\\

TEXAS INSTRUMENTS

impmving Man’s Effectiveness Through Electronics

I

Model 990 Computer

Terminal Executive Development System (TXDS)
Programmer’s Guide |

MANUAL NO. 946258-9701
ORIGINAL ISSUE 1 APRIL 1977
INCLUDES

CHANGE 1....... 1JULY 1977
CHANGE 2....... 15 OCTOBER 1977

\\;

(!

Digital Systems Division

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or

(:) Texas Instruments Incorporated 1977

A1l Rights Reserved

organization without the prior consent of Texas Instruments Incorporated.

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

Model 990 Computer Terminal Development System (TXDS) Programmer.s Guide (946258-9701)

Original Issue .

Change 1
Change 2

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of

the page.

15 April 1977

1 July 1977 (ECN 419567)
15 October 1977 (ECN 419599)

Total number of pages in this publication is 202 consisting of the following:

PAGE
NO,

" Cover .
Effective Pages
iii —iv
v .

vi .

vii .

viii — xii
1-1-14
2-1

22 ..
23 -25
2-6 — 27
2-8 —2-10 .
2-11 - 2-12
2-13 - 2-14
2-15—2-16
3-1-32
3-3-36
41 . .
4-2 - 4.4
4-5-4-6
4.7

4.8 . . .
4.9 - 4-10 .
4-11 —4-12

CHANGE

NO,

B =t = O OO~ NMROMMNON—O—=N—OKN NN

PAGE

NO,

4-13 .

4-14 .

4-15 - 4-16
4-17 —4-18
4-19 — 4-22
423 .

4-24 .
5-1-52
53 . .
54 — 56
6-1 —64
71 -74
7-5 — 76
7-71—-17-8
81 -84 .
9-1 —92B .
93

9-4

9-5

96 . . .
9-8 — 9-8B .
99 . . .
9-10 — 9-23
924 . .
9-25-9-34

CHANGE
NO,

OCNOMNFPDONONO—RO~MO~R,NDN—HONO~ONOD

PAGE

NO.
9-35-9-36B
9-37 — 946

10-1 .
10-2 - 104

10-5 .

10-6 .

10-7 .

108
109 — 10-10 .
10-11
10-12 - 10-13
10-14

10-15 . .
10-16 — 10-18
10-19

10-20

10-21

1022 . .
10-23 — 10-26
11-1 —11-14 .
12-1 - 12-6 .
Appendix A Div .
A1 — A4 .

Appendix B Div .

B-1 — B-2

CHANGE
NO

BN O O OO =)k = N Rk B = R = M)) RO

(:) Texas Instruments Incorporated 1977
Al1 Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, metheds, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES [

The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer Terminal Development System (TXDS) Programmer’s Guide (946258-9701)
(continued)

Total number of pages in this publication is consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO, NO ., NO, NO. NO, NO,

Appendix C Div
C1-C2

Appendix D Div

D1 .

D2
Alphabetical Index Div .
Index 1 — Index -2
User’s Response
Business Reply

Cover Blank

Cover

OO OMNMOOO~OOO0O

iiA/iiB

@ 946258-9701

PREFACE

This manual enables the user to employ the Terminal Executive Development System (TXDS) in
conjunction with the TX990 Operating System and the Model 990/4 and 990/10 Computer System
hardware configuration to develop, improve, change, or maintain (1) the user’s customized
Operating System and the user’s applications programs or (2) any other type of user-produced
programs (e.g., the user’s own supervisor call processors or the user’s own utility programs). It is
assumed the reader is familiar with the Model 990 Computer System assembly language and the
concepts of the TX990 Operating System.

The sections and appendixes of this manual are organized as follows:

I Introduction — Provides a general description of the TXDS utility programs and their
capabilities. Also includes a description of the control functions of the TXDS Control
Program.

II Loading and Executing a Program — Provides a step-by-step procedure for loading and
executing (1) each of the TXDS and TX990 Operating System utility programs and (2) a
user program. Also describes the TXDS Control Program and how to correctly respond to
its prompts.

III Verification of Operation — Provides several short step-by-step procedures to checkout
proper operation of the TXDS software.

IV TXDS Text Editor (TXEDIT) Utility Program — Describes the capabilities of the
TXEDIT utility program and how the user can employ those capabilities to edit or
generate the text of source programs and object programs.

V TX990 Assembler (TXMIRA) Utility Program — Describes how the user can employ the
TXMIRA utility program to assemble source files (i.e., source code programs).

VI TX990 Cross Reference (TXXREF) Utility Program — Describes how the user can
employ the TXXREF utility program to produce a listing of each user-defined symbol
in a 990 assembly source program aiong with the line numbers on which the symbol is
defined and all of the line numbers on which the symbol is referenced.

VII TXDS Linker (TXLINK) Utility Program — Describes how the user can employ the TXDS
Linker utility program to form a single object module from a set of independently
assembled object modules (in the form of object code or compressed object code).

VIII TXDS Copy Concatenate (TXCCAT) Utility Program — Describes how the user can
employ the TXCCAT utility program to copy one to three files to a single output file.

IX TXDS Standalone Debug Monitor (TXDBUG) Utility Program — Describes how the user
can employ the TXDBUG utility program to debug programs which have been designed
to operate in a *“standalone” situation without support of an operating system.

X TXDS PROM (TXPROM) Programmer Utility Program — Describes how the user can
employ the TXPROM programming utility program to control the Programming Module
(PROM) hardware to make customized ROMs containing user-created data or programs.

Change 2 iii Digital Systems Division

946258-9701

XI TXDS BNPF/High Low (BNPFHL) Dump Utility Program — Describes how the user can
employ the BNPFHL utility program to produce a BNPF or high/low file format.

XII TXDS IBM Diskette Conversion Utility (IBMUTL) Program — Describes how the user can
employ the IBMUTL utility program to transfer standard IBM-formatted diskette datasets
to TX990 Operating System files and to transfer TX990 Operating System files to
standard IBM-formatted diskette datasets.

A Glossary — Clarifies selected words used in this TX990 Operating System Programmer’s
Guide.

B Compressed Object Code Format — Describes the compressed object code format.
C Task State Codes — Lists and describes the task state codes.

D I/O Error Codes — List and describes the I/O error codes available to the user, when
coding a program, for printout or display on a terminal device.

The following documents contain additional information related to the TX990 Operating System
and are referenced herein this manual:

Title ‘ Part Number
Model 990 Computer TX990 Operating System Programmer’s 9462599701
Guide
Model 990 Computer TMS9900 Microprocessor Assembly 943441-9701
Language Programmer’s Guide
Model 990 Computer Model FD800 Floppy Disc System 9452539701
Installation and Operation
Model 990 Computer Model 913 CRT Display Terminal 9434579701
Installation and Operation
Model 990 Computer Model 911 Video Display Terminal 945423-9701
Installation and Operation
Model 990 Computer Model 733 ASR/KSR Data Terminal 9452599701
Installation and Operation
Model 990 Computer Model 804 Card Reader Installation 945262-9701
and Operation
Model 990 Computer Models 306 and 588 Line Printers 9452619701
Installation and Operation
Model 990 Computer PROM Programming Module 9452589701
Installation and Operation
990 Computer Family Systems Handbook 945250-9701
Model 990 Computer Communications System Installation 945409-9701

and Operation

Change 2 iv Digital Systems Division

946258-9701

TABLE OF CONTENTS
Paragraph Title Page

SECTION I. INTRODUCTION

1.1 General L. L Lo Lo e e 1-1
1.2 TXDS Text Editor (TXEDIT) Utility Program 1-2
13 TXDS Assembler (TXMIRA) Utility Program, . . . e e e e e e 1-2
14 TXDS Cross Reference (TXXREF) Utility Program 1-2
1.5 TXDS Linker (TXLINK) Utility Program 1-2
1.6 TXDS Copy/Concatenate (TXCCAT) Utility Program 1-2
1.7 TXDS Standalone Debug Monitor (TXDBUG) Utility Program 1-2
1.8 TXDS PROM (TXPROM) Programmer Utility Program 1-2
19 TXDS BNPF/High Low (BNPFHL) Dump Utility Program 1-2
1.10 TXDS IBM Diskette Conversion Utility (IBMUTL) Program 1-2

SECTION II. LOADING AND EXECUTING A PROGRAM

2.1 Introduction oL L Lo e e e e e 2-1
2.2 Loading and Executing a Program L. 2-2
23 Responding to TXDS Control Program Prompts 24
2.3.1 Prompt-Responses L Lo L 24
2.3.2 Pathname Syntax and Default-Substitutes for Responses to

PROGRAM:, INPUT:, and OUTPUT: Prompts 2-6
233 Special Keyboard Control Keyso o000 oL, 2-8
234 Placement in Common Memory Block of the Response-Entries to the

PROGRAM:, INPUT:, OUTPUT:, and OPTIONS: Prompts 2-10
2.4 Backing Up TI-Supplied TXDS Diskettes 2-14
2.5 TXDS Control Program Error Messages 2-15

SECTION III. VERIFICATION OF OPERATION

3.1 Introduction L L L e e e e e e e e e e e e 3-1
3.2 Requirementso Lo oL 3-1
33 Operation L L e e e e 3-1
SECTION IV. TXDS TEXT EDITOR (TXEDIT) UTILITY PROGRAM
4.1 Introduction L. L Lo L Lo 4-1
4.2 LUNOs e e e e e e 4.2
43 Loading TXEDIT 4-3
44 Commands L. oo e e e e e e e e e 44
44.1 General L L L e e e e e e e 44
442 Command Operandsl e e 44
443 Symbol Definition 44
444 Special Keys/Characters 4-7
445 Setup Commands L L L0 Lo 4-7
44.6 Pointer-Movement Commands L0 4-8
44.9 Edit Commands 49
4438 Print Commands Lo 4-12
449 Output Commands e e e e 4-13
4.4.10 Terminate-Sequence Commands L ..o 0oL 0oL 414

v Digital Systems Division

946258-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4.5 Error Messages L .o e e e e e e e e e e e e e 4-14
4.6 Example: Entering a Source Program on a Cassette or Diskette 4-14
4.7 Example of How to Edit a Source Program 4-18
4.8 Example of How to Edit an Object Program 4-22

SECTION V. TXDS ASSEMBLER (TXMIRA) UTILITY PROGRAM

5.1 Introduction L L L L L e e e e e 5-1
5.2 LUNOs and Their Uses o . 0 0 v v i it it e e e e 5-1
53 Operation Interaction L e e e e e e e e e 5-2
54 TXMIRA Options o oL e e e e e e e e e e e e 5-2
54.1 Memory Option (M) Lo e e 5-3
542 Cross-Reference Option (X)o 5-3
543 Listing Option (L) e e e 5-3
544 Print Text Option (T) o 5-3
545 Symbol Table Listing Option (S) 5-3
54.6 Compressed Object Option (C) o v v v v vt it 53
5.5 Errors L L L e e s e 54
5.5.1 TXMIRA Error Messages e 5-4
5.6 TXMIRA Example - - - oo 5-5

SECTION VI. TXDS CROSS-REFERENCE (TXXREF) UTILITY PROGRAM

6.1 Introduction L oL oL oo Lo 6-1
6.2 LUNOs o o e e e e e 6-1
6.4 Operating Procedure L L L Lo e 6-1
6.4 Listing Format oo o e e e e 6-1
6.5 Options L L e e e e e e e e e e e e e e 64
6.6 Error Messages L L oL Lo Lo e e e e e e 6-4

SECTION VII. TXDS LINKER (TXLINK) UTILITY PROGRAM

7.1 Introduction L L 0oL L L Lo e e e 7-1
7.2 TXLINK File Structures and LUNO Assignments 7-1
7.3 TXLINK Execution L ..o 7-1
74 TXLINK Control Options o e 7-3
74.1 Memory Override (M) 73
742 Compressed Object (C) o e e e e 7-3
7.4.3 Program Identifier, IDT, Option (I) 74
74.4 Partial Option (P) oo .o e 74
74.5 Load Map Option (L) e 74
7.5 Linked Object Moduleo oo 7-6
7.6 Error Messages o e e e e e e e e e 7-6

7.7 TXLINK Example oL 7-7

SECTION VIII TXDS COPY/CONCATENATE (TXCCAT) UTILITY PROGRAM

8.1 Introduction L. L Lo e e e e 8-1
8.2 TXCCAT LUNOs oo oot e ot e s e e e e 8-1
83 Operator Interaction oo e e e e e 8-1
Change 1 vi Digital Systems Division

946258-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
8.4 Options L. 8-2
8.4.1 Truncate Option (TR) 2
8.4.2 Fix Records (FL) oo, 8-2
8.4.3 Skip Records (SK) 8-3
8.4.4 List File (LF) o o 8-3
8.4.5 Space Listing (SL}, 8-3
8.4.6 Number Lines (NL) 83
8.4.7 NoInput Rewind (RI) 8-3
8.4.8 No Output Rewind (RO), 8-3
8.5 Errors . . . L e 8-3

SECTION IX. STANDALONE DEBUG MONITOR (TXDBUG)

9.1 Introduction L L0 0L, 9-1
9.2 General Description L. L. 92
9.3 Installation of TXDBUG 9-2
9.3A Loading TXDBUG 9-2 I
9.4 Debug Modes Lo 9-3
9.5 Debug Monitor Command Structures L. 94
9.5.1 Debug Command Codes, 9-5
9.5.2 Miscellaneous Commands Lo L0 9-6
9.53 Command Entry Lo oo 9-6
954 Notational Conventionso S-7
9.6 Command Descriptions Lo 9-8
9.6.1 Execute User Program (EX) 9-8
9.6.2 Execute User Program under SIE or Trace (RU) 9-8A
9.6.3 Hexadecimal Arithmetic (HA) 99
9.6.4 Find Byte (FB) 9-10
9.6.5 Find Word (FW) 9-11
9.6.6 Breakpoint Commands (SB,CB) 9-13
9.6.7 Communications Register Unit Commands (IC,MC) 9-16
9.6.8 Memory Commands (IM,MM) 9-18
9.6.9 Processor Register Commands (IR, MR) 9-20
9.6.10 Workspace Register Commands (IW, MW) 9-21
9.6.11 Snapshot Commands (SS, IS, CS) 9-23
9.6.12 Trace Commands (ST, SR,CR) 9-27
9.6.13 Write Protect Option Commands (SP,CP) 9-34
9.7 Debugging Techniqueso 9-36B
9.7.1 General Debugging Techniques 9-36B
9.7.2 Specific Debugging Techniques 9-38
9.7.3 Patchingo 940
9.8 Error Messages L L L. L. 945
Change 2 vii Digital Systems Division

946258-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION X. TXDS PROM (TXPROM) PROGRAMMER UTILITY PROGRAM

10.1 Introduction L L L oL L L e e s e e e e 10-1
10.2 Required Configuration L L. Lo e 10-1
10.3 Description L L L e e e e e e 10-1
10.3.1 PROM Burn and Verifyo 10-2
10.3.2 PROM Read Operation« . . o o 10-2
10.4 Loading TXPROM e e 10-4
10.5 TXPROM Operation o . o 0 vt e e e e e e e e e e e e 10-4
10.5.1 Control File Creationo 104
10.5.2 Control File Modificationo 10-5
10.5.3 Control File Execution L. 10-6
10.6 Data Files oo e 10-8
10.7 Control Files L L. e 10-8
10.7.1 Data File Nameo oo 10-8
10.7.2 Data Bias oL e e e 10-9
10.7.3 Transfer Code oL oL e e 10-9
10.7.4 Compare After L Lo e 10-9
10.7.5 Memory Display oL oL e 10-10
10.7.6 PROM Display e e e e 10-10
10.7.7 Memory Starting Address L. L. oL Lo 10-11
10.7.8 Number of Memory Bytes 10-11
10.7.9 Memory Starting Bito 10-11
10.7.10 PROM Starting Address 10-11
10.7.11 Number of PROM Words00 10-12
10.7.12 PROM Starting Bit Lo 10-12
10.7.13 Memory Mapping Levels Lo 10-12
10.7.14 Memory Level n Bit Stepo 10-12
10.7.15 Memory Level n Loop Count 10-13
10.7.16 PROM Mapping Levelso 10-13
10.7.17 PROM Level n Bit Step e e e e 10-13
10.7.18 PROM Level n Loop Count 10-14
10.7.19 Transfer Bit Widtho 10-14
10.7.20 PROM Bitsper Wordo 10-14
10.7.21 Program Zeros or Ones 0oL 10-14
10.7.22 Pulse Width 10-15
10.7.23 Duty Cycleo e 10-16
10.7.24 Number of Retrieso 10-16
10.7.25 Simultaneously Programmable Bits L 10-16
10.7.26 CRUBase o . . o e e e e 10-16
10.8 Bit String Mapping L oL L L L 10-16
10.8.1 Level 1 Mapping Exampleo oo 10-17
10.8.2 Level 2 Mapping Exampleo oL 10-17
10.8.3 Level 3 Mapping Exampleo 10-19
10.9 Standard Control Files00 10-19
10.10 Variable Parameters L0 L 10-19
10.11 Programming EPROMs 10-21
10.12 Programming Exampleso 10-23
10.12.1 EPROM Example 10-23
10.12.2 PROM Example Lo 10-24
10.12.3 Control File Change Example 10-25
10.124 Executing a Control File Example 10-2

Change 1 viii Digital Systems Division

946258-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION XI. TXDS BNPF AND HIGH-LOW (BNPFHL) DUMP UTILITY PROGRAM

11.1 Introductiono o e 11-1
11.2 LUNOS o o e e e e 11-3
11.3 Loading the BNPFHL Utility Program 11-3
11.3.1 Response to the INPUT: Prompt 114
11.3.2 Response to the OUTPUT: Prompt 1i-4
11.3.3 Response to the OPTIONS: Prompt. 11-4
11.34 Response to the MEMORY: Prompt. 11-6
114 Error Messages Lo e e e e 11-7
11.5 Examples of Usage of the BNPFHL Utility Program 11-7
11.5.1 Example of BNPF Formatted Dump Using Default Substitute Parameters 119
11.5.2 Example of HILO Formatted Dump Using Default Substitute 11-10
11.53 Example of HILO Formatted Dump Beginning at Position 4 of Initializing the Buffer

toall Binary Ones e e 11-11
11.54 Example of a HILO Compare with Discrepant Data 11-12
11.5.5 Example of a BNPF Formatted Dump with Bias 100 11-13
11.5.6 Example of a BNPF Compare with Discrepant Data 11-13

SECTION XII. TXDS IBM CONVERSION UTILITY (IBMUTL) PROGRAM

12.1 Introduction L . . e e e e e e e e e e 12-1
12.2 IBMUTL Description o v o v v v ittt e e e e e e e e e e 12-1
12.2. Formatting IBM Diskette oo oo oo 12-1
12.2.2 Transferring TX990 Files to IBM Datasets 12-1
12.2.3 Transferring IBM Datasets to TX990 Files 12-

12.3 LUNOs and Their Uses« « o o v o v i i v i e e e e 12-1
124 Loading and Executingo oo oo 12-1
12.5 Operator Interaction oo oo e 12-2
12.5.1 Special Characters e 12-2
12.5.2 Operator Prompts L L L Lo 12-2
12.6 Error Reporting and Recoveryo oo 124

APPENDIXES

Appendix Title ' Page
A GIOSSAIY . . .« « o o e A-1
B Compressed Object Code Format B-1
C Task State Codes e e e e e e e e e e e e e e e C-1
D [JOEror Codes« . . o i i i e e e D-1

Change 1 ix Digital Systems Division

946258-9701
LIST OF ILLUSTRATIONS

Figure Title Page
1-1 Terminal Executive Software Development System, Data Flow and

Control Pathso 1-3
1-2 Model FS990/4 Floppy Based Software Development System, Minimum

Hardware Configuration for TXDS 1-4
3-1 TXMIRA Sample Output Listing 34
6-1 Sample Cross Reference Listing (Abbreviated). 6-2
7-1 Files Accessed by TXLINK o ..o 7-2
7-2 Load Map Listing oL 7-5
9-1 Debug Monitor Memory Configuration 9-35
9-1A CRU Output Data Format. 9-35
9-2 Trace Region Precedence of Lower Region Number. 9-39
9-3 Using Both Traceand SIE. 9-40
10-1 PROM Burn, Compare Operation 10-3
10-2 PROM Bum, Compare and Read Operation 10-3
10-3 Level 1 Mapping Example 10-17
10-4 Level 2 Mapping Example 10-18
10-5 Level 3 Mapping Example 10-20
10-6 EPROM Programming Example. 10-23
10-7 PROM Programming Example 10-25
11-1 Standard Object Code Format to BNPF Format Conversion 11-1
11-2 Standard Object Code Format to BNPF Format, Full, First Line Conversion 11-1
11-3 Standard Object Code Format to High-Low Format Conversion. 112
11-4 Standard Object Code Format to High-Low Format, Full First Line Conversion. 11-2

Change | X Digital Systems Division

946258-9701
LIST OF TABLES
Table Title Page
2-1 Pathname Responses to PROGRAM:, INPUT:, and CUTPUT: Prompts. 2-7
2-2 Utility Program File-Name Identifiers 2-8
2-3 Byte-Allocation of COMMON Memory« 2-11
2-4 TXDS Control Program Error Messages « .« . o 2-16
4-1 TXEDIT Default-Substitute o o o e e 4-4
4.2 List of Commands and Special Keys/Characters. 4-5
4-3 TXEDIT Error Messages . . . < . . o o o v v v e ot b e e e e e e 4-15
5-1 Pathname Defaults oo e e 5-2
5-2 TXMIRA OpPLONS & v v v e e e e e e e e e e e e e e e 52
5-3 Symbol Attributes o L L L. Lo 5-3
54 TXMIRA Fatal Errors 0 o v i e e e e e e e e 5-4
5-5 TXMIRA Nonfatal Errors o o« o v v i e e e e e 5-5
6-1 Pathname Defaultso e e e e e e e 6-1
6-2 Error Messages« o v e e e e e e e e e e e e e e e e e 6-4
7-1 Pathname Defaults 7-2
7-2 TXLINK Options o« v 0 v v it i e e e e e e e 7-3
7-3 Error Messages e e e e e e e e e e e 7-7
8-1 Pathname Defaultso oo o e e e e e 8-1
8.2 TXCCAT Options o« v v v v e it et e e e e e e 8-2
8-3 TXCCAT EITOrs . . .« © v v e e i e e e e i e e e e e e e e e e e e e 84
9-1 Valid Debug Command Combinationso 9-6
9.2 TXDBUG Keyboard Commands« . . e 9-7
10-1 Table of Control File Parameters Prompt 10-7
10-2 Pulse Widths e e e e e e e 10-15
10-3 Minimum, Standard and Maximum Pulse Widths and Duty Cycles. 10-15
10-4 Level 1 Mapping Example Parameterso 10-18
1G-5 Level 2 Mapping Example Parameterso 10-19
10-6 Level 3 Mapping Example Parameterso 10-21
10-7 Standard Control Files e 1022
11-1 BNPFHL Error Messages - - - - - « v« o o v o o e e e e e e e 11-8
12-1 IBMUTL Error Messages.« « v v v i i ittt e e e 12-5

Change 1 xi/xii Digital Systems Division

@ 9462589701

SECTION I

INTRODUCTION

1.1 GENERAL

The Terminal Executive Development System (TXDS) provides an extensive software capability to
assist in developing, improving, changing, or maintaining (1) the user’s customized Operating
System and the user’s applications programs or (2) any other type of user-produced programs (e.g.,
the user’s own supervisor call processors or the user’s own utility programs). Essentially, TXDS
delivers this capability by means of the following nine utility programs: :

® TXDS Text Editor (TXEDIT) Utility Program

® TXDS Assembler (TXMIRA) Utility Program

® TXDS Cross Reference (TXXREF) Utility Program

® TXDS Linker (TXLINK) Utility Program

® TXDS Copy Concatenate (TXCCAT) Utility Program

® TXDS Standalone Debug Monitor (TXDBUG) Utility Program
e TXDS PROM (TXPROM) Programmer Utility Program

e TXDS BNPF/High Low (BNPFHL) Dump Utility Program

e TXDS IBM Diskette Conversion Utility (IBMUTL) Program

Another important feature of TXDS is its capability to function as a control center by means of the
TXDS Control Program. The TXDS Control Program simplifies operator interaction with the
computer by (1) informing the operator, for example, when a program has been successfully loaded
or executed or (2) by requesting the operator for an entry of data/information into the computer
via the keyboard of the system console (i.e., the 911 or 913 Video Display Terminal, the
733 ASR/KSR Data Terminal, or the 743 KSR Data Terminal). Basically, the TXDS Control Pro-
gram functions to prompt (i.e., request) the user for the name of the utility program to load, and
the input, output, and options parameters required by the utility program. After the parameters
have been entered via the system console keyboard, by the user, in response to the prompts, the
specified utility program is loaded into memory and executed. When the utility program has
completed execution, the TXDS Control Program again prompts the operator for the name of
another program to load, and for the input, output, and options parameters required by the
program.

TXDS can also be used to extend and upgrade the capabilities of the TX990 Operating System. By
making appropriate use of the TXDS utility programs, users are able to more easily develop,
improve, change, or maintain their software. TXDS is an ideal supplement to the TX990 Operating
System software package.

1-1 Digital Systems Division

{@ 9462589701

The TXDS utility programs are briefly described in the following paragraphs; detailed descriptions
(including step-by-step loading procedures, descriptions of available commands, and coding
examples explaining typical employment of each utility program) are provided in the other sections
in this manual. Figure 1-1 presents the data flow and control paths among the elements of the
Terminal Executive Development System software; figure 1-2 presents a typical hardware configura-
tion supporting TXDS capabilities.

1.2 TXDS TEXT EDITOR (TXEDIT) UTILITY PROGRAM

TXEDIT operates interactively with the operator’s system console and provides a method of
modifying existing source code on diskette files or cassettes and of creating new source files. Its
features include the ability to make multiple single directional editing passes on the source file to
add, remove, move, or change lines of source.

1.3 TXDS ASSEMBLER (TXMIRA) UTILITY PROGRAM

TXMIRA is a two-pass assembler that produces object code for any member of the Model 990
Computer family, including the TMS9900 Microprocessor. The assembler accepts an assembly
language source program and produces a source listing and an object file. For more detailed infor-
mation, refer to the Model 990 Computer TMS9900 Microprocessor Assembly Language
Programmer’s Guide.

1.4 TXDS CROSS REFERENCE (TXXREF) UTILITY PROGRAM

TXXREF produces a listing of each user-defined label in a 990 assembly source program along with
the line number on which each label is defined and all of the numbers of the lines from which the
label was referenced. The program may be invoked by either user directive, via the TXDS Control
Program, or by chaining to it from the assembler.

1.5 TXDS LINKER (TXLINK) UTILITY PROGRAM

TXLINK links object modules produced by the assembler to form a single object module. The
linker allows the specification of up to three input files each of which may contain multiple object
modules. TXLINK can also perform partial links which may later be linked with additional modules
to complete the linking process.

1.6 TXDS COPY CONCATENATE (TXCCAT) UTILITY PROGRAM
TXXCAT facilitates the transfer of data from file or device to file or device and allows for the
specification of up to three source or object files to be copied to one output file or device.

1.7 TXDS STANDALONE DEBUG MONITOR (TXDBUG) UTILITY PROGRAM
TXDBUG is a memory-resident, standalone, system executive that provides extensive program
debug features and responds interactively to user input from a 733 ASR Data Terminal.

1.8 TXDS PROM (TXPROM) PROGRAMMER UTILITY PROGRAM
TXPROM provides flexible user control of the PROM programming process as well as standardized
programming options. '

1.9 TXDS BNPF/HIGH LOW (BNPFHL) DUMP UTILITY PROGRAM

This utility allows a user to produce a BNPF-formatted file, output the file to an appropriate media
(paper tape, cassette, etc.) and to compare the media contents to the BNPF-formatted file. It also
allows a user to produce a TI 256 by 4 high/low-formatted file, output the file to an appropriate
media, and compare the media contents to the input file contents.

1.10 TXDS IBM DISKETTE CONVERSION UTILITY (IBMUTL) PROGRAM
This utility provides a means of transferring standard IBM-formatted diskette data sets to TX990
files and transferring TX990 files to standard IBM-formatted diskette data sets.

1-2 Digital Systems Division

uoIsIAlg swalsAs jeybig

TXDS
CONTROL
PROGRAM

TTTTT ‘J._

r— - - — - P - - - - 777
N I T T I
| | -—— ——— | I
¥) 4 ¥ ¥ L)
OBJECT TEXT ASSEMBLER CROSS LINKER COFPY
MANAGER EDITOR — 9 REFERENCE CONCATENATE
* ¥ ¥ ¥ ¥
| [— — I____l | T
|
| e | i | r—— —— — —— - I
- | -]
—/ | |
MEERR:
FILE
MANAGEMENT
4\
¥
FD80OO
FLOPPY
DISC UNIT

(A)1359078

Figure 1-1. Terminal Executive Software Development System, Data Flow and Control Paths

10L6785T9Y6

r 9462589701

IDEO DISPLAY
INAL

FD800 FLOPPY
DISC UNIT

PROGRAMMER PANEL.
(99074 CPU WITH 256
WORD ROM AND 24K
MEMORY INTERNALLY
CONNECTED) .

(A)135902

Figure 1-2. Model FS990/4 Floppy Based Software Development System,
Minimum Hardware Configuration for TXDS

14 Digital Systems Division

946258-9701

SECTION I

LOADING AND EXECUTING A PROGRAM

2.1 INTRODUCTION

This section provides the user with a simple procedure for executing: (1) each of the TXDS and |
TX990 Operating System utility programs; and (2) a user program. The TXDS and TX990
Operating System utility programs are listed as follows:

TXDS TX990 Operating System
Utility Programs Utility Programs
Text Editor (TXEDIT) System Generation (GENTX)
Assembler (TXMIRA) Object Manager (OBIMGR)
Cross Reference (TXXREF) Initialize Diskette (INITDSC)
Linker (TXLINK) Diskette Backup (BACKUP)
Copy Concatenate (TXXCAT) Diskette OCP System Utility (SYSUTL)
Standalone Debug (TXDBUG) List 80-80 (LIST80)
PROM Programmer (TXPROM) Diskette Dump (DSKDMP)

BNPF/HIGH LOW Dump (BNPFHL)
IBM Diskette Conversion (IBMUTL)

The program loading and executing procedure is greatly simplified by the interactive, memory-
resident TXDS Control Program, which enables loading and executing of any one of the above
utility programs or a user program. The TXDS Control Program (only one of which is included with
each Terminal Executive Development System) assists in program loading and execution by printing
out or displaying prompts (i.e., requests) on the system console, sequentially, as follows:

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

The TXDS Control Program also prints out or displays information which indicates to the operator
that a program has been successfully loaded or is in the process of being executed. For example,
after the TXDS Control Program is executed, the following printout or display is presented at the
system console:

TXDS 936215 ** 152/77 1:05 L
PROGRAM:

The above display tells the operator that the TXDS Control Program is in execution and that the
operator may respond to the PROGRAM: prompt by specitying the program to be loaded. The
display heading indicates the name of the monitor (TXDS), the part number of the software.
the revision status (** = no revision, *A = 1st revision, *B = 2nd revision, etc.), and the date and
time of day that the program was loaded (152/77 = 152nd day of 1977).

Change 1 2-1 Digital Systems Division

o]
{_@; 946258-9701

The responses to the prompts of the TXDS Control Program are entered by the operator, using the
keyboard of the system console, into a block of memory known as COMMON memory. The task
which is being loaded and executed then accesses COMMON memory for the information contained
in these responses. The response-information is stored in the bytes of COMMON memory in an
organized manner using the format presented in table 2-3. The programmer, when coding a user
utility program or a user applications program, will find it necessary to become familiar with the
format of COMMON memory. Access to the response-information in COMMON memory is pro-
vided to the programmer by use of Get COMMON Data supervisor call 10,,. Get COMMON Data
supervisor, when employed by the programmer, returns the memory address and the byte-size
of COMMON to the task. The TXDS Control Program can only execute in an operating system
which was generated with at least 170 bytes of COMMON memory. The user must take this into
consideration when performing system generation using a different hardware configuration than
the standard TI hardware configuration. (Refer to the System Generation (GENTX) Utility
Program section of the TX990 Operating System Programmer’s Guide.) A more detailed descrip-

tion of the COMMON memory area and how to meet its coding requirements is presented in para-
B graph 2.3.4.

The following paragraphs in this section present a procedure for loading and executing a program
with supplementary supporting information describing: (1) how to correctly respond to the
prompts; (2) how to use correct syntax; (3) how to use the special keyboard control keys: and
(4) how to code the COMMON memory block. Also included in this section is a procedure for
backing up a TI-supplied TXDS diskette and a description of the TXDS Control Program error
messages.

2.2 LOADING AND EXECUTING A PROGRAM
Proceed as follows:

1. Load the Operating System (which has been customized to the user’s software/hardware
configuration) by performing the steps in Section II, entitled “Loading The Operating
System”, of the TX990 Operating System Programmer’s Guide.

2. Execute the TXDS Control Program by proceeding to step 3 if OCP is not available or
by proceeding to step 4 if OCP is available.

3. Press the exclamation point (!) key on the system console keyboard and proceed to
step 6.

4. Press the exclamation point (!) key on the system console keyboard and observe the
following period (.) prompt display:

!

5. Execute the TXDS Control Program by responding to the period (.) prompt as follows:

!
.EX,16.TE.

Change 2 22 Digital Systems Division

o]
q@ 946258-9701

6. Observe the following printout or display .presented on the system console:
TXDS ** 010/77 2:05
PROGRAM:
NOTE

To correctly respond to the PROGRAM:, INPUT:, OUTPUT:, and
OPTIONS: prompts, the operator is required to understand the
information presented under paragraph 2.3.

7. Respond to the PROGRAM: prompt in accordance with the parameters defined in
paragraph 2.3 below by entering the device-name identifier of the input device on which
the program to be loaded and executed is stored and/or the file-name identifier of the
program to be loaded and executed.

8. After responding to the PROGRAM: prompt, the user can enter a carriage return and
respond to the INPUT: prompt; then enter another carriage return and respond to the
OUTPUT: prompt; and then enter another carriage return and respond to the OPTIONS:
prompt. The user has an alternative and shortened procedure, using the asterisk (*) as
described in the paragraph entitled ““Special Keyboard Control Keys”.

NOTE

1. If a syntax error was made, the prompt for the parameter line
in error wiil be displayed and the operator must reenter that
parameter and all of the parameters for the prompt line follow-
ing the one in error.

2. If a utility program bid by the operator was illegal, the print-
out or display readout presented in the paragraph entitled
“TXDS Control Program Error Messages” will be displayed.

9. After responding to the OPTIONS: prompt, the operator depresses the carriage return
key and causes the program to be loaded into memory and then executed. When the
program is loaded into memory, a title identifying the utility will be displayed. Observe
the following printout/display from the system console if, for example, the TXLINK
utility program was loaded:

TXLINK 937537 *%*
(where 937537 is the part number of the TXLINK utility program)

10. After the loaded program has completed execution, observe the following printout or
display readout from the system console:

TXDS 936215 ** 359/77 1:.05

PROGRAM:

2-3 Digital Systems Division

(o]
Q‘r@? 946258-9701

When the user desires to execute a task that already resides in
memory without loading the task, a hexadecimal sign is entered,
followed by the task ID (10). For example, after the TXEDIT utility
program has been loaded into memory, it can be reexecuted as
follows:

NOTE

TXDS 936215 ** 010/77 2:05

PROGRAM: >10
INPUT: DSC:TASK2/SRC
OUTPUT: DSC:SCRATCH/SRC
OPTIONS: (carriage return)

A description of the prompts and associated response-entries is provided in the following
subparagraphs.

2.3 RESPONDING TO TXDS CONTROL PROGRAM PROMPTS

The operator’s response to the PROGRAM:, INPUT:, or OUTPUT: prompt is used to specify
(1) the device-name identifier of the input device on which the program to be loaded and executed
is stored and/or (2) the file-name identifier of the program to be loaded and executed. When the file
is on a diskette input device, the full response to any of the prompts requires inclusion of the
diskette-name identifier (e.g. DSC, DSC2, DSC3, DSC4) and the file-name identifier (e.g. : TXLINK
or :TXEDIT) and the extension. An example of a full response to a PROGRAM: prompt is:

PROGRAM: DSC:TXLINK/SYS

When the file is on a non-diskette device such as a cassette unit, card reader, line printer or other
I/O device, the full response to any of the prompts requires inclusion of solely the device-name
identifier (e.g. CS1, CR, or LP). An example of a correct full response to a PROGRAM: prompt is:

PROGRAM: CSI

The response to a prompt, in the case using a diskette I/O device or in the case using a non-diskette
I/O device, is referred to as the pathname.

2.3.1 PROMPT-RESPONSES. The TXDS Control Program prompts the user to enter the program
pathname, input pathname, output pathname, and option-selections. The TXDS Control Program
then checks the pathnames for syntax. If the syntax is not correct, it will prompt the user again.
After all of the responses to the prompts are entered, the TXDS Control Program loads and exe-
cutes the specified program as task 10, .

2.3.1.1 PROGRAM: Prompt. The operator’s response to the PROGRAM: prompt is used for
specifying the pathname of the program to be loaded and executed.

Only one pathname can be entered in response to the PROGRAM: prompt. When the program is to
be loaded as a privileged task (enabling the task to execute certain supervisor calls), the user must
enter the pathname followed by a “,P”. A task, when not linked with the TX990 Operating System,
can only be made privileged when it is loaded. All tasks linked with the TX990 Operating System
are privileged.

2.4 Digital Systems Division

946258-9701

When the user does not enter the extension field in the PROGRAM: prompt pathname, the exten-
sion will default to SYS and SYS will be substituted intc the pathname before any drives are
searched.

When a PROGRAM: pathname, for a diskette configuration, does not specify the diskette transport
drive, the TXDS Control Program starts a device-file search beginning with the diskette transport
drive that is the default-substitute defined during system generation. For a standard TI-supplied
TXDS system, the default-substitute is DSC. If the file is not on the diskette of the first default
diskette transport drive, the TXDS Control Program will concatenate a 2 to DSC and the file search
would then proceed to DSC2. In the same manner, the search continues to DSC3 and to DSC4. The
search is only effective when the diskette default-substitute is the main diskette transport drive and
when its device-name identifier is comprised of three characters, (i.e., DSC or any other three
characters). It should also be noted that whenever the user specifies the device-name identifier
in response to the PROGRAM: prompt, only the specified device (e.g., the specified diskette
transport drive) is searched.

2.3.1.2 INPUT: Prompt. The operator’s response to the INPUT: prompt is used to specify the
pathname of the input information needed by the program during its execution. For example:
the TXMIRA utility program uses the response to the INPUT: prompt to specify the pathname
of the source file; the TXLINK utility program uses the response to the INPUT: prompt to specify
the pathname of the individual object modules to be linked; and the TXCCAT utility program uses
the response to the INPUT: prompt to specify the pathname of the individual files to be copied
together. The other utility programs each use the response to the INPUT: prompt in the manner
described under each of the utility program sections herein this manual. The operator can enter
zero to three input pathnames separated by commas. The TXDS Control Program will check each
parameter for syntax. If the syntax is wrong, the TXDS Control Program will prompt the user again.
The user must enter the entire line again.

The INPUT: pathname default-substitutes for each utility program are listed and described in each
utility program section of this T7XDS Programmer’s Guide and in each utility program section of
the TX990 Operating System Programmer’s Guide.

2.3.1.3 OUTPUT: Prompi. The operator’s response to the OUTPUT: p
the pathname for storage of the output information resulting from execution of the program.
For example: the TXMIRA utility program uses the response to the OUTPUT: prompt to specify
the pathname where object is stored and assembly source file listings are to be presented; the
TXLINK utility program uses the response to the OUTPUT: prompt to specify the pathname where
the linked object is to be stored and where load map listings are to be presented; and the TXCCAT
utility program uses the response to the OUTPUT: prompt to specify the pathname where the
copied files are to be stored. The other utility programs each use the response to the OUTPUT:
prompt in the manner described under each of the utility program sections herein this manual.
Up to three pathnames (separated by commas) can be entered in response to the OUTPUT: prompt.

£ 3 4 1
pt is uscd to specily

The OUTPUT: pathname default-substitutes for each utility program are listed and described in
each utility program section of this TXDS Programmer’s Guide and in each utility program section
of the TX990 Operating Svstem Programmer’s Guide.

2.3.1.4 OPTIONS: Prompt. The operator’s response to the OPTIONS: prompt is used to specify
the option(s) selected from the total alternative options available for the program which is to be
loaded and executed. These options are described in the applicable utility program section in this
TXDS Programmer’s Guide or in the TX990 Operating System Programmer’s Guide.

2.5 Digital Systems Division

le]
4@ 946258-9701

2.3.2 PATHNAME SYNTAX AND DEFAULT-SUBSTITUTES FOR RESPONSES TO
PROGRAM:, INPUT:, AND OUTPUT: PROMPTS. Prior to loading and executing a program, the
operator: (1) bids the program by responding with a pathname entry to the PROGRAM: prompt;
(2) defines and enters the INPUT: and OUTPUT: pathnames; and (3) selects and enters the
program’s OPTIONS: parameters. A complete response to the PROGRAM:, INPUT:, and OUTPUT:
prompts requires that the following items, when used, be appropriately entered on the keyboard of
the system console:

e DEV. This is the device name identifier, defined during system generation. It is a one to
four character name. The first character must be alphabetic (A-Z); the other characters
must be alphabetic or numeric. No embedded blanks are allowed.

e FILE. This is the file name identifier specified when the file was created. It must be a
one to seven character name. The first character must be alphabetic (A-Z); the other
characters must be alphabetic or numeric. No embedded blanks are allowed.

e [EXT. This is the file name extension specified when the file was created. It must be a
one to three character qualifier which indicates the type of file. The first character must
be alphabetic (A-Z); the other characters must be alphabetic or numeric. Some commonly
used extensions are: SYS; LST; OBJ; SRC;et. al. No embedded blanks are allowed.

NOTE

There must not be embedded blanks within a PROGRAM:, or
INPUT:, or OUTPUT: prompt line. Embedded blanks are allowed
in the OPTIONS: response.

When the file is on a diskette unit the full or abbreviated pathname syntax, available for response
to the PROGRAM:, INPUT:, and OUTPUT: prompts, are listed and described in table 2-1.

NOTE

The default-substitutes mentioned in table 2-1 are determined by
the utility program being executed. Consequently, in some utility
programs, a default-substitute may not exist. Further, the utility
program being executed also determines whether or not a default-
substitute results in an error.

The TXDS Control Program checks the syntax of all of the pathnames entered for the utility
program before it is executed. If the pathname syntax is not legal, then the prompt associated with
that entry is again printed out or displayed (to reprompt the operator).

When responding to the PROGRAM: prompt, the operator enters the pathname which specifies the
file-name identifier of the utility program being bid. The TX990 Operating System uses the path-
name to locate the utility program’s object code. The file-name identifier for each utility program
is listed in table 2-2.

Change 2 2-6 Digital Systems Division

946258-9701

Table 2-1. Pathname Responses to PROGRAM:, INPUT:, and OUTPUT: Prompts
Response Explanation

DEV:FILE/EXT This is the full pathname response for a diskette file. An example is: DSC:TXLINK/SRC.
No default-substitute is employed when a full response is made.

:FILE/EXT The missing DEV causes the default diskette name, defined during system generation,
to be used in the device field.

DEV:FILE This causes a blank to be provided for the extension.

:FILE The default diskette name, defined during system generation, is used for the device field
and a blank is used as the extension.

:FILE/ This causes the default diskette name, defined during system generation, to be used
for the device field and the extension will be as specified in the utility program being
executed.

DEV/EXT This causes a default-substitute to be provided for the file as specified in the utility

program being executed.

JEXT This causes the default diskette name, defined during system generation, to be used for
the device field and the file default will be as specified in the utility program being
executed.

/ This causes the default diskette name, defined during system generation, to be used

ill default as specified in the utility

£ o

for the device field and the file and extension
program being executed.

DEV: This causes a default-substitute to be provided for the file and extension as specified in
the utility program being executed.

DEV This is a full device name. No default-substitutes apply.

Change 2 2-7 Digital Systems Division

946258-9701

Table 2-2. Utility Program File-Name Identifiers

File Name Identifier

:GENTX/SYS
:OBIMGR/SYS
:INITDSC/SYS
:BACKUP/SYS
:SYSUTL/SYS
:LIST80/SYS
:DSKDMP/SYS
:TXMIRA/SYS
:TXXREF/SYS
:TXLINK/SYS
:TXCCAT/SYS
:TXEDIT/SYS
:IBMUTL/SYS
:TXDBUG/SYS

Notes:

Utility Program
System Generation '3
Object Manager *-*
Initialize Diskette -3
Diskette Backup '3
System Utility !> 3
List 80-80 ': ¢
Diskette Dump !> 3
Assembler >
Cross Reference 2
Linker 2
Copy Concatenate 2
Text Editor 2
IBM Diskette Conversion 2 3
Standalone Debug 2

1= TX990 Operating System utility program.

2= TXDS Terminal Executive Development System utility program.

3~ Capable of being loaded and executed using OCP commands or
the TXDS Control Program.

4~ This is the only utility in this list which can only be executed

using OCP.

2.3.3 SPECIAL KEYBOARD CONTROL KEYS. The special keyboard control keys are described

as follows:

1. RUBOUT/DELETE LINE

2. CONTROL H/Back Arrow

3. Carriage Return/NEW LINE

Allows the operator to reenter a parameter.
Pressing the RUB OUT key causes a line feed
followed by a carriage return. The operator may
then enter the line again.

Allows the operator to backspace by character
and correct a typing error.

Causes TXDS Control Program to terminate if
the carriage return or NEW LINE was the only
entry in response to the PROGRAM: prompt,
otherwise terminates a prompt line entry.

Change 1

2-8 Digital Systems Division

O
%@ 946258-9701

4. ESCAPE/RESET If an ESCAPE or RESET is entered during a
print out, the TXDS Control Program terminates.

5., Causes a default to be activated when entered
as the response to the INPUT: or OUTPUT:
prompts.

6, & In any prompt line, pressing the & key as the

first character in the response causes the TXDS
Control Program to restart with the PROGRAM:
prompt.

7. % When entered after a prompt line entry, in place
of a carriage return, permits the next prompt
line to be entered without being prompted by
the TXDS Control Program. When a prompt line
is terminated with an asterisk (*) followed by a
carriage return, no more prompts are given and
default-substitutes are made by the utility pro-
gram for those pathnames not entered. The ex-
perienced user can enter all or several of the
parameters on one prompt line.

The following examples utilize the asterisk (*) feature in lieu of the INPUT:, OUTPUT:, and
OPTIONS: prompts:

Example 1:

To load the TXEDIT utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as presented in the following example:

TXDS 936215 ** 010/77 2:05

PROGRAM: DSC:TXEDIT/SYS*DSC:TASK2/SRC*DSC:SCRATCH/SRC*
(where DSC:TASK2/SRC is the INPUT: pathname; DSC:SCRATCH/SRC is the OUTPUT:
pathname; and the OPTIONS: entry is provided by the default-substitution specified in the
TXEDIT utility program.)
The above can also be entered as follows:

TXDS 936215 ** 010/77 2:05

PROGRAM: DSC:TXEDIT/SYS
INPUT: DSC:TASK?2/SRC*DSC:SCRATCH/SRC*

Example 2:

To load the SYSUTL utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as follows:

TXDS 936215 ** 101/77 2:05

PROGRAM: :SYSUTL/SYS***CF,TEMP/OBJ

Change 1 2.9 Digital Systems Division

o]
{@ 946258-9701

(where the INPUT: and OUTPUT: parameters are null and the OPTIONS: parameter is
CF,:TEMP/OBJ.

NOTE

1. In the above examples, it is necessary to press the carriage
return key at the end of the parameter line to cause the pro-
gram to be loaded and executed.

2. If a parameter line ends with an asterisk (*) and a pathname is
not entered for each prompt, then default substitutes are made
by the utility program for those pathnames not entered.

Example 3:

The following example utilizes the comma (,) to cause a default-substitution to be made in the
OUTPUT: pathname below.

TXDS 9326215 ** 010/77 2:05

i PROGRAM: - TXMIRA/SYS
INPUT: :TASK]1
OUTPUT: ,CRT
OPTIONS: MS800.X,L

(where the OUTPUT: pathname defaults to a substitute specified in the TXMIRA Assembler
utility program.)

The following example utilizes both the asterisk (*) and the comma (,) special keyboard controls:

To load the TXMIRA Assembler utility program after the TXDS Control Program has been
loaded, the asterisk (¥*) is used as follows:

TXDS: 936215 ** 010/77 2:05
| PROGRAM: :TXMIRA/SYS*:TASK1*,CRT*M800,X,L

(where TASK1 is the INPUT: pathname and where the OUTPUT: pathname is the default-
substitute provided in the TXMIRA Assembler utility program.)

2.3.4 PLACEMENT IN COMMON MEMORY BLOCK OF THE RESPONSE-ENTRIES TO THE
PROGRAM:, INPUT:, OUTPUT:, AND OPTIONS: PROMPTS. The TXDS Control Program codes
the COMMON memory area according to the pathnames and characters entered by the operator
in response to the PROGRAM:, INPUT:, OUTPUT:, and OPTIONS: prompts. The user program/
task uses the Get COMMON supervisor call to get the pointer to COMMON memory. A minimum
of 170 bytes of memory must be set aside for the COMMON memory area for allocation as pre-
scribed in table 2-3.

Change 1 2-10 Digital Systems Division

946258-9701

Table 2-3. Byte-Allocation of COMMON Memory
Parameter Byte(s) Explanation

PROGRAM: 0-15 To be coded with the same pathname information that is
entered in response to a PROGRAM: prompt.

NOTE

The response-entries to the PROGRAM:, INPUT:, and OUTPUT: prompts are
placed in byte-groups of 16 bytes each. The device name is entered in the first
four bytes, left-justified, and space-filled with zeros. A colon is placed in the
fifth byte; otherwise a binary zero is placed in the fifth byte. The file name is
entered in the sixth through twelfth bytes, left-justified, and space-filled with
binary zeros. A slash is placed in the thirteenth byte when a diskette file is to
be referenced by the pathname being entered; otherwise a binary zero is placed
in the thirteenth byte. The extension is placed in the fourteenth through six-
teenth bytes, left-justified, and space-filled with binary zeros. Whenever the
device, file, or extension is to be defaulted by the utility or the user’s task, the
binary field relating to the device, file, or extension will be space-filled with
binary zeros. When the total parameter (which includes the device, file, and
extension fields) is defaulted, a colon (:) is placed in the fifth byte and a slash
is placed in the thirteenth byte and all the fields become space-filled with
binary zeros.

INPUT: #1 16-31 To be coded with the same pathname information that is
entered for the first INPUT: parameter.

INPUT: #2 3247 To be coded with the same pathname information that is
entered for the second INPUT: parameter.

INPUT: #3 48-63 To be coded with the same pathname information that is
entered for the third INPUT: parameter.

OQUTPUT: #1 64-79 To be coded with the same pathname information that is

OUTPUT: #2 80-95 To be coded with the same pathname information that is
entered for the second OUTPUT: parameter.

OUTPUT: #3 96-111 To be coded with the same pathname information that is
entered for the third OUTPUT: parameter.

OPTION: 112-143 To be coded with the character-entries that the operator
entered in response to the OPTIONS: prompt. The charac-
ters entered in response to the OPTIONS: prompt will be
copied into 112-143. Up to 30 characters can be entered
~and copied into COMMON memory and following the last
character entered is a binary zero. ' ‘

2-11 Digital Systems Division

946258-9701

Parameter

Chaining
Pathname

Chaining
Flag

Batch Mode
Flag

Batch
Error

Chaining
Error

Default Print

Reserved

Table 2-3. Byte-Allocation of COMMON Memory (Continued)

Byte(s)

144-159

160

161

162

163

164-167

168-170

Explanation

Used for the chaining pathname, which is the pathname of
the next program to be loaded and executed if the chaining
flag in byte 160 is set to a nonzero number. The chaining
pathname is initialized so that the first four bytes each have
a binary zero, the fifth byte has a colon, the sixth through
twelfth bytes each contain a binary zero, the thirteenth byte
contains 2 slash, and the fourteenth through sixteenth bytes
each contain a binary zero.

This is the chaining flag byte which is set to a nonzero number
by a user program or a utility program when it is desired to
chain from the end of one program to the pathname specified
in bytes 144-159. The object program which is at the path-
name specified in bytes 144-159 is then loaded and executed.
One program (a user’s task or TXDS utility program) can
chain to another by setting the chaining flag in memory
(byte 160), placing the access name (i.e. the chaining path-
name) for the new program in bytes 144-159 and executing
an End-of-Program 16, supervisor call. The INPUT:
OUTPUT:, and OPTIONS: prompts can be used as required
to pass parameters to the new program.

Set if batch job control stream is in progress. The TXDS
Control Program loads and executes the object program

which is in the pathname specified in bytes 144-159.

Set when a program terminates in error during a batch
stream.

Chaining Error Flag. Set when the program chained to termi-
nate is in error.

Default system console print device declared at time of system
generation.

Reserved for later enhancements.

2-12 Digital Systems Division

946258-9701

A typical example of an operator’s response-entries to the TXDS Control Program’s prompts is
presented below, immediately followed by the hexadecimal and ASCII representation in binary
code, of the operator’s response-entries, that is placed in the COMMON memory block.

TXDS 936215 ** 010/77 2:05

PROGRAM: ‘TXLINK/ i
INPUT: :TXTST,/,CS1
OUTPUT: :TXTST2/OBJ,LP

OPTIONS: ITXT,M4000

The above responses to the prompts are placed into the COMMON memory block as follows:

Byte Hexadecimal Representation (Upper Row)
Address and ASCII Representation (Lower Row)
0-15 0000 0000 3A54 584C 494E 4B00 2F00 0000
. T X L I N K . / ..
16-31 0000 0000 3A54 5854 5354 0000 2F20 0000
. o T XT ST . /b= .
32-47 0000 0000 3A00 0000 0000 0000 2F00 0060
. . - . I,
48-63 4353 3100 0000 0000 0000 0000 0000 0000
C s i
64-79 0000 0000 3A54 5854 5354 3200 2F4F 424A
T X T ST 2 /0 B J
80-95 4Cs0 0000 0000 0000 0000 0000 0000 0000
L P
96111 0000 0000 3A00 0000 0000 0000 2F00 0000
L. DL [. .
112--143 4954 5854 2C40 3430 3030 UNDEFINED
IT XT , M 40 00
144-159 0000 0000 2A00 0000 0000 0000 2F00 0000
. L. .. /
160 00
161 00
162 00
163 00
164167 4C4F 4720 This assumes that LOG was defined as system
L O G default print device during system generation
168—n Not used.

Change 1 2-13 Digital Systems Division

o
{@) 946258-9701

2.4 BACKING UP TI-SUPPLIED TXDS DISKETTES

Before the TI-supplied TXDS diskettes are used, they should be backed up onto scratch diskette(s):
(1) to ensure that a backup diskette is available if the diskette(s) is destroyed; and (2) to ensure
that either of the two diskettes (i.e., the original diskette and the backup diskette) will always be
available to do future system generations with the use of a minimum 16K-memory configuration.
Backup the system diskette by performing the following step-by-step procedure:

1. Remove the system diskette from diskette transport drive 1 and insert in its place the
TX990 parts diskette.

2. Take a scratch diskette and place it into diskette transport drive 2.

3. If the scratch diskette has been initialized, proceed to next step. If it needs to be
initialized, respond to the TXDS PROGRAM: prompt as follows:

] PROGRAM: :INITDSC/SYS*(C/R)
NOTE

1. (C/R) signifies a NEW LINE entry on a VDT or a carriage
return on a KSR or ASR.

2. The items underlined below are the operator’s response entries
to the prompts.

The Initialize Disc Utility is loaded:
TX990 DISC INITIALIZATION 937545%*
DISC NAME? DSC2 (C/R)

DISC I.D.? SCRATCH DISC (C/R)

OK TO ERASE DISC??? YORN Y

CHECKING DSC2

If any message other than the following message is output, see the Disc Initialization
Utility section in the T7X990 Operating System Programmer’s Guide for a discussion
of error messages.

INITIALIZATION COMPLETE

The TXDS Control Program is then rebid and the following printout or display is
presented on the system console:

TXDS 936215 ** 359/77 1:05

PROGRAM:

Change 1 2-14 Digital Systems Division

%@ 9462589701

4, Start the backup procedure by bidding the BACKUP utility program as follows:
PROGRAM: LACKUP/SYS*(C/R)
INPUT DISC NAME?
At this point remove the diskette from diskette transport drive 1 and load diskette
transport drive 1 with the system diskette to be backed up. Then respond to the
prompts as follows:
INPUT DISC NAME? DSC (C/R)
OUTPUT DISC NAME? DSC2 (C/R)

DO YOU WANT TO VERIFY THE DISCS? Y (C/R)

DO YOU WANT TO COPY THE INPUT DISC? Y (C/R)

OKAY TO ERASE OUTPUT DISC? Y (C/R)

ERROR LOG:
For a discussion of any error messages which are output at this point, see the
Diskette Backup Utility section of the TX990 Operating System Programmer’s
Guide.

THE DISC IS NOW BEING VERIFIED

ERROR LOG:
For a discussion of any error messages which are output at this point, see the

Diskette Backup Utility section of the TX990 Operating System Programmer’s
Guide.

At this point the backup is complete and the TXDS Control Program is rebid and prints out or
displays the following:

TXDS 936215 ** 359/77 1:05

PROGRAM:

It is recommended that a user back up the TXBOOT program onto the newly created diskette
by performing the following:

1. Remove the system diskette from drive 1 and insert the TX990 Parts diskette.
2. Respond to the PROGRAM: prompt as follows:

PROGRAM: :SYSUTL/SYS*(C/R)

Change 2 2-15 Digital Systems Division

]
e—‘@? 946258-9701

The system utility will identify itself when loading is completed by:
TX990 SYSTEMS UTILITY 937544 **
OP:
3. To copy the TXBOOT the user should enter:
BC,DSC2*(C/R)
When the copy is completed, the system will respond with:
OP:
4. Enter the command appropriate for the system type:
a. When backing up the VDT913 system enter:
SF,DSC2:SYS913/CMP.TE.(C/R)
b. When backing up the ASR733 system enter:
SF,DSC2:SYSASR/CMP.TE.(C/R)
¢. When backing up the VDT911 system enter:
SF,DSC2:SYS911/CMP.TE.(C/R)
This procedure is not applicable to non-system diskettes.

The user can then perform the Verification of Operation procedure described in the next section
of this manual or proceed to load a program.

2.5 TXDS CONTROL PROGRAM ERROR MESSAGES
Refer to table 24 for a list of error messages, the reason for each error, and the recovery method.

Table 24. TXDS Control Program Error Messages
Error Reason Recovery

nn—BAD PGM LOAD nn represents error code Reenter parameter
listed in error appendix D.

—BAD PGM LOAD Can’t find object file. Reenter parameter
nn—CAN’T BID TASK nn represents the task state Reenter parameter

code of task 104 listed in
state code appendix C.

CAN’T GET COMMON - System was configured without Configure a system
ABORTED COMMON. with 168 bytes of
common

Change 2 2-16 Digital Systems Division

e}
{@ 946258-9701

SECTION Iii
VERIFICATION OF OPERATION

3.1 INTRODUCTION
This section provides several short procedures to verify that the software is operating properly. 1
These procedures are listed below and described in the following procedural steps:

® Load and Initialize TX990 Operating System

® Load and Initialize TXDS Control Program

® TXCCAT Verification Procedure

e TXEDIT Verification Procedure

e TXMIRA Verification Procedure

® OBJ MGR Verification Procedure

® TXLINK Verification Procedure

The Operating System Diskette mentioned in the procedure refers to either TXDS System
Diskette 2 (for VDT systems) or TXDS System Diskette 3 (for ASR systems).

3.2 REQUIREMENTS
This procedure requires the following items in addition to the required hardware for a TXDS
system:

® TX990 Operating System Programmer’s Guide

® TXDS System Diskette

® TX990 Parts Diskette

3.3 OPERATION
The following steps of the verification procedure demonstrate that the system is operational.

1. Initialize TX990 by loading TXBOOT from TXDS system diskette.
a. Load TXDS System Diskette in diskette drive #1.
b. On the front panel, press the following pushbutton switches to load the system.
HALT
RESET
LOAD

TXDS control program will be bid when ! is entered at the system console.

Change 1 31 Digital Systems Division

o]
(@ 946258-9701

2. Place scratch diskette in drive #2. If diskette is not initialized; place TX990 Parts
Diskette in diskette transport drive #1 and execute the Disc Initialization (INITDSC)
utility program as described in Section XI of Model 990 Computer TX990 Operating
Svstem Programmer’s Guide. Replace the System Diskette in transport drive 1.

| 3. Copy :TXTSTI1/SRC from System Diskette to scratch diskette using TXCCAT. With
System Diskette in transport drive 1 and the scratch diskette in transport drive 2, enter
| the following commands to copy :TXTST1/SRC to the scratch diskette:

PROGRAM: DSC:TXCCAT/SYS
INPUT: DSC:TXTST1/SRC
OUTPUT: DSC2:TXTSTI1/SRC
OPTIONS: (carriage return)

4. After completion of the copy, TXDS will come up and should be given the following
parameters in order to execute TXEDIT:

PROGRAM: DSC:TXEDIT/SYS
INPUT: DSC2:TXTSTI1/SRC
OUTPUT: (carriage return)
OPTIONS: (carriage return)

5. Position TXEDIT to line 19 of TXTST1/SRC using the DOWN (D) command and print
the line to assure that the pointer is positioned correctly.

D19
7P

The following line should be printed
19 DATA OLD,CNTI
6. Edit line 19 to enable printing the new message by using the Change (C) command.
Replace line 19 with the following line, spacing the DATA over seven spaces and the
NEW,CNT one more space.
7C19-19
DATA NEW,CNT
Enter extra carriage return to terminate Change command.
7. Print line 18 and the modified line to ensure the change has been made correctly.
T
D17
P2

18 BLWP @WRITE PRINT MESSAGE
DATA NEW.,CNT

Change 1 32 Digital Systems Division

o]
@ 946258-9701

8 Terminate the editing session by executing the Quit (Q) command.
Q

Upon executing the Quit command, TXEDIT issues a prompt to ensure that it is time
to terminate. After responding with a ‘T’, the current input file and buffer are copied
to the output scratch file. Respond with a ‘Y’ when asked if the scratch file is to be
copied to the input file.

TERMINATE/CONTINUE?T

TEXT IN SCRATCH FILE
TRANSFER TO INPUT? Y
END EDIT

TXEDIT is then terminated and the TXDS control program is rebid.

9. Now assemble TXTST1/SRC using TXMIRA. The assembled object is directed to the file
TXTST1/OBJ on the scratch diskette. The object is designated as compressed object on
the options line. The assembly output listing is listed to the default system printer as
specified in the OPTIONS: parameter. Also, the cross reference listing output from
TXXREF is listed to the default system printer. The sample output listings are illustrated
in figure 3-1.

Enter the following parameters.

PROGRAM: DSC:TXMIRA/SYS
INPUT: DSC2:TXTSTI/SRC

OUTPUT: DSC2:TXTST1/OBJ,LOG
OPTIONS: CLX

The output listing should reflect the changes made in step 6. Verify that no errors are
detected by TXMIRA.

10. Place TX990 Parts Diskette in drive #1.

11. Object Manager is then loaded and executed to combine the three required object
modules into one module for linking into the TX990 System. Execute object manager
as follows:

PROGRAM: DSC:OBJMGR/SYS*
990 OBJECT MANAGER 945672 *B

After printing the above message, object manager requests specification of a file in which
the combined object is to be placed. At this point the TX990 Parts Diskette should be
removed and the System Diskette installed in drive #1. After specifying the output file,
enter the pathname of the three required object files and designate that each input file
is to be copied and rewound.

33 Digital Systems Division

946258-9701

TRTST1

TEMIER 3SZE227 171262 Bge-v7 PRGE BG4l
TXS TEST PROGRAM S3I7808—-9901 i+
aaaz IDT “THETSTLS
%1%]1% K *®
Ba6d REF ©ZMNT. HEW: MRITE
(=155 b *
gans BEER PADG 7 DATAR TSTHSP. START. &
BeazZ BR4s-
Band naea
BT ARAs TSTHEP BSS =2
Boas oaze 16 EMDPRG DRATA 1608 EMD OF FPROGRAM OP CODE
vaas *
@318 [P SVCL. 15 #44 DEFINE XOP
ea1il *
a1z eazs ahr oL EYTE >80. »8R. >8R
eaza aA
Ba2AR %3]
891z oozZE za TEXT < 0OLD MESSAGE ~— WROMNG !~
aBa1d Bad = abD BYTE >0D. >8R
Ba44 af
Ba15 aail CNT1 EqU F-0LD
THTSTL TEMIRA SEEZ2TV s+ 171282 (5 s FARGE @@z
THADS TEST PROGRAM SIEFTS05-9901 %+
valv START
B2 Bad4s a4z2ie BLWF BMRITE FRIMNT MEZSAGE
BA42 a8
aa19 o4/ GRz2e DARTAR OLD. CHNTL
Bag4c Ba1h
aaze BadE ZFES SVWD BEMDPRG EHD OF PROGRAM
BESH 9azZs
aazl EMCs
wAanE ERRORS
THKAREF 927342 *+* 17:12: 22 ®me2sv FPRGE a6l
CNT BG4
CHNT4L BA1LS alnk B
ENDPRG Q68635 aaze
NEW Baad
oLp BaAa12 BEls oaols
START 2817 Bans
SvC = lok K7
TSTWSP @007 aggas
WRITE aBad4 Geil1s

THERE ARE 0683 SYMBOLS

Figure 3-1. TXMIRA Sample Output Listing

34 Digital Systems Division

[o]
‘—P@ 9462589701

OUTPUT FILE: DSC2:TXTST/OBJ
INPUT FILE: DSC2:TXTST1/OBI
OPEN INPUT FILE, WITH REWIND? Y
TXTSTI ? Y
END-OF-FILE

INPUT FILE: DSC:TXTST2/OBJ

OPEN INPUT FILE, WITH REWIND? Y
TXTST2 ? Y
END-OF-FILE

INPUT FILE: DSC:TXTST3/OBJ

OPEN INPUT FILE, WITH REWIND? Y
TXTST3 ? Y
END-OF-FILE

INPUT FILE:
END OBJECT MANAGER

Object manager terminates upon entering only a carriage return on the input line.

Place the System Diskette in diskette drive 1. Execute TXLINK to link the object
manager output as follows:

PROGRAM: DSC:TXLING/SYS
INPUT: DSC2:TXTST/OBJ
OUTPUT: DSC2:TXTEST/OBJ,LOG
OPTIONS: CJITXTEST,L
TXLINK 937537 **

The output line contains the name of the file TXTEST/OBJ in which the linked object
is to be placed, as well as the device to which the load map is directed. ‘C’ specifies that
the object is to be compressed, ITXTEST’ designates that the IDT for the linked object

is to be TXTEST, and ‘L’ specifies that the output of TXLINK is to be listed. The default
memory size of 12K is available for the link.

Following is the link output.

TXLINK 937537 ** 10:51:01 032/77 PAGE 0001
TXTEST LENGTH 00AOQ
MODULE LENGTH ORIGIN DATE TIME
TXTSTI 0052 0000 :
TXTST2 001E 0052 01/25/77 15:11
TXTST3 0030 0070 01/25/77 15:14

DEFINITIONS

ACNT 001D NEW 0052 WRITE 0070

3-5 Digital Systems Division

[e]
{@ 946258-9701

13. The TXDS Tesf Program is now ready for execution. Execute by entering the compressed
object module name on the program line followed by *. Upon executing, the following
message is issued prior to termination and TXDS is rebid.

PROGRAM: DSC2:TXTEST/OBJ*

"HAVE A GOOD DAY !!

36 Digital Systems Division

@ 9462589701

SECTION IV
TXDS TEXT EDITOR (TXEDIT) UTILITY PROGRAM
4.1 INTRODUCTION
The TXEDIT utility program provides the user/programmer with the capability of editing the text
of source programs and object programs and, in addition, the capability of creating source pro-
grams. Basically, 21 TXEDIT commands are available to fulfill the programmer’s needs. The com-
mands are grouped as follows:
® Setup commands:

Start Line Numbers (SL) command

Stop Line Numbers (SN) command

Set Print (SP) column margin number command

Set Margin (SM) for Find command

Set Tabs (ST) command

® Pointer-Movement commands
Down (D) command
Up (U) command
Top (T) command

4 Dy
ttom (B) command

e Edit commands
Change (C) command
Insert (I) command
Move (M) command
Remove (R) command
Find (F) string command
® Print commands
Limits (L) command

Print (P) command

4-1 Digital Systems Division

9462589701

® Qutput commands

Keep (K) command
Quit (Q) command
End (E) command

® Terminate-Sequence commands
Terminate (T) command
Continue (C) command

All of the TXEDIT commands are capable of being entered via the keyboard of the system console.
To edit a program or record, the user must first have the program or record recorded on a TI disk-
ette or cassette. The text is then edited by feeding it from the TI diskette or cassette (hereinafter
referred to as the input file) into a memory buffer where the editing is performed and then out to
the scratch file (until an EOF character is read or a Quit command is entered). If further editing is
required, the text data is reversed to flow back from the scratch file into the memory buffer and
back to the input file (until the EOF is read again or a Quit command is entered again). This trans-
fer between the two files (with multiple editing activities being automatically performed during
each pass) continues until the user is finished. At that time, the TXEDIT program provides a print-
out or display on the system console which states whether the input file or the scratch file contains
the final edited text. The user then has the option of using a command to transfer the resultant final

edited text back to the input file in substitution of the preedited source program or the preedited
object program or record.

CAUTION

The user should ensure that the input file is not destroyed by
copying it onto a temporary file diskette or cassette.

The TXEDIT program may be executed in a Model 990/4 microcomputer or a 990/10 minicom-
puter configured to support a TX990 Operating System. The minimum configuration includes a
computer with 16K of memory and an interactive operator system console, the LOG.

The following paragraphs describe various TXEDIT program functions and procedures. A TXEDIT
module loading procedure is presented, followed by a discussion of how to start execution. Initiali-
zation and finalization procedures, including initialization messages and user’s responses to these
messages, are also described in this section. Specific editing procedures using the TXEDIT
commands are presented for: changing, adding, moving, or removing source or object records in the
buffer and to locate and modify a character string in a group of records; using editor commands to
move the text editor’s buffer line pointer; moving lines/text into and out of the buffer; and hand-
ling file data formats with special terminal keyboard characters. Procedures for coding source or ob-
ject files and writing a new source program are also explained. TXEDIT commands are listed and
described and further supplemented with examples of the classes of commands, command operands,
and notational conventions used in the command syntax. A description is provided of the error and
warning messages and the operator’s responses to these messages. Concluding this section is an
example of how to enter and edit a source program and a discussion of how to edit an object
program.

4.2 LUNOs

LUNOs 7 and 8 are assigned by the text editor. LUNO 7 is assigned to the input file, and LUNO 8
is assigned to the output file. The text editor uses the system console as the interactive device.
When the text editor terminates, all files are closed and all LUNOs are released.

Change 1 4-2 Digital Systems Division

R

. _\,Y. ”\Ef« & AN
((\@? 946258-9701 Tt

4.3 LOADING TXEDIT

The user can load the TXEDIT utility program only by use of the TXDS Control Program. (The
TXEDIT utility program cannot be loaded via OCP.) After the TXDS Control Program is executed
using the procedure in Section II, responses to the TXDS Control Program’s PROGRAM:, INPUT:,
OUTPUT: and OPTIONS: prompts are then entered by the user via the keyboard of the system
console. The user responds to the PROGRAM: prompt as follows:

PROGRAM: :TXEDIT/SYS

The response to the INPUT: prompt requires the pathname of the source program file location on
diskette or cassette. If the diskette file is specified by the pathname and none exists, it will be
created. This is the correct procedure for generating a new source file. An insert (I) command may
then be used to generate lines of source code. The response to the OUTPUT: prompt requires the
pathname of the scratch file location on diskette or cassette. If the diskette file is specified by the
pathname and none exists, it will be created. The OUTPUT: file pathname must not be the same as
the INPUT: file pathname. In response to the OPTIONS: prompt, the user may specify the size of
the memory buffer. Under the TXEDIT utility program, this is the only option available to be
specified. The size of the memory buffer is specified by the user entering an M followed by a deci-
mal number (which may vary from one to five characters in length). The decimal number specifies
the number of bytes to be used for the memory buffer. The memory size is determined using the
following procedural example: if the user wishes to edit 75 lines of text, each character on each
line is used to specify one byte; further, each line is preceded by a six-byte header and followed
by a one-byte carriage return. Consequently, if each line of text has an average length of 40 bytes
plus 6 bytes for the header and 1 byte for the carriage return, then 75 lines of text would require
3525 bytes.

An example of loading TXEDIT from diskette follows:
TXDS 936215**0017 2:10

PROGRAM: :TXEDIT/SYS
INPUT: DSC2:UPDATE/SRC
OUTPUT:
OPTIONS: M4000

The above response-entries to the prompts cause the TXEDIT utility program to be loaded from
diskette into memory and then to be executed. The OUTPUT: pathname is provided by the
TXEDIT utility program with :SCRATCH/SRC as the default-substitute.

An example of loading a file from cassette follows:
TXDS 936215**0017 2:10
PROGRAM: :TXEDIT/SYS
INPUT: CSI

OUTPUT:
OPTIONS: M4000

The above response-entries to the prompts cause the TXEDIT utility program to be loaded from
diskette into memory and then to be executed.

Change 1 4-3 Digital Systems Division

946258-9701

Table 4-1. TXEDIT Default-Substitutes

Entry Pathname Default-Substitute

INPUT: DEVICE Default disc drive
FILE No default-substitute
EXTENSION SRC

OUTPUT: DEVICE Default disc drive
FILE SCRATCH
EXTENSION SRC

OPTIONS: M (memory) 3000 bytes

44 COMMANDS

4.4.1 GENERAL. The TXEDIT utility program supplies 21 edit commands to fulfill the user’s
needs. Further, eight special keys/characters are also provided to meet general utility needs (e.g.,
RUB OUT, ESC, et. al.). The commands are entered at the keyboard of the system console in
response to the printing of a question mark (?); and after the command is entered, it is executed by
entering a carriage return. The syntax of the command is free form in that one or more spaces may
be inserted between characters and operands of the commands. A list of the commands and a brief
description of each command is provided in table 4-2. The detailed descriptive information pertain-
ing to each command is provided in the following paragraphs.

4.4.2 COMMAND OPERANDS. Command operands are used to specify a number of lines, line
numbers, or displacements from the pointer. The edit commands and one of the print commands
may specify a group of lines by first and last line number of by a number of lines relative to the
pointer.

4.4.3 SYMBOL DEFINITION. The symbols used in conjunction with TXEDIT commands are
defined as follows:

® Angle brackets < > enclose items required to be supplied by the user.
® Brackets [] enclose optional items.

° Braces { } enclose items between which a choice must be made; one, and only one, of
the items must be included.

® I[tems in capital letters must be entered as shown.
NOTE

The syntax definitions and examples presented in this section do not
have spaces between the characters of the two-character commands,
between the command and operands, or between operands. Spaces
may be entered at these points if desired, and all operands are
decimal numbers.

Change 1 4-4 Digital Systems Division

< 9462589701

Command Syntax

SL

SN

SP

SM

ST

Table 4-2. List of Commands and Special Keys/Characters

Description

SETUP COMMANDS

Start Line numbers (SL) command causes line numbers to be printed with
each line of text.

Stop line Numbers (SN) command causes line numbers not to be printed.
Set Print margin (SP) command sets the right boundary for print display.

Set Margin (SM) for Find command sets the left and right boundaries for
the Find command.

Set Tabs (ST) command sets up to five tab stops.

POINTER-MOVEMENT COMMANDS

Down (D) command moves the pointer down toward the bottom of the
buffer.

Up (U) command moves the pointer up towards the first line in the buffer.
Top (T) command moves the pointer to the first line in the buffer.

Bottom (B) command moves the pointer to the last line in the buffer.

EDIT COMMANDS

Change (C) command removes lines from the buffer and inserts new ones in
their place. The new lines are input from the terminal.

Insert (I) command takes input from the terminal and places the new lines
into the buffer.

Move (M) command moves lines from one place in the buffer to another.
Remove (R) command deletes lines from the buffer.

Find string (F) command searches for the first occurrence of a character
string in a line and replaces it with another string of characters.

PRINT COMMANDS

Limits (L) command causes the first line and the last line to be displayed.

Print (P) command displays lines of text.

4-5

Digital Systems Division

%@ 946258-9701

Table 4-2. List of Commands and Special Keys/Characters (Continued)
Command Syntax Description

OUTPUT COMMANDS

TorC

CTRL-H

RUB OUT

CTRLI

ESC/RESET

position keys

DELETE LINE

TAB

Keep (K) command takes lines of text out of the buffer and puts them in
the output file.

Quit (Q) command takes lines of text out of the buffer or the input files
and puts them in the output file.

An (E) command terminates without writing an EOF to the output file.

TERMINATE-SEQUENCE COMMANDS

Allows the user to make multiple single directional editing passes on a
source or object program.

SPECIAL KEYS/CHARACTERS

Pressing the control key and the H key simultaneously on the hard copy
terminal causes the terminal to backspace a character to enable rewriting
over an entered character-error.

The RUB OUT key causes the line just entered to be deleted so that a new
line can replace it.

Pressing the control (CTRL) key and the I key simultaneously on a hard-
copy terminal causes a tab stop to be entered in the input string, although
only one space will be echoed on the terminal.

Pressing the ESCape or RESET key on the system console causes a display
to be aborted.

When using a VDT, only the left position key (<) and the right (=) position
key are recognized. The up and down position keys cause garbage to be
entered into the input string. The left position key causes characters to be
deleted from the character string; a right position key causes whatever was
under the cursor to be entered.

DELETE LINE on a VDT acts the same as a RUB OUT on a hardcopy
terminal.

A SPACE character is echoed. The TAB is interpreted by the text editor and
spaces are inserted to fill the text line to the next TAB setting. Refer to
paragraph 4.4.5.5 which follows.

46 Digital Systems Division

o

946258-9701

444 SPECIAL KEYS/CHARACTERS. The following special characters are recognized by the text
editor when the terminal is an ASR or KSR. A backspace character (CTRL H) backspaces one
character position. A RUB OUT character deletes the line that has just been entered from the key-
board. On an ASR or KSR, a tab (CTRL I) echoes as one space upon character input, but moves to
the nearest tab stop when the line is printed. (Tab stops are initially defined at character positions
8, 13, 31, and 33.) An escape (ESC) entered from the keyboard during print output causes the cur-
rent I/O operation and the command to be aborted; a question mark (?) prompt is then printed out
or displayed, to which another TXEDIT command-response-entry can be made.

The following special characters are recognized by the text editor when the terminal is a VDT. The
position keys will move the pointer for backspace, or forward space. The DELETE LINE key will
delete the line that has just been entered from the keyboard. The RESET key, when entered during
a printout, causes the current I/O operation and the command to be aborted. if the space bar is
entered during a printout, the printout will halt until the space bar is entered again. This allows the
user to scan the printout before it rolls off the top of the screen without aborting the I/O operation.

4.4.5 SETUP COMMANDS. Setup commands may be entered immediately following loading of
TXEDIT to: set limits for the Find command; set the right margin for printing; enable or inhibit
printing of line numbers; set tabs. If no Setup command is entered, line numbers are printed. The
right margin for lines or print corresponds to column 72. Columns 1 through 72 are scanned by the
Find command, and tabs are preset at 8, 13, 31, and 33, which are the standard columns for source
code instructions, operands, and comments.

Setup commands may be entered anytime during an editing session. It is often desirable to change

searched. The user may want to inhibit the printing of line numbers to enable more source codes to

be printed on a line. If the user is generating code to be assembled by TXMIRA, he may want to
set the right margin to column 60, since TXMIRA does not scan characters past column 60.

44.5.1 Start Line Numbers (SL). The Start Line Numbers (SL) command causes TXEDIT to
print line numbers to the left of each statement or record. Syntax for the SL command is as
follows:

SL

The SL command is used to restore printing of line numbers after line number printing has been
inhibited by execution of an SN command.

4.4.52 Stop Line Numbers (SN). The Stop Line Numbers (SN) command causes TXEDIT to omit
printing of line numbers except in the message resulting from the Limits (L) command. The syntax
for the SN command is as follows:

SN

The SN command may be entered initially or at any time during the edit operation. Omitting the
line numbers when editing object code may be desirable to permit printing the entire record.

4.4.5.3 Print Margin (SP). The Print Margin command specities the column number of the right
margin where printing is to end. except for the message resulting from the Limits (L) print com-

mand. described in this section. The syntax for the SP cominand is as tollows:

SPs

Change 1 4-7

Digital Systems Division

o]
([@ 946258-9701

The s represents the column number of the right margin where printing is to end (i.c., one of the
columns between 10 and 80, inclusive). If line numbers are being printed, the line numbers are
included in the margin column. Line numbers use six columns, so that if the right margin is
column 60, only 54 characters plus 6 line number character digits and blanks for spacing are
printed. The following example shows an SP command that specifies column 60 as the right margin
for printing:

7SP60

4.4.5.4 Set Margin (SM). The Set Margin (SM) command specifies left and right limits for the Find
command. Syntax for the SM command is as follows:

-

SMs,t i

B There must be a comma between s and t. The Find command scans from column s through column
t and may be limited to the desired field by the SM command. The default value for the scan limits
is from column 1 to column 72 (or the end of the line if less than 72). The following example shows

| | an SM command that limits the scan of subsequent Find commands to columns 8 through 25:

7SM8,25

4455 Set Tabs (ST). The Set Tabs (ST) command allows up to five tabs to be set between
column 1 and 72. Syntax for the ST command is as follows:

STn,n,n,n,n
NOTE

There must be a comma between every column number. The column
number is indicated by n. Tabs must be set in ascending order, and
if they are not, a blank will be inserted for the descending tab. If
more than five tabs are entered, an INVALID OPERAND error
message is issued; however, the first five tabs are set and ready for
use. If no column numbers are entered, all tabs are cleared.

446 POINTER-MOVEMENT COMMANDS. Pointer-movement commands may be used to move
the pointer to any line in the buffer of TXEDIT. Initially, the pointer is at line 1. Moving the
pointer with the Down (D) command past the last line in the buffer causes TXEDIT to read source
lines or object records from the input file to fill the empty lines. Other commands move the pointer
upward a specified number of lines, or to the top of the buffer, or downward to the bottom of the
buffer. The pointer-movement commands permit the user to move the pointer as desired for effec-
tive use of commands that identify lines by specifying a displacement from the pointer. The pointer
commands are described in the following subparagraphs.

4.4.6.1 Down (D). The Down (D) command causes TXEDIT to move the pointer down a specified
number of lines. When the specified move is to a line number greater than the contents of the
buffer, TXEDIT adds lines to the buffer and reads records from the input file to fill these lines. The
syntax for the D command is as follows:

Dn

Change 2 4-8 Digital Systems Division

946258-9701

The pointer is moved down n lines. The range of n is 1 to 9999, and the default value when n is
omitted is 1. The D command may be entered to read in lines from the input file or to move the
pointer to a line farther down in the buffer. Initially, or when the pointer is at the bottom of the
buffer, TXEDIT reads n lines from the input file. When the pointer is m lines above the bottom of
the buffer and n is greater than m, TXEDIT reads n - m lines from the input file. In each of these
cases, the pointer is at the bottom of the buffer after execution of the D command. However, when
the pointer is m lines above the bottom of the buffer and m is greater than or equal to n, no lines
from the input file are read. The pointer is m - n lines above the bottom of the buffer after execu-
tion of the command. The following example shows a D command to move the pointer down
30 lines.

D30

44.6.2 Up (U). The Up (U) command moves the pointer up a specified number of lines. Syntax
for the U command is as follows:

Un

The pointer is moved up n lines. The range of n is 1 to 9999, and the default value when n is
omitted is 1. The U command may be entered to move the pointer up to a specific line in the buf-
fer. The following example shows a U command to move the pointer up 6 lines:

U6

44.63 Top (T). The Top (T) command moves the pointer to the first line in the buffer. The
syntax for the T command is as follows:

T

4.4.6.4 Bottom (B). The Bottom (B) command moves the pointer to the bottom (i.e., last) line in
the buffer. The syntax for the B command is as follows:

B

4.4.7 EDIT COMMANDS. The edit commands add, change, remove, rearrange, or scan lines of
source or object code, and act upon a set of lines in the buffer specified by line number or by a dis-
placement from the pointer. The edit commands are described in the following paragraphs.

4.4.7.1 Change (C). The Change command deletes a specified set of lines and permits input of one
or more lines to replace the deleted lines. The syntax for the command is as follows:

<s> - <>)
C ! [+] [<n>]
-<n> j

Line s through line t are deleted, or n lines with respect to the pointer are deleted. The values of s
and t can be equal. As many replacement lines as required are entered. Each line is followed with a
cafriage return; the last line 1s followed with two carriage returns. When n is preceded by a minus
sign. n lines preceding the pointer line are deleted, but the pointer line is not deleted. The new lines
are inserted in their place. When n is unsigned or is preceded by a plus sign, n lines beginning with
the pointer line are deleted, and the new lines are inserted. When no operand is entered, the pointer
line is deleted. and replaced by the new lines. When the pointer line is deleted. the pointer is moved
to the next line of the buffer following the newly inserted lines. If the line that was changed was the
last line in the buffer, the pointer will be at the first line in the buffer. The following example
shows a C command to change lines 5 through 7, replacing them with four lines.

Change 1 49 Digital Systems Division

(o]
(@ 946258-9701

7C5-7
LOD MOV 1.4
Al 4,1
Cl 4 WA+60
JLT SUM

The following example shows a C command to change the pointer line and the two lines that follow
the pointer, replacing them with two lines:

7C3
LOD MOV 1,4
Cl 4 WA+60

4.4.72 Insert (I). The Insert (I) command permits input of one or more lines following the pointer
or a specified line. The syntax for the I command is as follows:

i I[<s>]

As many lines as required are entered. Each line is followed with a carriage return; the last line is

I followed with two carriage returns. When s is in the range of 1 to 9999, lines are inserted following
line s. When s is 0, lines are inserted ahead of the top line in the buffer. When s is omitted, lines are
inserted following the pointer line. The following example shows the use of the I command to insert
two lines following line 10:

110
CKON
DEC 7

4.4.7.3 Move (M). The Move (M) command moves a specified block of lines to a specified location
and deletes the block of lines at the previous location. The block is specified by first and last line
numbers or by a number of lines preceding or following the pointer. The location to which the
block will be moved is specified as a line number or as the pointer. The syntax for the M command
is as follows:

<> -<t>, [<>]
M { [+] <n>, <>
-<n>, <r>

Line s through line t are moved, or n lines with respect to the pointer are moved. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are moved.
When n is unsigned or preceded by a plus sign, n lines beginning with the pointer line are moved.

The specified lines are placed following line r when r is greater than zero. When r is zero, the
specified lines are placed ahead of the top line in the buffer. When r is omitted, the lines are placed
following the pointer line, but r can only be omitted when specifying lines s through line t. Num-
bered lines moved by the Move command retain their original line numbers, if any. When the
pointer line is moved, the pointer moves with it. When s and t are specified, r must be less than s or
greater than t. The following example shows an M command to move lines 6 through 8 to follow
line 25:

IM6-8.25

The command in the following example moves four lines beginning with the pointer line to follow
line 30:

M4 .30

Change 1 4-10 Digital Systems Division

o]

946258-9701

4.4.74 Remove (R). The Remove (R) command removes a block of lines. The block is specified
by first and last line numbers, or by a number of lines preceding or following the pointer. The syn-
tax for the R command is as follows:

<ls>-<t>
R ¢ [+] [<n>]
-<n>

Lines s through t are removed, or n lines with respect to the pointer are removed. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are removed.
When no operand is entered, the pointer line is removed. When the pointer line is removed, the
pointer is moved to the next line of the buffer. If the last line in the buffer is removed the pointer
will point to the first line in the buffer. The following example shows an R command to remove
line 12:

7R12-12
The command in the following example removes the three lines preceding the pointer line:
7R-3 |

4.4.7.5 Find (F). The Find (F) command scans a block of lines for the first occurrence in each line
of the specified character string. Optionally, the command may replace the string with or without
printing the resulting line, or may print the line and permit the user to specify whether or not to
substitute the string. In all cases, the command prints the count of matching lines found. The block
is specified by first and last line numbers, or by a number of lines preceding or following the
pointer. The syntax for the F command is as follows:

<> -<t> Pl
F { 4] <n> { L} <dI><stringl><d> B
<n> F <d2>{<string2>1<d2>[V] [P]

Line s through line t are scanned, or n lines are scanned. When n is preceded by a minus sign, n lines
preceding the pointer line, but not the pointer line, are scanned. When n is unsigned or preceded by
a plus sign, n lines beginning with the pointer iine are scanned.

When an F is entered following the lines to be scanned, the columns specified in an SM command
are scanned for the first occurrence in each line. Columns 1 through 72 are the default scan columns
unless the line is shorter than 72 columns, in which case it will scan to the end of the line. When an
L is entered, the command performs a label scan, beginning at the left limit and extending to the
first space.

The character string used in the scan is designated stringl, and is enclosed by identical characters,
each represented by dl. The character represented by dl may be any character that does not appear
in stringl.

When no other parameter is entered, the command scans the specified lines and prints the number
of lines in which a match of string] was found. When P is entered following dl, the command prints
each line in which a match of string] was found, and also prints the number of lines in which the
string occurred following the last line scanned.

Character string, string2, enclosed by identical characters, each represented by d2, is the replacing
string. String2 may be omitted, or may be longer or shorter than stringl. When the replacement is

Change 2 4-11 Digital Systems Division

[e]
@ 946258-9701

made, the characters of string2, if any, replace the characters of stringl and the length of the
resulting line is adjusted as necessary. When there are no characters entered for string2, the phar—
acters of stringl are deleted. Character d2 may be any character that does not appear in string2,
V, orP.

When no other parameter is entered following string2, the specified lines are scanned and string2
replaces the first appearance on each line of stringl, or label stringl, each time a match is found.
The command prints the number of lines in which the replacement was made after scanning the
last line.

Either V or P, or both, may be entered following string2. The verify operation, specified by V,
prints the line in which the match is found, and prints the question Y/N? on the next line. The user
must enter Y or N followed by a carriage return to continue the operation. When the user enters Y
the replacement is made. When the user enters N the replacement is not made. The scan continues
in either case.

The print operation is specified by P. After the replacement is made, the resulting statement is
printed and the scan continues. '

When the specified lines have been scanned, TXEDIT prints the number of lines in which a match
was found. The pointer is left unchanged throughout the operation.

The general rule of TXEDIT which allows spaces between characters or operands does not apply to

stringl and string2. Any spaces between the characters represented by d1 are considered part of

stringl, and any sapces between the characters represented by d2 are considered part of string 2.

Lines brought into memory have trailing balnks suppressed and therefore comparisons should not
' be made past the last non-blank character of a line.

The following example shows an F command to replace the first appearance in each line of the
string EUEN with the string EVEN in lines 34 through 48 and print the resulting lines:

7F3448F*EUEN*SEVENSP

The command in the following example verifies the replacement of label P1 with string PUN1 in
each of nine lines beginning with the pointer line:

?F9L'P1"PUNI'V

448 PRINT COMMANDS. The print commands cause TXEDIT to print the first and last lines in
the buffer, or to print one or more specified lines. The print commands are described in the follow-
ing paragraphs.

4.4.8.1 Limits (L). The Limits (L) command causes TXEDIT to print the first and last lines in the
buffer, including the line number, if any, with the right margin at column 72. The SN and SP com-
mands do not affect the operation of the L. command. The syntax for the L command is as follows:

L
The L command is used to identify the top and bottom lines of the buffer.

4.4.8.2 Print (P). The Print command causes TXEDIT to print a block of lines. The block of lines
is specified by first and last line numbers, or by a number of lines preceding or following the
pointer. The SL and SN commands, when entered, control printing of line numbers, and the SP
command, when entered, sets the right margin of the print lines. When these commands are not
entered, line numbers are printed and the right margin is column 72. The syntax of the P command
is as follows.

Change 2 4-12 Digital Systems Division

(@ 9462589701

<s>-<t>
P [+] [<n>]
-<n>

Line s through line t are printed, or n lines are printed. When n is preceded by a minus sign, n’
lines preceding the pointer line, but not the pointer line, are printed. When n is unsigned or pre-
ceded by a plus sign, n lines beginning with the pointer line are printed. When no operand is entered,
the pointer line is printed. The following example shows a P command to print lines 8 through 10:

7P8-10
The command in the following example prints the pointer line and the next three lines:
P4

The user may terminate the Print command at any time by entering an ESC character at the key-
board. TXEDIT then prints a question mark and awaits input of another command.

449 OUTPUT COMMANDS. TXEDIT provides two commands to write source or object code
and one command to end execution of TXEDIT. The Keep (K) command writes the entire buffer
or specified lines from the buffer. The Quit (Q) command writes specified lines from the buffer,
the entire buffer, or the buffer contents and the remainder of the input file, and writes an end-of-
file record on the output file. The output commands are described in the following paragraphs.

4491 Keep (K). The Keep (K) command writes a specified number of lines from the buffer to
the output device. The syntax for the K command is as follows:

K{<n>]

The first n lines of the buffer, or all lines in the buffer when n is omitted, are written on the output
file. When the pointer line is written, the pointer is moved to the top line remaining in the buffer.
The K command is entered to write lines no longer required in the buffer in order to have space in
the buffer for additional lines. The following example shows a K command to write the top 15 lines
of the buffer:

?K15

4.4.9.2 Quit (Q). The Quit (Q) command writes lines from the buffer and input file followed by an
end-of-file record. The syntax of the Q command is as follows:

Qi<s>]

The lines of the input file up to and including line number s are written. When line number s is in
the buffer, lines are written from the buffer only. When line number s is not in the buffer, TXEDIT
writes the lines in the buffer, reads the additional lines from the input file, and writes these lines.
If line number s is never found, the rest of the file will be copied. When s is zero the edit is finished;
no more data is written from the buffer or from the file, and an EOF character is inserted in the
output file. The Q command is used to truncate data. When s is omitted, the lines in the buffer
and the remainder of the input file are written. The Q command is entered to write the output file,
or the remainder of the output file, including the end-of-file record. After the lines have been
copied to the output file, the terminate sequence is entered.

4-13 Digital Systems Division

o
@ 946258-9701

4.4.9.3 END (E). Another command available to initiate the terminate sequence is the End com-
mand. This command ends the edit function without writing any data to the output file and does
not cause the EOF character to be written. This provides an escape route from TXEDIT in the event
a nonrecoverable error has been detected and there is no requirement to write an EOF on the out-
put file. The system will respond to the E command with the TERMINATE/CONTINUE? prompt.

The user must then enter a T to exit from the TXEDIT program and restart without affecting the
B current status of the input or scratch files.

4.4.10 TERMINATE-SEQUENCE COMMANDS. Two commands can be used to initiate a
terminate sequence, depending on the particular situation. The normal method of terminating is
with the Quit (Q) command, as explained above. The Q command always writes an EOF on the out-
put file, and the system responds with the following message:

TERMINATE/CONTINUE?

In response to this message, the user enters a T or C. When it is desired to reverse the flow of the
data and continue the editing, the Continue (C) command is entered. The system responds with the
question mark (?) prompt and editing continues, starting at line one, again. When editing is
completed and the T response is entered for terminate, the system responds with one of two
messages as follows: ‘

e TEXT IN INPUT FILE.
END EDIT.
or
e TEXT IN SCRATCH FILE.
TRANSFER TO INPUT?

The first message, “TEXT IN INPUT FILE”, ends the TXEDIT and returns control to the TXDS
Control Program. If the second message, “TEXT IN SCRATCH FILE”, is printed and the user
enters a Y for yes, the text is transferred from the scratch file back to the input file and control is
returned to the TXDS Control Program. If an N for no is entered, the system prints “END EDIT”
and without any additional action, returns control to the TXDS Control Program.

45 ERROR MESSAGES
The TXEDIT error messages capable of being presented on the system console by TXEDIT, their
reason for occurring, and the procedure for recovery from each error is presented in table 4-3.

4.6 EXAMPLE: ENTERING A SOURCE PROGRAM ON A CASSETTE OR DISKETTE

The following paragraphs describe the use of TXEDIT to enter a new source program on a cassette
or diskette. The Insert (I) command is used to input new source statements. Any of the commands
may be used to correct any errors made in entering the statements. Because statements entered
with the Insert command have no line numbers, the pointer-relative specification is the only avail-
able means of specifying a line in a command.

Change 2 4-14 Digital Systems Division

9462589701

Message

INVALID OPERATOR

INVALID OPERAND

BUFFER EMPTY

BUFFER FULL

END OF FILE

OFF THE TOP

LAST LINE

LINE NOT FOUND

CAN'T GET MEMORY

CAN'T GET COMMON

Table 4-3. TXEDIT Error Messages

Reason

The operator portion of a command
entry is incorrect.

The operand is not entered correctly or
is beyond the range of values for that
operand.

A command that operates on data in the
buffer is entered before data has been
placed in the buffer from the input file
or from the keyboard (either initially

or after writing the entire buffer con-
tents).

A D, I, or € command has attempted to
put more data into the buffer than the
buffer can contain.

End-of-file has been encountered on in-
put or a D command has attempted to
read more records than is contained in
the input file.

A negative displacement caused the
pointer to be moved past the beginning
of buffer. (That is, the negative dis-
placement from the pointer line in a C,
M, R, F, or P command is greater than
the number of lines in the buffer before
the pointer line.)

A positive displacement caused the
pointer to be moved beyond the last
line at the end of the memory buffer.

A line, or line number, was referenced
but was not in the buffer. The first line
ina C,M, R, F, or P command, or the
line number in an I command, or the
destination line number in an M
command is not in the buffer.

Memory option was greater than avail-
able memory.

COMMON was not included at system
generation time.

Recovery

Enter a valid, correct command.

Enter a valid, correct command or
enter another command.

Enter a D or I command and data.

Enter a K command or write data
from the buffer before entering or
reading more data.

Enter a Q command. Another edit-
ing session may be entered by enter-
ing a C to the TERMINATE/CON-
TINUE? question. TXEDIT will
make no further attempt to read the

input file until the program restarts.

After printing the message, TXEDIT
is positioned at the top (i.e., first)
line of the buffer.

TXEDIT prints a question mark and
waits for another command.

The command is not executed by
TXEDIT. Enter another command in
response to the question mark (?)
prompt.

Enter a smaller memory option.

Execute the system generation utility
and include COMMON.

4-15

Digital Systems Division

946258-9701

Message

nn — I/O ERROR (where
nn refers to the error code
listed in Appendix I, en-

titled ““1/O Error Codes™).

NAMES CANNOT BE
THE SAME

ILLEGAL PARAMETER

TRANSFER I/O ERROR

I/O ERROR, RETRY?
(Y, N, or CR to abort
1/0)

Table 4-3. TXEDIT Error Messages (Continued)

Reason

There was an I/O error.

The input file name entry and the output
file name entry were the same.

The file name was not included in the
INPUT: parameter.

There was an I/O error transferring the
output file to the input file.

If ““Y” is entered, it will backspace one
record and try to read that record again.
If “N” is entered, it will try to read the

Recovery

Correct error and restart.

Reenter INPUT: and OUTPUT:
parameter.

Reenter the INPUT: parametef.

Correct and use the TXCCAT utility to
copy the output file to the input file.

next record. If a carriage return (CR)
is entered, the text editor will terminate.

The following text describes an example of writing a source program using TXEDIT.

The initial message and the first command, with associated entries, are as follows:

TXEDIT 936220**
10
Wl BSS 32
START RSET
LWP1 Wi
CLE RO

The I command with an operand of zero causes TXEDIT to place the lines that follow at the top
of the buffer. The buffer pointer is not moved as lines are entered and remains ahead of the first
line entered. In the above example, an error was made in the operation field of the fourth line, so
the user entered an additional carriage return to terminate the command, permitting entry of
another command to correct the error.

The next part of the example program is:

7K3
7P1
CLE RO

The K command causes TXEDIT to write the first three lines on the output medium. The Pl
command causes TXEDIT to print the pointer line to verify that the pointer is at the line that
contains the error. An alternative to using the Keep command to write the correct portion of the
program is to use a Down (D) command to position the pointer for correction of the error, leaving
the first three lines in the buffer.

4-16 Digital Systems Division

%@ 946258-9701

The next command and the associated entries are as follows:

C
CLR RO
I1 INC RO
INO J1
Dl . DEC RO
JINE D1
IMP I1

END START

The C command deletes the error line and accepts seven lines of source code. The example source
program is now complete, with three lines written on the output medium, and seven lines in the
buffer.

The next command and the resultant printout or display follows:

?F10F'J1"11’
LAST LINE
0001 FOUND

The F command scans the contents of the buffer, replacing the first appearance in each line of
string J1 with string I1. The command attempts to scan 10 lines,and prints the message “LAST
LINE” because there are only seven lines in the buffer. The V and P options (described above under
the Find (F) command paragraph) could have been used. This is an alternate method of correcting
an error in a source program entered from the keyboard using TXEDIT.

The next command and the resultant printout or display follows:

7P10
CLR RO
I INC RO
INO I1
D1 DEC RO
INE D1
JMP Il
END START
LAST LINE

The P command causes TXEDIT to print the contents of the buffer and the last line message.
Entering the Quit command causes the terminate sequence to be entered.

Q
TERMINATE/CONTINUE?

The Q command causes TXEDIT to write the buffer contents on the output medium following the
records previously written by the Keep (K) command. An end-of-file record is written following the
last record. The user then enters a T to terminate the text editor, and a Y to transfer the scratch file
to the original input file.

TERMINATE/CONTINUE?T
TEXT IN SCRATCH FILE.

TRANSFER TO INPUT?Y
END EDIT

Change 1 4-17 Digital Systems Division

(o]
@@ 946258-9701

4.7 EXAMPLE OF HOW TO EDIT A SOURCE PROGRAM
The capabilities of TXEDIT to edit source programs include adding, moving, and removing state-
ments, and replacing a character string in statements. The edited program may include portions of
B a number of source programs. The purpose of editing is to correct or modify a source program.
The following paragraphs describe an example of editing a source program and considerations for
editing source programs. For this example, a typical source program is used for which no Setup
command is required because default values for print margin and F command limits are used and
line numbers are printed.

The initialization messages and the first command are as follows:

TXEDIT 936220 **

D117
The D command moves the pointer down 117 lines, and TXEDIT reads in the source file to fill the
buffer as defined by the D command. A smaller value could have been used to read part of the file,
followed by a subsequent D command to read the remainder. Had a larger value been entered,
TXEDIT would have read the 117 records of the file and printed the end-of-file message. TXEDIT

prints the prompt character (?) and awaits another command.

The next command and printout result are as follows:

7L
0001 TITL ‘EDITING EXAMPLE’
0117 END

The L command verifies the buffer contents by printing the first and last lines in the buffer. Had
the SN and SP commands been entered, they would not have affected the printing of the limits
resulting from the L command.
The next command is as follows:

T
The T command moves the pointer to the top of the buffer (line 1) from line 117 where the first

command had placed the pointer. Moving the pointer to the top of the buffer permits using pointer-
relative commands for the area at the top of the buffer.

The following commands move line 46 to a position after line 116 and remove line 117.

M46-46,116
?R117-117

The following command is entered.

IM81-87.115

Change 1 4-18 Digital Systems Division

%@ 9462589701

This M command moves lines 81-87 to a position following line 115 to cause the line numbers in
the buffer to be out of sequence.

The following commands prepare the move operation for verifying.

7B
7P1
0046 END START

The B command places the pointer on the last line of the buffer, and the P command prints the
pointer line to verify that it is on the proper line.

The next command and the resultant printout or display on the system console are presented as
follows:

7P-13
0111 UP2 MOV *R10,*R10
0112 INE UP1
0113 BL @ATTOP
0114 MOV *DUMNXT, TMLOC
0115 JMP UP3

0081 *ROUTINE COMMON TO UP AND DOWN
0082 UDCOM1 MOV RTN,R5

0083 BL @SCANOP

0084 INC UDCNT

0085 MOV UDCNT,UDCNT
0086 JEQ EXIT

0087 B *RS

0116 *

The P command prints the 13 lines preceding the pointer line, and the result shows that lines 81-87
have been placed after line 115. This result also shows the effect of the previous move and remove
commands.

The next command and associated entries are as follows:

n77
*TITLE = MSGOUT MESSAGE OUTPUT
MSGOUT MOV *R11,*R10
MOV @MCOUNT(R10),R10
BLWP @PRINT
B *R11

The I command inserts five lines following line 77. The number of lines inserted is the number of
lines entered with the command and may be one or more lines. After the carriage return that
terminates the last line, an additional carriage return is entered to terminate the command.

4-19 Digital Systems Division

@ 9462589701

The next command and resultant printout are as follows:

P77-78
0077 JMP EXIT
*TITLE= MSGOUT MESSOUT OUTPUT
MSGOUT MOV *R11,*R10
MOV @MCOUNT(R10),R10
BLWP @PRINT
B *R11
0078 EOFEXT BL @MSGOUT

The P command prints lines 77 through 78, which includes the five unnumbered lines inserted by
the previous command. The result shows that the lines have been inserted correctly.

The next command and the resultant interaction are as follows:

7F146F'EXIT"EXTDWN'VP

0071 IMP EXIT
Y/N? Y

0071 JMP EXTDWN
0077 JMP EXIT
Y/N? Y

0077 JMP EXTDWN
0080 EXIT RTWP

Y/N? Y

0080 EXTDWN RTWP

0086 JEQ EXIT
Y/N? N

0004 FOUND

The F command finds the first appearance in a line of the string EXIT in lines 1 through 46.
(Remember that line 46 is now the last line, i.e., after line 116.) The entire buffer is scanned
because the top line in the buffer is line 1 and the bottom line is line 46. Line numbers greater than
46 between lines 1 and 46 are also scanned. The replacing string is used only when the user enters
a Y following the printing of the line found. In the example shown, the replacement was not made
in line 86 because the user entered an N following the printing of this line. Lines 71, 77 and 80 were
replaced because the user entered a Y following the printing of these lines. The count of lines found
is printed after all lines have been scanned. The F command may be used to scan only a portion of
the buffer, from one line up to the entire buffer, and replace from one character to the entire
statement.

The next three commands are as follows:

?7R15-15
?7R17-17
7R19-19

Each R command removes the specified line from the buffer. Three commands that remove one line
each are necessary because the lines to be removed are not consecutive. A single R command may
remove one or more consecutive lines.

4-20 Digital Systems Division

@ 9462589701

The next command and the resultant printout are as follows:

?P14-20
0014 DUMNXT EQU 0
0016 LINAD EQU 2
0018 LINPTR EQU 4
0020 CLLOC EQU 6

The P command prints lines 14 through 20. The result shows that the lines specified in the Remove
(R) command were removed.

The next command is as follows:

02

The U command positions the pointer to the second line preceding the pointer line. The pointer
could have been moved any number of lines up to the top of the buffer.

The next two commands, the resultant printout of the first command, and the entry associated
with the second are as follows:

7P68-68
0068 A @MAXLIN,UDCNT
7C68-68

A @MINLIN,UDCNT

The P command prints line number 68 to verify that line 68 is the desired line. The C command
changes line 68 to the line entered with the command. On¢ or more consecutive lines may be
deleted by a C command, and any number of lines, including zero lines, may be added. The number
of lines added does not have to be equal to the number of lines deleted and the added lines have no
line numbers.

If there were no more data in the input file, or if the remaining data were to be discarded, the next
command would be ?Q117. This would place the data in the buffer in the SCRATCH file and place
an EOF at the end of the data. If, however, there were more data in the input file but no editing
was required, the next command would be just ?Q. The Q command would write the entire buffer,
plus whatever was remaining in the input file would be placed into the scratch file and EOF would
be placed at the end.

The next response from the system would be as follows:

TERMINATE/CONTINUE?

If no further editing is desired, the operator enters a T for terminate. The system would respond as
follows:

TEXT IN SCRATCH FILE.
TRANSFER TO INPUT?

At this point the operator decides where the text is to reside. If a Y is entered for Yes, the scratch
file text is transferred directly to the input file, or if N is entered, the text remains in the OUTPUT
file. The system ends the TXEDIT by printing END EDIT and the TXDS control program is reacti-
vated.

4-21 Digital Systems Division

946258-9701

4.8 EXAMPLE OF HOW TO EDIT AN OBJECT PROGRAM

The capabilities of TXEDIT to edit object programs include adding. moving, and removing records,
and replacing a character string in records. These capabilities allow the user to combine object code,
correct object code, and add object code at the machine instruction level. In editing object code, it
is necessary to thoroughly understand the object code format and the significance of tag characters
(described in the Model 990 Computer/TMS9900 Microprocessor Assembly Language Programmer’s
Guide). Records may be inserted into an object program at any point except that the records that
contain tag character 3 or 4, tag character 5 or 6, and tag character 1 or 2 must follow all other
records in the object file. Further, the record that contains tag character D, if any, must precede
the record that contains the first tag character 0. Each record must end with tag character F. When
the contents of a record are altered, tag character 7 and associated field must be removed.

When the length of relocatable code is increased, the contents of the hexadecimal field associated
with the final O tag character must be changed. The following paragraph describes an example of
editing an object program.
NOTE
Compressed object code cannot be edited.
In the example, the purpose of the edit is to add a record to specify a load point, to change instruc-
tions that use workspace register 1 to use workspace register 7 instead. to change an instruction, and

to add an instruction.

The initialization message and the first command are as follows:

7SN

The SN command is a setup command that inhibits printing of line numbers. When line numbers are
printed, printing of an object record may be truncated because of the length of the print line.

The next command and the associated entry are as follows:

?10
D1000F

The I command with an operand of O inserts the associated line at the top of the buffer. The line
will be the first record in the edited object file, and contains load point of 1000, . specified with a
D tag character.
The next command and the resultant printout are as follows:
D10
END OF FILE
The D command causes TXEDIT to read in the object file to be edited. The file contains six

records, so the operand used causes TXEDIT to attempt to read past the end-of-file record. This
inhibits further reading of any input tile in this run of TXEDIT.

4-22 Digital Systems Division

([‘—@? 946258-9701

The next command and the resultant printout are as follows:
L

D1000F
0006 200CE10010C 7FCABF |

The L command causes TXEDIT to print the limits. The top line in the buffer is the line entered
with the 1 command, and has no line number. The bottom line is the last line of the object file,
line 6.

The next command and the resulting interaction are as follows:
?F1-6F'B0002' 'BOOOE' VP

00000SAMPROG 90040C0000A0020BC06DB000290042C0020A0024BC81BC002A7F219F
Y/N?Y

00000SAMPROG 90040C0000A0020BC06DBO00E90042C0020A0024BC81BCO02A7F219F
A0028B0241B0000BCB41B0002B0380A00CACO052C00A2B02E0CO032B0200BOFOF7F1DEF
Y/N?Y

A0028B0241B0000BCB41BO00EBO380A00CAC0052C00A2B02E0CO032B0200BOF0F7F1DEF
0002 FOUND

nnANN~N : .

The F command scans for the character string BO002 with the verify and print options. The replace-
ment string, BOOOE, changes the memory address of workspace register 1 to that of workspace
register 7 in two instructions. Verification and printing provides control and documentation of the
changes.

The next command and the resulting interaction are as follows:
?F1-6F'7F151'"''VP

AOOD6BCOAOCO0CABO4C3BC160C00CCBC1AOCO0DOBC1F2B0287B3A00A00ECB02217F151F
Y/N?Y

A00D6DCOAOCOOCABO4C3BC160C00CCBCIAOCO0DODC1F2B0287B3A00A00EBO221F
0001 FOUND

The F command scans for the character string 7F151, which is a checksum tag character and
associated field. The replacement character string is a null string, and the result is to remove the
checksum from a record which was changed by an edit command not shown here.

The next command and the associated entry are as follows:

?1
AQOECBC227A00F0B0O6C7A010ABOACTF
AO10CB1OFFF

Change 2 4-23 Digital Systems Division

%@ 946258-9701

The I command inserts the associated two lines following the line on which the pointer had been
positioned by an edit command not shown. The first line will cause the loader to overlay three
words of the original file, which is another way of changing object code. The second line is an added
instruction which will increase the size of the program module.

The next three commands, the resultant printout of the second, and the associated entry of the
third are as follows:

D3

7P1
200CE0010C 7FCABF
268CE0010E F

The D command moves the pointer line down three lines, and the P command causes TXEDIT to
print the pointer line to verify the pointer position. The C command changes the pointer line to
modify the number of words of relocatable code in the program. If this is not done, and another
module is loaded following this module without specifying a load address for the subsequent
module, the subsequent module will overlay the instruction that was added. The pointer line is also
changed to delete the checksum.

The last command and the final messages are as follows:

7Q
TERMINATE/CONTINUE T

The Q command causes TXEDIT to write the contents of the buffer and any data remaining in the
input file, followed by an end-of-file record, on the output medium. The T command causes
TXEDIT to terminate and issue the message:

TEXT IN SCRATCH FILE.
TRANSFER TO INPUT?

If all editing is completed, the user responds with a Y (yes) and TXEDIT transfers the scratch file
to the input file and prints “END EDIT”.

4-24 Digital Systems Division

[s]
q@ 946258-9701

SECTION V

TXDS ASSEMBLER (TXMIRA) UTILITY PROGRAM

5.1 INTRODUCTION

The TXMIRA Utility Program is a member of a family of assemblers that may be used with the
Model 990 Computer family. It functions to substitute absolute operation codes and addresses
(i.e. Model 990 machine language) for symbolic codes and addresses (i.e. assembly language
source code programs). TXMIRA provides for the allocation of storage to the minimum extent
of assigning storage locations to successive instructions and for the computation of relocatable
addresses from symbolic addresses. The TXMIRA program has the following features:

® Assembles all 72 instructions for both the Model 990/4 and the Model 990/10
Computers

e Supports 19 directives

e Supports both pseudo instructions (NOP, RT)
e Supports a sorted symbol list option

® Provides error messages in text form

e Supports compressed object code

® Prints or truncates “TEXT’ string option

As a two-pass assembler program, TXMIRA reads the program source statements two times, pro-
viding maximum programming flexibility in the process of producing object code. On the first pass,
the assembler maintains the location counter and builds a symbol table similar to those in a one-pass
assembler. During this pass some errors may be detected and printed on the listing device. For the
second pass, the source statements are read in again by rewinding the input file. During
the second pass, the assembler generates the object code using the symbol table developed during
the first pass. The two pass feature reduces the restrictions on forward referencing. TXMIRA
produces a listing of the source code and the object code (i.e., machine language). Optionally, the
assembler prints out the symbol table. Further, the resultant output produced by the TXMIRA
utility program may be linked to other output modules or be loaded separately for execution.

For more details on the Model 990 assembly language, refer to Model 990 TMS9900 Microprocessor
Assembly Language Programmer’s Guide, part number 943441-9701.

5.2 LUNOs AND THEIR USES
LUNOs 5, 6, and 7 are used by TXMIRA program for source input, object output, and listing,
respectively. All LUNOs are assigned by the TXMIRA program. Upon termination of the TXMIRA
program, all LUNOs are released.

Change 1 5-1 Digital Systems Division

[e]
Q@? 946258-9701

5.3 OPERATION INTERACTION
The TXMIRA program can only run under the control of the TXDS Control Program. The INPUT:
parameter must have the pathname of the source file to be assembled. The first OUTPUT: param-
eter must have the pathname of the file or device to which the object code will be written. The sec-
ond OUTPUT: parameter must have the pathname to which the listing will be written. The object
I pathname and the listing pathname must be separated by a comma. If the output file does not
exist, it will be created as a sequential file with the name given. If the listing pathname is null,
the system default printer will be used. If only part of the listing pathname is used, the defaults in
table 5-1 will be used. The following is an example of loading and executing TXMIRA using the
TXDS Control Program.

| PROGRAM: :TXMIRA/SYS
INPUT: :SOURCE
OUTPUT: :OBJECT,LP
OPTIONS: SLM4000

5.4 TXMIRA OPTIONS

The TXMIRA assembler options are specitied by a single alphabetic character followed in one
case, M, by a numeric field. Input format is free-form in that delimiters (i.e. separators) may be
commas, blanks or no delimiters. The options recognized by TXMIRA are listed and described
in table 5-2. These options are described further in the following subparagraphs.

Table 5-1. Pathname Defaults

Field Source Object Listing

| DEV DEFAULT DISC NAME DEFAULT DISC NAME DEFAULT DISC NAME
FILE NONE SOURCE FILE SOURCE FILE
EXT SRC OBJ LST

Table 5-2. TXMIRA Options

Option Description

Mnnnnn Overrides memory size default: default is
2400 bytes

X Produce cross-reference

L Produce assembly listing

T Expand TEXT code on listing

S Produce sorted symbol list

C Produce compressed cbject output

wheie nos wdeimal digi

Change 1 52 Digital Systems Division

o
@ 9462589701

5.4.1 MEMORY OPTION (M). The memory option is used to override the default memory size.
The size is expressed in bytes. The syntax of the option is as follows:

Mn (where n is a decimal number up to five decimal digits)
Some examples follow:

M4096
M20000
MG1000

5.4.2 CROSS-REFERENCE OPTION (X). This option is used when a cross-reference is desired.
Upon termination of TXMIRA, the TXDS Contro! Program will chain to the TXXREF Utility
Program (described in Section VI) to perform the cross-reference operations. To enable the cross-
reference option to work properly, the TXXREF object code must be in a file with the following
pathname:

:TXXREF/SYS

5.4.3 LISTING OPTION (L). This option is used when a listing is desired by the user. It may be
overriden by the LIST and UNL assembler directives. Errors are always printed.

5.4.4 PRINT TEXT OPTION (T). This option is used when expansion of TEXT statements is
desired by the user. Default results in no expansion of TEXT statements.

5.4.5 SYMBOL TABLE LISTING OPTIONS(S). This option is used when a sorted symbol list
output is desired. The list presents four symbols to a line; and each symbol presents the following
information in sequence: (1) attribute tag: (2) symbol; and (3) value. Table 5-3 defines the symbols I
used in the listing.

5.4.6 COMPRESSED OBIJECT OPTION (C). This option is used when compressed object code is

desired, and it may only be written to a diskette file. Compressed object takes up less diskette
space. See Appendix B for a description of compressed object.

Tabie 5-3. Symbol Attributes

Character Meaning
R Relocatable
E External Reference (REF)
D External Definition (DEF)
X Extended Operation (XOP)

U Undefined

Change 2 53 Digital Systems Division

946258-9701

5.5 ERRORS

5.5.1 TXMIRA ERROR MESSAGES. The TXMIRA assembler processes five (3) ftatal errors
(table 54) and 12 nonfatal errors (table 5-5). The five fatal errors cause the run to abort with the

appropriate error message printed.

The twelve (12) nonfatal errors do not cause the run to abort. An error message is printed fol-
lowing the statement containing the error. The format of the printout is as follows:

*EEEE SYNTAX ERROR — RCD nann

where nnnn is the source record number.

When there are undefined symbols in an assembly, the undetined symbols are listed at the end of

the assembly listing under the following heading:

THE FOLLOWING SYMBOLS ARE UNDEFINED:

Table 54. TXMIRA Fatal Errors

Error Description
CANT GET COMMON COMMON Not in System
CANT GET MEMORY MEMORY Size Requested
Too Large
SYMBOL TABLE MEMORY Size Too Small
OVERFLOW
nn-ILLEGAL PATHNAME PATHNAME Not Found or
Open Error
nn-I/O ERROR-A 1/0 ERROR on A, where
A can be:
S=SOURCE
O=0BIJECT
L=LISTING

Note: nn is a system returned error code. See Appendix D for explanation.

Recovery

Re-Gen System with
COMMON

Decrease Request
Increase Request
Correct Pathname and

Retry

Correct and Retry

Change 1 54

Digital Systems Division

9462589701

5.6 TXMIRA EXAMPLE
Following is an example of loading and executing TXMIRA. The diskette file :TXTSTI1/SRC is

entered in the INPUT: source file parameter line. DSC2: is entered in the first OUTPUT: parameter
causing TXMIRA defaults for the file name and extension. Therefore, the object (machine) code
is written to the diskette file DSC2:TXTST1/OBJ. LOG is entered in the second output parameter
producing the source listing output on the system console. Two options are entered in the
OPTIONS: parameter line. The L option produces a source listing, and the S option produces a
symbol table.

l._;_:;
T

=

el

ra L

]
MO

-4
b o =

-4 Cl
it g}

~r
b

g

et

s,
=
—

oo

g
L1} [1] L1} an

e

w —p
P,

Table 5-5. TXMIRA Nonfatal Errors

#%k% SYNTAX ERROR — RCD nnnn

**x%% [LLEGAL EXTERNAL REF. — RCD nnnn
*#xk% YVALUE TRUNCATION — RCD nnnn
*xkxk MULTIPLY DEFINED SYM — RCD nnnn
**x%% INVALID OPERATOR — RCD nnnn
#x4%% [LLEGAL FORWARD REF. RCD nnnn
**%%* [LLEGAL TERM — RCD nnnn

##xkxk 11T EGAL REGISTER — RCD nnnn

#*%x% SYMBOL TRUNCATION — RCD nnnn
x4kt UNDEFINED SYMBOL — RCD nnnn

where nnnn is the record number in which
the error occurred

154 ngeng

Change 1

5-5

Digital Systems Division

(o]

H 946258-9701

Following is an example of the source listing caused by entering an L in the OPTIONS: parameter

line.
R AMIFEA +#
[l TEST FREOGEFAM 2370 S 4+

Pl IDT “THTSTL-
Boas +
BB04 FEF CHT. HEM. HRITE
Po6S *
AOES DEEE DEES CATA TSTUSE. START. @
QERZ @R45 -
BERG FREE
BEAET GOEC TSTUSF ESS ZZ
BERS BEZE 1608 ENDPRG DATA 166
SR #*
AELE CHOF SV, 15
aE1d *
BE1 @0 OLL EYTE G0 »0F. H6A
IR
)
BELE 2 TEXT © OLD MESSAGE —— MROMNG
aEd 4 Sl EYTE >80, >0R
EF
BELS BEAL CHTL EQU $-0LD
THTSTL THMIRA ok
THOE TEST PROGRAM 93 1t
BELT STRRT
AE1E GRS B4I0 ELWF BURITE
AE4S EEEE
AEl BR4A GEZS DATA OLL. CHTL
BE4C EELD
BEZE PA4E ZFED SWE BENDPRG
BESE BRI
Slatet] EMs

EMD OF PROGEAM OF CODE

#k DEFIME S0F

FRINT MESSARGE

EHD OF FREOGRAM

Following is an example of the sorted symbol table caused by entering an S in the OPTIONS:

parameter line.

TETSTL THMIRA FAGE @063
THRS TEST FROGRAM

E CNT feTeTe e CHT1 @A10 F ENMDFRG G026 E MELW 5T 15 15)

R OLD aaza R START 8845 WOEND BEaF R TSTWSF oooc

E MRITE 0843

Ba8E ERRORS

Change 1 5-6 Digital Systems Division

[e]
@ 9462589701

TXDS CROSS-REFERENCE (TXXREF) UTILITY PROGRAM

SECTION VI

6.1 INTRODUCTION

The TX990 Cross Reference (TXXREF) Program is a single pass cross-reference program. The pro-
gram gives a listing of each user-defined symbol in a 990 assembly source program along with the
line numbers on which the symbol is defined and all of the line numbers on which the symbol is
referenced. The line numbers of the references to a symbol are in ascending order, and the symbols

are in alphabetical order. If the symbol was never defined, only the line numbers of the references
to the label will be listed.

6.2 LUNOs
LUNOs 5 and 6 are used by TXXREF. They are assigned when execution begins and released upon
termination by the program. LUNO 5 is the source input LUNO, and LUNO 6 is the listing LUNO.

6.3 OPERATING PROCEDURE
TXXREF can only run under the control of TXDS. The object program may be loaded from a
device or from the file, :TXXREF/SYS.

The INPUT: parameter must contain the pathname of a source program. The OUTPUT: parameter
must contain the pathname of a listing device to which the cross-reference listing will be directed. If
there is no response to the OUTPUT: prompt, the default print device will be used.

£

The pathname defaults are given in table 6-1. The input file must precxist, and if the output file
does not exist, it is created with the name given. Lastly, an option may be entered to override the

symbol table size.

6.4 LISTING FORMAT

An example of a listing is shown in figure 6-1. The heading gives the name and version of TXXREF
and the time and date of the run, if the time and date are initialized. Each line of the cross-reference
begins with the symbol, listed alphabetically, followed by the line number on which it was defined
(appearance in the label field), if any, and the list of line numbers, in ascending order, on which the
symbol was referenced, if any. The last line gives the number of symbols in the cross-reference.

NOTE

If TXXREF runs out of table space, it prints the references found at
that point, and attempts to continue. If insufficient space was freed
up by that process, then TXXREF terminates.

Table 6-1. Pathname Defaults

Field Input Output
DEV SYSTEM DISC SYSTEM DISC
FILE NONE INPUT FILE
EXT SRC LST

6-1 Digital Systems Division

946258-9701

T=AREEF

HEREST
ASFEHAR
EAb
BACTIHT
BUFL
BUFZ
EBUFZ=
ELIFALH
EUFARDL
ELIFE
ELFF
BLIFH
COMZIZE
CETHRH
DF LS
LFLFPTE
DHT
CHTZ
DHTENL:
FHMFBUF
FPYD
FPYLSR
FFRYTHNT
FPRYSFR
FEEG-Z
[X1R}
Gosd =
IDL2i=
TLL W
EBIDLE
KETAE
S =
ESEIH
EXEBUT
LDT=TF
LEY:
LEY4
LEMS
LEYT
Lic=
N
[N
Locy
LFHARN
LFTHT
LFZFUFR
LWLFTR

DETDEZ ## 1622 28 LS It Ry FARGE Gaal

175 BiTe
aiey Gifs
GEzE

Tt
M
g
A

{

,
=
&

T it

-
el T3

E
i
1
1

[Su SN I I CN o U O B O B W

AL W A

P I B B oy B
(AN ol T)

5 H2ZER

AR

el
A B o I cr]

Do R
DA S I W e S

[A

DB It (R O

ed ed 200
XN

-
ATEEXN]

{

i

g T A0 e

Py

=
™~

QUYL

poyl
| KX GO N

Dol
Wi Ty ded
faa
fua
X%

- .I

g

!

RS Ay B Y B A LY W N |
-
)
[t
T
IT;
ha]

B S e e o)
b AT IO
]

-
ke

R ORI I O S OV S A

e

Do L I s B o B B o S B

ol
1,

AR
I
"u

,.
-’
px]
=
[u 3
a

516
I
BEZD 8224 6251
@azse @zsl
GRZE BEZ] @ATD
B B
&; B2
& Bzl
B2z
BZaE
@az47
B2E3
G271
G184 B1ES
G187 G182 6Z5E G250
a1me B1E1
BLE BE1z

Figure 6-1. Sample Cross Reference Listing (Abbreviated)
Sheet 1 of 2

6-2 Digital Systems Division

946258-9701

A T
R ool

-
L

AR)

ot

FOTE
FOTSTR

.
ot

TenkEF

8%}
‘(!
-
T
S
s

FEHREFLG
FET
SLICE
ETINTE
TRSELCH
TREABRAL:

T
iad il

[N DR B I R R n
S A

AN Y]
o o B R O

-
2,

TRAFRT i
TEFINT B9
THETRE

T

TR]

=
MMP4 B2V

A

THERE ARE Q&7

By}

ol
1

-
T e
g.[!‘-l

]
x
=}
o
e
[xxl
3
bod
ke
[N
IT;
it}

Tm R
AR I T |

[

LR R
BN T |

T T
o e P T

i

Py
) |
=4

-
A Ex]

AR B B B R A
-
el

S S D B

Ko
Yemie!

=
fx]
[P]
[\
]"l
i
A
en]
o
-]
=J

)
l-
iy
[IA]
il
i
e
L]
Ty
ps
ot
)
=)
X

[t B U Y |

]
Y

[
[
ORI » u I % I)

|
sl
-

A IR R IR R I B et o R

ittt et

ke

X
Tt A f R T

AR AR

SYHMEOLS

Figure 6-1. Sample Cross Reference Listing (Abbreviated)

Sheet 2 of 2

6-3

Digital Systems Division

9462589701

6.5 OPTIONS
The only option that is recognized by TXXREF is the memory-size-override option. The size is
given in bytes. The option is as follows:
Mnnnnn where n is a decimal digit.
The following are examples:
M40%6
M002006
M2000
The default memory size is 4800 bytes. The memory block is used to build a symbol table. There-

fore, the size must be at least 12 times the number of symbols in the source program, plus 4 times
the number of references.

6.6 ERROR MESSAGES
The errors, descriptions and recovery for TXXREF are listed in table 6-2.

Table 6-2. Error Messages

Error Description Recovery

CANT GET COMMON System COMMON not in Regenerate system with
system. COMMON

CANT GET MEMORY Memory request too large Decrease size

nn - ILLEGAL PATHNAME Pathname doesn’t exist or Correct name and retry
open error

nn - I/O ERROR Error on read or write Retry

INSUFFICIENT MEMORY - Symbol table exceeded Increase memory

ABORT memory request

6-4 Digital Systems Division

[e]
@ 946258-9701

SECTION VII

TXDS LINKER (TXLINK) UTILITY PROGRAM

7.1 INTRODUCTION

The TXDS Link (TXLINK) utility program accepts standard Model 990 object code modules
(described in the Model 990 Computer TMS 9900 Microprocessor Assembly Language
Programmer’s Guide, part number 943441-9701, and compressed object code, available as an option
(illustrated in table 6-3) and links the modules according to command information supplied by the

user and the linking information in the modules. The linked output module is written on the output
file.

Linking allows a set of independently assembled object modules to be linked to form a single object
module. The major linking function is the resolution of external references and definitions in the
individual unlinked modules.

TXLINK also supports partial linking of modules. A partially linked module may be used as input
to another run of TXLINK with additional modules that satisfy the unresolved references.

The following restrictions apply:
® Linking of modules having absolute original addresses (AORG directive) is n.ot supported.

® There must be enough memory for all symbols, (12 bytes/symbol), IDTs (24 bytes/IDT)
and twice the length of the longest module to be linked. Memory size is defined by the
“M”’ option.

® TXLINK only recognizes object tags “0’” through “F”.

7.2 TXLINK FILE STRUCTURES AND LUNO ASSIGNMENTS

Figure 7-1 shows the relationship of the files accessed by TXLINK. Control information and file
access names are passed by the Terminal Executive Development System (TXDS) via system
COMMON.

TXLINK supports up to three object input files and two output files. Each input file can contain
any number of concatenated object modules. Input LUNOs used are 10,4, 11,4 and 12,4. The out-
put of TXLINK consists of a linked object file and load map listing. Output LUNOs used are 7 for
the object file and 6 for the load map listing.

7.3 TXLINK EXECUTION

TXLINK can only be executed under TXDS Control Program. The INPUT: parameter contains the
pathnames of one to three input files. Each pathname must be separated by a comma. An input file
may contain several object modules concatenated together. There may only be one end-of-file on
each file, and the file must be a sequential file or device. All input files are rewound by TXLINK
before they are used.

Change 1 7-1 Digital Systems Division

9462589701

INPUT LINKED
A OBJECT
INPUT ' TXLINK
2 B
LOAD MAP
INPUT LISTING
¢ J

Figure 7-1. Files Accessed by TXLINK

The OUTPUT: parameter may contain two pathnames separated by a comma. The first pathname
indicates the file to which the linked object code is written. The second pathname indicates the file
to which the load map is listed. If either of the output files does not exist, TXLINK creates a
sequential file with the pathnames entered. If the second output pathname is null, the system de-
fault printer is used. If only part of the pathname is defaulted, table 7-1 applies.

The defaults for the input and output pathnames are listed in table 7-1. Finally, the options are
entered.

Table 7-1. Pathname Defaults

Field Input Output Listing
DEV DEFAULT DISCNAME = DEFAULT DISC NAME DEFAULT DISC NAME
FILE NONE NONE OUTPUT FILE
EXT OBJ OBJ LST
Change 1 7-2

Digital Systems Division

(e]
@ 946258-9701

7.4 TXLINK CONTROL OPTIONS)

The following options control linking operations. All options are specified by a single alphabetic
character followed in some cases by an override field. Input is free-form in that delimiters for
options may be commas, blanks or no delimiters. The options are listed in table 7-2 and described
in the following paragraphs.

7.4.1 MEMORY OVERRIDE (M). This option allows a larger block of memory for tables to be
allocated to the Linker Utility. The default memory size is 11,800 bytes. The syntax for the |
option is:

Mnnnnn

Where n is a decimal number of the number of bytes required. There may be up to five decimal
digits. The scan terminates when a nonnumeric character is encountered.

The following are examples of the memory option:

M4096
MO00300
M24000

7.4.2 COMPRESSED OBJECT (C). The use of this object enables TXLINK to write compressed
object code to the linked object file. TXLINK writes standard object code unless the C option I
is used. The syntax of the option is:

C

Compressed object format takes up less room on the diskette than standard 990 object code. The
diskette is the only Floppy System device capable of supporting compressed object. The reader
should be familiar with the Model 990 Computer object code format. If not, read the Model 990
Computer TMS 9900 Microprocessor Assembly Language Programmer’s Guide, or refer to
Appendix B.

Table 7-2. TXLINK Options

Option Description
Mnnnnn Override default memory size, default is 11800 bytes.
C Compressed object output.
laaaaaaaa IDT for linked object.
P Partial link desired.
L Print load map and symbol list.

Note: n is a decimal digit and a is an alphanumeric character.

Change 1 7-3 Digital Systems Division

o
@ 9462589701

7.4.3 PROGRAM IDENTIFIER, IDT, OPTION (I). This option enables the user to specify an
object identifier for the linked object. Otherwise, the IDT of the first module input will be used.
(An IDT is generated during assembly. It is the identification name of the module, and it is invoked
by the “IDT” assembler directive.) The syntax of the option is:

laaaaaaaa
Where a is an alphanumeric character.

The scan terminates on a delimiter, blank or comma, or after eight characters.

Following are examples of the IDT option:

IMYLINK
IBADLINK
IWOW.

7.4.4 PARTIAL OPTION (P). The use of this option specifies that the module is to be partially
linked. The partially linked module includes information for linking all unresolved references re-
maining in the module after the link. The partially linked object may be used in a subsequent
linking operation to finish resolving the references. The syntax of the option is:

P

7.4.5 LOAD MAP OPTION (L). This option specifies that a load map listing is to be produced as
shown in the example in figure 7-2. The two-line header of the load map listing identifies the
version of TXLINK and shows the time and date of the run, provided the time and date have been
initialized. The second line consists of the program name and its length.

Change 1 74 Digital Systems Division

I

4 OFTOWNT Bg

9462589701

TALINE BI7PEZT 287 4 BLESVY FAGE ogal

FMOLLE LEMGTH ORIGIH LATE TIME

THLMED BECE
THLNKL B41E
THLMEZ BZAC
THLHE S B4EE
THLNK4 BELE

AR I]

T T T
Dyl sl ol o
[y
el
ol el 2 R R
DX R ST f L PR |

L
m

-
—
R .
-

AZZE AZGFLG BzZEC ASGIN
[AZGFTRE 82Fz Ao SERRE
BIMDED absz EIMNHES
CBEDH = CEDA4
CEHA CEHAZ
CHAE CHABL
CLEORT ClLalum
CHFDLD - = COrMA
CRLF C DATE
LEVSET 4 DTLIST
EM=GE E EMSGE
)

AZGLUN &

A ATOCET &
EIMOME &
CEDRS %)
CoALIM 9
CHAEBZ 15
SLEORPD &3
@

&

&

&

)

)

L

mmom oo - Mok T

1 I
fx]
]

RSGREER
ERDTAG
ELAMNE
CEDRS
CDDLIM
CLOSE
CHPDLA
COMPRES
[:'El‘l"
EM=G1
EQL
FILE
GETDAT
GETTAG
HOLIRE
ILTTEL
ILLFTH
ILLTHG
THLUN
IMFTES
LASTIN
L DAL
LETLIM
MGDLEM
DR JTEOF
OEJRSS
OR.JRECE

IRy}

' P T

o I OO e LS I 2 '-f' L]

:
3
™

=

CORMON
DAY
EF
EMTREY
H E=T
GETCOM
GETSWL
HEDL ErM

B b e e

ppbe ILT=ZARY
TLLMEM
T LS
IMNDFT

ITHPMML
IOREG

LMHONT

LI

MODCHT
HERSYM .

OBJFTRE S
N OEJRCL
CHLLIM
AT
FRGCHT
FRZZZ
FREGLERM
FLIMCH

RECORD
RELMEM
=ET 'E It

[B KR IR N ¥ B S O I x|

0o

'y T L
o T S T 00 ol e S

i bed L Pl DD Bed

1

EFDQINT EFTARG
FLAGE
GETHE=.
HERDL
IDTEME
TLLCHM
ILLPLIN
ILLMRET
ITHLLML
IOBFa32
LIBFLG
LODPHT
MEMRFT
PRI
OETYN
B IRsn
MOOMHE
A OOPT IO
QT ML
FHRETHL
FHTLIOG
FEIMT
FLUTHEM
FELAEZ
FELLLIM
SHERDL
Ry 8
2YMLsT
TERM
WoFDLD
WETOF

L T T 0T T T T i
[I R I O I U Y U U v

DR 8

= T
Ty e CORN T 00 0 B T 0 D00 OO 0N

3 GETCHML
] GETHMEM
HERDZ

IDTLEM
ILLHER
ILLEED
THCHFE
IMHFHM
1C0BUF
LIMCHE
LOGERER
MLEM
H MAMESE
IRT= IR
OB.IFRSG
OFEN
O TTEL
MoObTORT
FRSS
FOMTRS
FROCET
ST FEALD
. FELES
LLFTRR
SHERD
S MEDL
e A o
P TeEL IHE
YALFTE

v B oy
PR B K]

P B Lt Db D bed 05) P b e d BB

b R AR A g

CMEWITTD MmN

st

st
]

Ly -

!
!

i
i,

R X]

n)

Pt b= e

R
o

ed T =g 00 T e e P

eaud.
=
Boip

T 1 1% 1
] [s I X
=
o

[

AR R AR A I AR A R AR R o)

-
)

Rl

XXRE R K |

Crm I
LI D T 3]

S o [T 0 T oy T

)

A KNY]
T

b 0 L)

) Ok

a3 P

T T
bt Bt

HAIEY)
il
Ll

T T
JOURE IOURE KNI A I K

o

[y B

e
[et

%

e
AR
-
XN

= qT

D
R KN

Ty
[

OUTHM G

FRGEMD &

FGHDR 1

FRGMEM

PUTCOD &b
i
&

—
X

¥

T
[

T
e’ o
fod I e

[l
SR T O LS W o SN Ry

Y
et
e

=

3 D o
A
%]
1
[

E
D
!
3

YR YN
moIom e b

[l
Al

| e A A

X

-
.

()
-
ot

o

b Jui

REFDEF
FERTHD
SEQDEC
SNWHEL
SYMMEMD
TELEN
LICPDILA
F1

o

&

I

SRR

Do e

S o b
m .
I}

£z HDHE

1% :“HTHE

A TYPE
LE

i
u

DA I 8 BN et BN

-
&%

e

A= EH
Figure 7-2. Load Map Listing

.
it

[

7-5 Digital Systems Division

{@? 9462589701

The heading is followed by a list of the modules, with the name (IDT) of each object module in
the linked module, the length of each module, the origin of the module within the linked module
and the date and time that each object module was generated.

The next section of the listing lists in alphabetical order the definitions in the modules. The symbols
and corresponding hexadecimal values are printed four per line. The value is the definition within
the linked module. When the listing shows an “N” preceding definition, the symbol was not
referenced from another module.

When an “A” precedes a symbol, the symbol is self-defining (absolute). When the value is followed
by a “U”, the symbol is unresolved. When the value is followed by an “M”, the symbol has been
multiply defined, the first definition is the one that is used.

After all definitions have been listed and if there are multiply-defined modules, IDTs, or symbols
or if there are unresolved symbols, a corresponding message is printed as presented in the examples
in the next paragraph.

The load map is a useful tool during debug of an object module. After a task is loaded into memory,
it has an absolute task origin, which is the absolute memory address of the task. If the user has the
Operator Communication (OCP) Software Module in his system, he can calculate the task origin by
using the (STATUS) command. By adding the absolute task origin to any of the values in the
load map, the user can get the absolute memory address of that symbol.

The absolute memory address of a symbol that was not defined using a DEF directive within a
module can be computed. First, add the relative address in the assembly listing (see Section IV,
TX990 Assembler (TXMIRA)) to the relative origin value of the module’s IDT found in the symbol
map. Then add this sum to the absolute task origin in memory. The final sum is the absolute
memory address of the symbol.

7.5 LINKED OBJECT MODULE

The linked object module produced by TXLINK consists of object code similar to that produced by
the assemblers. Object code is described in the Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer’s Guide. As shown below, each module is terminated by a record
beginning with a colon and containing the module name, date, time of linking and TXLINK
identifier.

MODULE 004/77 13:29:39 TXLINK
A fully-linked object module is ready to be loaded and executed by the operating system.

7.6 ERROR MESSAGES
Table 7-3 lists fatal error messages that are printed on the LOG when TXLINK encounters an error.

7-6 Digital Systems Division

9462589701

Message
CANT GET COMMON
CANT GET MEMORY
ILLEGAL HEX DATA
MEMORY OVERFLOW
BAD CHECKSUM
nn—ILLEGALPATHNAME
nn—READ ERROR
nn—WRITE ERROR

ILLEGAL OBJECT

Table 7-3. Error Messages
Description
System COMMON not in system
Memory requested is too large
Nonhex digit found in input object
Tables exceeded available area
Bad input object code
Error in assigning or opening file
Error in reading object input
Error in writing linked object or load map

Module contains absolute load or entry

Recovery
Regen system with COMMON
becrease size and retry
Reassemble module
Increase size and retry
Reassemble module
Correct and retry
Check file and retry
Retry

Reassemble module

TAG-A address or garbage. “A” is tag that was
found.

Note: The error code nn is returned from the system. See Error Appendix D for meaning.

7.7 TXLINK EXAMPLE

A LREJALVNER R/iRiRIVAR Rim.

The following three object modules will be linked to form one object module by using TXLINK:

1. This is the contents of the object file entitled : TXTST1/OBJ

00052TXTST1 A0000C0006C0045B0000A0026B1600BODOABOA20B4F4CB44207F215F
A0030B4D45B5353B4147B4520B2D2DB2057B524FB4E4782021B210DBOA007F2B7F
A0046B0420B0000C0028B001DB2FE0C00267F856F

40000CNT 4000ONEW ~ 30048WRITE 7F8ASF

TXTST1 054/77 08:49:34 TXMIRA

2. This is the contents of the object file entitled :TXTST2/OBJ

0001DTXTST2 AOOOOBODOABOA48B4156B4520B4120B474FB4F44B2044B41597F1DOF
B2021B2120B2020B2020B200DBOA007F984F
6001DCNT 50000NEW 7FB3AF

TXTST2 054/77 11:18:34 TXMIRA

3. This is the contents of the object file entitled :TXTST3/OBJ

00030TXTST3 A0000C0006C0026B0000BO0O00BOBOOB0O000B0O000BO000OBO0007F287F
A0012A0026BCOFEBC17EB2FEQCO006B03807F80SF
50000WRITE 7FD29F

TXTST3 054/77 11:11:36 TXMIRA

0001
0002
0003
0004

0005

0001
0002
0003
0004

0001
0002
0003

Change 1 7-7 Digital Systems Division

[e]
@Q 946258-9701

The following example loads and executes TXLINK using the above three files as input parameters.

The resultant file, :TXTST/OBIJ, holds the linked object module.

PROGRAM: :TXLINK/SYS

INPUT: :TXTST1/OBJ,:TXTST2/OBJ,: TXTST3/OBJ

OUTPUT: :TXTST/OBJ

OPTIONS: ITXTST M400,L
TXLINK 937537%%

Following is the link map, which is generated when an “L” is entered in the OPTION: parameter

line:
TXLINK 937537 ** 08:57:21 054/77
TXTST LENGTH 00A0
MODULE LENGTH ORIGIN DATE
TXTSTI 0052 0000 054/77
| TXTST2 001E 0052 054/77
TXTST3 0030 0070 054/77
DEFINITIONS

N CNT 001D N NEW 0052 WRITE

PAGE 0001

TIME

08:49
11:18
t1:11

0070

Following is the contents of the object file entitled :TXTST/OBIJ. This file may be loaded into

memory and executed.

000AOTXTST A0000C0006C0045B0000A0026B1600BODOABOA20B4F4CB44207F21CF 0001
A0030B4D45B5353D4147B4520B2D2DB2057B524FB4E47B2021B210DBOA007F2B7F 0002
A0046B0420C0070C0028B001DB2FEOC0026BODOABOA48B4156B4520B41207F2EQF 0003
AO005CB474FB4F44B2044B415982021B2120B2020B2020B200DB0A00C00767F2EFF 0004
A0072C0096B0000BO000BOBOOBO000BOCOOBOCOOBO0C0AO096BCOFEBCT 7TE7F30BF 0005
AO09AB2FEQC0076B03807FB62F 0006

TXTST 054/77 08:57:21 TXLINK 0007

Change 1 7-8 Digital Systems Division

o]
@ 946258-9701

TXDS COPY/CONCATENATE (TXCCAT) UTILITY PROGRAM

SECTION VIII

8.1 INTRODUCTION
The TXCCAT program copies one to three files to a single output file. Although simple record
modifications are supported upon output, the program is basically a file copy by which sequential
and relative record files may be duplicated or concatenated together into one file with no embedded
end-of-files. TXCCAT copies information from cassettes, files or card reader input to cassettes,
files, or printing devices.

TXCCAT is a software module which runs under the Terminal Executive Development System
(TXDS).

8.2 TXCCAT LUNOs

The TXCCAT program uses LUNOs 7, 10, 11 and 12. LUNOs 10, 11 and 12 are assigned to the
input files; LUNO 7 is assigned to the output file. All LUNOs are released upon termination of
TXCCAT.

8.3 OPERATOR INTERACTION

TXCCAT is executed via the TXDS control program. Input and output pathnames are passed via
COMMON. Table 8-1 provides the pathname defaults.

The INPUT: parameters may have one to three pathnames separaied by commas. The files wiil
be used to generate an output file. The OUTPUT: parameter contains one pathname to be used
for the output file. Input files must preexist and can be either sequential or relative record. Output
files are assumed to have the same characteristics as input files, although input records may be
modified for output. If input is from a device, the output file is sequential and, if the output file
does not exist, it is created. If no output file is specified, the default-system print device is used.
The defaultsystem print device is defined during system generation.

Table 8-1. Pathname Defaults

Field * Input Output

DEV System Disc System Disc

FILE ~ None _ First Input File Name
EXT SRC First Input Extension

Change 1 8-1 Digital Systems Division

946258-9701

8.4 OPTIONS .

All TXCCAT options are specified by two alphabetic characters followed, in some cases. by a
decimal numeric field. Input format is free-form. Delimiters for options may be commas. blanks
or no delimiter. Each time a new pair of characters is read it is considered a new parameter. An

illegal parameter results in an error message and program termination. Table 8-2 lists the options
recognized by TXCCAT.

The numeric scan terminates after the maximum size is exhausted or a nonnumeric character is
encountered.

8.4.1 TRUNCATE OPTION (TR). The truncate option truncates records to the size specified. The
syntax is as follows:

TRnnnn
where n is a d=cimal number and four digits is the maximum field size. The following are examples:

TR76 Truncate to 76 characters.
TROO76 Truncate to 76 characters.

8.4.2 FIX RECORDS (FL). This option forces input records to a specified size by either padding
with blanks or by truncation. The syntax is as follows:

FLnnnn
where n is a decimal number and four digits is the maximum field size. The following are examples:

FL76 Fix to 76 characters.
FL0OO76 Fix to 76 characters.

Table 8-2. TXCCAT Options

Option Description
TRannn Truncate record to length nnnn.
FLnnnn Fix records to size nnnn by padding with blanks or by truncation.
SKnnnn Skip nnnn input records, prior to output.
LFnn List file, page length = nn, default = 55.
SLan Space lines on fisting, nn = space count, default = 0.
NL Number lines on listing.
RI Do not rewind input on open.
RO Do not rewind output on open.

Note: n is a decimal digit and the maximum field size is given by the number of n’s.

8-2 Digital Systems Division

[e]
4@ 9462589701

8.4.3 SKIP RECORDS (SK). This option skips the specified number of input records prior
to output. The syntax is as follows:

SKnnnn
where n is a decimal number and four digits is the maximum field size. The following are examples:

SK200
SK0020
SK9999

8.4.4 LIST FILE (LF). This option lists files and allows the use of the NL and SL option. The
numeric field gives the printer page length. If the page length is not specified, 55 lines per page
is the default. The syntax is as follows:

LFnn
where n is a decimal number and 2 digits is the maximum field size. The following are examples:
LF
LF55
LF06
LF99

8.4.5 SPACE LISTING (SL). This option is only in effect with the list option LF. The numeric
field gives the number of blank lines to print for each input line. The syntax is as follows:

SLnn

where n is one or two decimal digits. The following are examples:

SL No Spacing
SL1 Single Spacing
SL2 Double Spacing

8.4.6 NUMBER LINES (NL). This Option is only in effect with the list option LF and causes
the printing of the line numbers associated with the input lines. The syntax is as follows:

NL

8.4.7 NO INPUT REWIND (RI). When this option is selected, the input is not rewound when
opened. The syntax is as follows:

RI

8.4.8 NO OUTPUT REWIND (RO). When this option is selected, the output is not rewound
when opened. The syntax is as follows:

RO

8.5 ERRORS
The errors generated by TXCCAT are listed in table 8-3 together with possible corrective action.

8-3 Digital Systems Division

946258-9701

Table 8-3. TXCCAT Errors

Error Description Action
CANT GET COMMON System COMMON not in system Regenerate system with COMMON
ILLEGAL OPTION — aa Option aa not found Reenter correct option
nn — ILLEGAL Input files does not exist or Correct and Retry
PATHNAME open error
nn — READ ERROR Error in Reading File Retry
nn — WRITE ERROR Error in Writing File Retry

Note: nn is the system I/O status error given in Appendix D.

84 Digital Systems Division

[e]
e"@} 946258-9701

TXDS STANDALONE DEBUG MONITOR (TXDBUG) UTILITY PROGRAM

SECTION IX

9.1 INTRODUCTION

This section discusses the capabilities and operation of the TXDS standalone debug monitor,
TXDBUG, explains how to debug under monitor control, gives detailed descriptions of the
commands available to the user, and supplies debugging techniques. The following topics are
covered:

TXBUG installation procedures for 733ASR, 913 VDT or 911 VDT system consoles.
® A general description of TXDBUG, including functions, features and capabilities.

® A detailed description of the operating procedures necessary to load TXDBUG and the
program to be debugged.

® A description of two modes of debugging: one in which the program being debugged
executes with minimal TXDBUG intervention, and one in which TXDBUG exercises tight
control of the program being debugged.

® A description of TXDBUG corﬁmand structures, and the operator interface to TXDBUG.

® Detailed descriptions of each of the debug commands.

® A discussion of debugging techniques including general techniques and techniques specific
to TX990. '

® A discussion of methods used to patch programs (i.e., to correct them in memory rather
than at the source code level.)

e A summary of errors which may occur during a debugging session.
The TXDBUG provides for debugging programs which have been designed to operate in a “stand-
alone” environment with no operating system support. The debug monitor attempts to
“hide” itself from the program being debugged, using as few machine resources as possible in the

performance of debug tasks.

The following minimum hardware system configuration is required to run the standalone debug
monitor:

® 990/4 CPU (including o-slot chassis and Programmer Panel)., or 990/10 CPU

® When a 990;4 CPU 1s used. 4096 words dynamic RAM Memory Expansion including
Memory Write Protect and Memory Parity are needed.

e 733 ASR Data Terminal, 913 VDT or 911 VDT l

e FD Floppy Disc.

Change 2 9-1 Digital Systems Division

([@ 946258-9701

9.2 GENERAL DESCRIPTION

The TXDBUG is memory-resident and communicates interactively with the operator through the
733 ASR Data Terminal keyboard and printer. It provides the following capabilities:

® Inspection and modification of memory, registers, and CRU space

® Controlled execution of user programs with optional trace of instructions and/or data
® Muitiple breakpoints with optional automatic display of registers and specified memory
® Miscellaneous aids such as hexadecimal arithmetic and search-under-mask.

9.3 INSTALLATION TXDBUG
To install TXDBUG, a file name :SADBUG/SYS must be created on the TXDS Utilities Diskette.

Then, one of the three stand-alone debug monitors listed below must be copied into it. The three
debug monitors are named:

:SADPRT/SYS 733 ASR, 743 KSR or 33 ASR(TTY)
:SAD911/SYS 911 VDT
:SAD913/SYS 913 VDT

Example:
If the device to be used as the debug console is the 911 VDT, perform the following:
1. Place the TXDS System Diskette in DSC and TXDS Utilities Diskette in DSC2.

2. Respond to the following prompts by entering:

PROGRAM: :TXCCAT/SYS
INPUT: DSC2:SAD911/SYS
OUTPUT: DSC2:SADBUG/SYS
OPTIONS:

This will be create the file :SADBUG/SYS on DSC2 and copy :SAD911/SYS from DSC2 to the
:SADBUG/SYS file.

B 93A LOADING TXDBUG

The TXDBUG program is stored as a file on the TXDS Utilities Diskette. To load TXDBUG and

begin the debug session, invoke the program load facility of TXDS and specify the following
parameters:

PROGRAM: :TXDBUG/SYS

INPUT: <file name of program to be debugged>
OUTPUT:

OPTIONS: <hexadecimal integer specifying the load point of the program to be debugged>

The file name supplied for the input parameter must include all extensions. The loader will search
. all available drives if the device name is not specified.

If the load point of the program to be debugged is not supplied, TXDBUG assumes the default value
>A0. ' "

Change 2 9-2 Digital Systems Division

o
é‘{@‘@; 9462589701

After TXDBUG has been successfully loaded, the TXDBUG load point, entry point, and length are
printed:

TXDBUG LOAD POINT = ENTRY POINT = LENGTH =
NOTE

For certain debug operations the TXDBUG entry point is required.
Make note of the entry point at this time.

When the loading process is completed, the TXDBUG will prompt the operator with a period (**.”).
At this time the memory configuration (for a 16K system) will appear as illustrated in figure 9-1.
with the user’s program located as specified by the load point in the option parameter. TXDBUG

may be used to debug any program for which the instruction and data space does not overlap
TXDBUG.

NOTE

Since the user’s program overlays the TX990 executive, the TX990
executive must be rebooted when the debug session is finished.

Once the user program is entirely debugged, it may become the executing program when a disc

boot is performed by using the “SF” operation described in the TX990 Operating System Pro-
grammer’s Guide.

Change 2 9-2A/9-2B Digital Systems Division

9462589701

BYTE FUNCTION
_ADDRESS e
0000
INTERRUPT AND XOP VECTORS
007F
0080 FRONT PANEL WORKSPACE
009F
00AO0
L. USER SPACE (CONTAINS THE PROGRAMS
” TO BE DEBUGGED)
e ™ e
e R,
<
> DEBUG MONITOR (TXDBUG)
7FFF S
F800
FRONT PANEL AND SELF-TEST)
FOFF DATA ~REA
FAOO
OPTIONAL RAM/ROM 990/4
FBEF > ONLY
FCOO
FRONT PANEL S/W,ROM
LOADER, AND SELF—-TEST
ROMS J

Figure 9-1. Debug Moniter Memory Configuration

9.4 DEBUG MODES

The user may specify that the debug monitor execute the program being debugged in either of two
different modes: Execute free, or Run controlled. When executing free, the monitor relinquishes
control to the test program which is then executed at full processor speed. This mode is only
recommended when a program is expected to be error free or when timing considerations are being
examined. The only way to interface with the monitor in this mode is to bracket instruction
sequences in the test program with LREX instructions or with unconditional branches to the debug
monitor entry point. An LREX has the same effect as pressing the HALT switch on the front panel.
An unconditional branch to the monitor entry point restarts the monitor. If this is attempted and
the monitor does not respond with a period prompt (“.”), the probable cause is that the executing
program has destroyed the monitor.

9-3 Digital Systems Division

946258-9701

The normal method of execution during program debug is to initialize the PC. WP. ST by using the
Modify AU Registers (MR) command and use the RUN (RU) command. In the RUN mode. the
monitor uses the Single Instruction Execution (SIE) facility to execute the user’s program one in-
struction at a time. Execution continues until: the number of instructions specified have been
executed: a breakpoint occurs; or the operator presses the ESCAPE key on the 733 ASR Data
Terminal keyboard. The Execute (EX) command can be used in place of the RUN command.
Using this command. the program is executed without using the SIE or trace features.

The highest level of control is exercised when a test program is being executed via the RUN
command and the instruction address is within a Trace region. In this case, each instruction is
interpretively executed by the monitor. Source and destination operands are examined and op-
tionally printed before and after each instruction. The amount of information printed as cach
instruction is executed is determined by user-defined Trace regions (SR command).

NOTE

Trace regions are ignored when the EX command (Execute free) is
used.

9.5 DEBUG MONITOR COMMAND STRUCTURES
To interact with TXDBUG, the user enters commands at the 733 ASR Data Terminal.

The available debug commands may be classified into the following groups.
® Set commands. These commands allow the user to define up to four of each of the
following aids: program-counter breakpoints, formatted snapshots, trace regions, and

trace formats.

® Clear commands. These commands allow the user to remove the effect of a previously set
command.

® Inspect commands. These commands allow the user to display the contents of AU
registers, workspace registers, memory regions, and CRU lines. These commands are also
used to force snapshots.

® Modify commands. These commands allow the user to examine and optionally modify:
memory; workspace registers; AU registers; and CRU lines (by inspecting the input and
modifying the output).

® Miscellaneous commands. These commands include functions such as word and byte
memory searches, and hexadecimal arithmetic with automatic decimal conversion.

When debugging a program, the user may specify that TXDBUG:
® Print data on the terminal for examination,
® Modify data,

® Specify program elements (parameters whose values are determined by the user) for
interpreting the progress of his program,

® Set and clear program elements,

Change 2 94 Digital Systems Division

9462589701

® Search for specific bit patterns in bytes and words,
e Perform arithmetic calculations with hexadecimal numbers.

These actions may be performed on memory, registers, and CRU input and output lines. They may
also be performed on specifiable debug elements: breakpoints, snapshots, and trace regions. The
debug elements are defined as follows:

® Breakpoint — A point during the execution of a program at which control is returned to
TXDBUG to allow the user to examine the progress of his program or enter any of the
debug commands.

® Snapshot — A printed display of the contents of contiguous workspace registers plus the
contents of an area in memory as defined by the operator. A snapshot may be printed
automatically at a breakpoint.

® Trace region — An area of the program about which information concerning the
execution of an instruction is output on the printer. This information may be printed
following the execution of each instruction, each branch, or each change in the contents
of a data word.

9.5.1 DEBUG COMMAND CODES. All debug commands are comprised of a two-letter mnemonic,
the first of which denotes the operation to be performed (inspect, modify, etc.). The second identi-
fies the debug or machine element upon which the operation is to be performed (memory, CRU,
etc.). The four general-purpose operations are as follows:

I — Inspect
M — Modify
S — Set

C — Clear.

The elements on which these operations may be performed are:
M — Memory
W — Workspace registers (RO —R15)
R — AU Registers (WP, PC, ST) when used with I, or M.
R — Trace Region when used with S or C
C - CRU
B — Breakpoint
S — Snapshot
T — Trace Type

P — Protect region (invalid for computer without write-protect option).

9-5 Digital Systems Division

946258-9701

Some combinations of operations and elements are illegal. Table 9-1 identifies the valid
combinations. Table 9-2 lists the available two-letter mnemonics associated with the valid
combinations.

9.5.2 MISCELLANEQUS COMMANDS. The following are classified as miscellaneous commands:
EX — Execute a user program.
RU — Run a user program.
HA — Hexadecimal arithmetic.
FB — Search under mask for a particular 8-bit pattern (Find Byte).
FW — Search under mask for a particular 16-bit pattern (Find Word).

9.5.3 COMMAND ENTRY. Readiness of the monitor to accept a command is indicated when the
monitor “prompts” the operator by printing a period (“.””) as the first character of a new line. For
all activities except when a user program is being executed free (EX command) the operator may

force a return to the command mode by pressing the ESCAPE key on the 911 VDT or 733 ASR
terminal, or RESET on the 913 VDT.

From zero to eight parameters may be entered with each two-letter command. The command is
separated from its parameter list by a comma (““,””) or by one or more blanks. Each parameter in
the list is terminated by a comma or by one or more blanks, with the parameter list being ter-
minated by a carriage return. As each parameter is entered, its syntax is validated by the monitor.
The parameter may either be a hexadecimal number, a binary number, or a character string. The
backspace character (CTRL-H on the 911 VDT or 733 ASR terminal, or < on the 913 VDT) may
be used to change the entered characters, or the entire parameter may be reentered by pressing
the delete key (RUB OUT on the 733 ASR terminal). The entire command entry may be aborted
by pressing the ESCAPE key on 911 VDT or 733 ASR terminal (RESET on 913 VDT).

If an error is detected by the monitor during command entry, one of the following error codes will
be printed:

Code Meaning

MPOO Invalid parameter or hexadecimal number entered, or maximum parameter list
exceeded.

MSO01 Invalid command. The first two characters do not match any known command.

A complete list of error codes appears in paragraph 9.8.

Table 9-1. Valid Debug Command Combinations

Element
Operation M w R C B S T P
I X X X X X
M X X X X
S X X X X X
C X X X X

(“X” indicates acceptable combination.)

Change 2 9-6 Digital Systems Division

9462589701

Table 9-2. TXDBUG Keyboard Commands

DEBUG Commands
IC Inspect Control Register Unit (CRU)
M Inspect Memory
IR Inspect AU Register (WP, PC, ST)
IS Inspect Snapshot
w Inspect Workspace Registers
MC Modify Control Register Unit (CRU)
MM Modify Memory
MR Modify Registers
MW Modify Workspace Registers
SB Set Breakpoint
SP Set H/W Write Protect Option
SR Set Trace Region
SS Set Snapshot
ST Set Trace
CB Clear Breakpoint
CcP Clear H/W Write Protect Option
CR Clear Trace Region
€S Clear Snapshot

9.5.4 NOTATIONAL CONVENTIONS. The notational conventions used in the syntax definitions
of the keyboard commands are as follows:

<> Item to be supplied by the user. The term shown within angle brackets is a generic
term.
[1 Optional item — may be included or left out, at the user’s discretion. Items not

enclosed in brackets are required.
{ } Choice to be made from two or more items, one of which must be included.

Items in capital letters in the syntax definition are entered into the command statement exactly
as shown.

The fields in the command (the command mnemonic and the parameters) are separated by either
commas or strings of one or more blanks. This choice is shown sumbolically as: *

Lt

When one or more parameters are omitted, two or more field separators may occur in sequence. The
user must be sure that he includes the correct number of separators in a sequence; he should be
aware of how they are interpreted by the computer. Two strings of blanks run together will be
read as a single long string of blanks. A comma preceded or followed by a blank will be read as two
separators in sequence. It is suggested, therefore, that commas (without preceding or following
blanks) be used to set off omitted parameters.

9-7 Digital Systems Division

[e]
%@ 946258-9701

In the examples of command statements, user-supplied data is underlined to distinguish it from data
printed by the monitor. The carriage returns that terminate command statements are not shown in
the examples.

9.6 COMMAND DESCRIPTIONS

Each command supported by the debug momtor and a brief functional description is presented in
table 9-2. Detailed descriptions of the “miscellaneous” commands are presented in paragraphs 9.6.1
to 9.6.5. The remaining paragraphs provide detailed:descriptions of the ““‘debug” commands.

9.6.1 EXECUTE USER PROGRAM (EX). The Execute User Program command is used to execute
a user program at speed with neither interference from nor control by the monitor. The program is

I executed at full processor speed. Initialize the AU registers (ST, PC, WP) using the MR command
before using the EX command. '

Syntax definition:
EX

Description: The program is executed directly by the 990 computer without using the SIE or trace
features. Execution is started with the PC, WP' and ST that would be displayed if an Inspect
Registers (IR) command were executed. '

Application notes: In order to regain control from an executing user program, the user must
transfer control to the monitor’s starting memory locatlon This may be done by inserting a branch
in the test program or by using the programmer panel

Upon regaining control in the monitor, the WP, PC, and ST registers will have the same values as
before the EX cpmmand urilless)executi,on of the user program destroyed the monitor data space.

Example:

Assume the user has written an assembler which assembles source from cassette or terminates
depending on user input.

AR
PC=046C WP=0000 ST=0000
.EX

ASM/TERM? A

ASM/TERM? T |
1R ’ |
PC=046C WP=0000 ST=0000

The EX command begins execution with the PC, WP, and ST registers equal to the values obtained
when the Inspect Registers (IR) command is invoked. A program run under EX does not change the
contents of these registers. The second IR command shows that the contents remain the same.

Change 1 . 9-8 Digital Systems Division

]
@ 946258-9701

9.6.2 EXECUTE USER PROGRAM UNDER SIE OR TRACE (RU). The Execute User Program
under SIE or Trace command provides controlled execution of the user’s program. Initialize the
AU registers (ST, PC, WP) using the MR command before using the RU command.

Syntax definition:

RU [{t;} <instruction count>]

Change 1 9-8A/9-8B Digital Systems Division

{@ 9462589701

Parameter:

instruction count Maximum number of instructions to be executed
before returning to command mode. A value of
0 indicates an infinite instruction limit applies.

Parameter default value: The value of the instruction count at the last entry into command mode
1s used as the default value. If the previous RU command has exhausted the instruction count, the
default is O, implying no instruction limit. The system is initially loaded with a default value of 0.

Description: Instructions in the user’s program are executed one at a time using either the hardware
SIE feature or the software trace interpreter. The user may specify one of these two modes of
operation with the Set Trace Region (SR) command (paragraph 9.6.12). The user is referred to
The 990 Computer Family System's Handbook, part number 945250-9701, for a detailed explana-

tion of SIE.

Before the monitor executes a user instruction, it checks whether the instruction is within a defined
trace region. If the instruction is within a trace region, the trace interpreter is called and the in-
struction traced. If the instruction is not within a trace region, the instruction is executed using
Single Instruction Execution. In both cases, the user’s WP, PC, and ST registers are updated after
each instruction executed. The monitor checks whether a breakpoint has been reached and if so,
prints out the user’s registers and snapshot, if deﬁned If a snapshot is assigned to a breakpoint, the
monitor continues execution after the breakpoint has been reached, without operation intervention.
If no snapshot was specified, the monitor returns control to the command processor. (Refer to the
descriptions of the SB and SS commands in paragraph 9.6.6.1 and 9.6.11.1.) If the run count,
number of instructions to be executed, is depleted, the monitor returns control to the command
processor. Otherwise the monitor continues execution of the user program.

9.6.3 HEXADECIMAL ARITHMETIC (HA). The Hexadecimal Arithmetic command calculates
the sum and difference of two hexadecimal numbers. The 2’s complement hexadecimal value and
the signed decimal value are printed.

Syntax definition:

a Il Wy
111 le L\ alucg,

Parameters:
value Hexadecimal number value (0-4 digits).
Parameter default values:
If the value parameter is not specified, a default value of 0 is used.

Application note: No overflow checks are made; therefore, two positive numbers may have a
negative sum. All results are represented in 16 bits.

Change 2 99 Digital Systems Division

{@@ 9462589701

Examples:

.HA 103A BA2
SUM=1BDC 07132 DIFF=0498 +01176

.HA 89 89
SUM=0112 00274 DIFF=0000 +00000

.HA 8030 EF00
SUM=6F30 28464 DIFF=9130 -28368

.HA EFO00
SUM=EF00 -04352 DIFF=EF00 -04352

The calculated difference between the specified number values is the first value minus the second
value.

9.6.4 FIND BYTE (FB). The Find Byte command is used to scan an area of memory for a
particular byte value.

Syntax definition:

FB {;b} [(start mem addr :l {’b } [<ending mem addr>] {% }

<desired value> [{% } <mask>]

The command is terminated by a carriage return.
Parameters:

start mem addr Memory address at which search begins.
(1-4 character hexadecimal number.)

ending memory addr Memory address at which search is terminated.
(1-4 character hexadecimal number.)

desired value Hexadecimal value for which the search
is made. This value is required.

mask Hexadecimal value to be ANDed with each
byte before comparing it with the desired
value.
Parameter default values:
If the starting memory address is not specified, a value of O is used.

If the ending memory address is not specified, a value of FFFF ¢ is used.

If the mask parameter is not specified, a value of FF ¢ is used.

9-10 Digital Systems Division

{_\}@‘? 9462589701

Description: Each byte in the memory search range is ANDed with the mask and compared to the
desired value. The memory location and contents are printed out whenever a match is found. After
each match, the user must enter a space on the terminal keyboard to continue the search. If he
enters a carriage return, the command terminates.

Error messages:

DP13 The ending address is less than the starting
address. Reenter the command.

MSQ05 The <desired value> parameter is missing.
Reenter the command.

MX06 The beginning address is an invalid memory
address. Reenter the command.

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor data area is being searched,
results may not appear to be correct since the monitor is changing during the search process.

Examples:

.FB 0,2000,0,0F
0000=0000
0000=0000
0002=0000
0002=0000
0004=0000
0004=0000
0006=0000
0006=0000
0008=0000

FR 0 2000 08 OF
Lo V2000 Vo U

0300=0456
0644=0556

In the first example, the high order four bits of each byte are masked so that any byte with a 0
in the low order four bits will be located. The address of the leftmost byte of each word is
printed so that if both bytes of a word are printed, an address location will be printed twice.
For example, if bytes 0004 and 0005 are printed, the address 0004 will appear twice in the
listing.

In the second example, the high order four bits of each byte are masked so that any byte with a
6 in the low order four bits will be located.

9.6.5 FIND WORD (FW). The Find Word command is used to scan an area of memory for a
particular word value.

9-11 Digital Systems Division

{@ 9462589701

Syntax definition:

Fw {,b } [<start mem addr>] {i’) } [<ending mem addr>] {% }

<desired value> [{!,5 } <mask>]

The command is terminated by a carriage return.

Parameters:
start mem addr Memory address at which search begins.
(1-4 hexadecimal characters.) Must be
even byte (word) address.
ending memory Memory address at which search is terminated.
addr (1-4 hexadecimal characters.)
desired value Hexadecimal value for which the search
is made. The value is required.
mask Hexadecimal value to be ANDed with each word

before comparing it with desired value.
Parameter default values:
If the starting memory address is not specified, a value of 0 is used.
If the ending memory address is not specified, a value of FFFF ¢ is used.
If the mask parameter is not specified, a value of FFFF 16 1S used.
Description: Each word in the memory search range is ANDed with the mask and compared to
the desired value. The memory location and contents are printed out whenever a match is found.
After each match, the user must enter a space on the terminal keyboard to continue the search.

If he enters a carriage return, the command terminates.

Error messages.:

DP13 The ending address is less than the starting
address. Reenter the command.

MP0O The beginning address is an invalid memory
address. Reenter the command.

MSO05 The <desired value> parameter is missing.
Reenter the command.

Digital Systems Division

@ 9462589701

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor is being searched, results
may not appear to be correct since the monitor is changing during the search process.

Examples:

.FW 0,2999,456,

0300=0456

.FW 0,2000,56,00FF

0300=0456
0644=0556

In the second example, the monitor searches for words with a 56 in the low order byte. By

pressing the space bar on the terminal keyboard, the user can cause the monitor to continue
searching for another occurrence of the data word.

9.6.6 BREAKPOINT COMMANDS (SB, CB). These two commands control breakpoint as
indicated in the following paragraphs.

9.6.6.1 Set Breakpoint (SB). The Set Breakpoint command is used to define a breakpoint which
causes the processor to stop or interrupt execution of a user program prior to executing the in-
struction at the specified memory address.

Syntax definition:

SB ! } <bkpt no.> { }<memor,y addr> ”: 1 f<ref cnt>]
Lo..J L J

3
t
U...}

s
3
0...J

[{t’) } <snapshot no.>i”

Parameters:

bkpt no.

memory
addr

ref ¢cnt

Breakpoint index number. The number may be 0,
1, 2 or 3. Required parameter which services as a
unique identifier for individual breakpoints.

Address of an instruction on which the breakpoint
is to be set. Required parameter. (1-4 hexadecimal
characters.)

The pass number (hexadecimal) on which a break-
point is to be taken. For example, a reference
count of 3 means to break on the third reference
to the memory address for an instruction fetch.
Default value is 1.

index number of a previously defined snapshot
which is to be displayed when the breakpoint

is taken (see SS command). Defaulit value is no
snapshot 0. 1, 2, 3.

9-13

Digital Systems Division

(o]

9462589701

Parameter default values:

If the reference count (pass number) is not specified, a vaiue of 1 is used. If the user enters a
value of 0, it is equivalent to a reference count of FFFF .

If the snapshot number is not specified, a snapshot is not printed.

Use of breakpoints: The breakpoint is one of the key elements in program debugging because it
enables the user to specify conditions under which he wants to receive control. Breakpoints are
particularly useful when the user wants to intercept control after an unexpected control transfer
occurs from a conditional branch. By setting a breakpoint on the unexpected or error path out
of a conditional branch, the program may be allowed to execute without interruption unless
some error condition occurs.

When a breakpoint is encountered, the contents of the processor registers are displayed. (The
contents are the values that would be displayed if an IR command were to be invoked.) The
breakpoint index number is aiso displayed to aid in determining which breakpoint was
encountered.

Error message .

DP20 Breakpoint specification error. Required index number may
be valid or missing, or the PC value (memory address) may
have been omitted.

Application notes: The PC value for a breakpoint must point to the first word of a multiword
instruction.

A breakpoint occurs before the execution of the instruction to which it points.

If a snapshot is associated with a breakpoint, execution of the user program resumes after the
snapshot is printed. If no snapshot is associated with the breakpoint, execution terminates and the
debugger accepts another command.

If more than one breakpoint is associated with a specific loation, only the first (lowest numbered)
will be found.

When execution is under the control of the Execute User Program under SIE or Trace (RU) com-
mand with an instruction count: (1) a breakpoint occurs; and (2) a new count is not specified
on the next RU command. Then, when execution is resumed, counting is continued as if no break-
point was encountered.

Breakpoints are not active when the user code is executed with the EX command.
An error is not reported when a Set Breakpoint (SB) command redefines an already defined break-

point. The specified breakpoint is modified to take on a new definition. This feature may be used
to modify the snapshot index associated with a breakpoint.

9-14

Digital Systems Division

i’—@@ 9462589701

Examples:
.SB 0,1000,1,2
.SB 1,1000,1,0
.SB 2,1004

The first two examples set a breakpoint at address 1000 on the first reference to that address for

an instruction fetch. The first example sets breakpoint index number 0 with snapshot index

number 2 to be displayed, and the second example sets breakpoint index number 1 with

snapshot index number O to be displayed. The third example specifies breakpoint index number
2 to be taken at memory location 1004,,. No snapshot is printed, and execution of the user
program terminates after the breakpoint is encountered. ‘

9.6.6.2 CLEAR BREAKPOINT (CB). The Clear Breakpoint command is used to disable
previously specified breakpoints.

Syntax definition:

CB [{’6 } [<starting breakpoint number>] [{b } <ending breakpoint number>:|]

The command is terminated by a carriage return.
Parameters:

starting breakpoint The first breakpoint to be cleared. A
number number from 0 to 3.

ending breakpoint The last breakpoint to be cleared. A
number number from O to 3.

Parameter default values:
If no parameters are specified, all breakpoints are cleared.
If only the first parameter is given, only the specified breakpoint will be cleared.

If only the second parameter is given, breakpoints O through the specified ending breakpoint will
be cleared.

Description: If an attempt is made to clear a breakpoint that has not been set, the command is
ignored.

Error message:

DP13 A breakpoint index greater than the maximum possible
index number (3) was specified, or the ending break-
point index was less than the starting breakpoint
index number.

9-15 Digital Systems Division

{@ 946258-9701

Examples:
.CB 1.3
CB

The first example clears all breakpoints except number 0. The second example clears all
breakpoints.

9.6.7 COMMUNICATIONS REGISTER UNIT COMMANDS (IC, MC). Commands to control the
990 1/0 port (the Communications Register Unit) are explained in the following paragraphs.

9.6.7.1 Inspect CRU Input Lines (IC). The Inspect CRU Input Lines command is used to display
in hexadecimal format the contents of one or more consecutive CRU locations.

Syntax definition:
IC [{;b ' } [<CRU address lower limit>] [{ b } <CRU address upper limit>]]

The command is terminated by a carriage return.

Parameters:

CRU lower limit ~ CRU address that begins the display. The
address must be in the range of 0 to 1FFF 4.
(14 hexadecimal characters.)

CRU upper limit ~ CRU address that ends the display. The
address must be in the range 0 to 1FFF .
(1-4 hexadecimal characters.)
Parameter default values:

If the CRU lower limit is not specified, a value of 0 is used.

If the CRU upper limit is not specified and the CRU lower limit is specified, the default value is the
CRU lower limit. Sixteen bits are displayed.

If neither parameter is specified, the entire CRU is displayed.

Description: Data is displayed in groups of four words, two groups per line. The. address of 'Fhe
first word on the line is printed on the left. The display may be terminated at any time by pressing
the ESC key on the terminal keyboard.

The address displayed is the actual CRU bit address times two.
Error message:
DP13 The highest CRU address specified is less than the lowest

CRU address specified, or the highest CRU address specified
is greater than the highest CRU address permitted (1FFF).

9-16 Digital Systems Division

(I‘@ 9462589701

Examples:

IC 1000 1060
1000=FFFF FFFF FFFF FFFF

JAC 1

0100=608D

In the first example. the CRU bits at addresses 1000,4 through 10604, in 20,4 bit increments, are
displayed. Since the CRU addresses are twice the actual bit addresses, the address of the next 10,4
CRU bits would be a 20,4 address increment. In the second example, the 16 CRU bits at location
100,¢ are displayed.

Example:

IC

0000=600D FFFF FFFF = 40DF >0000 8001 0D00 409B
0100=FFFF FFFF FFFF FFFF >FFFF FFFF FFFF FFFF
0200=FFFF FFFF FFFF FFFF >FFFF FFFF FFFF FFFF

9.6.7.2 MODIFY CRU REGISTER (MC). The Modify CRU Register command reads and displays
the data on CRU input lines, and sets data on CRU output lines.

Syntax definition:
(1 r arf 1

MC [{bj L<CRU address>J itl...f <CRU width>]

The command is terminated by a carriage return.

Parameters:
CRU address The CRU word address. A value from 0 to 1FFF,.
(14 hexadecimal characters.)

CRU width The number of bits to be changed in each CRU
word (hexadecimal). A value from 1 to 10,4. A
value of O is interpreted as 10,4. (1-2 hexadecimal
characters.)

Parameter default values:

If the CRU word address is not specified, a value of O is used.

If the CRU width is not specified, a value of 10, is used.

Description: When the CRU bit width is less than 16 bits, the data value is displayed right
justified in a four-digit hexadecimal value. The user’s data may be input as a four-digit value; the
rightmost bits, where the bit width is given by the CRU width parameter, are used to modify the

CRU value. Enter a new value to change the value, a space to continue on to the next value, and
a carriage return to terminate data modification.

9-17 Digital Systems Division

Q

9462589701

The addresses are displayed as they would be used in workspace register 12 (the CRU base
address), which is the actual CRU bit address times 2. Also, data is displayed and entered
directly as the STCR/LDCR instruction receives/sends it.

It the CRU word address is greater than 1 FFF,,, the command is ignored.

Error message:

DPI2 CRU bit width parameter too small (negative) or too
lurge (greater than 10,4). Invalid bit string width.

Application note: The Modify CRU Register command may be used to change the data being
sent to an external device during the debugging of a new interface.

Examples:
.MC 1000 8

1000=00FF 0080
1010=00FF 0040

.MC 1000
1000=FFFF 1000

9.6.8 MEMORY COMMANDS (IM, MM). The commands explained in the following paragraphs
allow user knowledge and control of memory contents.

9.6.8.1 Inspect Memory (IM). The Inspect Memory command is used to display in hexadecimal
format the contents ot one or more consecutive memory locations.

Syntax definition:

IM [lb }<starting mem addr> [{t; } <ending mem uddr>:|]

The command is terminated by 4 carriage return.

Parameters:

starting mem addr Hexadecimal value representing the memory
address of the first memory word displayed.
(14 hexadecimal characters.)

ending mem addr Hexadecimal value representing the memory

address of the last memory word displayed.
(1-4 hexadecimal characters.)

Puramceter defundt values:
If neither parameter is specified, all memory is dumped.
If the ending address is not specified. only one word is displayed.

An odd address is changed to the preceding word address before the addiessed byte is displayed

9-18 Digital Systems Division

%;’@3} 9462589, 0.

Description: Memory is displayed in groups of four words, two groups per line. The address of
the first word on the line is printed at the left. The display may be terminated at any time by
pressing the ESC key on the terminal keyboard.

Error message;

DP13 The ending address specified is less than the
starting address specified.

Examples:
.IM 1000,1004
1000=1002 COEO 023E

.IM 1006
1006=1004

9.682 MODIFY MEMORY (MM). The Modify Memory command displays the address and
contents of a memory word and accepts a new hexadecimal data value from the user.

Syntax definition:

MM [{,f’) } <memory address>]

The command is terminated by a carriage return.
Parameter:

memory address Address of memory to be modified.
Parameter default value: If the memory address is not specified, a value of 0 is used.
Descriprion: If the user inputs a new value, the memory location is modified to match the input
value. If the user terminates his input with a biank {space), tle next location value is printed and
the process repeated. If the user terminates his input with a carriage return or comma, the
command processing terminates.
Error message:

DP00 An invalid hexadecimal value was input.
Application nore: The MM command is useful for setting up desired conditions in order to check
out a routine. It is also convenient for creating patches and for examining memory one word at
a time.
Example:

.MM 1000

1000=FFFF 1

1002=FFFF 3

1004=FFFF
1006=FFFF 8

9-19 Digital Systems Division

{@.‘P 946258-9701

These command statements place the value 1 in location 1000, 3 in location 1002, and 8 in location
1000. The user may enter a space (blank) it he does not want to modify a location but wants to £o
on to the next location. A carriage return terminates the command at any time.

9.6.9 PROCESSOR REGISTER COMMANDS (IR, MR). The tollowing commands allow control
of the 990 computer program control registers: the program counter, workspace pointer, and status
registers.

9.6.9.1 Inspect Registers (IR). The Inspect Registers command displays the contents of the user’s
registers: the program counter (PCY, workspace pointer (WP), and status (ST) registers for the
current user program. These values are displayed in groups of four hexadecimal characters.
Svatax definition.

IR

The command is terminated by a carriage return.

Application note: The displayed register values are those values which are loaded into the processor
in response to an EX or RU command.

Example:

1R
PC=0246 WP=0000 ST=0000

9.6.9.2 Modify Registers (MR). The Modity Registers command displays the contents of the
user’s internal registers workspace pointer (WP), program counter (PC), and status (ST)
registers and allows the user to modify them.

Svntax definition:
MR
The command is terminated by a carriage return.

Description: The register name and current contents are printed in hexadecimal and a hexadecimal
input is accepted from the user. If the user inputs a valid hexadecimal number, the contents of the
registers are changed. If the user enters a space, the processor prints the name and contents of the
next register. If the user enters a carriage return, the command terminates.

Error message.

DP0OO An invalid hexadecimal number was input, or the
number input was greater than FFFF .

Application notes: Modification of the Workspace Pointer (WP) register causes the registers that
would be displayed by the Inspect Workspace Registers (IW) command to change. The Modify
Registers command is used to establish the initial environment for a program executed with the
Execute User Program Directly (EX) or the Execute User Program under SIE or Trace (RU)
command.

920 Digital Systems Division

(I‘@ 9462589701

Examples:
MR
PC=2000 244
WP=0000 A6
ST=0000
MR

PC=0244
WP=00A6 A2
ST=0000 2

MR

PC=0244 246

The first example changes the value in the PC register to 244,, and the value in the WP register
to A6,s. The second example changes the WP register value to A2,, and the ST register value
to 2,4. The third example changes the PC register value to 246 .

As in the second example, the user may press the space bar on the terminal keyboard if he does

not wish to modify a particular register. As in the third example, he may press the RETURN

key on the terminal keyboard after entering a new PC register value to terminate the command.

9.6.10 WORKSPACE REGISTER COMMANDS (IW, MW). The following commands allow precise
control of the memory area selected to be the workspace registers.

9:6.10.1 Inspect Workspace Registers (IW). The Inspect Workspace Registers command is used to
dispiay the contents of a sequence of the user’s workspace registers.

Syntax definition:

Iw [{b }[<starting reg number>] [{ ’b] <ending reg number>]j|

The command is terminated by a carriage return.
Parameters:

starting reg number The number of the first workspace register to be
~ displayed. Single hexadecimal number.

ending reg number The number of the last workspace register to be
displayed. Single hexadecimal number.

9-21 Digital Systems Division

%@ 9462589701

Parameter default values.
If the starting workspace register is not specified, a value of 0, signaling register 0, is used.
If the ending workspace register is not specified, the value used is the starting workspace register.
If neither parameter is specified, all 16 registers are displayed.
Description: The set of workspace registers displayed are those pointed to by the WP that would
be displayed if an IR command were executed. Workspace registers are displayed with the
register number preceding the register contents.
Error message:
DP13 Either the starting workspace register number is
greater than the ending workspace register number,
or a workspace register number greater than F
was requested.
Examples:
AW
RO=0000 R1=000C R2=0026 R3=0000 R4=0000 R5=2032 R6=0000 R7=0000
R8=0000 R9=0000 RA=0000 RB=0000 RC=0000 RD=3798 RE=2008 RF=0002

If no workspace register or range is specified, all 16 registers are printed.

w28
R2=0000 R3=0000 R4=0000 R5=0000 R6=0000 R7=0000 R8=0000

W2
R2=0000

9.6.10.2 Modify Workspace Registers (MW). The Modify Workspace Registers command is used to
display and change the contents of one or more of the user’s workspace registers.

Svyutax definition:

MW [{é } < starting reg number >]

The command is terminated by a carriage return.
Parameter:

starting workspace reg The number of the first workspace register
to be displayed. (Hexadecimal value.)

9-22 Digital Systems Division

{?@ 946258-9701

Parameter default value:
If the starting workspace register is not specified, register zero is assumed and a value of 0 is used.

Description: The mnemonic and current contents of the workspace registers are displayed. The
command processor accepts the user’s input, which may be a new hexadecimal value for the register
contents and a terminator. If this input is a new value, the current contents of the specified register
are changed. If the terminator is a blank, the next register is printed for modification. If the
terminator is a carriage return or comma, the command processing terminates. The command
processing terminates automatically after processing workspace register 15 (F 6)-

Application note: The user is cautioned to be sure that the workspace pointer actually points to
the intended workspace. The Modify Workspace Registers command displays the registers within
the current workspace (the workspace defined by displaying the WP in an IR command).

Example:
MW 4
R4=0000 7
R5=0000 89
R6=0000

R7=0000 1000

This example changes the contents of workspace registers R4, RS and R7 to 7,,, 89, and
1000,,, respectively. A carriage return was entered after changing the contents of R7.

9.6.11 SNAPSHOT COMMANDS (SS, IS, CS). The following commands provide a convenient way
to specify debugging information to be displayed.

9.6.11.1 Set Snapshot (SS). The Set Snapshot command is used to define a set of registers and
memory locations to be displayed as a single unit.

SS [’} [<snapshot no.>] [{b} {<starting reg no.>] [{t’)} [<ending reg no.>]

[
[{t; } [<starting memory addr>] [{f’) } <ending memory addr>]]]]

The command is terminated by a carriage return.

Parameters:
snapshot no. Index number of snapshot to be defined.
The index is a number in the range 0-3.
starting reg no. First workspace register to be displayed.
ending reg no. Last workspace register to be displayed.

starting memory addr First memory word address to be displayed.

ending memory addr Last memory word address to be displayed.

9-23 Digital Systems Division

i@ 946258-9701

Parameter default values:
[f the snapshot number is not specified. a value of 0 is used.
If the starting workspace register number is not specified, a value of 0 is used.

If the ending workspace register number is not specified, the value used is the starting register
number if the starting register number is specified. Otherwise, the value is 0.

If the starting memory address is not specified, a value of 0 is used.

It the ending memory address is not specified, the value used is the starting memory address if the
starting memory address is specified. Otherwise, it is 0,4 .

Description: Snapshots may be invoked with the Inspect Snapshot (IS) command or when a
breakpoint which references the snapshot index is encountered.

Error messages:

DPO3 A parameter is greater than the required maximum value.
Reenter the command.

DP04 Snapshot is already defined. Reenter the command.

DP13 The ending parameter (register or memory address) is
less than the beginning parameter.

Application notes: Snapshots are convenient for defining a frequently used display during a debug
session. If certain registers or memory data areas are frequently modified, they are likely choices
for snapshots.

Since a snapshot may be attached to a PC breakpoint to dump some data and continue
execution, a trace can be constructed which will be activated only when some specified event
occurs. A dump may be produced and execution will continue without operator intervention.

Snapshots are useful for extended traces when the user wants to leave the computer running
with breakpoints established. This would allow the computer to do an automatic dump when
an exceptional condition is encountered and then continue execution.

Examples:

.SS 1,2,5,1000,1002

.SS 0,0,F

In the first example, the snapshot associated with index 1 displays workspace registers 2 through
5 and memory locations 1000,, through 1002,,. In the second example, the snapshot asso-
ciated with index O displays workspace registers 0 through F,, and memory address 0 (the

B default). Refer to the IS command examples in paragraph 9.6.11.2 for the corresponding
commands.

Change 2 9-24 Digital Systems Division

wg 946258-9701

9.6.11.2 Inspect Snapshot (IS). The Inspect Snapshot command is used to display sequences of
workspace registers and memory addresses.

Syntax definition:

IS [[’f’, } [<starting snapshot no.>] [{t; } <ending snapshot no.>]]

The command is terminated by a carriage return.

Parameters:
starting snapshot no. Index number (number of the snapshot in
sequence) of the first snapshot to be
displayed. A number from O to 3.
ending snapshot no. Index number of the last snapshot to be

displayed. A number from 0 to 3.
Parameter default values:

If neither the starting snapshot number nor the ending snapshot number is specified, all
snapshots are displayed.

If the starting snapshot number but not the ending snapshot number is specified, the named
snapshot is displayed.

If the ending snapshot number but not the starting snapshot number is specified, the snapshots
from O through the specified snapshot are displayed.

Description: Snapshots are defined with the Set Snapshot command. Attempts to display
undefined snapshots are ignored.

Error message:

DP13 Either the ending snapshot number is greater than
the starting snapshot number, or a snapshot number
greater than the permitted maximum was input. Re-
enter the command with the correct snapshot numbers.

Examples:

S

SNAPO

R0=0000 R1=0000 R2=0000 R3=0000 R4=0007 R5=0089 R6=0000 R7=0000
R8=0000 R9=0000 RA=0000 RB=0000 RC=0000 RD=0000 RE=0000 RF=0000
0000=0000

SNAP1 ‘

R2=0000 R3=0000 R4=0007 R5=0089

1000=0001 0003

9-25 Digital Systems Division

@O@ 946258-9701

R2=0000 R3=0000 R4=0007 R5=0089
1000=0001 0003

S 3

The snapshots in these examples were set in the examples of the Set Snapshot (SS) command
(paragraph 9.6.11.1). In the last example, if a snapshot is not set. the monitor will return control
without printing anything.

9.6.11.3 Clear Snapshot (CS). The Clear Snapshot command is used to disable previously specified
snapshots.

Syntax definition:

CS [{,’6 }[<starting snapshot number>] [{% } <ending snapsnot number>]]

The command is terminated by a carriage return.

Parameters:
starting snapshot number The first snapshot to be cleared. A
number from 0 to 3.
ending snapshot number The last snapshot to be cleared. A

number from 0 to 3.
FParamerer detault values:
If no parameters are specified, all snapshots are cleared.
If only the first parameter is given, only the specified snapshot will be cleared.

If only the second parameter is given, snapshot O through the specified ending snapshot will be
cleared.

Description: If an attempt is made to clear a snapshot that has not been set. the command is
ignored.

Error message:

DPi3 A snapshot index greater than the maximum possible
index number (3) was specified. or the ending snap-
shot index was less than the starting snapshot index
number.

Examples:
.CS 0,2

S 0,

.CS 2

9-26 Digital Systems Division

946258-9701

In the first example, all snapshots except index number 3 are cleared. In the second example.
only snapshot 2 is cleared.

9.6.12 TRACE COMMANDS (ST, SR, CR)
The following commands allow precise control of regions to be examined in detail during a debug
session, including specification of the information to be displayed.

9.6.12.1 Set Trace Definition (ST). The Set Trace Definition command defines parameters that
determine what information about instruction trace regions will be printed. There are up to four
different trace formats that may be defined, any one of which may be associated with one or more
“trace regions”. The format determines what is to be displayed for each instruction traced in the
associated region.

Syntax definition:

} <format index> [’ } <char string>

st ‘.

b...
The command is terminated by a carriage return.
FParameters:

format index Trace format index number; a number
from 0 to 3.

char string Character string describing the options
to be printed. The string contains from
I to 27 characters.

Parameter default values: There are nc default values. Both parameters are required.

Characier string symbols: The character string svmbol definitions and the associated trace
printouts are as foilows:

Character Trace Qutnut Description
r XAXX Program: counter. The prograri counter is printed for every instruction exe-

cuted. The program counter value is printed if anything else is printed even if
“P was not specified (example 1}

! Fary insirecean and fornat, Dinstruction iormats are described in the flodei 960
Compurer TMS9700 Microprocessor Assembiv Larguoge Programmer’s Guide,
“fanual No. 943441.9701.) The instructic: and its format sre printed for each
instruction executed {example 2).

N ST= XA X Stutes matk. The contents of the status mash wihih is riaced in ihe user ste-
s register is printed afier eac instruciton exccuted (example 2).

Yo WP=XAXX Waorkspace pointer chuages. When the user’s =« orkspace «ianges, the new
wurkspace is printed.

T BT=XXXX Targets for branch or jump instructicn. Whenever 2 brunch 27 jump ocnurs,
the target address of the branch/jump is printed.

9-27 Digital Systems Division

i\@ Y40.5938-9Y/01

Character ~ Trace Qutput

C C=XXXX
N (null)
X-XXXX
E SE=XXXX
B SB=XXXX
A SA=XXXX
R SR=XXXX
D
E DE=XXXX
B DB=XXXX
A DA=XXXX
R DR=XXXX

Description

CRIJ address. When one of the instructions that refezences the CRU (LDCR,
STCR, TE, SBO, SBZ) is execuied, the address of the first bit referenced is
prited. For example, for TB 2, the address is base (=R12j + 2.

Nuli trace. No printout occurs. if any other characters occur in the string, the
null trace is overridden.

XOP level. When an XOP instruction is executed, the XOP leve] is printed.
Source. Refers to the source register. It is followed by an E, B, A or R.

Source effective address. This address is the memory location that the source
field addresses. It is printed for every instruction {example 2) that has a
source operand.

Contents of source effective address before execution. The contents of the
source effective address before execution are prinied for every instruction
(exampie 2) with a source operand.

Contents of source effective address after execution. The contents of the
source effective address are printed after each instruction with a source
operand is executed (example 2).

Contents of source workspace register after execution for T, = 3 (indirect
addressing with autoincrement). (T, is the source addressing mode field in an
assembly language machine instruction.) The contents of the source register
is printed if an autoincrement is specified.

Destination. Refers to the destination. It is followed by an E, B, A or R.

Destination effective address. This address is the memory address that the
destination field addresses. The destination effective address is only printed
for Format 1, 3, and 9 assembly language machine instructions. All other
instruction format types do not have a destination field (example 2).

Contents of destination effective address before statement executed. This is
printed whenever a destination field exists (example 2).

Contents of destination effective address after execution. This is printed
whenever a destination field exists (example 2).

Contents of destination workspace register after execution for Ty = 3 (in-
direct addressing with autoincrement). (T, is the destination addressing mode
field in an assembly language machine instruction.) The contents of the
destination register is printed if an autoincrement is specified.

Description: The character string is scanned for proper syntax. If the string conforms to the
syntax, a trace print control template is built and placed in the trace format table.

The character string in the ST command allows the user {o select only those portions of the
trace output that he needs. For tutorial purposes, an extensive trace output could be requested,
while minimal traces such as a PC or variable trace are aiso easily selected. Each character in the
character string represents a desired portion of the trace.

If any trace option other than PC is printed, PC is aiso printed.

A trace on a variable (see ST command) is implemented by specifying the desired variable.

9-28 Digital Systems Division

w—) 946258-9701

The character string is scanned from left to right. The characters E, B, A and R are modified by
the most recent occurrence of S or D. If E, B, A or R is encountered before an occurrence of S
or D, or if an invalid character is encountered, the scan is aborted and an invalid syntax message
is issued. A character string consisting entirely of S or D is aiso an invalid syntax.

All four trace format table elements have initial values as follows when the debug monitor
overlay containing the ST command is loaded:

Index Number Equivalent Character String
0 P
1 PIWSEADEA
2 T
3 PIMWTCXSEBARDEBAR (all trace output options)

Error messages:

DP23 Syntax error in trace format character string.
’ Reenter the command.

DP26 Invalid trace format index number. Reenter
the command.

Examples of typical character strings: Some examples of typical character strings are presented
here. To invoke a PC trace, the character string is

P
If a branch trace is desired, the character string is
T

The character siring for a irace that inciudes PC, insiruction and format, workspace pointer
changes, and source and destination effective addresses is

PIWSEDE .

To specify all options, the character string is the same as the string equivalent to default trace
format index number 3 (above).

Example 1: Trace format 1 in the following example is defined as a program counter trace. The
program counter is the only option printed.

9-29 Digital Systems Division

{@}9 9462589701

1992
1994
1996

Example 2: This example shows the trace format index number | set to a full trace.

ST 1,PIMWTCXSEBARDEBAR
SR 1,24C,260,1,S

MR

PC=0250 24C

RU
024C
0250
0254
0258
025C
0260

8-02E0
6-C4E0
6-04E0
6-04E0
6-0720
1-C820

ST=0000
ST=0000
ST=0000
ST=0000
ST=0000
ST=C000

SE=00A6
SE=01FC
SE=01B4
SE=01B8
SE=01BA
SE=021E

DB=1850 DA=109A

SB=024C
SB=0054
SB=C259
SB=C060
SB=01E6
SB=109A

SA=024C

SA=0000

SA=0000

SA=0000

SA=FFFF

SA=109A DE=00D2

9.6.12.2 Set Trace Region (SR). The Set Trace Region command defined a trace region.

Syntax definition.:

st |

b...

b

; } <region index> {’ } <lower mem addr> {’

5 } <upper mem addr>

{g_._} <format index> [{b} %step region)] [{b] <vI> [{b} <>
[} <]1]]

The command is terminated by a carriage return.

9-30

Digital Systems Division

{@ 9462589701

Parameters:

region index Trace region index number; a number from
0 to 3.

lower mem addr First memory address in the trace region;
a hexadecimal number in the range O to
FFFE.

upper mem addr Last memory address in the trace region;
a hexadecimal number in the range 0 to
FFFE.

format index Trace format index number; a number from
0 to 3.

step region If this field contains S, an instruction
step region is specified. If it contains
N, the field specifies no instruction step.
Any other character specifies no instruc-
tion step.

vl, v2,v3 Addresses of variables to be traced while
in the designated region. Up to three vari-
ables may be specified. The range of values
for each variable is O to FFFE . In the
printed trace data, only changes are shown.

Parameter default values:
The first four parameters in the syntax definitions are required.
If the step region parameter is not specified, a value of N is used.

If none of the parameters vl, v2, and v3 are specified, no variables will be traced in the
designated region.

Description: The specified regions of memory are designated as the program area to be executed
under control of the interpretive trace.

The trace region index number determines which trace type will be executed as defined by the
Set Trace Definition (ST) command. If two overlapping regions have been defined, the region
with the lowest index has precedence and the trace type defined in that region is executed. (See
example 1.)

The trace format index number indicates the trace type vector assigned to the trace region. When
the trace overlay is loaded, each of the four trace type vectors, indices O through 3, is assigned
an initial value. These vectors may be modified by the Set Trace Definition (ST) command.
Trace types may vary from a null trace to a full trace.

The function of the instructicn step region is to control the execution of the user program. If
the instiuction step region is set by entering an S parameter on the terminal keyboard, only one
instruction at a time will be executed and traced. To execute another instruction, the user must
press the space bar.

9-31 Digital Systems Division

@ 94625%-9701

If variables have been specified to be traced, only changes will be printed. The format of the

output is:

AAAA = DDDD

Where AAAA is the address of the variable and DDDD is the new value of the variable. These
are hexadecimal values.

Error messages:

DP13

DPI0O

DP26

The specified last memory address was less than the

first memory address. Reenter the command.

Invalid trace region index number. Reenter the command.

Invalid trace format index number. Reenter the command.

Example 1: This example shows the setting of two different trace regions, one a PC trace and
the other a full trace. The region with the lower index is executed when the two regions overlap.

In this manner, the user can get a general trace until he reaches a critical section of the program
where he wants everything traced.

ST 1, PIMWTCXSEBARDEBAR

ST 2P

.SR 2,0,2000,2,N

.SR 1,24C,260,1,S

MR

PC=0250 246

.RU

0246
024A
024C
0250
0254
0258
025C
0260

0266
026A
0270
0274
0278
027A
027E

8-02EGC ST=0000
6-04EC ST=000C
6-04E0 ST=0000
6-04E0 ST=0000
6-0720 ST=0000
1-C820 ST=C000
DB=1850 DA=109A

SE=00A6
SE=01FC
SE=01B4
SE=01B8
SE=01BA
SE=02iE

SB=024C
S$B=0054
SB=C259
SB=C060
SB=01E6
SB=109A

SA=024C

SA=0000

SA=0000

SA=0C00

SA=FFFF

SA=109A DE=00D2

Outside the critical region. a continuous run is desired. Inside the critical region, there is a single
instruction step. The operator must press the carriage return or space bar on the terminal
keyboard after each statement executed.

932

Digital Systems Division

{@ 946258-9701

Example 2: The trace region is set from 0 to 20004, with the trace format index number equal
to 3. (Trace type 3 defaults to a full trace.) The snapshot prints workspace registers 1 through 4
and memory locations 1000,, to 1004,,. A breakpoint is set at 0474, with snapshot 1
associated. A Modify Registers (MR) command sets the program counter to 046C,,, and
execution is begun by issuing an Execute User Program under SIE or Trace (RU) command.

.SR 1,0,2000,3,N

.SS 1,1,4,1000,1004
.SB 1,474,.1
MR

PC=198C 46C

.RU

046C 8-02E0 ST=2000 WP=044C SE=1968 SB=0900 SA=0900

0470 1-C2A0 ST=CO00 SE=00A6 SB=1A92 SA=1A92 DE=0460
DB=0000 DA=1A92

BKPT#1

PC=0474 WP=044C ST=C000

SNAP1

R1=11C0 R2=0000 R3=0000 R4=0000

1000=10D8 C145 1305

0474 6-045A ST=C000 BT=1A92 SE=1A92 SB=C2A0 SA=C2A0

1A92 1-C2A0 ST=2000 SE=00A8 SB=0000 SA=0000 DE=0460
DB=1A92 DA=0000

1A96 60420 ST=2000 WP=1968 BT=198C SE=1988 SB=1968
SA=1968

198C 6-04C3 ST=2000 SE=196E SB=FFFF SA=0000

198E 1

Following is a listing of the portion of the program executed in this example with all references

resolved:

Memory Object

Location Code Source
046C 02E0 LWPI MAINW
046E 044C
0470 C240 MOV @ENTRY,RI10
0472 00A6

0474 045A B *R10
1A92 C2A0 INIT MOV @KBLUNO,R10
1A94 00AS8
1A96 0420 BLWP @OPEN
1A98 1988
1988 1968 OPEN D.'ATA IOWKS
198A 198C DATA OPENI

198C 04C3 OPEN1 CLR R3

9-33 Digital Systems Division

(@ 946258-9701

This is a typical example using snapshots, breakpoints and an instruction trace. Since a snapshot
is associated with the breakpoint, the snapshot is printed and execution continued. An exit from
the RU command is made by pressing the ESC key on the terminal keyboard.

9.6.12.3 Clear Trace Region (CR). The Clear Trace Region instruction is used to disable previously
specified trace regions.

Svntax definition:

CR [{%] [<starting trace region>] [{% } <ending trace region>]]

The command is terminated by a carriage return.

Parameters:
starting trace region The first trace region to be cleared.
A number from O to 3.
ending trace region The last trace region to be cleared.

A number from 0 to 3.

Parameter default values:
If no parameters are specified, all trace regions are cleared.
If only the first parameter is given, only the specified trace region will be cleared.

If only the second parameter is given, trace regions O through the specified ending trace region
will be cleared.

Error message:

DP13 A trace region index greater than the maximum possible
index number (3) was specified, or the ending region
index was less than the starting region index number.

Examples.
.CR13

.CR

In the first example, all but region O are cleared. In the second example, all regions are cleared.

9.6.13 WRITE PROTECT OPTION COMMANDS (SP, CP)
These commands allow control of the optional hardware memory write protect feature on 990/4
computers.

9-34 Digital Systems Division

9462589701

9.6.13.1 Set Write Protect Region (SP). The Set Write Protect Region command sets the write
protect region to the address specified in the command. This command is only valid if the user has
a 990/4 computer with the write protect option. A protection violation generates a general inter-
rupt signal which may be wired to any available interrupt level. Refer to the Model 990/4 Computer
Computer System Hardware Reference Manual for the procedure for wiring a memory board to a
desired interrupt level.

To set a write protect region, the lower and upper bounds must be output to CRU base address
1FAQ,¢. The most significant bit (bit 0) is the Protect/Permit bit. Bit 0, when set to I, indicates
write permit, and, when set to 0, indicates write protect. To specify the protect region, memory is
divided into 256-word blocks. The lower and upper bounds are each seven bits long and serve as
an index into the memory addresses to specify which contiguous 256-word block of memory is to
be protected. For example, the lower bound of the protect region equal to 2000,, would be
represented in the Protect register as 10,,. The memory block beginning at location 200044 is the
sixteenth 256-word (512-byte) memory block. A bound is calculated by dividing the starting ad-
dress of the memory block by 200, (512;0). In this example, 2000,¢ divided by 200, is equal
to 10,,. The upper bound is not included in the protect region. When outputting to the CRU
Protect register to specify the protect bounds, a Load CRU (LDCR) instruction with a count of 16
must be used to set all 16 bits because the Protect register works like a shift register. To protect
the memory range 2000, to 4000, the lower bound is set equal to 10,¢, the upper bound is
set to 20,4, and the Protect bit is set to 0. Therefore, the Protect register is set to 1020,4 by out-
putting these fields to the CRU in the format specified in figure 9-1A.

NOT
USED

BIT FIELDS

P PROTECT/PERMIT BIT
0—-PROTECT
1—PERMIT

LB LOWER BOUND

us UPPER BOUND

NOTES

THE CRU OUTPUT DATA FORMAT IS THE SAME AS THE
FORMAT OF DATA IN MEMORY BEFORE IN LDCR
INSTRUCTION IS EXECUTED.

BITS 1 AND 9 ARE THE MOST SIGNIFICANT BITS . AND BITS
7 AND 15 ARE THE LEAST SIGNIFICANT BITS OF THE LB
AND UB FIELDS.

(A)133373

Figure 9-1A. CRU Output Data Format

Change 1 9-35 Digital Systems Division

946258-9701

When an attempt is made to write into a memory location within the protected region, the Protect
Violation flag is set to FFFF 4. This flag, which is normally 0, can be sensed by reading any of the
16 CRU bits at base 1FAQ,¢. If this protected region is within the TMS9900 on-board RAM, the
write is not inhibited. If this protect region is on the expansion memory card, the write is inhibited.

The Protect Violation flag may be cleared in two different ways:

1. I/O RESET (RSET) — This machine instruction clears the violation flag and sets bit O
of the Protect register to 1 (not protected).

2. Output a | to any or all of the 16 bits of the Protect régister.

If the user has wired his system such that a write protection violation causes an interrupt at a
certain level, he must initialize the trap vector for that level and process the interrupt. The level 2
trap vector is initialized automatically by the Debug Monitor. The user may take advantage of this
fact and wire his memory board interrupt to level 2. The system then prints:

when a protection violation occurs. When this happens, a RSET instruction is executed and the
user must reestablish the protect bounds before starting execution again.

Syntax definition:

SP {b,. . } <lower mem addr> {b,. N } <upper mem addr>

The command is terminated by a carriage return.

When the user issues an SP 0600,0800 and then an EX command, his program begins execution.
Should the user program then attempt to write into memory location 0700, hardware write protect

sets the protection violation flag in the CRU and interrupts the CPU if the user has wired that
interrupt.

Parameters:

lower mem addr Lower boundary memory address of the protected
region. Required parameter. Hexadecimal
number.

upper mem addr Upper boundary memory address of the protected
region. Required parameter. Hexadecimal
riumber.

Description: This command sets the write protect region from the lower to the upper memory
bound addresses. If the memory addresses entered are not on 256-word boundaries, the bounds
will be set at the next lower 256-word boundary. The lower bound is included within the
protect region but the upper bound is not.

The SP command overrides any previously defined protect region.

Change 1 9-36 Digital Systems Division

a2

When the upper and lower bounds are sent to the CRU, the Protect Violation flag is cleared if it
hias been set.

Error message:

MSO05 Parameter specification error. Either a required parameter

is missing, or the lower bound is greater than or equal
to the upper bound.

Application note: This command is ignored if the write protect option is not implemented in the
system hardware.

Examples:

.SP 1000,2000

This command protects a region in memory from 1000,, to 1FFF,,.

.SP 1000,1F00

This command protects a region from 1000, to 1DFF;,. The address 1F00,, is not a

256-word boundary; therefore, the upper bound is set at the next lower 256-word boundary,
1E0O.

Change 1 9-36A Digital Systems Division

946258-9701

9.6.13.2 Clear Write Protect Region (CP). The Clear Write Protect Region command clears the
protect register and removes protection from the write-protected region.

Syntax definition:
CP
The command is terminated by a carriage return.

Description: The CP command clears the Protect register and sets the Protect/Permit bit to Permit.
The Protect Violation flag is cleared if it has been set.

Application note: This command is ignored if the write protect option is not implemented in the
system hardware.

Example:
cP

9.7 DEBUGGING TECHNIQUES
Debugging techniques may be divided into three basic categories:

1. Preventive techniques — those which may be used to decrease the number of errors.
Most of these techniques emphasize simplicity. Code should be simple and straight-
forward enough to make it obvious that the program works.

L2

Exposure techniques — those which may be used to make the operation of a program
easier to follow during the debugging process.

3. Remedial techniques — those used when a bug occurs in the user’s program. Typically,
most programmers’ efforts are expended on these techniques.

Programming effort devoted to avoiding errors or making them apparent is important. Debugging
and maintenance represent the majority of the cost in software development and support. The
following paragraphs brietly discuss debugging in general and the specifics of debugging under
TXDBUG.

9.7.1 GENERAL DEBUGGING TECHNIQUES. Several debug techniques will be helpful to the
programmer in any debugging situation. These paragraphs offer some suggestions about debugging
a program under development.

9.7.1.1 Debug Code in the Source Program. Include debug code in the scurce program. The user
should keep the testing process in mind from the moment he starts to create a program. When
referencing or changing data, the programmer should consider how to tell if the change is correct
when reconstructing the results of a run. This cften involves being aware of what iniermediate
results of a computation are lost.

For example, if the value of a variable D is calculated by the statement
D=A+B
and the program later encounters the statement

D=C+D

Change 1 9-36B Digital Systems Division

946258-9701

the second statement will cause a new value D to replace the previousiy calculated value. The
calculated sum A + B will therefore be lost. If, on the other hand, the program contains the
statement

E=A+B
and, later in the program, the statement
D=C+E

the value of E will be preserved when D is calculated by the second statement. The programmer
can examine the memory location containing the value of E to determine the calculated sum A +
B.

After a computation is completed, reconstruction of the resuits of a program run involves
istinguishing which decision paths have been taken through the program’s code and determining
what variables are relevant in calculating the results of a computation.

When the source code is written, it is often simple to store intermediate results in extra memory
to record those results, branch paths, or the number of passes through loops. Such statements
can be flagged with a character string (e.g., **DEBUG**) in the comment field. When the source
code is ready for production, TXEDIT can be used to locate and remove the code that stores
intermediate results.

9.7.1.2 Checking the Program. Once a program has been successfully assembled, a thorough
check of the program can often turn up errors which are hard to detect when the program is

cveriiting Tn additic + 3 i i i
executing. In addition to making sure that the program is a correct implementation of the

algorithm, it is often worthwhile to read through the program looking for specific errors:

® Register errors. Using the wrong register; referencing a register not in the current
workspace; using a register as an immediate value (e.g., AI R1,R2 instead of A R1,R2
or Al R1,2); using byte-level operations or data where the data is in the wrong half of
the register; or using byte-level data with the other half of the register containing
incorrect data which affects the computation.

® Variable names. Misspelling of variable names such as TO and TO; or using a single
variable to contain different quantities.

® Initialization errors. Referencing values which may not have been properly initialized.
This often occurs when a program is re-executed.

® Buffer initialization. Omitting an instruction to clear an input buffer between input
operations when variable length records are read into a common fixed-length buffer.

® Branch conditions and loop terminations. Using the wrong branch instruction (espe-
cially JH, JL, JGT, JLE, JLT, JHE, or JOC with subtracts); or executing a loop one
time too many or one time too few.

® [nconsistent techniques. Using conventions or debug elements which are inconsistent
with the coding practice for the module.

9-37 Digital Systems Division

9462589701

® Module interfaces. Using variables or parameters which were not correctly set up for an
interface; using registers or variables within a subroutine which have values that are not
to be changed within the calling routine.

® Boundary corditions. Checking that the full range of the possible input data to a
ccmputation is correctly processed by the algerithm.

9.7.1.3 Execution Tree. In debugging or testing a program, it is often convenient to visualize
the possible paths through the program as a tree with each nede of the tree representing a
conditional branch. Exhaustive iesting of a program would then require testing each possible
path through the program under ali inputs which follow that path. While it is impossible to test
all paths of a typical program examination of the various patiis (or small sets of paths) may
reveal errors in the original logic.

9.7.2 SPECIFIC DEBUGGING TECHNIQUES. The following paragraphs describe technigues
directed specificaily to debugging under the debug monitor.

9.7.2.1 Planning the Debugging Session. Know th- status of the debugging effort at all times. As
the user interacts with the program through the console, he should be careiul to record any
changes made to the program and to be aware of the state of the program when examining it. In
a debugging session, the user should have a clear idea of what he wants to accomplish and how
he intends to accomplish it. Decisions made in the process of debugging should be carefully
thought out.

9.7.2.2 Use of Breakpoints. There are three ways of stopping or interrupting the execution of a
user’s program which is being debugged at a specific location in the program:

1. Set an instruction count on the RUN command.

9

Execute with the single step option under instruction trace.
- 3. Set appropriate breakpoints.

Breakpoints stop execution at specific points in the user program rather than at arbitrary points
controlled by the instruction count. The user may easily determine in advance and check the
results of a computation without concerning himsel{ about the state of the program.

When using breakpoints, be sure that the program will actually reach the desired breakpoint. This
may involve putting additional breakpoints on the other paths from conditional branches.

Breakpoints are particularly useful when forcing some condition within a program which is not
easily created from its parameters, for example, 4 CRU isput. As an iliustration of such a
condition, an input value is to be read from a pressure transducer in an on-line process control
environment. However, if the program is beirg debugged, a physically connected transducer is
asually impractical and the values must be entered by the programmer. Breakpoints may be set
prior to the start of a code sequence. When the breakpoint is taken, the user may set or modify
the existing conditions in order to cause specific paths to be taken (as it a specific input had
been received from the transducer).

The breakpoint reference count can be used to see that a loop is repeated the correct number of
times. By setting the reference count equal to the number of iterations through the loop and
setting another breakpoint outside the loop, the user may check that the loop is exhausted on
the correct iteration. Breakpoints with attached snapshots with dump debug data or key variables
yield a good trace aimed at checking the specific progress of a computation.

9-38 Digital Systems Division

o
%@ 946258-9701

9.7.2.3 Excluding Loops from Instruction Traces. When tracing a program with printout, it is
sometimes desirable to exclude printing of small loops which are very frequently executed or
which run for many iterations. (See figure 9-2.) These may be excluded by carefully choosing
trace regions, which are areas where an instruction trace is to be run within a program. In
determining which trace region is applicable (and thus what trace type to use), the system will
find the first (lowest numbered) region containing the user’s PC. By selecting a high numbered
trace (3) for the main trace control and then setting regions within that large region with lower
numbered traces which do not print, the user may prevent a large quantity of output where it is
not wanted.

An alternate mechanism is to allow the small loops to be executed by SIE and the remaining
program traced. (See figure 9-3.) This can be done by setting trace regions to cover all of the
program except the small loops or frequently executed parts. Such a mechanism works well
unless the user is using XOPs (other than XOP 15 for debug monitor I/O) or interrupts which are
processed differently by SIE and instruction trace.

If the user is performing 1/O by means of supervisor calls (XOP 15), this XOP is executed
directly (without SIE or instruction trace). If XOP 15 is not used for program I/O, it is
executed directly under SIE.

USER PROGRAM TRACE REGION CONTROLLING
DEFINITION TRACE REGION
PGM: ——-— 3 N\
—-———= TRACE
L REGION 3 L REGION 3
—_ <

/
AL -
TRACE

JMP A REGION 2 REGION 2
B: ——==

—_— } REGION 3

- /
(A)133102

Figure 9-2. Trace Region Precedence of Lower Region Number

9-39 Digital Systems Division

946258-9701

USER PROGRAM

PGM: ———-
Al -
MP A
B ——-
(A)133103

Figure 9-3. Using Both Trace and SIE

TRACE REGION
DEFINITION

TRACE
REGION 1

NO TRACE
REGION

TRACE
REGION 2

"

— N\

MODE OF
EXECUTION

TRACE

SIE

TRACE

9.7.2.4 Simulating an Interrupt. A BLWP instruction may be used to control an interrupt routine
which is being checked out. This can be handled with the following code sequence. The quantity

“1” is the value to which “INTLVL” has been equated.

Instruction

LIMI

BLWP

JMP

Operand

INTLVL

@INTLVL*4

$

0300

i

0420
4%

10FF

Generated Code

The LIMI sets the interrupt status to the correct level. The BLWP transfers control through the

interrupt vector.

9.7.3 PATCHING. Patching (attaching portions of code to existing program code) should be

avoided if possible.

During a debug session, it is generally necessary to make patches to object code; however, it is
advisable never to leave patches in a completed program (or create ROM firmware from a
program with patches). An object program for which there is no corresponding source program is

inconvenient and troublesome.

The following paragraphs cover patching techniques. The examples show how to patch a
two-address instruction; this instruction is used:

MOV *R1,*R2+

940

Digital Systems Division

{L\@fp 9462589701

Because of the number of items to be considered, patching a two-address instruction is one of
the more difficult operations. There are two ways to approach it: building a bit image and the
additive method.

9.7.3.1 Patching by Building a Bit Image. In building a bit image, the user merely fills in each
field in the 16-bit word on a bit-by-bit basis. When all fields are complete, the value is converted
to hexadecimal for the patch contents.
Example:
Patch the following assembly language instruction:
MOV *R1,*R2+
by building a bit image.

The MOV instruction has this format:

oP D s
cooe |B| Td Ts
| 1 1 | |] 1 1 1

Determine the bits that occupy each field. Starting with the op code field, the hexadecimal
op code for a MOV instruction is C000. The first three bits of this op code are 110,;
transfer these bits into the op code field.

The Byte Indicator (B) field specifies whether or not the instruction is a byte instruction.
The MOV instruction is a word instruction; therefore, this field is set to 0. (The B field is
always O for a MOV instruction.) Another way of specifying the same information would be
to use the MOV or MOVB instruction (as appropriate) and a four-bit op code.

The D field specifies the destination workspace register. The destination address is *R2+,
which indicates workspace register 2 and the workspace regisier indirect autoincrement
addressing mode. The addressing mode for the destination, 11,, is placed in the Ty field.
Transfer the binary value of the register number, 0010,, into the D field.

Use a similar procedure for the source address, which is *R1. In this case, workspace
register 1 is specified and the addressing mode is workspace register indirect. Therefore,
transfer 01, into the T field and 0001, into the S field.

The instruction field contents will now be:

110 o] 11 0010 01 0001

Now read these 16 bits as a four-digit hexadecimal number.

1100 1100 1001 0001

Cc o] 9 1
The resulting hexadecimal number is the desired value. The patch value is CCo1.

9-41 Digital Systems Division

“[‘@’@ 9462589701

9.7.3.2 Patching by the Additive Method. The second approach to the patching problem is the
additive me:hod. With z little practice, the patch described in the first approach can be created a
little faster by treating each of the fields as a hexadecimal number and adding the results to
produce the patch.

Example:

Patch the same assembly language instruction as in the bit image example:
MOV *R1,*R2+

by using the additive method. This method involves adding hexadecimal values correspond-
ing to each field to the instruction’s op code to get the patch value.

The programmer can think of a bit field value as being placed into the instruction word,
right justified, and shifted left the number of bits necessary to move it to the appropriate
field. This shift is equivalent to binary multiplication, so the bit field value times an
appropriate multiplier will give a value to be added to similarly obtained values for other bit
fields to yield a sum representing the contents of the instruction word.

Recall that the values for the addressing modes and workspace registers in the previous
examples were:

Destination mode (T,) 3
Destination register (D) 2
Source mode (T,) 1
Source register (S) 1

In calculating the patch value by the additive method, these values are used.

The first number in the calculation is the hexadecimal op code for the.MOV instruction,
C000. The B field is always O in the MOV instruction; it can be considered part of the
instruction op code and ignored in the calculation. .

The second number to be added is the value of the destination mode. The cque for thp
address mode is shifted left ten bits, equivalent to multiplication by 400,,. The code is
3,6; therefore, the value to be added is

3,, * 400,, = 0C00,

The third number is the destination register value. To create the value to be added, the
register number, 2,4, is shifted left six bits, equivalent to multiplication by 40,,. The value
is

2,6 * 40,6 = 0080,

Calculation of the fourth value involves a code of 1, for the source mode and a four-bit
shift (multiplication by 10,4). The value is

1,6 * 10, = 0010,

Finally, the source register number, 1,4, is unshifted. The value to be added is 0001 4.

942 Digital Systems Division

%—\%Z? 946258-9701

To calculate the required sum, the values are added:

Op code of MOV instruction C000

Destination mode 0CO00
Destination register - 0080
Source mode 0010
Source register , 0001
Patch value CC9o1

The sum, CC91,,, is the object code to be patched. The patch value is the same as the
value obtained in the previous example. . .

When the same mstructlon format is used repeatedly, the multlphcatlon constants — 4001,,,,
40,, and 10,, — do not change and become simpls to handle with uracuce

9.7.3.3 Symbolic Versus Indexed Addressing. The address mode for both symbelic (actual
memory address) and register indexed addressing is the same (mode 10,). The type of addressing
is determined by the register field. A register field of zero is symbolic; therPfore no RO indexing
exists. In constructing a patch with a specific address, process it exactly as if it were a register
indexed with a register of zero. Refer to the Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer’s Guide, Manual No. 943441-9701, for further information
about symbolic and indexed memory addressing.

9.7.3.4 Branch Distance Calculations for Jump Instructions. The signed displacement in an

Unconditional Jump (JMP) instruction is a two’s complement eight-bit number which represents

the number of words to skip forward or backward from the current PC (the PC points to the
instrction fnllnwmc the inmn instruction)

22BN aVal JURU W S2a% gAY MISUiaLallaL S,

To calculate the displacement for a jump instruction, evaiuate

1/2 (target location-(instruction address+2)).
If the target address is less than the instruction address, add 10000, to the target address and
perform the subtraction. Note that a forward braach must generate a positive dlsplacement and a
backward branch must generate a negative displacement to be in range. '
Example 1:

Patch locz.ltion 17A,¢ with a jump to location 1FE .

The source address is equal to the instruction address +2, which is 17A+2 = 17C.

The target location minus the source address is 1FE - 17C = 82. Continuing,

1/2 (target location - source address) = 41

The displacement, 41, is positive. The patch value is therefore 1041,,, where 10 is the
hexadecimal op code for the JMP instruction and 4! is the displacement value.

Example 2:

Patch Location 1FE,; with a jump to location 17A .

943 Digital Systems Division

o
@ 946258-9701

The source address is equal to the instruction address+2, which is 1FE4+2,, = 200,,. The
sum of the target location plus 10000,,, minus the source address, is 1017A,4-200,¢4 =

FF7A,. Continuing
1/2 (target location - source address) = 7FBD = BD (dropping the first two digits)

The displacement, BD, is negative. The patch value is therefore 10BD,,, where 10 is the
hexadecimal op code for the JMP instruction and BD,, is the displacement value, negative

in this case.

Note that the 7F is generated from the addition of 2,, (10000,,) and may be discarded. If
the high order eight bits of the destination are not equal to 7F, the branch distance is too
great to reach with a JMP instruction.

9.7.3.5 Use of Spin and No-operation. It is sometimes convenient to patch a spin (branch to itself)
into a location to intercept control in unexpected situations (the alternate path of a conditional
jump, for example). That instruction is a JMP to itself and is a value of 10FF,4. (The corresponding
assembly language code is JMP $.)

Unwanted instructions can be replaced with a No-Operation (NOP) which is a JMP to the next
instruction. The value for an NOP is 1000,,. Strings of NOPs may also be placed at various loca-
tions in the program source to reserve space for temporary debug patches.

9.7.3.6 Out-of-Line Patches. It is often necessary to patch more instructions into a program than
there is room, requiring an out-of-line patch. The simplest mechanism is to use a symbolic address
branch instruction to a specific location where the patch is placed. After the patch, use a branch
instruction back to the original code.

Example:

0460
(loc A)g— A ----
B ---- ———-
-——-- 0460
(loc B)

Be careful to see that code which is overlayed is moved to the patch area, that it is not a PC
relative jump, and that the return pointer comes to the beginning of an instruction.

944 Digital Systems Division

946258-9701

9.8 ERROR MESSAGES
TXDBUG may issue any of the following error messages:

Message Meaning

MX01 Unrecoverable I/O error

MXO06 Invalid memory address or instruction

MS01 Invalid command

MSO05 Required parameter missing

MPOO Parameter specification error

DPQO Invalid hexadecimal number input

DP03 Parameter value is greater than the allowed maximum
DP04 Snapshot is already defined

DP10 Invalid trace region index

DP12 CRU bit width parameter invalid

DP13 Invalid range of registers or memory addresses
DP20 Breakpoint specification error

DP23 Syntax error in trace format character string
DP26 Invalid trace format index number

In addition, during the initial TXDBUG load, the TX990 program loader may issue the following
error messages:

Message Meaning

LDFE Load bias error

LDFF Get common error (system error)

LDXX All other load errors are of the form (LD(XX) where XX is

the TXDS I/O error code received

9-45/9-46 Digital Systems Division

o
@ 946258-9701

TXDS PROM (TXPROM) PROGRAMMER UTILITY PROGRAM

SECTION X

10.1 INTRODUCTION

This section describes the TXPROM programmer utility program along with the required hardware
and software . In addition, it describes the function and use of control files, bit string mapping of
PROMs, and examples of the use of the utility, as well as instructions for loading and operating
the utility. For standard operations, refer to the loading and operating procedures contained in
paragraphs 10.4 and 10.5, plus the description of standard control files found in paragraph 10.7.
The description portion of this section is also helpful for operation of the utility. For custom
mapped PROMs or PROMs with nonstandard data configurations, read all the information
contained in this section. For further information regarding PROM programming with a 990
Computer System, refer to the following related publications:

Title Part Number

Model 990 Computer TMS9900 Microprocessor 943441-9701
Assembly Language Programmer’s Guide

Model 990 Computer PROM Programming Module 945258-9701
Installation and Operation

‘MOI‘ID’ Qan f‘nmnufer ‘4‘M‘DL]I'/‘fll'n,rnnrnpocrnr 946244_9791

Ll 77U LU e Vi Al TOPOTOLESSO7

Prototyping Laboratory Operation Guide

10.2 REQUIRED CONFIGURATION
The TXPROM programmer utility program requires the following configuration for proper opera-
tion:

® An FS990 System
® A Model 990 PROM Programming Unit.

The TXPROM programmer utility software is part of the TX990/TXDS system software and is
packaged on a diskette. TXPROM includes the following files:

® :TXPROM/ — contains the PROM programming software.

® A set of standard control files — :S288, :S287, :S471, :S472, :E2704B, :E2704,:E2708B,
:E2708, :E2716B and :E2716.

10.3 DESCRIPTION

The TXPROM programmer utility is a software module that controls a computer hardware system
to create custom Read Only Memories (ROMs). The hardware system can program either Program-
mable Read Only Memory devices (PROMs) or Erasable Programmable Read Only Memory devices
(EPROMs). Throughout this section, the term PROM refers to either of these devices unless it
specifically excludes one of them. TXPROM is part of the Terminal Executive Development System
that runs under the TX990 Operating System. ’

Change 2 10-1 Digital Systems Division

@ 946258-9701

Functions performed by TXPROM include:

® (Copying data from a file to a PROM
® Storing data from a PROM into memory or a file
® Displaying a disc file in PROM format

® Comparing data contained in a PROM with that contained in a file, and indicating any
discrepancies.

TXPROM uses predefined control information to store data in or read data from PROM devices.
Included with the utility is a set of standard control files that contain the control information for
reading and programming PROMs that employ the memory configuration used in the 990 Computer
Family. For other applications, the user can modify these control files or create new files using the
information supplied in this section.

10.3.1 PROM BURN AND VERIFY. Three steps are required to transfer data from a data file into
a PROM. As illustrated in figure 10-1, these steps are:

1) Load control and data information from a diskette into separate areas in computer
memory.

2) Use the information contained in the control area of memory to direct the transfer of
data to the PROM to burn-in the data.

3) Use the information in the control area of memory to read the contents of the newly
programmed ROM and compare the contents of the ROM with the contents of the data
in the memory buffer area in memory.

The TXPROM software performs the second and third steps after having been instructed to do so
by the operator. The user must, therefore, adequately prepare both the data file and the control
file to ensure that TXPROM accurately transfers the data to the PRCM. The requirements of each
of these files are explained later in this section of the manual. '

10.3.2 PROM READ OPERATION. A PROM read operation requires TXPROM to perform two
steps, as illustrated in figure 10-2:

1) Use the information contained in a control file to read data from a ROM and store the
data in the memory buffer area.

2) Store the information from the memory buffer area into a diskette data file as directed
by the user.

Change 1 10-2 Digital Systems Division

9462589701

T1 950
COMPUTER MEMORY
TX990 MONITOR
FROM
FLOPPY DISC
TX PROM
PROGRAM
STEP 1 STEP 2
—le ——
CONTROL FILE
LOAD
CONTROL AREA
LOAD MAP
DATA FILE —+»{ ™MEMORY BUFFER [@——®
(A)136186
Figure 10-1. PROM Burn, Compare Operation
T1 990
COMPUTER MEMORY
TX990 MONITOR
PROM
./
TX PROM
PROGRAM
CONTROL AREA
ST1E 1 STEP 2
MAP STORE
»| MEMORY BUFFER i o oATA FILE
(A)136187

Figure 10-2. PROM Burn, Compare and Read Operation

Change 1 10-3 Digital Systems Division

{@ 946258-9701

The transfer of data from the memory buffer to the data file is performed on a word-for-word basis
in binary-object format. The previous contents of the data file are lost. The data from the PROM
can be read into memory without being stored in an output file by specifying “DUMY” as the out-
put file. This method can be used for preliminary inspection of ROM data, as well as for data file
formatting. For example, to read data from four 4 X 256 PROMs and store it in a 256-word file, the
following steps could be used:

1) Read the first three half-bytes (4-bit transfers) into the memory buffer using a read
operation with DUMY as the output file. This stores the first twelve bits in memory.

2) Read the fourth half-byte into the memory buffer with a read operation that specifies
the desired output file. The complete 16-bit word is transferred to the output file.

10.4 LOADING TXPROM

TXPROM is loaded under direction of the TXDS control program. Before loading TXPROM, the
diskette containing the software must be inserted into a drive unit and that unit prepared for
operation. Since the control program searches all system drives for the requested file, the diskette
need not be loaded on a specific drive in multiple drive systems. When initiated, the control
program produces the following prompt on the system console:

PROGRAM:
To load TXPROM, respond to this prompt as follows:

PROGRAM: - TXPROM/*<carriage return>

- The control program then locates the file containing TXPROM, loads it into memory, and begins
execution of TXPROM. Input and output operations will then be directed to the system console
during execution of TXPROM. Any other interactive device supported by TXDS may be used. To
specify a different device for interaction with TXPROM, respond to the PROGRAM: prompt as
follows:

PROGRAM: :TXPROM/*[device]*<carriage return>

10.5 TXPROM OPERATION
When TXPROM is successfully loaded, it prints the following prompt on the selected interactive
device: '

CONTROL FILE =

The response to this prompt determines which of three modes of operation that TXPROM will
enter: control file creation, control file modification, or control file execution. The following
paragraphs describe the three modes of operation, provide a general procedure for performing each
function, and illustrate each mode with an example.

10.5.1 CONTROL FILE. CREATION. The control file creation mode allows the user to create a
new control file for a custom application after determining that none of the standard control files
satisfies the requirements. The mode is entered by pressing the carriage return key in response to
the CONTROL FILE = prompt. In this mode, TXPROM outputs each control file parameter
prompt in order, followed by an asterisk (*). The asterisk indicates that the parameter is a variable
that must be supplied when the control file is executed. If the parameter is to remain a variable,

Change 1 10-4 Digital Systems Division

%—@9 946258-9701

press the carriage return key on the terminal to move to the next parameter prompt. If the
parameter is to be a predetermined value, type that value and press the carriage return key. The
entered value becomes the default value for that parameter. Entered values must be in decimal
unless specified otherwise by one of the following prefixes:

< binary i
! octal
> hexadecimal

MEM LEV 1 LOOP CNT* 400

At any point the remaining parameter prompts may be bypassed, leaving them as variable
parameters, by pressing the A (caret) key. TXPROM then proceeds with the file creation mode
termination sequence. This sequence is entered either by pressing the caret key or by completing
consideration of all parameter prompts. TXPROM then produces the prompt:

SAVE UNDER FILE NAME =

Entering a floppy disc file name in response to this prompt and then pressing the carriage return
causes TXPROM to create a control file with the specified name. That file name can than be used to
call the newly created control file for execution. Standard control files are write-protected and can-
not be altered. Therefore, choose a file name other than a standard control file name for newly
created or modified files. Entering only a carriage return in response to the above prompt creates no
new file. The parameters remain in memory until modified, a control file name other than DUMY is
specified, or TXPROM is terminated. The parameters can be accessed by referencing DUMY as the
desired control file for execution or modification.

When the new file name is determined and the carriage return is entered, TXPROM issues the
following prompt:

EXECUTE, BEGIN OR END
The responses to this prompt are as follows (letters in parentheses are optional):

EX(ECUTE) Switch to execution mode and use the newly entered control file param-
eters for the operation.

BE(GIN) 7 Restart the TXPROM sequence by returning to the CONTROL FILE =
prompt.
EN(D) Return to the TXDS control program.

10.5.2 CONTROL FILE MODIFICATION. The control file modification mode allows the user to
modify the contents of a previously created control file. The mode is entered by responding to the
CONTROL FILE = prompt with the name of an existing control file without including a parameter
list. TXPROM then responds with the prompt:

MODIFY OR EXECUTE?

Change 2 10-5 Digital Systems Division

@ 946258-9701

Entering the following response places TXPROM in the modification mode (letters in parentheses
are optional):

MO(DIFY)

TXPROM then produces the parameter prompts for the control file information as it does in
control file creation mode, except that the prompts are followed by the existing values for the
parameters. Asterisks indicate variable parameters that must be defined at execution time. The
parameters can be changed by typing in the desired value in place of the existing value following
each prompt and then pressing a carriage return. The resulting modified control file can replace
the original file (if the original file is not a standard control file), can be saved in a new control
file, or can be saved in memory only for immediate execution depending upon the response to the
SAVE UNDER FILE NAME = prompt. As in the creation mode, pressing the A (caret) key at any
time skips over the remaining parameters without changing their values. When the SAVE UNDER
FILE NAME = prompt has been satisfied and a carriage return entered, TXPROM again produces
the following prompt:

EXECUTE, BEGIN OR END
Responses to this prompt are identical to those for creation mode.

10.5.3 CONTROL FILE EXECUTION. The control file execution mode allows the user to program
a PROM using the parameters in an existing control file. The control file may be one of the supplied
standard control files, or a custom generated file produced using the file creation mode of
TXPROM. The execution mode is entered by responding to the CONTROL FILE = prompt with
the name of an existing control file, or by responding with the name of an existing control file and
its parameter list. If only a control file name is specified (without the parameter list), TXPROM
responds with the prompt:

MODIFY OR EXECUTE?

Entering the following response places TXPROM in the execute mode (letters in parentheses are
optional):

EX(ECUTE)

A parameter list is not required because TXPROM generates prompts for all missing parameters.
However, if parameters are included, they must be in the order specified in table 10-1. The param-
eter list contains a string of values separated by commas and enclosed in parentheses following the
file name. For example, the following reply to the CONTROL FILE = prompt illustrates the param-

eter list:

DSC:S287(DSC2:DATA, 2, 0, 0, 4, 16)<cr>
control data file TS mem lev 1
file FR bit step

code
CM
PR
after !
mem
start
addr
mem
start
bit

Change 1 10-6 Digital Systems Division

9462589701

Table 10-1. Table of Control File Parameter Prompts

Parameter Prompt

DATA FILE =
DATA BIAS =

TSFR CODE =

CMPR AFTER =

MEM DISP =
PROM DISP =

MEM START ADDR =

#MEM BYTES =

MEM START BIT =

PROM START ADDR =

#PROM WORDS =

PROM START BIT =

**MEM MAP LEVELS =

MEM LEV 1
2
3

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

**PROM MAP LEVELS =

PROM LEV 1
2

3

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

BIT STEP =

LOOP COUNT =

TSFR BIT WIDTH =

PROM BITS/WORD =

PROGO’sOR 1’s =

PULSE WIDTH =

DUTY CYCLE =

NO. RETRIES =

SIMUL PROG’BLE BITS =

CRU BASE =

Possible

Value

TX990 Pathname

*

0to2

Lo e
Ll —t

1t03

0 to 7FFF16
1 to 32,767
0 to 7FFF ¢
0to 32,767
0to 7FFF 4
1to 32,767
1to3

0 to 7FFF 6
1to 32,767
0 to 7FFF 6
1to0 32,767
0 to 7FFF ¢
1to 32,767
1t08
Ito8

0,1

1to6

01to 100

0 to FFFF
1to 8

0to 1FFE 4

Description
Name of data file

Value to add to relocatable code in object
modules

Transfer code: 0 nothing, 1 burn PROM,
2 read PROM

Compare after: 0 nothing, 1 compare PROM
and memory

Memory display: 0 nothing, 1 display memory
PROM display: O nothing, 1 display PROM
Memory bound low (address)

Memory bytes to be transferred

Memory beginning bit

PROM bound low (address)

PROM words to be transferred

PROM beginning bit

Number of memory mapping levels

Number of bits skipped between loops
Number of repetitions of loop 1

Number of PROM mapping levels

Number of bits skipped between loops
Number of repetitions of loop 1

Transfer bit string width

Program zero’s or one’s

Programming pulse width

% of time used in program device

Number of retries

Number of simultaneously programmable bits

Base CRU address for PROM interface card

* Any value 0 to 7FFF ¢ ; however, some parameters interact with each other to create other
limitations. See text.

Change 2

10-7

Digital Systems Division

%@ 4962589701

All numeric parameters are expected to be in decimal notation, but can be in octal, binary or
hexadecimal if preceded by the proper prefix as described in the file creation description. When
TXPROM enters the execute mode, it scans the contents of the control file and selects the required
variable parameters. If a variable parameter list was supplied, the supplied values are filled into the
control file data. If additional values are required or if no list was supplied, then TXPROM generates
prompts for each required parameter.

TXPROM then checks all parameters for boundary violations. If any value is out of bounds,
TXPROM generates a prompt for that value to be changed by the user.

When all parameters have been verified, the control file is executed. All interrupts are disabled
during actual data tiansfer between PROM and memory. When execution is complete, TXPROM
generates the following messages:

SUCCESSFUL EXECUTION
REPEAT, BEGIN OR END?

Proper responses to this message are as follows (letters in parentheses are optional):
RE(PEAT) Repeat the execution process (for burning more than one PROM)
BE(GIN) Return to the CONTROL FILE = prompt at the start of TXPROM
EN(D) Return to the TXDS Control program.

10.6 DATAFILES

TXPROM uses data files to store formatted data on diskette or in computer memory. The data is in
object format as described in the Assembly Language Programmer’s Guide. The data in the files may
be burned into a PROM or compared to the data already in a PROM. Data files are created either by
an assembly, by the link editor, or by reading a PROM and storing the contents in a file. When the
data is transferred from the file to a PROM, the data is treated as a series of ascending addressed
locations each 16 bits long. Each 16-bit word is selected from the file according to control param-
.eters in the control file (Memory Starting Address Number of Memory Bytes, Memory Start Bit,
Memory Level n Bit Step, and Memory n Level Loop Count). The data may then be transferred to
the PROM according to other control file parameters so that each bit in the data file can be stored
separately in the PROM.

10.7 CONTROL FILES

TXPROM uses control files to determine the pattern that data in data files will be stored in a
PROM. The data is not necessarily transferred to the PROM as an exact image of the data file.
Instead, the parameters of the control file allow each bit, or group of bits, of the data file to be
mapped to a separate location in the PROM. Table 10-1 lists each of the parameters in the control
file along with the range of values for each parameter. In the file creation phase, TXPROM produces
control file parameter prompts for user response. No default values exist during creation mode.
In the file modification phase of a PROM programming sequence, TXPROM allows the user to
change the control file parameters after issuing the prompts listed in the table. The user can then
select the default value with a carriage return or enter a new value. The default values for each
standard control file are listed later in this section. The following paragraphs describe the use and
function of each control file parameter.

10.7.1 DATA FILE NAME. The data file name is an alphanumeric parameter that specifies the
name of the floppy disc data file to be used during the current operation. The file name may also
be the name of an input file from a 733 ASR cassette drive; however, the cassette cannot be used
as an output file to store information from a PROM read operation because the output format is
not cassette compatible. To indicate that no data file is to be used, enter the file name, DUMY.

Change 1 10-8 Digital Systems Division

[e]
([@ 946258-9701

This specification allows information to be read from a PROM into memory without being stored
in a data file. During the initiation sequence, TXPROM allows the user to enter the data file name
after it issues the following prompt:

DATA FILE =
No default value exists for this parameter in the standard control files.

10.7.2 DATA BIAS. The data bias parameter allows a pre-existing object module to be loaded into
memory at a simulated load point that is displaced (biased) from the normal load point of zero.
The actual load point in memory of the file is unaffected by this parameter. Typically, the data
bias is the same as the base address of the data in the target system in which the PROM is to be
used. The value of the data bias is added to each word that is marked as relocatable by the
assembler or link editor. TXPROM accesses the data as if it were loaded in memory, starting at the
data bias value. Therefore, the memory starting address parameter must be consistent with the ad-
dressing used in the biased file. For example, a program that is 1000, bytes long and is loaded
with a data bias of 500,, must have its memory starting address parameter within the range of
500, to 14FF,s. TXPROM allows the user to enter the data bias after it issues the following
prompt:

DATA BIAS =
The default value for this parameter in the standard control files is zero (no displacement).

10.7.3 TRANSFER CODE. The transfer code parameter defines the operation to be performed with
the PROM device. The code is one of the following three values:

0 No operation
1 Transfer data from specified data file to PROM
2 Read data from PROM and store in specified data file

TXPROM allows the user to enter the transfer code parameter after it issues the following prompt:

TSFRCODE =
The default value for this parameter in control files :E2704B, :E2708B, and :E2716B is 1 (PROM '
burn operation). There is no default value for the other standard control files.

10.7.4 COMPARE AFTER. The compare after parameter allows the user to enable (1) or disable (0)
a comparison of the PROM data with the data file data following either a burn or a read operation.
If the comparison is successful, TXPROM proceeds to the next operation. If the comparison fails,
TXPROM displays the memory byte address, the PROM address, and the two bit strings in the
following format:

>Mxxxx.yy=zz Raaaa.bb=cc
Refer to the description of memory display and PROM display later in this section for an explana-
tion of the display formats. TXPROM allows the user to enter the compare after parameter after

it issues the following prompt:

CMPR AFTER =

Change 2 109 Digital Systems Division

@ 946258-9701

The default value for this parameter in control files :E2704B, :E2708B, and :E2716B is 0 (disable
comparison). There is no default value for the other standard control files.

10.7.5 MEMORY DISPLAY. The memory display parameter allows the user to select a display of
the memory data file on the data terminal being used. This parameter may be either a 1 to enable
memory display, or a 0 to inhibit memory display. If the memory display parameter is equal toa 1,
the memory region containing the data file is displayed in the following format:

MxxxXx. yy=zz

In this notation, the letters have the following significance:

M = Designates a memory display

xxxx = Memory byte address

yy = Displacement of start of bit string within memory byte (0<yy<7)

zz = The value of the bit string in hexadecimal notation when right-justified within

an 8-bit field.

A maximum of four entries are displayed on each output line of the terminal. For example, a
memory display value of:

MOOOB. 00=5A

indicates that the bit string at byte address 000B,¢ that begins with the first bit of that byte has a
value of 5A,5. TXPROM allows the user to enter the memory display parameter after it issues the
following prompt:

MEM DISP =
The default value for this parameter in the standard control files is zero (no display).
10.7.6 PROM DISPLAY. The PROM display parameter allows the user to select a display of the
PROM contents being burned or read. The display appears on the data terminal being used to
initiate TXPROM during the execution of the program. This parameter may be either a 1 to enable
PROM display, or a 0 to inhibit PROM display. If the PROM display parameter is equal to a 1, the
PROM region is displayed in the following format:

Raaaa. bb=cc

In this notation, the letters have the following significance:

R = Designates a ROM or PROM display

aaaa = PROM/ROM word address

bb = Displacement of start of bit string within PROM word (0<bb<(7)

cc = The value of the bit string in hexadecimal notation when right-justified within an
8-bit field.

Change 2 10-10 Digital Systems Division

@ 946258-9701

A maximum of four entries are displayed on each output line of the terminal. For example, a
PROM display of

ROOE1. 00=7A

indicates that the bit string at PROM word address 00E 1,4, that begins the first bit of that byte, has
a value of 7A,s. TXPROM allows the user to enter the PROM display parameter after it issues the
following prompt:

PROM DISP =
The default value for this parameter in the standard control files is zero (no display).

1077 MEMORY STARTING ADDRESS. The memory starting address parameter indicates the
starting address in memory of the first bit string to be transferred to the PROM or to be read from
the PROM. If the object module is relocatable, the memory starting address is an absolute memory
address. TXPROM allows the user to change the memory starting address parameter by producing
the following prompt:

MEM START ADDR =
No default value exists for this parameter in the standard control files.

10.7.8 NUMBER OF MEMORY BYTES. This parameter indicates the number of bytes to be
transferred from or to memory during the PROM operation. TXPROM adds this value to the
memory starting address to create a range of addresses in memory for the transier operation. If

TXPROM tries to access a bit string outside this range of addresses, an error is indicated. TXPROM
allows the user to change the memory bytes parameter by producing the following prompt:

MEM BYTES =
The default value for this parameter varies with the particular standard control file.

10.7.9 MEMORY STARTING BIT. This parameter indicates the starting bit address relative to the
starting byte (indicated by memory starting address) of the bit string to be transferred during the
operation. The value of this parameter may be any positive magritude; however, if the value
exceeds 7, the starting bit will be located beyond the starting byte indicated by the memory starting
address. TXPROM allows the user to enter the memory starting bit after it issues the following
prompt:

MEM START BIT =
No default value exists for this parameter in the standard control files.
10.7.10 PROM STARTING ADDRESS. The PROM starting address parameter indicates the
starting word address in PROM of the first bit string to be burned or to be read. TXPROM
allows the user to enter the PROM starting address after it issues the following prompt:

PROM START ADDR =

The default value for this parameter in the standard control files if 0.

Change 1 10-11 Digital Systems Division

@ 946258-9701

10.7.11 NUMBER OF PROM WORDS. This parameter indicates the number of PROM words that
will be processed during the current operation. TXPROM adds this value to the PROM starting
address to create a range of addresses in PROM for the transfer operation. If TXPROM tries to
access a bit string outside this range of addresses, an error is indicated. TXPROM allows the user to
enter the PROM words parameter after it issues the following prompt:

PROM WORDS =
The default value for this parameter varies with the particular standard control file.

10.7.12 PROM STARTING BIT. This parameter indicates the starting bit address relative to the
starting word address (indicated by PROM starting address) of the bit string to be processed. The
value of this parameter may be any positive magnitude; however, if the value exceeds the word size
for the PROM device type being used, the starting bit is located beyond the starting word indicated
by the PROM starting address. TXPROM allows the user to enter the PROM starting bit after it
issues the following prompt:

PROM START BIT =
The default value for this parameter in the standard control files is 0.

10.7.13 MEMORY MAPPING LEVELS. The memory mapping levels parameter specifies the
number of loop levels to be used in mapping data from memory into the PROM device. The number
of levels may be 1, 2 or 3. Refer to the discussion of Bit String Mapping later in this section for
complete information about the use of this parameter. If this parameter is 1, then the loop count
for levels 2 and 3 are automatically set to 1. TXPROM allows the user to enter the memory
mapping levels parameter after it issues the following prompt:

**MEM MAP LEVELS =

l Enter a value of 1 for all standard control files except :E2704B, :E2708B, and :E2716B. For these
files, enter a value of 2.

10.7.14 MEMORY LEVEL n BIT STEP. This parameter determines the number of bits that are
skipped between successive bit addresses when performing a level n (n = 1, 2, or 3) mapping loop.
For example, to access only the even-numbered bits (or the odd-number bits) this parameter is set
to a value of 1. This value causes a skip of one bit between each bit accessed. TXPROM allows the
user to enter this parameter for each of the three possible mapping levels after it issues the following
prompt(s) (only the prompts for the number of levels selected in the memory mapping levels
parameter are produced):

MEM LEV 1 BIT STEP =
or

MEM LEV 2 BIT STEP =
or

MEM LEV 3 BIT STEP =

Change 2 10-12 Digital Systems Division

{'@9 946258-9701

The default value for the level 2 and 3 parameters in the standard control files is zero. There is no
default value for the level 1 parameter in the standard control files.

10.7.15 MEMORY LEVEL n LOOP COUNT. This parameter determines the number of iterations
that are performed of the level n (n=1, 2 or 3) mapping loop. The value may be within the range of
0 to FFFF,,. TXPROM allows the user to enter this parameter for each of the three possible
mapping levels after it issues the following prompts (only the prompts for the number of levels
selected in the memory mapping levels parameter are produced; all other levels are set to one:

MEM LEV 1 LOOP COUNT =
or

MEM LEV 2 LOOP COUNT =
or

MEM LEV 3 LOOP COUNT =

The default value for each of these parameters in the standard control files varies with the selected
control file.

10.7.16 PROM MAPPING LEVELS. The PROM mapping levels parameter specifies the number of
loop levels to be used when mapping data into the PROM. The number of levels may be 1, 2 or 3.
Refer to the discussion of Bit String Mapping later in this section for complete information about
the use of this parameter. If this parameter is 1, then the loop count for levels 2 and 3 are automa-

oM cnd 44 1 T a i it i
tically set to 1. TXPROM allows the user to enter the PROM mapping levels parameter after it issues

the following prompt:
**PROM MAP LEVELS =

When responding to this prompt, enter a value of 1 for each standard control file except :E2704B,
:E2708B, and :E2716B. These files require a response of 2.

10.7.17 PROM LEVEL n BIT STEP. This parameter determines the number of bits that are
skipped between successive bit addresses when performing a level n (n = 1, 2 or 3) mapping loop.
For example, to burn every other bit in a PROM (either the odd or even bit addresses) this param-
eter is set to a value of 1. This value causes a skip of one bit between each bit operated on in the
PROM. TXPROM allows the user to enter this parameter for each of the three possible mapping
levels after it issues the following prompt(s) (only the prompts for the number of levels selected in
the PROM mapping levels parameters are produced):

PROM LEV 1 BIT STEP =
or

PROM LEV 2 BIT STEP =
or

PROM LEV 3 BIT STEP =

Change 2 10-13 Digital Systems Division

%@ 9462589701

The default value for level 1 in the standard control file :S287 is 4; all other standard control files
have a default value of 8.

The default value for levels 2 and 3 for this parameter in the standard control files is zero. This
value causes TXPROM to access every consecutive bit in the PROM.

10.7.18 PROM LEVEL n LOOP COUNT. This parameter determines the number of iterations
that are performed of the level n (n =1, 2, or 3) mapping loop. The value may be any number from
1 to 32767. TXPROM allows the user to enter this parameter for each of the three possible PROM
mapping levels after it issues the following prompt(s) (only the prompts for the number of levels
selected in the PROM mapping levels parameter are produced; all other levels are set to one):

PROM LEV 1 LOOP COUNT =
or

PROM LEV 2 LOOP COUNT =
or

PROM LEV 3 LOOP COUNT =

The default value for each of these parameters in the standard control files varies with the selected
control file.

10.7.19 TRANSFER BIT WIDTH. The transfer bit width designates the number of bits that are to
be transferred in each bit string. This parameter applies to both the memory and the PROM
portions of the operation. TXPROM allows the user to change the transfer bit width by producing
the following prompt:

TSFR BIT WIDTH =

The default value for this parameter in standard control file :S287 is 4; all other standard control
files have a default value of 8.

10.7.20 PROM BITS PER WORD. This parameter specifies the number of bits in each word of the
PROM device being used. It should match the architecture of the PROM device. TXPROM allows
the user to change this parameter by producing the following prompt:

PROM BITS/WORD =

The default value for this parameter in standard control file :S287 is 4; all other standard control
files have a default value of 8.

10.7.21 PROGRAM ZEROS OR ONES. This parameter indicates whether the PROM device begins
as all zeros and must be programmed by burning ones, or if it begins as all ones and must be
programmed by bumning zeros. The PROM Programmer Installation and Operation Manual contains
a table of initial conditions for all devices that can be programmed with that unit. This parameter
should be set to a 1 if a high-level programming pulse (programmed with ones) is required, and to a
0 if a low-level programming pulse (programmed with zeros) is required. TXPROM allows the user
to change this parameter by producing the following prompt:

PROGO’'SOR I'S =

Change 1 10-14 : Digital Systems Division

[o]
{—@? 946258-9701

The default value for this parameter in the standard control files varies with the control file
selected.

10.7.22 PULSE WIDTH. The pulse width parameter is a code that designates the duration of the
programming pulse to be used with the selected PROM device. Table 10-2 lists and defines these
codes. Table 10-3 lists the programming pulses required for some commonly used PROM devices.
The pulse width is the length of time that power is applied to the PROM device to bum
simultaneously programmable bits. TXPROM allows the user to change the value of this parameter
by producing the following prompt:

PULSE WIDTH =

The default value for this parameter in the standard control files varies with the control file
selected.

Table 10-2. Pulse Widths -

Pulse Width Pulse Width
Code (ms)
1 0.5
2 1.0
3 20
4 40
5 8.0
6 16.0

Pulse Width=2604€+(25)ms

Table 10-3. Minimum, Standard and Maximum Pulse Widths and Duty Cycles

Pulse Width (ms) Duty Cycle
PROM Types Minimum Standard Maximum Minimum Standard Maximum

TTL

188A, 5188, 5288,
S287, 8387, 8470,

S471, 5472, 8473 1 2 20 25% 35%
EPROM;s
2704,2708,2716 0.1 0.1 1 50% 50%

Note: TTL PROM types have the prefix SN74.

Change 2 10-15 Digital Systems Division

@ 946258-9701

10.7.23 DUTY CYCLE. The duty cycle parameter indicates the percentage of the programming
cycle time that it actually used for burning the PROM. The total programming cycle consists of a
programming (burn) phase and a rest phase. The duty cycle value (between 0 and 100) represents
the maximum percentage of total time that the programming pulse can be active. Table 10-3 lists
the duty cycle requirements of some commonly used PROM devices. TXPROM allows the user to
change this parameter to match the requirements of the PROM device being used by producing the
following prompt:

DUTY CYCLE =

The default value for this parameter in the standard control files is 25 for PROMs and 50 for
EPROMs.

10.7.24 NUMBER OF RETRIES. This parameter indicates the number of times that TXPROM
will try to program a specific set of bits without success using the normal pulse width. If the first
attempt to program a set of bits in a PROM device fails. TXPROM repeats the programming cycle
for that set of bits until the correct data is transferred or the number of retries count is depleted.
TXPROM allows the user to change this parameter by producing the following prompt:

NO. RETRIES =
The default value for this parameter in the standard control files is zero.

10.7.25 SIMULTANEOUSLY PROGRAMMABLE BITS. This parameter indicates the number of
bits in the PROM device that can be programmed with the same programming pulse. This parameter
is a physical restriction of the type of PROM device. Bipolar devices require that only one bit be
programmed at a time; EPROMs require that an entire EPROM word be programmed simultan-
eously. TXPROM allows the user to change this parameter by producing the prompt:

SIMUL PROG’BLE BITS =
The default value for this parameter in the standard control files is 1 for PROMs and 8 for EPROMs.

10.7.26 CRU BASE. The CRU base parameter of the control file defines the CRU base address to
be used to select the PROM Programmer interface card. For standard applications, the interface
card responds to base address 20,¢. If the interface card is installed in a chassis location other than
the standard slot, the CRU base parameter must be changed. TXPROM allows the user to enter the
CRU base after it issues the following prompt:

CRU BASE =
The default value for this parameter in the standard control files is 20,4 .

10.8 BIT STRING MAPPING

The software uses the memory and PROM mapping parameters to determine the addresses of the bit
strings to be used in the programming cycle. When specifying mapping parameters, the PROM or
memory words within the defined bounds are considered to be a continuous string of bits. The
memory file is further divided into 16-bit words, while the PROM string is divided into words whose
length is determined by the architecture of the device. Mapping is required so that portions of the
16-bit memory words may be programmed into PROMs that have smaller word widths. The
mapping parameters include bit step and loop count, as defined previously in this section.

TXPROM allows three levels of bit string mapping: level 1, level 2 and level 3. Level 1 determines
successive bit strings in memory or PROM. When the level 1 loop count is exhausted, the initial bit

Change 1 10-16 Digital Systems Division

{_@‘}) 946258-9701

is incremented as determined by the level 2 bit step and the level 1 mapping is repeated. Each
time that the level 1 loop count is exhausted, the level 2 loop count is decremented, the initial
bit incremented, and the mapping repeated until the level 2 loop count is exhausted. At that point,
the level 3 increment is added to the beginning address, the level 3 loop count is decremented, the
loop counts for levels 1 and 2 are restored, and the entire cycle is repeated. When the level 3 loop
count is exhausted, cycling is complete. A map cycle for memory bits is completely independent
of a map cycle for PROM bits; however, the total number of bits that are mapped in the memory
cycle must be equal to the number of bits mapped to a PROM.

10.8.1 LEVEL 1 MAPPING EXAMPLE. Figure 10-3 illustrates an example of level 1 mapping. In
the example, the first four bits of each memory word are mapped into the odd-numbered addresses
of a 256 X 4 PROM, (a 128 half-byte transfer). Table 10-4 lists the mapping parameters for both
memory and PROM to accomplish the transfer.

10.8.2 LEVEL 2 MAPPING EXAMPLE. Figure 10-4 illustrates an example of level 2 mapping. In
the example, the first and the last four bits of each memory word are mapped into a 256 X 8 PROM
(a 256-byte transfer). Table 10-5 lists the mapping parameters for both memory and PROM to ac-
complish the transfer. The example combines level 2 memory looping with level 1 PROM looping.

MEMORY (128 X 16) PROM (256 X 4)
BITS BITS
ADDRESS o] 3 8 15 ADDRESS 0 3
0 1 o]
2 2 1 1
4 3 2
6 4 3 2
A A
o Le Ll L . °
[] ® — TV [] ,1_
. 1-’ . Wn‘ w-— .
254 128 255 128
(A)136188

Figure 10-3. Level 1 Mapping Example

Change 1 10-17 Digital Systems Division

@ 9462589701

Table 10-4. Level 1 Mapping Example Parameters

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 PROM START ADDR =0
MEM BYTES = 256 #PROM WORDS = 256
MEM START BIT=0 PROM START BIT =4
MEM LEV 1 BIT STEP = 16 PROM LEV 1 BIT STEP = 8
MEM LEV 1 LOOP CNT =128 PROM LEV 1 LOOP CNT=128
MEM LEV 2 BIT STEP=0 PROM LEV 2 BIT STEP =0
MEM LEV 2 LOOP CNT =1 PROM LEV 2 LOOP CNT = 1
MEM LEV 3 BIT STEP =0 PROM LEV 3 BIT STEP =0
MEM LEV 3 LOOP CNT =1 PROM LEV 3 LOOP CNT=1

TRANSFER BIT WIDTH =4

MEMORY (512 X 16) PROM (256 X 8)
BITS alITs
ADDRESS 0 3 12 15 ADDRESS 0 3 4 7
(o] 1 2 o] 1 2
z 3 4 1 3 4
4 5 6 2 5 6
6 7 8 3 7 8
8 9 10
A
L.
o A ® 1 p
[tL ’L' _L L . T
- T P9
. "" ,V- ,1_ 1
510 511 512 255 511 512

(A)136189

Figure 104, Level 2 Mapping Example

Change 1 10-18 Digital Systems Division

e}
@ 9462589701

Table 10-5. Level 2 Mapping Example Parameters

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 PROM START ADDR =0
#MEM BYTES = 512 #PROM WORDS = 256
MEM START BIT =0 PROM START BIT =0
MEM LEV 1 BIT STEP =12 PROM LEV 1 BIT STEP =4
MEM LEV 1 LOOP CNT =2 PROM LEV 1 LOOP CNT =512
MEM LEV 2 BIT STEP = 16 PROM LEV 2 BIT STEP =0
MEM LEV 2 LOOP CNT = 256 PROM LEV 2 LOOP CNT =1
MEM LEV 3 BIT STEP=0 PROM LEV 3 BIT STEP=0
MEM LEV 3 LOOP CNT =1 PROM LEV 3 LOOP CNT = 1

TRANSFER BIT WIDTH = 4

10.8.3 LEVEL 3 MAPPING EXAMPLE. Figure 10-5 illustrates an example of level 3 mapping. In
the example, the first and the last four bits of each memory word are mapped into the first 256
words of a 1024 X 8 PROM. The mapping of the memory words is then repeated three more times
to fill the 1024 words of the PROM. Table 10-6 lists the mapping parameters for both memory and
PROM to accomplish the transfer.

109 STANDARD CONTROL FILES

The TXPROM software includes a set of standard control files. The files contain parameters that
can be used without modification to program most PROM devices commonly used with the PROM
programming system. Table 10-7 lists the standard control files along with their contents. For
special applications, these files can also be used as the basis for building a custom control file, rather
than creating a new file. EPROM devices have two control files: the file with the letter B suffix is
for burn cycles and the file with no suffix is for reads. EPROM devices require repeated program-
ming cycles to implant the charge. The EPROM “B” files automatically repeat the programming
cycle to allow for this requirement. The standard control files reside on the same diskette as the
TXPROM software. '

1010 VARIABLE PARAMETERS

None, any, or all of the parameters in a control file can be made into variable parameters by
entering a value of * for each parameter prompt when the control file is created or modified. The
values for these parameters are not stored in the control file but must be entered in at execution
time (whenever the control file name is requested). Variable parameters allow frequently changed
parameters (like DATA FILE name) to be easily inserted, nonpermanently, into control file
parameters.

For example, the Standard Control file for 74287 bipolar TTL PROM devices was created with the
following variable parameters: DATA FILE, TSFR CODE, CMPR AFTER, MEM START ADDR,
MEM START BIT, MEM LEV 1 BIT STEP. To use the standard control file, the user must respond
to the control file prompt with:

DSC:S287(<data file><tsfr code>,<cmpr after><mem start addr>,<mem start bit>, |
<mem lev 1 bit step>).

The parameters inside the angle brackets, < >, must be supplied with the desired values. If no
parameters are entered, TXPROM generates prompts to ask for the information.

Change 2 10-19 Digital Systems Division

946258-9701

MEMORY (512 X 16) PROM (1024 X 8)
BITS BITS
appbress \°__ 3 12 15 ADDRESS \ O 34 7
o 1 2 0 1
2 3 4 1
4 5 6 2 5
6 7 8
e | o L o |
o L & | A A @& L e —_ o ®
¢ _ o * ® o T o 1
o et b 255 511 512
510 | 511 512 256 . 5
257 3 4
258 5 6
o e | & |
e~ o o
o T o T e 1
511 511 512
512 1 2
513 3 4
514 5 6
e | o | o |
e o o
o T o o T
767 511 512
768 1 2
769 3 4
770 5 6
° o | o
e & _ &
° e T o
1023 511 512
(A)136190
Figure 10-5. Level 3 Mapping Example
Change 1

10-20 Digital Systems Division

9462589701

Table 10-6. Level 3 Mapping Example Parameters

File (Memory) Mapping Parameters

MEM START ADDR=0
#MEM BYTES =512

MEM START BIT=0

MEM LEV 1 BIT STEP =12
MEM LEV 1 LOOP CNT =2
MEM LEV 2 BIT STEP = 16
MEM LEV 2 LOOP CNT =256

PROM Mapping Parameters

PROM START ADDR = 0
#PROM WORDS = 1024

PROM START BIT=0

PROM LEV 1 BIT STEP=4
PROM LEV 1 LOOP CNT = 1024
PROM LEV 2 BIT STEP=0
PROM LEV 2 LOOP CNT =1

MEM LEV 3 BIT STEP =0
MEM LEV 3 LOOP CNT =4

PROM LEV 3 BIT STEP=0
PROM LEV 3 LOOP CNT =1

TRANSFER BIT WIDTH =4

10.11 PROGRAMMING EPROMS

Since EPROMs are metal-oxide-semiconductor (MOS) devices, they must be programmed in a
different manner than TTL PROM devices. EPROMs are charge-storage devices that must be
programmed by repetively transferring charge to EPROM bits. This repetition may be accomplished
by looping through the programming process defined by the data configurations. The number of
required repetitions to transfer sufficient change to each bit or bit string is defined by the following
formula:

100 ms = pulse width x repetitions.

Therefore, using a pulse width of 0.5 ms, 200 repetitions must be used to successfully program the
EPROM. A delay must occur after each attempt to program a bit string before trying to program
the same bit string again. This delay allows the charge to diffuse into the EPROM device without a
buildup of charge on the surface.

Because of this delay, each bit string of the EPROM should be attempted once before repeating
the programming cycle. To ensure this delay, the number of retries parameter for programming each
bit string (defined in the control file) must be set to zero. Each bit of the EPROM will not appear
to have the correct value (O or 1) until sufficient charge has been transferred to it.

In the early stages of programming, the bits may not have acquired sufficient charge to have the
correct value. This appears as a programming failure if the number of retries is set to a nonzero
value, and the bit string will be programmed again without the required delay time. For the same
reason, the compare after parameter (defined in the control file) should not be set during the
programming cycle, since compare errors will be found in the early stages of programming an
EPROM.

Since the programming cycle tor an EPROM repeats many times, the dispiay parameter (defined by
the control file) should not be set during the programming cycle. Setting the display parameters
prints the memory or PROM data for each repetition. Therefore, to program, compare and display,
the process must be done in two steps. First, the parameters must be set to zero to program, and
after completion of EPROM programming, the parameters may be set to enable compare and/or
display. The number of repetitions defined must be changed to one before the second step in order
to compare and/or display.

Change 1 10-21 Digital Systems Division

946258-9701

Standard Control File

Data File

Data Bias

TSFR Code

CMPR After

MEM Disp

PROM Disp

MEM Start Addr

#MEM Bytes

MEM Start Bit

PROM Start Addr

#PROM Words

PROM Start Bit

MEM Map Levels

MEM LEV 1 BIT STEP
Loop Count

MEM LEV 2 BIT STEP
Loop Count

MEM LEV 3 BIT STEP
Loop Count

PROM Map Levels

PROM LEV 1 BIT STEP
Loop Count

PROM LEV 2 BIT STEP
Loop Count

PROM LEV 3 BIT STEP
Loop Count

TSFR Bit Width

PROM Bits/Words

PROG 0’s, PROG 1’s

Pulse Width

Duty Cycle

Number Retries

SIMUL Prog’ble Bits

CRU Base

:S288

*

*

* O ©

>20

:§287

256

S H = O = O

256

>20

Table 10-7. Standard Control Files

:$471

*

*

*

*

256

O H = O -~ O

256

BN = 00 0 —~ O —~ O

S N
w

>20

:S472 :E2704B

* *

0

1
* 0
0 0
0 0
* *
1024 1024
* *
0 0
512 512
0 0
+ +
* *
512 512
0 0
1 200
0 0
I 1
+ +
8 8
512 512
0 0
1 200
0 0
1 1
8 8
8 8
1 0
2 1
25 50
0 0
1 8
>20 >20

:E2704

*

0

*

*

* © O

1024

*

512

*

512

b
o

_ O 0 0 = O = O N R H = O = O

S W
(=}

>20

*Indicates variable parameters; i.e., value must be entered at execution time.
+A response is required. Enter 2 for :E27048B, :E2708B, and :E2716B. Enter 1 for all other standard control files.

1024

200

*

0

*

:E2708B :E2708 :E2716B :E2716

* *
0 0
1 *
0 *
0 0
0 0
* *

* * *

0 0 0
1024 2048 2048
0 0 0

t %

»

1024 2048 2048

0 0 0

1 200 1

0 0 0

1 1

¥ $

8 8 8
1024 2048 2048
0 0 0

1 200 1

0 0 0

1 1 1

8 8 8

8 8 8

0 0 0

1 1 1
50 50 50
0 0 0

8 8 8
>20 >20 >20

Change 2

10-22

Digital Systems Division

{@D 946258-9701

If level n bit string mapping is used to burn an EPROM, the level (n+1)’s bit step should be set to 0
and the loop count set to the desired number of repetitions. Note that the standard control files for
EPROM burns have level 2 loop counts of 200.

10.12 PROGRAMMING EXAMPLES
The following paragraphs illustrate the control file requirements to successfully program a PROM or
EPROM using TXPROM.

10.12.1 EPROM EXAMPLE. The following example programs an 8-word data file vertically to the
first 16 locations of a 512 X 8 EPROM (2704) as illustrated in figure 10-6.

MEMORY EPROM
o] i5 0 7
[0} 1 0
2 2 1

[o I

12

[oo]
o INJO |~]|W
(S
N
w
Iy
[&)]
()]
~
[+ 1]

14

(A)136191

Figure 10-6. EPROM Programming Example

Change 1 10-23 Digital Systems Division

\J_@ 946258-9701

Bits are transferred one at a time from memory to the EPROM. The user creates a control file by
modifying the E2704B standard control file. The following parameters are modified:

MEM MAP LEVELS =2
MEM START ADDR =0
MEM BYTES = 16
MEM START BIT=0
MEM LEV 1 BIT STEP =1
LOOP COUNT = 256
MEM LEV 2 BIT STEP=0
LOOP COUNT = 200
PROM LEVELS =3
PROM START ADDR =0
PROM WORDS = 16
PROM START BIT =0

PROM LEV 1 BIT STEP =8 Burns 1 word of memory vertically
' LOOP COUNT =16
PROM LEV2 BITSTEP=1 Positions to next column
LOOP COUNT =16
PROMLEV3 BITSTEP=0 200 repetitions since EPROM

LOOP COUNT = 200
TRANSFER BIT WIDTH = 1

10.12.2 PROM PROGRAMMING EXAMPLE. Twenty-four 4-bit fields are arranged in 16-bit
words of a data file, as shown in figure 10-7. These 24 fields are to be programmed repetitively in
the first 384 four-bit words of a 512 X 4 PROM with characteristics similar to a TI SN748287 (two
287s with a programming adaptor card to make them appear as a 512 X 4 device) as illustrated in
figure 10-7. ’

The user starts with the S287 standard control file and makes the following modifications:

File (Memory) Mapping Parameters PROM Mapping Parameters
MEM START ADDR =0 PROM START ADDR =0
#MEMBYTES =16 # PROM WORDS = 384
MEM START BIT =0 PROM START BIT =0
MEM MAP LEVELS =3 PROM LEVELS =1
MEMLEV1 BITSTEP=6 PROM LEV 1 BIT STEP=4
MEM LEV 1 LOOP COUNT =3 PROM LEV 1 LOOP COUNT - 384
MEM LEV 2 BIT STEP =16
MEM LEV 2 LOOP COUNT =8
MEM LEV 3 BIT-STEP=0
MEM LEV 3 .LOOP COUNT =16

TRANSFER BIT WIDTH =4

Change 1 10-24 Digital Systems Division

%@ 946258-9701

BIT
DISPLACEMENT
MEMORY

ADDRESS \‘\—' o 3 6 9 12 15
S R 777 R 7/
2

1(7) ,///é/, ?‘ ;////// ?2 ?FElII:’.lEORlnAGE)
11 7777 N 777 15
e r//] 17 ///1 18

19 v/ /S 20 /] 21

14 22 // /A 23 "/ /7 24

o] 1 W
1 2
~ . -~
° S REPETITION 1
. ® T
24
23 J
24 1 N
2
: S
® REPETITION 2
@
. o
a7 24
o~
1
2
- a - REPETITION 16
_ ®
(A)136192 383 24

Figure 10-7. PROM Programming Example

10.12.3 CONTROL FILE CHANGE EXAMPLE. The user wishes to change the S471 standard
control file so that the parameter DATA BIAS is a variable parameter. The user does the following:

CONTROL FILE = DSC:S471<cr>
'MODIFY OR EXECUTE? MO<cr>

MODIFICATION MODE
DATA FILE = *<cr> The user updates the 0 value to “*” and uses the
DATA BIAS =0 * <Acr> shift A to skip the remaining prompts.

SAVE UNDER CONTROL FILE NAME=DSC:8471/MOD <cr>
EXECUTE, BEGIN or END? END

Change 1 10-25 Digital Systems Division

@ 946258-9701

The modified control file DSC:S471/MOD can now be used instead of the standard control file.
The parameters that need be entered for its use are now: DATA FILE, DATA BIAS, TSFR CODE,
CMPR AFTER, MEM START ADDR, MEM START BIT, MEM LEV 1 BIT STEP.

10.12.4 EXECUTING A CONTROL FILE EXAMPLE. This example uses the control file created
in the previous example to burn a pair of S471 ROMS (256 X 8) from a 256-word relocatable
object module named DATA on the disc in drive 2. The ROMS eventually will be stationed at
address FOOO on a computer memory card.

CONTROL FILE =
DSC:S471/MOD(DSC2:DATA, F000, 1,1, 0,0, 16)
DSC:S471/MOD(DUMY,F000, 1, 1,0, 8, 16)

10.13 NONRECOVERABLE ERROR MESSAGES
The following is a list of nonrecoverable error messages issued by TXPROM. These errors cause
abortion of all action and return to the CONTROL FILE = prompt:

DATA FILE OPEN ERROR

DATA FILE I/O ERROR

CONTROL FILE OPEN ERROR
CONTROL FILE I/O ERROR
HARDWARE MALFUNCTION
HARDWARE OFFLINE

NO. STRING COUNT ERROR
STRING ADDRESS OUT OF BOUNDS
CAN’T GET MEMORY

Change 1 10-26 Digital Systems Division

[e]

946258-9701

SECTION X1

TXDS BNPF AND HIGH-LOW (BNPFHL) DUMP UTILITY PROGRAM

11.1 INTRODUCTION

The BNPFHL utility program provides the capability of converting a 990 Computer module in
standard object code format (i.e., in compressed or noncompressed format) to a module in BNPF
format (figures 11-1 and 11-2) or to a moduie in High-Low format. The conversion from standard

object code format to BNPF format is presented i_n figure 11-1.

WORD 2
WORD 3

4 TAG

WORD 1

4—TAG

v}
<«
fd
C

0033 000 000' «— STANDARD OBJECT CODE FORMAT

BNNNNNNNNF BNNPPPNNNF BNNNNNNNRF’ BNNNNNPPNF BNNNNNNNNF BNNNNNNNNF<4-BNPF FORMAT

(A)136193

Figure 11-1. Standard Object Code Format to BNPF Format Conversion

STANDARD OBJECT CODE (FULL FIRST LINE)
BYTE-LENGTH OF

INPUT FiLE S e b
—— e \ P
?0058L|GHTS A0000C0038C0006B000080200BF F FFBO6A0C0022B0910B17FC7F1EAF LIGH0001

¢ CORRESPONDING

F DATA

0 HNNNRINNNNF BNNPPPNNNE BNNNNNNNNF BNNNNNPPNF BNNNNNNNNF BNNNNNNNNF
FIRST BYTE BNPF FORMAT (FULL FIRST LINE)

DECIMAL BYTE ADDRESS

OF FIRST BYTE

(ASSUMING ZERO BIAS)
(A)136194

Figure 11-2. Standard Object Code Format to BNPF Format, Full First Line Conversion

Change 2 11-1 Digital Systems Division

946258-9701

C0038C0006B0000 «— STANDARD OBJECT CODE FORMAT

LLLL LLLL LLLL €«— HIGH-LOW FORMAT

(A)136195

Figure 11-3. Standard Object Code Format to High-Low Format Conversion

00058LIGHTS A0000CQ038C0006B0000B0200BFF FF BO6A0C0022B0910B17FC7F1EAF LIGHO0001

CORRESPONDING
DATA

000—007 LLLL LLLL L' Ll HHHH LLLL LLLL LLLL

\\ HIGH-LOW FORMAT (FULL FIRST LINE)

ADDRESS OF LAST FOUR-BIT STRING
ADDRESS OF FIRST FOUR-BIT STRING
(A)136196

Figure 114. Standard Object Code Format to High-Low Format, Full First Line Conversion

When a module in standard object code format is converted to BNPF format, each byte of the
standard object code is converted into a string of Ns and Ps (as shown above) preceded by a B
(denoting the beginning of the byte) and followed by an F (denoting the end or finish of the byte).
Each ‘N corresponds to a negative or zero bit value and each P corresponds to a positive or one bit
value. The output module in the BNPF format begins with the decimal byte address (up to five
digits) of the first byte contained on the line (as presented in figure 11-2). This decimal byte
address has no leading zeros and begins in column one. Each of the lines in the BNPF formatted
module contains no more than six bytes of information. An example of a full first line of standard
object code is presented in figure 11-2 with the full first line of a converted module in BNPF
format. The numbers being converted in figure 11-2 are identical to those shown in figure 11-1.

The conversion from standard object code format to High-Low format is presented in figure 11-3.

Change 1 11-2 Digital Systems Division

[e]
@ 946258-9701

When a module in standard object code format is converted to High-Low format, one of the four
hexadecimal numbers in each word of the standard object code is converted into a four-bit string
of Hs and Ls (where each H corresponds to a high or one-bit value and each L corresponds to a low
or zero bit value). The hexadecimal number in each word to be converted is selected by use of the
Position option entry. (Refer to paragraph 11.3.3.5 for a description of the Position option entry
function.) This Position option entry may be used to specify a 0, 4, 8, or 12, respectively, for the
first, second, third, or fourth hexadecimal numbers in the word. The conversion of the hexadecimal
number in the first word, into a four-bit string of Hs and Ls, is followed by a conversion of the
corresponding hexadecimal number in the same position of the second word (of the standard object
code). The process is continued for each corresponding hexadecimal number in each of the words
specified in the response to the MEMORY : prompt. (Refer to paragraph 11.3.4 below for a descrip-
tion of the response to the MEMORY: prompt). The Position option entry may also be used to
enter any one of the numbers from O through 12 and thereby, specify the bit position in the 16-bit
word at which the four-bit conversion is to begin. This means, for example, that specifying a 3
would result in converting bits 3, 4, 5, and 6 of the 16-bit word (which is represented in hexa-
decimal standard object code format) to a four-string of Hs and Ls. The output module in the High-
Low format begins each line with the beginning and end address (in decimal) of each of the four-
bit strings presented on the line, using three digits for the address of the first four-bit string on the
line and another three digits for the address of the last four-bit string on the line. (See figure 11-4.)
Each of the lines contains no more than eight four-bit strings. An example of full first line of stan-
dard object code is presented in figure 114 with the full first line of converted module in High-Low
format. The numbers being converted are identical to those shown in figure 11-3.

NOTE

All HILO conversions begin on a word boundary. Therefore, the

e
response to the MEMORY: prompt requires an even-numbered

address entry for the beginning and end address.

-«

The following paragraphs describe how to employ this utility program.

11.2 LUNOs
The BNPFHL utility program uses LUNOs 10 and 11, which are assigned to the input and output
pathnames, respectively.

11.3 LOADING THE BNPFHL UTILITY PROGRAM
Proceed as follows:

1. Load the TXDS Control Program in accordance with the step-by-step procedure pre-
sented in Section II in this manual.

2. Place the TXDS diskette containing the BNPFHL utility program in an available disc
drive.

3. Respond to the PROGRAM:, INPUT:, OUTPUT:, and OPTIONS: prompts as follows:

PROGRAM: :BNPFHL/SYS
INPUT: Input Pathname
OUTPUT: Output Pathname
OPTIONS: {BNPF} DUMP
HILO ,{COMPARE [, B<bias> I<init>P<pos>]
LOAD

(where a number is entered for <bias>, <init>, or <pos>>)

MEMORY: <beg addr>,<end addr>

Change 1 11-3 Digital Systems Division

o
@ 9462589701

(The MEMORY: prompt is printed or displayed on the system console after the BNPFHL utility
program is loaded as described in paragraph 11.3.4.)

The responses to the INPUT:, OUTPUT:, OPTIONS:, and MEMORY: prompts are described in
the following subparagraphs.

NOTE
All numerical input values in response to any of the prompts are

assumed to be decimal. However, another base may be specified
by using the following prefixes:

Prefix Base Example
! Octal . 123 (equals decimal 19)
> Hexadecimal >23 (equals decimal 35)

11.3.1 RESPONSE TO THE INPUT: PROMPT. The response to the INPUT: prompt is either the
pathname of a file or the pathname of a device. One of these two responses must be specified. When
a DUMP or COMPARE option is specified, the file or device should contain a standard object code
module. When a LOAD option is specified, the input file or device should contain either a BNPF of
High-Low formatted module to correspond with the BNPF or HILO response to the OPTIONS:
prompt.

11.3.2 RESPONSE TO THE OUTPUT: PROMPT. The response to the OUTPUT: prompt is either
the pathname of a file or the pathname of a device. One of these two responses must be specified.
When the COMPARE option is specified, the response to the OUTPUT: prompt should be a file
which contains a BNPF or a HILO formatted module, depending upon whether a BNPF or a HILO
file is to be compared to the input standard object code. The output device should not be a hard
copy device because no carriage control is included in the output.

11.3.3 RESPONSE TO THE OPTIONS: PROMPT. The response to the OPTIONS: prompt is
described in the following subparagraphs.

NOTE

All options must be separated by commas. The Bias, Initialization,
and Position options can be defaulted as explained below, but, when
used, must be specified in the following sequence: Bias, Initializa-
tion, and Position.

11.3.3.1 BNPF and HILO Options. The BNPF option specifies a BNPF formatted input or out-
put module and the HILO option specifies a High-Low formatted input or output module. Either
the BNPF or HILO option must be specified. The abbreviations BN and HI may be used, respec-
tively, instead of the full four characters. When neither the BNPF option or the High-Low option
is specified, an error results.

11.3.3.2 DUMP, COMPARE, and LOAD Options. The use of these options is described in the
following subparagraphs.

NOTE
1. One of these options must be specified or an error will result.

2. Each of the option names may be abbreviated by using the first
two letters in the option name

Change 1 11-4 Digital Systems Division

@ 9462589701

DUMP (DU) Option. The DUMP option causes the input file in 990 standard object code to be
dumped to the output file in the specified BNPF or High-Low format.

COMPARE (CO) Option. The COMPARE option is used to verify the results of a DUMP by
comparing the output BNPF or HILO formatted file to the input file in standard object code
format.

When there is no discrepancy in a BNPF COMPARE, the beginning and end address of the com-
pared information or data are printed on the system console. The following printout is an example
of a BNPF COMPARE without errors:

THDZ 236213 oA 100 00802

rredoerr!s BT el IYVE
IMPAT: Dac2sLIon T dEBEd

guTrdT: DocZ: Toe-dEd

JrTIONE: EBresCO

Merdey s i 24

oo ADDR=0u00

D ADbDR=0013

TADZ 936213 i 10 00203

rROeRA:

When there is no discrepancy in a HILO COMPARE, no printout or display is presented on the
system console.

When a BNPF COMPARE is discrepant, a presentation of the discrepancy is printed out or
displayed on the system console. An example of a typical printout or display of a discrepancy is:

T0064=9C M0064=38
where:

T represents the BNPF output file; 0064 represents the decimal address of the byte; and 9C
represents the hexadecimal value of the byte, and

where:

M represents the input file in standard object code; 0064 represents the decimal address of the
byte; and 38 represents the hexadecimal value of the byte.

The discrepancy is noted by the difference in hexadecimal byte-values 9C and 38. When there
exists no discrepancy, both hexadecimal byte-values are 38 and, as a result, are not printed out or
displayed on the system console.

When a HILO COMPARE is discrepant, a presentation of the discrepancy is printed out or displayed
on the system console. An example of a typical printout or display of a discrepancy is:

M0003.<0,3>=0000 T0003.<0,3>=2000

Change 1 11-5 Digital Systems Division

946258-9701

where:

M represents the input file in standard object code; 003 represents the decimal address of the
input file word; 0,3 represents the beginning and ending bit positions of the four-bit string in
the input object file; and 0000 represents the hexadecimal value of the input file word; and

where:

T represents the HILO output file; 0003 represents the decimal address of the output file
word; 0,3 represents the beginning and ending bit positions of the discrepant four-bit string in
the output file; and 2000 represents the hexadecimal value of the output file word.

The discrepant output is presented in hexadectmal word format but, nevertheless, represents the
High-Low formatted output from the HILO DUMP program execution. In addition, the discrepancy
is noted by the difference in hexadecimal word-values 0000 and 2000. When there exists no dis-
crepancy, both hexadecimal word-values are 0000 and, as a result, are not printed out or displayed
on the system console.

LOAD (LO) Option. Selection of the LOAD option causes a previously created BNPF or
High-Low formatted file to be converted into an output file which can be used to program
PROMs using the PROM Programming Module (i.e. the hardware module). Refer to the TXDS
(TXPROM) Programmer Utility Program section in the TXDS Programmer.s Guide, manual number
946258-9701.

11.3.3.3 Bias (B<bias>) Option. The Bias option supplements the DUMP and COMPARE options.
It defines the number to be added to the address of the relocatable data in the input file as well as
to the relocatable data itself for the purpose of producing the output file or for the purpose of com-
paring the input file to the output file. The BIAS option has no effect on nonrelocatable object
module data. The default-substitute produced by the utility program is 0. An example of the use of
the Bias option is presented in paragraph 11.5.5.

11.3.3.4 Initialization (I<init>) Option. The Initialization option is used to initialize the buffer
area into which the input file’s standard object code is to be read. This initialization is done prior
to converting the input file to the BNPF or HILO format so that each bit position initially contains
a 1 or 0. Unused sections of the buffer are also initialized. The default substitute provided by the
utility program for the Initialization option is a 0. Whenever a number other than 0 or 1 is specified,
an error results. An example of the use of the Initialization option is presented in paragraphs 11.5.3
and 11.5.4.

11.3.3.5 Position (P<pos>) Option. The Position option specifies the first bit of the four-bit string
from each of the input-file-words (which are in the format of standard object code) that are to be
converted to the HILO format. A Position option number from O through 12 is selected by the
operator to supplement the HILO option selection. The selected number specifies the position
number of the start-bit of the four-bit string of the 16-bit word from the input file’s standard object
code. An example of the use of the Position option is presented in paragraph 11.5.3.

11.3.4 RESPONSE TO MEMORY: PROMPT. The operator’s response to the MEMORY : prompt is
used to specify the address of the first and last bytes (on a word boundary) of the section of the
input file’s standard object code that is to be converted to the BNPF or High-Low format. The
address of the first byte is the beginning address and the address of the last byte is the end address.
When the entire file is to be formatted, the beginning address msut be 0 and the end address must
be the number representing the byte-length (on a word boundary) of the input file or a number
greater than the byte length of the input file. The byte-length (on a word boundary) of the input
file is specified in hexadecimal in the first word of the input file’s standard object code following
the zero (0) tag. In the event the end address entered in response to the MEMORY prompt, exceeds

Change 1 11-6 Digital Systems Division

Y‘I_i]’"? 9462589701

the capacity of memory, the CANNOT GET MEMORY error message is printed or displayed on

the system console.

NOTE

Thé HILO 6ption produces an error message when a nonword
boundary is specified, but.the BNPF option does not produce
an error message when a nonword boundary is specified. This is

because the BNPF option operates on byte stnngs rather than

on word strings.

The MEMORY: prompt is not 1ssued when the LOAD optlon
is used. : .

11.4 ERROR MESSAGES

The error messages that result from misuse of the BNPFHL utility -are listed in table 11-1 with an

explanation of the cause of each error.

11.5 EXAMPLES OF USAGE OF THE BNPFHL UTILITY PROGRAM

Six examples of usage of the BNPFHL utility program are presented in the following subparagraphs.

The standard object

TH330

HEMORY ZIZE

FROGRAM:
IHFL

code used in each of the examples is presented below.

AWHILABLE: 12244

1-n ool

IT:

OUTFUT: LOG

OFTIONZ:

THCCAT ‘9:.?=,~i ve

_llﬁhlllllll
LIGHDUOZ
LIaHOOOo2

&

SR

e

-I 1-4]” 022577 071232801 SOEMAT 347075 o0 t%:;:::::::;
Change 1 11-7 Digital Systems Division

R ROSAR g s T L T

Ta

946258-9701

Table 11-1. BNPFHL Error Messages

Message
UNABLE TO OPEN FILE

1/O ERROR ON INPUT
FILE

I/0 ERROR ON OUTPUT
FILE

BIT VALUE TOO LARGE.
MUST BE > C OR LESS

ILLEGAL FUNCTION COM-
MAND

REQUIRED PARAMETER
MISSING

INIT VALUE GREATER
THAN 1

UNABLE TO OPEN OUT-
PUT FILE

ILLEGAL NUMBER INPUT

ADDRESS WAS NOT ON
WORD BOUNDARY

BAD OBJECT FORMAT
ABORT; SYSTEM ERROR

FROM XOP

START ADDRESS GREATER
THAN END ADDRESS

CANNOT GET MEMORY

START GREATER THAN END

OR LENGTH > 256 WORDS

Cause
The specified input file does not exist.
The input file cannot be read.
The output file cannot be opened and/or
written to.
The position parameter exceeds Cy¢.
The first parameter after the OPTIONS:
prompt is not HILO or BNPF.

The second parameter after the OPTIONS:
prompt is not DUMP, COMPARE, or LOAD.

The initialization parameter is not O or 1.
The specified output file does not exist.

One of the numeric parameters is not a legal
number.

One of the addresses after the MEMORY:
prompt does not begin on a word boundary.
This error occurs only with the HILO option.

The input files does not contain legal object
code.

A system error flag was returned from an
XOP. The flag value is printed above the error.

The first memory parameter is larger than the
second memory parameter.

Cannot get memory to run.

The starting address after the memory:
prompt is larger than the ending address

or the difference between the two is greater
then 256. (This applies only to HILO
format.)

Change 1

11-8 Digital Systems Division

946258-9701

11.5.1 EXAMPLE

PARAMETERS

THDE

FROGSREAM:
IHPUT:
qQUTRLUT:

FROGRAM: =
INPUT: D=
QuTrPLT: LOG

=t

£ BMMMMHNFME BHMMHMMMNE BFFFFPFEFE EFFPFFRERE BN

ErMHMHMHMHNNE

JSRISISISICISISIRIS
EMHMPERFFRE
HHEPHHENFE
ErHtEHretiE
Sd EMMMHMMHENMNE
ErrrariryryrrE
BEHMANMMHMNMNE
HMHMMF
ErrHrirar{rr4F
|SEISIsISIRIgISISTS

110

LilsaLFSS

>

BHMEMHMMFPMNE
EFHEHMMNMNF
EFFFFFFHNE
EHHPHMMPHE
BFEFMMMNMTE
BMHMHMHMNMMNNE
ErrHHArMrMME
EHFHFFMNPFF
EMHMMAMIrE
B MM HHE
EFMHIMMMHMMHAE
ErrrMrrrrF
EMMHMHMHMNNE

ool

EHHMMFHNFF
EMMHHMMMHMNF
EMHHPHFRHE
ErHMNErHHMNE
EHMHPFHMNFHE
EMMMMMPFEHFE
ErrMHHNERHE
EMMMMMMMHMNE
BNt HMHMHHE
| AR IRIR ISR IS IR IS
EMHMHMMNMHMHMNMF
ErMMHHHMMMNHE
[JelgIRIRtRISIsTE IS

EMHHFHMMHE
ENMFPHHMPHFE
EFFFPHEPFF
EFFFFHNFNE
EMMHMHHEHHNE
EFPFPHMMMNMFE
EHMHAMMMHNEF
EMMHHNMNNMHNFE
EMMMHHNHNE
EfMHMMNrMMEE
EFFHMHMEARMHE
EMAMMEMMNE

H
EMMHMFHFERF
EMHHMHEMPHE
EMPMMHHMPPMNFE
EMMHMMNMMEME
EMMHPMMNPRHE

EMFMHMNMMHMF
[SEISIsIRIRIS IS IR
EHMNMHMHMMMHNF
| 4RIsIRIRIRIS SIS]S
[JRIEISISIRIS IS IS TS

SHMMHMNNNE

OF BNPF FORMATTED DUMP USING DEFAULT SUBSTITUTE

HHPFHE EFHFMHMHMMNF
EFFFFFFHMF
EMMHNHFEHMMNMFE
EFHPHMMHHHE
EMMHMHERHNE

EFFPPFPRPNF
EMHMHMMHMNMANE
EMMMHMHMNMAE
EHMMPFHMNTE
EMHMMHEHEHMNMHNE
EMrMHMMrMEHNE

Change 1

119

Digital Systems Division

946258-9701

11.5.2 EXAMPLE OF HILO FORMATTED DUMP USING DEFAULT-SUBSTITUTE

T=D= HISZLS N 1 0 NHHEIES
FROGRERAM:

IMFUT:
HATFUT: [E sTEMF-OEB L

HI+ T
THOE

it [TEHE =]

FROGEAM:
INPUT:

O O—-007

LLbL BLLL BREEL bith HHHH LELL LLLL ielu
COLH tlel bebl bbb el LULHE LELL Lttt
LLbH LELE LLLH LLHH LLLL LULHH LELL LRLLE
LLLH LLLE LLBEH LRl bLLt BLLE LLLL bLtkt
[L2056
LLtb bbbt bbb bt bbbl Lelb LElL LkLb
0SS Lttt LEtL bbbk Lett BLEL BELE LUEL Lt
L2170 S 1 S A S G Uy O A S O)y I
e bbelb berb bbte Lokt bbb LLbe sibb
LLEL bbb bebb Lbrl eLLL BLLL LELE Ltll
LAY S 2 T I 5 5y I I I Sy 30 A A Wy WU Uy N W
L bbb bbbt teeb tbbo tibl LELL bl
(I T S U A Sy U U Wy Ay) A O Sy Y A
LLbb bbb thtb bbbt trel LRk LRl it
LLLL bbb bbb bttt beeb tLil tLbu buet
LLLE LLLE ekt tril bbbl fbtb bBLbb ettt
5 bbb ortel bbb bbbt BLLb bbbkt tiei oliu
1 143 Libb Lpbl tteb bRbL LLLL LRLL LLLL bbb
144-151 LLLL LLbbt bbbl BLtD bleb vkl LLLL Lect
= LLLL LLbb bbtbb ertp bbb bbb LLLE LLLL
LLLL Lbtb telb bibb Lebl BLBEL LEER LLLL
LLLL bbb bbb LR LBl LLEL BELE Letb
Lhk bbb LeRL LELL LLbU bbb LLbbL kBLbt
LLbi tbet Lebb pbbp bRt tlbl LLeb b
Ll LLLE bbb Chbb bbbl bbbk titl eleb
Leeb ettt bbbl berl LLeL bLLLL tbib bbbl
CLLL LLbLb et ebel bbbl bbbt bbbt tellb
LLEL LLEL thip bBrep bbbl LLbb bbbl thib
LLLL bRBL bbb bbbt el bbb oLl it
LUl LRLE LLEE ebibb beel bbb bbb bbbt
LALb Lelb Libb bbeb bbbl brbb bbbl LeLL
PLLL bbb bbbt bbbl bRbb LLLL BRLL BLLL

Change 1 11-10 Digital Systems Division

946258-9701

11.5.3 EXAMPLE OF HILO FORMATTED DUMP BEGINNING AT POSITION 4 AND OF
INITIALIZING THE BUFFER TO ALL BINARY ONES

THDE FIEZ1S #A 1< 0 ans ne

FROGRAM:

IHFLT:
THITRPLIT:
OFT 10N
MEMORY

2 TEMF -0
s I1sF3

12 15 1o 0 0 07
FROGRAM: S THLCCRTEYE
IMNPUT: DSCZ: TEMF-OFJ
TUTEUT: b
grFIONz: 3
THCORT

AO0-007 LLLE BLLEL LLLL LLHL HHHH LHHL LEEL HLLH
(i LHHH LHHL LLLL HUHE LHHH LHHL LHHL LELL
CLLL LLHL HHHH LLHL LHHL LLHL LHEL LLHL
Libl LHHL LHHL LHLL HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHBH HHHH HHHH HHBEH HHHH HHRH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
1= HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
0FE~10Z HHHH HHHH HHHH HHHH HHHE HHHH HHHH HHHH
104-111 HHHH HHHH HHHHY HHHH HHHH HHHH HHHH HHHH
112-113 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
120-127 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
12231325 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH

< HHHH HHHH HHHH HHHH HHRH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHEH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHE HHHH HHES HEHA
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHEH HHHH HHRE HHHA
HHHH HHHH HHHHE HHHH HHHH HHHH HEHY HHHA
HHHH HHHH HHHH HHHHE HHHH HHHH HHHH HHHH
HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHA
HHHH HHHH HHHH HHHH HHHH HHHH HHHB HHHH

Change 1 11-11 Digital Systems Division

946258-9701

11.5.4 EXAMPLE OF A HILO COMPARE WITH DISCREPANT DATA. The file generated in the
example in 11.5.3 is compared to the first hexadecimal number in the words of the standard object
code file (positions 0-3) instead of the second hexadecimal number in the words of the standard
object code file (positions 4-7) that was used in generating the file presented in paragraph 11.5.3.

Taltz 235215 oA i< 0 - onil

FROGREAM:
IMPUT:

OUTEUT:

OFTIONE: b

MEMORY S s 552

ILLEGAL HUMEER IHFUT

T=h= 335215 #A 1- 0 1S

.PHFFHL

FROGRAM: 3 EMFFHL -
INFUT: s LIGH geJd

guTFUT: TEME-OE

DFTIBHT= HI=COsI1

ToOOo=z, o MOQaS, c0s 3=00010 THanS,
(211} 1o00 Toag:

M anon TOunEg.

. nunnD taoog Tooob,
MOGOE, I MOgin., =1 000
mMontl. TH“11 Manles, 1o0n

MOnL I, 0. (11 Tonlz Mol o oo
1 I I Tnnl= MOGQIA, cOe S3=0000
Tuul... MOGLE. i0s 3v=1000
Toi=a, « MOOIHE, T0s Zv=1000

TOO1E, <.

1- 1N nn:13

Change 1 11-12 Digital Systems Division

946258-9701

11.5.5 EXAMPLE OF A BNPF FORMATTED DUMP WITH BIAS 100

FROGRAM:
INFUT:
OQUTFUT:
geTIaOr
MEMORY
7Dz

B

HE13Y
33

FROGRAM:
INPUT:

TITRUT: LOG

.FNPFHL’:f&
tLIGHTES
STEMF-OE X
i E100

OEJ

1< 0

: THCCAT-SYS
DIC2: TEMP OB

B HMMHHNE
 BHHMHMNHEHE
EMMMMHHHANF
t BHMMHHHFPPHF

EHHHFHFPPF
[SRIRISIRINIRIRIRiS
. EHHMFFFRFFF
EMHMHFFPMNFHE
2 BHMMEHMHMNE
BrHMEHrHENME
EHMHMHMAMMHAF
B+ {4 HF
EHHHMHHHMHNE
EHMEMHNMNHE
ErrHAMMENE

EFHHFFFRHNE
EHHMHMMMHNF
EFHHMMHFPNE
EFHPHMNMHMFE
EFFFRFPHMHF
EFMHMHFFMF
EFFFPHMMMNF
EMHHMMMEMNMNFE
EMMMMrHMME
EHFPHFFEHFRFE
PNNNHNHHHF
B

E NNHNHHHNF
EMHHEMMHMME
EMMMHMHMMHMMF

=
Y]
[

ENHMNMNMNNF
EFFFFPPFPPF
ENHHHEHNPF
ENMMHHHHNE
EMHMFHPPNF
EHHHPHMHNE
ENHFFPHNPHF

HHMHMEFNE
EMHMHMPENF
EHMMHMMHNNE
EHMMHHHNNMHF
HFHEHHNE
EMHHNHNNNE
EMMMNMHMHNE
EHMHMHHMNMHHE

EHPENENFNF
EFFPPRFPPF
EMMHENNHME
EFMMNHFRNE
EFFFFNFPEF

EFPFPNHENF

EHHHMMMMNMF
EPPHNMNHNF
EMHMHHMNMHMNEFE
EHAMMHHMHMNHE
EHMHMHMMANHMNF
jaiaiaininininiaisl
EMHHHMMMHMHMNF
EMHMMHMHMHMMFE
EHHEtHMHMHME

EMMMHHNNMNMFE
EMHHMNNFPHE
EHMMPMPFPF
EMMHMHPMPHE
EMHHHHPPNF
EMHMMHMMMNPNF
EHHHNMFFNFE

EHHHHHHFNE

ENMHFNPPNE
EMHHMHHMMME
BHMMHHMMMHE

T AT ST ST ATt o
[iR IR iRin1s ik ik L

ENMHMMNHMHMNE
EMMHMMMMNMNMF
EMMMMHMNMNMF

EMMMHMNMMNME
EFMFPHNMMMNF
EFFFFPPNNE
EMHHFNMMMF
EFHFHMHMNMHMNF
ENMNNNPFNME
EPPHMHMMHMF
ErMHMHMNMNPF
EFFPPFPENF
EMHMHHHMMMNAFE
EMMHMHMMMMHE

Y NTNUNTNTSTNTSTHY of
FaRihiRiRtibiRininis

EMNMHHNMNHFE
EMMHHHMMMME

11.5.6 EXAMPLE OF A BNPF COMPARE WITH DISCREPANT DATA. The BNPF file which is
used is the one created in paragraph 11.5.5 with Bias option 100; however, the COMPARE was

nerformed without the Biag nnt"\n

PYiiUiinad

FROGEAM: :E

INFUT:
RITRUT:
0=T10
MEMOR Y 2 1)
EFR HDHF—

EROGeaM:

DzCa: LIbHT"
s TEMP-OE]

1S U

1< 0

Tansd=ar

ANSize

[ITIHES |

(1] HS

[
r

foas3=10s

Change 1

11-13/11-14

Digital Systems Division

@ 946258-9701

TXDS IBM CONVERSION UTILITY (IBMUTL) PROGRAM

SECTION XII

12.1 INTRODUCTION ,

The IBM Conversion Utility (IBMUTL) Program provides a means of transferring standard I1BM
formatted diskette datasets to TX990 files and transferring TX990 files to standard IBM for-
matted diskette datasets. IBMUTL also provides a means of formatting diskettes to standard IBM
specification for a single density diskette as designated in ‘““The IBM Diskette For Standard Data
Interchange”, GA21-9182-0.

12.2 IBMUTL DESCRIPTION

IBMUTL allows the user to read or write datasets on an IBM formatted diskette in a form that
can be read and used by systems and devices that are based on IBM sequentially sectored diskettes
using the EBCDIC character set. The IBM formatted diskette may already contain datasets created
by another process or may have been newly formatted by this utility or other means. All pre-
existing datasets will be preserved.

12.2.1 FORMATTING IBM DISKETTE. The diskette is formatted to IBM format by entering
the format command. If more than two bad tracks are found, or if track zero is bad, the diskette
is unuseable and another diskette should be used. Track zero contains the dataset headers (sectors
8-26) and other information about the diskette (sectors 1-7). The dataset headers are written to
include name, record length, beginning of extent (BOE), end of extent (EOE), and end of data
(EOD) fields only. All others are left in the initialized state (bilank).

12.2.2 TRANSFERRING TX990 FILES TO IBM DATASETS. TX990 files that are to be con-
verted to IBM format must be specified by the operator with a standard TX990 pathname. The
new dataset will begin with the first available label following the last used label in the IBM diskette
directory. Empty labels between used labels are skipped by this directory. The name of the new
dataset may be the same as an already existing dataset but the existing dataset will not be replaced.

12.2.3 TRANSFERRING IBM DATASETS TO TX990 FILES. The operator must specify the
desired dataset label and the TX990 pathname. The dataset labels from the IBM diskette are dis-
played when the transfer command is entered. If the TX990 file does not already exist,
it will be created as a noncontiguous sequential file. If two datasets have the same name,
only the first dataset may be accessed by this utility.

12.3 LUNOS AND THEIR USES
This utility uses the console device assigned to LUNO 15 as the interactive device. If LUNO 15 is
not assigned, the system console is used.

12.4 LOADING AND EXECUTING
IBMUTL can be executed using OCP or the Terminal Executive Development System (TXDS).
If OCP is used, follow the procedure below:

1. Ready the device which contains the object program for IBMUTL.

2. Load the program into memory using OCP. IBMUTL must be loaded as a privileged
task.

121 Digital Systems Division

o
@ 946258-9701

LP.CS1,3,P. if loading the IBMUTL object program from
cassette drive one as a privileged task

LP,:IBMUTL/SYS,3,P if loading the IBMUTL object program from
the system diskette drive, file :IBMUTL/SYS,
as a priority level 3 privileged task

3. Execute the program, and terminate OCP.

EX,10.TE.

If the IBMUTL object program is linked into the system, omit steps 1 and 2 and simply
execute the task using the task ID assigned to it at that time.

If the TXDS control program is used, follow the procedure below:
1. Ready the device which contains the object program for IBMUTL.
2. Enter the name of the device or file which contains the object program in response to
the PROGRAM: prompt. Specify IBMUTL to be loaded as a privileged task by following

the device or file name with “,P”.

PROGRAM: CS1,P* if loading the object program on cassette drive
one and executing as a privileged task

PROGRAM::IBMUTL/SYS,P* if the object program in the file :IBMUTL/SYS
on the system diskette drive and executing as a
privileged task
12.5 OPERATOR INTERACTION

12.5.1 SPECIAL CHARACTERS. There are two special characters recognized by IBMUTL. They
are as follows:

* When entered in response to a prompt and followed by a carriage return, IBMUTL is
terminated.

& When entered in response to a prompt and followed by a carriage return, IBMUTL
restarts by requesting the IBM diskette drive name.

12.5.2 OPERATOR PROMPTS. When the task has been loaded and executed, the task name and
revision level are printed followed by a request for the IBM floppy diskette drive name.

TI FLOPPY DISK IBM CONVERSION TASK. PN 936216 **
IBM DISK DRIVE NAME:
The required service is selected in response to the next query.

SERVICE? FFFORMAT. T=TRANSFER:

12-2 Digital Systems Division

{@p 946258-9701

When format is selected, no further interaction is necessary. The format process is executed to
completion and the following messages are displayed.

FORMAT IN PROGRESS.

FORMAT COMPLETE.
The utility will then request the IBM diskette drive name again.
When one of the transfer services is selected, the IBM diskette is checked for proper format and a
list of the labels is displayed. When the IBM format is found to be incorrect, a message is displayed
and the diskette name request is repeated. (Operator responses are underlined; (C/R) represents a
carriage return). Upon responding with a “T” for the transfer function, the following messages
are output:

FILE1 Ali dataset labels on the IBM format diskette are listed.

FILE2

FILE3

NOTE

nra mrimtad rhase
dlT plliiicu WhGll

all blanks.

While listing the dataset labels of the IBM formatted diskette, blanks
a 1

datnnn" ic ancnuntarad in which the lahe

aset is encountered in which the label contains

or,

#* DISKETTE NOT IBM FORMAT ** Specified diskette is not an IBM formatted
diskette.

At this point, if the format is correct, the program is ready to perform the transfer operation.
The direction of transfer is established by response to the next query.

FUNCTION? F=FILE TO DATASET, D=DATASET TO FILE:
or

oM

Whether or not an “F” or a “D” is selected, the next question asked is:
CHARACTERS PER RECORD? 2 MIN. - 128MAX: 80(C/R)
When only a carriage return is entered, the default value is 80 characters per record.

The TX990 user file pathname and IBM dataset names are requested next:

USER FILE PATHNAME: DSC2:SOURCE/ABC(C/R)
DATASET NAME: SOURCE(C/R)

FILE TRANSFER IN PROGRESS. . .

12-3 Digital Systems Division

o
%@ 946258-9701

Pathname can be defaulted to the first six characters of the dataset name when transfer is dataset
to file: or when transfer is file to dataset, the dataset name can be defaulted to the file name portion
of the pathname. The default substitute is specified by a carriage return (C/R) response to the
query. Pathnames that are preceded by a colon are defaulted to the system diskette drive.

When the IBM diskette is not filled at the completion of converting the specified file, IBMUTL
requests the record size again.

When it is desired to reverse the transfer function or change the drive on which datasets are being
accessed, an ampersand (&) symbol reply returns the program to the point where the diskette
name is requested: '

USER FILE PATHNAME: &(C/R)
Responding with an ampersand (&) returns program control to the initial user prompt:
IBM DISK DRIVE NAME:
If the user enters an asterisk (*), IBMUTL terminates with the following message;
UTILITY SERVICE TERMINATED
12.6 ERROR REPORTING AND RECOVERY
Errors encountered during execution of IBMUTL are reported to the operator in accordance with

table 12-1. Whenever recovery from such errors is possible, the program returns to a logical restart
point and continues its function.

12-4 Digital Systems Division

9-Z1/8-Z1

uoisialg swejisAs 1eubig

Message

#* DISKETTE NOT IBM FORMAT **

UNDEFINED PATHNAME

DISKETTE DIRECTORY FULL

TOO MUCH DATA

MORE THAN 2 BAD TRACKS,
FORMAT ABORTED
FILE SERVICE ERROR nn

FLOPPY DISK ACCESS ERROR nn

1/O ERROR nn

Table 12-1. IBMUTL Error Messages

Meaning

Specified diskette is not an IBM format diskette.

illegal pathname has been entered.

An attempt to exceed the maximum number of

datasets (19) allowable per IBM formatted diskette.

Data capacity of IBM format diskette has been
exceeded. Last file is labeled as an empty dataset
and transfer is terminated.

Bad diskette.

Error encountered while accessing TX990 user

file. Refer to Error Appendices for error code nn.

Error encountered while accessing IBM dataset.
Refer to Error Appendices for error code nn.

I/O error encountered during program execution.

Refer to Error Appendices for error code nn.

Recovery
Insert a properly formatted diskette in specified
drive, or return to diskette name request (enter

“&”} and input correct drive name.

Validate pathname and reenter.

Program control returns to diskette drive request.

Install new IBM format diskette and retry trans-
fer function.

Program control returns to diskette drive request.

Install new IBM format diskette and retry trans-
fer function.

Program control returns to diskette drive request.

Install new diskette and retry format function.

Program control returns to diskette drive request.

Respond according to individual error code.

Program control returns-to diskette drive request.

Respond according to individual error code.

Program control returns to diskette drive request.

Respond according to individual error code.

10L6-85T9t6

o
@ 946258-9701

APPENDIX A

GLOSSARY

Digital Systems Division

{@ 946258-9701

APPENDIX A

GLOSSARY

Boot Program — A program that loads the Operating System into memory and starts the Operating
System executing.

COMMON — An area of memory which may be coded by use of the TXDS Control Program and
the system console keyboard (e.g., a 733 ASR, a 911 VDT) or by means of a task-specified-
code and then made accessible for use by a task through the Get COMMON Data address
supervisor call. The size of the system COMMON memory area is ‘determined by a system
parameter specified when the system is generated.

Default-substitute — A substitute pathname, or field of a pathname, provided by some utility
programs when the program or keyboard-entry does not supply the data.

Device Name Table — A table accessed by the File Management supervisor call to obtain the address
of the Physical Device Table (PDT) corresponding to a device name. Contains all device names
defined in the system and addresses of the PDTs for the devices.

Device Service Routine — A routine of the TX990 Operating System that controls I/O operations
with a device.

DNT — Device Name Table.
DSR — Device Service Routine.

Dynamic Task Area — The area of memory occupied by task 10,4.Task 10,4 can be loaded by
using the Operator Communication Package (OCP) or the TXDS control program.

End-of-file — A record in a file (either logically or physically) that marks the end of the file. The
character sequences that denote end-of-fiie for the file-oriented supported devices are shown in
Appendix B.

End-of-record — A character of a record that marks the end of the record. The characters that
denote end-of-record for supported devices are shown in Appendix B.

EQOF — End-of-file.

EOR — End-of-record.

GENTX — The system generation task, which obtains system parameters interactively from the
keyboard of the LOG. GENTX builds source statement files from which modules TXDATA
and TASKDF are assembled.

IDT — Program identifier of the source module.

Initial Program Load — The loading of a TX990 system placing the module in memory and starting
execution of the system.

A-1 Digital Systems Division

@ 946258-9701

I/O Supervisor — The portion of TX990 that processes I/O supervisor calls, and passes control to
the Device Service Routine (DSR) for the device.

IPL — Initial Program Load.

Keyboard Status Block (KSB) — A data structure in TXDATA used for character mode I/O with a
VDT. TXDATA includes a KSB for each VDT.

KSB — Keyboard Status Block.

LDT — Logical Device Table.

Logical Device Table (LDT) — A table in TXDATA that contains a Logical Unit Number (LUNO)
and the address of the Physical Device Table (PDT) that corresponds to the device assigned to
the LUNO.

Logical Unit Number (LUNO) — A number by which an I/O operation specifies the device for the
operation.

LUNO — Logical Unit Number.
OCP — Operator Communication Package .

Operator Communication Package (OCP) — A package of modules that contains the routines
for the commands by which the operator or user communicates with TX990.

PC — Program Counter.
PDT — Physical Device Table.

Physical Device Table (PDT) — A table in TXDATA that contains device-related data required by
the Device Service Routine (DSR) in an 1/O supervisor call for the device.

Program Counter (PC) — A register in the computer hardware that contains the address of the next
instruction to be executed.

Status Register — A register in the computer hardware that contains condition bits and the inter-
rupt mask.

Supervisor Call Block — A block of memory that defines a supervisor call, addressed by the super-
visor call instruction. The code of the supervisor call is in byte 0 of the supervisor call block.
The number of additional bytes (if any) and the content of the additional bytes are defined for
each supervisor call.

Supervisor Call Table — A table in TXDATA in which entry points to supervisor call routines are
listed in a supervisor call code order.

Task Data Division — One of two logical divisions within a task. The data division contains one or
more workspaces, data structures, supervisor call blocks, and data for the task. A data division
may or may not be assembled separately from the procedure division of the task, and is not
shared with any other task.

Task Management — Task Management maintains a state code for each task. The state codes are
listed in Appendix C.

A Ninital Quetame DNivicinn

946258-9701

Task Scheduler — Initiates execution of a user task. When the currently executing task completes
a time slice, the task scheduler passes control to the oldest task on the active list for the
highest priority (0). If there is no task on the active list for priority 0, the oldest task on the
active list for the next highest priority receives control.

Task Status Block (TSB) — A data structure in TXDATA used by the TX990 Operating System to
control execution of the task.

Task Time Delay — The result of a task executing a Time Delay supervisor call. The Time Delay
supervisor call suspends the calling task for a specified number of 50 ms periods.

Task Time Slice — A period of execution of a task having a maximum length defined when the
system is generated. A task time slice begins when the task scheduler passes control to the task.
A task time slice ends: (1) when the system suspends the task upon expiration of the
maximum time period allowed for a task time slice; (2) when the task executes a supervisor
call that suspends the task; (3) when the system suspends the task to await completion of an
I/O operation. To avoid completely locking out low priority tasks, there is a maximum number
of consecutive time slices (weighting factor) for each priority level. When the number of time
siices has been used by a priority level, the oldest task on the active list for the next lower
priority is allowed a time slice before the higher level again has control. The maximum number
of time slices for each priority level are system parameters defined when the system is
generated. The maximum period of a time slice may be extended by execution of a Do Not
Suspend supervisor call. The time slice is less than the maximum time period when the task
suspends itself, or is suspended awaiting completion of an I/O operation.

Task Weighting Factor — A count of task time slices for a priority level. When the number of task
PR PSSP - EESRPI J-o Y N SV Py NN o NGNS RIS PRy B SURpIE NSRRI B NN S (R SN S
HINC SHLCS SPCCINICU ad UIC WCigiliig 1dCtUl 101 PrHIOIIty ICVCL 11dS UCCIH UdDCU DY WddKS dl ihlat
priority level after a task at a lower level has had control, a task at a lower priority level
receives control for a time slice.

Task Area, Dynamic — Memory area where task 10 resides (see Dynarﬁic Task Area and Task, Uses,
Loading of).

Task, Bid — To start execution of a task causing the TX990 Operating System to enter the task on
the active list according to its priority level.

Task, Debugging of a — The process of removing errors from a task.

Task, Diagnostic (DTASK) — A system task that terminates a task when fatal errors occur in the
task, and prints an error message.

Task, Executing a — Controlling the processor and the resources of the computer.

Task, Linked — Consists of separately assembled modules that have been combined by resolving
external references and definitions in the modules to form a single executable module.

Task, LIST8080 — A utility task that copies 80-character records from one device to another.

Task, Loaded — A task copied from an external storage medium into the memory of the computer
in preparation for execution.

Tasks, Multiple — Two or more tasks concurrently active in an operating system.

A3 Digital Systems Division

946258-9701

Task, Procedure Division — One of two logical divisions within a task. The procedure division
contains the executable code for the task. A procedure division may or may not be assembled
separately from the data division of the task and may be shared with other tasks.

Task, Suspended — A task temporarily removed from the active list and from execution as a result
of a supervisor call or during an I/O operation.

Task, Terminated — A task removed from execution and from the active list either at normal
completion or at an abnormal termination initiated by the operator or by the diagnostic task
when a fatal error is detected.

Task, User, Loading of — The task loaded into the dynamic task area using the OCP LPROG
command.

Task, Waiting — A task waiting for completion of an I/O operation or for a system function or
resource. .

Workspace — A 16-word area of memory addressed as workspace registers O through 15. The active
workspace is defined by the contents of the workspace pointer register.

Workspace Pointer (WP) — A register that contains the address of workspace register 0.
Workspace Register — A memory word accessible to an instruction of the computer as a general
purpose register. It may be used as an accumulator, a data register, an index register, or an

address register.

WP — Workspace pointer register.

A4 Digital Systems Division

o]
@ 946258-9701

APPENDIX B

COMPRESSED OBJECT CODE FORMAT

Digital Systems Division

7 dduey)

4q/14

uoisialg swasAs reybia

APPENDIX B
COMPRESSED OBJECT CODE FORMAT

The standard object code format under the TX990 Operating System is comprised basically of an ASCII tag character followed by one
or two ASCII fields. The first field is numeric in value and the optional second field contains a symbol. (For additional familiarity with
standard object code format, refer to the Model 990 Computer Assembly Language Programmer’s Guide, part number 943441-9701).
The first ASCII field in standard object code format is four characters (i.e., four bytes) in length which, when converted to com-
pressed object code format, is changed to binary, two bytes in length. The second field in standard object code format is left un-
changed when converting to compressed object code format. Records are terminated with the standard end-of-record tag character,
only. The beginning-of-module-tag-character is an ASCII zero in standard object code format and a binary one in compressed object
code format. This is used to distinguish between compressed and uncompressed modules. The end-of-module colon record, identified

by the colon at the beginning of the last line of the module, is unchanged. The diskette is the only device capable of supporting
compressed object code format.

ASCII Standard Object Code Format (e.g., from punched cards)

00008TASK A0000BO00AB020000000B00007F7EEF
TASK 021/77 12:32:54
Hexadecimal Representation of Standard Format - ASCII Representation of Standard Format
3030 3030 3854 4153 4B20 2020 2041 3030 00 00 8T AS K A 00
3030 4230 3030 4142 3032 3030 4330 3030 00 BO 00 AB 02 00 CO 00
3042 4330 3030 3746 3745 4546 2020 2020 0B CO 00 7F 7E EF
Hexadecimal Representation of Compressed Format ASCII Representation of Compressed Format
0100 0854 4153 4B20 2020 2041 0000 4200 .. . T AS K A .. B
0A42 0200 4300 0042 CO00 4600 0000 0000 B .. C. B .. F
Colon Record for Both Formats Hexadecimal Representation ASCII Representation
3A20 2020 2020 2054 4153 4B20 2020 2020 : T AS K
2030 3231 2F37 3720 2020 2031 323A 3332 0o 21 /77 1 20 32
3A35 3420 2020 5 4

10L6-8579%6

K’@ 946258-9701

APPENDIX C

TASK STATE CODES

Digital Systems Division

946258-9701

APPENDIX C
TASK STATE CODES
The user-task supervisor calls which return one of the task state codes listed in table G-1 to byte 1
of the supervisor call block are:
® Bid Task Supervisor Call
® Activate Suspended Task Supervisor Call
® Activate Time Delay Task Supervisor Call

The user may code his program to read out the task state code to an output device or, using the
OCP STate (ST) command, the user can cause a terminal to print out the task state codes.

Table C-1. List of Task State Codes

Code
(Hexadecimal) Significance
00 Active task, priority level 0
01 Active task, priority level 1
02 Active task, priority level 2
03 Active task, priority level 3
04 Terminated task
05 Task in time delay
06 Suspended task
07 Currently executing task
08 Task awaiting VDT character input
09 Task awaiting completion of I/O
0A Task queued for I/O
0B Task queued for file utility routinc
oC Task on the diagnostic queue
oD Task waiting for file management completion
10 Task queued for file management

C-1/C-2 Digital Systems Division

{ép 946258-9701

APPENDIX D

I/O ERROR CODES

Digital Systems Division

946258-9701

APPENDIX D
I/O ERROR CODES
Code
(Hexadecimal) Description
DSR ERRORS
00 NO ERROR
01 ILLEGAL LUNO
02 ILLEGAL OPERATION CODE
03 LUNO IS NOT YET OPENED
04 RECORD LOST DUE TO POWER FAILURE
05 ILLEGAL MEMORY ADDRESS
06 TIME OUT, OR ABORT
07 ILLEGAL DEVICE
il DEVICE ERROR
12 NO ADDRESS MARK FOUND
15 DATA CHECK ERROR
19 DISKETTE NOT READY
1A WRITE PROTECT
1B EQUIPMENT CHECK ERROR
. 1C INVALID TRACK OR SECTOR
1D SEEK ERROR OR ID NOT FOUND
1E DELETED SECTOR DETECTED
FILE MANAGEMENT ERRORS
20 LUNO IS IN USE
21 BAD DISC NAME
22 PATHNAME HAS A SYNTAX ERROR
23 ILLEGAL FUR OPCODE
24 BAD PARAMETER IN PRB
25 DISKETTE IS FULL
26 DUPLICATE FILE NAME
27 FILE NAME IS UNDEFINED
28 ILLEGAL LUNO
29 SYSTEM BUFFER AREA FULL
2A SYSTEM CAN'T GET MEMORY
2B FILE MANAGEMENT ERROR
2C CAN'T RELEASE SYSTEM LUNO
2D FILE IS PROTECTED
2E ABNORMAL FUR TERMINATION
2F FILE UTILITY DOESN’T EXIST IN SYSTEM
30 NON-EXISTENT RECORD
3B INVALID ACCESS PRIVILEGE
~ 3E FILE CONTROL BLOCK ERROR
3F FILE DIRECTORY FULL
Change 1 D-1 Digital Systems Division

946258-9701

I/O ERROR CODES (Continued)

Code
(Hexadecimal) ‘ . ' " Description

TASK LOADER ERROR
60 I/O ERROR, LOAD NOT COMPLETE
61 OBJECT MODULE CONTAINS NONRELOCATABLE OBJECT CODE
62 CHECKSUM ERROR LOAD ABORTED
63 LOADER RAN OUT OF MEMORY
64 TASK 10 IS BUSY '

VDT ERRORS
80 DEVICE NOT AVAILABLE

VDT STATION NOT FOUND

Note:

Error Code >FF is a general error code.

D-2 Digital Systems Division

@ 946258-9701

ALPHABETICAL INDEX

Digital Systems Division

9462589701

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

e Sections - References to Sections of the manual appear as “Section x” with the symbol
X representing any numeric quantity. ’

e Appendixes - References to Appehdixes of the manual appear as “Appendix y”’ with the
symbol y representing any capital letter.

e Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

e Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy

e Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number: . A

Fx-yy

e Other entries in the Index - References to other entries in the index are preceded by
the word “See” followed by the referenced entry. «

Index-1 Digital Systems Division

946258-9701

Assembler See TXMIRA TXCCAT Section 8
TXCCAT Errors T8-3
BNPFHL Section 11 TXCCAT Operator Interaction 83
TXCCAT Options T8-2, 8.4
CBCommand 9.6.6.2 TXDBUG Section 9
Code Format, Compressed Object . Appendix B TXDBUG Command Codes 951
Copy/Concatenate See TXCCAT TXDBUG Command Combinations T9-1
CPCommand 9.6.13.2 TXDBUG Command Descriptions 9.6
CRCommand 9.6.12.3 TXDBUG Command Entry 953
Cross Reference Utility See TXXREF TXDBUG Command Structures 95
CSCommand 96.11.3 TXDBUG Debug Modes 94
TXDBUG Debugging Techniques 9.7
Debug Monitor | See TXDBUG TXDBUG Error Messages 9.8
TXDBUG Keyboard Commands T9-2
EXCommand 9.6.1 TXDBUG Loading 93
Execute User Program 9.6.1 TXDBUG Memory Configuration F9-1
Execute User Program (SIE or Trace) 9.6.2 TXDS Components 1.1
TXDS Control Paths F1-1
FBCommand 964 TXDS Minimum Configuration F1-2
FWCommand 96.5 TXEDIT Section 4
TXEDIT Commands 4.4 T4-2
Glossary Appendix A TXEDIT Default Substitutes- . . T4-1
TXEDIT Edit Commands 447
HA Command 963 TXEDIT Error Messages T4-3
TXEDIT Example 4.6,4.7,4.8
IBM Conversion See IBMUTL TXEDIT Loading 43
IBMUTL Section 12 TXEDITLUNOs_... 42
IBMUTL Error Messages T12-1 TXEDIT Output Commands 449
IBMUTL Loading 124 TXEDIT Pointer Movement Commands . . 4.4.6
IBMUTLLUNOs 123 TXEDIT Print Commands 448
IBMUTL Operator Interaction 12.5 TXEDIT Setup Commands 445
ICCommand 9.6.7.1 TXEDIT Special Keys 444
IMCommand 9.6.8.1 TXEDIT Terminate Sequence Commands . .4.4.10
I/OErmor Codes Appendix D TXLINK Section 7
IRCommand 9.69.1 TXLINK Error Messages T7-3
ISCommand 9.6.11.2 TXLINK Example 1.7
IWCommand 9.6.10.1 TXLINK Execution 73
TXLINK File Structures 72
Linked Object Moudle 7.5 TXLINK Load Map Listing F7-2
Linking See TXLINK TXLINK Options 74, T7-2
TXLINK Pathname Defaults T7-1
MCCommand 9.6.72 TXMIRA Section 5
MMCommand 9.6.82 TXMIRA Errors 55
MR Command 9.69.2 TXMIRA Fatal Errors T5-3
MWCommand 9.6.10.2 TXMIRALUNOs 52
TXMIRA Nonfatal Errors T54
Notation Conventions 9.54 TXMIRA Operator Interaction 53
TXMIRA Options 54, T52
Operation, Verificationof Section 3 TXMIRA Pathname Defaults T5-1
TXMIRA Sample Listing F3-1
RUCommand 9.6.2 TXPROM _.... Section 10
TXXREF Section 6
SBCommand 96.6.1 TXXREF Error Messages 6.6, T6-2
SPCommand 9.6.13.1 TXXREF Listing Format 64
SRCommand 9.6.122 TXXREFLUNOs 6.2
SSCommand 9.6.11.1 TXXREF Operating Procedure 6.3
STCommand 96.12.1 TXXREFOptions 6.5
TXXREF Pathname Defaults T6-1
Task State Codes Appendix C TXXREF Sample Listing F6-1
Text Editor See TXEDIT
Index-2

Digital Systems Division

CUT ALONG-LINE

et p—— —— — ———— —— ———— ——— s———

USER’S RESPONSE SHEET

Manual Title:

Manual Date: ‘ ‘Date of This Letter:
User’s Name: Telephone:
Company: ' Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

FIRST CLASS

PERMIT NO. 7284
DALLAS, TEXAS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.0. BOX 2909 - AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

FOLD

N

—/

°~ TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS DIVISION
POST OFFICE 80X 2909 AUSTIN, TEXAS 78769

	0001
	0002
	0002a
	0002b
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-02a
	09-02b
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-08a
	09-08b
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-36a
	09-36b
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	12-01
	12-02
	12-03
	12-04
	12-05
	A-00
	A-01
	A-02
	A-03
	A-04
	B-00
	B-01
	C-00
	C-01
	D-00
	D-01
	D-02
	Index-0
	Index-1
	Index-2
	replyA
	replyB
	xBack

