automatic external reference resolution. The syntax of the
command and examples are as follows: ‘
FIND <acnm>
(@,\ FIND DSC2:TXLOBJ/LIB . TXDS example
FIND MYDISC.DIRA.MODS DX10 example
Due to the way in which sequential libraries are searched, certain constraints apply. Only one pass is
made through the library to resolve references, so if one module references a previous module in the
library, that reference is not resolved unless the referenced module has already been included.
For example, if a library is structured as follows:
o~ MODA MODB MODC

and MODB references MODA, that reference would only be resolved if MODA had been
previously included by an INCLUDE command or by symbol resolution. References from MODE
to MODC would be resolved by the FIND command.

Unresolved references can be handled by using two FIND commands with the same pathname. For
example, if the library containing MODA, MODB and MODC has a TX990 pathname of
DSC2:TXLOG/LIB and MODB references MODA, which has not been previously included, two
FIND commands would solve the reference as follows:

Change 1 3-3 Digital Systems Division

[o]
%’} 949617-9701

INCL DSCI:MODD/OBJ: REFERENCES MODB

'FIND DSC2:TXLOB/LIB; INCLUDES MODB WHICH REFERENCES MODA
FIND DSC2:TXLOB/LIB; INCLUDES MODA

END

3.3 PROCEDURE, TASK, AND OVERLAY LINKING

The structure of the output of the Link Editor is controlled by ithe commands described in the
following paragraphs. These commands define the task, procedure, and overlay sections of the
program, and also define the basic structure of the output.

3.3.1 PROCEDURE COMMAND. The PROCEDURE command defines a phase of the Link Edit
structure that can be installed as a procedure (a reentrant procedure may be shared among several
tasks). When used, the PROCEDURE command must precede the TASK command, all PHASE

commands, and the INCLUDE command that defines the Procedure module. The syntax of the
command is as follows:

PROCEDURE <name>

where <name>> is the eight character, or less, identifier of the procedure that is to be used. Examples
of the PROCEDURE command are shown in the following:

PROCEDURE FORLIB

PROC RUNLIB

The PROCEDURE command is used in conjunction with the INCLUDE command to define the
procedure. The PROCEDURE command defines the name of the procedure, and the INCLUDE
command defines the modules that are to be in that procedure. The following is an example of the use _
of the commands to define a procedure in a DX10 Link Edit:

LIBRARY CATA.APPL.OBJ Define random library
PROCEDURE PROCI Define procedure named PROCI
INCLUDE (MODI) Include MODI1 from the random

library (CATA.APPL.OBJ)
INCLUDE CATB.APPL.OBJ.MOD2 Include a file named MOD2
PROCEDURE PROC2 . Define procedure named PROC2

INCLUDE CS02 Include the module(s) in the file on
cassette unit two

INCLUDE (MOD2) Include MOD2 from the random library

34 Digital Systems Division

o
{@ 949617-9701

(a@”\ A DXI10 Link Edit may contain none, one or two PROCEDURE commands. A TXDS Link Edit
' may contain none or one PROCEDURE command.

3.3.2 TASK COMMAND. The TASK command defines a phase of the Link Edit structure that is
to be installed as a task. When used, the TASK command must follow all PROCEDURE
commands and must precede all PHASE and INCLUDE commands that define the task module.
The TASK command is used to link a task to a procedure, and a Link Edit may contain none or one
TASK command. A TASK command and a level 0 PHASE command cannot appear in the same
Link Edit, as they are logically identical. The syntax of the TASK command is as follows:

TASK <name>

where <name>> is the eight character, or less, identifier of the task module. If the <name> is

omitted, the name of the first module encountered is used as the TASK name. Examples of the
TASK command are as follows:

TASK FORPRG

-~
TASK ARUN
.The following example shows the use of the TASK command in a control file on DX10:
LIBR CATA.APPL.OBJ Define random library
PROC PROCI Define procedure name
- INCLUDE (MODI) Include®™MODI from library .
INCLUDE CATB.APPL.OBJ.MOD2 Include file MOD2
PROC - P2 Define procedure name
INCL CS02 Include thq module(s) in the file on
. cassette unit two
) INCL (MOD2) Include MOD2 from library
~ TASK TSK1 Define task name
INCL (MOD4) : Include MOD4 from library
INCL CATB.APPL.OBJ.MOD3 Include file MOD3
- The preceding control file causes a linked output to be created that has two procedures, PROCI1 and
P2, and the task, TSKI.
A7

3-5 Digital Systems Division

o
@ 949617-9701

The following example shows the use of the TASK command in a control file on a TXDS system:

TASK TSK2 Define task name

INCL DSC2.MODA/OBJ Include MODA from disc 2

INCL DSC2:MODB/OBJ " Include MODB from disc 2

FIND DSC2:TXLOB/LIB Search Library for references
END .

The preceding control stream causes the Link Editor to output a linked module consisting of
MODA, MODB, and any modules included because of references within MODA or MODB to
modules in the library DSC2: TXLOB/LIB.

3.3.3 PHASE COMMAND. The PHASE command specifies a new object module in the linked
object file and specifies the level and name of the phase. PHASE commands may be followed by
INCLUDE commands that define the modules included in the phase. In overlay structures, the
initial phase of the task (the level 0 phase) is the resident portion and is loaded into memory with the
system for a memory resident task, or loaded from the disc for a disc resident task. Phases at level |
or higher are installed on the disc as overlays and each phase is loaded into the memory as called by
a resident phase. On a DX10 system, overlays can be loaded by use of the Load Overlay supervisor
call (see the Model 990 Computer DXI10 Operating System Documentation, Volume III,
Applications Programming Guide, manual number 946250-9703); or by the Automatic Overlay
Manager, as described in Section II of this document. DX10 also provides an Install Overlay
supervisor call and an Install Overlay System Command Interpreter command, or the Link Editor
can be used to install overlays when IMAGE format is selected.

On.a TX990 system, overlays are supported only on program files (see the description of the
FORMAT command, IMAGE option). Overlays can be loaded by use of the overlay loader routine
(see Appendix D) or by the Automatic Overlay Manager.

A task that has no overlays is processed by the Link Editor as a phase 0, therefore, a TASK and a
PHASE 0 command cannot appear in the same Link Edit. Each phase is characterized by a phase
name and a load point, with the load point normally being the next word past the end of the
preceding phase in the same path. The syntax for the command is as follows:

PHASE <level>,<name>

The <level> parameter identifies the level of the phase. Level numbers increase in unit steps within a
path, with alternate phases that load at the same point having the same level number. The second
operand, the <name> parametey, consists of from one to eight alphanumeric characters, the first of
which must be alphabetic, that defines the name of the phase. The following are examples of the
PHASE command:

PHASE O,MAIN Defines phase 0, named MAIN

PHAS 2,DISC Defines phase 2, named DISC

3-6 Digital Systems Division

e@ 949617-9701

(«m The following example shows the use of PHASE commands in a DX10 Link Edit control file.
LIBR CATA.APPL.OBJ Define library
PROC PROCI Define procedure name
INCL (MOD1I) Include MODI1 from library
INCL CATB.APPL.OBJ.MODZA Include file named MOD?2
PROC. P2 Define procedure name
INCL CS02 ' Include module(s) in the file on cassette

unit two

INCL (MOD2) Include MOD2 from library

. PHASE O,ROOTPH Define Phase 0
INCL (MOD4) Include MOD4 from library in Phase 0
INCL CATB.APPL.OBJ.MOD3 Include file MOD3 in Phase 0
PHASE 1,PROGI1 Define phase, level 1
INCL (MODS) Include MODS from library in Phase 2

/@‘\ PHASE -2,PROG2 Define phase, level 2
INCL (MOD®6) Include MOD6 from library in Phase 2
INCL CATB.APPL.OBJ.MOD4 Include file MOD4 in Phase 2
PHASE 2,PROG3 ~ Define phase, level 2
INCL (MOD7) Include MOD7

- PHASE I,PROGIA Phase |
INCL CATB.APPL.OBJ.MODZ Include MODZ
END

°©

The structure of the overlay program defined above is shown in figure 3-1.

3-7 Digital Systems Division

o
@ 949617-9701

PROCEDURE PROC1
PROCEDURE P2
PHASE 0 ROOTPH
PHASE 1. PROG1 : PHASE 1 J_ PROG 1A
PHASE 2 J- PROG2 PHASE 2 J' PROG3

(A)136924
Figure 3-1. Sample Overlay Program Structure

33.4 ALLOCATE COMMAND. This command is used to control the relative positioning of
program, data, and common segments. The ALLOCATE command signals the Link Editor to
allocate space for all outstanding data and common segments as if there were to be no more object
modules included in the link. The primary purpose of the ALLOCATE command is to aid the user
in sharing nonreentrant procedures between different tasks. ALLOCATE only works if all
read/ write data is contained in data segment$, DSEGs, or common segments, CSEGs, as is the case
for code generated by the FORTRAN and COBOL compilers. See the Models 990 Computer TMS
9900 Microprocessor Assembly Language Programmer’s Guide for description of PSEG, DSEG,
and CSEG.

The format of the ALLOCATE command is as follows:
ALLOCATE

or
ALLO

Change 1 ' 3-8 Digital Systems Division

4@ 949617-9701

(@”‘ ALLOCATE can only be used in the task portion of a link edit, after a TASK or PHASE 0
command and before a PHASE | command. ALLOCATE can not be used in partial links.

The following rules will help the user to obtain the desired results from ALLOCATE. The Link

Editor cannot enforce these rules.

1. If ALLOCATE and LOAD are both used in the same link edit, ALLOCATE must occur

before the LOAD command.

2. Care must be used when using COMMON or CSEGs, with ALLOCATE. The
COMMON or CSEG reference before the ALLOCATE must not have elements added to
it by modules after the ALLOCATE if the procedure is to be shared.

3. The procedure being shared must not reference anything occurring after the ALLOCATE

command.

The following methods may be used to detect rule violations:

1. Find the section of the link map with “POST ALLOCATE” in place of a task ID.

2. Besure that all link maps of tasks which are sharing a given procedure must have identical
* link maps up to “POST ALLOCATE".

Example: suppose task T1 and T2 are to share a procedure PX. The following two link edit control
streams incorrectly link the two tasks to the shared procedure.

PROC PX
DUMMY
INCL X.Y.PX
TASK T2
INCL X.Y.T2
END

Assuming that the module in .X.Y.PX is coded using PSEGs, DSEGs, and CSEGs, and that the size
of T1 is different from the size of T2, then task T2 will not execute correctly. When procedure PX
was created by the link with T1, it was given addresses for the DSEGs and CSEGs it used. Those

™
~ PROC PX
INCL X.Y.PX
TASK TI
INCL X.Y.T1
END
~ addresses were not the same in T2.

The following control streams correctly link T1 and T2 to PX.

PROC PX
INCL X.Y.PX
TASK Tl
INCL X.Y.TC
ALLOCATE
INCL X.Y.T1
END

PROC PX
DUMMY
INCL X.Y.PX
TASK T2
INCL X.Y.TC
ALLO

INCL X.Y.T2
END

The solution is a fixed length module, .X.Y.TC, and ALLOCATE. ALLOCATE forces all DSEGs
and CSEGs from the procedure to be allocated storage now. If a fixed length part of the task is
INCLUDED before the ALLOCATE command the procedure can be shared.

Change 1

Digital Systems Divisior

o
@ 949617-9701

In COBOL the nonreentrant section of the runtime package, RCBTSK, may be used as a fixed
length part of the task. In assembly language the three word vector (WP, PC, End Action) may be
used as a fixed part of the task. In FORTRAN, a program which calls the main program as a
subroutine (as shown below) will work.

CALL MAIN
STOP
END

The following link maps show two FORTRAN programs which communicate through a shared
procedure .1, $BLOCK. The programs also share a common subroutine, WAIT, in procedure 2.

Change 1 3-10 Digital Systems Division

949617-9701

TI 990/10 SDSLNE 939157 #A4 01/06/73 17:01:211
COMMAND LIZT

NOJSYMT
FORMAT IMAGE,REFLACE
LIBRARY .FORTRN.OSLOB.)
LIBRARY .FIOIRTRN.STLOR.
FROC BOATA
INCL MISC.ROR.
FROC SUBWAIT
INCL (WAIT)
TAZK FORTA
INCL MISC.STAOR
ALLOCATE .
INCL MIZC.MACR.
END :

FAGE 1

Change 1 3-11

Digital Systems Division

949617-9701
TI 990/10 ZDELNK ?39137 #A 01/0&/73 17:01:11 FAGE 2
LINK MAF :

CONTRIL FILE = .GARRY.MISI.LACNTRL
LINKED QUTFUT FILE = .GARRY.MISC.PROG
LIST FILE = .GARRY.MIZC.MAMAF

NUMBER OF CQUTPUT RECORDES = 51

QUTFUT FORMAT = IMAGE

Change 1 3-12 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939187 #A 01/06/78 17:01:11 PAGE 3

PROCEDURE 1. BDATA ORIGIN = 0000 LENGTH = 0013 (PROCEDURE ID = 1)

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
$BLOCK 1 0000 0000 INCLUDE 01/03/78 14:59:45 FTN990

COMMON NO ORIGIN LENGTH

BLOCK 1 0000 0018

o

Change 1 3-13 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939187 #A 01/04/78 17:01:11 PAGE 4

PROCEDURE 2, SUBWAIT ORIGIN = Q0Z0 LENGTH = 0114 (PROCEDURE ID = 2)

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
WAIT 2 0020 0114 INCLUDE 03701777 22:232:05 SDSLNK
$DATA 2 0446 Q0ZE

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

WAIT 0020 2

Change 1 ‘ 3-14 Digital Systems Division

9496179701

TI 990/10 SDSLNK 929137 #A 01/7046/72 17:01:11 FAGE S

PHASE 0, FORTA ORIGIN = 0140 LENGTH = 21F2 (TASK ID 1)

MODULE NO ORIGIN LENGTH TYFE DATE TIME CREATOR
SMAIN 3 0140 001C INCLUDE 01/03/78 15:01:14 FTN990

sDATA 3 04A4 Q020

svC b= 015C Q0L L. IBRARY 10/22/77 14:39:24 SDSLNK

F$RGMY) o1C6 QO7E LIBRARY o8/C1/77 208152064 SDSLNK

F$RITE 7 0244 004E . LIBRARY QE/01/77 208146832 SDSLNE

F$RCGO 8 0zBZ 0032 LIBRARY Q2/01/77 20:08: 232 SOSLNE

EXINT @ 0O2E4 0172 LIBRARY og/01/77 19247:10 SDSLNK

F$RITP 10 0456 0010 LIBRARY og/0L/77 20217235 SDSLNE

COMMON NO ORIGIN LENGTH

REGSXX 2 0404 0014

- DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NI

$MAIN 0140
.FSREDV 0323
F$RES Q2F2
F$RGMY O1C&

F$RCGO 0Q2B2
F$REL QZE4
#FSRESQ O304
F$RITE 0244

F4$RER 0304 @ #F$RECE O3IEA ¢
FSREMF Q216 9 #FSRENG (0406 ¥
F$RET 041A ¥ #F$RFTE OZSE 7
FSRITP 0456 10 sV 01sc S

o 09w
~N g QW

Change 1 3-15 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939137 #A 01/06/78 17:01:11 PAGE 6
PHASE 0, FORTA ORIGIN = Q4E8 LENGTH = ZE4A (POST ALLOCATE)
MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
MAINA 4 O4ES 00AA INCLUBE 01/03/73 15:10:54 FTN990
$DATA 4 0592 0034
F$RPAL i1 05C4 OOBO LIBRARY 08/01/77 21:59:27 SDSLNK
F$XPRE © 12 04676 004E LIBRARY 10/17/777 17:19:14 SDSLNK
F$RFZ 13 04C4 0354 LIBRARY 08/01/77 21:54:59 SDSLNK
F$RINP 14 0Al1S8 0074 LIBRARY 08/01/77 21:56:53 SDSLNK
F$ERRC 15 0AsC 013C LIBRARY 08/01/77 21:19:27 SDSLNK
FSRWRK 16 0BCS8 Q000 LIBRARY 09/26/77 19:23:13 SDSLNK
$DATA 16 OBCS 0170 . .
F$RPRE 17 op38 ¢ 008E LIBRARY 08/01/77 22:00:16 SDSLNK
F$XCLS 18 oDCcé 0036 LIBRARY 08/01/77 22:05: 29 SDSLNK
F$RBUF 19 OEA4C 0000 LIBRARY 10/28/77 16:40:05 SDSLNK
$DATA 19 QEA4C O08E
F$XFCB 20 QEDA 0000 LIBRARY 09/28/77 17:51:24 SDSLNK
$DATA 20 OEDA 00Cs3
F$XVFB 21 OFA2 0zCo LIBRARY 10/13/77 146:23: 08 SDSLNK
FSXTBL 22 12462 0000 LIBRARY 09/2&6/77 19:24:11 SDSLNK
$DATA 22 1262 Q38D
FEXLWS 23 15FO 0000 LIBRARY 09/26/77 19:23:53 SDSLNK
$DATA 23 15F0 00zC
FEXLOG 24 161C QO8F LIBRARY 038/01/77 22:11:02 .SDSLNK
F$RFTS 25 146AC 006A LIBRARY 08/01/77 21:50:55 SDSLNK
F$FINP 26 1716 0OBS4 LIBRARY 09/28/77 11:33:54 SDSLNK
F$XERR 27 226A Q00A LIBRARY 08/01/77 22:07:38 SDSLNK
F&XFTL 28 2274 0012 LIBRARY 08/01/77 22:08:42 SDSLNK
F$XBUT 29 2286 00zD LIBRARY Q08/01/77 22:04: 446 SDSLNK
FSRMSG 20 22B4 0100 LIBRARY 10/03/77 17:31:43 SDSLNK
F$XLIO 31 23B4 001A LIBRARY 08/01/77 22810321 SDSLNK
F$XIOF 32 23CE 013cC LIBRARY 10726777 13212:07 SDSLNK
F$REVP 33 250A 000C LIBRARY 10/26/77 13214:35 SDSLNK
F$RWSP 24 2514 Q000 L IBRARY 10/22/77 15:20:1% SDSLNK
$DATA 34 2516 QOFC
F$RAER 35 2612 0041 L IBRARY 03/01/77 20:07:25 SDSLNK
FSFITP 36 24654 01B8 LIBRARY 08/01/77 19:57:39 SDSLNK
F$XRST 37 280C 0002 LIBRARY 08/01/77 197:53:42 SDSLNK
S$GTCA 38 280E 0634 LIBRARY 08/15/77 14:33:44 SDSLNK
$DATA 38 2E42 04F O
DEFINITIONS .
NAME VALLE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO
ASBBUF 0104% 16 ASBFCB OOFA# 16 ASBPRB 0102% 16 A$BTCA OOFE#* 16
A$BWK1 OBC8 14 ASBWK2 2516 34 ASEFCB OOFC#* 16 ASEPRB 0104#% 16
ASETCA 0100% 16 FSALN1 012C» 16 F$ASAD 0006%* 17 F$ASLU 016C* 16
F$ERRC OA8C 15 F$ERRS 0A%92 15 #F$ERST OBl1é6 1S #F$FACC 172E 26
#F$FACD 1732 26 F$FCBE OOQOA® 17 F$FCOL 19AE 26 F$FCUS 1942 26
FSFDEN 1748 26 #F$FOIS 1716 26 #F$FDIT 171A 26 F$FDOL 19A0 26
F$FDUS 1934 26 FSFENN 173E 26 FSFEOL 1972 26 F$FEUS 1906 26
F$FFOL 1930 26 F$FFUS 1214 26 F$FIOL 1964 26 F$SFITP 24654 36
3-16 Digital Systems Division

Change 1

949617-9701

r TI 990/10 SDSLNK 939187 *A 01/06/72 17:01:311 PAGE 7
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

F$FIUS 18F2 26 F$FLAG 0005#% 17 F$FLOL 19C2 26 F$FLUS 1956 26
F&FRE 1772 26 F$FREEB 1772 2¢& F$FRED 176C 26 F$FRER 1766 26
FSFRF 1790 26 FSFRFB 1734 26 F&FRFDN 1784 26 F$FRFR 177E 26
F$FROL 1992 24 F$FRUS 1926 26 F$F3IO0 1A30 =26 F$FWE 1754 26
F$FWER 174E 26 F&FWF 1760 26 FEFWFR 179A 26 F$ILOG OCF2 146
FEINAS 0Q1l&é% 146 F$LSTA 0001#* 17 FSLUNO 0000#% 17 FSLUNT 0164+ 16
FSNAME 0003#% 17 #F$OPEN 11BO 21 F&FPRE Q002% 17 FER10A 0014% 16
F$R10B O011C# 16 FSRAER 24612 335 #FSRASN 0376% 22 F$RBUF OES0 19
#FSRCAL 0375#% 22 #*F$RCOL 0AS4 14 #FSRCUS 0A&E 14 #FSROEN OA1C 14
#F$RDOL OA7C 14 #F$ROUS OALO 14 #*F$RENN 0OAlE 14 #F$REOL OA70 14
#*FSREUS 0AS4 14 FSREVP 250A 33 FERFFDN 208E 26 F$RFFR. 16DA 25
F$RF1I 0&C4 13 F$RFL = O7EZ 13 #F$RFOL OA74 14 FSRFRW 20146 26
F$RFSI 1A40 26 F$RFSR 2128 26 FSRFSW 2004 26 FSRFTS 16AC 25
#FSRFUS 0OASE 14 FSRFWB 1702 23 F$RFWD 2006 26 F$RFZ 084E 13
F$RIOL O0A&C 14 #F$RIUS OASO 14 F$SRLOG 0128% 16 #F$RLOL OASO 14
F$RLP2 -012A% 14 #FSRLUS 0A44 14 #FSRMON O38C» 22 #FSRNUM O36F#* 22
~ #FSROP 03462% 22 #F$RPAL)] OSC6 11 #F$SRPRB 0360% 22 FSRPRE 0D38 17
#F$RPRM 0370% 22 #F$RRE 0AZC 14 #F$RREB 0A32 14 #F$RRED OA34 14
#F$RRER O0A30 14 #F$RRF 0A4> 14 #F$RRFB O0A4E 14 #F$RRFD OA44 14
*F$RRFR 0A40 14 #FSRROL 0A78 14 #F$RRUS OASC 14 F$SRSIO O0OASS 14
F$RSTO 0SDE 11 #FSRTCA 0364k 22 F$RTFG OBFO 16 . #F$RTID 0373% 2
F$SRVFB 002&8% 16 F$RVPZ 00zA%* 16 #FSRWE 0AZ4 14 #FSRWER 0A20 14
F&RWF 0ARC 14 #FSRWFR 0OAZ2 14 F$RWRK . OBCA 164 F$RWSP 2518 34
FSSTAT 0004% 17 FSUNIT O1SF+* 16 F$XBCH 0020% 23 F$XBFR 0027% 23
F&XBFS 008A%* 19 FEXBFX 0028 23 F&XBFY OO0O2A% 23 #F$XBUI 24B4 32
#F$XBUO 24A0 32 F$XBUT 22846 29 #F$XCAL 15D7 22 F$XCLZ 0DCé6 18
FSXCPX 0022% 23 FEXCPY 0024#% 23 #FEXEOF 24946 32 F$SXERR 226A 27
ﬂmm F$XFCB OEDA 20 F$XFCE OFAZz 20 #FSXFND 249C 32 F$XFTL 2274 28
g F&XLIO 23B4 31 FSXLOG 161C 24 F$XLWS 1SFO° 23 #FEXMON 1SEE 22
F$XPRE 0674 12 F$XPSE ODB4 17 F$XRED 23CE 32 F$XRST 280C 37
#FSXRWD 247E 32 F&XSTP ODBC 17 F$XTBE 1SC2 22 F&XTBL 1262 22
#*FSXTID 135DS 22 #FEXTRA 24746 32 F$XVFB OFAE 21 F$XVWS OCD2 14
FSXWRT 23EC 32 FEXWSO 2T3E 324 ‘FHXWS1 2540 34 FeXWs2 2542 34
FEXWS3 2544 34 G$XEO1 22ZB4 30 G$XEOE8 22C7 30 G$XEO9Y 22E9 30
G$XE10 2316 30 #G$XE11 2321 30 G$XE12 234C 30 G$XE13 2364 30
G$XE14 23AZ 30 MAINA Q4ES 4 P$ABUF 0006#% 17 #P$AKEY 0QQOC# 17
P$CCNT 000A% 17 P$ERR 0001# 17 #PSIFA 001C# 17 PSELACN 00163 17
PSLUN Q003# 17 P&0OP 0002+ 17 #PS$PASS 0018+ 17 P$PFCB 00243 17
#P$PRB 0000 17 P$FPRBE 0Q02Z6% 17 #PSREC1 000D 17 #PSREC2 OOOE# 17
™ P$RECL 0008#% 17 #PSRES1 000C# 17 #P$RES2 QO01A* 17 #P$SFA 0020% 17
#P$SFLG 0004% 17 #PHESVCO Q000 17 PSUFLG 0005# 17 P$SULRL 0012% 17
P$UPRL 0014+ 17 PSUTFI 0010# 17 #PSUTFZ 0011#% 17 #PXSCUR 0012% 17
#PX$EVC 001ix 17 #PX$SFIL 0010% 17 #PX$SFLG OOOE# 17 #PX$FST 0014% 17
#S$APRB 1174 21 S$CLOS 2B96 38 SEGTCA 280E 33 S$MAPS 28E0 38
S$0PEN 2BFO 38 S$RTCA 2894 38 S$STOF 2DF8 38 S$WEOL 2C48 38
S$SWRIT 2CAE 38

°©

LINKING COMPLETED

Change 1 3-17 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 9329137 #A 01706775 17:04: 40 PAGE 1
COMMAND LIST

NOSYMT
FORMAT IMAGE,REFLACE
LIBRARY .FORTRN.OSLOB.J
LIBRARY .FORTRN.STLOBJ
PROC BDATA
DUMMY
INCL MISC.RBOB.
PROC SUBWAIT
DUMMY
INCL (WAIT)
TASK FORTB
INCL MISC.STEOBJ
ALLOCATE
INCL MISC.MEOB.J

END

Change 1 3-18 Digital Systems Division

)

949617-9701

TI 920710 SDSLNK 932137 *A 01/0L6/72 17204240 FAGE 2
LINK MAP

CONTROL FILE = .GARRY.MISC.LEBCNTRL

LINKED OUTPUT FILE = .GARRY.MISC.PROG

LIST FILE = .GARRY.MISC.MBMAF

NUMBER QF OUTPUT RECORDS = 47

OUTPUT FORMAT = IMAGE

Change 1 3-19 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 9329187 *A

01/06/78 17:04:40 PAGE 3
PROCEDURE 1, BDATA ORIGIN = 0000 LENGTH = 0018, DUMMY (PROCEDURE ID = 1)
MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
$BLOCK 1 0000 0000 INCLUDE 01/03/78 14:59:45 FTN990
COMMON NO ORIGIN LENGTH
BLOCK 1 0000 0018
Change 1 3-20 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939187 #A 01/06/73 17:04:40 FAGE 4

PROCEDURE 2, SUBWAIT ORIGIN = 0020 LENGTH = 0114, DUMMY (PROCEDURE ID = 2)

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATUR
WAIT 2 0020 0114 INCLUDE 08/01/77 22:32:05 SDSLNK
$DATA 2 0464 QO3E

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

WAIT 0020 2

Change 1 3-21 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939187 #A Q1/06/78 17:04:40 FAGE S

"PHASE 0, FORTB ORIGIN = 0140 LENGTH = 31B8 (TASK ID = 2)

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
SMAIN 3 0140 001C INCLUDE 01/03/783 15:02:13 FTN990
$DATA 3 04A4 Q030

sve S 01SC 0067 L IBRARY 10/22/77 14:39:24 SDSLNK
F$RGMY 6 01C4 007E LIBRARY 03/01/77 20:15:06 SDSLNK
FSRITE 7 0244 QO04E LIBRARY 08/01/77 20:16:32 SDSLNK
F$RCGO 8 02B2 0032 LIBRARY 08/01/77 20:08:33 SDSLNK
EXINT 9 02E4 0172 LIBRARY 08/01/77 19:47:10 SDSLNK
FSRITP 10 0456 0010 LIBRARY 08/01/77 20:17:35 SDSLNK

COMMON NO ORIGIN LENGTH

REGSXX 2 04D4 0014

DEFINITIONS
NAME VALUE NO NAME \VALUE N NAME VALUE NO NAME VALUE NO

F$RCGO 02B2
F$REL QZE4
#FSRES® OQ2D6
F$RITE 0244

F$REA 03204
F$REMP 0316
F$SRET 041A
FSRITP 0454

#FSRECB O3EA 9
#FSRENG 0406 9
#FSRFTE O2ZSE 7
sve 015C S

SMAIN 0140
F$REDV 0338
F$RES 02F2
F$RGMY 01Cé

[R N
NGO
g U T

o

Change 1 3-22 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939187 *A 01/06/73 17:304:40 PAGE]
PHASE O, FORTB ORIGIN = 04ES8 LENGTH = ZE10 (POST ALLOCATE)
MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
MAINB 4 Q4E3 0070 INCLUDE 01/03/73 15216:13 FTN970
$DATA 4 0552 0024
F$RPAU 11 Qo58cC Q0BO LIERARY 08/01/77 21:59:27 SDSLNK
F$XPRE 12 063C 004E LIBRARY 10717777 17:19:14 SDSLNK
F$RFZ 13 048A 0354 LIBRARY 03/01/77 21:54:5% SDSLNK
F$RINP 14 090E 0074 LIBRARY 08/01/77 21:56:53 SDSLNK
F$ERRC 15 0AS2 013C LIBRARY 08/701/77 21:219:27 SDSLNK
F$RWRK 16 OBSE 0000 LIBRARY 09/26/77 19223213 SDSLNK
$DATA 16 OBSE 0170
F$RPRE | 17 QOCFE Q0SE LIEBRARY 08/01/77 22:00:16 SDSLNK
FEXCLS 18 oDpsc 0086 L IBRARY 08/01/77 22:05:29 SDSLNK
F$RBUF 19 OE12 0000 LIBRARY 10/28/77 16:40:05 SDSLNK
$DATA 19 OE12 Q0BE
F$XFCB 20 OEAOQ 0000 LIBRARY 09/28/77 17:51:24 SDSLNK
$DATA 20 OEAOQ 00C3
F$XVFB .21 QF 462 02C0 LIBRARY 10/13/77 146:23:08 SDSLNK
F$XTBL 22 1228 Q0000 LIBRARY 09/26/77 19:24:11 SDSLNK
$DATA 22 1228 0z8D
FEXLWS 23 15B& 0000 LIBRARY 09/26/77 192123252 SDSLNK
$DATA 23 15Bé 002C
F&XL0OG 24 1SE2 Q08F LIBRARY 08/01/77 22:11:02 SDSLNK
F¢RFTS 25 14672 006A LIBRARY 08/01/77 21:50:55 SDSLNK
F&FINP 26 14DC 0BS54 LIBRARY 09/28/77 11:33:54 SDSLNK
F$XERR 27 22320 Q00A LIBRARY Q8/01/77 22:07:38 SDSLNK
FEXFTL 28 223A 0012 LIBRARY 08/01/77 22:08:42 SDSLNK
F&XBUT 29 224C 002D LIBRARY 08/01/77 22:04:46 SDSLNK
F$RMSG 30 227A 0100 LIBRARY 10703777 17:231:43 SDSLNK
F$XLIO 31 237A 001A LIBRARY 03/01/77 22310221 SDSLNK
F$XIOF 32 2394 013C LIBRARY 10/26/77 13:12:07 SDSLNK
F$SREVP 33 24D0 000C LIBRARY 10/26/77 13:214:35 SDSLNEK
F$RWSP 34 24DC 0000 LIBRARY 10/22/77 15:20:19 SDSLNK
$DATA . 34 24DC QO0FC
F$RAER 35 25D8 0041 LIBRARY 08/01/77 20:807:25 SDSLNK
FSFITP 36 261A 01B8 LIBRARY 08/01/77 19:57:3% SDSLNK
FEXRST 37 2702 0002 LIBRARY 08/01/77 19253242 SDSLNK
S$GTCA 38 2704 0634 L IBRARY 08/15/77 14:33:44 SDSLNK
$DATA 38 2E08 04F0Q
DEFINITINONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO
A$SBBUF 0106% 14 ASBFCB OOFA#* 16 A$BFPRB 0102% 16 ASBTCA OQOFE#* 16
A%BWK1 OBSE 14 ASBWKZ 240C 34 ASEFCB OOFC#* 14 ASEPRB 0104+ 16
ASETCA 0100% 16 F$ALN1 012C# 14 F$ASAD 0006% 17 F$ASLU 016C* 16
F$ERRC O0AS2 1S F$ERRS OAS3 1S5 #F$SERST OADC 1S #FSFACC 16F4 26
#FSFACD 146F8 26 F$FCBE OOQO0A#* 17 F$FCOL 1974 26 FEFCUS 1908 26
F$FDEN 170E 26 #F$FDIS 1464DC 26 *FSFDIT 16E0 26 FSFDOL 1966 26
F$FDUS 18FA 26 FSFENN 1704 26 F$FEOL 1938 26 F$FEUS 18CC 26
F$FFOL 1946 26 F$FFUUS 18DA 26 F$FIOL 192A 26 FS$FITP 261A 36
Change 1 3-23 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 939187 #A 01/06/78 17:04:40 PAGE 7
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

F$FIUS 18BE 26 F$FLAG 000S+ 17 F$FLOL 1988 26 F$FLUS 191C 26
F$FRE 173E 26 F$FREB 1738 26 F$FRED 1732 26 F$FRER 172C 26
F$FRF 1756 26 F$FRFB 1750 26 F$FRFDT 174A 26 F$FRFR 1744 26
F$FROL 1958 26 F$FRUS 18EC 26 F$FSIO 19F6 26 F$FWE 171A 26
F$FWER 1714 26 F$FWF 1726 26 F$FWFR 1720 26 F$ILOG 0OCB8 14
FSEINAS O0166% 14 F$LSTA 0001% 17 F$LUNO Q000+ 17 FSLUNT 0164% 146
FSNAME 0008% 17 #FSOPEN 1176 21 F$PRB 0002% 17 F$R10A 0014% 1&
F$R10B O0O11C# 16 - F$RAER 23D8 35 #FSRASN 0376% 22 F$RBUF OEl1é6 19
#F$SRCAL 0375% 22 #FSRCOL 0A4A 14 #F$RCUS OAZE 14 #FSRDEN 0%E2 14
#F$RDOL - 0A42 14 #F$RDUS 0A26 14 #FSRENN O9DE 14 #F$REOL OA36 14
*F$REUS OAlA 14 F$SREVP 24D0 33 F$RFFD 2054 24 F$RFFQ 16A0 25
F$RFI 0s8A 13 F$RFL 07AE 13 *F$RFOL O0A3A 14 F$RFRW 1IFDC 26
F$RFSI 1A0& 26 F$RFSR 20EE 26 F$RFSW 208A 26 F$RFTS 1672 25
#FSRFUS OALE 14 F$RFWB 16C8 25 F$RFWD 1L1FCC 26 F$RFZ 0814 . 13
F$RIOL OA32 14 #F$RIUS OAL1é6 14 F$RLOG 0128+% 16 . #F$RLOL OR4S6 14
. FSRLP2 O12A% 16 #F$SRLUS OAZA 14 #F$RMON 038C# 22 #FSRNUM O36F* 22
#F$SROP 0362% 22 #FSRPAU 038C 11 #F$RPRB 0360% 22 F$RPRE OCFE 17
#F$RPRM 0370# 22 #FHRRE 0A02Z 14 #FSRREB O9FE 14 *FSRRED OSFA 14
#F$RRER O9%9F6 14 #F$RRF 0A1Z 14 #F$RRFB OAOE 14 #F$RRFD OAOA 14
#FSRRFR OAOS6 14 #FSRROL OA3E 14 *FSRRUS 0A22 14 F$RSIO OA4E 14
F$RSTO O39E 11 #F$SRTCA 0366% 22 F$RTFG O0OBB& 16 #F$RTID O0373% 22
F$RVFB 0028% 1é FSRVPZ2 002A%* 16 #FSRWE O09EA 14 #FSRWER O9ES6 14
FSRWF 09F2 14 #*F$SRWFR O%EE 14 F$RWRK OB%0 16 F$RWSP 24DE 34
F$STAT 0004% 17 F$UNIT O1SF# 16 F$XBCH 0020# 23 F$XBFR 0027%* 23
F$XBFS 003A* 19 F$XBFX 0028% 23 F$XBFY O00ZA%* 23 #FEXBUI 2474 32
#FS$XBUO 2466 32 F$XBUT 224C 29 #F$XCAL 157D 22 F$XCLS 0ODSC 18
FEXCPX 0022% 23 F$XCPY 0024#% 23 #FSXEQF 245C 32 F$XERR 2230 27
F$XFCB OEAO0 20 F$XFCE OFé8 20 #FSXFND 2462 32 FSXFTL 223A 28
F$XLIO 2374 31 F$XLOG 1SE2 24 FeXlws 1SBs 23 #F$XMON 15B4 22
F$XPRE 063C 12 F$XPSE OD7A 17 F$XRED 2394 32 F$XRST *27D2 37
#FEXRWD 2444 32 F$XSTP 0D32 17 FEXTBE 1588 22 FSXTBL 1228 22
#F$XTID 159B 22 #*FSXTRA 243C 32 F$XVFB OF74 21 F$XVWS 0C98 16
F$XWRT 23B2 32 FEXWSO 2504 34 FEXWS1 2506 34 F$XWS2 2508 34
F#XWS3 250A 34 GHXEO1 227A 30 G$XEO8 228D 30 G$XEO? 22AF 30
G$XE10 22DC 30 #GSXE11 22F7 30 G$XE12 2312 30 G$XE13 232A 30
G$XE14 23468 30 MAINB 04ES 4 P$ABUF 0006#% 17 #PSAKEY 000C#* 17
P$CCNT O000A# 17 P$ERR 00013 17 *PSIFA 001C#* 17 P$LACN 0016% 17
PS$LUN 0003# 17 P$OP 0002# 17 #PEPASS 0018# 17 P$PFCB 0024% 17
#P$PRB 0000% 17 P$PREBE 0Q0263% 17 #P$REC1 000D 17 #P$REC2 OQO00OE%* 17
P$RECL 0008% 17 #P$SRES1 00QC#* 17 #PSRESZ OO01A% 17 #P$SFA 0020% 17
#P$SFLG 0004 17 #PHSVCO 0000% 17 P$SUFLG 0Q00S#* 17 P$ULRL 0012% 17
PSUPRL 0014% 17 P$UTF1 0010% 17 #PSUTF2 0Q011# 17 #PX$CUR 0012% 17
#PX$EVC 0011% 17 #PX$FIL 0010% 17 #PX$FLG OOCE# 17 #PX$SFST 0014% 17
#S$APRB 113A 21 S$CLOS 2ZBSC 38 S$GTCA 27D4 3¢ S$MAPS 28A6 38
S$0PEN 2BB46 38 S$RTCA 235A 38 S$STOP 2DBE 38 SSWEOL 2C0E 38
SSWRIT 2C74 38

*»##% LINKING COMPLETED

Change 1 3-24 Digital Systems Division

[e]
@ 949617-9701

. 3.3.5 LOAD COMMAND. The inclusion of the overlay manager is specified by the LOAD

(’Wk\ command in the Link Editor Control File. Use of the LOAD command is only valid when the
IMAGE Format is selected. The overlay manager consists of both read only and read write
segments, and the position of the LOAD command in relation to the PROCEDURE and TASK
commands determines where the read only parts are to be included in the linked output. The read
write parts are always included in the task.

A detailed explanation of the use of the overlay manager is given in Section 2 and in Appendix A. On
TXDS, the overlay manager resides on the same diskette as the Link Editor and has the pathname
DSCx:TXLOVM/SYS. On DXI10, the overlay manager is included as a part of the system
subroutine library, DS01.S$SYSLIB. When using automatic overlay loading on DX10, the user
must supply a LIBRARY command that specifies the subroutine library.

The format of the LOAD command is as follows:
LOAD
If the LOAD command is not specified, the default condition is NOLOAD.

The following examples illustrate the use of the LOAD command in a two procedure link edit. The
first example places the reentrant parts in procedure Pl, and the second example includes the
reentrant parts in procedure P2. The non-reentrant parts are always included in the task. The third
example includes all of the overlay manager in the task (PHASE 0).

NOTE
When the LOAD command is used in a PROCEDURE definition,

MM o that procedure only can be shared by multiple copies of the same task
' segment (not by different tasks).

Change 1 3-25 Digital Systems Division

o)
{@ 949617-9701

Example 1.
LIBRARY .USER
LIBRARY .S$SYSLIB
FORMAT IMAGE
PROCEDURE Pl
INCLUDE (X)
LOAD
PROCEDURE P2
INCLUDE (Y) ‘
TASK Tl
INCLUDE . , (Z)
END .

Example 2:

 LIBRARY .USER
LIBRARY .S$SYSLIB
FORMAT IMAGE
PROCEDURE PI
INCLUDE (X)
PROCEDURE P2
LOAD
INCLUDE (Y)
TASK Tl
INCLUDE (2)
END

Change 1 3-26 Digital Systems Division

o
%@ 9496179701

ﬁm Example 3:

LIBRARY .USER
LIBRARY _ .S$SYSLIB
FORMAT IMAGE
PROCEDURE Pl
INCLUDE (X)
PROCEDURE © P2
INCLUDE (Y)
TASK Tl
- INCLUDE (2)
LOAD
END
(@m When no procedures are used, both reentrant. and non-reentrant parts are include.d in the task.
3.3.6 NOLOAD COMMAND. The NOLOAD command specifies that the overlay manager and its
tables are not to be included in the linked output. NOLOAD is the default condition. The format of
the command is as follows:
NOLOAD
3.3.7 SHARE COMMAND. The SHARE command is used to specify modules that are to share
~ the same data area ($DATA). The syntax of the command is as follows:

SHARE <module name>,<module name>{. . .] g

The first module included by an INCLUDE command or as the result of a library search defines the
maximum size of the area. SHARE commands can be continued by repeating any task name that
. has been previously referenced by a SHARE command. The SHARE command only applies within
' a phase, and it cannot cross a phase boundary. An example of the SHARE command is as follows:

SHARE MODI,MOD2,MOD3

3.3.8 PARTIAL LINK EDITS. The Link Editor can perform partial Link Edits of single phases
and output either normal tagged object or compressed tagged object. The output of a partial Link
Edit is not executable and must be linked again before the program can be executed. Partial linking
is useful when a single phase is to be used in more than one program since it can be linked by itself
once, and then linked again into a procedure or phase in other Link Edits. Partial link outputs are

also used to build sequential libraries. The PARTIAL command is used to specify a partial Link
S Edit.
{

Change 1 3-27 Digital Systems Division

[e]
@ 949617-9701

Commands are also provided for use in conjunction with the PARTIAL command to define the
scope of symbols defined (DEFed) within the phase. Symbols within a phase can be defined as being
global or local. Global symbols are externally defined for the module and may be relinked. External
definition data is included in the partial link output for each global symbol. Local (or not global)
symbols are not externally defined and can be referenced only within the phase. Link Editor
commands are provided to specify only certain symbols or all symbols to be global, and a command
is provided to exempt certain symbols or all symbols from the global definition.

3.3.8.1 PARTIAL Command. The PARTIAL command performs a partial link edit and outputs
either a normal tagged object or compressed tagged object output file. The output of a partial Link
Edit is not executable and must be linked again without the PARTIAL command before the
program can be executed. Partial linking is only allowed for single phases. The PARTIAL
command causes the Link Editor to do the following:

e Resolve all external references (REFs) that are defined by any module included in the partial
link.

e Retain all entry points in the partial link as an entry in the output (subject to GLOBAL,
NOTGLOBAL, and ALLGLOBAL commands).

e Retain the common tags updating common numbers.

e Output one data section that is the total of all input data sections (subject to the SHARE
command).

o Resolve all SHARE references.

The user should note that automatic overlay loading information is not included as a part of the
partial output (i.., the LOAD command cannot be used in a partial link edit)..

The syntax of the command is as follows:
PARTIAL
PART
NOTE

A PARTIAL command may only be used in a link edit which contains
a TASK or PHASE 0 command. PARTIAL may not be used with
higher numbered phases.

When the PARTIAL command is used, the command stream must contain a TASK or PHASE
command to define a name for the phase. However, the phase level and name assigned do not have to
be used in future links. For example, the following illustrates the responses to the prompts presented
in a DX10 system and the command.stream to produce a partial link.

Change 1 3.28 Digital Systems Division

-~

(o)
@ 949617-9701

Prompt Respon

XLE

Ses:

EXECUTE LINKAGE EDITOR

CONTROL ACCESS NAME: VOL2.EXONE.CONT

LINKED OUTPUT ACCESS NAME: VOL2.EXTWO.MODA

LISTING ACCESS NAME: VOL2.LIST.ONE

PRINT WIDTH: 80

Control Stream:

PARTIAL
LIBRARY
PHASE
INCLUDE
INCLUDE
END

VOL3.EXAMPS
0,0VLAY!
(MOD1)
(MOD2)

The preceding example causes a partial link to be performed that includes two modules (MOD1 and
MOD?2) from a random library. The phase is defined as being level zero and is named OVLAY1. The

output is writte

n to file MODA.

The following control stream illustrates the inclusion of the output from the preceding example into
another DXI10 link edit:

LIBRARY VOL3.MODS

PROC Pl

INCL (MOD4)

PROC P2

INCL v(MOD5)

PHASE O.ROOTPH
INCL VOL2.CATA.TASK

PHASE I.LVLI

Change 1 3-29 Digital Systems Division

o
@ 949617-9701

INCL VOL2.EXTWO.MODA
PHASE I.LVLIB

INCL (MOD6)

END

The preceding control stream causes the output of the partial link edit to be included as a phase one
overlay, with the overlay named LVLIA.

The following illustrates an example of the responses to the TXDS prompts to activate the Link
Editor:

PROGRAM: :TXSLNK/SYS Activate the Link Editor
INPUT: DSC2:FILEA/CTL Control file pathname
OUTPUT: DSC2:LNKOUT/OBJ Output pathname, accept the system default
printer for the load map and the TXSLNK

diskette for scratch files.

The following is an example of the use of the PARTIAL command in a TXDS Link Edit:

PARTIAL

: INCLUDE DSC2:MODA/OBJ Include file MODA on disc two
INCLUDE DSC2:MODB/OBJ Include file MODB on disc two
FIND DSC2:TXLOB/LIB Use library TXLOB to resolve references
END

The output of the preceding partial Link Edit is included in the following example:
TASK TSK2
INCLUDE DSC2:LNKOUT/OBJ
INCLUDE DSC2:MODA/OBJ
FIND DSC2:TXLOB/LIB

END

3.3.8.2 NOTGLOBAL Command. The NOTGLOBAL command identifies symbols defined in the
current phase as not global. The default is ALLGLOBAL. The command is optional and several
commands may be used in a phase. The syntax for the command is as follows:

NOTGLOBAL [<symbol>] [,<symbol>] [, . . .]

If no operand is specified, all symbols are NOTGLOBAL, except those specified in a GLOBAL
command.

Change 1 3-30 Digital Systems Division

[o]
@ 949617-9701

The command may include several operands, limited only by the maximum size of the record. Each

operand is a symbol not to be processed as a global symbol. The following examples illustrate the
use of a NOTGLOBAL command:

DX10:
PARTIAL
LIBRARY .VOL3.EXAMPS
PHASE 0,0VLAY1
INCL (MODI)
INCL (MOD2)

NOTGLOBAL ENTR3,ENTRS5,ENTR7

END

TXDS:
PARTIAL
PHASE 0,0VLAY1
INCLUDE DSC3:MODC/OBJ
FIND DSC2:TXLIBR/LIB

NOTGLOBAL ENTR,ENTRS,ENTR?
END

The NOTGLOBAL command exempts three symbols, ENTR3, ENTRS, and ENTR7 from the
global definition. These three symbols are local to the phase.

3.3.8.3 ALLGLOBAL Command. The ALLGLOBAL command declares all external definitions in
the current phase to be global symbols. The ALLGLOBAL command only applies to partial links.
‘This command has the same effect as a GLOBAL command with all the symbols of the phase as
operands. The command is optional and requires only the command name, as in the following

examples:
DX10:
PARTIAL
LIBRARY VOL3.EXAMPS
- PHASE 0,O0VLAY1

Change 1 331 Digital Systems Division

[e]
% 949617-9701

INCL (MOD1) —
INCL (MOD2)
ALLGLOBAL
END
TXDS:
PARTIAL
PHASE 0,0VLAYI
INCLUDE DSC3:MODA/OBJ
FIND DSC2:TXLIBR/LIB
ALLGLOBAL h
END

All symbols externally defined (DEFed) in the included modules are externally defined in the output
module.

3.3.8.4 GLOBAL Command. The GLOBAL command identifies symbols defined in the current

phase as global. Note that this command only applies to partial Link Edits and is only used in _—
conjunction with the NOTGLOBAL command. Global symbols are externally defined for the t
module, and may be relinked. For each global symbol, external definition data is included in the

linked object module. The command is optional and, when it is used, the command should be the

last command of a phase. The syntax for the command is as follows:

GLOBAL [<symbol>] [,<symbol>][, . . .] RS

The command may include several operands, limited only by the maximum size of the record. If no
operands are specified, the command functions as ALLGLOBAL. Each operand is a symbol to be

processed as a global symbol. The following examples illustrate the use of the GLOBAL command: ™
DX10:
PARTIAL
LIBRARY VOL3.EXAMPS .)
PHASE 0,0VLAYI ’ ’
INCLUDE (MODI)
INCLUDE (MOD2)
NOTGLOBAL
GLOBAL ENTERI,ENTER2 -
END

Changé 1 3-32 Digital Systems Division

@ 949617-9701

TXDS:
PARTIAL
PHASE 0,0VLAY1
INCLUDE DSC2:MOD1/0BJ
FIND DSC2:TXLOB/LIB
NOTGLOBAL
GLOBAL ENTERI,LENTER2

The GLOBAL command in this example causes the symbols ENTERI and ENTER2 to be

externally defined within the module. Note that the symbols must have been previously defined in an
object module. :

3.3.9 DUMMY COMMAND. The DUMMY command causes the Link Editor to suppress the
linked output for the phase, procedure, or task in which it appears. No linked output is written if the
DUMMY command precedes the first PHASE, PROCEDURE, or TASK command. The syntax of
the command is as follows:

DUMMY
DUMM
The DUMMY command may be used in either of two ways:

e Ifthe DUMMY command precedes the first PHASE, PROCEDURE, or TASK command in
the control file, no linked output is generated for that or subsequent phases. This method is
used when only a load map listing is required, or for error identification.

e If the DUMMY command follows a PHASE, PROCEDURE, or TASK command, no
output is generated for that specific phase. This is appropriate when only a portion of the
linked output is needed, such as linking a new task to a previously installed procedure.

NOTE

In a Link Edit containing two procedures, the second procedure may
be dummied only if the first procedure is dummied.

The followin§ are examples of the use of the DUMMY command to produce a load map listing:

LIBRARY CATA.APPL.OBJ
DUMMY
PROC PROCI
INCL (MODI)
Change 1

3-33 Digital Systems Divisicrn

o
@ 949617-9701

INCL

PROC
INCL
INCL
TASK
INCL
INCL
END

TXDS:
DUMMY
TASK
INCL
INCL
FIND
FIND
END

No linked output would be generated by the above examples.

CATB.APPL.OBJ.MOD2

P2

CS02

(MOD2)

TSK1

(MOD4)
CATB.APPL.OBJ.MOD3

TSK1
DSC3:MOD1/0BJ
DSC2:MOD2/0OBJ
DSC3:TXLIBR/LIB
DSC2:TXLOB/LIB

The following DX10 example illustrates the use of a DUMMY command to link a new task to a
previously installed procedure (PROCI). No output is generated for PROCI, but all references are

resolved.

FORMAT IMAGE

LIBRARY CATB.PROGS.OBJ

PROC PROC1
DUMMY
INCL (MODA)
INCL (MODC)
PROC P2
INCL CATC.APPL.FILEA
. Change 1 3-34 Digital Systems Division

o]
@ 949617-9701

oo INCL (MODB)
TASK TSK2
INCL CATC.APPL.FILEC
END

3.3.10 ADJUST COMMAND. The ADJUST command is used to specify alignment of a phase, or
of a module within a phase. The format of the command is as follows:

ADJUST n

where n is a specified power of two bytes, which must be less than 16. When the operand is omitted
or equal to zero, alignment is on the next word boundary.

Adjustment on a boundary is useful in such areas as diagnostic programming.

- When the ADJUST command appears immediately before a PHASE command, the next phase and
all subsequent phases of the same level and with the same parent node are aligned on the specified
‘boundary, relatjve to the beginning of the program. For example, if the specified adjustment is 2°,
the phase is aligned at the next 32-byte boundary relative to the beginning of the program. The
following is an example of the use of the ADJUST command to align a phase:
PROC Pl
~ INCL VOL1.0BJ.MODI ' '
PHASE O,ROO0T
INCL VOLl..OBJ.MOD2
ADJUST 5
PHASE I,LLEVELI
o INCL VOL2.0BJ.MODA
INCL VOL2.0BJ.MODB
PHASE 2,LEVEL2
INCL VOL2.0BJ.MODC
INCL VOLI1.0BJ.MOD3
PHASE ILLEVELIA
!NCL VOL1.OBJ.MOD4
PHASE 2,LEVEL2A
o~ INCL VOL1.OBJ.MODS5
| END

. Change 1 3-35 Digital Systems Division

[o]
{@ﬁ) 949617-9701

In the example, the phases LEVELI and LEVELIA are aligned on a 32-byte boundary, relative to
the beginning of the program.

When the ADJUST command follows a PHASE command but precedes an INCLUDE command,
the next module in that phase is aligned on the specified boundary, relative to the beginning of the

is the same as when ADJUST precedes PHASE. The following are examples of the use of the

I phase. If ADJUST follows a PHASE command but precedes all INCLUDES in the phase, the effect

ADJUST command to align a module:

DX10:
PRdC
INCL
PHASE
INCL
PHASE
INCL
ADJUST
INCL
INCL
PHASE
INCL
INCL
PHASE
INCL
INCL
PHASE
INCL
PHASE
INCL
INCL

END

J
VOL1.0BJ.MODI
O,ROOT
VOL1.0BJ.MOD4
I,LLVLIA
VOL.OBJ.MOD?2
5
VOL1.0BJ.MOD3
VOL1.0BJ.MOD6
2,LVL2A
VOL2.0BJ.MODI
VOL2.0BJ.MOD2
I,LLVLIB
VOL2.0BJ.MOD7
VOL2.0BJ.MOD6
2,LVL2B
VOL2.0BJ.MODS
3,LVL3B
VOL2.0BJ.MOD4

VOL2.0BJ.MOD3

"Change 1

3-36

Digital Systems Division

(o]
%@ 9496179701

W ' In this example, the module with the pathname VOL1.OBJ.MOD?3 is aligned on a 32-byte boundary
relative to the origin of phase LVLIA.

TXDS:
TASK TSKI1
INCLUDE DSC2:MODB/OBJ
ADJUST 5
INCLUDE DSC3:MODC/OBJ
INCLUDE DSC2:MODE/OBJ
INCLUDE DSC2:MODG/OBJ

-~ FIND DSC2:TXLIBR/LIB

END

The TXDS example causes module MODC to be aligned (started) on the next 32-byte boundary
relative to the beginning of the task.

The specified power of two adjustments can be any decimal number from one to fifteen. A value
greater than fifteen causes an error condition.
(WM 3.4 SYMBOL PROCESSING

The symbol processing commands described in the following paragraphs are those that define how
symbols contained in the object modules are to be handled. Object modules being linked for a DX10
system can have the object module symbol table included in the linked object output module.
Inclusion of the symbol table allows for symbolic debugging of the program by the DX 10 SCI Debug
commands (refer to the DXI0 Operating System Developmental Operations Guide, manual number
946250-9704). Information relative to symbols and symbol tables can be found in the Model 990

Computer TMS 9900 Microprocessor Assembly Language Programmer’s Guide, manual number
943441-9701.

Change 1 3-37 Digital Systems Division

(o)
@ 949617-9701

34.1 SYMT COMMAND — DX10 ONLY. The SYMT command causes the Link Editor to
include the symbol tables from the object modules that are included in the link operation. Note that
the SYMT command has no effect when the image format is selected. Object modules contain
symbol tables only if the SYMT assembler option was used in the assembly. If an overlay structure is
used and SYMT is also used, the SYMT command must appear before the end of the root phase
(phase 0). The object modules produced by the assemblers may include symbol tables consisting of

I G and H tag character fields as described in the Model 990 Computer TMS 9900 Microprocessor
Assembly Language Programmer’s Guide. Figure 3-3 shows two object modules and the symbol
table fields for the modules. To identify the module in which the symbol occurs, the Link Editor
inserts an I tag character followed by a four-character hexadecimal field and an eight-character
decimal field. The syntax of the command is as follows:

SYMT

3.4.2 NOSYMT COMMAND. Specification of the NOSYMT command causes the Link Editor to
omit the symbol tables from the linked object module. The command may appear anywhere in the
control file, except that if an overlay structure is used and NOSYMT is desired, the command must
appear in the root phase (phase 0). The syntax of the command is as follows:

NOSYMT
NOSY

If NOSYMT is not specified, the default condition is SYMT (DX10 only), as previously described.
On TX990, omitting the NOSYMT command causes certain object tags to be included in the linked
output. NOSYMT provides for more compact object code. .
3.5 EXECUTION AND LISTING OPTIONS ' ‘

The commands described in the following paragraphs are those which control the execution of the
Link Editor and define the listing output options. The commands that control the execution include
those that define the format of the output object code and define how errors are to be handled during
execution of the Link Editor. Listing options include the specification of page ejects between the
load maps for each phase, and whether the load map is to be printed. The user is also able to specify
what is to be included in the map listing.

3.5.1 FORMAT COMMAND. The FORMAT command defines the format of the linked output.
Three formats are supported by the Link Editor, as defined by the following:

Normal Tagged Object — Consists of ASCII characters and ASCII control characters (TAGS).
1 Execpt for COBOL programs, this format must be output to a sequential file. Except for
COBOL, the normal tagged object is not executable and must be installed (DX10) or loaded
(TXDS) as a task/procedure/ overlay before it can be executed. COBOL tagged object can be
executed by use of the Execute COBOL Program. or the Execute COBOL Program in
Foreground DX10 System Command Interpreter commands. Normal tagged object format is

generally transportable between 990 computer systems, and can be linked again if generated
using a PARTIAL command.

Change 1 3-38 : Digital Systems Division

949617-9701

INPUT MODULES

MODA MODB
0000 0000
0026 0076
ALPHA —rel GAMMA -abs
0038 0086
BETA —abs SYMZ —rel
006C 0110
ONE - rel LOADSYMB -abs
009A 0120
GOO026ALPHAY HOO7GGAMMﬁ?
Hooaaasfgﬁr GO0086SYMZ
1 HO 1 10LOADSY

GO0 6CONE

LINKED MODULE

0000 MODA

0026
ALPHA —rel

0038
BETA —abs

006C
ONE -rel
MoDB

009C
0076
GAMMA -—abs

0122
SYMZ - rel

0119
LOADSYMB —abs

10000MODA il
GO0 26ALPH

. HOO76GAMMA
(A)1329088B. G0122SYMZ

HO 1 10LOADSY

Figure 3.2. Symbol Table for Linked Object Module g

Compressed Tagged Object — This format is a condensed version of the normal tagged object
and can only be output to a file that supports binary data. Except for this, compressed object is
treated as normal tagged object. Compressed object results in a savings of approximately 47%
of disk space as compared to the normal tagged format. The difference between compressed
and normal object is that in compressed the numeric fields are expressed in binary instead of
ASCIL. Also, in compressed format, the zero tag is used instead of binary ‘01".

Memory Image Format — Memory image format appears exactly as the program appears in
memory and is loaded directly to a DX10 or TXDS Program File or a DXI0 Image File. g

Change 1 3-39 Digital Systems Division

@ 949617-9701

The syntax of the FORMAT command is as follows:

ASCII
FORMAT { COMPRESSED} [.LREPLACE] { <P“°m>’>}}

IMAGE

If the IMAGE format is selected, the user may also enter the REPLACE parameter, which causes
new procedures, tasks, and overlays to replace existing ones, with the same names, in the program
file (defined by the LINKED OUTPUT ACCESS NAME), and the priority parameter defines the
priority (1, 2, 3 or 4) at which the task is to execute, with the default being 4.

In a DX10 system, the IMAGE format can also be used to install the Linked Output on an Image File.
The System Image File is a unique file type in that it contains the loadable image of an operating
system, and is used for the Initial System Load. The System Image File can contain either a DX10
or a TX990 image.

The Link Editor cannot be used to install memory resident, system, or privilégcd tasks on a program
file. These tasks must be installed using the Install Task Supervisor call, or the Install Task System
Command Interpreter command.

The default format is ASCII (Normal Tagged Object).
3.5.2 MAP COMMAND. The MAP command allows the user to control the format of the link
map. The user may specify that only referenced names be listed, or that only names which don't

begin with a specified character string be listed. The purpose of this command is to suppress the
listing of external symbols in runtime library subroutines. The syntax of the command is as follows:

REFS

MAP NO<string>[,NO<'string™][, . . -]

For example, the following shows two uses of the MAP command. The first shows the use of the
MAP command to cause only referenced names to be output in the Link Map listing file, and the

second example shows the use of the MAP command to suppress the listing of names that begin
with ‘S$’ and ‘CXS’.

Example I:

MAP REFS

END

Example 2:

MAP NO'S$’,NO'CXS’

Change 1 3-40 Digital Systems Division

(o]
{@ 949617-9701

o 3.5.3 NOMAP COMMAND. The NOMAP command causes the Link Editor to suppress the load
‘ map listing. The following information is still printed on the list file:

® Length of task and procedure(s)
o Unresolved references
o Release number of the Link Editor

® If the format is memory image and the file is a program file, the number of output records.
The syntak of the command is as follows:

NOMAP

NOMA

s 3.54 PAGE/NOPAGE COMMANDS. The PAGE/NOPAGE commands allow the user to
control the format of the output listing. The PAGE command causes page ejects to separate the
beginnings of the load maps for each phase, and the NOPAGE command specifies that page ejects
do not separate the phases. The default is PAGE. The syntax of the commands is as follows:

PAGE
NOPAGE

fw 3.5.5 ERROR/NOERROR COMMANDS. The ERROR/NOERROR commands allow the user
to specify the way errors are to be handled by the Link Editor. The NOERROR command causes
the Link Editor to terminate processing whenever an error occurs. The ERROR command allows
the Link Editor to continue processing the control commands when an error occurs. In addition, the
Link Editor attempts to recover from the error and to complete the linking operation. Error
recovery consists of not processing the line in which the error occurs. Error messages are generated
for all errors encountered. If the Link Editor is unable to process an INCLUDE command,

processing always terminates. The default mode is NOERROR. The syntax of the commands is as
follows:

o ERROR .
NOERROR

3.6 ABSOLUTE MEMORY PARTITIONING

The commands described in the following paragraphs provide the user with the means to create
program modules that will be run on systems using a combination of Read-Only-Memory (ROM)
and Read/Write memory (RAM). These Link Editor commands allow tHe user to specify the

beginning of a Read Only area, the beginning of the Read/ Write area, and the beginning of common
data areas.

The commands described in this paragraph and the following subparagraphs do not apply to
generating linked output for execution on DX10 or TXDS. These commands are for linking

standalone systems, or those that are linked to the Texas Instruments Execute Only Operating
System (EX990).

Change 1 - 3-41 Digital Systems Division

o
{@ 949617-9701

The Link Editor accepts input object that has been defined as being program, data, or common
segments. Program segments are defined in the assembler by the PSEG directive. Program segments
generally contain instructions and nonvariable data (read-only). Data segments are defined by the
DSEG assembler directive and generally contain variable data (read/write). Data segments are
labelled by the Link Editor as SDATA. Common segments are defined by the CSEG assembler
directive and contain data that may be shared by more than one module.

The high-level language compilers, COBOL and FORTRAN, automatically output code that is
defined as data, program, or common.

The commands provided to specify Absolute Memory Partitioning are the PROGRAM,
COMMON, and DATA commands. When any of these commands are used, the PROGRAM
command must be used. If COMMON or DATA are used without PROGRAM, they are ignored.

Note that the output of the Link Editor cannot be installed in a DX10 system or loaded in a TXDS
system if any of these commands are used.

3.6.1 PROGRAM COMMAND. The PROGRAM command defines the starting location counter
value for program segments. The command may be used more than once, and the first PROGRAM
command must appear before the first INCLUDE command. Note that the PROGRAM command
is specifically designed to allow users to link edit programs for other Texas Instruments Model 990
Computers that’have special memory configurations (combinations of ROM, RAM, and Common
Memory). These programs are executed in a stand-alone environment and do not require the
support of the operating system, or they can be linked to an operating system such as the Texas
Instruments Execute Only Operating System (EX990). The syntax of the PROGRAM command is
as follows: : .

PROGRAM <base>

I where the <base> parameter is up to five digits. A preceding “>" or 0 indicates a hexadecimal value.
The entered value defines the beginning address for program segments. Examples of the command
are as follows:

PROGRAM 01F00 Program segment at location 1F00¢
PROG 01F00 Same as preceding
PROG 7936 Program segment at location 7936,0, or 1F00;s.

Use of the PROGRAM command without the COMMON and DATA command causes a linked
output that is to be loaded at the specified address (base).

3.6.2 DATA COMMAND. The DATA command defines the starting location counter value for
data segments. The command may appear more than once, and the first DATA command must
appear before the first INCLUDE command. If the DATA command is omitted, the starting
location for each data area defaults to the end location of the corresponding program area. This
command can only be used in conjunction with the PROGRAM command and is ignored if used
without the PROGRAM command.

The syntax of the DATA command is as follows:

DATA <base>

Change 1 3-42 Digital Systems Division

[e]
@ 949617-9701

(ﬂ"‘“ ~where <base> is up to five digits. A preceding “>" or 0 indicates a hexadecimal value. Examples of
‘ the DATA command are as follows:
on DATA 01000 Data segment begin at location 10006
DATA 01000 Same as preceding
DATA 4096 Data segment at location 4096 (1000)

3.6.3 COMMON COMMAND. The COMMON command is used to define the starting location
counter value for the specified common data areas. Commons that are to be loaded at the specified
address must be specifically identified within the command. More than one COMMON command
may be used, and a continuation can be performed by repeating the command using a previously
named COMMON instead of a starting location. The named commons are allocated in the order the
definitions appear in the object module. All commons not given a starting location are loaded after
the last data area encountered by the Link Editor during the linking process. Note that the
COMMON command can only be used in conjunction with the PROGRAM command, and it is
P ignored if used alone. The syntax of the command is as follows:

COMMON <base>[,<name>] [,<name>]

where the <bdse> parameter is the starting location of the common area and can be expressed as
either a decimal or hexadecimal number up to five digits long. A preceding “>" or 0 indicates a
hexadecimal value. The <name> parameter is the name of the common, and more than one may be
specified. If no <name> is given, the common data area is loaded after the last data area
encountered: The following are examples of the COMMON command:

(SM COMMON 01000.COMA Load COMA at location 10006
COMMON 01000,COMA Same as preceding
COMMON COMA,COMB COMB immediately follows COMA
COMMON 4096,COMA,COMB Same as preceding two commands.
~

Change 1 3-43/3-44 Digital Systems Division

(o]
@ 949617-9701

1

SECTION 1V

LINK EDITOR EXAMPLES

4.1 GENERAL
This section contains examples of Link Editor runs performed on DX10 and TXDS systems. The

purpose of these examples is to provide the user with a visual reference for the use of the Link
Editor.

The Link Editor functions the same on both TXDS and DX10 systems. Howe'}er, the interfaces with
the user differ between the two systems. Details on operating the Link Editor with DX 10 are given in
Section V, and details on operating the Link Editor with TXDS are given in Section VI.

4.2 DX10 LINK MAP

o The example shown in figure 4-1 illustrates the DX10 format of the output listing generated by the
Link Editor. This example linked three modules to form a task. The three modules are named
SUBTI, SUBRI, and MODX, and the task itself is named LSCAN. All of the modules are files
- within the random library defined by the LIBRARY .LEE.EXO command. This example was
generated on a DX10 system.

Page one in the exampie, titted COMMAND LIST, is the list of the Control Stream used to control
the linking operations. This list is generated at the beginning of each Link Edit. Page two, titled
LINK MAP, lists the parameters entered at the terminal when the Link Editor was activated. This
M page also gives the format of the output from the Link Editor (ASCII in the example).
. e

The last page of the example, page three, is the actual link map. The first line of the listing defines
~ the phase, as shown in the following:

PHASE 0, LSCAN ORIGIN = 0000 LENGTH = 0056

In an overlay structured program, phase 0 is the root, or memory resident, phase. Note, however,
that the TASK command also causes a PHASE 0 definition. LSCAN is the name assigned to the
task by the TASK command. ORIGIN = 0000 specifies that the phase begins at location 0000,

i relative to the beginning of the program. The origin of phase 0 (whether specified by a PHASE ora
TASK command) is always a multiple of 32-bytes, as is the origin of a second procedure on a two
attached procedure Link Edit. For example, if a Link Edit consisted of two procedures, each eight-
bytes in length, and a task (phase 0), the origin would be as follows:

Procedure One — 0000

Procedure Two — 0020

Phase 0 — 0040
When the PROGRAM command is not used, the Link Editor output is relocatable and the origin of
each program is defined as being 0000. The PROGRAM command specifies an origin. LENGTH =

005616 specifies the actual number of bytes of memory required to hold the phase.

The next line of the listing is the heading for the module definition. The entries below the heading
o~ define each module included in the phase. The heading line is as follows:

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

4-1 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 936060 V2 B4/26477 13

I:a@: 51 PAGE 1
COMMAND LIST .
TASK LSCAM
LIBRARY .LEE.EXO
INCL .SUBT1
INCL .SUBR1
INCL .MODX
END
TI 990/10 SDSLNK 936060 V2 34/26/77 13:46:51 PRGE 2
LINK MAP ‘

CONTROL FILE = .LEE.EXC.MODCOM

LINKED OUTPUT FILE = DUMY

LIST FILE = . LEE. LST

OUTPUT FORMAT = ASCII

TI 990/10 SDSLNK 936060 V2 84/26,77 13:48:51 PAGE 3

PHRSE 8. LSCAM ORIGIN = 9808 LENGTH = @856 .
]

MODULE MO ORIGIN LEMGTH TYFE DATE TIME CREATOR

SUBTL 1 [laTa5) GBI INCLUGE B4/26/77 13:27:49 SDSMAC

SUBR1 z BE3Y Beac INCLUDE 04/26/77 13:329:29 SDSMAC

MOD 3 OE4A BE16 INCLUCE B4/ 26/7T 13:33:35 SDSMAC

CEFINITIONS
NAME ~ VALUE NO NAME YALUE MO MNAME VALUE NO MAME VALUE NO
DCSAMP 0@2A 1 DCSRET 992C % DCPTX BO2E 1 +MODX @840 3
*SUBRL @034 2 +SUBTL 0008 1
UNRESOLYED REFEREMNCES
NAME COUNT NO NAME COUNT NGO NAME COUNT NO NAME COUNT NO
suBR 1 1

#okdok LINKING COMPLETED

Figure 4-1. Linked Map Example

4-2 Digital Systems Division

[o]
{—@p 9496179701

a These entries are defined as follows:
MODULE — Specifies the names of the modules included in the phase.

NO — Specifies the number of the module within the phase (used for reference in other parts of
the Link Map).

ORIGIN — Defines the beginning of the module relative to the beginning of the program.
LENGTH — Specifies the length of the module, in bytes.

TYPE — Specifies the method by which the module was included in the phase; i.e.,
INCLUDE, FIND, SEARCH command.

DATE — The date the module was created, if present (some assemblers do not supply this
information). '

= TIME — The time the module was created, if present (some assemblers do not supply this
information).

CREATOR — The assembler or compiler that generated the module (SDSMAC, FTN990,
etc.).

The next section of the listing has the following heading:
DEFINITIONS
fm« NAME VALUE NO NAME VALUE NO NAME VALUE NO

The entries under these headings describe all external definitions (DEFs) in the phase and have the
following meanings:

NAME — The symbol specified by the DEF statement
VALUE — The address within the phase associated with the symbol
P NO — The number of the module within the phase in which the symbol is DEFed.
Names that are DEFed within the phase but not referenced (REFed) within the program are

preceded by an asterisk (*). Symbols that are self-defining (i.e., absolute) are identified by a trailing
asterisk (*).

The final section of the listing defines any references that are unresolved w1thm the phase. The
heading appears as follows:

UNRESOLVED REFERENCES

NAME COUNT NO NAME COUNT NO NAME COUNT NO

with the entries under these headings having the following meanings:
NAME — The symbol that was referenced and could not be found
f@"‘ COUNT — The number of times the symbol was referenced

NO — The module within the phase in which the reference occurred.

4-3 Digital Systems Division

[o]
@ 949617-9701

Unresolved references cause a warning message to be output at the end of the link map. The message
is of the form:

n WARNINGS
where n is the number of unresolved references.
NOTE

Partial link edits do not produce a warning message for unresolved
references.

The end of the Link Edit processing is indicated by the following message:
**»* LINKING COMPLETED

4.3 LINK EDITOR EXAMPLES — DX10
The following paragraphs contain examples of Link Edits on a DX10 system. Provided for each

example is the complete Link Map, as described in paragraph 4.2, and the parameters entered when
the Link Editor is called from a VDT.

4.3.1 SINGLE TASK, NO PROCEDURE EXAMPLE. The example shown in figure 4-2 illustrates

the use of the Link Editor to build a task consisting of two modules with no attached procedures.
The parameters entered in response to the prompts presented at the VDT are as follows:

XLE : .
EXECUTE LINKAGE EDITOR '
CONTROL ACCESS NAME: .LEE.EXC(TESTX)
LINKED OUTPUT ACCESS NAME: DUMY
LISTING ACCESS NAME: .LEE.TESTXL
PRINT WIDTH: 80

Note that no linked output is created since the output access name default, DUMY, was accepted.
The default value was also used in response to the LINE WIDTH prompt.

The control stream defines the task name as being RANDOM, with files TESTX and SORT
included by use of the INCLUDE command. The default format, ASCII, is used.

The Link Map shows that PHASE 0, RANDOM, begins at address 0000, (relative to the beginning
of the program) and has a length of 005Es bytes. Module TESTX is 32,6 bytes in length and begins

at relative address 0000, and module SORT is 2Ci¢ bytes in length and begins at relative address
003256.

Only one external definition, TESTX, is made.

44 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 936060 V2 B4S26-°TF AZ:AV 3T PAGE 1
COMMAMD LIST

THEK RANDOM

INCLUDE . LEE. TEST®
INCLUDE . LEE. SORT
EMD

Tl 990/10 SDSLNK 936060 V2 B4/26°77 13:17:2

T PAGE 2

LIME MAF

CONTROL FILE = .LEE.EXC.TESTX

LINKED OQUTFUT FILE = DUMY '
LIST FILE = . LEE. TESTHL
OUTPUT FORMAT = RASCII

TI 990710 SDSLNK 9346060 V2 B4/28/FY 124V 2T FPAGE =
PHASE &. RAMNDOM ORIGIN = 9808 LENGTH = @9SE
MODULE M ORIGIM LEMGTH TYFE DRTE TIME CREATOF
TEST=® 1 [afalals BRzZ INCLUDE B4/26/7T 13:99:23 SDSMAC
SORT 2 aRzz aazc INCLUDE =5 Yol Varury 13:12:48 SDSMAC
CEFIMITIONS
MAME YALUE HO MFAME YALUE MO HMAME YALUE MO NAME VALUE NO

TESTH aaeE 1

soksok LINKING COMPLETED

Figure 4-2. Single Task, No Procedure Example

4.3.2 TASK WITH TWO ATTACHED PROCEDURES EXAMPLE. The example shown in
figure 4-3 is a Link Edit for a program having a task, CONTRL, and two attached procedures,

TABLE and ROUT. The parameters entered when the Link Editor is activated from the VDT are as
follows:

XLE
EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: .LEE.EXC9(TWOP)
LINKED OUTPUT ACCESS NAME: DUMY
LISTING ACCESS NAME: .LEE.LST

PRINT WIDTH: 80

4-5 Digital Systems Division

949617-9701

TT 990/10 SDSLNK 936060 V2 B84/26/77 14:09:46 . PAGE i
COMMAND LIST

LIBRARY .LEE.EXO
PROCEDURE TABLE
INCL « ALPHA

PROC ROUT

INCLUDE .BETA

TASK CONTRL

"INCL . TGAMA

END

,T1 990/10 SDSLNK 936060 V2 84/26/77 14:09:46 . PAGE 2
‘LINK MAP ’

CONTROL FILE = .LEE.EXC.TﬁOP
LINKED OUTPUT FILE = DUMY
LIST FILE = . LEE. LST

OUTPUT FORMAT = RSCII

TT 990710 SDSLNK 936060 V2 04/26/77 14:099:46 PAGE 3

FROCEDURE 1. TABLE ORIGIN = 9886 LENGTH = 9608

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

ALPHA 1 6000 0008 INCLUDE 04/26/77 13:32:087 ' SDSMAC

DEFINITIONS
NAME VALUE NO NAME VALUE MO MNAME YALUE NO NAME YALUE NO

- M$A o600 1 M$B 0982 1 M$C geod 1 M$D geec 1

Figure 4-3. Task With Two Attached Procedures (Sheet 1 of 2)

4-6 Digital Systems Division

949617-9701

/1 990/10 SDSLNK 936060 V2 B4/2€/77 14:89:46

PAGE 4
PROCEDURE 2. ROUT ORIGIM = 6629 LENGTH = 96883
MODULE MO DRIGIN LENGTH TYPE DATE TIME CRERTOR
BETA 2 =928 seas INCLUDE B4/26/77 13:54:44. *SDSMAC

DEFINITIOHNSESC

MAME WALUE HO MAME YALUE WO MAME VALUE MO MAME VALUE NO

EFAX |aaze 2 +*BEBY wezs 2

TI 990/10 SDSLNK 936060 V2 B4/26/77 14:09: 48

PHASE @, COMTRL ORIGIMN = 9248 LEMNGTH = ©0zC

PRGE S

MODULE MO ORIGIM LENGTH . TYPE DATE TIME CREATOR

TGAMA =z eadE |z INCLUCE 84/26/77 14:65

#okdck LIMKIMNG COMPLETED

Figure 4-3. Task With Two Attached Procedures (Sheet 2 of 2)

128 SDSMAC

4-7

Digital Systems Division

o
%@ 949617-9701

Note that within the Control Stream, the procedures are defined before the task. On the Link Map,
the procedures are also presented first. Page three of the example contains the Link Map for
PROCEDURE 1, TABLE, which has an origin at relative address 0000 and a length of eight bytes.
One module, ALPHA, is included in TABLE and it is taken from random library .LEE.EXO.

PROCEDURE 2, ROUT, is shown in the Link Map on page four of the example. ROUT consists of
one module, BETA, has a relative origin of 00206, and a length of eight bytes. BETA is specified by
an INCLUDE command and is read from the random library .LEE.EXO. Note that BETA contains
one external definition, BSBY, that is not referenced.

PHASE 0, shown on page five of the example, is defined by the TASK command and is named
CONTRL. CONTRL consists of one module, TGAMA, specified by the INCLUDE command and
read from the random library. CONTRL has an origin at relative address 00405 and a length of 3C6
bytes. CONTRL contains no external definitions.

The output format of the Link Edit is ASCII. The two procedures have to be installed in the DX10
system by the Install Procedure SCI command before the task is installed by use of the Install Task
SCI command.

4.3.3 TWO PROCEDURE EXAMPLE. The example shown in figure 44 performs the same link
“as that shown in figure 4-3. The difference in the two occurs in the Control Stream. Figure 4-3 uses
INCLUDE commands that specify ALPHA, ROUT, and TGAMA, whereas figure 4-4 uses
INCLUDE commands that specify X, Y, and Z. However, note that the link maps (pages 3,4,and 5
of figure 4-4) show that the modules ALPHA, ROUT, and TGAMA are included in the linked
output. .
The purpose of this eXample is to show that the names specified by the INCLUDE commands do
not have to be the same as the module name. In this example, module ALPHA is a File X, which is a
part of the random library specified by LIBRARY .LEE.EXO. In other words, File X consists of
one module named ALPHA. Similarly, file Y contains only module ROUT, and file Z contains only
module TGAMA. The file names, not the module names, are specified.

4.3.4 OVERLAY LINK EDIT EXAMPLE — DX10. The listing shown in figure 4-5 illustrates the
Control Stream, Link Map, parameters and structure required to produce an overlay structured
program. Automatic Overlay Loading is not used in the example.

The overlayed program consists of seven modules and three levels. The procedure, XSSAM, begins
at relative location 0000. Phase 0, TSCAL, is specified by the TASK command, consists of one
module, ROOT, and begins at relative address 0040;6. PSONE and T$CAL are always memory
resident when the task is active.

The program uses four overlays, two at level one and two at level two. The level one’ phases are
OSONEA, which consists of the module MODI1, and OSONEB, which consists of modules MOD4
and MODDAT. Both phases begin at relative locations 0090¢. Note that only one of these phases
can be in memory at one time, and they are mutually exclusive.

4-8 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 936060 V2 A4/26-77 14:18:35 PRGE 1
COMMAMD LIST :

LIBRARY .LEE.EXQ
PROCEDURE TABLE
INCL - X

PROC ROUT

INCLUDE .vY

TASK CONTRL

INCL .z
END

TI 990/10 SDSLNK 936060 V2 B4/26/77 14:185:35 PAGE
LINK MAP

CONTROL FILE = .LEE.EXC.TWOP
LINKED QUTPUT FILE = DUMY
LIST FILE = . LEE. LST

OUTPUT FORMART = RSCII

TI 990/10 SDSLNK 936060 V2 B4/26/77 14:18:35 PAGE =

PROCEDURE 1, TRELE ORIGIM = 9008 LENGTH = 980&

MODULE NO ORIGIN LENGTH TYPE DRTE TIME CREATOR

ALPHA 1 221 %] 2083 INCLUDE 84/26/77 13:52:07 SDSMAC

DEFINITIONS
NAME YALUE NO NAME VALUE NO NAME VALUE MO NAME YALUE MO

. ®
M$R 8808 41 M3$B ez 1 M$C 0884 1 MeD 8065 1

Figure 4-4. Two PROC Example — DX10 (Sheet 1 of 2)

Digital Systems Division

949617-9701

Tl 990/10

A

SDSLNK 936060 V2

LINKING COMPLETED

Figure 4-4. Two PROC Example — DX10 (Sheet 2 of 2)

94/26/77 14:18:35 PAGE 4
PROCEDURE 2. ROUT ORIGIN = 8828 LENGTH = 8083
MODULE NO ORIGIN LEMGTH TYPE DATE TIME CREATOR
BETA 2 aRze aoas IMCLUDE a4/26/77 12:54:44 SDSMAC
CEFIMNITIONS
MAME WARLUE NGO NAME WALLUE MO MAME YALUE MO NAME VALUE NO
B#AX aaze 2 +*BSBY aegs 2
TI 990/10 SDSLNK 936060 V2 B4/2E/TF 14:18:35 PAGE S
13
PHASE @. CONTRL ORIGIN = 8848 LENGTH = 903C
‘MODULE MO ORIGIM LENGTH TYPE DATE TIME CREATOR
TGAMA 3 9848 @a3C INCLUDE B4/26/77 14:95:28 SDSMRAC

4-10

Digital Systems Division

TI 990/10 SDSLNK 936060 V2 B4./26,"
COMMAMND LIST

~§
-1

15:47: 24 PAGE 1

PROCEDURE P$0OME
IMCLUDE . LHO. “S3AM
TRSK T#CAL

IMCL . L¥0. T$ROOT
PHASE 1. O$ONEA
INCL . L¥0. Ov1A
PHASE 2, 0$TWOA
INCL . LKO. OvZR
PHRSE 2, O$TWOB
IMCL . LH0. ovaB
PHRASE 1. O$0OMEB
INCLUDE . LX0. O¥1E
IMCL . L0, O¥1BD
EMND

TI 990/10 SDSLNK 936060 V2 94/26/77 15:47:34 PRGE
LINK MAP .

COMTROL FILE = . LX. CON
LINKED OUTPUT FILE = DUMY
LIST FILE = . LX LST

QUTPUT FORMAT = ASCII
TI 990/10 SDSLNK 936060 V2 a4/26/77 15:47:24 PRGE 3

PROCEDURE 1. P$ONE ORIGIM = 80080 LENGTH = Q@3E

MODULE NO DRIGIM LENGTH TYPE DATE TIME CREATOR

HSEAM 1 [0 1) BazE INCLUDE B4/26/°77 14:34:03 SDSMAC

DEFINITIONMS
NAME VALUE NO NAME YALUE MO MAME YALUE NO HAME VRLUE NO

D$ROT aaz4 4 S¥$ASD a0ea 1 S¥FGH Bseez 1 S$JIKL e8eC 1
S$ZKC wezZe 1

Figure 4-5. Overlayed Program Example (Sheet 1 of 3)

Digital Systems Division

9496179701

TI 990/10 SDSLNK 936060 V2 B4/°26/FF 15:47:24 PARGE 4
PHRSE 8, T$CAL ORIGIN = 0648 LENGTH = @6R@

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREARTOR
ROOT 2 0E40 8858 IMCLUDE 04./26/77 15:28:37 SDSMAC
TI 990/10 SDSLNK 936060 V2 - ©4./26/77 15:47:34 PAGE S
PHASE 1. O$0ONEA ORIGIMN = 6096 LENGTH = 0928

MODULE NO ORIGIN LENGTH TYPE DRTE TIME CREATOR
Mop1 3 26950 8pz8 IMCLUDE 04/26/77 15:25:44 SDSMAC

CEFINITIONS
MAME YALUE NO MAME YALUE MO NAME YALUE MO HAME VALUE NO

SUBR1 8@ss =

TI ?90/10 SDSLNK 936060 V2 84/26/77 415:47:34 PAGE €

PHASE 2, O$TWOA ORIGIN = 88B8 LENGTH = 0028

DATE TIME CREATOR

.MODULE NO ORIGIN LENGTH TYPE
SDSMAC

‘MODZ 4 20B8 0028 INCLUDE 84/26/77 15:21:12

i
DEFINITIONS

NAME VALUE NO NAME VYALUE NO MAME YALUE MO NAME VALUE NO

SUBR2 eeBg 4

Figure 4-5. Overlayed Program Example (Sheet 2 of 3)

412 Digital Systems Division

949617-9701

TI 990/10 SDSLNK 936060 V2 B4/ZESTT 1547134 FRGE 7
FHASE 2. O$TWOE ORIGIN = GOBS LENGTH = 968238
MODULE MO ORIGIN LENGTH TYFE DRTE TIME CREATOR
MoDp3 = asBe Baz3 INCLUDE B4/26/77 15:31:58 SDSMAC
/
) DEFINITIOQONS
1
MAME VALUE MO MAME WALLE NO MAME YALLE WO MAME VYALUE NOQ
SUBRZ asBs S
TI 990/10 SDSLNK 936060 V2 B3/26A/77 15:47:3 PRGE 8
/W““ FHASE. 2. OFONER ORIGIMN = G898 LENGTH = @834
MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
Mob4 & 2293 aezc INCLUDE 84-26/77 15:48:57 SDSMAC
MODDAT v 8aeC o303 INCLUDE B4/26/7T 15:47:146 SDSMAC
DEFINITIOMNS
MAME YALUE NO MAME YARLUE MO MAME YALUE NO NAME VALUE NO
& SUBR4 8028 & TRBLE aeBc ¥

L ek

LINKING COMPLETED

Figure 4-5. Overlayed Program Example (Sheet 3 of 3)

4-13

Digital Systems Division

@ 9496179701

The level two phases are O$TWOA, which consists of module MOD2, and O$TWOB, which
consists of module MOD3. Both phases begin at relative address 00B8;¢ and the two phases are
exclusive. Note that when either phase OSTWOA or O$TWOB is called, phase OSONEA must be-
in memory.

The total memory requirement for this program is the total of the requirements for PSONE, TSCAL
and the longest overlay path, which is OSONEA and either OSTWOA or OSTWOB (these two
phases are the same length). Therefore, the total memory required is 224 bytes. If overlays were not
used and the entire program was in memory at one time, the memory requirement would be 314
bytes.

The user sﬁould note that the LENGTH specified for PHASE 0 is the length of the longest overlay
path. In this example, the longest path consists of TSCAL, OSONEA, and either OSTWOA or
OS$STWOB.

igure 4-6 illustrates the use of the Link Editor to link task named TICFAC-THe

INCLUDE command”speGiftes~+hat_{he file_with. the-pattifific DSCZTICTAC/ OBJ is to be
included. OBJ indicates that it.is-an-objet modue-file, One FIND command is used to specify the
sequentiattibtary :TXLOBJ/LIB which is the TXDS FORTRAN FURtHHE HHTarym. _

44 TXDS EXAMPLES ,
The following paragraphs contain examples of link edits on a TXDS system. Provided for each
example is the complete link map, as described in paragraph 4.2.

4.4.1 SINGLE TASK,NO PROCEDURE EXAMPLE. The example in figure 4-6 illustrates the use
of the Link Editor to link a task named TICTAC. The INCLUDE command specifies that the file
with the pathname DSC2:TICTAC/OBJ is to be included. OBJ indicates that it is an object module
file. One FIND command is used to specify the sequential library :TXLOBJ/LIB which is the TXDS
FORTRAN runtime library.

4.4.2 SINGLE TASK WITH OVERLAYS EXAMPLE. The example in figure 4-7 illustrates the
use of the Link Editor to link a task named LOVMTST. A FIND command is used in every PHASE
so all FORTRAN references can be resolved. The FIND is needed for automatic symbol resolution
within a PHASE. The FIND can be removed from phases D, E, F, G, H, and I since no FIND
modules are included in them.

Change 1 ' 4-14 Digital Systems Division

949617-9701

TI TXDS TXSLNK V1 05/02/77 16:05:04 PRGE 1
COMMAND LIST

NOSYMT

TASK TICTARC

FORMAT COMPRESSED
INCLUDE DSC2:TICTRC/0BJ

FIND :THM.OBJ-/LIB
END

Tl TXDS TXSLNK V1 05/02/77 16:05:04 ') PRGE 2
LINK MAP

CONTROL FILE = LOG

LINKED OUTPUT FILE = DSC2:PROG/0BJ
LIST FILE = LP

OUTPUT FORMAT = COMPRESSED

Figure 4-6. TXDS Example (Sheet 1 of 3)

Digital Systems Division

o

949617-9701

TI THDS

FHASE 8,

MODULE

SMAIN
$DATA
F$XPRE
F$XLOG
FSRINP
F$RFZ
F$RFTS
F$FINP

_F$XIOF

i FSREVP
NRRST
F$XVFB
F$XLIO
F$RPRE
F$XFCB
F$RCGO
F$RBUF |
F$RMSG
FSXLWS
F$XTBL
F$ERRC
F$XERR
F$XFTL
F$XRST
F$RWRK

NAME

*$MAIN
*ASBTCA
*ASETCA
*F$ERST
F$FCOL
*FSFDIT
F$FEOL
F$FIOL
F$FLUS
F$FRER
F$FRFR
F$FUE
F$ILOG
F$PRB
F$RCGO
*F$RDOL
*F$REUS
FSRFI
F$RFSI
*F$RFUS

85/02/77 16:05:04

ORIGIN LENGTH

85306
@0E2
004A
0893
0a7v4
03256
B0ER
=1=17 13
8123
860C
0061
8237
B8O1A
889A
06Cs
8032
808C
815B
08B6
B1E6
013C
B06R
8005
0ea2
914C

DEF
NAME VALUE
ASBBUF 0124

A$BWK1 28952
F$ASAD 0©BB6*

28 +F$FACC ORSA

F$FCUS ©CSA
F$FDOL BCFS
F$FEUS OCSE
F$SFIUS ©CSe
F$FRE BRA4
F$FRF BABC
F$FROL GCEA
F$FWER GRA7VA
F$LSTA ©001x*
F$R16A 0©O14*

15 *F$RCOL B67A

THSLNK ¥4
TICTAC
NO
1 6000
1 24DE
2 8530
2 a57h
4 BE0E
s 0682
6 @sD8
7 8A42
8 1548
9 166C
18 1678
11 16DA
12 1912
©13 192C
14 139C6
15 41ASE
16 1ACO
17 1B4C
18 1CA8
19 4DSE
28 1F44
21 2080
22 2e8A
23 209
24 2092
VALUE NO
ecee 1
@11C* 24
B11E% 24
1FCE
8006 7
BR46 7
@ccA 7
@cBC 7
@CRE 7
@R92 7
OARR 7
6RSG 7
210A 24
0002% 13
1ASE
0672 4
@64A 4
0682 5
epss 7
P64E 4

*F$RDUS 8656

F$REVP 4166C
F$RFL 97R6
F$RFSR 1406
F$RFWB ORAZE

ORIGIN = 0000 LENGTH = 22C0

TYPE DATE
INCLUDE 84./21/77
FIND 04/13/77
FIND 84/13/77
FIND 04/13/77
FIND 84/13/77
FIND 04/13/77
FIND 04/13/77
FIND 84/13/77
FIND 84/13/77
FIND 04/13/77
FIND 04/13/77
FIND 84/13/77
FIND 04/13/77
FIND 04/12/77
FIND 84/13/77
FIND 04/13/77
FIND 84/13/77
FIND 84/13/77
FIND 84/13/77
FIND 04/412/77
FIND 84/13/77
FIND 04/13/77
FIND 84/13/77
FIND 04/13/77
INITIONS
NO NAME VALUE NO
24 ASBFCB ©118% 24
24 ASEFCB ©11R* 24
i3 F$ERRC 1F44 20
7 *F$FACD BASE 7
4 F$FDEN ©RA74 7
7 F$FDUS @Ccs8C 7
7 F$FFOL ©eCD8 7
7 F$SFLAG 08085+ 13
7 F$FREB ORSE 7
7 F$FRFB BRB6 7
s F$FRUS OCPE 7
7 F$FWF ©ABC 7
13 FSLUNO @e8e* 13
24 F$R10B O13A* 24
4 *FSRCUS B6SE 4
4 *F$RENN ©GOE 4
S F$RFFD 4136C 7
S *F$RFOL ©@66A 4
7 F$RFSW 413A2 7
6 F$RFWD 12E4 7

Figure 4-6. TXDS Example (Sheet 2 of 3)

PAGE 2

TIME CREATOR
15:46:13 FTNS90

89:20:12 SDSLNK
©9:20:38 SDSLNK
@9:22:25 SDSLNK
@9:22:55 . SDSLNK
©9:24:18 SDSLNK
©9:24:37 SDSLNK
©9:30:32 SDSLNK
@9:36:82 SDSLNK
@9:36:27 SDSLNK
@9:36:53 SDSLNK
@9:37:25 SDSLNK
@9:37:5@ SDSLNK
13:05:58 SDSLNK
©9:38:36 SDSLNK
©9:47:47 SDSLNK
©9:48:13 SDSLNK
©9:48:414 SDSLNK
©9:49:88 SDSLNK
10:20:48 SDSLNK
18:21:15 SDSLNK
1@:21:44 SDSLNK
18:22:06 SDSLNK
10:22:32 SDSLNK

NAME VALUE NO

ASBPRB 0120% 24
ASEPRB 0122% 24
F$ERRS 1F4A 20
F$SFCBE ©00f» 13
*F$FDIS OR42
F$FENN ©R6R
F$FFUS @CeC
F$FLOL @D1R
F$SFRED ©R98
F$SFRFD ©RBO
F$FSIO 0©D88
F$FWFR ©BA86
FSNAME ©0008*
F$RBUF 41AC4
*F$SRDEN 8612
*F$REQL 0666
F$RFFQ@ OGRG6
F$RFRW 12F4
FS$RFTS 0SD8
F$RFZ ©@8@ecC

NN

UANGA S SRR NNNNNN
W

4-16

Digital Systems Division

949617-9701

TI TXDS THKSLNK i u5/02/77 16:65.94 PRGE 4
NAME YALUE NO NAME VALUE NO NAME YALUE MNO MAME YALUE NO
FSRIOL @652 4 FE$RIUS 6546 4 F$RLOG ©146+« 24 *FERLOL B575 4
F$RLPZ Bi148% 24 *F$SRLUS BESA ¢ F$RMSZ 08E4* 13 F$RPRE 132C 413

F$SRPRM B1EG* 19 *F$RRE w632 4 +«F$RREB B62E 4 «F$RRED 9252R 4
*F$RRER B626 4 *F $RRF Bed42 4 *F$RRFE ©O6ZE 4 *FERRFD BE3A 4

F$RRFR ©636 4 +*F$RROL ©66E 4 *F$RRUZ 8652 4 F$RSIO B5FE 4
F$RTFG 28BRA 24 F$RVFE 0028+ 24 F$RYP2 ©O2A* 24 *FSRWE BE1A 4
*FSRWER 0616 4 F$RWF 622 4 +*F$RWFR B61E 4 F$RWRK 2094 24

F$STAT ©804% 413 *FERASN 0020% 13 F$<BCH 866C* 1& *F$xBCS BleA* 2
F$XBFS ©088% 16 *F$XBUI 1813 @& *F$4BUD 16864 3 *FEACAL 1F43 19
F$XCPX OB6E* 18 F$KXCPY ©870% 18 *F$XCRR @621+ 18 #F$XEOF 1SFA 3
F$XERR 2080 21 F$XFCB 15C6 14 F$<FCE 41ASE 14 «F$KFND 1600 8
*FSXFOP 0022% 18 F$XFTL 288R 22 F$XLIO 1312 412 F$XLOG B57A 3
F$XLWS 41CAR8 18 F$XMES ©073% 18 *F$XOPN @022% 13 F$XFER 00&0* 18
F$XPRE ©S38 2 *F$XPSE 19B4 13 F$XRED 41548 8 F$XRST 2690 23
*F$XRWD 1SE2 8 *F$XSA1L B111% 24 *F$XSA2 G112% 24 *FEXSAS 0113+ 24
*F$XSA4 B1i4# 24 *F$XSAS ©0115% 24 *F$ZSAE6 B116% 24 *FEXSA? B117* 24
F$XSER BO3E 18 *F$XSTC 018C+ 24 *F$XSTL BG10E+ 24 *F$XSTP 49BC 413
*FSXSVC 06110% 24 F$XTBE 41F2E 19 F$XTBL 4DSE 19 *F$XTID 1F41 19
*F$XTRA 4SDA 8 *F$XTRM 862C* 18 *F$XKVBF 0109% 24 *F$XVCC BBFB* 24
*FSXYCH 0184% 24 *F$XVCL BQOFF* 24 *FEXVYCO OBFCH* 24 F$XVFB 16DE 11
*FSXVYRC 0102+ 24 *F$XVRO OOFE* 24 *FEXVST BOFD* 24 *FEXVSY BOFA* 24
F$XVWS 21BA 24 F$XWRT 1566 8 G$XE@L 1B4C 17 *G$XEO2 41BSF 417
*GEXEBZ 1B74 17 *G$XEO4 1B86 17 #GSKEGS 41BS? 17 *G$XEQE 1BA8S 417
G$XEGS 1BBA 17 G$KEOGS 1BDC 417 +*G$XE18 1C89 417 G$XE1l 41C24 417
G$XEL2 1C3F 47 G$KXELZ 1CS7 47 G$XE14 1CS5 17 N$COLS B8186% 24
NSLINS ©168% 24 NERRST 41678 1@ P$ABUF ©BR66* 1= P$CCNT @6eR+* 1=
P$ERR 0801% 13 P$EACN @816+ 13 «PSLFIL ©8/11% 13 P$LIBF 9010% 13
PSLLRL ©8812% 13 P$LPRL ©8814% 13 PSLUN DEOzx 13 P$OP BoE2* 13
P$PFCB 0018% 13 *P$PRB BapEx 413 P$PRBE B61A* 13 *P$RECL @88D* 12
P$SREC2 ©OBBE 13 P$RECL 0888+ 12 *P$RES 888C+ 13 *PESFLG B0o04* 13
P$SVYCO ©080 13 P$UFLG 0065+ 13 *S$APRB 183C 11 *S$O0PEN 187A 11

*wotk LINKING COMPLETED

Figure 4-6. TXDS Example (Sheet 3 of 3)

Change 1 4-17 Digital Systems Division

949617-9701

TI THDS

THSLMK 229372

COMMAMD LIST

MNOSYHMT
NOFHRGE

FORMAT IMAGE
TASK LOVMTST

INCLUDE DSC
LORLD

FIND DsCz2:

PHASE 1.A

INCLUDE DsC:
FIND DSCc2:

PHASE 2.D

INCLUDE DSC:
FIND DSC2:

PHRASE 3. G

INCLUDE DsC:
FIND Dscz:

PHASE 3. H

INCLUDE DSC:
FIND Dscz:

PHASE 3, 1

INCLUDE DSC:
FIND Dscz:

PHRSE 2. E

INCLUDE D:=C:
FIND Dscz:

PHASE 2., F

INCLUDE DSC:
FIND pscz:

PHASE 1.B

INCLUDE DSC:
"FIND Dscz:

PHRSE 1.C

INCLUDE DSC:
" FIND DeC2:

END

MAIN
THLOBJALIB

SUBR
TALOBJALIEB

SUED
TALOBJALIB

SUBG
THLOBJ-LIB

SUBH
TALOBJI/LIE

suBl
TRLOBJALIEB

SUBE
TALOBJ-LIB

SUBF
TXLOBJ-LIB

IFUNC
TKXLOBJ/LIB

SuBC
TXLOBJALIE

Figure 4-7. TXDS Examples With Overlays (Sheet 1 of 7)

PRGE i

Change 1

4-18

Digital Systems Division

949617-9701

TI THES THELNK 939872 *RA pi/86-.68 ©B:93:59 PAGE 2
LINK MAP

CONTROL FILE = DSC:LOVMACTL
LINKED OUTPUT FILE = DSC:LOVMA/SYS
LIST FILE = LF

MUMEBER OF OQUTPUT RECORDS 56

OUTPUT FORMAT = IMAGE

28068 LENGTH = 252E CTASK ID = 1)

PHASE 8. LOVMTST ORIGIN

MODULE MO ORIGIN LENGTH TYPE DATE TIME CREARTOR
SMAIN 1 2117 o182 IMCLUDE 89/28/77 16:22:15S FTNSSG
$DATAH 1 iDbze BBza .

LE$OVM 2 @168 8175 INCLUDE 18-24./77 19:35:28 SDSMAC
$CATA 2 1058 BevE

F$XPRE 3 B27E 8718 FIND 12/°22/77 88:4@:18 SDSLNK
$DATA 2 10C8s 81CE

FSREVP 4 g99es BRac FIMND 11/81/77 19:24:49 SDSLNK
F$RIMP S B9Rz anv4 FIND 11/01/77 21:21:26 SDSLNK
FSFINPTK & B8A16 vBBSs FIND 11/81/77 «22:87:13 SDSLMNK
F$AI0OF 7 1541E B81Z=C FIND 11/81/77 21:28:28 SDSLNK
FEXREL =1 165A B91A FIMD 12/01.°77 16:18:24 SDSLNK
F$FLT) 1674 o0R4 FIND 11/91/°77 139:328:27 SDSLNK
F$PASR 16 ivie az60 FIND 11/°81-77 19:34:48 SDSLNK
F$FIX 11 1R78 88C4 FIND 11/°61/°77 19:37:49 SDSLMNK
F$ERRC 1z iB3C B13C FIND 11-01/77 28:55:28 SDSLHNK
F$XERR iz i1C78 ' BBBA FIND 11/01/°77 21:26:22 SDSLNK
F$ATBLTX 414 icez BoBoe FIND 11/,91/77 22:13:21 SDSLNK
$DRTA 14 iF9¢ B1EB

FEXFTLT® 45 1C82 21215) FIND 11/81/77 22:11 :44 SDSLKK
F$XFCB 1e icee 2157 17) FIND 11/81/77 21:26:5¢ SDSLNK
$DRTR 16 2176 Becs

F$RBUF i7v icss oo FIND 11/84/°77 24:04:43 SDSLMK
$DATH 17 223E BasE

FEXRST 18 icze BoB2 FIMND 11/01/77 19:25:45 SDSLHMNK

DEFINITIGOGNS

NAME - WYALUE NO NAME VYALUE NO NAME YALUE NO NAME VALUE MNO
$MAIN Bvees 1 *RA$BBUF B126% 2 *A$EFCE @1ip=* =2 *A$BFRE B122% 2
*ASBTCA B11Ex = *A$SBHWKL 1DCE = *#ASEFCE 61i1C* Z *ASEFRE B124% 3
*RASETCA 84120 2 *F$ASAD ©BBE* 3 +*F$ERRC 4BZ2C 12 F$ERRS 1B4z 412
*F$SERST 41BCE 42 *F$FACC BRAZE 6 *F$FACD BARA3Z2 © *F$FCBE ©60RA+ 2
F$FCOL ©CDC 6 F$FCUS B8C?B ¢ F$FDEN BR42 & *F$FO IS BA16 6
*FEFDIT BALIR 6 F$FDOL BCCE & FEFDUS @ecs2 6 F$FENMN OR3E 6
F$FEOL O6CAG & F$FEUS BC324 6 F$FFOL BGCRE 5 FEFFUS @C4z ¢

Figure 4-7. TXDS Examples With Overlays (Sheet 2 of 7)

Change 1 4-19 Digital Systems Division

949617-9701

TI THDS THELNE 239872 +A el/08-,'88 BB Az 53 FRGE EAMN
MAME WALUE N MAME YALUE MO MAME YALUE MO MAME WALLIE MO
F$FIOL BaCcsz & FEFIUS B8cZs & *FEFLAG 80895+ = F#FLOL BCFB &
FFFLUS BC84 € F£FRE BATS & F$FREE BRTZ & F¥FRED BRSEC S
F$FRER ©Ass 6 F#FRF BARSEA & F#FRFE BFRBA & F¥FRFD BAS4 &
F$FRFR BRFE € F$FROL @CCa & FE¥FRUS BS54 6 F¥FSI0 BDSE &
F$FUWE BASYE & F$FLUER BR4E & F$FUWF BRsE o FEFUWFR BRSA &
F£ILOG 1F12 = *F$LSTH obol+ 2 #FFLUND Bo6a8+ = *FEHAME DBBOBs+ =

*F$PRB 151515 b=t *FERABR D814+ = *FER16B ©1ZC#+ 2 FEREUF 2242 17

«*FERCOL OGRABE S *FERCUS BSFz S +*F$RDEN B82R6 5 *F$ROOL BRAGE 5

*FERDUS BSER S *FSREMN B9AZ2 S *F$RECOL ®B9FR S #FEREUS @9DE S .
F$REVP 0SS& 4 *F$RFFD 1342 B *FERFOL B3%FE 5 *FERFRW 12CA &

*F$RFSI BDBE € *F$ERFSR 12DC o *FSRFSW 1Z72 & *F$RFUS B2EZ2 S

*F$RFWD 42BA 6 #F$RIOL B9Fs 5 *F$RIUS B820R S F$¥RELOG Bidas 2

*F$RLOL BRBA 5 *F$RLP2 B14R* = #F$RLUS B3EE S #F$RPALU B2CC =

*F$RPRE B37C 2 *FERRE BaCE S *F$RREB B9C2 5 *F¥RRED BSBE S

*F$RREL 41&5R 2 *F$RRER ©9BRA 5 *FERRF (71C] ET N *FERRFB 8902 5

#F$RRFD B9CE S *FERRFR BSCR 5 *FERROL ©BABZ S *F$RRUS B9EE S =
F$RSIO BA1Z S F$RSTO B2DE = «F$RTFG 1DFB 3 F$RVFE BB28+ =

F$RVP2 8B2A 3 *FE$RUWE BSAE S *FERWER B9AR S F£RMWF B2Be S

*F$RWFR ©B9B2 5 F$RWRK 4DCAR = *FESTAT 0864+ 3 *FEXAR iv2z 19

F$XBCS B18R 3 F$XBFS B08R% 17 *F$XBUI 1€B4 7 *F$<BUO0 4ASFB8 7

*F$XBUT ©868 = *FEXCDE 4R34 11 *F$XCDI 1RSE68 14 *F$XCED 418388 2

*FE$XCER 167C 2 *F$XCID 1678 2 *#F$XCIR 1674 9 *FEXCLS O4E4 =

*F$XCRE 41A7C 11 *#*F$XCRI 1R?PE 11 *FEXDR 1222 18 *F$XEQOF 1SEE€ 7
F$XERR 4C78 412 F$XFCB 2176 16 F$XFCE 222E 16 *FERFMD 1SEC 7
F$XFTL 41C32 45 *FEXLIO @84E = *F$ALOG 673A = *FEXLR 155A S

*F$HELWS 4F16 3 *FEXMR 187E 18 *#FEXNGR 18585 8 F#XPRE B2FE 3

1 v
1 2
g 3
3 v
2 3
2 3
3 v
2 3
2 =
2 2
2 =
3 =
2 2
2 2
2 3

*F$XPSE ©488 = F$XRED 41S51E 7 F$XRST 4CE8 g #F$HRWD 15CE ‘ﬁwm
*FEXSAL B111% = *F$RSA2 B112* = *FEXSR i71R a *#F$RASTC B1BC*
FEASTL ©V1BE 2 *F$XSTP 8482 =3 #F$EXSTR 1880 *#FERASYC @lio#*
FEXTBE 2176 14 F$XTBL 41F%6 14 *FFXTID 1EEZ *FFXTRA 15C6
*F$XVBF B180% 3 *FEXVCC OBFB* 3 *F$RVCH 81849 *FEHXVCL B8FF*
F$XYCO BOFC 3 *FEXVFE BS5EE 3 *FEXVRC @102% *FEXVYRO BOFE=*
F$RYST BBFD 3 #FEXVSY BBFR* =2 *FFLVWS 1EF2 FEXWRT 453C
*G$XEBL B89%¢ 3 *G$XEBS O8RS 3 *G$XEDS B38CB *GFKELO O3F8
#G$KELL 6912 2 *GEEXEL2 B92E 2 *GFXELZS @948 G$XE1d4 13934
Lss0BM 22CC 2 *L_$$0VM B103 2 *N$SCOLS 0O186# #NSLINS 2168+
*METID B119+ 2 *P$ABUF o©Baex 32 *PECCNT DBBR* *PSERR BOB1L* -~
+PSLACN Bolex = #P$SLFIL Boiix 3 *P$LIBF 0OO10% *PSLLREL @812* ™
+*PSLFRL ~ Bold+ = *PELUM [51% % JC *PEOP BEB2 P$PFCE @18+
P$FRE BaEe 3 *P$PRBE B801R% 2 *P$SRECL O2@D* *P$RECZ2 OGBAE*
P$RECL OBBS = *P$RES BaBC* = +PESFLG Budds *P$SYCO DBBa#*
*PEUFLG 8085+ 3 *S$HEAPRB B6C4 3
PHRSE 1. A ORIGIN = 228C LEMGTH = @1Z=C COYERLAY ID = 410
MODULE MO ORIGIM LEMGTH TYFE LATE TIME CREATOR
SUBRA- 19 2zac a4 INCLUDE BAS28ST 16:34: 25 FTM333
2DATH i 2258 B8ze
F£RGHY ze 2388 OB7E FIMND 11/61°F7 19:51: 32 SDELME
F$RRER 24 2486 a4l FIMND 11,8914/ 77 19:31:55 SDSLMEK

Figure 4-7. TXDS Examples With Overlays (Sheet 3 of 7)

Change 1 4-20 Digital Systems Division

949617-9701

TI THADS THSLMNK 929872 #A gli-98-,08 BE: 8259 PAGE <+

DEFIMNITIONS

MAME YALUE NO MAME YHLUE MO MAME YRLUE MO MAME VALLE MO
F$RAER 2486 21 F+RGMY 2282 26 sUBR 2EaC 13
PHASE 2, D ORIGIM = 2442 LENGTH = @87C COVERLAY ID = 25
MODULE MO ORIGIM LEMNGTH TYPE DARTE TIME CREATOR
suUBD 22 2443 884C INCLUDE 8s/28/77 16:29:12 FTNS2B
$0ATAH 22 2494 (21747

DEFIMNITIOMNS
MAME VALUE NO NAME YALUE MO MAME VALUE NO NRME YALUE NO

suB 2448 22

PHASE 3. G ORIGIN = 24C4 LENGTH = 8BeRA COVERLRAY ID = 2

MOCULE NO ORIGIM LENGTH TYPE DATE TIME CREATOR
SUBG 23 24C4 BBZAR INCLUDE 89/228/77 1€:25:28 FTHS2R
$DATR 23 24FE 8ezZe

DEFIMITIONS
NAME VALUE MO NRME VALUE MO NAME YALUE NQ MAME SALUE MO
SUBG 24C4 22 .

Figure 4-7. TXDS Examples With Overlays (Sheet 4 of 7)

Change 1 4-21 Digital Systems Division

949617-9701

TI THDS THSLMK 229872 *A B1/88/898 8B:83:59

PHRSE 3. H ORIGIN = 24C4 LENGTH = BBER COVERLAY ID = 40
MODULE MO ORIGIN - LENGTH TYPE DATE TIME
SUEH 24 24C4 e8zA INCLUDE 89./28,°77 16:22:36
$DATH 24 24FE B398

DEFIMNITIONS
NAME VYALUE MO NRME VALUE NO MNAME VALUE MO . NAME
SuUBH 24C4 24

PHRSE 3., I ORIGIN = 24C4 LENGTH = B86R (OVERLAY ID = 5O
MODULE NO ORIGIN LENGTH TYPE DATE TIME
SuUBI 25 24C4 @8zA INCLUDE B89/28/77 16:22:33
$DATA 25 24FE 8e30

DEFINITIONS
NAME VALUE NO MAME YALUE MO NAME VALUE NO MAME

SUBIL 24C4 25

PHASE 2. E ORIGIN = 2448 LENGTH = B886&A COVERLAY ID = 62
MODULE NO ORIGIN LENGTH TYPE DATE TIME
SUBE 26 2442 883A « INCLUDE a9/,28,77 16:27:57
$DATH 26 2482 BA=0

Figure 4-7. TXDS Examples With Overlays (Sheet 5 of 7)

CREATOR

FTN9S@

YALUE NO

CREATOR
FTM998

VALUE NO

CREATOR

FTNSS@

Change 1 422 Digital Systems Division

949617-9701

TI THDS THASLMK 933872 #A gi-88.s88 06:93:59 FPAGE &

DEFINITIONS
"MNAME WALUE NO MAME YALUE NO MAME YALUE NO MAME VALUE NO

SUBE 2448 26

FHASE 2. F ORIGIM = 2448 LENGTH = B8eR COVERLAY ID = 7>

MODULE MO ORIGIM LENGTH TYFE DARTE - TIME CREATOR
SUBF 27 2448 BRAZH INCLUCE B/ 28/77 15:25:42 FTHSS0
SDARTH 27 24382 2124

DEFIMNMNITIONSES

NFAME YALUE NO NAME YALUE MO MAME VALUE NO NAME YALUE NO

SUBF 2443 27

PHRSE 1. B ORIGIN = 236C LENGTH = 9145 COVERLAY ID = 8)

MODULE NO ORIGIN LENGTH TYFE DATE TIME CREATOR

IFUNC 28 2360 BE4E INCLUDE B9/26/77 16:31:43 FTNS9®

$OATA 28 23ISR HE3E

FHRGMY 2% 2392 BETE FIND 11/61/77 19:51:28 SDSLNK

F$RAER 5 2416 D@41 FIND 11/91/77 19:41.55 SDSLNK 1
&

DEFINITIONS ;

NAME WALUE MO NAME WALUE MO NFIME YALUE NO NAME YALUE NO §
4

F$RAER 2448 2@ FERGMY 2392 29 IFUNC 238C 28 o

Figure 4-7. TXDS Examples With Overlays (Sheet 6 of 7)

Change 1 4-23 Digital Systems Divisior:

949617-9701

TI THDS THELNK 339872 +H B1-'88/38 088353 FPRGE 7
PHASE 41, C ORIGIN = 2Z8C LENGTH = 8i2R COVMERLAY ID = 90

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
sueC 31 2z8C 8azA INCLUDE B 28/7T 16:29:48 FTHZ28
$DATA 31 234¢ BezZ0

F$RIGMY - 32 2376 B37E FIMC 118477 19:51:38 SDSLNE
F$RAER 3= 23F4 82341 FIND 11/81/77 19:41:55 SDSLMK

DEFINITIOMNS
NAME YALUE MNO NAME VALUE MNO MAME YALUE MO MAME VALUE MNO

W
5]

F$RAER 23F4 32 FE$RGMY 237E suec 228C 21

N

stk LINKING COMPLETED

Figure 4-7. TXDS Examples With Overlays (Sheet 7 of 7)

Change L 4-24 Digital Systems Division

o
@? 9496179701

SECTION V
LINK EDITOR USE ON DX10

5.1 SUPPORTED FEATURES

The disc based operating system for the Model 990/ 10 Minicomputer, DX10, is a multitasking
operating system, and it supports all of the features of the Link Editor. Being a disc-based system,
DXI0 is well suited for overlay structured programs, and it also supports the Automatic Overlay
Loading feature described in Section II of ‘this manual. Complete information on DX10 can be

found in the five volume DX10 Operating System Reference Manuals, Manual numbers
946250-9701, 9702, 9703, 9704, and 9705.

The fc;llowing Link Editor features are supported by DX10:
i ® Automatic Overlay Loading
® Random Libraries
. Sequentia;l Libraries
e COBOL program linking
e FORTRAN program linking

. ® Image format.

5.2 LINK EDITOR OPERATION WITH DX10

The first step in performing a Link Edit run is to develop a control file that defines the Link Edit
functions. The Control File can be developed using the DX10 Text Editor (defined in the DX10
Operating System Developmental Operation Guide, manual 946250-9704), or it can be developed as

a card, tape, or cassette file. The control file contains commands as described in Section III of the
manual and can also contain object modules.

™ The Link Editor is called from a station by entering the command XLE. Note that the station must
be in the command mode prior to entering the command (to activate the command mode, press the
‘CMD key on the 911 VDT, the HELP key on the 913 VDT, or by simultaneously pressing the
CONTROL and X keys on a hard-copy device). When XLE is entered, the following display is
presented at a VDT (on a hard copy device, the prompts are printed one at a time).
XLE
EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME:
LINKED OUTPUT ACCESS NAME: DUMY
LISTING ACCESS NAME: DUMY

Fam PRINT WIDTH: 80

5-1 Digital Systems Division

[o]
{—@ﬁ) 9496179701

In response to the CONTROL ACCESS NAME: prompt, the user must enter the pathname of the
device or file from which the control stream is to be read. The control file can be on a sequential disc
file, or any sequential device such as a tape unit, cassette unit, or cards. The following is an example
of the pathname entry for a sequential disc file:

CONTROL ACCESS NAME: VOL2. EDITOR.CONFILE

Note that there is no default for the CONTROL ACCESS NAME:, DX 10 does not allow the user to
TAB out of the field.

In response to the LINKED OUTPUT ACCESS NAME prompt, the user enters the access name of
the sequential device or file to which the output of the Link Editor is to be written. Note that the user
can enter the value DUMY, which causes no output to be generated. Use of the DUMY value allows ,
for a‘trial run to ensure that no errors occur. The following is an example of an access name entry fora
sequential disc file:

LINKED OUTPUT ACCESS NAME: VOL2.LINK.OUTI

If the FORMAT Link Editor command specifies the IMAGE option, the entry made in response to
the LINKED OUTPUT ACCESS NAME prompt must be a DX 10 Program file or a System Image
file. ~

In response to the LISTING ACCESS NAME: prompt, the user enters the access name of the file or
device to which the load map listing is to be written. If DUMY is used no listing is created. The value
entered in response to the prompt can be any valid DX10 pathname, synonym, or device name. The
following example causes the listing to be written to a line printer.

LISTING ACCESS NAME: LPOl
An example and description of the Load Map listing is provided in Section 1V. -
The last prompt, PRINT WIDTH: allows the user to either specify the width of the print line, or to
accept the default value - 80 characters. If a different line width is specified, the print format is
altered to correspond to the line width.
The following example shows the resbonscs for the prompt when the control file is on
VOLI.LINK.OUTI, the listing device is line printer one (LPO1), and the LINE WIDTH default
value is accepted:

XLE

EXECUTE LINKAGE EDITOR

CONTROL ACCESS NAME: VOL2.EDITOR.CONFILE
LINKED OUTPUT ACCESS NAME: VOL2.LINK.OUTI
LISTING ACCESS NAME: LPOI

PRINT WIDTH: 80

5-2 Digital Systems Division

[o]
{@ 949617-9701

f Before calling the Link Editor, the user should be aware that the maximum memory available for a
Link Edit is 64K bytes minus the size of the Link Editor. To determine the amount of memory
required, the following guidelines should be used.

Allow 16 bytes for each external reference
+ 40 bytes for each included module
+ 10% of the sum of the above.

5-3/54 Digital Systems Division

o
%@ 949617-9701

SECTION VI

LINK EDITOR USE ON TXDS

6.1 SUPPORTED FEATURES

The Terminal Executive Development System (TXDS) is a memory-resident operating system for
the Model 990/4 and Model 990/ 10 minicomputers. For complete information on TXDS, refer to
the Model 990 Computer Terminal Executive Development System (TXDS) Programmer’s Guide,
manual 946258-9701. The Link Editor is a utility program on TXDS and is named TXSLNK.

Being a memory based operating system, TXDS does not support certain of the Link Editor
features, particularly those concerned with random libraries. TXDS does not support the following
Link Editor features:

i e SYMT output option
¢ LIBRARY/SEARCH commands

6.2 OPERATION

To activate the Link Editor, TXDS itself must be activated by following the procedure given in
Section 1I of the TXDS Programmer’s Guide. Once TXDS is activated, the following message is
presented at the system console:

Py TXDS *A ddd/yy hh:mm *
PROGRAM:

In the preceding message, ddd/yy represents the date, displayed in the Julian format with a three
digit day of the year (ddd) and the two digit year (yy). The second line of the message, PROGRAM:

is a prompt that requests entry of the pathname of the program to be executed. To activate the Link
Editor, the following response is entered:

PROGRAM: :TXSLNK/SYS

- which defines the file that contains the TXSLNK object module. Once this entry is completed, the
prompt:
INPUT:
is presented at the system console. In response to this prompt, the user enters the pathname of the
file or device from which the control file is to be read. Examples are:
INPUT: LOG Control file is to be entered from
the system console
INPUT: DSC2:FILEA/CTL Control file is to be read from :FILEA/CTL on
‘ diskette unit two

6-1 Digital Systems Division

[o]
e‘—@) 949617-9701

The next prompt presented is:

OUTPUT:
which requests that the following entries be made:

.<load map> } { ,<scratch> }

OUTPUT: <object> { sys default printer .TXSLNK diskette

The parameters have the following meanings:
object _ — specifies the object output pathname

load map — specifies the output listing pathname. If no entry is
made, system default printer-is used.

scratch — specifies the diskette unit upon which the scratch files
will be created. If no value is entered, the scratch files
are created on the same diskette unit from which the
Link Editor was loaded.
NOTE
There can be no blanks within a parameter line.
After the OUTPUT: prompt parameters, the following prompt is presented:
OPTIONS:
In response to this prompt, the user can either enter the number of bytes (in decimal) of memory
available to the Link Editor for the table area, or make no entry and accept the default of 8192 bytes.
The following considerations apply to calculating memory requirements:
Allow 16 bytes per external definition
+ 40 bytes per included module
+ 10% of the sum of the above.

Any entry made by the user in response to the OPTIONS: prompt is preceded by the letter M. An
example of a request for 3000 bytes of memory is:

OPTIONS: M3000

6.3 PATHNAME DEFAULTS
Fields of a pathname that are not entered by the user are defaulted according to table 6-1.

6-2 Digital Systems Division

<‘I_@) 949617-9701

= Table 6-1. TXDS Pathname Defaults
m DEV FILE EXT
INPUT System Default Diskette Name None CTL
OBJECT System Default Diskette Name None OBJ
LISTING Sy;tem Default Diskette Name None LST
NOTE

If the Link Editor is operating in IMAGE format, the
object default extension is SYS.

6.4 EXAMPLES
The following are examples of the responses to the prompts presented by TXDS:

Example I:
o~ PBOGRAM: :TXSLNK/
INPUT: :LINK/CTL
OUTPUT: DSC2:PROG/,LP
OPTIONS: M10000
Example 2:
- PROGRAM: :TXSLNK/
INPUT: :FINLNK/
OUTPUT: DSC2:FORTGO/
OPTIONS: M12000

Example one causes the control file to be read from a file identified as LINK with the extension
~ being CTL, on the default diskette. The output is written to file PROG, with the default extension
' OBJ. on the second diskette (DSC2). The listing is written to the line printer. The scratch files are

written to the diskette that TXSLNK was loaded from. The memory default is overridden with a
specification of 10,000 bytes.

Example two reads the control file from the default diskette from a file named FINLNK with the
default extension being CTL. The output i§ written to the second diskette (DSC2) in file FORTGO
~and the default extension is OBJ. The load map is written to the system default printer. The scratch

files are written to the same diskette that TXSLNK has loaded from. The memory specified is 12,000
bytes.

6-3/6-4 Digital Systems Divisiosn

)

949617-9701

SECTION VII

ERROR REPORTING

7.1 INTRODUCTION

Errors that occur during Link Editor processing are reported on either the terminal or the listing file.
Table 7-1 gives the errors that are reported on the listing file and table 7-2 gives the erros that are
reported on the terminal.

The use of the ERROR/NOERROR Link Editor commands affects the manner in which the Link
Editor responds to errors. The ERROR command allows continuation of processing after an error
occurs, whereas the NOERROR command terminates processing when an error occurs. See Section
I11 for detailed information on the use of these commands.

Table 7-1. Link Editor Errors — List File

Message Text Explanation

SYNTAX A rule of syntax for Link Editor commands has been
violated. Consult Section I1I for the correct syntax.'

COMMAND SEQUENCE The command is not in the proper sequence in the

: command stream.'

DUPLICATE NAME The same name has been used needlessly or ambiguously
two or more times. The rest of the command record is
ignored.'

COMMAND EOF An unexpected end of file was encountered in the

: command stream.'
SIZE : Too many characters in a LIBRARY or INCLUDE
1
name.

UNABLE TO READ CONTROL FILE Check the 1/O error code shown on the terminal.

UNABLE TO OPEN CONTROL FILE Check control file access name. If correct, check the 1/O
error code shown on the terminal.

ILLEGAL LIBRARY NAME Check the access name for a legal random library name.
ACCESS NAME = name

NO TASK COMMAND ' Control file does not contain a TASK command.

'When any of these errors occur, a dollar sign ($) appears on the listing immediately under the error.

Digital Systems Division

o
@ 949617-9701

Table 7-1. Link Editor Errors — List File (Continued)

Message Text Explanation
ILLEGAL DUMMY COMMAND, DUMMY command appeared after a procedure which was
phase name not dummied.

UNABLE TO OPEN INCLUDE FILE, The file named does not exist or cannot be opened.
ACCESS NAME = name

NO FIRST INPUT RECORD, ACCESS The file name existed, but an end of file was encountered
'NAME = name on the first read.

ILLEGAL TAG ENCOUNTERED ON The object input was bad. e
RECORD XX, ACCESS NAME = name

PREMATURE END OF FILE No colon record was found in the object input. -
OCCURRED, ACCESS NAME = name

CHECKSUM ERROR The object input was bad.
ENCOUNTERED ON RECORD XX,
ACCESS NAME = name

SYMBOL MULTIPLY DEFINED A list of the multiply defined symbols, and the modules they
occured in, follows. The first value assigned is used.

ILLEGAL COMMON REFERENCE Bad object input. *

ENCOUNTERED ON RECORD XX

ACCESS NAME =

ILLEGAL BACK CHAIN : Bad object input.
ACCESS NAME = acnm
SYMBOL = external name

UNABLE TO BACKSPACE INPUT Check input access name for a legal sequential library
FILE ACCESS NAME = name name. If correct, check the 1/O error code shown on the
the terminal.

ADDRESS SPACE OVERFLOW The Link Edit has exceeded the 32K word maximum. A
program cannot be larger than 32K.

ILLEGAL OVERLAY SEGMENT Bad object file.

UNABLE TO OPEN OUTPUT FILE, The output file cannot be opened, probably because of

ACCESS _NAME = name access rights violations. Check the 1/O error code shown

on the terminal.

UNABLE TO CLOSE OUTPUT FILE Check the 1/O error code shown on the terminal.
ACCESS NAME = name

UNABLE TO WRITE OUTPUT Check the 1/O error code shown on the terminal.
RECORD ACCESS NAME = name

'When any of these errors occur, a dollar sign (3) appears on the listing immediately under the error.

7-2 Digital Systems Division

949617-9701

Table 7-1. Link Editor Errors — List File (Continued)

Message Text

UNABLE TO OPEN OUTPUT FILE
ACCESS NAME = acnm

UNABLE TO WRITE WORK
RECORD

UNABLE TO READ OVERFLOW
RECORD

UNABLE TO WRITE OVERFLOW
RECORD

UNABLE TO READ WORK RECORD

ROLL POINTER OVERFLOW (TXDS)
ROLL MEMORY OVERFLOW
(TXDS)

CAN'T GET COMMON (TXDS)
INTERNAL LINKER BUG,
ENCOUNTERED AT LINKER
LOCATION XXXX

UNABLE TO INSERT PROCEDURE
UNABLE TO INSERT TASK

UNABLE TO INSERT OVERLAY
UNABLE TO FIND PROCEDURE name
(DX10)

UNABLE TO ASSIGN OVERLAY ID

UNABLE TO LOAD REQUIRED
MODULE
MODULE NAME =

Explanation

Check the access name. If correct, check the I/ O error code
shown on the terminal.

Link Editor scratch file error. Check 1/0 error code shown
on terminal.

Link Editor scratch file error. Check 1/O error code shown
on terminal.

Link Editor scratch file error. Check 1/0 error code shown
on terminal.

Link Editor scratch file error.
Check the I/O error code shown on the terminal.

User did not specify adequate memory.

The Link Editor cannot obtain System Common.

A bug in the link editor has caused processing to
terminate. Communicate the problem to the customer
support line.

Image format only. Replace option not selected and a
procedure of the same name already exists.

Image format only. Replace option not selected and a task
of the same name already exists.

Image format only. Replace option not selected and an
overlay of the same name already exists.

Image format only. A procedure that was ‘dummied’ does
not exist on the program file. DX10 only,.

Image format only. Indicates that no overlay IDs are
available in the program file directory.

A modaule specified by a U-tag in the object module cannot
be loaded.

Change 1

7-3

Digital Systems Division

949617-9701

Table 7-1. Link Editors — List File (Continued)

Message Text

ADDRESS SPACE OVERFLOW

MULTIPLE SYMBOL DEFINITION

UNABLE TO LOAD nnnnnnn

SHARE SPACE

Explanation

WARNING MESSAGES

Program Counter (PC) in the linked output exceeded
FFFFi.

The listed symbol has been defined more than once. It is

. assigned the value of the last occurrence.

"Unable to perform a forced load of the listed module

(nnnnnnn).

When two or more modules share a data area (see the
SHARE command), the first module included must have
the largest data area. This message warns that a subsequent
data area is larger.

Table 7-2. Link Editor Errors — Terminal

Message Text

INPUT FILE 1/O ERROR,
.CODE = XXXX

ILLEGAL TAG

SYNTAX ERROR
BAD OBJECT FORMAT

OUTPUT FILE 1/O ERROR,
CODE = XXXX

LIST FILE I/O ERROR,
CODE = XXXX

UNABLE TO LOAD OVERLAY
MISSING OR MISPLACED
COMMANDS

PROCEDURE IMAGE ERROR,
CODE = XXXX

CANNOT OPEN TCA

'The CObE = XXXX is defined in table 7-3.

Explanation

Unable to read or open the input file'. See hstmg for more
information.

Object code contained an illegal tag. See listing for more
information.

See listing for more information.
See listing for more information.

See llstmg for more information. Check output file access
name'.

Unable to open or write the list file.'

One of the overlays of the Link Editor could not be loaded
(see listing).

Check your control file (see listing).

Unable to locate or install a procedure on the program file
(see llstlng)

The system file TCAFIL cannot be opened (DX10).

74

Digital Systems Division

949617-9701

Table 7-2. Link Editor Errors — Terminal (Continued)

Message Text

CANNOT READ TCA

CANNOT CLOSE TCA

UNABLE TO GET MEMORY (DX10)
CAN'T GET MEMORY (TXDS)

LINK EDITOR BUG

NO FIRST INPUT;RECORD
PREMATURE END OF FILE

CHECKSUM ERROR

TASK IMAGE ERROR,

CODE = XXXX

OVERLAY IMAGE ERROR,
CODE = XXXX

WORK FILE 1/O ERROR,
CODE = XXXX

OVERFLOW -FILE 1/0 ERROR,
CODE = XXXX

CONTROL FILE 1/O ERROR,
CODE = XXXX

INVALID LIBRARY NAME
CANT GET COMMON
MAXIMUM TABLE SIZE EXCEEDED

INSUFFICIENT MEMORY
REQUESTED

'The CODE = XXXX is defined in table 7-3.

Explanation

An error occurred while reading the system file
TCAFIL (DX10). :

The system file TCAFIL cannot be closed (DX10).

The Link Editor cannot obtain sufficient memory. Try
again after other tasks have terminated.

Error occurred within the link editor. See listing, and
notify the Customer Support Line.

Input file has an EOF and no data. See listing for more
information.

No colon record on input file. See listing for more
information.

Checksum did not verify on an input record. See listing for
more information.

Unable to locate or install a task on the program file (see
listing).'

Unable to locate or install an overlay on the program file
(see listing).'

1/0 errors on Link Editor Scratch Files'.

Check control file access name (see listing)'.

Check access names on library commands (see listing).
Insufficient common area in the system (TXDS).

Too many references (REE's) and definitions (DEFs) in the
Link Edit.

7-5 Digital Systems Division

949617-9701

Table 7-3. Error Codes _ -
CODE = XX MEANING
00XX - DX10 1/0 error code. Refer'to the Model 990 Computer,” DX10 Operation System
Release 3 Reference Manual, Voluen'1 VI Error Reporting and Recovery.
80XX TX990 1/O error codes. Refer to the }v‘!odel' 990 Computer TX990 Operating System
(Release 2) Programmer’s Guide.
8190 File is not relative record (TXDS).
8191 Record length of file is not 256 (TXDS).
8192 Attempted to use funétion that is not available on TXSLNK (TXDS).
8193 Too many overlays; more that 255 (TXDS).
»m\
_
-

7-6 Digital Systems Division

o]
{@) 949617-9701

~
APPENDIX A
= . OVERLAY MANAGER
: (IMAGE FORMAT ONLY)

Digital Systems Divisiort

(o]
%@ 949617-9701

APPENDIX A
OVERLAY MANAGER
(IMAGE FORMAT ONLY)

A.1 OVERLAY MANAGER
The overlay manager is a table-driven program, with the two required tables being built by the Link
Editor when the linked output is produced. The tables generated are the Overlay Entry Vector
(OEV) table, defined in table A-1, and the Overlay Phase Directory (OPD), defined in table A-2. The
OEYV table is a read-only table that can be included in the procedure portion of a program. It
contains an entry for each forward reference in the overlay structure, with each entry having a
pointer to an entry in the OPD table. Each entry in the OPD corresponds to a PHASE command in
the Link Editor Control File. The OPD is divided into two portions — a read-only part and a
read/ write part. The read-only part of the OPD can be included as a part of a shared procedure. The
~ read/ write part of the OPD, which consists of a flag that indicates whether the overlay is currently in
memory, is included as a part of the task section of the linked object output module.

Table A-1. OEV Entry Format

Word Description
0 Address of workspace for overlay manager.
W | Address of the new PC value for a BLWP instruction (equal to current address + 2.
2 A Branch and Link (BL) instruction to transfer control to the overlay manager.

Equivalent to BL *R1.

3 Address of the transfer vectors (WP and PC) in the overlay.

4 Address of the entry in the OPD that describes the overlay to be loaded for this entry.
™, Tabie A-2. OPD Entry Format
Byte Description
| 0-1 Overlay ID.'
) T23 Address of the OPD entry for the first overlay on the same level.'
4-5 Overlay load address.

Bit map to indicate whether the overlay is in memory (I = yes, 0 = no).2

Notes:

'Read only information
2Read/'write information, not contiguous with the rest of the OPD. Kept as a bit map indexed by the overlay ID.

A-1/A-2 Digital Systems Division

o]
@ 949617-9701

K

APPENDIX B
TXDS LINKING LOADER

Digital Systems Division

o
@ 949617-9701

APPENDIX B
TXDS LINKING LOADER

B.I INTRODUCTION
This appendix describes the TXDS Linking Loader (LNKLDR). The Linking Loader allows the
user to link FORTRAN programs with the runtime package, to load the program and to execute it

all in one operation. All LUNOs used by the program to be executed must be assigned prior to
LNKLDR execution.

NOTE

The LUNOs 2, AS5is, and A6 cannot be used by prbgrams linked

and loaded by the Linking Loader, as they are used by the Linking
™ Loader.

B.2 USER INTERFACE
When TXDS is activated, following the procedures given in Section II of the TXDS Programmer’s
Reference Manual, the following prompts are presented:

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

In response to the PROGRAM: prompt, enter the pathname of the Linking Loader object. The
following is an example of the response:

PROGRAM: :LNKLDR/SYS

which defines the Linking Loader as being on the default disc, with the file name LNKLDR and the
extension being SYS.

Respond to the INPUT: prompt with a carriage return as the Linking Loader does not use this
parameter. In response to the OUTPUT: prompt, enter the device name or pathname to which the
load map is to be written. The Load Map is the only output of the Linking Loader and it may be
directed to any file or device on the system. If a device name is entered and the name is illegal, an
error message is printed and the Linking Loader terminates. The following is a valid device name
causing the load map to be written to the line printer:

OUTPUT: LP

B-1 Digital Systems Division

o
(‘@ 949617-9701

If the output is directed to a file and the file does not exist, a sequential file is created by TXDS using
the entered pathname as the file identifier. Certain defaults are apphed by the system to the
pathname. The pathname defaults are as follows:

Field Defaults

DEV Default Diskette Name
FILE None

EXT LST

The following example causes the load map to be written to a file:
OUTPUT: DSC2:LOADMP/LST

If no entry is,made in response to the OUTPUT: prompt, the system default printer is used as the
output device.

The only response accepted to the OPTIONS: prompt is a memory size. If no entry is made, the
default value, 8K bytes is used. The syntax of the entry is as follows:

MNNNNN
where N is a decimal digit. The following example specifies 1SK bytes of memory:

OPTIONS: M15000

After all of the preceding prompts have been answered, the Linking Loader is loaded into memory
and the following prompt is displayed:

COMMAND,PATHNAME:

The commands available and the syntax for each are as follows:

Command Description
. I, pathname Include modules in the specified file.
F, pathname Search the specified sequential library for unresolved

symbol resolution.

G Print load map and begin execution.

There must be no blanks in the entered command and pathname. The following are examples of the
preceding commands: N

COMMAND,PATHNAME: LDSC2:TICTAC/OBJ
COMMAND,PATH.NAM E: F,:.TXLOBJ/LIB

COMMAND PATHNAME: G

B-2 Digital Systems Division

[o]
@ 949617-9701

The COMMAND,PATHNAME: prompt is repeated until the G command is entered. More than
one I command and/or F command may be entered.

Figure B-1 is the output load map of a sample run using the following parameters:
PROGRAM: :LNKLDR/SYS
INPUT:

OUTPUT: LP

OPTIONS: M15000
COMMAND,PATHNAME: LLDSC2:TICTAC/OBJ
COMMAND,PATHNAME: F,:TXLOBJ/LIB
COMMAND,PATHNAME: G

B.3 TXDS LINKING LOADER ERRORS

The messages shown in table B-1 are those that can be printed on the log if an error occurs during
execution of the Linking Loader.

B-3 Digital Systems Division

949617-9701

TI TXDS LNKLDR vi

MODULE

$MAIN

$DATA

F$XPRE
F$REVP
FS$SRINP
F$RFZ

F$RFTS
F$FINP
F$XICF
NRRST

F$XVFB
F$XFCB
F$RCGO
F$RBUF
F$ERRC
F$XERR

T1 TXDS
NAME

*$MAIN
*ASBTCA
*ASETCA
*F$ERST
F$FCOL
*F$FDIT
FSFEOL
FSFIOL
F$FLUS
F$FRER
F$FRFR
FS$FWE
+«F$IL0G
*F$PRB
F$RCGO
*F$RDOL
*F$REUS
FSRFI
F$RFSI
*F$RFUS
F$RIOL
*FS$RLP2
*F $RPRE
*F$RRED
*F$RRFD
F$RSIO
*FSRVP2
*FSRWFR
*F$XBCH
*F$XBUO
- *F$RCPX
F$XERR
*F$XFOP
*FSRLWS
F$XPRE
*F $XRHD
*F$XSA4
#F$XSER
*FEXSYC
*F$XTRA
*F$XVCH
*F$XYRC
*FEXVWS
*GFKEBS
HGSKEOS
*G$KEL2
*NSLINS
*P$ERR
*PSLLRL
*PSPFCB
*PS$SREC2
*P$SVCO

NO

VONOUAWNE P

LNKLDR
VYALUE

73AC
011C*
B11E*
9714
8904
8644
88C8
88BA
88AC
8690
86RA8
867E
7C3A
20002+
95CC
8272
824A
8282
8996
824E
8262
9148%
7R08
822R
823R
827E
BO2A
821E
BO6CH
9202
BOEE™
97Ce
022+
TES4
79BE
S1E6
9114%
BO3ZE*
0116%
9108
0104x%
0102*
7C7R
7ccc
7D12
7097
0108%
0001*
0012%
8018+
BOBE*
2000+

ORIGIN LENGTH TYPE DATE
73AC @530 INCLUDE 01./00,/00
78DC @0E2
79BE @SeE FIND 84,27/77
7Fac 02C2 FIND @4,/27/77
820E 0874 FIND 04,27/77
8282 0354 FIND 04/27/77
85D6 806R FIND 04,2777
8640 @Be6 FIND 84,/27/77
9146 0123 FIND @4,/27/77
926A 0061 FIND 04/27/77
s2cc 0237 FIND @4/27/77
9504 @acs FIND 04,/27/77
95cC 0032 FIND 04/27/77
9SFE @88C FIND 04,27/77
968A @13C FIND 04/27/77
97C6 800A FIND 04/27/77

Vi 01/00/00 ©0:01:086 .

NO NAME VALUE NO NAME VALUE NO

1 *ASBBUF 0124*% 2 #ASEBFCB 0118+2

2 ASBWKL 7B52 2 #ASEFCB O11Aw 2

2 «F$ASAD ©R@6w 2 F$ERRC 968A 5

14 #F$FACC 8658 7 #F$FACD 865C 7

4 F$FCUS 8898 4 FSFDEN 8672 4

? FS$FDOL B8SF6 4 FS$FDUS 888A 4

4 F$FEUS 885C 4 FS$FFOL 8806 4

4 FSFIUS 884E 4 #FSFLAG 0@OS+ 2

4 F$FRE 86R2 4 FS$FREB 869C 4

4 F$FRF 86BA 4 FS$FRFB 86B4 4

4 FSFROL SBES 4 F$FRUS 887C 4

4 F$FWER 8678 4 F$FWF 868R 4

2 «FSLSTA ©OOL+ 2 +FSLUNO 0888w 2

2 #F$R1GA 0014 2 +FSR1BB @13A% 2

1 “F$SRCOL 827RA 4 F$RCUS S2SE 4

4 WFSRDUS 8256 4 #FSRENN B820E 4

4 FSREVP 7F4C 1 FSRFFD BF6A S

5 FSRFL 83R6 5 +FSRFOL 826R 4

5 F$RFSR 9084 S FSRFSW B8FAB 5

4 F$RFWB 862C 5 F$RFUD BEE2 S

1 FSRIUS 8246 1 FSRLOG O146% 2

2 wFSRLUS B825A 4 +FSRMSZ 0QGB6+ 2

2 FSRPRM @1EQ% 2 #FSRRE 8232 4

4 4FSRRER 8226 4 F$RRF 8242 4

4 FSRRFR 8236 1 +FS$RROL BS26E 4

1 «F$RSTO 7AB4 2 *FSRTFG 7B7A 2

2 #FSRME 821R 4 +FSRWER 6216 4

4 #FSRURK 7BS4 2 FSSTAT 0004 2

2 AFS$XBCS 010A% 2 F$XBFS 8088+ 10

8 #F$XBUT 81C6 3 #FSXCAL 81C5 3

2 #FSXCPY @O70% 2 #FSXCRR 0021w 2

14 F$XFCB 9504 2 F$XFCE 9S5CC 2

2 AF$XFTL 7C9E 2 #FSXLIO 81F4 3

2 AFSXMES @O74% 2 +F$XOPN @032% 2

1 «F$XPSE 7A%8 2 FSXRED 9146 7

8 AFSXSAL @111% 2 #FSXSA2 @142+ 2

2 #FSXSAS @115k 2 +FSXSAE 0146 2

2 #F$XSTC ©18Cx 2 +F$XSTL O010E 2

2 FS$XTBE 8iCe 2 FS$XTBL 7FE@ 2

8 #F$XTRM 0020k 2 +FSXVBF 0180+ 2

2 #FSXVCL @OFF* 2 #FSXVCO BOFCH 2

2 #FSXVRO @@FE% 2 #FSXVST 08FD* 2

2 FSXWRT 9164 7 *GSXE@L 7CA4 2

2 HG$XE@4 7CDE 2 #G$XE@S 7CEF 2

2 #GSXEBS 7D34 2 #GSXEL® 7D6L 2

2 #GSXE13 7DAF 2 +GSXEL4 7DED 2

2 NERRST 9S26A 1 *P$ABUF 0806% 2

2 #PSLACN @016+ 2 +PSLFIL @@811x 2

2 #PSLPRL ©014% 2 +PSLUN 0803 2

2 #PSPRB ©@@0% 2 +PSPRBE 0B1A% 2

2 «PSRECL 0088« 2 *PSRES 0@BC* 2

2 #PSUFLG @@@5% 2 *S$APRB 942E 10

01/60/00 00:81:86

Figure B-1. Linking Loader Load Map

NRME

*A$BPRB
*ASEPRB
F$ERRS
*F$FCBE
“FS$FDIS
F$FENN
F$FFUS
F$FLOL
F$FRED
F$FRFD
F$FSIO
FSFWFR
*FSNAME
F$RBUF
*F$RDEN o
*F$REOL
FSRFFQ
F$RFRW
FS$RFTS
F$RF2
*F$RLOL
*F$RPRU
*F$RREB
*F$RRFB
*F$RRUS
*FS$RVFB
FSRWF
*FEXASN
*F$XBUI
F$XCLS
*FSXEOF
wFEXFND
*F$XLOG
*F$XPER
F$XRST
*F$XSA3Z
*FEXSA?
w*FEXSTP
*FE$XTID
*FE$XVCC
F$XVFB
HEERVSY
*GSKED2
HGSKEGE
H*GSXKELL
*N$COLS
*P$SCCNT
*PSLIBF

*P$OP

w“PS$REC1L
“PS$SFLG
*S$OPEN

PAGE 1
CREATOR

FTN99@

SDSLNK
SDSLNK ’
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK
SDSLNK

PAGE
VARLUE

ZN
(=]

9120%
9122
9650
eeefw
8640
8668
886A
8918
8696
86AE
8986
8684
80098%
96082
8212
8266
8604
SEF2
8506
840C
8276
7AR2
822E
823E
8252
8028
8222
0020
9216
7FSA
S1F8
SAFE
7E00
BBEO*
7F58
9113%
9147%
7AS8
81C3
OBF B
9200
BBF A
7CB?
7000
7D?7C
0106%
B0BA™
2010
8802+
208D
2804
946C

NRORNRNRDRNRNRARPNWRNRNRONONNNOOCNONPONLERANBPUONRANRNALELLILDENNUNN

B R
[

B4

Digital Systems Division

o
@ 949617-9701

Table B-1. Link Loader Errors

Message
MEMORY OVERFLOW
INIT BLANK COMMON
CHECKSUM ERROR
COMMON TOO BIG

INPUT FILE ERROR, CODE = NNNN
PRINT FILE ERROR, CODE = NNNN

ILLEGAL BACK CHAIN
ILLEGAL COMMON REF
ILLEGAL TAG

NO FIRST INPUT RECORD
PREMATURE END OF FILE
CAN'T GET COMMON
CAN'T GET MEMORY

COMMAND/PATHNAME ERROR,
CODE = NNNN

LINK LOAD ERROR

Description
Insufficient memory.
Atiempt to initialize blank common.
Checksum did not verify on an input record.
Blank common larger than available space.

Error reading the input file. Check the error code (NNNN)in
the TX990 documentation.

Error writing the load map. Check the error code (NNNN)
in the TX990 documentation.

The external reference chain is bad.
A reference to a common segment is invalid.
Object input contains an illegai tag.
Input file has an End of File mark, but no data.
No colon on the input file.

¢

Cannot obtain TXDS system common area.

Memory requested (in response to the OPTIONS prompt)
cannot be obtained.

Command pathname or command is in error. Check the
error code (NNNN) in the TX documentation. If the
command is in error, the CODE = 0.

An error occurred within the Link Loader. Contact a Texas
Instruments representative.

B-5/B-6 Digital Systems Division

o
{I@ 949617-9701

APPENDIX C
- COMMAND SYNTAX
™

Digital Systems Division

@ 949617-9701

APPENDIX C

COMMAND SYNTAX

Table C-1 lists the commands provided by the Link Editor. The syntax of the command is given, and

the paragraph in which the command is described is referenced.

!

Command

ADJUST
ALLGLOBAL
ALLOCATE
COMMON
DATA
DUMMY
ERROR
FIND |

FORMAT

GLOBAL
INCLUDE
LIBRARY'
LOAD
MAP

NOAUTO'
NOERROR
NOLOAD
NOMAP
NOPAGE
NOSYMT
NOTGLOBAL
PAGE
PARTIAL
PHASE
PROCEDURE
PROGRAM
SEARCH'
SHARE
SYMT'
TASK

Notes:

ADJUSn>
ALLGLOBAL
ALLOCATE

COMMON <base>,[<name>] [,<name>]

DATA <base>
DUMMY
ERROR

FIND <acnm>

Table C-1. Commands

: ASCII
FORMAT (COMPRESSED

IMAGE [REPLACE] {<,priority>}
4 _

GLOBAL [<symbol>] [,<symbol>] [, .

Syntax

*INCLUDE b<acnm>[,<acnm>] [, . . .]
LIBRARY <acnm>{,<acnm>][. .. .]

LOAD
MAP REFS

NO <'string™> [,NO <’string>] [, . . .]

NOAUTO
NOERROR
NOLOAD
NOMAP
NOPAGE
NOSYMT

NOTGLOBAL [<symbol>] [,<symbol>] [, . . .]

PAGE
PARTIAL -

PHASE <level> <name>
PROCEDURE <name>
PROGRAM <base>
SEARCH [<acnm>] [,<acnm>] [, . . .]

SHARE <module name>,<module name>[, . . .]

SYMT

TASK <name>

-]

%

Paragraph

339
3373
334 ~
3.6.3 %
3.6.2
338
355
325

3.5.1

3.3.7.2

321 ;
3.2.2 %
334

3.5.2
324
3.5.5
3.35
3.5.3
354
34.2
33.74
354
3:3.7.1
333
3.3.1

3.6.1

3.23

3.3.6
34.1 g
33.2

ER

'"These commands supported under DXI10 only; they are not supported for TX systems.

Change 1

C-1/C-2

Digital Systems Division

o
@ 949617-9701

APPENDIX D
OVERLAY LOADER ROUTINE (TXDS)

Digital Systems Divisicr

.
~—

@ 949617-9701

APPENDIX D
OVERLAY LOADER ROUTINE (TXDS)

D.1 DESCRIPTION

Whereas DX10 provides a Load Overlay supervisor call for user specified overlay loading, TXDS
provides a user callable routine for overlay loading. The object for the overlay loader routine resides
on the same diskette as the Link Editor and has the pathname DSCx:TXLOVL/SYS, where ‘x’
indicates the appropriate diskette drive. This routine must be included in the linked output by use of
the following command:

INCLUDE DSCx:TXLOVL/SYS

The overlay loader routine loads overlays from the same prdgrarﬁ file as the task itself was loaded
and performs the necessary relocation of the overlay. The overlay loader assumes that the LUNO
equal to the task ID has been assigned to the program file (this is performed by the task loader). If
the program file is not open, the overlay loader opens it.
The calling sequence within the user program is as follows:
When called:
R3 = Address at which the ovelay is to be loaded.
R4 = ID of the overlay to be loaded.
Call:
BLWP @LS$SOLD

Returned Values:

RO = Completion code. If zero, no errors. If not equal to zero, the rightmost byte contains a
TX990 1/0O error code.

D-1/D-2 Digital Systems Division

o R
i'_—@) 949617-9701

APPENDIX E
LINK EDITOR CONDITION CODES UNDER DX10
o~

Digital Systems Division

{r{@p 949617-9701

LINK EDITOR CONDITION CODES UNDER DX10

APPENDIX E

E-1 DESCRIPTION

When the Link Editor is executed through an SCI batch stream or a command procedure, a
condition code is returned as the value of synonym $$CC. The possible values of $SCC are
interpreted as follows:

0 — No errors or warnings
4000 — One or more warnings
8000 — One or more errors
C000 — Link Editor aborted (I/O error, end action, syntax error, . . .)

™ For more information about condition codes, see the DXI0 Operating System Release 3 Reference
- Manual, Volume V, System Programming Guide, part number 946260-9705.

Change 1 E-1/E-2 Digital Systems Division

'
2

@ 1 949617-9701

APPENDIX F
OBJECT RECORD FORMAT AND TAGS

Digital Systems Division

o

ﬁw"\

@ 949617-9701

APPENDIX F

OBJECT RECORD FORMAT AND TAGS

- F.1 DESCRIPTION

Table F-1 shows the object code tags and field values associated with each tag. Unless otherwise
noted the size of each field is either four characters (ASCII object format) or four binary digits
(compressed object format). Where noted by “(int)”, the field is <int> number of characters in

length (in both ASCII and compressed formats).

A ek

Table F-1. Object Record Format and Tags

FIELD 1 FIELD 2
MODULE DEFINITION -
PSEG LENGTH PROGRAM ID (8)
DSEG LENGTH $DATA
BLANK COMMON LENGTH $BLANK
CSEG LENGTH COMMON NAME((6)
CBSEG LENGTH $CBSEG
ENTRY POINT DEFINITION
ABSOLUTE ADDRESS -
P-R ADDRESS -
LOAD ADDRESS
ABSOLUTE ADDRESS -
P-R ADDRESS -
D-R ADDRESS -
C-R ADDRESS COMMON OR CBSEG #
DATA
ABSOLUTE VALUE -
P-R ADDRESS -
D-R ADDRESS -
C-R ADDRESS COMMON OR CBSEG #
EXTERNAL DEFINITIONS
ABSOLUTE VALUE SYMBOL (6)
P-R ADDRESS SYMBOL (6)
D-R/C-R ADDRESS SYMBOL (6)
EXTERNAL REFERENCES
P-R ADDRESS OF CHAIN SYMBOL (6)
ABSOLUTE ADDRESS OF CHAIN SYMBOL (6)

' D-R/C-R ADDRESS OF CHAIN SYMBOL (6)
SYMBOL INDEX NUMBER ABSOLUTE OFFSET)

0000

0001
COMMON #
CBSEG #

COMMON #

COMMON #

Change 1

F-1

Digital Systems Divisicin

o
4@ - 949617-9701

Table F-1. Object Record Format and Tags (Continued)

TAG FIELD 1 FIELD 2 FIELD 3
o SYMBOL DEFINITIONS
G P-R ADDRESS SYMBOL (6) -
H ABSOLUTE VALUE SYMBOL (6) _
] D-R/C-R ADDRESS SYMBOL (6) COMMON #
ok FORCE EXTERNAL LINK
U 0000 SYMBOL (6) -
o SECONDARY EXTERNAL REFERENCE
P-R ADDRESS OF CHAIN ENTRY SYMBOL (6) -
Y ABSOLUTE ADDRESS OF CHAIN SYMBOL (6) -
z D-R/C-R ADDRESS OF CHAIN SYMBOL (6) COMMON #
hk CHECK SUM
7 VALUE - -
o IGNORE CHECK SUM
8 ANY VALUE - -
kn LOAD BIAS
D ABSOLUTE ADDRESS - -
e END OF RECORD
F - - -
% REPEAT COUNT Worsl~
R AbS VALUE REPEAT COUNT -
*an PROGRAM ID (?)
I P-R ADDRESS PROGRAM ID (8) _
o COBOL SEGMENT REFERENCE
Q RECORD OFFSET . CBSEG #
kg
Change 1 F-2 Digital Systems Division

o
%@ 949617-9701

ALPHABETICAL INDEX

Digital Systems Division

¥

ALPHABETICAL INDEX
INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

e Sections - References to Sections of the manual appear as “Section x” with the symbol
X representing any numeric quantity.

e Appendixes - References to Appendixes of the manual appear as “Appendix y” with the
symbol y representing any capital letter. . .

o e Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter: all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

e Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number: .

Tx-yy

e Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

~ @ Other entries in the Index - References to other entries in the index are preceded by
the word ““See™ followed by the referenced entry.

Index-1 Digital Systems Division

949617-9701

Absolute Memory Partitioning 3.6 Common:
ADD ALIAS Command 2.53 Command 3.6.3
Address, Load 233 Data Areas 3.6
ADJUST Command 3.3.9 Segments 2.6,3.6
Aliases-DX10only 253 Compressed Tagged Object3.5.1,3.5.7
Alignment of a Phase 339 Concatenated Files 2.54
ALLGLOBAL Command 3.3.73 Considerations, Structure 23.1
Area,Data 3.3.6 Control:
Areas, Common Data 3.6,3.63 File 2.1,33.2
Assembler, Model 990 Computer Macro 2.6 Flowof 23.1
Assign Synonym 1.1 Stream 3.21
Automatic: CSEG 26,3.2.1,36
External Reference Resolution 2.5.1,
3.2. Data
Overlay: Area 336,36
Loading 23.1,23.2,5.1 Binary 3.5.1
Loadmg Information 3.3.7.1 Segment 2.6,3.6,3.6.2
Manager 23.2,333 DATACommand 3.6.2
Defaults, TXDS Pathname T6-1
Binary Data 3.5.1 Definition, Orderof 2.3.1
Boundary,Phase 3.3.6 Device Pathnames:
Branch and Load Workspace Pointer 232 DXI10 1.1
TXDS 1.1
Catalog, Volume 2.5.2 Directory 2.5.2
COBOL 1.1, 3.6 Overlay Phase A.l
" Program Linking 5.1 Downard Reference 23.1
Command: DSEG 26,3.2.1, 3.6
ADJUST 3.3.9 DUMMY Command 3.3.8
ALLGLOBAL 3.3.73 DX10 1.1
COMMON 3.6.3 Device Pathnames 1.1
DATA 3.6.2 Link Editor Operation with 5.2
DUMMY 338 Link Editor Useon Section 5
ERROR 3.5.5 LinkMap 42,44
FIND 2.5,3.2.5 Load Overlay Supervisor Call 23.1
FORMAT 3.5.1 Pathnames 1.1
GLOBAL 33.74 Program File 24,3.5.1
INCLUDE 3.2.1
LIBRARY 252 End-of-File Record 3.2.1
LOAD 23.2 Error Reporting Section VII
MAP 3.5.2 ERROR/NOERROR Commands 355
NOAUTO 3.24 Errors-List File T7-1
NOERROR 3.5.5 Errors-Terminal T7-2
NOLOAD 3.3.5 Example:
NOMAP 353 LinkMap F4-1
NOPAGE 3.54 Overlay Structure F4-5
NOSYMT 34.2 Overlayed Program F4-6
NOTGLOBAL 3.3.7.2,33.74 Single Task, No Procedure 4.5.1, F4-2
PAGE 3.54 Task with Two Attached
PARTIAL 3.3.7.1 Procedures 43.2
PHASE 333 Two Procedure 433
PROCEDURE 33.1 TXDS 4.4, F4-7
PROGRAM 3.6.1 - Examples, Link Editor Section IV
SEARCH 3.23 Examples, TXDS 64
SHARE 3.3.6 Execute Only Operating System 36
SYMT 34.1 Execution and Listing Options 3.5
TASK 3.3.2 External Reference Resolution2.5.1,3.2.4
Command-DX10 only: EX990 3.6
LIBRARY 322
LOAD 334 File:
NOAUTO 3.24 Control 2.1,33.2
NOLOAD 335 DX10 Program 24,3.5.1
PROCEDURE 3.3.1 Pathnames TXDS 1.1
SEARCH 3.23 Relative Record 3.5.1
SYMT 34.1
Index-2 Digital Systems Division

949617-9701

File: (Continued) . LNKIDR B.1
Structure 2.1 Load Address 233
System Image 24,3.5.1 Load Overlay Supervisor Call23.1,3.33

Files, Concatenated 254 LOAD/NOLOAD Commands 6.1

FIND Command 2.5,3.2.5 Local Symbols 3.3.7

Flow of Control 2.3.1

Format: Macro Assembler, Model 990 Computer . . . 2.6
Compressed 3.5.1 Manager; Automatlc Overlay 2.3.2,3.3.3,
Image 24,3.5.1,5.1,6.1 334 Appendle
Normal 3.5.1 MAPCommand 3.5.2

FORMAT Command 3.5.1 Memory:

FORTRAN 1.1, 3.6, B.1 Image Format-DX10Only 3.5.1
Program Linking 5.1 Partitioning, Absolute 3.6

Requirements 23.1

GLOBAL: Resident Tasks 3.5.1
Command 3.3.74 Model 990 Computer Macro Assembler 2.6
Symbols 3.3.7 Modules:

and Libraries 3.2

Identifiers 24 Object 2.1,34

Image File, System 24, 3.5.1

Image Format333,334,351,5.1,6.1 Name e e e 333

Image, Memory 24 NOAUTO Command-DX10 Only 324

INCLUDE Command 3.2.1 Node,Root 252

Independent Phases 23.1 NOLOAD Command-DX10Only 7733.5

Install Overlay: NOMAP Command 353
DX10 Supervisor Call 333 Normal Tagged Object 3.3.7,3.5.1
DX10 System Command Interpreter NOSYMT Command 34.2

Command 333 NOTGLOBAL Command 3.3.7.2,33.74

Interaction Between Phases 231

Object:

Level 23,333 Compressed Tagged 3.3.7,3.5.1

Libraries: Image Format 24,3.5.1
Link Editor 2.5 Modules 21,34
Modulesand 3.2 Normal Tagged 33.7,3.5.1

- Random 2.5,2.5.2,3.2.1,3.24,5.1 Qutput, Linked 34
Sequential 2.5,2.54,3.2.5,5.1 Tagged 2.6
Symbol Resolution with 251 Order of Definition 23.1

LIBRARY Command 2.5.2,3.2.2 Ordering, Search 323

Link Editor: . Output 2.1
Commands Section III Linked Object 34
Errors-List File T7-1 Listing 354
Errors-Terminal T7-2 Options, Listing 3.5
Examples Section IV Structure of the 33
Libraries 2.5 Overlay:

UseonDXI0 ‘Section V Control Stream F3-2
UeonTXDS Section VI Entry Vector Al

LinkMap 352 Link Edit Example-DX10 434
DX10 4.2 Linking, Procedure, Task,and 33
DXiOExample F4-1 Loading:

TX990 44 Automatic 23.1,23.2,3.3.7.1, 5.1

Linked: Manager 232,333,334, A1
Object Output °. 34 Phase Directory A.l
Output, Segmentation of 2.6 Structure Example F4.-5

Linking: Structures 333
COBOL Program 5.1 Overlayed Program:

FORTRAN Progtam 5.1 Example F4-6
Loader: Structure 2.3.1
LoadMap TB-1 Overlays, User Loaded 23,233
LoadMap FB-1
TXDS Appendix B PAGE/NOPAGE Commands 3.54
Procedure, Task, and Oveday 33 Partial:

Links, Partial 3.3.73 Command 33.7.1

Listing: Link Edit 2.54,33.7.1
Options 3.5 Partitioning, Absolute Memory 3.6
Output 354 Path 23,333

Index-3

Digital Systems Division

@ 949617-9701

Pathname: SEARCH Command 2.5,3.23
TXDS 1.1, 6.3, T6.1 Search Ordering 3.23
DX1000 1.1 Secondary Entry Points and

Phase 23,332 Aliases-DX10only 253
Alignmentof 339 Segment:

Boundary 3.3.6 Common 2.6,3.6
Directory, Overlay Al Data 2.6,3.6
Resident 333 Program 26,3.6
Root 23,342 Segmentation of Linked Output-DX10 Only 2.6

PHASE Command 333 Sequential Libraries 2.5,2.54,3.2.5,5.1

Phases: SHARE Command 336
Independent 23.1 Single Task, No Procedure Example 4.3.1
Interaction Between 2.3.1 Stand-alone Systems 3.6

Portion, Resident 333 Structure:

Privileged Tasks 3.5.1 and Function Section II

PROCEDURE Command 3.3.1 Considerations 23.1

Procedure, Task, and Overlay Linking . .33 Example, Overlay F4-5

Procedures and Tasks 2.2 File 2.1

Processing, Symbol 34 ofthe Output 33

Program: Overlayed Program 23.1
Example, Overlayed F4-6 Programs, Overlayed 5.1
File-DX10 e e e e 24,3.5.1 Structures, Overlay 333
Linking: Supervisor Call:

COBOL 5.1 DX10 Load Overlay .23.1,333
FORTRAN 5.1 Install Overlay 333
Segment 2.6,3.6 Symbol:
Structure, Overlayed 23.1 Processing 34
TXDS Copy Concatenate Utility 254 Resolution with Libraries 2.5.1

PROGRAM Command 3.6.1 Table 34

Programs: Symbolic Debugging 34
Overayed Structure 5.1 Symbols 3.3.7
Reentrant 2.6 Global 3.3.7

PSEG 2.6,3.6 Local 33.7

SYMT:
RAM 0.... 3.6 Command-DX10Only 34.1
Random Libraries .. 25,252,3.21,3.24, Output Option 6.1
5.1 Synonyms 1.1

Read-Only-Memory 3.6 Syntax, Command 1.1, Appendix C

Read/Write Memory 36 System:

Record: Imdge File 24, 3.5.1
Endof-File 3.2.1 Tasks 3.5.1
File, Relative 3.5.1 Systems, Stand-alone 3.6

Reentrant:

Procedure 3.3.1 Table, Symbol 34
Programs 2.6 Tagged Object 2.6

Reference: Compressed 3.3.7,35.1
Downward 23.1 Normal 3.3.7,3.5.1
Resolution, Automatic External . 3.24 TASK Command 33.2
Unresolved 2.5.1 ,3.2.5 Task with Two Attached Procedures 43.2,
Upward 2.3.1 F4-3

Relative Record File 3.5.1 Tasks 2.2

Reporting, Error Section VII Memory Resident 3.5.1

Requirements, Memory 23.1 Privileged 3.5.1

Resident: Proceduresand 2.2
Phase 333 System 3.5.1
Portion 333 Terminal Executive Development System . . . 6.1
Tasks, Memory 3.5.1 TXDS 1.1, 6.1

Resolution: Copy Conatenate Utility Program 2.54
Automatic 2.5.1 Device Pathnames 1.1
External Reference 3.24 Example 4.4, F4-7

ROM 3.6 File Pathnames 1.1

Root: Link Editor Useon Section VI
Node 252 Linking Loader Appendix B
Phase 2.3,34.2 Pathname Defaults T6-1

Index-4

Digital Systems Division

1>

949617-9701

TX990 LinkMap 44
Unresolved References 2.5.1,3.2.5
Upward Reference 2.3.1
User Loaded Overlays 233
Utility Program, TXDS Copy Concatenate 254

VCATALOG 252
Vector, Overlay Entry Al
Volume Catalog 2.5.2
XLECommand 5.2
$BLOCK 2.6

Index-5/Index-6 Digital Systems Division

&)

~)

FOLD

FIRST CLASS

PERMIT NO. 7284
DALLAS, TEXAS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.0. BOX 2909 - AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

FOLD

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: Model 990 Computer Link Editor Reference Manual (949617-9701)

Manual Date:_15 March 1978 Date of This Letter:
User’s Name: : Telephone:
Company: Office/Department:
Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

o

/|

TEXAS INSTRUMENTS

INCORPORATED
DIGITAL SYSTEMS DIVISION
POST OFFICE BOX 2909 AUSTIN, TEXAS 78769

