
TIFORM
Reference Manual

Part No. 2234391·9701 * *
February 1984

TEXAS INSTRUMENTS

c) 1984, Texas Instruments Incorporated. All Rights Reserved

Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, ele'ctronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

TI FORM Reference Manual (2234391-9701)

Original Issue February 1984

The total numb~9r of pages in this publication is 364.

The computers, as well as the programs that TI has created to use with them, are tools that
can help people better manage the information used in their business; but tools-including
TI computers·-cannot replace sound judgment nor make the manager's business
decisions.

Consequently, TI cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

Preface

This manual describes the Texas Instruments form-generating software package, TIFORMTM.
TIFORM provides a comprehensive and consistent means of controlling the inputloutput (1/0)
formats of a video display terminal (VDT) or a keyboard send/receive (KSR) terminal. It permits the
application programmer to design applications without regard for the physical characteristics of
the VDT. TIFORM also provides editing facilities for input and controls the display characteristics
of output. These facilities free the application program from terminal management and provide a
high degree of form design flexibility. You can modify or install a form on a different terminal
without affecting the data processing application.

A TIFORM form cannot execute by itself. You need to write an application program to drive the
form. TIFORM provides a utility, the Form Tester, that allows you to test your form before you write
your application program.

The TIFORM user is assumed to be an experienced programmer or someone well acquainted with
the concepts and language of data processing. TIFORM interfaces with three procedural
languages: COBOL, FORTRAN, and Pascal. The description of the application interface assumes
that the reader is familiar with one of these languages.

Designed to be implemented on a Texas Instruments 990/10, 990/12, or Business System
minicomputer with a minimum of 256K bytes of memory, TIFORM operates under the DX10
(Release 3.2 or later) and DNOS (Release 1.0 or later) operating systems.

NOTE

This manual applies to both operating systems.

If you are! a first-time user, you should read the sections of this manual in order. Section 1 presents
the basic: concepts of TIFORM. It describes the TIFORM execution environment and the structure
of a form. Section 2 describes form execution, including the functions available to the users of
various t,erminal types. Section 3 presents the formal syntax of the Form Definition Language
(FDL). You should become familiar with these sections before proceeding.

Section 4 discusses the Interactive Screen Generator/Editor (ISGE). Even though using the ISGE
removes the need for a detailed knowledge of the FDL, you still need a working knowledge of FDL
concepts and terminology. To specify certain data structures by means of the ISGE, you need an
exact kn()wledge' of the syntax of the structures as required by the compiler.

TIFORM is a trademark of Texas Instruments Incorporated.

2234391·9701 iii

Preface

You can test trial forms by using the Form Tester utility. This utility (see Section 7) permits you to
experiment with the operation of the form and the keyboard. You must be familiar with the Open
Form and Prepare Segment commands, as well as some of the simpler Read and Write
commands. Section 5 describes these commands for FORTRAN, COBOL, and Pascal. While
testing the form, experiment with the keyboard.

Section 5 describes the functions you need to write an application program that interacts with the
form. Read this information carefully. All functions are available to users of FORTRAN, Pascal,
and COBOL.

To write an assembly language application, you should use either the COBOL or the Pascal high
level language (HLL) interface packages. Read either the COBOL or Pascal applications interface
discussion in Section 5. Refer to the appropriate language manual for the format of the interface
from a program written in that language to an assembly language external procedure. Note that
the Pascal interface requires the pointers to parameters, with the exception of size parameters,
where values are passed.

Before executing an application program that uses TIFORM, you must link that program with the
appropriate HLL interface package. Section 6 discusses linking techniques. You can use the link
maps in Section 6 as examples.

If you plan to test the application, read the parts of Section 2 appropriate for your terminal type.
(Paragraphs 2.1 through 2.7 apply to all terminal types.)

This manual contains a glossary and the following sections and appendixes:

Section

1 General Information - Describes the overall execution environment of TIFORM,
including the software components that comprise TIFORM. It describes in detail the
capabilities and characteristics of a form and the various structures that make up a
form.

2 Form Execution - Discusses the ways in which TIFORM interacts with both the
application and the terminal user, and the effects of these interactions on the form. This
section discusses the terminal types that TIFORM supports: VDTs, KSRs, sequential
files, and printers. This section also discusses edit keys, function keys, and the TIFORM
Print key. The Print key allows the terminal user to print the contents of the current
screen.

3 Form Definition Language - Discusses in detail the Form Definition Language (FDL), a
language that allows you to design flexible, attractive forms for data entry. FDL is a non
procedural, block-structured language that you can use to specify the characteristics of
your forms. This section discusses FDL syntax, provides an overview of the functional
groups of FDL statements, and then describes each FDL statement in alphabetical
order.

4 Interactive Screen Generator/Editor - Describes the Interactive Screen Generator/
Editor (ISGE), a convenient tool that you can use to develop your form interactively from
a VDT. When you finish the form, the instructions that the ISGE generates are translated
into FDL for access by the driving application.

iv 2234391-9701

Preface

Section

5 Application Interface - Discusses the interface calls between the application and
TIFORM. TIFORM supports applications written in COBOL, FORTRAN, and Pascal. This
section discusses all of the interface routines in alphabetical order and presents
examples of each call.

6 Linking Application Programs That Use TIFORM - Describes the two techniques for
linking your application program with TIFORM.

7 Form Tester - Describes the Form Tester utility, a utility that allows you to test your
form before you write an application program to drive it.

Appendix

A Keycap Cross-Reference - Provides cross-references from generic key names to the
names on the keycaps of supported terminals.

B TIFORM Status Codes - Describes the status codes that TIFORM returns to the
application.

C TIFORM Error Codes - Includes TIFORM error messages, FDL compiler (FDLC)
diagnostics, and ISGE error messages.

D Examplies of FDL Form Definitions - Presents commented examples of form
definitions written in the FDL.

E Graphic Characters - Shows keyboard diagrams for the keys that produce graphic
characters on the 911 VDT and the 931 VDT. This appendix also shows the graphic
character sets for VDTs.

F Quick Reference to FDL Syntax - Provides a quick reference to FDL syntax. This
appendix contains all of the FDL statements and their syntax definitions.

G Quick Reference to the ISGE - Describes the function keys that you can use when
designing a segment mask or field mask. This appendix also describes all of the
prompts that allow you to specify field attributes.

2234391-9701 y

Preface

The following documents contain additional information related to the use of TIFORM with the
OX10 and ONOS operating systems:

vi

Title

DX10 Operating System Concepts and Facilities
(Volume I)

DNOS Concepts and Facilities

DX10 Operating System Application Programming
Guide (Volume III)

DNOS Supervisor Call (SVC) Reference Manual

DX10 Operating System Error Reporting and Recovery
Manual (Volume VI)

DNOS Messages and Codes Reference Manual

990199000 Assembly Language Reference Manual

COBOL Reference Manual

DX10 COBOL Programmer's Guide

DNOS COBOL Programmer's Guide

TI Pascal Reference Manual

DX10 TI Pascal Programmer's Guide

DNOS TI Pascal Programmer's Guide

FORTRAN-78 Reference Manual

DX10 FOR TRA N-78 Programmer's Guide

DNOS FORTRAN-78 Programmer's Guide

Part Number

946250-9701

2270501-9701

946250-9703

2270507 -9701

946250-9706

2270506-9701

2270509-9701

2270518-9701

2270521-9701

2270516-9701

2270519-9701

2270528-9701

2270517-9701

2268681-9701

2268679-9701

2268680-9701

2234391-9701

Paragraph

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.3.11
1.3.12
1.3.13
1.3.14
1.3.15
1.3.16
1.3.17
1.3.18
1.3.19
1.3.20
1.3.21
1.3.22

2234391·9701

Contents

Title Page

1 - General Information

Introduction .. 1-1
Form Definition Language .. 1-1
Interactive Screen Generator/Editor 1-2
Form Executor and Interface Routines 1-2
Form Tester .. 1-4

Form Components .. 1-4
Form .. 1-4
Segment ... 1-4
Field .. 1-6
Variable ... 1-7
Array .. 1-7
Group ... 1-7

Field Attributes ... 1-8
Position ... 1-9
Output and No Entry ... 1-9
Initial Value .. 1-9
Default Value .. 1-10
Required .. 1-10
Minimum Length ... 1-10
Exact Length .. 1-11
Value Range ... 1-11
Value Table ... 1-11
Value Comparison ... 1-11
Character Set .. 1-12
Numeric .. 1-12
Tabstop .. 1-12
Autoskip. " .. 1-12
Graphics Input ... 1-13
Display .. , .. 1-13
Scaling .. " .. 1-14
Ju'stification .. 1-14
Substitute .. 1-14
Copy " ... , .. 1-15
Branch and Terminate ... " .. 1-15
Novalidate , ... 1-16

vii

Contents

Paragraph Title Page

1.4 Application Interface ... 1-16
1.4.1 Data Buffer .. 1-16
1.4.2 Fields and Variables .. 1-17
1.4.3 Read Operations ... 1-17
1.4.4 Write Operations ... 1-18
1.4.5 Function Keys ... 1-19
1.4.6 Return Status .. 1-19
1.4.7 Control Modes ... 1-19

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.1.3
2.8.1.4
2.8.1.5
2.8.1.6
2.8.1.7
2.8.1.8
2.8.1.9
2.8.1.10
2.8.1.11
2.8.1.12
2.8.1.13
2.8.1.14
2.8.1.15
2.8.1.16
2.8.1.17
2.8.1.18
2.8.1.19
2.8.1.20
2.8.2
2.8.3
2.9
2.9.1
2.9.1.1
2.9.1.2

viii

2 - Form Execution

Introduction .. 2-1
Application Interactions .. 2-1
Terminal User Interactions .. 2-2
Edit Keys .. 2-3
Use of Function Keys ina Form .. 2-4
Use of Function Keys by an Application 2-4
Terminal Device Types Supported by TIFORM 2-5
Display Terminals ... 2-5

Display Terminal Edit Keys : 2-6
Erase Field Function - Erase Field Key 2-6
Erase Input Function - Erase Input Key 2-6
Back Tab Function - Initialize Input Key 2-7
Print Function - Print Key ... 2-7
Up Arrow Function - Previous Line Key 2-7
Repeat Function - Repeat or Typamatic Key 2-7
Left Arrow Function - Previous Character Key 2-7
Home Function - Home Key ... 2-7
Right Arrow Function - Next Character Key 2-7
Insert Character Function - Insert Character Key 2-8
Down Arrow Function - Next Line Key 2-8
Delete Character Function - Delete Character Key 2-8
Close Read Function - Enter Key 2-8
Forward Character Function - Next Character Key 2-8
Backward Character Function - Previous Character Key 2-8
Forward Field Function - Next Field Key 2-8
Backward Field Function - Previous Field Key 2-8
Return Function - Return Key .. 2-8
Forward Tab Function - Forward Tab Key 2-9
Skip Function - Skip Key .. 2-9

Display Terminal Function Keys ... 2-9
Display Terminal Error Handling .. 2-10

820 KSR and Other KSR Types .. 2-10
Formatted Versus Unformatted Input 2-11

Formatted Input ... 2-11
Unformatted Input .. 2-12

2234391·9701

Paragraph

2.9.2
2.9.3
2.9.4
2.9.5
2.9.5.1
2.9.5.2
2.9.5.3
2.9.5.4
2.9.5.5
2.9.5.6
2.9.5.7
2.9.5.8
2.9.5.9
2.9.5.10
2.9.5.11
2.9.5.12
2.9.5.13
2.9.5.14
2.9.5.15
2.9.5.16
2.9.5.17

2.9.6
2.9.7
2.10
2.11
2.11.1
2.11.2
2.11.2.1
2.11.2.2
2.11.2.3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.5.1
3.1.5.2
3.1.5.3
3.1.5.4
3.1.5.5
3.1.5.6
3.1.5.7

2234391-97011

Contents

Title Page

Delayed Versus Immediate Write Mode 2·12
820 Error Handling ... 2·13
820 Field Mask Handling .. 2·13
820 Edit Keys .. 2·14

Erase Field Function - DEL ... 2·14
Erase Input Function - CTRL IN 2·14
Back Tab Function - CTRL 10 2·14
Print Function - CTRL IV ... 2·14
Up Arrow Function - CTRL IU 2·15
Repeat Function - Typamatic 2·15
Left Arrow Function - CTRL IH .••••.•.••..••••.•••••.•.••.•.•...•••. 2·15
Home Function - CTRL IL .. 2·15
Down Arrow Function - CTRL IJ 2·15
Backward Character Function - CTRL IH •• ••••••.••••.••••.••••••.•••• 2·15
Forward Field Function - CTRL 1M•.................... 2·15
Backward Field Function - CTRL IT•........................ 2·15
Return Function - RETURN and CTRL 1M•....... 2·15
Forward Tab Function - CTRL II 2·15
Skip Function - CTRL/K ... 2·15
Close Read Function - CTRL IS 2·15
Right Arrow, Forward Character, Insert Character,

and Delete Character ... 2·15
820 Function Keys .. 2·16
820 Print Screen ... 2·17

810 Printer, Other Printers, and Sequential Files 2·17
TIFORM Print Key .. 2·17

Print Key Function's Execution ... 2·17
Print Key Files " ... ~ 2·18

Terminal File .. 2·18
Queue File .. 2·19
Flag File .. 2·19

3 - Form Definition Language

Introduction ... ' ... 3·1
Overall Structure of the Language 3·1
Sample Form Definition .. 3·2
Syntax Notation .. 3·4
Executing the FDL Compiler .. 3·5
Functional Description of FDL Statements 3·6

Form Block .. 3·6
Segment Block ... 3·7
Background Mask Blocks .. 3·8
Field Block ... 3·9
Condition Block .. 3·11
Edit Set Block ... 3·11
List Definition Statements ... 3·12

ix

Contents

Paragraph

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49

x

Title Page

ARRAY StatHment , , ... , 3-13
AUTOSKIP and NOAUTOSKIP Statements ... '" 3-15
BRANCH Statement .. 3-16
CHARACTER LIST Statement .. 3-17
CONDITION and END CONDITION Statements 3-18
CONTROL MODE Statement ... 3-19
COpy Statement ... 3-21
DEFAULT Statement. ... 3-22
DEVICE Statement ... 3-23
DISPLAY Statement .. 3-25
DISPLAY MASK Statement .. 3-27
EDIT SET and EN D EDIT SET Statements 3-28
ERROR MESSAGE Statement .. 3-30
EXTERNAL Statement .. 3-31
FI ELD and EN D FI ELD Statements .. 3-32
FIELD MASK and END FIELD MASK Statements 3-33
FILLER Statement .. 3-34
FKEYS Statement .. 3-35
FORM and END FORM Statements 3-36
GRAPHICS INPUT Statement .. 3-37
GROUP Statement ... 3-38
IF Statement .. 3-39
JUSTIFY Statement .. 3-42
LENGTH LIST Statement .. 3-43
LIST CHARACTER Statement .. 3-44
LIST LEN GTH Statement .. 3-45
LIST RANGE Statement ... 3-46
LIST SUBSTITUTE Statement .. 3-47
LIST TABLE Statement .. 3-48
MASK (BACKGROUND TEXn Statement 3-49
MINIMUM LENGTH Statement ... 3-51
NO ENTRY Statement ... 3-52
NOVALIDATE Statement .. 3-53
NUMERIC Statement ... 3-54
ORDERED GROUP Statement .. 3-56
OUTPUT Statement ... 3-57
PASS/FAIL Statement .. 3-58
POSITION Statement ... 3-60
PROM PT Statement .. 3-62
RANGE LIST Statement ... 3-63
REQUIRED and NOTREQUIRED Statements 3-64
SAM E AS Statement .. 3-65
SCALE Statement .. 3-66
SEGMENT and END SEGMENT Statements 3-67
SEGMENT MASK and END SEGMENT MASK Statements 3-68
SUBSTITUTE LIST Statement .. 3-69
TAB and NOTAB Statements ... 3-70
TABLE LIST Statement .. 3-71

2234391·9701

Contents

Paragraph Title Page

3.50 TERMINATE READ Statement. ... 3-72
3.51 VALUE Statement .. 3-73
3.52 VARIABLE Statement ... 3-74

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.3.4
4.3.4.1
4.3.4.2
4.3.4.3
4.3.5
4.3.6
4.4
4.5

5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2
5.2.3
5.3
5.4
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.7
5.7.1
5.7.2

2234391·9701

4 -Interactive Screen Generator/Editor

Introduction : .. 4-1
ISGE Design Changes .. 4-3
Tutorial: Using ISGE to Create a Segment 4-3

Preparing for the InitiallSGE Session 4-6
Initiation Phase .. 4-6
Design Phase ... 4-12

Mask Design Mode .. 4-12
Selection Menu ... 4-23
Field Attribute Specification Mode 4-25

Termination Phase .. 4-38
Save Intermediate File (SI) .. 4-40
Create an FDL File (CF) .. 4-40
Compile a Segment (CS) .. 4-40

Form Tester .. 4-41
Summary .. 4-42

Intermediate Segment File .. 4-42
Changing a Compiled Segment .. 4-42

5 - Application Interface

Introduction .. 5-1
Application Interface Packages ... 5-1

COBOL Application Interface ... 5-1
COBOL 3.2 Calling Sequences .. 5-3
COBOL 3.1 Calling Sequences .. 5-4

Pascal Application Interface .. 5-4
FORTRAN Application Interface ... 5-9

Indexed Operations .. 5-11
Status Block .. 5-13
Items Returned From Read Commands 5-14
Arm Event Keys Routine ... 5-15

Arm Event Keys Calling Sequences 5-15
Arm Event Keys Parameters ... 5-16
Arm Event Keys Results ... 5-16
Arm Event Keys Examples ... 5-16
Arm Event Keys Program Notes .. 5-17

Change Form Routine ... 5-18
Change Form Calling Sequences 5-18
Change Form Parameters ... 5-18

xi

Contents

Paragraph

5.7.3
5.7.4
5.7.5
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
5.11
5.11.1
5.11.2
5.11.3
5.11.4
5.11.5
5.12
5.12.1
5.12.2
5.12.3
5.12.4
5.12.5
5.13
5.13.1
5.13.2
5.13.3
5.13.4
5.13.5
5.14
5.14.1
5.14.2
5.14.3
5.14.4
5.14.5

xii

Title Page

Change Form Results ... 5-20
Change Form Examples ... 5-20
Change Form Program Notes•.................................. 5-23

Change ITCIIPC Communication Routine 5-24
Change ITC/IPC Communication Calling Sequences 5-24
Change ITCIIPC Communication Parameters 5-24
Change ITC/IPC Communication Results 5-25
Change ITCIIPC Communication Examples 5-25
Change ITC/IPC Communication Program Notes 5-32

Close Form Routine .. 5-33
Close Form Calling Sequences ... 5-33
Close Form Parameters ... 5-33
Close Form Results .. 5-33
Close Form Examples ... 5-33
Close Form Program Notes .. 5-34

Control Functions Routine ... 5-35
Control Functions Calling Sequences 5-35
Control Fu nctions Parameters ... 5-35
Control Functions Results ... 5-36
Control Functions Examples ... 5-36
Control Functions Program Notes ~ 5-37

Declare Status Block Routine .. 5-38
Declare Status Block Calling Sequences 5-38
Declare Status Block Parameters 5-38
Declare Status Block Results .. 5-38
Declare Status Block Examples .. 5-38
Declare Status Block Program Notes 5-40

Disarm Event Keys Routine .. 5-41
Disarm Event Keys Calling Sequences 5-41
Disarm Event Keys Parameters ... 5-41
Disarm Event Keys Results .. 5-41
Disarm Event Keys Examples .. 5-41
Disarm Event Keys Program Notes 5-42

Execute Asynchronously Routine ... 5-43
Execute Asynchronously Calling Sequences 5-43
Execute Asynchronously Parameters 5-43
Execute Asynchronously Results 5-43
Execute Asynchronously Examples 5-44
Execute Asynchronously Program Notes 5-45

Open Form Routine ... 5-46
Open Form Calling Sequences ... 5-46
Open Form Parameters .. 5-46
Open Form Results ... 5-47
Open Form Examples ... 5-47
Open Form Program Notes ... 5-48

2234391-9701

Paragraph

5.15
5.15.1
5.15.2
5.15.3
5.15.4
5.15.5
5.16
5.16.1
5.16.2
5.16.3
5.16.4
5.16.5
5.17
5.17.1
5.17.2
5.17.3
5.17.4
5.17.5
5.18
5.18.1
5.18.2
5.18.3
5.18.4
5.18.5
5.19
5.19.1
5.19.2
5.19.3
5.19.4
5.19.5
5.20
5.20.1
5.20.2
5.20.3
5.20.4
5.20.5
5.21
5.21.1
5.21.2
5.21.3
5.21.4
5.21.5
5.22
5.22.1
5.22.2
5.22.3
5.22.4
5.22.5

2234391-97'01

Contents

Title Page

Prepare Segment Routine ... 5·49
Prepare Segment Calling Sequences 5·49
Prepare Segment Parameters ... 5·49
Prepare Segment Results .. 5-49
Prepare Segment Examples .. 5·49
Prepare Segment Program Notes 5·50

Print Key Routine .. 5·51
Priint Key Calling Sequences ... 5·51
Print Key Parameters .. 5·51
Priint Key Results ... 5·51
Print Key Examples ... 5-51
Print Key Program Notes .. 5-52

Read a Group Routine ... 5·53
Read a Group Calling Sequences 5·53
Read aGroup Parameters .. 5·53
Read a Group Results ... 5-53
Read a Group Examples ... 5-54
Read a Group Program Notes ... 5·54

Read Indexed Routine .. 5·55
Read Indexed Calling Sequences 5·55
Read I ndexed Parameters : 5·55
Read Indexed Resu Its ... 5·56
Read Indexed Examples ... 5-56
Read Indexed Program Notes ... 5·57

Read Indexed With Cursor Return Routine 5-58
Read Indexed With Cursor Return Calling Sequences 5·58
Read Indexed With Cursor Return Parameters 5·58
Read Indexed With Cursor Return Results 5·59
Read Indexed With Cursor Return Examples 5·59
Read Indexed With Cursor Return Program Notes 5·60

Reset Form Indexed Routine ... 5·61
Reset Form Indexed Calling Sequences 5·61
Reset Form Indexed Parameters .. 5·61
Reset Form Indexed Results ... 5·61
Reset Form Indexed Examples '.' .5·62
Reset Form Indexed Program Notes 5·63

Reset Form Routine .. 5·64
Reset Form Calling Sequences ... 5·64
Reset Form Parameters ... 5·64
Reset Form Results ... 5·64
Reset Form Examples ... 5-64
Reset Form Program Notes .. 5-65

Synchronize Routine .. 5·66
Synchronize Calling Sequences .. 5·66
Synchronize Parameters ... 5·66
Synchronize Results .. 5·66
Synchronize Examples .. 5·67
Synchronize Program Notes .. 5-68

xiii

Contents

Paragraph

5.23
5.23.1
5.23.2
5.23.3
5.23.4
5.23.5
5.24
5.24.1
5.24.2
5.24.3
5.24.4
5.24.5
5.25
5.25.1
5.25.2
5.25.3
5.25.4
5.25.5
5.26
5.26.1
5.26.2
5.26.3
5.26.4
5.26.5
5.27
5.27.1
5.27.2
5.27.3
5.27.4
5.27.5
5.28
5.28.1
5.28.2
5.28.3
5.28.4
5.28.5

Title Page

Write a Group Routine .. 5-69
Write a Group Calling Sequences 5-69
Write a Group Parameters ... 5-69
Write a Group Results ... 5-69
Write a Group Examples ... 5-70
Write a Group Program Notes .. 5-70

Write Indexed Routine .. 5-71
Write Indexed Calling Sequences 5-71
Write Indexed Parameters ... 5-71
Write Indexed Results .. 5-72
Write Indexed Examples ... 5-72
Write Indexed Program Notes .. 5-73

Write Indexed With Reply and Cursor Return Routine 5-74
Write Indexed With Reply and Cursor Return Calling Sequences 5-74
Write Indexed With Reply and Cursor Return Parameters 5-74
Write Indexed With Reply and Cursor Return Results 5-75
Write Indexed With Reply and Cursor Return Examples 5-75
Write Indexed With Reply and Cursor Return Program Notes 5-76

Write Indexed With Reply Routine .. 5-77
Write Indexed With Reply Calling Sequences 5-77
Write Indexed With Reply Parameters 5-77
Write Indexed With Reply Results 5-78
Write Indexed With Reply Examples 5-78
Write Indexed With Reply Program Notes 5-79

Write Message Routine ... 5-80
Write Message Calling Sequences 5-80
Write Message Parameters .. 5-80
Write Message Results .. 5-80
Write Message Examples .. 5-81
Write Message Program Notes ... 5-81

Write With Reply Routine .. 5-82
Write With Reply Calling Sequences 5-82
Write With Reply Parameters ... 5-82
Write With Reply Results .. 5-83
Write With Reply Examples .. 5-83
Write With Reply Program Notes .. 5-84

6 - Linking Application Programs That Use TIFORM

6.1 Introduction .. 6-1
6.2 Using Multitask TIFORM ... 6-1
6.3 Linkable TIFORM Executors .. 6-5
6.3.1 Building a Linkable Executor .. 6-5
6.3.2 Using a Linkable Executor .. 6-7

xlv 2234391·9701

Paragraph

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.2.13
7.2.14
7.2.15
7.2.16
7.2.17
7.2.18
7.2.19
7.2.20
7.2.21
7.2.22
7.3

Appendix

Contents

Title Page

7 - Form Tester Utility

Introduction .. 7-1
Form Tester .. 7-1

Open a Form (Activity 1) .. 7-3
Prepare a Segment (Activity 2) ... 7-3
Write a Group (Activity 3) ... 7-3
Read a Group (Activity 4) ... 7-3
Write With Reply (Activity 5) ... 7-3
Write Indexed (Activity 6) ... 7-3
Read Indexed (Activity 7) ... 7-4
Read Indexed With Cursor Return (Activity 8) 7-4
Write Indexed With Reply (Activity 9) 7-4
Write Indexed With Reply and Cursor Return (Activity 10) 7-4
Write a Message (Activity 11) .. 7-4
Arm Event Keys (Activity 12) ... 7-5
Disarm Event Keys (Activity 13) .. 7-5
Control Functions (Activity 14) .. 7-5
Reset Form (Activity 15) .. 7-5
Reset Form Indexed (Activity 16) ... 7-5
Change Form (Activity 17) .. 7-5
Change lTC/I PC Communication (Activity 18) 7-5
Close Form (Activity 19) .. 7-5
Display Form Status (Activity 20) .. 7-6
Delete Form's Overlays (Activity 21) 7-7
End Program (Activity 22) ... 7-7

DX10 Intertask Channel Clearer ... 7-7

Appendixes

Title Page

A Keycap Cross-Reference ... A-1

8 TIFORM Status Codes ... 8-1

C TI FORM Error Codes .. C-1

o Examples of FDL Form Definitions 0-1

E Graphic Characters ... E-1

F Quick Reference to FDL Syntax ... F-1

G Quick Reference to the ISGE .. G-1

Glossary

Index

2234391·9701 xv

Contents

Illustrations

Figure Title Page

1-1 TIFORM Execution Environment ... 1-3
1-2 TIFORM Segment ... 1-5

3-1 Relationships Among FDL Block Types 3-2

4-1 ISGE Flow of Control .. 4-2
4-2 Editing a Compiled 2.0 Segment ... 4-4
4-3 Sample Segment .. 4-5
4-4 Flow of Control: Initiation Phase ... 4-7
4-5 InitiallSGE Menu ... 4-8
4-6 Create a New Segment ... Edit Segment Information Screen (Uncompleted) 4-9
4-7 Create a New Segment ... Edit Segment Information Screen (Completed) 4-10
4-8 931 VDT Special Function Keys ... 4-11
4-9 Flow of Control: Design Phase ... 4-13
4-10 Flow of Control: Mask Design Mode 4-14
4-11 Sample Segment " ... 4-15
4-12 Create Field Mask .. 4-21
4-13 Selection Menu .. ' 4-23
4-14 Flow of Control: Selection Menu .. 4-24
4-15 Flow of Control: FAS Mode .. 4-26
4-16 FASMenu .. 4-28
4-17 FAS Menu - Character Prompt .. 4-29
4-18 FAS Menu - Character Prompt Labeled 4-30
4-19 ESSMenu. '" ... 4-37
4-20 Flow of Control: Termination Phase 4-39
4-21 Flow of Control: InitiallSGE Menu 4-43

6-1 Multitask TIFORM ... 6-2
6-2 TIFORM With a Linkable Executor 6-6

7-1 Form Tester Activity Selection Menu 7-2
7-2 Form Tester Status Display ... 7-6

xvi 2234391-9701

Contents

Tables

Table Title Page

1-1 Display Attributes of Supported Terminals 1-13

2-1 Display Terminal Edit Key Functions and Names 2-6
2-2 Display Terminal Function Key Names and Codes 2-10
2-3 KSR Edit Key Functions and Names , 2-14
2-4 KSR Function Key Names and Codes , 2-16

3-1 Control Modes and Functions .. 3-20
3-2 Device Types and Characteristics ,...... 3-23

4-1 931 VDT Active Keys and Special Functions for FAS Mode 4-27

5-1 COBOL 3.2 Entry Points to Application Interface Routines ,5-3
5-2 Pascal Entry Points to Application Interface Routines 5-5
5-3 FORTRAN Entry Points to Application Interface Routines ... , . , , ... ,5-10
5-4 Nonfatal Form Status Codes, , , , .. 5-15

2234391-97011 xvlllxvill

1

General Information

1.1 INTRODUCTION

TIFORM provides many capabilities designed to simplify data entry and validation for application
programs written in COBOL, Pascal, or FORTRAN. When you use TIFORM, your program does not
need any special routines for obta~ning data from different device types or for handling various
combinatlions of keystrokes. Instead, your program simply calls TIFORM to display an appropriate
form, obtain the data, and return the information to your program.

This sectiion describes the capabilities of TIFORM, beginning with a general introduction to its
software components. Following a description of the data structures maintained by TIFORM, it
explains the attributes you can assign to data fields ahd the ways you can manipulate data using
TIFORM. The section concludes with a discussion of the interface between your application pro
gram and TIFORM, intended to help you use TIFORM to your best advantage.

1.1.1 Fo,rm Definition Language
The Form Definition Language (FDL) allows you to design flexible, attractive forms for data entry.
FDL is a non-procedural, block-structured language th<at you can use to specify the characteris
tics of your forms. The FDL compiler translates your FDL statements into a format usable by the
Form Executor and installs them as overtays in a specified program file.

A form can consist of one screen display or several. The part of the screen display where the user
enters data is called a segment. The rest of the screen display consists of directions, prompts,
borders, and other constant text and is called the segment mask. When you define a segment, you
use FDL statements to describe each field on the screen in terms of its size, location, and type of
data it accepts. You can also define defaults, initial values, validation tests, and edits for the field.

Here are some additional capabilities available with FDL:

• Grouping of fields with indexing to specific members of the group

• Graphics characters

• Field and cursor blink

• Highllow intensity

• Data saved from screen to screen

• Data validation by field and screen

• Support for cursor control and function keys

2234391-9701 1·1

General Information

• Conditional field attributes

• Undisplayed variables

• User-defined error messages and help screens

The Execute FDL Compiler (XFDLC) command allows you to compile your form definitions and
store them in a program file as relocatable overlays. XFDLC also produces a listing file containing
your FDL source statements and any appropriate warnings or error messages. A separate error file
lists only the erroneous statements and error messages.

Each form segment and segment mask is stored as a separate entry in the program file. This
allows you to replace a form or segment without having to recompile and rei ink your application
program. Your application program can use multiple forms, and several application programs can
use the same form.

1.1.2 Interactive Screen Generator/Editor
The Interactive Screen Generator/Editor (ISGE) is a utility program that helps you design forms for
your application. Using ISGE, you can create a new segment (screen display) and modify it until
you are satisfied with the layout. ISGE then translates your design into FDL statements and com
piles the resulting FDL program. ISGE leads you through the form definition procedure with
a series of menus and prompts, using the function keys on your terminal for many common
operations.

1.1.3 Form Executor and Interface Routines
The Form Executor is the TIFORM run-time associated with the terminal where your forms are dis
played. The Executor receives calls from the TIFORM interface routines linked with your applica
tion program and carries out their instructions according to the characteristics of the terminal.
TIFORM allows you to tailor forms and segments to specific classes of devices. The Form Execu
tor automatically selects the form or segment that is appropriate for the user's terminal. If you
define a form or segment without specifying the device type, the Form Executor uses the same
form or segment for all devices.

You can have the Form Executor execute your calls synchronously (completing execution before
returning control to your program) or asynchronously (returning control immediately after receiv
ing the call).

The TIFORM interface routines allow your application program to access the forms you have
created. By calling these routines, your program can:

• Open, close, change, and reset forms.

• Read and write specified fields, groups, and variables.

• Write with reply-with or without cursor return.

• Write messages to the message line on the terminal.

• Arm and disarm function keys on the terminal.

• Enable and disable a variety of Executor control functions.

1-2 2234391-9701

General Information

The Form Executor usually runs as a shared procedure using different segment overlays for each
application task, as shown in Figure 1-1. In this setting, the Executor uses intertask or interpro
cess communication (depending on your operating system) to interface with the application task.
Your application task controls its connection and disconnection with the Form Executor. This
allows you to pass an Executor from task to task, circumventing memory limitations. You can also
use this facility to allow your task to communicate serially with two or more Executors and their
associated terminals.

TIFORM also gives you the option of linking the Executor with your application task. Though this
configuration substantially reduces the space available for your program and requires you to link
a copy of the Executor with each task that uses TIFORM, it does execute somewhat faster since it
does not employ intertask or interprocess communication for the interface. To support this
arrangement, TIFORM includes a separate, linkable version of the Form Executor and a set of
interface routines designed for use with the linkable Executor. These are shipped on the installa
tion media, but are not installed automatically because of the relative infrequency of their use.

APPLICATION PROGRAM
•
•
•

CAILL TIFORM INTERFACE ~
RO'UTINES (LINKED WITH

APPLICATION)

•
•
•

IINTERFACE ROUTINES

OPEN FORM
PREPAR'E SEGMENT

••• ETC.

228 53~71

ITC
OR
IPC

TIFORM EXECUTOR

----I~. INTERPRETS COMMANDS
FROM INTERFACE ROUTINES

TO DRIVE THE FORM AND
THE TERMINAL

"
FORM

SEGMENTS
AND MASKS

VDT

Figure 1·1. TIFORM Execution Environment

2234391-9701 1·3

General Information

1.1.4 Form Tester
The Form Tester is a utility that enables you to test your forms without having to write a test pro
gram. The Form Tester serves as an interactive driver program that allows you to simulate calls to
the interface routines and immediately see their results. The 22 functions built into the Form
Tester can exercise virtually all of the capabilities of TIFORM. Each function produces a status
display that includes all of the information that the corresponding interface routine would pass to
your application program as return parameters or items in the TIFORM status block.

Using the Form Tester is a good way to familiarize yourself with the capabilities of TIFORM. For
more information on the Form Tester, please refer to Section 7.

1.2 FORM COMPONENTS

A form consists of segments, fields, and variables. A form can span one or more screens or pages
with a different segment for each screen or page. Fields are places shown in the segment where
the user can enter data, while variables are hidden and used for intermediate results and calcula
tions. Fields have defined characteristics, called attributes, that determine how they are dis
played and what kind of data they accept. Field attributes are discussed in detail elsewhere in this
section of the manual. Figure 1-2 shows an example of a TIFORM segment.

TIFORM also supports field arrays and groups. A field array is a matrix of identical fields arranged
in rows and columns. A group is a collection of fields, variables, and subgroups that are given a
common name. Read and write routines enable you to use an index to reference individual mem
bers of a group.

1.2.1 Form
To the user of a TIFORM application, a form is a sequence of screen displays used to enter data
for the application. To the application program, a form is a collection of segments, previously
defined in FDL and stored together in a program file. The FDL FORM statement assigns a name to
the form, which becomes the name of the form root overlay. The application program indicates
which form to use by specifying the name of the form and its program file in a call to the Open
Form routine. This is the only use of the form name by the application.

For each form, you can specify a fill character and a device type. If you specify a fill character, that
character replaces the blank as the filler for all input fields on the form. You can override this fill
character for a particular segment or field, if you wish. Device type refers to the generic device
where the form is displayed. TIFORM supports several types of video display terminals (VDTs) and
keyboard sendlreceive (KSR) devices.

1.2.2 Segment
A segment is a part of a form displayed for data entry. The segment has fields where the user can
enter data and where the program can display messages. The segment can also have a segment
mask, which consists of graphics or text that is displayed with the segment but not used for data
entry. When a form has more than one segment, you can think of the segment as a page or screen
of information belonging to that form. There is no practical limit to the number of segments a form
can contain. A segment can belong to up to 10 different forms.

1-4 2234391·9701

~
(,.)

~
cO
~

...Ao

en

INVOICE"_

SEGMENT MASK

2285372

+
FIELDS

AS::

\j 3=

VAR=

VV~

SEGMENT (AS SEEN BY USER)

Figure 1·2. TIFORM Segment

+

VARIABLES
HIDDEN
FROM USER

8B =
V3=

I VAR=
VV= I

LJ
VARIABLES

G')
<b
::::s
<b

~
:s
()

3
Q)

a-
::::s

General Information

Though most applications use one segment and its mask to present the user with an entire page
or screen of data, this is not required by TIFORM. In the strictest sense, a segment is simply a
collection of fields and variables. The segment mask is optional and does not even have to cover
the entire screen or page. Displaying a new segment mask does not require erasing any previous
display. Since you can define fields outside the portion of the screen covered by the segment
mask, it is possible to implement split screens and wi.ridowS as part of your application.

Using FDL or ISGE, you define the characteristics of the segments and segment masks used in
your application. You must compile a segment and its mask together and store them in the same
program file. After opening a form, your program can display any of the segments associated with
that form by specifying the name of the segment in a Prepare Segment call. The Prepare Segment
call brings the segment into memory where your program can issue calls to do reads, writes, and
other operations on the segment.

You can assign a specific device type to a segment by including a DEVICE statement in its defini
tion. The DEVICE statement appends a device code to the segment name in the program file,
restricting the use of that segment to devices of the type specified. Your program does not need to
include the device code in its calls. The Form Executor automatically selects a segment that is
appropriate for the device in use. If you do not assign the segment a device type, the FDL compiler
creates a version that can be displayed on any supported device.

Also within a segment, you can define edit sets, conditions, validation lists, and error messages.
Edit sets define transformations to be performed on data entered (such as changing Y to YES).
Conditions are logical expressions that state requirements that the data must satisfy before it is
accepted by the application. Validation lists identify the acceptable values for fields, while error
messages provide the appropriate text to display when the user attempts to enter an invalid value.
A subsequent paragraph on data manipulation discusses these capabilities in greater detail.

1.2.3 Field
A field is part of a segment used for 1/0 between the application program and the user. Each field
occupies one or more consecutive horizontal positions on a segment, as determined by FDL state
ments for the field. Using calls to the interface routines, the application program can read and
write information in the fields for the currently active segment. Output only fields can only be writ
ten by the application program-they cannot be used for data entry. InputlOutput or 110 fields can
be both written and read. For instance, an application program can first write a dollar sign into a
monetary 1/0 field and later read the user's response from the same field.

The length, location, and usage of a field are only three of its defined characteristics, called attri
butes. FDL allows you to specify additional attributes that determine how the field is displayed,
what data it accepts, and how the cursor behaves when it leaves the field. For output-only fields,
you can supply only the position and display attributes, since output-only fields are displayed
exactly the way they arrive from your program. 1/0 fields can have additional attributes for editing
and processing the data entered into them. Each is briefly described in a subsequent paragraph in
this section.

In the FDL for a segment, the definition of a field begins with a FIELD statement that assigns it a
name. The FIELD statement also marks the beginning of a field block, a series of FDL statements
that define the field and its attributes. The field name consists of a letter followed by up to five
additional letters, numerals, dashes (-), and dollar signs ($). To make the name available to your
program, you must list it in an EXTERNAL statement in the FDL for the field or its segment. Each
field name must be unique within its segment.

1·6 2234391-9701

General Information

Like segments, 1/0 fields can have their own masks, which are loaded into memory at the same
time as the segment. The field mask consists of background text to be displayed in a constant or
relative p()sition. If a field's definition includes a DISPLAY MASK statement, the indicated field
mask is displayed whenever the cursor enters the field. By including a POSTCLEAR specification
in the DISPLAY MASK statement, you can have the mask erased when the cursor leaves the field.

KSR devices present fields to the user one at a time, since they don't have screens to display an
entire segment at once or cursors to show where to enter data. To allow you to provide additional
information telling the KSR-type device user what to enter, a field block can include a PROMPT
statement: to specify the text to print each time the user is to enter data into the field.

1.2.4 Variable
Variables are like fields, except that they are not displayed. They give you a way to store data with
the segment for such uses as defaults, comparisons, or calculations. To define a variable, you
include a VARIABLE statement in the FDL for a segment, giving the name and initial value for the
variable. The name must be unique within the segment and consists of a letter followed by up to
five additional letters, numerals, dashes (-), and dollar signs ($). To make the name available to
your program, you can list it in an EXTERNAL statement in the FDL for the field or its segment.
The initial value is a character string whose length determines the size of the variable"

1.2.5 Arr'ay
An array is a colle'ction of fields arranged in rows and columns. All fields in an array have the same
attributes, except for location. You define an array in FDL by defining a field and including an
ARRAY statement in its specifications. The name you assign the field becomes the name of the
array, and any attributes you assign the field are shared by all elements of the array. Like other
field names, array names must be unique within the segment and consist of letters, numerals,
dashes, and dollar signs following an initial letter. However, an array name must be short enough
to include an index within its six-character length. Arrays of up to 9 elements need a one-character
index, arrays of 10 through 99 elements need a two-character index, and so on.

To reference a particular field within an array, you give the name of the array, followed by its row
and column. If you supply an asterisk instead of a row or column number, it is understood that you
mean all rows or all columns in the array.

1.2.6 Group
A group is a named list of fields, variables, arrays, and other groups. You define groups in FDL
using either the GROUP or ORDERED GROUP statement. The name must be unique within the
segment and consists of a letter followed by up to five additional letters, numerals, dashes (-),
and dolla.r signs ($). You do not need to use an EXTERNAL statement to make the group name
available to your program. The FDL compiler does so automatically. Also, you do not need to

.define a group that contains the entire segment. The segment itself serves as a group having the
same name.

If you use a GROUP statement to define a group, you accept the screen-order sequence of items in
the group. That is, the items in the group are processed in the order they appear on the screen
left to right, top to bottom. Subgroups listed as members of the group are replaced by the items
they contain.

If you use an ORDERED GROUP statement to define a group, you establish a new sequence
among thl9 items it contains. Fields, variables, and arrays are kept in the same sequence in which
you list them in the FDL. Subgroups on the list are replaced in sequence by the items they contain
and in the order established for the subgroup.

2234391-9701 1·7

General Information

Subgroups can be nested 10 deep. The type of the subgroup determines the order of the fields, var
iables, and subgroups it contains. For example, if an ordered subgroup contains an unordered
subgroup, the items in the ordered group are processed in the order they are listed in the group's
definition. When the processing reaches the unordered subgroup, its items are processed in
screen order. Following the last item in the unordered subgroup, processing reverts to the defined
order for the ordered group.

Groups define the scope of read and write operations performed by the interface routines. When
your program calls one of the Read routines, it indicates the group that contains the items
wanted. The data returned depends on the Read routine used, as follows:

• Group Read - Your program receives the data from all 1/0 fields in the group (and in all
subgroups it contains).

• Indexed Read - The call uses an index to specify an item on the list where the Read
begins and a counter to specify how many items to read. The call can include a second
index to handle situations in which an item in the group is itself a group. This second
index allows you to indicate a specific item within the subgroup. If that item also turns
out to be a group, the Read begins with its first member-there are no further layers of
indexing.

Group Write and Indexed Write routines work the same way, except that they write data to the indi
cated items instead of reading it. A subsequent paragraph provides details on the format of the
data read and written, plus a closer look at the interface routines available.

1.3 FIELD ATTRIBUTES

The attributes you assign to a field determine how it is displayed to the user, which kinds of data it
accepts, and what processing follows data entry. Each set of attributes is called an edit set.
Usually, you define an edit set for each field by supplying the appropriate FDL statements as part
of its field block. The following paragraphs introduce each of the field attributes you can define
with FDL. Refer to Section 3 for details on the individual FDL statements involved.

Sometimes an application requires a field to have two or more edit sets with prevailing conditions
determining which one to use. In this case, you define the conditions as part of the field block and
each edit set in a separate edit set block. The EDIT SET statement marks the beginning of the edit
set block and assigns it a name. Within the edit set block, you can define alternative attributes for
the field using any of the FDL statements available for the field block except for ARRAY,
DEFAULT, EXTERNAL, OUTPUT, and POSITION.

You can define conditions according to the character composition, length, or value of the data at
the time the user enters data into the field or before the data is returned to your program. The con
dition can determine which edit set to apply or where to move the cursor for the next operation.
The condition block begins with a CONDITION statement, which supplies a name for the condi
tion, and ends with an END CONDITION statement. (Like most TIFORM names, an edit set or con
dition name must begin with a letter and can include up to five additional letters, numbers,
dashes, and dollar signs.)

1·8 2234391·9701

General Information

For conditional edits, FDL provides IF-THEN-ELSE logic and a NOT operator. The IF statement
can appear in either a field block or an edit set block. Likewise, most of the validation tests
described for the field block are also available as conditions in the condition block. Many condi
tions inVOilve lists, such as a list of characters that make up a valid entry. The condition block con
tains only a reference to the list, while the list itself must be in the segment block but outside any
field, edit set, or condition block.

1.3.1 Position
Every field must have a position attribute that defines how many characters it can contain and
where it begins on the screen or page. The only limit to the length of a field is the length of the line
where it appears, since fields cannot be continued from one line to the next. Otherwise, a field can
begin and end anywhere you like. Fields defined on the bottom line of a terminal screen can be
temporarily lost when an error message is displayed. The fields are restored when the message is
cleared and the cursor is positioned in a field on the bottom line.

You defin~~ a field's position by including a POSITION statement in its field block. You can specify
the locati()n of the first character in the field either by indicating its row and column or by giving
its row and column displacement from a location previously specified in a POSITION or back
ground te~<t (M) statement. In either case, you also need to specify the length of the field.

1.3.2 Output and No Entry
The output and no entry attributes allow you to display a field without permitting the user to enter
data into it. Unless you assign the field an output or no entry attribute, the user is free to enter or
modify data in the field. To assign one of these attributes to a field, you include an OUTPUT or NO
ENTRY statement in its field block. The output and no-entry attributes differ in the way the field is
processed and the other attributes it can have.

If you assign the output attribute to a field, it becomes an output field and the only other FDL
statements allowed in its field block are POSITION, DISPLAY, and ARRAY. Your program can
read, writE~, and reset the field, but any read always returns blanks.

If you assign the no-entry attribute to a field, it remains an I/O field with all of the properties of an
I/O field except that the cursor can never enter the field during a read. Post-entry processing
occurs as usual and Read routines return the appropriate values.

1.3.3 Initial Value
When a field has an initial value attribute, it automatically receives a specified value whenever it
becomes the current field. As the cursor enters the field, the initial value is displayed, making it
easy for the user to enter that value by simply tabbing through the field. If you do not assign an ini
tial value to the field, its current value is displayed whenever the cursor enters the field.

To assign an initial value for a field, you include a VALUE statement in its field block, specifying a
literal, vafliable, or another field as the initial value. If you specify a literal, that value is displayed in
the field whenever the cursor enters it. If you specify a variable or a field, the current value of the
variable or field is displayed.

2234391·970"' 1·9

General Information

1.3.4 Default Value
When a field has a default value attribute, it automatically receives a value at the time the seg
ment is displayed. If the cursor never enters the field, this value is also used in post-processing.
The default value is different from the initial value in that the cursor must enter the field for the ini
tial value to come into effect and in that the initial value is restored each time the cursor returns.
The default value is only displayed once-when the Prepare Segment routine is called. (The
default value is also different from default responses provided by some System Command Inter
preter (SCI) commands. Unlike SCI defaults, TIFORM default values are not returned to the appli
cation when the user erases the contents of the field.) If you do not assign a default value to a
field, a zero-length value is provided when the segment is displayed.

To assign a default value to a field, you include a DEFAULT statement in its field block, specifying
a literal, variable, or another field. If you specify a literal', that value is inserted into the field when
the screen is displayed. If you specify a variable or a field, the current value of the field or variable
is displayed.

1.3.5 Required
A field with a required attribute cannot be left empty by the user. If a field does not have the
required attribute, the user can skip it or erase any value already there. To assign the required
attribute to a field, you include a REQUIRED statement in the FDL for its field block. To remove the
required attribute, you use a NOTREQUIRED statement. If the field block does not have either a
REQUIRED or NOTREQUIRED statement, the required attribute is not assigned.

If a field has a required attribute and the user attempts to move the cursor out of the field without
entering any data, an error message is displayed at the bottom of the screen. When the user
acknowledges the message, the cursor returns to the beginning of the field. If you like, you
can provide your own message text to replace the standard message by using the optional
DIAGNOSTIC portion of the REQUIRED or NOTREQUIRED statement. You can either specify the
new message text or the name of an error message defined in the segmentblock.

If a field does not have a required attribute, the user can enter a zero-length response, even if other
attributes of the field require an entry of some specified minimum or exact length. To require the
user to enter a certain number of characters into the field, you must assign it the required attribute
as well as an appropriate minimum or exact length attribute.

1.3.6 Minimum Length
When the user enters data into a field with a minimum length attribute, the entry is rejected unless
it contains at least a minimum number of characters. To assign a minimum length attribute to a
field, you include a MINIMUM LENGTH statement in its field block. In the MINIMUM LENGTH
statement, you specify the minimum number of characters in a valid entry and, optionally, the text
or name of an error message to appear at the bottom of the screen when the user attempts to
enter a response with fewer characters than the minimum.

The minimum length must be greater than zero and less than or equal to the length of the field. If
you want to force the user to enter data until the field is full, you can set the minimum length equal
to the length of the field. To prevent the user from skipping the field (or giving a zero-length
response), you should also assign the required attribute to the field.

1-10 2234391-9701

Genera/Information

1.3.7 Exact Length
When the user enters data into a field with an exact length attribute, the entry is rejected unless it
contains a specific number of characters. To assign an exact length attribute to a field, you
include a LENGTH LIST statement in its field block. You can use the optional DIAGNOSTIC speci
fication to supply a replacement for the standard error message displayed when the user attempts
to enter a value with some other length.

Elsewhere in the segment, you need a companion LIST LENGTH statement that lists the valid
length or lengths for data entered into the field. The length of the data entered must match one of
the lengths on the list. To prevent the user from skipping the field (or giving a zero-length
response), you should also assign the required attribute to the field.

1.3.8 Value Range
The value range attribute applies only to numeric data. If a field has a value range attribute, it
accepts only values that lie within a defined range or set of ranges. A user who attempts to enter
an unacceptable value receives an error message and must try again. When the user enters a
number into a field with a value range attribute, the number is compared to a list of valid ranges
assigned to the field. If you define the list as inclusive, the value is accepted only if it falls within
one of the ranges on the list. (Matching the upper or lower bound of a range also satisfies the
requirement.) If you define the list as exclusive, the value is accepted only if it falls outside of
every range on the list.

To assign the vallue range attribute to a field, you include a LIST RANGE statement in its field
block and a companion RANGE LIST statement elsewhere in the segment block. The LIST RANGE
statement gives the name of the range list to use and, optionally, a replacement for the standard
error message text. If you want to define an open-ended range of values, you must use a
PASSIFAIL statement instead of LIST RANGE.

1.3.9 Value Table
If a field has a value table attribute, it accepts only values that appear on a table of valid values.
When the user enters data into a field with a value table attribute, the value entered is compared to
a list of valid ranges assigned to the field. If the value does not appear on the table, the user
receives an error message and must try again.

To assign the value table attribute to a field, you include a LIST TABLE statement in its field block
and a companion TABLE LIST statement elsewhere in the segment block. The LIST TABLE state
ment gives the name of the table list to use and, optionally, a replacement for the standard error
message text. If you define the list as inclusive, the value is accepted only if it appears on the list.
If you define the list as exclusive, the value is accepted only if it does not appear on the list.

1.3.10 Value Comparison
A field with a value comparison attribute requires data to pass a comparison test before it is
accepted. The comparison test checks the relationship between the current values of two fields or
variables. Neither has to be the field that has the value comparison attribute. When the user
enters data into the field, the comparison test is made. Depending on whether the data entered
passes or fails the test, processing continues or the user receives an error message and tries
again.

2234391-9701 1·11

General Information

To assign a value comparison attribute to a field, you include a PASS/FAIL statement in the FDL
for the field block. The PASS/FAIL statement consists of your choice of the keywords PASS or
FAIL and an IF specification that states a simple relational condition. The operands in the condi
tion are names of fields or variables. (As a convenience, an asterisk (*) represents the current
field.) The operator is one of the relational operators: EO, NE, LE, L T, GE, or GT. For comparisons
involving nonnumeric fields or variables, only the EO and NE operators are available.

1.3.11 Character Set
The character set attribute determines the set of valid characters that the user can enter into
the field. To assign a character set attribute to a field, you include a CHARACTER LIST state
ment in its field block and a LIST CHARACTER statement elsewhere in the segment block. The
CHARACTER LIST statement gives the name of the companion LIST CHARACTER statement and
optional diagnostic text to replace the standard error message. The LIST CHARACTER statement
provides a list of valid characters or ranges of valid characters.

1.3.12 Numeric
Fields with the numeric attribute accept only numeric data. The user can enter only the numerals
0-9 and in some cases blanks, a sign, and a decimal point. Numeric fields are right-justified
before they are returned to the application program.

When you include a NUMERIC statement in a field block, the FDL compiler generates attributes
for the field that are equivalent to those provided by the JUSTIFY, SCALE, LIST CHARACTER, and
CHARACTER LIST statements. The NUMERIC statement allows you to specify a sign, fill charac-
ter, and decimal point for the field. .

1.3.13 Tabstop
If a field has the tabstop attribute, the cursor stops at the beginning of the field whenever the user
presses the Forward Tab key to exit the previous field. If the user presses the Forward Tab key and
there are no fields with the tabstop attribute left to read, the cursor simply moves to the next field.
To assign the tabstop attribute to a field, you include a TAB statement in its field block.

NOTE

Throughout this manual, the names of the keys are generic key
names unless referring to a specific terminal such as the 931 VDT.
Then the specific key name is used. In some cases, the names on
the keycaps of the terminals match the generic key names, but in
many cases they do not. Appendix A contains a table of key equiva
lents to identify the specific keys on the terminal you are using.
Drawings that show the layout of the keyboard of each type of ter
minal are also included.

1.3.14 Autoskip
If a field has the autoskip attribute, the cursor automatically moves to the next field after the user
enters a character into the last position in the field. Otherwise, the user must close the field by
pressing the Next Field, Skip, Forward Tab, Enter, or Return key. To assign the autoskip attribute
to a field, you include an AUTOSKIP statement in its FDl.

1·12 2234391-9701

Genera/Information

1.3.15 Graphics Input
If a field Ihas the graphics input attribute, the user can enter graphics characters as data. To
assign the graphics input attribute to a field, you include a GRAPHICS INPUT statement in its field
block.

1.3.16 Display
A field's display attributes determine how values in the field appear on the user's screen. The
options available depend on the capabilities of the terminal, as summarized in Table 1-1. TIFORM
can support the following display attributes:

Attribute

BR

BL

GR

NO

Meaning

Bright - Characters are displayed in high-intensity.

Blink - Characters (or cursor) blinks.

Graphics - Virtual graphic characters become true graphics characters
when displayed.

Nondisplay - Characters are not displayed on the screen.

The displa.y attributes also apply to segment masks, field masks, and edit sets.

Table 1·1. Display Attributes of Supported Terminals

Attributes 911 931 940 * 820

Bright intensity YES YES YES NO

Cursor/Field blink YES YES YES NO

Virtual graphics YES YES YES NO

Nondisplay YES YES YES YES

Note:

* Includes Business System 300 Computer and Terminals

2234391·97011 1·13

General Information

1.3.17 Scaling
The scaling attribute calls for the Form Executor to multiply or divide the value of a numeric entry
by a power of ten. When the user enters a number without a decimal point into a field with a left
scaling attribute, a decimal point is inserted a specified number of positions from the right end of
the field-in effect dividing the number by a power of ten. When the user enters a number without
a decimal point into a field with right scaling, a specified number of zeros are inserted at the end
of the field-in effect multiplying the number by a power of ten. If a field has both a scaling attri
bute and a justification

To assign a scaling attribute to a field, include a SCALE statement in its field block. If you include
an ON COMPLETION specification in the SCALE statement, the scaling occurs when the data is
returned to your program and the user does not see the result. Otherwise, the scaling occurs on
entry and the user sees the result as soon as the cursor leaves the field. Entering a valid decimal
point overrides scaling on entry but not on completion.

1.3.18 Justification
A justification attribute calls for the Form Executor to left or right justify data that does not fill the
entire field, as follows:

• Left justification - Usually used for text data where the application program expects to
receive a character string of a certain length, without leading blanks but with enough
trailing blanks to fill the field. In this case, you assign the field a left justification attri
bute by including a JUSTIFY statementin its field block, specifying left justification and
the blank as its fill character.

• Right justification - Usually used for numeric data where the application program
expects to receive a valid numeric value, possibly with a sign to the left of the first sig
nificant digit or as the rightmost character in the value. In this case, you assign the field
a right justification attribute by including a JUSTIFY statement in its field block, speci
fying right justification, a zero or blank fill character, and an optional number of digits to
the right of the decimal point.

The JUSTIFY statement allows you the option of justification ON ENTRY or ON COMPLETION. If
you specify ON ENTRY, justification occurs as the user enters data, displaying the justified value
immediately after the cursor leaves the field. If you specify ON COMPLETION, the justification
occurs just before the data is returned to your application program and the user never sees the
result. If you specify right-justification for a numeric field and your application program is written
in COBOL, the sign is moved to the rightmost position in the field before the value is returned to
your program.

1.3.19 Substitute
When the user enters data into a field with a substitute attribute, that value is replaced by a pre-
determined substitute. To assign the substitute attribute to a field, you include a SUBSTITUTE
LIST statement in its field block and a LIST SUBSTITUTE statement elsewhere in its segment
block. In the SUBSTITUTE LIST statement, you give the name of the LIST SUBSTITUTE statement
and specify whether the substitution is to take place ON ENTRY or ON COMPLETION. In the LIST
SUBSTITUTE statement, you define a substitution list consisting of pairs of values and their sub
stitutes. If the value does not appear in the substitution list, it remains unchanged.

1-14 2234391-9701

Genera/Information

1.3.20 Copy
A copy attribute causes a specified field, value, or literal to be copied to another field or variable
after the user enters data into the field that has the attribute. Though the field with the copy attri
bute is usually the one copied, this is not a requirement.

To assign the copy attribute to a field, you include a COpy statement in its field block. Like
several other attributes, you can specify whether the operation takes place ON ENTRY or ON
COMPLETION. If you choose ON ENTRY, the copying occurs immediately after the user enters
data into the field and the copy can be made to any field or variable in the segment. If you choose
ON COMPLETION, the copying does not occur until the data is returned to your program and the
copy must be made to the field with the copy attribute.

1.3.21 Branch and Terminate
The branch and terminate attributes determine what action follows the entry of data into a field
with one of these attributes. Without these attributes, the user enters data into fields on the
screen in left-to-right, top-to-bottom order in an unordered group read. In an ordered group read,
the user enters data according to the order of the group. After the user enters data into the last
field in the group being read, the data in all fields in the group is revalidated, anyon-completion
processing takes place, and the data is returned to your program.

When you assign a branch attribute to a field by including a BRANCH statement in its field block,
you speci'fy the next field where the user is to enter data. Unless that field also has a branch attri
bute, the cursor moves to subsequent fields in the usual order. You assign the terminate attribute
to a field by including a TERMINATE READ statement in its field block. If you specify that the ter
mination is to occur IMMEDIATELY, all data is returned to your program without the usual revali
dation or on-completion processing. If you do not specify an immediate termination, revalidation
and on-completion processing occurs but the Read terminates before the user has a chance to
enter data in any other fields.

You can assign conditional branching and conditional termination attributes to a field by includ
ing an IF' CONDITION statement in its field block, specifying the name of a condition block
defined e,lsewhere in the segment. You must also include a THEN specification that specifies the
next action to take when the condition is true andlor an ELSE specification to indicate what to do
when the condition is false. For conditional branching, you include a GOTO specification with the
name of the next field to process. For conditional termination, you include a TERMINATE or
TERMINATE IMMEDIATELY specification following THEN or ELSE.

Though the condiition usually involves a test on the field with the conditional branch attribute, this
is not a requirement. The condition can test any field or variable in the segment. If a field block
contains more than one IF CONDITION statement, the tests are made in the order of the state
ments in the block. As soon as a test succeeds for a conditional branch or terminates with a THEN
specification-or fails for one with an ELSE specification-the branch or termination occurs and
no further conditions are tested.

2234391-9701 1-15

General Information

1.3.22 Novalidate
Occasionally, you want to make an exception to usual data validation requirements and have the
contents of a field returned to your program even though the data does not satisfy all of its edits at
that time. If you assign a novalidate attribute to a field by including a NOVALIDATE statement in
its field block, you exempt it from the usual revalidation that occurs for all fields just prior to
returning the data to your program. The novalidate attribute does not exempt the field from tests
made at the time the user enters the data or from any other post-processing that occurs at the end
of the Read. Its main use is to allow on-entry substitutions to take place without requiring the sub
stitute values to satisfy a.1I of the same conditions as the ones originally entered.

1.4 APPLICATION INTERFACE

An application program that uses TIFORM can read and write data to the user's screen in much
the same way as it reads and writes data to a file. All the program has to do is call one of the inter
face routines, specifying a buffer for the data being read or written. The TIFORM status block
returns information on the operation's success or failure and the operating system status. For
read operations, it also returns the key the user pressed to terminate the operation and the loca
tion of the cursor at the end of the read.

TIFORM handles the difficult part of screen 1/0. It controls the movement of the cursor, carries out
edit key functions, and makes sure the data entered by the user is acceptable to the application
program. The following paragraphs describe this exchange of information from the point of view
of the application program.

1.4.1 Data Buffer
Instead of using COBOL, Pascal, or FORTRAN commands to read and write data to the screen,
TIFORM applications use data buffers and the interface routines. The data buffer consists of con
secutive bytes of character data as represented in the host language:

• Programs written in COBOL 3.1 (or earlier versions) use a 01-level data item with
PICTURE X(n), where n is the number of characters in the buffer. Since the COBOL 3.1
(CFS) interface routines cannot tell the size of the data area, the program should declare
another data item with PICTURE X immediately after the buffer. This allows the program
calling the COBOL 3.1 interface routines to specify the beginning and end of the data
buffer.

• Programs written in COBOL 3.2 (or later versions) can use any data item with PICTURE
X(n), where n is the number of characters in the buffer. Since COBOL 3.2 does not
require parameters to begin on a word boundary, the data buffer can be a data item of
any level. Also since COBOL 3.2 includes run-time routines that enable it to determine
the size of a data area, the COBOL 3.2 (CXS) interface routines do not need another data
item to indicate the end of the data buffer.

1-16 2234391-9701

General Information

• A Pascal program uses a variable PACKED ARRAY of CHAR for a data buffer. TIFORM
provides two sets of interface routines for Pascal. The EXTERNAL FORTRAN (PF$) rou
tines require the application program to pass the beginning and end of the array as pa
rameters in the call. Therefore, a program using the EXTERNAL FORTRAN routines
defines a data buffer as a record consisting of the PACKED ARRAY followed by a simple
INTEGER variable. The EXTERNAL (PX$) interface routines allow the program to take
advantage of the Pascal upper bound (US) function. These routines expect to receive
the name of the PACKED ARRAY and its size, which is easily expressed with UB. The
data buffer is simply the PACKED ARRAY [1 .. ?] OF CHAR.

• A FORTRAN program uses an array of CHARACTER*2 for a data buffer. Because the
FORTRAN (FF) interface routines expect to receive the beginning and end of the array
as parameters, the array should have one more element than the number of words being
read or written.

1.4.2 Fields and Variables
All of the fields and variables in a form can be read and written as part of the group to which they
belong. Fields and variables that have the EXTERNAL attribute can also be read or written individ
ually. Though all of the interface routines that read and write groups can also handle individual
fields and variables, this can require additional memory.

All external names used in a segment are placed in a run-time name table, which is kept in mem
ory while the segment is active. To minimize the memory required for the segment, the form defini
tion should assigln the EXTERNAL attribute only to those fields and variables that the application
program plans to read and write individually. The application program should perform reads and
writes at the group level whenever practical, using group indexing to limit the scope of the
operation.

1.4.3 Read Operations
The interface routines include three types of read operations:

• Read Group - Reads values from the form segment for all fields and variables in a
specified group. When a group contains subgroups, the fields and variables in those
subgroups are also included in the read.

• Read Indexed - Reads the data for a specified number of fields and variables in a spec
ified g"oup, beginning at a specified field, variable, or subgroup. The operation can
involve one or two indexes. The first index indicates the field, variable, or subgroup
where the read begins. If the first index indicates a subgroup, the second index can
identify a member of the subgroup where the read begins.

• Read Indexed With Cursor Return - Performs the same operation as Read Indexed,
except that the routine returns index parameters that indicate the position of the cursor
when the user terminates the read by pressing an armed event key or the Enter key.

All three routines return the data read to the data buffer specified in the call. The value returned for
each field and variable reflects any post-entry processing specified by its FDL, including the inser
tion of the appropriate fill characters to bring the length of the value up to the length of the field or
variable. (The length of a variable is the length of its initial value.) The values are concatenated and
returned to the application program in the data buffer as character data. The program must extract
the individual values and perform any necessary type conversions.

2234391·9701 1·17

General Information

The order of values in the data buffer depends on the type of group being read. Values from
ordered groups are returned in the order defined in the FDL of the group. Values from unordered
groups are arranged in screen order, left to right and top to bottom. When a group contains a sub
group, the type of the subgroup determines the order of the values within the subgroup.

1.4.4 Write Operations
The interface routines include four types of write operations:

• Write Group _. Writes values from the data buffer to the screen for all fields and vari
ables in a specified group. When a group contains subgroups, the fields and variables in
those subgroups are also included in the operation.

• Write Indexed - Writes the values for a specified number of fields and variables in a
specified group, beginning at a specified field, variable, or subgroup. Like Read
Indexed, the Write Indexed operation can involve one or two indexes. The first index
indicates the field, variable, or subgroup where the write begins. If the first index indi
cates a subgroup, the second index can identify a member of the subgroup where the
write begins.

• Write Indexed With Reply - Writes values from a data buffer to the screen in the same
way as Write Indexed, and then reads values from the same fields and groups into a
data buffer in the same way as Read Indexed. The same data buffer can be used for both
parts of the operation.

• Write Indexed With Reply and Cursor Return - Performs the same operation as Write
Indexed With Reply, except that the second part of the operation is a Read Indexed With
Reply instead of Read Indexed. On completion, the indexing parameters indicate the
position of the cursor when the user terminates the reply by pressing an armed event
key or the Enter key.

All of the write routines move data from a data buffer to the active form segment and therefore to
the user's screen. The write routines regard the data buffer as a concatenation of the values to be
used in the write, arranged in the order they are to be written. For ordered groups, the values are
taken from the buffer in the order defined for the group. For unordered groups, the values are
assigned to 1/0 fields in screen order, left to right and top to bottom.

To prepare for a write, the application program moves values into the data buffer, adding the nec
essary fill characters to make their lengths match the lengths of the fields that are to receive
them.

1-18 2234391-9701

General Information

1.4.5 Function Keys
A particularly useful feature of TIFORM is the flexibility it provides for the use of function keys.
Particular function keys are described with the various terminal types, but some general types are
worth noting here':

• Assigned function keys - Function keys associated with fields by FKEYS statements
in FDL. When the user presses an assigned function key, the cursor moves to the field
associated with it.

• Event keys - Function keys that are armed and disarmed by the application program.
The user can terminate a read by pressing an armed event key, even if all of the data has
not been entered. Before the application program receives the data, all fields are vali
dated and post-processed according to their attributes.

• Abort keys - Subtype of event keys that are also armed and disarmed by the applica
tion program. Unlike other event keys, when the user presses an armed abort key, the
current Read is terminated immediately, without any field validation or post-processing.

• Print key - Special feature of TIFORM. When the user presses the Print key, the Form
Executor sends a copy of the current contents of the screen to a designated file or
printer. A file in the S$TIFORM directory contains a list of terminals and their associated
Print key destinations, allowing the screen image to be sent to a specified printer or
directory, the default printer LP01, or the TIFORM print queue. Once the application
program arms the Print key, it becomes an ordinary event key and no longer performs
the print screen function.

1.4.6 Return Sta:tus
Each interface routine reports the success or failure of its operation by posting a return code in the
status block. The application program should check this code following every call to the interface
routines. Otherwise, error conditions can go undetected. The program should take into account that
some of the nonzero codes indicate noteworthy, but not necessarily erroneous, conditions.

1.4.7 Control Modes
Since some applications require slight variations on the way the Form Executor usually operates,
TIFORM allows the form definition and application program to invoke various control modes.
Table 3-1 provides a list of control modes and how they affect normal form execution. Taking
advantage of these control modes can free an application program from doing special proc~ssing
for these situations.

2234391-9701 1·1911·20

2

Form Execution

2.1 INTRODUCTION

The TIFORM Form Executor interacts with both the application program and the terminal user.
This section discusses these interactions, including the following:

• Status information returned from each TIFORM command

• Edit keys

• Function keys

• Terminal devices

• Sequential files and printers

• Print key

2.2 APPLICATION INTERACTIONS

The application interacts with the Form Executor by calling the interface routines. The application
is in control. Upon completion, each command returns two status fields in the application pro
gram's status block (see paragraph 5.4). Each status field consists of two ASCII characters.

The form status field is a two-digit, decimal field. Its values indicate whether the Form Executor
successfully executed the command, as follows:

St;atus

o

1 - 9

10 or more

Meaning

Successful execution

Special, nonfatal condition occurred on exe
cution of the command

Fatal error

The I/O status field is a two-character, alphanumeric field. If the error resulted from a supervisor
call (SVC), this field contains the hexadecimal SVC status. Otherwise, this field is set to ASCII
zeros. Note that since the I/O status field may contain a two-character hexadecimal code, you
must declare it in COBOL as PIC XX, not PIC 99.

Refer to Appendix B for a listing of the possible TIFORM form status codes and their meanings.

2234391-97011 2·1

Form Execution

2.3 TERMINAL USER INTERACTIONS

The interactions of the terminal user with the Form Executor are dependent on the functions of
the keys on the terminal's keyboard. The keys on a terminal's keyboard are of two types. Any key
that causes a character to be displayed on the terminal's screen is called a data key. The remain
ing keys, those that do not cause a character to be displayed, are called event keys. The event
keys fall into two classes, the edit keys and the function keys. The difference lies in whether the
application and/or the form designer has any control over the effect of the key.

TIFORM supports several types of terminals. For each terminal type, event keys are designated in
different ways. For instance, on the 911 or 931 VDT, most event keys are designated by the use of
keys that have a description of the event or a function number printed on the key top. For the 820
KSR, however, event keys are designated by the use of data keys in conjunction with the CTRL
key.

In this paragraph, event keys are discussed in terms of the Form Executor response. The specific
keys that are assigned to the operations are discussed in the paragraphs that describe the spe
cific terminal types.

Several concepts are used repeatedly in these discussions that must be clear before proceeding.
Recall that each Read command from the application can specify to read one or more fields. The
Read command currently being executed by the Form Executor is called the current application
Read. The Form Executor orders the fields that are specified by the current application Read. This
ordering determines the next and previous fields relative to the current field, as well as the first
and last fields of the current Read.

On an indexed Read, the first field read is the indexed field. The field being read by the Form Exec
utor is called the current fie/d. The cursor always resides within the current field. The terminal user
can change any character of the current field or position the cursor anywhere within the current
field by using the Next Character, Previous Character, Delete Character, Insert Character, or
Repeat key without leaving the current field. Striking any other event key closes the current field.

When the current field is closed by a backward cursor movement, either Previous Field or Back
Tab, or if an armed abort key is pressed, no editing or processing is performed on the closed field.
When the current field is closed in any other way, the Form Executor immediately applies the
field's editing and processing attributes to the field's new value. If any edit or process fails, a field
error is declared.

A field error is processed as follows. Upon detecting an edit error, either at field edit time or at
final validation time, the Form Executor displays a descriptive message. The exact manner of dis
play is discussed in the paragraphs that describe each device type. It then issues a Read for a one
character field immediately following the message. The terminal user must close this field with
the Return key or the Enter key, signifying that the error message has been seen. The Form Execu
tor then makes the erroneous field the new current field, giving the user a chance to correct the
error. Upon the successful completion of this Read, the error message is cleared from the screen.

If all the edits succeed, the field's new current value is accepted, and a decision is made regarding
what field of the current application Read should be made the new current field.

2·2 2234391-9701

Form Execution

The choice of a new current field depends on several things. If the event key that closed the field
also closed the current Read, a new current field cannot be chosen until the next application Read
is issued. If the closed field has a branchir-g or conditional branching attribute, that attribute
specifies the new current field. Otherwise, if a Forward Tab, Back Tab, Previous Field, Home, or
Erase Input key was pressed, the new current field is chosen according to the particular key's
rules as discussed in the paragraphs that describe each terminal device type. If none of these
conditions are true, the new current field is the next field of the current application Read, starting
at the just closed field. If the just closed field is the last field of the current application Read, the
current application Read is closed as described in the following paragraphs.

If the curnent application Read is closed, either by the closing event key or because the last field
of the Read was just closed, the Form Executor goes through several special steps. First, final val
idation is performed. All fields of the current application Read are reedited. If any field fails this
validation edit, a field error is declared on that field and the current application Read is reopened.
If all the "alidation editing succeeds, all the field processing attributes are put into effect. The
values of the edited and processed fields and variables are then concatenated in the order of
their membership in the group specified by the current application Read. This block of input data
values is passed back to the application with the closing event key's code.

If the current application Read is closed by an armed abort key, no editing or final validation is
performed. The block of input data values is built and sent to the application with the abort key's
code and a form status of 03.

The current application Read can also be closed by exiting the Read's first field in a backward
direction. In this case, no editing or final validation is performed. The block of input data values is
built and sent to the application with a form status of 01.

Note that it is possible for the current application Read to be closed without an event key being
pressed. If the last field of the current application Read has the autoskip attribute, that
field closes automatically as soon as it is filled. An autoskip field close is treated like a forward
field event key. Therefore, the forward field event key code (00) is returned when the last field is an
autoskip field.

2.4 EDI1r KEYS

The effects of the edit keys are fixed by the operating system and the Form Executor. The specific
edit keys are discussed in the paragraphs that describe each terminal device type.

Several of the edit keys (Next Field, Return, and Skip) close the current application Read when
pressed while in the Read's last field. The Enter key always closes the current application Read. If
the terminal user presses any of these keys to close the current application Read, an event key
code of 00 is returned. Also, a code of 00 is returned if the current application Read is closed by
the last flield being an autoskip field.

Two of the edit keys (Previous Field and Back Tab) close the current application Read when
pressed while the cursor is in the Read's first field. If the terminal user closes the Read in this way,
an event key code of 00 is returned together with a form status of 01.

2234391-9701 2·3

Form Execution

2.5 USE OF FUNCTION KEYS IN A FORM

The function keys can be controlled completely by the form, or they can be controlled from the
application program. Specific function keys are discussed in the paragraphs that describe each
terminal device type.

You can associate a function key with a field in a form so that pressing the function key causes an
immediate branch to the specified field. The association of a function key with a field is made in
FDL by the FKEYS statement. Each FKEYS statement is local to the segment within which it is
declared. Each segment can have its own FKEYS statement. The function keys specified in an
FKEYS statement become active when that segment is prepared. If one of the specified function
keys is pressed (and the application has not armed that function key itself), the current field is
closed and the field associated with that key is made the current field if that field is within the cur
rent application Read. If the associated field is not within the current application Read, a warning
beep is sounded, the current field is not closed, and the cursor is left where it is.

The application must implement all branching among segments. The following paragraph dis
cusses intersegment branching.

2.6 USEOF FUNCTION KEYS BY AN APPLICATION

An application program uses the Arm Event Key and Disarm Event Key commands to specify
which function keys the Form Executor recognizes.

When arming an event key, the application can specify whether the key is an abort key. If the ter
minal user presses an abort key, the Form Executor bypasses all edits of the current field, all final
validation, and all field processing. The input data is returned to the application with the abort
key's code as the event key code and a form status of 03. It is up to the application to process data
returned after an abort key is pressed.

ASSigning an abort key provides an escape mechanism that the terminal user can use to exit the
current form immediately. For example, on the 931 VDT, the CMD key and F8 are common keys to
arm as abort keys. When an armed nonabort event key is pressed, the Form Executor treats it like
an Enter key, closing the current field and the current application Read, validating and processing
all entered data, and returning the input data to the application. The only difference lies in the
value returned as the event key code and the form status.

The application must implement all intersegment branching. The application must know what
keys to arm and what segment to prepare for each key. To associate a function key with a seg
ment, the application must arm the function key then execute the appropriate Prepare Segment
command when it receives an event key code denoting that function key was pressed.

If a particular application wishes to implement a special Print Screen function other than the one
supplied with TIFORM, it can arm the Print key. If the Print key is armed, the usual processing of
this key by the Form Executor is overridden. It is treated like any other armed function key, and
control is returned to the application. It is the responsibility of the application to perform
the desired screen printing function and to keep the Print key armed across Prepare Segment
commands.

2-4 2234391-9701

Form Execution

While the capability is provided for the application to override the Form Executor's Print Screen
function, it is strongly recommended that the Print key be maintained for some variation of screen
printing. Arming the key for some other purpose is discouraged.

2.7 TERMINAL DEVICE TYPES SUPPORTED BY TIFORM

TIFORM supports the following device types:

• 911 VDT

• '915 VDT

• '931 VDT

• '940 EVT

• Business System terminal

• 820 KSR and other KSR types

• 810 printer, other printers, and sequential files

The device type is determined at run time by the Form Executor while processing an Open Form
command received from the application. When the Executor opens the station specified by the
Open Form command, the terminal type is determined, and the version of the Form Executor that
supports that terminal type is bid. You can use a pathname for a terminal type. The pathname
must be f()r a sequential file or for a nonexistent file.

For a description of how the DSR treats the ASCII characters for each key on the keyboards of the
supported terminals, refer to either the DX10 Operating System Application Programming Guide
or the DNOS Supervisor Call (SVC) Reference Manual, depending on the operating system you are
using.

2.8 DISPLAYTERMINALS

The display terminals are the 911 VDT, 915 VDT, 931 VDT, 940 EVT, and the Business System ter
minal. When operating under TIFORM, these terminals are 24-line by 80-character VDTs with
unique edit and function keys. Forms that include the FDL statement DEVICE = VDT - 2 match
this screen size. However, other DEVICE types do not preclude the form from being executed in
some manner. If no DEVICE type was used on an old form, the default is 24 lines and 80 characters
per line. The mask of a segment and the location of all fields of a segment are displayed on the
VDT screen as the result of a Prepare Segment command. The prior Open Form command does
not clear the screen, and the screen is cleared by a Prepare Segment command only if the
CLEAR = YES clause is included.

The following paragraphs discuss the display terminal edit keys, function keys, and error
handling.

2234391·970'1 2·5

Form Execution

2.8.1 Display Terminal Edit Keys
Table 2-1 lists the function and name of each edit key. The key names are generic key names. To
identify the specific key on the terminal you are using, refer to the table of key equivalents in
Appendix A.

Table 2·1. Display Terminal Edit Key Functions and Names

TIFORM
Function

Erase Field
Erase Input
Back Tab
Print
Up Arrow
Repeat
Left Arrow
Home
Right Arrow
I nsert Character
Down Arrow
Delete Character
Close Read
Forward Character
Backward Character
Forward Field
Backward Field
Return
Forward Tab
Skip

Generic Name

Erase Field
Erase Input
Initialize Input
Print
Previous Line
Repeat
Previous Character
Home
Next Character
I nsert Character
Next Line
Delete Character
Enter
Next Character
Previous Character
Next Field
Previous Field
Return
Forward Tab
Skip

The following paragraphs discuss the response when the terminal user presses each of the edit
keys.

2.8.1.1 Erase Field Function - Erase Field Key. This key fills the current field with the form's
fill character and positions the cursor at the beginning of the field. This function is performed by
the operating system so its effect is almost instantaneous. This key does not close the current
field.

2.8.1.2 Erase Input Function - Erase Input Key. This key fills all fields specified by the appli
cation's current Read with their default values and makes the first field of that Read the current
field. The Form Executor displays filler values for those fields not having defaults. This key closes
the current field when the user presses it. However, any data entered into the current field is dis
carded and the field's default value is installed.

2-6 2234391·9701

Form Execution

2.8.1.3 Back Tab Function - Initialize Input Key. In response to this key, the Form Executor
closes the current field and selects the next field by scanning backward through the fields of the
current Read, looking for a tab stop field. If there is a tab stop field previous to the closed field,
that field is selected. If there are no tab stop fields previous to the closed field, the key is treated
like a Previous Field key.

2.8.1.4 Print Function - Print Key. The Print key is special. It is an armable event key, so the
application can override any other meaning for it. Alternatively, if the application does not arm it,
the Print key causes a Print Screen function to occur. The TIFORM Print Screen reads the current
contents ()f the specified terminal's screen, and either copies it to the terminal's associated
printer (if available) or places it in a file that it queues for later printing. See paragraph 2.11 for a
detailed explanation of the Print Screen function.

The Print key closes the current field only when the application arms the key. If the key is being
used to activate the Print Screen, it has no effect on the current field.

2.8.1.5 Up Arrow Function - Previous Line Key. This key positions the cursor in the first field
directly above the current cursor position. If control mode 7 is off, the cursor is left in the same
screen column in which it started. If control mode 7 is on, the cursor is moved to the first column
of the selected fie!ld. If there is no field above the current cursor position, the cursor is not moved.
This key cannot close the current application Read.

2.8.1.6 Repeat Function - Repeat or Typamatic Key. The Repeat key repeatedly transmits any
other key pressed concurrently. As long as you hold the Repeat key down, the last pressed key is
transmitted. This key is processed only by the 911 and 915 terminals. You can repeat any key on
the keyboard in conjunction with the Repeat key. Its use in conjunction with a field-closing event
key is not recommended.

The 931, 940, and Business System terminals do not have a Repeat key. Their keyboards have a
typamatic feature. As long as you hold down any key on the keyboard, that key is repeated.

2.8.1.7 Left Arrow Function - Previous Character Key. This key moves the cursor one charac
ter position to the left within the current field. If the cursor is already in the leftmost character
position of the current field, the cursor is left there and a warning beep is sounded. This key does
not close the current field.

2.8.1.8 Home Function - Home Key. This key closes the current field, bypassing all edits and
proceSSing, and moves the cursor to the beginning of the first field of the current application
Read.

2.8.1.9 Right Arrow Function - Next Character Key. This key moves the cursor one character
position to the right within the current field. If the cursor is already in the rightmost character posi
tion of the current field, the cursor is left there and a warning beep is sounded. This key does not
close the current field.

2234391-9701 2·7

Form Execution

2.8.1.10 Insert Character Function - Insert Character Key. This key sets the input mode to
insert characters, conditioning subsequent input keystrokes as follows. If you press a data key,
the corresponding character is inserted in the current field at the current cursor position, moving
all characters to the right of the cursor and the cursor itself one character position to the right. If a
subsequent keystroke would cause characters to be lost off the right edge of the current field, a
warning beep is sounded. The first subsequent nondata keystroke (a keystroke not entering any
data in the field) returns the input mode to noninsert. If the character at the cursor position is a fill
character and not a blank, this key gives a warning beep and does nothing. This key does not
close the current field.

2.8.1.11 Down Arrow Function - Next Line Key. This key moves the cursor down on the
screen. It places the cursor in the first field immediately below the current cursor position. If con
trol mode 7 is off, the cursor is left in the same column of the screen in which it started. If control
mode 7 is on, the cursor is moved to the first column of the selected field. If there is no field below
the current cursor position, the cursor is not moved. This key cannot close the current application
Read, but it always closes the current field regardless of whether the cursor is moved.

2.8.1.12 Delete Character Function - Delete Character Key. This key deletes the character at
the cursor, moves all characters within the field to the right of the cursor one character position to
the left, replaces the last character position of the field with the form's fill character, and leaves
the cursor at its position prior to the keystroke. If there are no characters at or to the right of the
cursor within the current field, this key gives a warning beep. This key does not close the current
field.

2.8.1.13 Close Read Function - Enter Key. This key closes both the current field and the appli
cation Read, if possible, no matter when you press it. The final validation may reopen the Read
due to edit errors. In particular, if any required fields are not yet entered, these are detected by
final validation.

2.8.1.14 Forward Character Function - Next Character Key. Refer to paragraph 2.8.1.9.

2.8.1.15 Backward Character Function - Previous Character Key. Refer to paragraph 2.8.1.7.

2.8.1.16 Forward Field Function - Next Field Key. This key closes the current field and makes
the next field in the current application Read the new current field. If the closed field is the last
field of the current application Read, the cursor is left where it is, the current application Read is
closed, and the input data is passed to the application with an event key code of 00.

2.8.1.17 Backward Field Function - Previous Field Key. This key closes the current field and
makes the previous field in the current application Read the new current field without editing or
processing the closed field. If the closed field is the first field of the current application Read, the
application Read is closed in much the same way as if you pressed an armed abort key. No final
validation is performed. A form status of 01 is returned to indicate the application Read was
closed by moving backward out of the first field of the Read.

2.8.1.18 Return Function - Return Key. This key is identical to the Next Field key. It closes the
current field and makes the next field in the current application Read the new current field. If the
closed field is the last field of the current application Read, the cursor is left where it is, the cur
rent application Read is closed, and the input data is passed to the application with an event key
code of 00.

2-8 2234391-9701

Form Execution

2.8.1.19 Forward Tab Function - Forward Tab Key. This key closes the current field and
selects the new current field by scanning forward through the fields of the current application
Read looking for a field with the tab stop attribute. If there is a field with the tab stop attribute fol
lowing thE~ closed field, the first such field found is made the new current field. If there are no tab
stop fields following the closed field, the key is treated like a Next Field key.

2.8.1.20 Skip Function - Skip Key. This key is similar to Return and Next Field. It always
closes thE~ current field. However, before doing so, it substitutes blanks for all characters in the
field at and to the right of the cursor. The next field in the current application Read is made the
new current field. If the closed field is the last field of the current application Read, the cursor is
left where it is, the current application Read is closed, and the input data is passed to the applica
tion with an event key code of 00.

2.8.2 Display Terminal Function Keys .
Where thE~ functions and effects of the edit keys are determined by the operating system and the
Form Executor, the effects of the function keys must be specified by the form designer and/or the
application program. The function keys include F1 through F14, Print, and Command. (On the 931
VDT, you access F11 through F14 with (SHIFn F1 through (SHIFn F14. Refer to Appendix A for a
complete list of function key mapping.) The function keys may be specified by the form designer
for field blranching, or they may be armed and interpreted by the application program.

If a function key is given multiple functions, application arming takes precedence over field
branchin~J. If the application arms a function key, that arming takes precedence over any other use
of that key.

If a function key is given no function, its use by the terminal operator causes an error. If an
unassigned function key is pressed, the Form Executor responds with a warning beep. Other than
the beep, the use of an unassigned function key is ignored.

Table 2-2 indicates the names to be used by a form designer and the codes to be used in an appli
cation pr()gram to arm and disarm the various function keys. The application receives these codes
as the ev~:mt key code on a Read command completion if one of these keys terminated the Read.
The Print key is included because an application can arm it. It is not classified as a function key,
and you cannot use it in a form.

2234391-9701 2·9

Form Execution

Table 2·2. Display Terminal Function Key Names and Codes

Generic
Key Name

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
Command
Print

Application
Name

01
02
03
04
05
06
07
08
09
10
11
12
13
14
40

2.8.3 Display Terminal Error Handling

Code

01
02
03
04
05
06
07
08
09
10
11
12
13
14
40
49

A field error can occur for many reasons. However, the handling of errors remains the same
regardless of the cause. If an error occurs, an error message is displayed on the bottom line of the
screen and the cursor is positioned at the right of that line. The terminal user must acknowledge
the error by pressing the Enter key or the Return key. The cursor is then positioned in the field in
error and on the character in error if the error was due to an invalid character. The error message
remains on the screen until the user corrects the error and closes the field.

2.9 820 KSR AN DOTH ER KSR TYPES

The discussion in this paragraph uses the 820 KSR as the representative of the KSR type of ter
minals. However, you can use other KSR types.

The generic key names on the chart in Appendix A are valid for KSR terminals. However, since this
paragraph is focusing on the 820, the key names for the 820 are used instead of generic key
names.

The current image of the KSR screen is maintained by the Form Executor, and, during normal
operations, only parts of the screen are printed at a time. Forms that include the FDL statement
DEVICE = KSR - 1 (66 lines by 80 characters) or DEVICE = KSR - 2 (66 lines by 132 characters) are
appropriate. However, other DEVICE types are not precluded from execution on the 820 KSR. Old
forms that did not include the DEVICE statement are defaulted to 24 lines by 80 characters.

2-10 2234391-9701

Form Execution

The event keys on an 820 are implemented by the use of the control (CTRL) key in conjunction with
certain data keys. Table 2-3 and Table 2-4 list the key pairs that implement the event key functions
on the 820. The Form Executor supports several modes of operation that are unique to the
KSR-type terminals.

The Form Executor supports several modes of operation that are unique to the KSR-type termi
nals: formatted input, unformatted input, delayed write mode, and immediate write mode. The fol
lowing paragraphs discuss these modes of operation. They also discuss error handling, field
mask handling, edit keys, function keys, and the Print Screen key.

2.9.1 Formatted Versus Unformatted Input
An 820 KSR can operate in the formatted or unformatted input mode. In the formatted input mode,
the entire KSR screen is available for printing. In the unformatted input mode, only the field
prompts are printed along with the current contents of fields into which data is to be entered by
the user. The Print key (CTRL N) always prints the segment mask and the current contents of all
fields of the segment on the 820. You can use the Print key in either mode.

2.9.1.1 Formatted Input. The normal mode of operation for the terminal is the formatted mode.
A KSR in the formatted mode works in the following manner. After an Open Form command starts
the Form Executor and the desired form "is selected, a Prepare Segment command from the appli
cation program identifies the segment to use. A page eject is issued only if the segment to pre
pare includes a ,CLEAR = YES clause on the segment mask statement.

Assume a Read command is issued, and the first field of the group is in line three. Lines one
through three of the screen are printed. These lines contain the entire contents of the screen, both
background mask information, and the locations of all fields (marked by underscores or the cur
rent contEmts of the fields) that are in the first three lines. After the third line is printed, a line feed
is issued, and the printhead is positioned under the first character position of the field in the third
line that is the first field included in the Read.

After input for that field is complete, the printhead is moved under the next field in the line that is
included in the Read. Although the contents of fields on the third line that are not in the group
being read are printed, the printhead is not positioned under them. When all fields of the group
that are located on line three are read, all lines from line three down to, and including, the line that
contains other fields included in the Read are printed. Another line feed is issued, and the print
head is positioned under the first field in the line that is included in the group.

This process is continued until all fields included in the group are read. At this time, the data read
is returned to the application.

If a Read for the same group is issued again, a line feed is issued by the Form Executor, line three
is printed again, and the printhead is once again positioned under line three. Lines one and two
are not printed because the printhead was on a line of the virtual screen that was below the line
that contained the first field to read. Lines one and two were printed earlier. After input for all
fields of line three is complete, the Read proceeds through the group as described previously.

In this mode, fields are printed in the proper position relative to the left edge of the screen.
Prompts specified by the PROMPT statement in the FDL of the segment are not displayed.

2234391-9701 2·11

Form Execution

2.9.1.2 Unformatted Input. In the unformatted input mode, the background mask is not printed.
A prompt for the first field of the group to read is printed, if one was specified in the FDL, followed
immediately by the current contents of the field. A line feed is issued, and the cursor is positioned
beneath the first character of the field. When the field is complete, the same series of operations
is repeated for the next field. The series is repeated until all fields are complete and the Read is
closed.

In this mode, the positions of the fields of the group being read, or of fields of other groups, are
not relevant other than to determine the order of the fields of the group.

The normal mode of operation of the Form Executor is the formatted input mode. To switch to the
unformatted input mode, the application program must send a Control Functions command with a
condition code of + 5. A condition code of - 5 returns the Executor to the formatted input mode.
(See paragraph 5.10.)

2.9.2 Delayed Versus Immediate Write Mode
While the KSR is in the delayed write mode, information passed to the terminal by the use of a
Write command from the application is stored in the virtual screen maintained by the Form Execu
tor, but is not printed. Information written to the fields of the group is printed only as a result of a
subsequent Read command or some user action, such as pressing the Print key.

When a terminal is in the delayed write mode, the contents of a field are printed following these
events:

• Prior to a prompt for new input for the field if a Read is issued

• When the Print key (CTRL IV) is pressed

• When a new segment is prepared or the form is closed and the current contents of the
field are not yet printed

In the immediate write mode, the contents of the fields of the group are printed immediately fol
lowing the receipt of the contents by the Executor. If the terminal is in the formatted input mode,
the contents of the lines containing the fields of the written group are printed. This includes back
ground mask and contents of fields of the written group, and of other fields on the same lines.

If the terminal is in the unformatted input mode, the prompts and values of the fields of the group
referenced in the Write command are printed and left-justified, without regard for column position.
Background mask information is not printed.

If a terminal is in the immediate write mode, the contents of a field are printed following these
events:

• When a field is assigned its default value during the preparation of a segment

• When a Write command is issued by the application

• When a field's postentry attributes are processed immediately after that field is read

• When a field's postentry attributes are processed a second time for final validation

2-12 2234391-9701

Form Execution

• When the application issues a Write With Reply command

• When the application issues a Reset command and the contents of a field are restored
to its default value

• When a field receives a new value as a result of another field's COpy TO attribute being
processed

• When the Print key is pressed

• When a new segment is prepared, or the form is closed, if the contents of the field are
not yet printed

The terminal is normally in the delayed write mode. In order to switch the terminal to the immedi
ate write mode, the application must send a Control Functions command with a condition code
of + 4. The terminal can be switched back to the delayed write mode by sending a condition code
of -4.

2.9.3 820 Error Handling
When a field error occurs on an 820 KSR terminal, two line feeds are issued and an error message
is printed .. Then either the entire line containing the error (formatted input mode) is printed, or the
prompt for the field in error and the contents of the field (unformatted input mode) are printed.
Another line feed is issued, and the printhead is positioned below (formatted input mode) or next
to (unformatted input mode) the field in error. The user can then correct the error. This process is
repeated until the error is corrected.

2.9.4 820 Field Mask Handling
Field masks are not normally printed on the 820. However, the user can request the printing of the
field mask for a given field at any time. To print a field mask, the user presses CTRl /-. In
response, two line feeds are issued and the field mask, if one exists for that field, is printed. Two
more line feeds are issued, and the line containing the current field (formatted input mode) or the
prompt and the contents of the current field (unformatted input mode) are printed. The printhead
is then positioned under (formatted input mode) or next to (unformatted input mode) the current
field.

If no field mask exists for the current field, the line containing the current field, or the field and
prompt, are reprinted.

If the application program arms CRTl /- , the application program's use of the key takes prece
dence and any field mask is not printed.

2234391-970"' 2·13

Form Execution

2.9.5 820 Edit Keys
Table 2-3 lists the edit functions and the key combinations you use to invoke the functions.

Table 2·3. KSR Edit Key Functions and Names

TIFORM
Function

Erase Field
Erase Input
Back Tab
Print
Up Arrow
Repeat
Left Arrow
Home
Right Arrow
I nsert Character
Down Arrow
Delete Character
Forward Character
Backward Character
Forward Field
Backward Field
Return
Forward Tab
Skip
Close Read

Silent 700™ and 820
Key Names

DEL
CTRL/N
CTRL/O
CTRLN
CTRL/U
(data key held down)
CTRL/H
CTRL/L
(not available)
(not available)
CTRL/J
(not available)
(not available)
CTRL/H
CTRL/M
CTRLIT
RETURN and CTRUM
CTRL/I
CTRL/K
CTRL IS

The following paragraphs discuss the response when the terminal user selects each of the edit
functions.

2.9.5.1 Erase Field Function - DEL. This key deletes all characters that are entered for the
current field. The current Read is not closed. The printhead moves to the next line and you must
press RETURN to close the field.

2.9.5.2 Erase Input Function - CTRL/N. This key closes the current field and assigns each
field specified by the application's current Read its default value. You are prompted for the first
field of the Read. On an 820, each field's default is printed only in the immediate write mode.

2.9.5.3 Back Tab Function - CTRL/O. This key closes the current field. The Form Executor
scans backward through the fields of the current application Read looking for a tab stop field. If a
tab stop field is found, you are prompted for that field. Otherwise, the key is treated like a Back·
ward Field key.

2.9.5.4 Print Function - CTRLIY. Refer to paragraph 2.9.7.

Silent 700 is a trademark of Texas Instruments Incorporated.

2·14 2234391-9701

Form Execution

2.9.5.5 Up Arrow Function - CTRL/U. This key prompts for the first field above the current field
(based on the starting column position). If no such field exists, the current field is reprompted.

2.9.5.6 Repeat Function - Typamatic. You select the repeat function by holding down the key
to be repeated for as long as necessary.

2.9.5.7 L.eft Arrow Function - CTRL/H. This key positions the printhead on the next line and
moves it ()ne posi'tion to the left. Any data entered replaces the data on the line directly above it. If
you press this key more than once, the printhead is positioned one character to the left for each
time you press the k.ey, but only one line feed is sent to the terminal.

2.9.5.8 Home Function - CTRUL. This key closes the current field, bypassing all edits and
processing. You are prompted for the first field of the current application Read.

2.9.5.9 Down Arrow Function - CTRUJ. This key prompts for the first field below the current
field (based upon the starting column position). If no such field exists, the prompt reappears for
the current field.

2.9.5.10 Backward Character Function - CTRL/H. Refer to paragraph 2.9.5.7.

2.9.5.11 Forward Field Function - CTRUM. This key closes the current field. If there are more
fields to read in the current application Read, you are prompted for the next field.

2.9.5.12 Backward Field Function - CTRLIT. This key closes the current field without editing
or processing it. If the current field is not the first field in the Read, you are prompted for the pre
vious field. If the closed field is the first field, the current application Read is closed in the same
way as if 'You pressed an armed abort key. If you have not entered any input at the time you press
this key, the original contents of the field are not changed.

2.9.5.13 Return Function - RETURN and CTRUM. Refer to paragraph 2.9.5.11.

2.9.5.14 Forward Tab Function - CTRUI. This key closes the current field and selects the next
field by scanning forward through the fields of the current application Read looking for a tab stop
field. If a tab stop field is found, you are prompted for it. If none is found, the key is treated like a
RETURN key.

2.9.5.15 Skip Function - CTRUK. This key deletes all characters entered for the current field
and closes the current field. If there are more fields to read in the current application Read, you are
prompted for the next field.

2.9.5.16 Close Read Function - CTRL/S. This key closes both the current field and the applica
tion Read, if possible, no matter when you press it. You do not see the values for any fields that are
not yet read unless the immediate write mode is enabled by the application. Should any field fail
final validation, an error message is printed and you are prompted for a new value.

2.9.5.17 Right Arrow, Forward Character, Insert Character, and Delete Character. These func
tions are not available on an 820 terminal.

2234391-9701 2·15

Form Execution

2.9.6 820 Function Keys
Where the functions and effects of the edit keys are determined by the operating system and the
Form Executor, the effects of the function keys must be specified by the form designer and/or the
application program. These keys, which are implemented by the simultaneous use of the CTRL
key and a data key, can be used by the form designer for field branching, or they can be armed and
interpreted by the application program.

If a function key is given multiple functions, application arming takes precedence over field
branching. If the application arms a function key, that arming takes precedence over any other use
of that key.

If a function key is given no function, its use by the terminal operator causes an error. If an un
assigned function key is pressed, the Form Executor responds with a warning beep. Other than
the beep, the use of an unassigned function key is ignored.

Table 2-4 indicates the names to be used by a form designer and the codes to be used in an appli
cation program to arm and disarm the various function keys. The application receives these codes
as the event key code on a Read command completion if one of these keys terminated the Read.
The Print key is included because an application can arm it. It is not classified as a function key,
and you cannot use it in a form. The equivalent VOT function key is also given (in parentheses) for
convenience.

Table 2·4. KSR Function Key Names and Codes

Silent 700 820 Application
Keyboard Keyboard Name Code

CTRL/A CTRL IA (F1) 01 01
CTRL/B CTRL IB (F2) 02 02
CTRL/C GTRL IG (F3) 03 03
CTRL/O CTRL 10 (F4) 04 04
CTRL/E CTRL IE (F5) 05 05
CTRL/F CTRL IF (F6) 06 06
CTRL IV CTRL IV (F7) 07 07
CTRLIW CTRL IW(F8) 08 08
CTRL 13 CTRL I[(F9) 09 09
CTRL/Z GTRL IZ (F10) 10 10
CTRL 1\ CTRL 1\ (F11) 11 11
CTRLI] CTRL I{ (F12) 12 12
CTRLI CTRL 1= (F13) 13 13
CTRL/_ CTRL 1- (F14) 14 14
CTRL/X CTRL IX (Command) 40 40
CTRL/Y CTRL IY (Print) 49

2·16 2234391-9701

Form Execution

2.9.7 820 Print Screen
When the terminal user presses the Print Screen key (CTRL N), a page eject is issued and the con
tents of the virtual screen are printed. This screen contains the background for the currently pre
pared segment and the current contents of all of the fields. After the screen is printed, another
page eject is issued, and the line containing the current field, or the current field and its prompt,
are printed. The printhead is positioned under (formatted input mode) or next to (unformatted
input mode) the current field, and you can continue to enter data.

2.10 810 PRINTER, OTHER PRINTERS, AND SEQUENTIAL FILES

The terminal type can be a printer or a sequential file. If the specified pathname is that of a non
existent file, a sequential file is created provided that the directory containing this file exists and
has an available entry. Relative record files and file types other than sequential are not supported,
and a system file error code is returned following the Open Form command.

Using a printer or a sequential file as a terminal type allows the application program to record
entire screens of information. The application does this when it leaves the terminal in the delayed
write mode, prepares the desired segment, then issues Write commands. Nothing is written to the
printer or the file as a result of these operations. The application then issues a Print Screen com
mand to cause the segment mask and the contents of all fields of the segment to be written to the
terminal as a series of sequential records.

You can place a file or printer in the immediate write mode. If you do this, the contents of Write
commands are printed or written to the file as if to a terminal. This is not recommended.

An attempt to read from a printer results in a system error being returned to the application. If the
application attempts to read from a sequential file, a system error may not result, but the results
are unpredictable.

2.11 TIFORM PRINT KEY

When you press the Print key while executing a form, the Form Executor performs all the work
necessary for printing the contents of the terminal's screen. The Form Executor then displays the
message to let you know the screen is printed. You must acknowledge the message by pressing
the Return key. Following acknowledgement, the Form Executor awaits the next keyboard input.

A terminal can have a private print directory associated with it in the terminal's
.S$TIFORM.PRINT.TERMINAL record. If so, the result of a Print Screen request for that terminal is
always placed in the specified directory. It is never printed directly. The following discussion uses
the public print directory's name, .S$TIFORM.PRINT, whenever a print directory name is needed. If
the terminal has a private print directory, that directory's name is used in place of
.S$TIFORM.PRINT. The file .S$TIFORM.PRINT.TERMINAL is the one exception to this substitu
tion. This file is unique and always resides in the .S$TIFORM.PRINT directory.

2.11.1 Print Key Function's Execution
When the Print key is activated, it immediately reads the contents of the activating terminal's
screen and stores it in memory. It then looks in the file .S$TIFORM.PRINT.TERMINAL for the
terminal/printer association. If the activating terminal's name is not in this file or the file does not
exist, the default printer name LP01 is used.

2234391-9701 2·17

Form Execution

Having selected the printer to use, the Print key tries to acquire it exclusively. If the printer is free,
this operation is successful. If the printer is busy, the screen is stored in a file. Depending on the
success or failure of this operation, the task composes one of the following messages:

SCREEN HAS BEEN SENT TO PRINTER <device name>
SCREEN HAS BEEN SENT TO A FILE .S$$TIFORM.PRINT.AAAA

The composed message is then sent to the Form Executor for display and the Executor is acti
vated, thereby minimizing the delay that you experience.

If the terminal's record in .S$TIFORM.PRINT.TERMINAL specified a private print directory name,
no attempt is made to acquire a printer. The ON QUEUE message is sent to the terminal, and the
Print key continues as if it had been unable to acquire the terminal's printer.

The actions of the Print key now depend on whether the printer is acquired. If it is acquired, the
memory image of the terminal's screen is sent directly to the printer. All graphics characters are
translated as described in Appendix E. The Print key then terminates execution, having printed the
screen.

If the printer is not acquired, it copies its memory image of the terminal's screen to a file named
.S$TIFORM.PRINT.< unique name>, again translating all graphics characters. A Print File (PF)
command with DEL = Y is then added to the file .S$TIFORM.PRINT.QUEUE for the file just created.
The Print key then terminates execution, having queued the screen image for later printing and
deletion. To print any queued files, you must execute the Execute Batch (X8) SCI command as
follows:

XB INPUT=.S$TIFORM.PRINT.QUEUE, LIST=DUMY

2.11.2 Print Key Files
The Print key assumes that the directory .S$TIFORM.PRINT is available for its private use. Within
this directory, it looks for certain files and constructs certain other files, as described in the fol
lowing paragraphs.

2.11.2.1 Terminal File. The association of terminals with printers and private print directories
is controlled by the contents of the following:

.S$TIFORM.PRINT.TERMINAL

For each terminal for which you want a printer other than the default printer (LP01), a record must
exist in this file formatted as follows:

< terminal name> < printer name> < private print directory>

You can list the terminals in any order with any number of blanks on either side of the names in
each line. The Print key ignores any invalid records in the file. If you activate the Print key for a
terminal for which no valid record exists, or if the file .S$TIFORM.PRINT.TERMINAL does not
exist, the default printer LP01 is used.

2·18 2234391·9701

Form Execution

The third 'field on a .S$TIFORM.PRINT.TERMINAL record is optional. If present, it specifies the
pathname of a directory to use as the terminal's private print directory. If you specify a private
print directory, the Print key always queues the terminal's printed screens in that directory. Other
than this forced queueing, a private print directory is used exactly like .S$TIFORM.PRINT is used.
It has its own .QUEUE and .FLAG files,and the names of its files containing screen images are
.AAAA through .z:zz.z.

The following terminal file demonstrates the options available. At ST01, the output always goes to
the TIFORM queue file. At ST02, the output goes to LP02, if available, or else to the queue file. At
ST03, the output always goes to the private directory .TEMP.PRIVATE. At ST04, the output always
goes to the private directory DS02.PRINTKEY. (Including LP01 has no effect.) At all other stations,
the output goes to LP01, if available, or else to the TIFORM queue file.

ST01 OUMY
ST02 LP02
ST03 OUMY .TEMP.PRIVATE
ST04 LP01 OS02.PRINTKEY

2.11.2.2 Queue File. If the contents of the screen are saved in a file, a batch stream to print this
file is placed in the following file:

.S$TIFORM.PRINT.QUEUE

The file .S$TIFOAM.PRINT.QUEUE contains commands to print all files that the Print Key creates
since the last timle the .S$TIFORM.PRINT.QUEUE batch stream was executed. The first record in
the queue file is a comment line containing the most recently generated file name. This line is fol
lowed by the Print File (PF) commands. The last line in the queue file is a command to delete the
flag file, as described in the next paragraph.

If the Print key is activated twice while the printer is busy, .S$TIFORM.PRINT.QUEUE looks as
follows:

* AA,AB
PF FILE=.SSTIFORM.PRINT.AAAA,LIST=LPnn,DEL=Y
PF FILE=.SSTIFORM.PRINT.AAAB,LIST=LPnn,DEL=Y
OF PATHNAME=.SSTIFORM.PRINT.FLAG

In order to print screens on this queue, you must issue an XB command for the file
.S$TIFORM.PRINT.QUEUE from a terminal at which SCI is active.

2.11.2.3 Flag File. The file .S$TIFORM.PRINT.FLAG is used to tell the Print Key function
whether the batch stream in .S$TIFORM.PRINT.QUEUE has executed. If the flag file exists, the
batch stream has not executed and a new file that needs to be printed is put on the end of the
queue. If the flag file does not exist, the batch stream has executed and the queue file is rebuilt
with the only file on the queue being the new file that needs to be printed. In this case, the flag file
is recreated. The file .S$TIFORM.PRINT.FLAG is never written to or read; it is only referenced to
determine whether it exists.

2234391-9701 2·1912·20

3

Form Definition Language

3.1 INTRODUCTION

The form definition language (FDL) is a structured nonprocedural language for defining forms. The
FDL compiler translates the FDL statements into a series of overlays in a program file that the
TIFORM Form Executor can execute directly. You can use either of two methods to build the FDL
for a form::

• Describe the form directly in FDL.

• Use the Interactive Screen Geherator/Editor (ISGE).

Although you can create a form directly in FDL, it is usually more efficient to use ISGE for this
purpose. However, when you modify a compiled form, it is more efficient to enter changes directly
into the source file in FDL rather than to reenter ISGE. When you use FDL statements to design a
form, you must enter those statements into a source file using the Text Editor. (Refer to either the
DX10 Operating System Text Editor Manual or the DNOS Text Editor Reference Manual.)

This section describes the overall structure of the FDL language, provides a sample form defini
tion, defines FDL syntax, and describes the FDL compiler. It also presents a functional descrip
tion of the FDL statements and then describes each FDL statement in alphabetical order,
beginning with paragraph 3.2.

3.1.1 Overall Structure of the Language
FDL is a block-structured language. Each block defines and names a component of a form. The
block structure also establishes contexts for FDL statements within the definition. Appendix F
provides a quick reference to the valid FDL statements in each context.

FDL contains seven types of blocks forming a three-level hierarchy. The outermost level is the
form block, which contains segment blocks and segment mask blocks. A segment block contains
field blocks, edit set blocks, condition blocks, and field mask blocks. Figure 3-1 shows the general
relationships of these blocks and the major FDL statement types.

Each block starts with a statement that defines the type and name of the block and ends with an
optional END statement. These statements have the following formats:

type block. comments
END type block.

The END statement signals the end of the definition of the specified block. If you omit this
optional statement, the FDL compiler treats the next block definition as if it were a combination
end block/begin block statement. The FDL statements after each starting block statement define
the structure and attributes of the block.

2234391-9701 3-1

Form Definition Language

2281703

FORM FO-t.----------------

SEGMENT MASK SM- 1 •

SCREEN TEXT

END SEGMENT MASK SM-1 •

SEGMENT S- 1 •

FIELD MASK FM-t •

SCREEN TEXT

END FIELD MASK FM-t •

VARIABLE(S)

FIELD FI-t.

FIELD INFORMATION

END FIELD FI-1 •

GROUP G-t = FI-n, v-n, ••• , G-n.

EDIT SET ES-t •

FIELD ATTRIBUTES

END EDIT SET ES-1 •

CONDITION C-1.

EDITS TO BE PROCESSED

END CONDITION C-1 •

LIST <LIST TYPE> LI-t = <LIST>.

END SEGMENT S-1 • ----

SEGMENT S-2 .---------

END SEGM ENT S- 2 •. --

END FORM FO-t •

Figure 3·1. Relationships Among FDL Block Types

3.1.2 Sample Form Definition
The following example shows a form written in FDL without the optional END statements. You
may find it useful to refer to this example when reading the definitions of FDL statements. This
example defines a three-line segment mask and two fields.

3·2 2234391·9701

Form Definition Language

EXAMPLE

FORM SAMPLE,999990,00.
ENABLE CONTROL MODE 6.
SEGMENT MASK M1,CLEAR=Y.

M (1,,2) 'SAMPLE SCREEN'.
M(2 j,1) 'ENTER NAME:'.

Name, part number, reV1Slon number
Turn control function 6 on.
Name, clear before mask display.

Mask element for header.

M(3,1) 'ENTER EMPLOYEE NUMBER:'.
Mask element for NAME field.
Mask element for NUMBER field.

SEGMENT SEG1,(SAMPLE),M1. Insert SEG1 in form SAMPLE.

NAME
FIELD NAME.

POS (2,15)L20. Field begins on row 2, column 15, with a length of 20
CHAR LIST=ALPHA. Accept characters defined in List Char Alpha
JUST L,FILL=" Left justify and fill to the right with blanks

NUMBER
FIELD NUMBER.

POS (3,25)L6. Field begins on row 3, column 25, with a length of 6
CHAR LIST=NUM. Accept characters defined in List Char Num
JUST R,FILL='O'. Right justify and fill to the left with O's

GROUP G1 = NAME, NUMBER. Group defined to be preceding two fields
in order of position

LIST CHARACTER ALPHA=A •• Z,BLANK. Only A thru Z and blank are accepted.

LIST CHARACTER NUM=0 •• 9,'.','-'. Only 0 thru 9, decimal, and dash are
accepted.

This example does not use all of the FDL statements, but it does create an executable form when
you compile it. If you compile the example and then use the Form Tester utility to open the form
SAMPLE and prepare the segment SEG1, the segment appears as follows:

SAMPLE SCREEN
ENTER NAME:
ENTER EMPLOYEE NUMBER:

The definition of each FDL statement is accompanied by one or more examples throughout this
section.

2234391-9701 3·3

Form Definition Language

3.1.3 Syntax Notation
The following conventions are used to describe the syntax of FDL:

Notation

Uppercase

Lowercase

Braces

Brackets

Three dots

Punctuation

Comments

3·4

Meaning

Keywords that must be entered as shown. You can omit the rightmost
letters shown in italics.

Generic terms that represent the names, literals, and numbers used in
your appl ication:

• A name consists of a letter followed by up to five additional letters,
numerals, dashes, and dollar signs.

• A literal consists of up to 78 characters enclosed by single quotes.
You can use two single quotes to represent a single quote within
the text.

• A number is a signed integer, unless stated otherwise.

Enclose lists of items from which you choose one. Vertical bars separate
items on the list.

Enclose lists of items from which you choose one or none. Vertical bars
separate items on the list.

Mean you can enter the preceding item more than once, using commas
as separators.

Must be entered as shown (other than the three dots):

= , . " *

Can be included in the FDL source in four ways:

•

•

•

•

Each FDL statement ends with a period followed by a space. Any
text to the right of the period is a comment.

Any text to the right of an exclamation point is a comment (unless
the exclamation point is part of a literal).

Any text on a line beginning with a period is a comment.

Any text on a line beginning with a slash is a comment to be printed
on a new page.

2234391-9701

Form Definition Language

3.1.4 Executing! the FDL Compiler
You can execute the FDL compiler (FDLC) in either of two ways. One way is to choose the compile
segment option when terminating a session with the ISGE. Section 4 describes this process. The
second way to execute the FDLC is to use the XFDLC command as described here.

When you enter the XFDLC command, you receive the following prompts:

SOURCE FORM PATHNAME: acnm
OBJECT PROGRAM FILE PATHNAME: acnm

LISTING FILE PATHNAME: acnm
ERRORS FILE PATHNAME: acnm

OPTIONS: options

SOURCEFORMPATHNAME
Enter the pathname of the input file containing FD.L statements that describe the form, seg
mentes), or segment mask(s) to cqmpile. This parameter is required.

OBJECT PROGRAM FILE PATHNAME
Enter the pathname of the output file to which the executable code is written. This file must
be a.n existing program file. The FDLC cannot create a program file. The object segments,
segment masks, and form root are stored in this file as relocatable overlays. The program file
must have enough available overlay entries for the form root and each segment mask and
segment declared in your FDL source. The FDLC places each form root, segment mask, and
segment into a different overlay with the same name used in your FDL block declarations.
Each form root, segment mask, and segment must have a unique name within the program
file. If you compile the example in paragraph 3.1.2, there are three overlays. This parameter is
required.

LISTING FILE PATHNAME
Enter the path name of the file to which the compiled listing is written. This parameter is
required. The listing file contains the following:

• Access names table containing the pathnames of all files specified in the XFDLC com
mand

• Image of each source record from the sOl:Jrce file

• Compiler-produced diagnostics

• FDLC termination message

ERRORS FILE PATHNAME
Enter the path name of the output file to which compilation errors are written. It contains all
erroneous FDL source statements and the compiler-generated diagnostics consequently
produced. This parameter is not required. It defaults to the terminal local file (TLF) if you do
not :specify a path name.

OPTIONS
Enter the special compiler functions that you want enabled. Use only one of the following
options at a time. This parameter is not required.

2234391·97011 3·5

Form Definition Language

NOSYMT
Disables generation of a symbol table in all segments being compiled. The FDLC usually
builds a full symbol table in each object segment. Each name table entry is eight bytes long,
and there is an entry for each field, field array member, variable, group, and list defined in the
segment. The size of object segments can be reduced through the use of this option. This
option is recommended if memory conservation is required. The TIFORM Release Infor
mation discusses memory usage.

DELSEG
Deletes all device-dependent segments and segment masks that have the same name as the
segment for which you specify this option. The segment for which you specify this option is
not deleted.

The XFDLC procedure executes as a background task, and displays a termination message on the
terminal after the FDL compilation is complete. Appendix C provides a description of each termi
nation message. If the termination message indicates an error-free compilation, the form is ready
for execution. You can use the Form Tester utility to verify that your FDL source defines the
desired form. However, if any errors occur, you can view the errors file by entering the Show File
(SF) command.

NOTE

Always correct all errors and recompile before attempting to exe
cute a form. The results of executing an erroneous form, segment,
or segment mask are unpredictable.

3.1.5 Functional Description of FDL Statements
The following paragraphs describe the FDL statements used in the seven block types.

3.1.5.1 Form Block. The form block is the basic unit by which a form is identified. The seg
ments and segment masks of the form are defined in the form block. The following statements are
used in form blocks:

• DEVICE

• DISABLE CONTROL MODE

• ENABLE CONTROL MODE

• END FORM

• FILLER

• FORM

3·6 2234391·9701

Form Definition Language

The form block starts with a FORM statement and can end with an optional EN D FORM statement.
When you compile a form block, a form root that contains the names of only the segments and
segment masks within the block is stored in the program file. You must store the segments and
segment masks of a form in the same program file as the form's root.

Note that you can compile segments separately from a form block, and you do not need to com
pile all the segments of a form at once. Each separate segment compilation updates the form's
root overlay in the program file. A' compilation of a form block, however, replaces the form root
overlay. After the compilation of a form block, the form root contains the names of only those
segments defined within the form block.

3.1.5.2 Segment Block. A segment block contains the entire description of a segment's
variables, groups, fields, and their attributes. The following statements are used in a segment
block:

• DEVICE

• END SEGMENT

• ERROR MESSAGE

• EXTERNAL

• FILLER

• FKEYS

• GROUP

• LIST CHARACTER

• LIST LENGTH

• LIST RANGE

• LIST SUBSTITUTE

• LIST TABLE

• MASK

• ORDERED GROUP

• SEGMENT

• VARIABLE

The segment block starts with a SEGMENT statement and ends with an optional END SEGMENT
statement. You can compile a segment block apart from its form root.

2234391-9701 3·7

Form Definition Language

In order to compile a segment apart from a segment mask, the SEGMENT statement must not
specify a segment mask. If the SEGMENT statement does specify a segment mask, the segment
mask block must immediately precede the segment block, and you must compile the segment
mask block and the segment block together. You can compile only one segment mask and seg
ment at a time. If you compile a segment without a segment mask, no mask statements (see para
graph 3.31) can exist within the segment block.

EXAMPLE

SEGMENT MASK APPLE,CLEAR=Y.
Screen text

SEGMENT PIE,(FORM01),APPLE.
Field information

You must compile the SEGMENT MASK
APPLE with the SEGMENT PIE in
the order they are shown here.

See paragraph 3.1.5.3 for segment
mask blocks.

3.1.5.3 Background Mask Blocks. A mask block defines constant background text that the
application displays but does not change. The two kinds of mask blocks are segment mask blocks
and field mask blocks. The following statements are used in mask blocks:

• DISPLAY

• END FIELD MASK

• END SEGMENT MASK

• FIELD MASK

• MASK

• SEGMENT MASK

A segment mask block defines background text to be stored separate from any segment. Each
segment mask is stored as a separate overlay in a program file. Any segment in that program file
can associate itself with any segment mask in that program file, causing the segment mask to be
displayed whenever the segment is activated by a Prepare Segment command from an application
program. You cannot compile a segment mask block without an associated segment block. A
simple segment mask follows.

EXAMPLE

3·8

SEGMENT MASK SEGMSK,CLEAR=NO.
M(1,20) 'Name:'.
DISPLAY GR=Y.
M(10,1) 'LLLLLLLLLL'.
DISPLAY GR=N, BR=Y.
M(15,1) 'Address:'.

SEGMENT SEGM,FORM01,SEGMSK.

Leave screen as is before display.

Turn on graphics.
Write horizontal graphic line.
Turn off graphics; make bright.

An empty segment.

2234391·9701

Form Definition Language

A field mask block is defined within a segment. Whenever the segment containing the field mask
is activated, the field mask is loaded into memory with the segment. The field mask is not dis
played until a field specifying its name in a DISPLAY MASK statement becomes the current field.
The named field mask is displayed prior to reading that field. You can clear the field mask from the
screen when the field is exited by using the POSTCLEAR attribute. A simple field mask follows.

EXAMPLE

FIELD SPECIAL_
POS (23,1) L 10.
DISPLAY MASK 'FLDMSK,POSTCLEAR.

DispLay the fieLd mask when the
fieLd is entered, and cLear the
mask when the input is vaLid.

FIELD MASK FLDMSK,CLEAR=N. Do not cLear screen.
M(23,12) 'This is for a speciaL case.'. DispLayed text.

The actual text of a mask is defined by background text statements (see paragraph 3.31). Back
ground text statements are defined in the segment mask block or the segment block.

3.1.5.4 Field Block. The field is the basic unit of I/O data within a segment. Each field is speci
fied by a, field block. A field block starts with a FIELD statement specifying the field's name. The
block can end with an optional END FIELD statement. The field block contains field attribute
statements that specify the location, the size, and the edit/processing attributes for that field. The
statements that are allowed within a field block are as follows:

• ARRAY

• AUTOSKIP

• BRANCH

• CHARACTER LIST

• COpy

• DEFAULT

• DISPLAY

• DISPLA Y MASK

• END FIELD

• EXTERNAL

• FIELD

• FILLER

2234391-9i'01 3·9

Form Definition Language

• GRAPHICS INPUT

• IF

• JUSTIFY

• LENGTH LIST

• MINIMUM LENGTH

• NO ENTRY

• NOAUTOSKIP

• NOTAB

• NOTREQUIRED

• NOVALIDATE

• NUMERIC

• OUTPUT

• PASS/FAIL

• POSITION

• PROMPT

• RANGE LIST

• REQUIRED

• SAMEAS

• SCALE

• SUBSTITUTE LIST

• TAB

• TABLE LIST

• TERMINATE READ

• VALUE

3·10 2234391·9701

Form Definition Language

3.1.5.5 Condition Block. A condition block lists the criteria used by an IF statement in select
ing one of its options: THEN or ELSE. A condition block starts with a CONDITION statement and
can end with an optional END CONDITION statement. The condition block can contain one or
more of the following edit statements:

• CHARACTER LIST

• CONDITION

• END CONDITION

• IF

• LENGTH LIST

• MINIMUM LENGTH

• PASS/FAIL

• RANGE LIST

• TABLE LIST

The following condition block might be used to check for a valid year of manufacture, where the
user can enter the year as two digits or four. The CHARACTER LIST statement makes sure the
user ent1ersonly digits. The LENGTH LIST statement rules out entries with other than two or four
digits. The RANGE LIST statement checks for years after 1984.

CONDITION YEAR.
CHARACTER LIST = DIGITS.
LENGTH LIST = YLEN.
RANGE LIST = YRANGE.
END YEAR.
LIST CHARACTER DIGITS = 0/9.
LIST LENGTH YLEN = 2, 4.
LIST RANGE YRANGE = IN 0/84, 1900/1984.

Note that a null value always passes all conditions. The only way to guarantee that the user enters
data in a field is to assign the REQUIRED attribute to the field.

3.1.5.6 Edit Set Block. A set of field attributes conditionally selectable by an IF statement (see
paragraph 3.23) is defined by an edit set block. Within an edit set block, all the field attribute state
ments are allowed except for the POSITION, DISPLAY, DEFAULT, and ARRAY statements. The
edit set block starts with an EDIT SET statement and can end with an optional END EDIT SeT
stateme·nt.

2234391-9~r01 3·11

Form Definition Language

3.1.5.7 List Definition Statements. The LIST statements define complex edit rules. The types of
list statements are as follows:

• LIST CHARACTER

• LIST LENGTH

• LIST RANGE

• LIST SUBSTITUTE

• LIST TABLE

The format of the LIST statement is as follows:

LIST type list = specifications

where:

type is a keyword denoting the kind of list being defined.

list is the name by which this list can be referenced.

specifications are the specifications for the list.

LIST statements can occur only within a SEGMENT block. A list's definition is local to the seg
ment where it is defined, but any field, edit set, or condition block within that segment can refer
ence a list by a statement of the following form:

type LIST = list.

3·12 2234391·9701

Form Definition Language

3.2 ARRAY STATEMENT

The ARR.AY statement defines a rectangular array of replications of a field. Each field of the array
has the same attributes except for its row/column location on the screen. The ARRAY statement
can appear only in a field block and has the following format:

ARRAY DIMENSION(row,col), INCREMENT(offset,offset)

where:

row specifies the number of rows in the field array. This number must be greater
than zero.

col specifies the number of columns in the field array. This number must be greater
than zero.

offset specifies the row and column increments, the number of lines or positions to
advance to get to the next row or column of the array. The first offset specifies
row increment. The second offset specifies column increment.

There are row·col fields in a field array. The position on the screen of the field containing an
ARRAY statement is the position of the uppermost, leftmost field of the array. The name of this
field is the name of the array.

You can define a one-dimensional field array by specifying only one row or column. If either is one,
the corresponding increment is not used.

EXAMPLE

FIELD ARY1.
POS(2,2)L3.
ARRAY DIM(2,2), INC(1,4).

Position of upper left field of array.
Two rows, two columns, no lines
skipped between rows, one position
between columns.

Array names are restricted in length. They must be short enough to allow an element number to be
appended without exceeding the six character limit on TIFORM names. Since the highest element
number equals row*col, you can easily determine how many characters it requires. For example, a
5 by 6 field array must have a name with no more than four characters to allow two characters for
the 30 element array. Likewise, a 3 by 3 field array must have a name with five or fewer characters.

2234391-9701 3·13

Form Definition Language

You use the following special notation for referencing individual fields in an array:

array(row,col)

where:

array is the name of the field array.

row is the number of the row of the field array being referenced. In a GROUP state
ment, you can use an * to specify all rows.

col is the number of the column of the field array being referenced. In a GROUP
statement, you can use an * to specify all columns.

EXAMPLE

GROUP G1 = XYZ(*,*). The group G1 includes all the fields of the field
array XYZ in row order.

GROUP G2 = XYZ(2,*). The group G2 includes all of row 2 of the field
array XYZ.

GROUP G3 = XYZ(*,3). The group G3 includes all of column 3 of the field
array XYZ.

GROUP G4 = XYZ(2,3). The group G4 includes only the one field at row 2,
column 3 of the field array XYZ.

GROUP G5 = XYZ. The group G5 includes only the top, leftmost field,
or field XYZ.

GROUP G5 = XYZ(1,1).

3·14 2234391.9701

Form Definition Language

3.3 AUTOSKIP AND NOAUTOSKIP STATEMENTS

The AUTOSKIP statement specifies the autoskip attribute for a field, automatically closing the
field when its last character position is filled. The user does not have to use an event key such as
Return, Forward Tab, Skip, or Enter to close an autoskip field, although an autoskip field can be
closed by an event key.

If you do not specify the autoskip attribute, FDL assigns the noautoskip attribute to the field. This
requires the user to press an event key to close the field. To remove the autoskip attribute from a
field, include the NOAUTOSKIP statement in the FDL for its edit set.

These statements are valid only within a field block or an edit set block. They have the following
format:

AUTOSKIP.
NOAUTOSKIP.

EXAMPLE

FIELD JUMP.
POS(1,1)L5.
AUT'OSKIP.

2234391-9701

Start of JUMP f;eld.
Beg;n f;eld ;n row 1, column 1, w;th a length of 5.
Th;s f;eld ;s closed when f;lled.

3·15

Form Definition Language

3.4 BRANCH STATEMENT

The BRANCH statement moves the cursor to a specified field. The branch occurs after all editing
and processing is successfully completed on the current field. The BRANCH statement is valid
only in a field block or edit set block and has the following format:

BRANCH TO iofield.

where:

iofield is the name of the field to read after the current field.

EXAMPLE

FIELD FIELD7.
POS(1,7)L6.
BRANCH TO FIELD9. Branch to field FIELD9.

For conditional branching (GOTO), refer to the description of the IF statement.

3·16 2234391-9701

Form Definition Language

3.5 CHARACTER LIST STATEM ENT

The CHARACTER LIST statement is used with a companion LIST CHARACTER statement to vali
date the characters entered into a field. The CHARACTER LIST statement includes the name of
the associated list of characters, plus an optional error message specification. A user who
attempts to enter a value with characters not on the list receives an error message and must
reenter the value.

The CHARACTER LIST statement is valid only in a field block, a condition block, or an edit set
block. It has the following format:

CHARACTER LIST list [;DIAGNOSTIC= {message I literal}]

where:

list is the name of a character list defined elsewhere in the same segment by a
LIST CHARACTER statement. .

message is the name of an error message that is displayed in place of the standard
error message if this test fails. (This specification is not valid in a
CON DITION block.)

literal iis a character string that is displayed in place of the standard error mes
sage if this test fails.

If you omit the DIAGNOSTIC specification, a standard error message is displayed when an invalid
value is entered. If you include the DIAGNOSTIC specification, the specified message or literal is
displayed instead of the standard error message.

EXAMPLE

FIELD FIELD02.
POS (3,4)LS.
CHAR LIST=DIGITiDIAG='Must be numeric.'.

LIST CHAR 0IGIT=0 .• 9.

2234391·9701 3·17

Form Definition Language

3.6 CONDITION AND END CONDITION STATEMENTS

These statements define the beginning and end of a condition block. They have these formats:

CONDITION condition.
END CONDITION condition.

where:

condition is the name of the condition block being defined.

EXAMPLE

3·18

FIELD FIELD4.
POS(4,S)L6.
CHAR LIST=DIGIT.
RANGE LIST=VALIDV.
IF COND HI ON *

THEN GOTO FIELD7
ELSE GOTO FIELD9.

COND HI.
RANGE LIST=FIVEHI.
END COND HI.

CHAR LIST DIGIT=0 •• 9.
LIST RANGE VALIDV=IN,0/9.
LIST RANGE FIVEHI=IN,O/S.

Field to demonstrate condition usage.
Location and size.
Must be numeric.
Must be in range.

!If the value < or = 5 go to FIELD7.

Condition is true if input is < or = 5.

Validates each character.
0-9 are valid.
0-5 are valid.

2234391-9701

Form Definition Language

3.7 CONTROL MODE STATEMENT

The CONTROL MODE statement allows you to specify control functions for the form in its FDL.
This relieves the application program from having to issue a call to the Control Functions routine
when it opens the form. The ENABLE CONTROL MODE statement turns on the specified func
tions, while the DISABLE CONTROL MODE turns them off. Table 3-1 describes each of the control
functions available.

You can use these statements only in the form block, the outermost level in the FDL block hier
archy. They have the following formats:

ENABLE CONTROL MODE mode
DISABLE CONTROL MODE mode

where:

mode is a decimal integer between 1 and 16 that deSignates a specific function. You
can specify a list of modes separated by commas.

The compiler issues a warning if you include CONTROL MODE statements in your FDL source.

EXAMPLE

FORM01,999999,02.
ENABLE CONTROL MODE 2,6. Turn functions 2 and 6 on.

2234391·9701 3·19

Form Definition Language

3·20

Table 3·1. Control Modes and Functions

Control Mode Function

1

2

3

4

5

6

7

8

9

10*

11

12

13*

Note:

When on, inhibits the termination' of a read on a Back Tab or Previous Field
key when in the first field of the Read. When these keys are pressed,
sounds a warning beep and positions the cursor at the first character of the
first field of the Read.

When on, inhibits the Erase Input key; allows it to perform like Erase Field.
Also clears a message from the message area of the screen immediately
upon acknowledgement by the user. This mode is used by the ISGE and is
not particularly useful for a general application.

When on, inhibits deblanking from the right for field and variable values.

When on, places the KSR terminal in the immediate write mode. Usually,
the terminal is in the delayed write mode.

When on, 1/0 on the KSR terminal is unformatted. Usually, I/O is formatted.

When on and no data is entered, returns nulls instead of ASCII blanks.
Blanks are the Form Executor default.

When on, forces a Previous LinelNext Line key to move the cursor to the
first column of the selected field. If off, the Previous Line/Next Line keys
leave the cursor in the same column of the screen as it started in. This
mode is especially useful when dealing with columnar numeric data.

When on, performs symmetric processing to the application.

When on, supresses the Print key message to the screen.

When on, allows an open extend on the 820. The user's 820 files are there
fore concatenated.

When on, validation execution takes place when a Previous Field key is
pressed to exit the first field in a read.

When on and Print key function is being used, inhibits the printing of
header and trailer lines for screens.

When on, allows an open extend on the 820. Open with rewind on 911.

* See Control Functions Program Notes in Section 5.

2234391-9701

Form Definition Language

3.8 COpy STATEMENT

The COPY statement copies a value into a specified list of fields/variables. The FROM specifica
tion indicates the field, variable, or literal whose value is copied. The TO specification gives the
destinat:ion field or variable for the value copied.

The COPY statement is only valid within a field block or edit set block. There are two formats for
this statement-one for copying the value when the cursor enters the field and another for copy
ing the value into the field after the cursor leaves:

(1) COPY FROM {field11 variable11literall * } ... TO {field21 variable21 * } ... [ON ENTRY]

(2) COpy FROM {-field1 I variable1 I literal I * } ... TO * ON COMPLETION

where:

field1

variable1

literal

field2

variable2

*

EXAMPLE

is the name of the field that supplies the copy value.

is the name of the variable that supplies the copy value.

is the literal to copy. It must be enclosed in single quotes.

is the name of the field that receives the value. You cannot specify an ele
ment in an array.

is the name of a variable that receives the value.

stands for the current field.

COPY FROM 'XYZ' TO F6. !Copy the literal XYZ to F6.

or

COPY FROM F2 TO F3,F4.

or

COPY FROM 'ABC' TO *, F3.

2234391-9701

!Copy the value of F2 to F3
land the value of F2 to F4.

!Copy the literal ABC to current
field and F3. (Note that the
exclamation is used to allow
comments on the same record.)

3·21

Form Definition Language

3.9 DEFAULT STATEMENT

The DEFAULT statement assigns a field a default value, which is displayed in the field when the
program calls the Prepare Segment routine. If you do not assign an explicit default value, a zero
length (null) value is installed in the field.

The DEFAULT statement is only valid within a field block. It has the following format:

DEFAULT = {iofield I variable I literal }

where:

iofield is the name of an 110 field whose value is to be displayed as the default.

variable is the name of a variable whose value is to be displayed as the default.

literal is a value to be displayed as the default.

EXAMPLE

3-22

FIELD FIELD3.
POS(4,S)L6.
DEFAULT = FIELD1.

FIELD FIELD4.
POS(7,S)L9.
DEFAULT = ·Yes.'

Default is from field FIELD1.

Default is the literal, "Yes."

2234391-9701

Form Definition Language

3.10 DEVICESTATEMENT

The DEVICE statement defines the type of device where the form is displayed. The DEVICE state
ment can appear only in the form or segment context. If the DEVICE statement appears in the form
context, the segment and segment mask take the default device type. If the DEVICE statement
appears jin the segment context, the segment and segment mask become device dependent. You
can create device-dependent versions of a segment for each type of device simply by editing the
DEVICE statement. If this statement does not appear anywhere in the form, the segment executes
regardless of the device in use.

The DEVICE statement has the following format:

DEVICE = type.

where:

type is one of the device types listed in Table 3-2.

Table 3·2. Device Types and Characteristics

Type Characteristics

VDU-1 12 lines by 80 characters per line VDU

VDU-2 24 lines by 80 characters per line VDU

KSR-1 66 lines by 80 characters per line KSR

KSR-2 66 lines by 132 characters per line KSR

EXAMPLE

DEVICE = VDU-2. 1920 character/screen VDU.

2234391-97'01 3·23

Form Definition Language

EXAMPLE

FORM FORM01,999999,02.
DEVICE=VDU-2.

SEGMENT MASK APPlE,ClEAR=Y.

SEGMENT PIE,(FORM01),APPlE.

SEGMENT MASK APPlE,ClEAR=Y.

SEGMENT PIE,(FORM01),APPlE.
DEVICE=VDU-2.

3·24

The DEVICE statement in this exampLe
is for documentation purposes onLy.
Both the segment mask and the
segment take the defauLt device
type. They execute on any device.

The DEVICE statement in this exampLe
makes this segment (PIE) and segment
mask (APPLE) device dependent.

2234391-9701

Form Definition Language

3.11 DISPLAYSTATEMENT

The DISPLAY statement specifies video attributes for a field or mask. For each video attribute, you
can specify YES or NO to assign or remove that attribute to the field.

The format of the statement is as follows:

DISPLAY {ND I BR I GR} = {YES I NO} ...

where each two-character keyword controls a particular display attribute, as follows:

Keyword Attribute

ND Nondisplay - Do not display the contents of the field.

BR Bright - Display field using high-intensity.

BL Blink - Blink cursor in field.

GR Graphics - Display virtual graphics as graphics.

The scope of the DISPLAY statement depends on its context:

• When used within a field block, the attribute settings affect only that field's display
attributes.

• When used within a segment mask or field mask block, the attribute settings remain in
effect until another DISPLAY statement changes them or until the end of the block is
reached ..

• When used in an edit set block, the attribute settings allow the DISPLAY statement to
be specified at run time.

• When used in a segment block, the attribute settings allow background text specified at
the se'gment level to have display attributes.

3·25

Form Definition Language

If you assign the graphic attribute to a field, you allow application programs to write virtual
graphic characters to it. These virtual graphic characters are translated to actual graphic charac
ters before they are displayed. Appendix E discusses the virtual graphic characters and paragraph
1.3.16 discusses the use of the video attributes.

EXAMPLE

DISPLAY BR=Y. Input characters are d;splayed br;ght.

EXAMPLE

3·26

FIELD SOCCER.
POS(20,20)L50.
DISP BR=Y.
IF CONDITION HANDS ON PLAYER

THEN EDIT SET=GOALIE.

EDIT SET GOALIE.
DISP BR=N. H;gh ;ntens;ty ;s now turned off.

2234391-9701

Form Definition Language

3.12 DISPLAY MASK ST ATEM ENT

The DISPLAY MASK statement specifies the field mask to display prior to reading the field. This
statement allows you to display instructions to the user who is about to enter data into a field.
With POSTCLEAR, the Form Executor also clears the instructions from the screen once the field
is entered correctly. The DISPLAY MASK statement is only valid within a field block or edit set
block and has the following format:

DISPLA Y MASK mask [,POSTCLEAR]

where:

mask is the name of a field mask defined within the same segment.

POSTCLEAR clears the mask's text from the screen once the field is entered
correctly.

EXAMPLE

DISPLAY MASK FLDMSK,POSTCLEAR. Mask ;s cleared.

2234391-9i'01 3·27

Form Definition Language

3.13 EDIT SET AND END EDIT SET STATEMENTS

The EDIT SET and END EDIT SET statements mark the beginning and end of an edit set block. The
EDIT SET statement has two equivalent formats:

(1) EDIT SET edits.
(2) EDITS edits.

The EN D EDIT SET statement has the following format:

END EDIT SET edits.

where:

edits is the name of the edit set being defined by this edit set block.

Assume that input for the field named FIELD6 is not required. If there is input, it is validated differ
ently depending upon whether input for FIELD6 is a numeric value or a string. Cascaded edit sets
are demonstrated.

3-28 2234391·9701

EXAMPLE

FIELD FIELD6.
POS(3,4)LS.
IF COND SOMTHN ON *
THEN EDITS=LEVEL1.

COND SOMTHN.
MIN LEN=1.

EDIT SET LEVEL1.
IF COND NUMBER ON *
THEN EDITS = ENUMB
ELSE EDITS = ESTRNG.

END EDIT SET LEVEL1.

COND NUMBER.
CHAR LIST=DIGIT.

LIST CHAR DIGIT=0 •• 9.

EDIT SET ENUMB.
RANGE LIST=LESS20.
TABLE LIST=EVEN.

END EDIT SET ENUMB.

RANGE LIST' LESS20=IN,0/19.

TABLE LIST EVEN=EX,1,3,5,7,9.

EDI,. SET ESTRNG.
TABLE LIST=STRNGS.

END EDIT SET ESTRUNG.

True if there is something.

!(If a number, do ENUMBi if
a string, do ESTRNG.)

If a number, must be even
and under 10, or anything
positive and under 20.

Value must be <20.

Odd values less than 10
are excluded.

If string, must be one from
the specified list.

LIS,. TABLE STRNGS=IN,'AAA','BBB','CCC','DDDD'.

2234391-9701

Form Definition Language

3·29

Form Definition Language

3.14 ERROR MESSAGE STATEMENT

The ERROR MESSAGE statement defines a message to replace a standard TIFORM edit error
message. If an edit test fails, the user receives the new message instead of the standard message.
Statements that reference an ERROR MESSAGE statement are the REQUIRED statement, the IF
statement, and the various LIST statements. The ERROR MESSAGE statement is only valid within
a segment block and has the following format:

ERROR MESSAGE message = literal

where:

message is the name of the error message being defined.

literal is the value of the error message, enclosed in single quotes. The size of the
error message is the length of the literal.

EXAMPLE

ERROR MESSAGE NOTDIG = 'OnLy numeric characters are permitted.'.

An error message has all the attributes of a variable. It can be read and written by the application,
and can be referenced anywhere that a variable can be referenced. The error message statement
is included in the FDL syntax for clarity of documentation. The text string of the error message
can be from 1 through 78 characters in length.

3·30 2234391·9701

Form Definition Language

3.15 EXTERNAL,STATEMENT

The EXTERNAL statement declares a list of names to be available to the application program for
use with Read, Write, and Reset routines. Segment and group names are automatically external.
Multiple EXTERNAL statements are allowed. The names referenced In an EXTERNAL statement
must be defined in the segment where the EXTERNAL statement appears. The EXTERNAL state
ment has the following format:

EXTERNAL {field I variable } ...

where:

field is the name of a field.

variable is the name of a variable.

EXAMPLE

FORM FORM01,999999,02.

VARIABLE HUM='123'.

FIELD FIELD1.
POS (1,10)L10.

EX1r FIELD1,HUM. Field, variable are externalized.

2234391-9701 3·31

Form Definition Language

3.16 FIELD AND END FIELD STATEMENTS

The FIELD and END FIELD statements mark the beginning and end of a field block. The FIELD
statement identifies the field and indicates that subsequent FDL statements pertain to that field.
The optional END FIELD statement marks the end of a FIELD block. These statements are valid
only within a field block and have the following formats:

FIELD field.
END FIELD field.

where:

field is the name of the field.

EXAMPLE

FIELD FIELD2.
POS (3,4)LS.

END FIELD FIELD2.

3-32 2234391·9701

Form Definition Language

3.17 FIELD MASK AND END FIELD MASK STATEMENTS

The FIEL.D MASK and END FIELD MASK statements mark the beginning and end of a field mask
block. The FIELD MASK statement identifies the field mask, indicates that subsequent FDL state
ments fClrm its definition, and specifies whether the screen is cleared before the mask is dis
played. The optional END FIELD MASK statement marks the end of the field mask block. These
statements are valid only within a field mask block and have the following formats:

FIELD MASK mask, CLEAR = {YES I NO}
EN [) FI ELD MASK mask.

where:

mask is the name of the field mask.

You reference a field mask with the DISPLAY MASK statement. The processing of the field mask
by the Form Executor is terminal dependent. However, for all terminals except the KSR-1 and
KSR-2, the field mask is displayed just before the field is read. If you are using a KSR, refer to the
PROM PT statement.

EXAMPLE

FIELD MASK FLDMSK,CLEAR=N. Do not clear the screen.
MC23,1)'Press F1 for next page'.

END FIELD MASK FLDMSK.

2234391·9701 3·33

Form Definition Language

3.18 FILLER STATEMENT

The FILLER statement defines a fill character for input fields in the form. The usual fill character is
the underscore (_), but the FILLER statement allows you to change it to any character you prefer,
including graphics. The statement has the following format:

FILLER = char [,DISPLA Y = GRAPHICS]

where:

char is the single character to use as a fill character within this form, segment, field,
or edit set.

The scope of this statement depends on its context:

• If it appears within a field block, it defines the fill character for that field only.

• If the statement appears within an edit set block, the fill character becomes the field's
default fill character. You can specify a different fill character for each field.

• If this statement appears outside of a field block, the fill character is used for all input
fields in the form or segment that do not have a fill character of their own.

Note that a FILLER statement affects only 110 fields. Output fields always use the blank as a fill
character. If you select an alphanumeric character such as 1, that character is used to fill any
empty positions in the field. This might not be desirable.

EXAMPLE

FORM01,999999,02.
FILLER = S'.S'. The fill character ;s an aster;sk for FORM01.

If you want to display a graphics character as the fill character, you must use the FILLER state·
ment with a DISPLAY specification.

EXAMPLE

FORM01,999999,02.
FILLER = 'a', DISPLAY = GR.

3-34

Filler is graphics charactar represented
by a.

2234391-9701

Form Definition Language

3.19 FKEYSSTATEMENT

The FKEYS statement associates fields with function keys. When the user presses one of the
function Ikeys listed in an FKEYS statement, the cursor moves to the field associated with that
key. The FKEYS statement is valid only in a segment block and has the following format:

FKEYS = key/iofield

where:

key is one of the two-digit function key codes listed in Table 2-2 or 2-4.

iofield is the name of the 1/0 field where the cursor is to go when the user presses the
corresponding function key. (The prior field is closed as the cursor leaves.)

An FKEYS statement applies only to the segment where you define it. You must define all fields
named in that same segment, and these fields cannot be arrays. The application program can
override associations specified in an FKEYS list by using the Arm Event Keys command. See para
graph 5.6 for a discussion of the Arm Event Keys command.

EXAMPLE

FKEYS=01/FIELD3,04/FIELD1,40/ENDFLD.

2234391·97101 3·35

Form Definition Lang.

3.20 FORM AND END FORM STATEMENTS

The FORM and END FORM statements mark the beginning and end of a form block. The FORM
statment identifies the form block and indicates that subsequent FDL statements pertain to that
form. The optional EN D FORM statement marks the end of a form block. These statements have
the following formats:

FORM form [,part#][,rev#].
EN D FORM form.

where:

form is the name of the form declared in the preceding FORM statement.

part# is an optional, six·digit decimal part number.

rev# is an optional, two-digit decimal revision number.

The name of a form must not conflict with the names of any of the other forms, segments, or seg
ment masks stored in the same program file. The name of a form must begin with a letter and can
consist of up to six letters, numerals, dollar signs, and dashes. The part number and revision
number are optional and for documentation purposes only.

EXAMPLE

FORM FORM01,999990,01.

END FORM FORM01. This is the last statement of the form.

3·36 2234391·9701

Form Definition Language

3.21 GRAPHICS INPUT STATEMENT

The GRAPHICS INPUT statement permits the input of terminal-dependent graphics characters
from the k:eyboard into the field. The statement is valid only within a field block or edit set block
and has the following format:

GRAPHICS INPUT.

EXAMPLE

FIEUI F1_1.
POS(S,7S)LS.
GRAPHICS INPUT.

2234391-9701 3·37

Form Definition Language

3.22 GROUP STATEMENT

The GROUP statement defines a named list of fields, variables, and subgroups. These elements
are read by the application program from left to right, top to bottom. The GROUP statement is
valid only within a segment block and has the following format:

GROUP group = {field I variable I subgroup I array}

where:

group is the name of the group being defined.

field is the name of a field in the group.

variable is the name of a variable in the group.

subgroup is the name of a subgroup in the group.

array is the name of an array element in the group. The element must be speci·
fied in the array(row,col) format. (See paragraph 3.2 for a discussion of field
arrays.)

A group name is automatically available to the application for use in Read, Write, and Reset com·
mands. You do not need to specify it as EXTERNAL. Paragraph 1.2.6 discusses the use of groups.

EXAMPLE

FIELD FIELD1. Field 1 •
P~S (1 ,10) L4. Position and size.

3·38

FIELD FIELD2. Field 2.
P~S (2,10) L4.

FIELD FIELD3. Field 3.
P~S (12,20)L7.

GROUP GROUP1=FIELD1,FIELD2.
GROUP GROUP2=GROUP1,FIELD3.

References two fields.
References above group, third field.

2234391·9701

Form Definition Language

3.23 IF STATEMENT

The IF statement ,allows you to specify conditional branching, termination, or attribute selection
for the current field. The statement specifies a condition block to be tested. If the conditions in the
block are satisfied, then the THEN portion of the IF statement is executed. If the conditions are
not satisfied, the ,optional ELSE portion is executed. (You can specify an ELSE action without a
THEN action, but such constructions can be difficult to understand. You can easily produce a
clearer, logically equivalent statement using NOT and THEN.)

The IF statement can appear only within a field block or an edit set block. The common form of the
statement (using THEN) has the following format:

IF [NOT] CONDITION condition [PREENTRY I POSTENTRy] ON {iofield11 variable I *}
THEN {GOTO iofield21 TERM/NA TE READ [IMMEDIA TEL Y] I EDITS = edits}
[ELSE {GOTO iofield21 TERMINATE READ [IMMEDIATELY] I EDITS = edits}]

where:

condition

iofield1

variable

*

iofield2

edits

is the name of a condition block to evaluate to determine whether to per
form the THEN action or ELSE action.

is the name of an input field against which the condition evaluated. For
PREENTRY evaluation, this cannot be the current field.

is the name of a variable against which the condition is evaluated.

represents the current field.

is an I/O field where the cursor is to move.

is the name of an edit set that provides conditional attributes for the cur
rent field.

Your choice of PREENTRY or POSTENTRY determines when the conditional branching, termina
tion, or attribute selection takes place. PREENTRY means the condition is evaluated and any
action is taken as soon as the cursor enters the field. POSTENTRY means the evaluation and
action take place after the user has entered a value into the field, but before any edits have been
applied. If you do not specify POSTENTRY, then PREENTRY is assumed.

If you have several IF statements in a field or edit set block, the Form Executor evaluates their
conditions in the order the IF statements_appear in the FDL. It takes the specified action as soon
as it executes an IF-THEN (or IF-NaT-ELSE) statement with a condition that is satisfied or an
IF-NaT-THEN (or IF-ELSE) with a condition that fails. Otherwise, it processes the field with its
usual attributes.

2234391-9701 3·39

Form Definition Language

If the action is GOTO, the cursor moves to the specified field. This can change the sequence in
which fields are read from a group. Following the processing of the specified field, the group read
continues as if the cursor had arrived in the specified field in the usual sequence for the group.

If the action is EDITS, then the specified edit set is used for the current field. Since that edit set
can also include an IF statement, conditional attribute selection can cascade through several edit
sets before a field's edits are finally selected. See paragraph 3.1.5.5 for a discussion of the evalua
tion of condition blocks.

If the action is TERMINATE READ (but not IMMEDIATELY), the current Read terminates following
the specified entry processing and editing for the current field. Entry and output processing and
editing for all fields included in the Read are performed. Thus, all fields must contain valid values
before the data is returned to the application. The application program receives status code 02.

If the action is TERMINATE READ IMMEDIATELY, the Read terminates following the specified
entry processing and editing for the current field. Thus, the current field must contain a valid
value. No further editing or processing is performed and any data returned may be invalid. The
application program receives status code 06.

EXAMPLE

3·40

SEGMENT SEG01,(FORM01),MASK01.

FIELD NEEDIT.
POS(15,56)L5.
IF COND NEMPTY ON *

THEN EDITS=VALDAT
ELSE EDITS=JUMP.

COND NEMPTY.
MIN LEN=1.

EDIT SET VALDAT.
CHAR LIST=DIGIT.
RANGE LIST=NINNIN.
JUST R,FILL=O.

EDIT SET JUMP.
BRANCH TO FIELDS.

LIST CHAR DIGIT=0 .. 9.

LIST RANGE NINNIN=IN,0/99.

IIf the field is not empty, apply the
!VALDAT edit set. If it is empty, apply
the edit set JUMP.

Condition to determine if current
field is empty.

Apply digit and range checks to
see that value is less than 100,
then right justify it.

Go directLy to field 5.

Valid characters are 0 through 9.

VaLue must be 0 through 99.

2234391·9701

Form Definition Language

EXAMPLE

FIELD UPE.
POS(6,S)L9.
IF CONO ALPHA POST~NTRY ON *

THEN EDITS = ZNOT.
!Apply conditio~ ALPHA to this field. If
true, use edit set ZNOT. If not true,
!apply condition BETA to F3. If true,
use edit set YNOT. If not true, use
current field's edits.

IF COND BETA PREENTRY ON F3
THEN EDITS = YNOT.

EXAMPLE

FIELD FIELDS.
PIOS (3,24) L 10.
IF COND NEMPTY ON *

THEN GOTO FIELD3.
IF COND NFULL ON FIELD2

THEN GOTO FIELDS.

COND NEMPTY.
MIN LEN=1.

COND NFULL.
LEN LIST = DIGITS.

2234391 ·9701

!Apply Condition NEMPTY to this field
and if true go to FIELD3. If not true
!apply Condition NFULL to FIELD2
and if true go to FIELDS. If not true
proceed to the next field.

3·41

Form Definition Language

3.24 JUSTIFY STATEMENT

The JUSTIFY statement calls for right or left justification of data in a field. You can specify the
direction, fill character, decimal position, and timing for the justification. The JUSTIFY statement
is valid only yvithin a field block or edit set block and has the following forma~s:

JUSTIFY LEFT, FILLER = char [ON ENTRY I ON COMPLETION]
JUSTIFY RIGHT, FILLER = char [,DECIMAL = places] [ON ENTRY I ON COMPLETION]

where:

char specifies the character with which to fill the field's empty character positions
after the justification.

places specifies the number of digits to display to the right of the value's decimal
point. You can specify decimal digits only for right justification.

RIGHT or LEFT specifies the direction of the justification. Right justification with a zero fill char
acter is typically used for numeric data. Left justification with blank fill is most often used for
character data.

ON ENTRY and ON COMPLETION are optional specifications for when the justification is to take
place. ON ENTRY means that the justification occurs immediately after the user enters a value
and that the result of the justification should be displayed. ON COMPLETION means that the justi
fication occurs just before the application program receives the data and that the result of the jus
tification is not displayed.

The Form Executor includes a special feature to support signed COBOL data types where the sign
occupies the rightmost position in the value. For COBOL application programs only, a JUSTIFY
RIGHT statement with an ON COMPLETION specification moves a field's sign character to the
rightmost character position of the field. For other languages and specifications, the sign remains
next to the high-order digit.

EXAMPLE

FIELD LEFT.
POS(S,S)LS.
JUSTIFY LEFT, FILL=' , Standard for str;ng f;elds.

FIELD RIGHT.
POS(4,4)L4.
JUST R,FILL='O',DEC=2 ON COMPL. A real number.

3-42 2234391·9701

Form Definition Language

3.25 LENGTH LIST STATEMENT

The LENGTH LIST statement is used with a companion LIST LENGTH statement to validate the
lengths of values (in characters) entered into a field. The LENGTH LIST statement includes the
name of the associated list of valid lengths, plus an optional error message specification. A user
who attempts to enter a value having a length not on the list receives an error message and must
reenter the value.

The LENGTH LIST statement is valid only in a field block, a condition block, or an edit set block. It
has the f()lIowing format:

LENGTH LIST list [;OIAGNOSTlC= {message I literal}]

where:

list is the name of a length list defined elsewhere in the same segment by a
LIST LENGTH statement.

message is the name of an error message that is displayed in place of the standard
error message if this test fails. (This specification is not valid in a
CON OITION block.)

literal is a character string that is displayed in place of the standard error mes
sage if this test fails.

EXAMPLE

FIELD ODDS.
POS(15,S)L20.
LEN LIST=PRIMESiDIAG=PRIMER. One of several lengths.

LIST LENGTH PRIMES=1,2,3,5,7,11,13. Prime lengths only.
ERROR MESSAGE PRIMER='Must enter prime length < or = 13'.

2234391-9j701 3·43

Form Definition Language

3.26 LIST CHARACTER STATEMENT

The LIST CHARACTER statement is used with one or more companion CHARACTER LIST state
ments to validate the characters entered by the user. The LIST CHARACTER statement specifies a
list of acceptable characters. A user who attempts to enter a value with characters not on the list
receives an error message and must reenter the value.-

The LIST CHARACTER statement is valid only in a segment block and has the following format:

LIST CHARACTER list = {char Ichar .. char I char/char} ...

where:

list is the name of the character list.

char is a valid character for the field. The char .. char and char/char formats are equiva
lent ways of specifying ranges of consecutive characters in ASCII order. The
keyword BLANK represents the blB:nk. Special characters other than the blank
must be enclosed in single quotes.

EXAMPLE

3·44

LIST CHAR DECMAL=O .• 9,·.·. Standard numer;c val;dat;on.
LIST CHAR ALPHA=A .. Z.

2234391-9701

Form Definition Language

3.27 LIST LENGTH STATEMENT

The LIST LENGTH statement is used with one or more companion LENGTH LIST statements to
validate the lengths of values entered by the user. The LIST LENGTH statement specifies a list of
acceptable lengths. A user who attempts to enter a value whose length is not on the list receives
an error message and must reenter the value.

The LIST CHARACTER statement is valid only in a segment block and has the following format:

LIST LENGTH list = length

where:

list is the name of the length list.

length is a positive integer that specifies the number of characters in a valid value.
You can specify a list of lengths, separated by commas.

EXAMPLE

LIST LENGTH EVEN=2,4,6. Valid input lengths.

2234391-9i'01 3·45

Form Definition Language

3.28 LIST RANGE STATEMENT

The LIST RANGE statement is used with one or more companion RANGE LIST statements to vali
date the values entered by the user. The LIST RANGE statement specifies a list of acceptable
ranges of values. Numeric ranges are validated arithmetically. Character ranges are sequenced in
ASCII order. A user who attempts to enter a value not allowed by the list receives an error message
and must reenter the value.

The LIST RANGE statement is valid only in a segment block and has the following format:

LIST RANGE list = {IN, I EX,} {value .. value I value/value} ...

where:

list is the name of the range list.

value is an upper or lower bound for a range. The value .. value and value/value specifi
cations are alternative ways of specifying pairs of upper and lower bounds.
Within each pair, the first value listed (lower bound) must be less than the
second (upper bound).

You must choose whether the list of ranges is to be inclusive or exclusive. If you specify IN
(inclusive), a valid value must fall within one of the ranges on the list, including uppe'r and lower
bounds. If you specify EX (exclusive), a valid value must fall outside every range on the list, again
including upper and lower bounds.

EXAMPLE

LIST RANGE LESS10=IN,O/9.

LIST RANGE MPY10S=EX,O/9,11/19,21/29. 10,20,30 and up are permissible.

3-46 2234391-9701

Form Definition Language

3.29 LIST SUBSTITUTE STATEMENT

The LIST SUBSTITUTE statement is used with one or more companion SUBSTITUTE LIST state
ments to perform substitutions on values entered by the user. The LIST SUBSTITUTE statement
specifies a list of possible values and their replacements. It is valid only within a segment block
and has the following format:

LIST SUBSTITUTE list = valuelliteral.. ..

where:

list is the name of the substitute list.

value is a value that the user might enter.

literal is a replacement for the value entered.

When the user enters a value on the list, it is replaced by the substitute value. Otherwise, it is left
unchanged. The timing of the replacement depends on whether the companion SUBSTITUTE LIST
statement specifies replacement ON ENTRY or ON COMPLETION.

EXAMPLE

LIST SUB GENDER='M"'MALE','m"'MALE','F"'FEMALE','f"FEMALE'.

LIST SUB SYESNO='Y"'YES','y"'YES','YO"'YES','yo"'YES',
'yes"'YES','N"'NO','n"'NO','no"'NO','NES"'NO','nes"'NO'.

2234391-9701 3·47

Form Definition Language

3.30 LlSTTABLESTATEMENT

The LIST TABLE statement is used with one or more companion TABLE LIST statements to vali
date the values entered by the user. The LIST TABLE statement specifies a list of acceptable or
unacceptable values. A user who attempts to enter a value not allowed by the list receives an error
message and must reenter the value.

The LIST TABLE statement is valid only in a segment block and has the following format:

LIST TABLE list = {IN, I EX,} value ...

where:

list is the name of the table list.

value is a value the user might enter.

You must choose whether the list of values is to be inclusive or exclusive. If you specify IN
(inclusive), a valid value appear on the list. If you specify EX (exclusive), for a value to be valid, it
must not appear on the list.

EXAMPLE

LIST TABLE YESNO= IN,'Y','y','YES','yes','N','n','NO','no'.

3·48 2234391-9701

Form Definition Language

3.31 MASK (BACKGROUND TEXT) STATEMENT

The mask (or background text) statement defines the position and content of a part of a back·
ground mask. The literal associated with the background text statement is displayed on the
screen.

You can use this statement within a segment mask block, field mask block, or segment block. It
has the following format:

M([r()w],[col]) literal

where:

row is an integer specifying the absolute row number where this piece of back·
ground text is to reside or a signed integer defining the relative displacement of
the current M statement from the position given by the previous M statement or
POSITION statement. If you do not specify a row, the previous specification
applies.

col is an integer specifying the absolute column number where this piece of back
ground text is to start or a signed integer defining the relative displacement of
the current M statement to the rightmost column in the previous M statement
or POSITION statement. The rightmost column specified is the last used
column of the literal.

literal is the background text. All of this text must be on a single screen line.

2234391-9701 3 .. 49

Form Definition Language

EXAMPLE

SEGMENT MASK EMPLOY,CLEAR=N.
M(3,4) 'Name'. Background text begins at row 3, column 4.
M(,+16) 'Age'. Background text begins at row 3, column 23.
M(+1,4) 'Birthdate'. Background text begins at row 4, column 4.

Multiple background text statements are allowed. You can use the DISPLAY statement to specify
the video attributes of a piece of mask text if you do not want the defaults. For example, you can
use bright display or graphics in a background mask. The DISPLAY statement must precede the
background text statement. It remains in effect until the next DISPLAY statement occurs or until
the end of the mask is reached.

EXAMPLE

SEGMENT MASK WHERE,CLEAR=N.
DISPLAY BR=Y.
M(S,3S) 'TEXAS INSTRUMENTS'.

M(6,3S) 'Austin, Texas'.

Begin WHERE mask without CLEAR.
Background text 'TEXAS INSTRUMENTS'
is displayed in high intensity.
Background text 'Austin, Texas' is
displayed in high intensity.

If you use the graphics attribute, the text string must be composed of the graphics characters
defined in Appendix E. These characters are non·alphanumeric and generally not available for use
with system utilities such as the Text Editor.

3·50

NOTE

You can use background mask statements to display text on the
bottom line of the screen. However, this line is also used for the
display of error messages. When the user acknowledges the mes·
sage by pressing Return, the bottom line of the screen is cleared
and any background text previously displayed on this line is lost.

2234391·9701

Form Definition Language

3.32 MINIMUM LENGTH STATEMENT

The MINIMUM LENGTH statement specifies a minimum length for values entered by the user. The
statement can appear in an field block, edit set block, or condition block and has the following
format:

MIN.lMUM LENGTH = length [;DIAGNOSTlC= {message I literal}]

where:

length is the minimum length for value entered into this field.

message is the name of an error message that is displayed in place of the standard
error message if this test fails. (This specification is invalid in the
CON DITION block.)

literal is a character string that is displayed in place of the standard error message
if this test fails.

EXAMPLE

FIELD SMALL.
POS(20,1)L6.
MIN LENGTH=1.

2234391-9701

At least one character ;s required.

3·51

Form Definition Language

3.33 NO ENTRY STATEMENT

The NO ENTRY statement prevents the cursor from entering a field during a read. This statement
differs from the OUTPUT statement in that a NO ENTRY field can have editing processes. The NO
ENTRY statement can appear only in a field block or edit set block and has the following format:

NO ENTRY.

EXAMPLE

3·52

FIELD BLANK.
POS(10,6)L25.
IF CONDITION ZILCH ON F1

THEN EDITS = E1.

EDIT SET E1.
DISP BR = Y.
NO ENTRY.

2234391-9701

Form Definition Language

3.34 NOVALIDATESTATEMENT

The NOVALIDATE statement suppresses field validation for the current field. It is valid only in a
field block or edit set block and has the following format:

NOVALIDA TE.

Field validation reapplies all edits just prior to sending the field's data to the application program.
It declar,es an edit error if any field's edit fails. If ON ENTRY processing is specified for a field,
it is quite possible that the processed field value no longer satisfies the field's edits. The
NOVALIDATE attribute allows such a processed field value to be sent to the application anyway.

EXAMPLE

FIE lD FORGiET.
POS(3,S)L34.
NOVAL.

2234391-9701 3·53

Form Definition Language

3.35 NUMERIC STATEMENT

The NUMERIC statement assigns a field a set ~of attributes commonly used for numeric data. It
specifies right justification and a character list consisting of the characters 0 .. 9. Option allows
you to also include the plus sign, minus sign, decimal point, and blank.

The NUMERIC statement is only valid within a field block or edit set block and has the following
format:

[SIGNED I UNSIGNED] NUMERIC [,FILL= char] [,DECIMAL = places].

where:

char is the fill character used for values shorter than the field length.

places is the number of digits to display to the right of the decimal point.

If you include a SIGNED specification, the user can enter a sign as part of the value. You must
reserve a position in the field for the sign, both on the screen and in the data returned to the appli
cation program. The value returned to the application program is always right-justified with zero
fill on the left. The placement of the sign depends on the programming language used:

• COBOL: Either + or - is returned in the rightmost position. If no sign is entered, + is
returned.

• Pascal or FORTRAN: The sign is returned in the leftmost position. If no sign is entered, a
zero is returned in that position.

If you specify UNSIGNED (or fail to specify either SIGNED OR UNSIGNED), the user is not allowed
to enter a sign character" The field is right-justified on output and zero filled on the left.

The NUMERIC statement causes the FDL compiler to generate attributes for the field that are
equivalent to those generated by the following statements:

JUSTIFY RIGHT, FILL=char [,DECIMAL=places] ON ENTRY.
[SCALE R, pLaces ON COMPLETION.]
JUSTIFY RIGHT, FILL=IOI ON COMPLETION.
CHARACTER LIST = list.
LIST CHARACTER list = 0 .. 9 [,1.1] [,1+1,1_1], [,Ichar l].

The attributes generated by a NUMERIC statement are called soft attributes because they can be
overridden by other FDL statements. For example, if you supply a SCALE statement with a differ
ent scale factor than the one generated by the FDL compiler, your scale factor would be used
instead of the one generated.

3-54 2234391·9701

Form Definition Language

• If you include a DECIMAL specification, the FDL compiler adds a DECIMAL specifica
tion to the JUSTIFY ... ON ENTRY statement, includes the SCALE statement, and adds
the decimal point to the character list.

• If you do not specify a fill character, the FDL compiler supplies a blank fill character in
the JUSTIFY ... ON ENTRY statement and includes the blank in the character list.

• If you include a SIGNED specification, the FDL compiler adds the plus and minus signs
to the character list.

The character lis,ts used are given six-character names according to the following algorithm:

First character

Second character

Third-fourth character

= U if no SIGNED
S if SIGNED

= N if not DECIMAL
D if DECIMAL

= xx where xx equals the ASCII value of the fill char to
> AA. For example, BLAN K = 20, 20 + AA = CA.

Fifth-sixth ciharacter = $$

Thus the statement SIGNED NUMERIC, FILL= BLANK, DECIMAL= 2 yields the following list:

LIST CHAR SDCASS=0 •• 9,'.','.',',','-',BLANK.

The JUSTIFY, SCALE, and LIST statements do not appear on the FDL compiler listing. However,
you can unambiguously derive the contents of the list created from the name of the list.

EXAMPLE

FIELD NUMBER.
POSC-3,S)L8.
SIGNED NUMERIC, DECIMAL=2.

FIELD NUMB02.
POSC-2,S)L8.
UNSIGNED NUMERIC, FILL=' ,

FIELD NUMB03.
POSC-1,S)L8.
NUMERIC.

2234391-9701

A s;gned vaLue w;th 2 dec;maL pLaces
;s returned to the appL;cat;on.

An uns;gned vaLue w;th the f;LL
character ;s returned to the
appUcat;on.

A character L;st of 0 •• 9 and r;ght
just;f;cat;on for th;s f;eLd.

3·55

Form Definition Language

3.36 ORDERED GROUP STATEMENT

The ORDERED GROUP statement is similar to the GROUP statement in that it defines a group
consisting of fields, variables, and subgroups which are read and written together by the interface
routines. However, in an ordered group the elements of the group are read in the order given in the
ORDERED GROUP statement rather than in their order on the screen. For more information on
ordered groups, see paragraph 1.2.6.

The ORDERED GROUP statement can appear only in a segment block and has the following
format:

ORDERED GROUP group = {field I variable I subgroup I array} ...

where:

group is the name of the group being defined.

field is the name of a field that you want to include in the group.

variable is the name of a variable that you want to include in the group.

subgroup is the name of a group or ordered group that you want to include in the
group being defined.

array is the specification for an array element that you want to include in the
group. The element must have the format array(row,col).

EXAMPLE

ORDERED GROUP GRP1=F5,F3,F7. Read F5, F3, and F7 ;n order.

3·56 2234391·9701

Form Definition Language

3.37 OUTPUT STATEMENT

The OUTPUT statement declares a field to be an output field. An output field can be read, written,
and reset by thel application. However, a read of an output field always returns blanks. If you do
not include an OUTPUT statement in its field block, a field becomes input/output (I/O) field.

The OUTPUT statement is only valid within a field block and the only other statements allowed in
the field block are POSITION, DISPLAY, and ARRAY. The OUTPUT statement has the following
format:

OUTPUT.

EXAMPLE

FIELD SHOITM.
POS (10,6)L4.
OUTPUT.

2234391-9iro 1

Display the selected item.

3·57

Form Definition Language

3.38 PASS/FAIL STATEMENT

This statement specifies a comparison of fields or variables as an edit test. In the test, you can
compare the value of an 110 field or variable to any other I/O field or variable. You use relational
operators such as EQ and GT to express a relationship between the fields or variables being com
pared. If you specify PASS, the current field passes the edit test if the relationship is true. If you
specify FAIL, the current field passed the edit test only if the the relationship is false.

The PASS/FAIL statement is valid only in a field block, edit set block, or condition block. It has the
following format:

[PASS/FAIL] IF {iofield/variable/*} relop {iofield/variable/*}
[;DIAGNOSTIC = {message/literal}]

where:

iofield

variable

*

relop

is the name of an 110 field used in the comparison.

is the name of a variable used in the comparison.

stands 'for the field containing the cursor when the PASS/FAIL statement is
in a condition or edit set block. (This allows you to use the same condition
or edit set block for several fields.)

is one of the relational operators:

EQ Equal

NE Not equal

LT Lessthan#

GT Greater than#

LE Less than or equal#

GE Greater than or equal#

- Allowed only for comparing numeric values.

message is the name of an error message to be displayed in place of the standard
error message if this test fails (not valid in the CONDITION block.)

literal is a character string to be displayed in place of the standard error message
if this test fails.

3-58 2234391-9701

EXAMPLE

SEGMENT SEG01,CFORM01),MASK01.

VARIABLE STRING='INITIAL VALUE

FIELD FIELD4.
IF * EQ FIELD2.
FAIL IF FIELD3 NE STRING;

DIAG=BADADR.

Form Definition Language

Pass ;f th;s f;eld = FIELD2.

Fa;l ;f FIELD3 ;s not equal to the var;able,
STRING.

ERROR MESSAGE BADADR='Addresses do not match.'

2234391-9'701 3·59

Form Definition Language

3.39 POSITION STATEMENT

The POSITION statement defines the position of the first character of a field. You can specify the
absolute row*column position or the offset from a previously defined position. If you include an R
specification, the offsets are figured relative to the position established by a prior M (field mask)
statement or POSITION statement without an R specification. If you do not include an R specifica
tion, the row and column numbers are taken to be the actual row and column of the beginning of
the field. See Table 3-2 for the number of rows and columns shown by various device types.

The POSITION statement is valid only in a field block and has the following format:

POSITION [RJ (row,col) L length.

where:

row specifies the field's row number. If you do not include an R specification in
the statement, this number represents an absolute row number. If you do
include an R specification, this number is a signed integer that represents a
row offset from the position established by a previous position or mask state
ment. A field cannot span more than a Single row.

col specifies the column number of the first (leftmost) position in the field. If you
do not include an R specification in the statement, this number represents an
absolute column number. If you do include an R specification, this number is
a signed integer that represents a column offset from the position established
by a previous position or mask statement.

length is the length of the field in characters. A field cannot extend beyond the end of
its row.

Though you can position fields on the bottom line of the screen, you should bear in mind that this
line is also used to display standard error messages. When the error condition is corrected, the
bottom line is cleared and fields on the bottom line are temporarily lost. If a field on the bottom
line subsequently becomes the current field, its initial value or current value is displayed. If there
is no initial value or current value, underscores indicating the position of the field are displayed.

3·60 2234391-9701

Form Definition Language

EXAMPL.E

FIELD FONE.
P~S (4,S)L6.

FIELD FTWO.
P~S R(1,2)L7.

EXAMPLE

Six-character fieLd at row 4, coLumn 5.

Seven-character fieLd at row 5, coLumn 7,
reLative to the start of the previous fieLd.

SEGMENT SEGT01,(FORM01),MSK01.
M(5,15) 'Check number:'.

FIELD XXX.
P~S (, +1) L6.

2234391-9;r01

Background text dispLayed at row 5,
coLumn 15.

Six-character field displayed
at row 5, column 28.

3·61

Form Definition Language

3.40 PROMPT STATEMENT

On a KSR-type device, background text information can often be incomplete. To help the KSR user
understand what to enter into a field, you can include a PROMPT statement in its field or edit set
block. In an unformatted read, the text string provided by this statement is printed each time a
read is issued for this field, prompting the user to enter the data. (See paragraph 2.9 for a complete
discussion of operation with KSR-type devices.)

This statement concerns KSR-type devices only. If the device type is anything else, the PROMPT
is ignored during form execution. The PROMPT statement is valid only in a field or edit set block
and has the following format:

PROMPT = literal.

where:

literal is the text of the prompt.

EXAMPLE

3·62

FIELD PHONE.
POS(S,4S)L7.
PROMPT='Telephone No.:'.

2234391·9701

Form Definition Language

3.41 RANGE LIST STATEMENT

The RANGE LIST statement is used with a companion LIST RANGE statement to validate the char·
acters entered into a field. The RANGE LIST statement includes the name of the associated list of
ranges, plus an optional error message specification. The list of ranges can be inclusive or exclu·
sive. With an inclusive list, the user must enter values that fall within the ranges listed. With an
exclusive list, the user must enter values that fall outside the ranges listed. Otherwise, the user
receives an error message and must reenter the value.

The RANGE LIST statement is valid only in a field block, a condition block, or an edit set block. It
has the following format:

RANGE LIST list [;DIAGNOSTlC= {message I literal}]

where:

list is the name of a range list defined elsewhere in the same segment by a LIST
RANGE statement.

message is the name of an error message that is displayed in place of the standard
error message if this test fails. (This specification is not valid in a
CONDITION block.

literal is a character string that is displayed in place of the standard error meso
sage if this test fails.

If you omit the DIAGNOSTIC specification, a standard error message is displayed if an invalid
value is entered. If you include the DIAGNOSTIC specification, the specified message or literal is
displayed instead of the standard error message.

EXAMPLE

FIELD BETWEN.
PO S (1 , 2) L3 •
RANGE LIST LOWHI;DIAG='Rate code is invalid.'.

LIST RANGE LOWHI=IN,0/9,20/29. 0-9, 20-29 are valid.

2234391-9;'01 3·63

Form Definition Language

3.42 REQUIRED AND NOTREQUIRED STATEMENTS

The REQUIRED statement specifies that the user must enter some value into the field. If the user
attempts to enter a null value (zero-length value) or an all-blanks value into a required field, an edit
error is declared.

If you do not include a REQUIRED statement in its field block, the user can enter null or all-blank
data into the field, even if the field has attributes such as a minimum length or range list. You can
use the NOTREQUIRED statement in an edit set to remove the required attribute from a field.

The REQUIRED and NOTREQUIRED statements are only valid within a field block or an edit set
block. They have the following formats:

REQUIRED [;DIAGNOSTIC = {message I literal }].
NOTREQUIRED

where:

message is the name of an error message.

literal is a literal to be displayed as an error message.

If you omit the DIAGNOSTIC specification, the standard error message is displayed if no value is
entered. If you include a DIAGNOSTIC specification, the referenced message or literal is dis
played instead of the standard error message.

EXAMPLE

FIELD NEED.
POS(S,2)LS.
REQUIRED.

FIELD WANT.
PO S (, + 8) L3 .

This is a required fieLd; a standard message ;s used.

REQ;DIAG='You must enter a vaLue". A speciaL message ;s used.

3.64 2234391-9701

Form Definition Language

3.43 SAME AS STATEMENT

This statement defines the current field or edit set attributes to be the same as those of the speci
fied field ,except for its position, display, and array attributes. If you include an EXCEPT FOR spec
ification in the statement, you can then provide additional statements to assign more attributes to
the current field.

The SAME AS statement is valid only in a field block or edit set block and has the following format:

SAME AS {iofield / edits/ *} [EXCEPT FOR].

where:

iofield

edits

*

is the name of an 1/0 field with the attributes you want.

is the name an edit set with the attributes you want.

represents the current field.

You cannot use negative attributes, such as NOAUTOSKIP and NOTAB, in conjunction with SAME
AS. If you use the SAM E AS statement in conjunction with any other attribute statements, the
SAME AS statement prevails.

You should watch for loops that can occur when the specified 1/0 field or edit set block contains
additional SAME AS statements. Some loops are deleted by the FDL compiler, but none are
deleted at run time.

EXAMPLE

FIEl.D FIELD1.
PelS (3, 17) L6.
DISPLAY BR = Y.
RE:QUIRED.

FIEl.D FIELD2.
POS(3,3S)L6.
SAME AS FIELD1 EXCEPT FOR.
DISPLAY BR=Y,BL=Y.

2234391-9701

Use the same attributes as in
FIELD1 plus BR and BL display.

3·65

Form Definition Language

3.44 SCALE STATEMENT

The SCALE statement allows you to apply a scale factor to numeric data, in effect multiplying or
dividing the value entered by a power of ten. The SCALE statement is valid only within a field block
or edit set block and has the following format:

SCALE {L I R}, places [ON ENTRY ION COMPLETION].

where:

places is the scale factor, the number of decimal places the decimal point is moved
in the operation.

Left (L) scaling moves the decimal point to the left, multiplying the value by the power of ten equal
to the specified number of places. Right (R) scaling moves the decimal point to the right, dividing
the value by the power of ten equal to the specified number of decimal places.

If you specify scaling ON ENTRY (or if you specify neither ON ENTRY nor ON COMPLETION),
the scaling occurs immediately after data entry. If the user enters a decimal point with the value,
that decimal point takes precedence and no scaling is performed. If you specify scaling ON
COMPLETION, the scaling occurs just before the data is returned to the application program and
the decimal point does not affect the scaling operation.

The following permits the user to enter 100.00 in the field, yet passes 10000 to the application
program.

EXAMPLE

FIELD SHIFT.
POS(6,+1)L8.
SCALE R,2 ON COMPL. MuLtipLy by 100 on compLetion.

3·66 2234391-9701

Form Definition Language

3.45 SEGMENT AND END SEGMENT STATEMENTS

These statements mark the beginning and end of a segment block. The SEGMENT statement
marks the beginning of the block, gives it a name, and optionally lists the associated forms and
segment mask. The END SEGMENT statement is optional and only marks the end of the block.
They have the followi ng formats:

SEGMENT segment [,(form ...)][,segmask ...].
END SEGMENT segment

where:

segment is the name of this segment. This name must not conflict with the name of
any other form, segment, or segment mask in the same program file.

form is the optional name of an additional form to be associated with the seg
ment. You can specify up to 10 form names in this list, separated by
commas.

segmask is the name of the segment mask to display when the application program
actives the segment by calling the Prepare Segment routine.

A segment defined within a form block is automatically associated with that form and inserted
into the corresponding form root in its program file. A segment defined outside of a form block
must specify the name of the forms with which it is associated. If the form root already contains a
segment with the name specified, that segment is replaced by the one being compiled. If that
segment does not already exist in the form root, then an entry is added to the form root for the
segment being compiled. If the form root does does not already exist in the specified program file,
it is created.

The segment mask specification is optional. If you omit it and a segment mask is defined in the
FDL file immediately prior to the segment, that mask is associated with the segment and dis
played whenever the segment is prepared. If you omit the segment mask specification from the
SEGMENT statement and do not define a segment mask immediately prior to the segment, no
association is made and no segment mask is displayed with the segment.

EXAMPLE

SEGMENT SEGT01,(FORM01),MASK01.

END SEGMENT SEGT01.

2234391-9701

Insert segment SEGT01 in form FORM01 and
use mask MASK01.

End of the segment.

3·67

Form Definition LanguAge

3.46 SEGMENT MASK AND END SEGMENT MASK STATEMENTS

These statements mark the beginning and end of a segment mask block, which describes the
background mask displayed with the associated segment. The SEGMENT MASK statement gives
a name to the segment mask and specifies whether to clear the screen before the segment is dis
played. The optional END SEGMENT statement marks the end of the segment mask definition.
These statements have the following formats:

SEGMENT MASK segmask, CLEAR = {YES I NO}.
END SEGMENT MASK segmask

where:

segmask is the name of the segment mask being defined.

The name you specify for the segment mask becomes the name of the overlay where the segment
mask is stored and the name by which it is referenced on SEGMENT statements. You must com
pile the segment mask block with the segment that invokes it.

EXAMPLE

SEGMENT MASK SEGMSK,CLEAR=YES. CLear the screen before the next dispLay.

3·68

M(S,10)'What is your name?'.
M(6,10)'00 you wish to continue?'.

END SEGMENT MASK SEGMSK. End this segment mask.

2234391·9701

Form Definition Language

3.47 SUBSTITUTE LIST STATEMENT

The SUBSTITUTE LIST statement is used with a companion LIST SUBSTITUTE statement to per
form substitutions on values entered into a field. When a user enters a value on the substitution
list, it is replaced by corresponding substitute.

The SUBSTITUTE LIST statement includes the name of the associated list of values and their sub
stitutes, plus an optional ON ENTRY or ON COMPLETION specification. The SUBSTITUTE LIST
statnment is valid only in a field block or edit set block and has following format:

SUBSTITUTE LIST = list [ON ENTRY I ON COMPLETION].

where:

list is the name of a substitution list defined elsewhere in the same segment by a
LIST SU BSTITUTE statement.

If you specify ON ENTRY substitution (or do not specify ON ENTRY or ON COMPLETION), as
soon as the user enters a value on the list, it is replaced by its substitute. If you specify ON
COMPLETION substitution, the replacement is made just before the data is returned to the appli
cation pr()gram and the user does not see the replacement value.

EXAMPLE~

FIELlI> SHIP.
POS(+1,-4)L9.
SUIB LIST=SYESNO. Substitute YES, NO for Y, N.

LIST SUB SYESNO='Y'/'YES','N'/'NO'.

2234391-97011 3·69

Form Definition Language

3.48 TAS AND NOTAS STATEMENTS

The TAB statement defines a tab stop at the first position of the current field. When the user
presses the Forward Tab key, the cursor moves to the beginning of the next field that has the tab
stop attribute. The NOTAS statement removes the tabstop attribute from a field. These state
ments are valid only in a field or edit set block and have the following formats:

TAB.
NOTAS.

EXAMPLE

3·70

FIELD MONEY.
POS(6,16)L8_
TAB. A tab stop is defined for this fieLd.

2234391-9701

Form Definition Language

3.49 TABLE LIST STATEMENT

The TABLE LIST statement is used with a companion LIST TABLE statement to validate on data
entered into a field. When a user enters a value into the field, it is checked against the values on
the list. If the list is inclusive, the value must be on the list for it to pass the edit test. If the list is
exclusive, the value must not be on the for it to pass the edit test.

The TABLE LIST statement includes the name of the associated list of values, plus an optional
DIAGNOSTIC specification to provide an alternative to the standard error message the user
receives when the data entered does not pass the test. The TABLE LIST statement is valid only in
a field block, edit set block, or condition block. It has the following format:

TABLE LIST = list [;DIAGNOSTIC = {message I literal }].

where:

list is the name of a table list defined elsewhere in the segment by a LIST
TABLE statement.

message is the name of an error message that is displayed in place of the standard
error message if this test fails. (This specification is invalid in the
CONDITION block.)

literal is a character string that is displayed in place of the standard error mes
sage if this test fails.

EXAMPLE

FIELD MAYBE.
POS(4,S)L6.
TABLE LIST=YESNO. Table of YES/NO entr;es.

LIST TABLE YESNO=IN,'Y','YES','N','NO'.

2234391·9701 3·71

From Definition Language

3.50 TERMINATE READ STATEMENT

The TERMINATE READ statement forces the termination of the current Read. The conditions of
termination depend upon whether you include the optional IMMEDIATELY specification in the
statement. The TERMINATE READ statement is valid only within a field block or edit set block and
has the following format:

TERM/NA TE READ [IMMEDIA TEL Y].

The TERMINATE READ statement terminates the current Read following anyon-entry processing
and editing for the current field. If you do not specify IMMEDIATELY, then anyon-completion pro
cessing and editing for all fields included in the Read are performed. Thus, all fields must contain
valid values before the data is returned to the application with a status code of 02. If you specify
IMMEDIATELY, no on-completion processing or editing is performed. The unprocessed (possibly
invalid) data is returned to the application program along with stat,us code 06.

EXAMPLE

FIELD FINIS.
POS(+1,-1)L2.
TERM READ.

EXAMPLE

FIELD MAYBE.
POS(S,7)L6.
IF COND REJECT ON * THEN TERMINATE READ IMMEDIATELY.

3·72 2234391-9701

Form Definition Language

3.51 VALUE STATEMENT

The VALUE statement specifies an initial value for a field. This initial value is installed and dis·
played whenever the field becomes the current field. If you do not assign the field an initial value,
its current value is displayed unchanged whenever the cursor enters the field. The VALUE state
ment is valid only in a field block or edit set block and has the following format:

VALUE = {iofield I variable I literal }.

where:

iofield is the name of an I/O field whose value is used as the initial value.

variable is the name of a variable whose value is used as the initial value.

literal is a literal value used as the initial value.

EXAMPLE

FIE LID F LD9 •
POS (12,12) L 11 •
VALUE = VAR. Initial value is the value of the variable, VAR.

2234391-9701 3·73

Form Definition Language

3.52 VARIABLE STATEMENT

The VARIABLE statement defines and names a variable. A variable is like a field that does not
appear on the screen. It can be read, written, or reset by the application program. It serves as a
place to hold data needed for edits or initial/default values. The size of the variable is the length of
the literal the supplies its starting value.

The VARIABLE statement is only valid within a segment block and has the following format:

VARIABLE variable = literal.

where:

variable is the name of the variable being defined.

literal is the value of the variable.

To access a variable from your application program, you must declare it external by using the
EXTERNAL statement and include it in a read.

EXAMPLE

3-74

VAR STR='This is a variabLe. ' . This is a variabLe.
VAR NUM='12345.6 1

• So is this.
VAR QTE='Patient"s number doesn"t match.'.

Two singLe quotes are required for one to be displayed.

2234391-9701

4

In'teractive Screen Generator/Editor

4.1 INTRODUCTION

The Intenactive Screen Generator/Editor (ISGE) is a tool that allows you to design a segment and
its mask interactively. You specify the mask by drawing the screen exactly as it should appear
when the segment is executed. By responding to prompts from the ISGE you define the segment's
fields, gr()ups, lists, and variables. The ISGE then translates this information into FDL statements.
You can lise the ISGE to edit a segment created by the ISGE.

During the execution of the ISGE, the segment being operated on is stored in a file called the inter
mediate segment file. You can modify this file until you compile it. Once you compile it, you can
no longer modify it.

Figure 4·,1 is an overview of the flow of control in the ISGE.

The three major phases in the creation of a segment are as follows:

• Initiation phase - Begin the ISGE session by deciding whether to create a new seg
ment or to edit an existing segment.

• Design phase - Design the segment mask and the field mask(s) and specify the field
attributes.

• Termination phase - End the ISGE session by saving the segment for additional work
during ,another session, by creating an FDL file for the completed segment, or by com
piling the segment.

The simpllest way to understand the capabilities of ISGE is to use it. The tutorial in paragraph 4.3
introduces you to ISGE and provides guidance for the initial use of its facilities. During this
tutorial session, you create a segment by drawing a segment mask, creating field masks, specify-
ing field attribute!s, and compiling the completed segment into FDL. .

ISGE options and characteristics not covered by the tutorial are covered elsewhere. Paragraph 4.2
describes the design changes of ISGE, paragraph 4.4 discusses the intermediate segment file,
and paragraph 4.5 explains how to make changes in a compiled segment. Appendix G provides a
quick reference on the ISGE. It provides a list of all the attributes that can be assigned to the fields
in a segment and a description of their functions.

2234391-9701 4·1

Interactive Screen Generator/Editor

INITIATION

PHASE

2

DESIGN

PHASE

3

TERMINATION

PHASE

2281704 (1/8)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

(51)

SAVE
INTERMEDIATE
FILE

(CS)

(OM)

MASK DESIGN
MODE

(PRESS CMD)

FLOW OF CONTROL IN ISGE

(XISGE)

(RI)

(EI)

(CF)

CREATE
AN FDL
FILE

(SF)

FIELD ATTRIBUTE
SPECIFICATION
MODE

(PRESS CMD)

Figure 4·1. ISGE Flow of Control

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

(CS)

COMPILE A
SEGMENT

4·2 2234391-9701

Interactive Screen Generator/Editor

4.2 ISGE DESIGiN CHANGES

In previous versions of TIFORM, you could edit a segment that had already been compiled by
entering the Edit a Compiled Segment (EC) command at the beginning of an ISGE session. This
command took the compiled segment, decompiled it, and placed the decompiled segment in an
i,ntermediate segment file where it could then be retrieved for ISGE editing. Figure 4-2 shows an
overview of this procedure. You cannot use this procedure with forms created with the current
version 01f TIFORM. To make changes in a segment, you must save the intermediate segment file
in which that seg!ment is stored. Paragraph 4.5 discusses methods for making changes in a com
piled segment.

Although the EC command remains on the initiallSGE menu, its sole use is to make 2.0 segments
usable with the current release. When you use ISGE to convert 2.0 segments, the following limita
tions applly to the size of the segment that the ISGE can handle:

• No single variable-length item in the segment (that is, no list or group) can be longer
than 576 bytes.

• The segment cannot contain more than 320 names.

• Edit sets cannot be nested more than 10 levels deep.

• The segment cannot contain more than 100 fields, excluding those for which the SAME
AS attribute is specified.

• The object forms of the segment and its mask each must be less than 4000 bytes long.

• The segment cannot contain more than 100 named, user-specified error messages.

4.3 TUT()RIAL: USING ISGE TO CREATE A SEGMENT

This tutorial introduces you to the Interactive Screen Generator/Editor (lSGE). During this tutorial,
you learn to do the following:

• Create the directory and files needed for ISGE

• Design segments, segment masks, fields, and field masks

• Specify field attributes

• Specify edit set attributes

• Terminate an ISGE session

• Use the Form Tester utility

Figure 4-11 shows the three major phases in an ISGE session: initiation, design, and termination.
This tutorial guides you through each of these phases and gives you step-by-step directions for
creating the segment shown in Figure 4-3.

2234391·9701 4·3

Interactive Screen Generator/Editor

NOT
SUPpORTED

2285373

GET 2.0
COMPILED
SEGMENT

DECOMPILE

SAVE
INTER MED lATE
SEGMENT
FILE

EDIT
INTERMEDIATE
SEGMENT
FILE

Figure 4·2. Editing a Compiled 2.0 Segment

4·4 2234391-9701

Interactive Screen Generator/Editor

FRED'S RACQUET SHOP INVOICE #I __

PART #I DESCRIPTION QTY PRICE TOTAL

EMPLOYEE NAME

Figure 4·3. Sample Segment

This sample segment is an order entry mechanism for Fred's Racquet Shop. A clerk receives
orders by telephone and uses the TIFORM segment to enter data into a COBOL program.

The completed segment performs the following functions:

• Lists the information required for each sale

• Tells the user what items can be entered for DESCRIPTION

• Displays an error message if invalid data is entered for PART #

• Copies data entered for PRICE to TOTAL

• Displays a message that tells you when a given sale earns a commission

Directions in this tutorial are written for the 931 keyboard.

2234391-9701

NOTE

Instructions in this tutorial are indented. The keys you are to press
and the prompt responses you are to enter are printed in boldface
and capitalized. The key names apply to the 931 terminal. If you are
using another type of terminal, refer to Appendix A. Screens depict
ing the results produced by your entries appear throughout the
tutorial. The glossary defines the terms used in this tutorial.

4·5

Interactive Screen Generator/Editor

4.3.1 Preparing for the InitiallSGE Session
For each segment you create, you need files for the following:

• Intermediate segment

• Source code

• Listings

• Object code

Create a directory to hold these files as follows:

Enter CFDIR.
Press RETURN.

Your screen now contains the prompts for creating a directory file. Respond to these prompts as
follows:

Enter .EXAMPLE for PATHNAME.
Press RETURN.
Enter 53 for MAX ENTRIES.
Press RETURN.
Press RETURN for DEFAULT PHYSICAL RECORD SIZE.

To create a program file for ISGE, complete the following steps:

Enter CFPRO.
Press RETURN. (This displays the prompts for creating a program file.)
Enter .EXAMPLE.PROG for PATHNAME. (This creates a program file for the object code.)
Press RETURN for the remaining prompts.

To activate the ISGE and enter the initiation phase, complete the following steps:

Enter XISG E.
Press RETURN.

4.3.2 Initiation Phase
You are now in the initiation phase of ISGE (Figure 4-4).

4-6 2234391·9701

INITIATION

PHASE

2

DESIGN

PHASE

3

TERMINA1"ION

PHASE:

228170.4 (3/8)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

(51)

SAVE
INTERMEDIATE
FIL£

(CS)

(OM)

MASK DESIGN
MODE

(PRESS CMD)

Interactive Screen Generator/Editor

FLOW OF CONTROL IN ISGE

(CF)

CREATE
AN FDL
FILE

(SF)

FIELD ATTRIBUTE
SPECIFICATION
MODE

(PRESS CMD)

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

(CS)

COMPILE A
SEGMENT

Figure 4·4. Flow of Control: Initiation Phase

2234391·97011 4.7

Interactive Screen Generator/Editor

The InitiallSGE Menu (Figure 4-5) appears on your screen.

During a typicallSGE session, you should select one of the five choices displayed in this menu:

• Abort this session (AS) - To terminate this session, enter AB.

• Recover an interrupted session (RI) - If your system fails while you are working on a
session, you can enter RI to recover your segment upon reentry into ISGE.

• Create a new segment (CS) - To begin work on a new segment, enter CS.

• Edit an intermediate segment file (EI) - If you stored a segment in your intermediate
storage file during a previous session, you can modify it by entering EI.

• Edit a segment that has been compiled (EC) - You can use this option to make 2.0
segments usable with the current release of TIFORM. If you attempt to use this
command for any other purpose, an error message appears.

ISGE only recognizes uppercase characters. If you enter ab instead of AS, ISGE reports that you
entered an invalid character.

In this tutorial, you will create a form composed of a single segment. (See Section 1 for a complete
description of the structure of a form.) Enter the CS command in the two spaces provided at the
end of the prompt display:

4-8

Enter es.
Press RETURN.

FOR M S
I N T ERA C T I V ESC R E ENG ENE RAT 0 R

AND E 0 ITO R
V E R S ION 3 • 3

00 you wish to:
* abort this session ••.•......•••••...... (AB)
* recover an interrupted session ••••••••• (RI)
* create a new segment ••••••••••••••••••• (CS)
* edit an Intermediate Segment file •••••• (EI)
* edit a segment that has been compiled •• (EC):

Figure 4·5. InitiallSGE Menu

2234391-9701

Interactive Screen Generator/Editor

The Create a New Segment ... Edit Segment Information menu (Figure 4-6) appears on your
screen.

The abort option is given at the top of this menu. The cursor is initially positioned in the segment
name field. To abort, use the up arrow key to position the cursor in the abort field, enter Y, and
press the RETURN key.

The next three lines request names for parts of the segment you are about to create. During a typi
callSGE session, you should select meaningful names for the segment, the segment mask, and
the form. Each name must contain no more than six letters. Also, these names must begin with a
letter. For this tutorial, enter the following names:

Enter ORDERS for Segment Name.
Press RETURN.
Ent,er ORDERM for Segment Mask Name.
Press RETURN.
Enter ORDERF for Form Name.
Press RETURN.

Create a New Segment Edit Segment Information

Abort this session: N
Segment name:

Segment Mask Name:
Form Name:

Clear the Screen: Y
Segment Fill Character: _

Select application device type (enter its number).

DEFAULT •••
VDU-1
VDU-2
KSR-1
KSR-2

execute on any possible device.
(12 lines by 80 characters)
(24 lines by 80 characters)
(66 lines by 80 characters)
(66 lines by 132 characters)

(00)
(01)
(02)
(03)
(04) 00

Figure 4·6. Create a New Segment .•. Edit Segment Information Screen (Uncompleted)

2234391·9701 4·9

Interactive Screen Generator/Editor

The Clear the Screen prompt asks whether the screen is to be cleared before an application uses
this segment. .For this tutorial accept the default (Y) as follows:

Press RETURN.

The Segment Fill Character prompt asks for the fill character to be used throughout this segment
to represent empty field positions on the screen. The default fill character is the underscore (_).
For this tutorial, accept the default as follows:

Press SKIP. (The RETURN key does not work here.)

Your screen should now look like Figure 4-7.

Create a New Segment Edit Segment Information

Abort this session: N
Segment name: ORDERS

Segment Mask Name: ORDERM
Form Name: ORDERF

Clear the Screen: Y
Segment Fill Character: _

SeLect appLication device type (enter its number).

DEFAULT •.•
VDU-1
VDU-2
KSR-1
KSR-2

execute on any possibLe device.
(12 Lines by 80 characters)
(24 lines by 80 characters)
(66 lines by 80 characters)
(66 Lines by 132 characters)

(00)
(01)
(02)
(03)
(04) 00

Figure 4·7. Create a New Segment ..• Edit Segment Information Screen (Completed)

4·10 2234391·9701

Interactive Screen Generator/Editor

The lower half of the menu asks you to select an appropriate device type. Until you have com
pleted your segment and tested it for accuracy, accept the default as follows:

Press RETURN.

Your screen should now look like Figure 4-8.

You can use the special function keys listed on this screen to create a segment mask or to posi
tion and define fields during the design phase of ISGE. Make a copy of the appropriate list by
completing the following steps:

Press PRINT.
Wait for the completion message to appear.
Press RETURN twice.

The copy of this screen is sent to your printer.

Create a New Segment Edit Segment Information

Abort this session: N
Segment name: ORDERS

Segment Mask Name: ORDERM
Form Name: ORDERF

CLear the Screen: Y
Segment FiLL Character: _

Start ()ff by creating a segment mask and positioning fieLds. The screen will
go bLank as the "Mask Design" mode is entered. The active function keys are:

F1: Position Cursor
F2: Insert Lines
F3: DeLete Lines
F4: Draw VerticaL

F5: Copy BLock
F6: Move Field
F7: DeLete FieLd
F8: Insert Field

CMD: Leave Edit Screen Mode or Abort Function
F10: Enter/Leave Field Mask Mode

[Note: Press the Print key to obtain a hard copy of this screen.]
Press the RETURN key to continue:

Figure 4-8. 931 VOT Special Function Keys

2234391-9701 4·11

Interactive Screen Generator/Editor

NOTE

A key name followed by a slash followed by another key name indi
cates that you should press the first key and then simultaneously
press the second key.

The entire screen should now be blank, and the cursor should be in the upper left-hand corner.

4.3.3 Design Phase
You have completed the initiation phase of ISGE and have entered the design phase (Figure 4-9).
During this phase, you can design masks (mask design mode) and specify field attributes (field
attribute specification mode). Appendix G provides a quick reference to the design phase of the
ISGE.

If you need to quit a session before you are through, you can save your work by pressing CMD and
entering SI in response to the selection menu (refer to Figure 4-13).

4.3.3.1 Mask Design Mode. Since you are creating a new segment, you automatically enter
mask design mode (Figure 4-10) immediately after leaving the initiation phase.

In mask design mode, you can design two types of masks: segment masks and field masks. You
can design segment masks as soon as you enter mask design mode. To design field masks, you
must press F10 and use a more limited set of keys.

Segment Mask Design. You can use the graphics characters shown in Appendix E and the
regular keyboard characters and special function keys to design the segment mask.

To generate graphics characters for the segment mask on the 931, 940, and Business System ter
minals, press and hold the AL T key while pressing the 9 key (not on the numeric keypad). To return
to the standard character set, press this key sequence again. If you press CMD when you are
using the graphics character set and you return to a field, the graphics character set is still in
effect and you cannot enter the characters that ISGE requires until you exit the graphics mode.
Also, the space bar does not work in graphics mode. If you want to erase a character, you can use
the DEL CHAR key, or you can enter another character. If you want to add spaces, you must exit
the graphics mode.

Pressing CTRUS on the 931 turns the keyboard off. The keyboard buffer, within the limits of its
size, holds the characters you enter when the keyboard is off. The CTRUQ key sequence turns the
keyboard back on.

During segment mask design, you use words and graphics characters to create the part of the
segment that is both constant and visible during application program execution. At this time, you
also specify the position and length of the fields that are visually represented on your screen by
underscores (_). Figure 4-11 shows the segment mask and the field positions and lengths for the
segment you create in this tutorial.

4·12 2234391-9701

INITIATION

PHASE

3

TERMINATION

PHASE

22EI1704 (2/8)

(51)

SAVE
INTERMEDIATE
FIL.E

(CS)

FLOW OF CONTROL IN ISGE

(XISGE)

(CF)

CREATE
AN FDL
FILE

Interacitve Screen Generator/Editor

(CS)

COMPILE A
SEGMENT

Figure 4·9. Flow of Control: Design Phase

2234391·9701 4.13

Interactive Screen Generator/Editor

1

INITIATION

PHASE

2
DESIGN

PHASE

3

TERMINATION

PHASE

2281104(4/8)

(SJ)

SAVE
INTERMEDIATE
FILE

(CS)

(OM)

MA$l< QESlGN
MODE

(PRESS CMD)

FLOW OF CONTROL IN ISGE

(XISGE)

(RJ)

(EI)

(CF)

CREATE
AN FDL
FILE

(SF)

FIELD ATTRIBUTE
SPECIFICATION
MODE

(PRESS CMD)

Figure 4·10. Flow of Control: Mask Design Mode

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

(CS)

COMPILE A
SEGMENT

4-14 2234391·9701

Interactive Screen Generator/Editor

FRED'S RACQUET SHOP INVOICE #

PART # DESCRIPTION QTY PRICE TOTAL

EMPLOYEE NAME

Figure 4·11. Sample Segment

The first step in designing the segment mask is to make the border that outlines the segment. To
make thE~ upper left-hand corner of the border, the cursor must be in a specific row and column:

Press F1.

A screen prompt giving the current position of the cursor appears on the bottom of your screen.
This position should be row 01, column 01. The upper left-hand corner of the border should be in
row 03, column 05. You can move the cursor to this position by entering the correct coordinates:

Enter 003 for Row.
Press RETURN.
Entler 005 for Column.
Press RETURN.

The cursor should now be in row 3, column 5. Draw the upper left-hand corner of the border by
entering the following graphic character:

Press ALT/9. (This allows you to enter graphics mode.)
Press the asterisk (*) key.
Press AL T/9. (This allows you to exit graphics mode.)

2234391-9j701 4·15

Interactive Screen Generator/Editor

Move the cursor to the upper right-hand corner of the screen as follows:

Press F1.
Enter 003 for Row.
Press RETURN.
Enter 075 for Column.
Press RETURN.

The cursor should now be in row 3, column 75. Make the upper right-hand corner of the border as
follows:

Press AL T/9.
Press the colon (:) key.
Press AL T/9.

Move the cursor to the lower left-hand corner of the screen as follows:

Press F1.
Enter 020 for Row.
Press RETURN.
Enter 005 for Column.
Press RETURN.

Now, make the lower left-hand corner of the border as follows:

Press AL T/9.
Press the hyphen (-) key.
Press AL T/9.

Move the cursor to the lower right-hand corner of the screen as follows:

Press F1.
Enter 020 for Row.
Press RETURN.
Enter 075 for Column.
Press RETURN.

Make the lower right-hand corner of the border as follows:

Press AL T/9.
Press the equal sign (=) key.

You are now ready to draw the left side of the border:

Press F4. (This allows you to draw vertically.)

4-16 2234391·9701

Interactive Screen Generator/Editor

A series of prompts appears on the bottom of your screen. Answer them as follows:

Press the right parenthesis key after the words Draw a vertlca/llne using.
Press SKIP to proceed to the next field. (The RETURN key does not work here.)
Press AL T/9.
Enter 016 for rows.

Press RETURN.
Enter 004 for Row. (The left side of the border begins on row 4.)
Press RETURN.
Enter 005 ficr Column. (The left side of the border fills column 5.)
Press RETURN.

Now, draw the right side of the border as follows:

Press F4.
Press AL T/9.
Press the right parenthesis key after the words Draw a vertlca/llne using.
Press AL T/9.

Press SKIP. (The RETURN key does not work here.)
Enter 016 for rows.
Press RETURN.
Enter 004 for Row. (The right side begins on row 4.)
Press RETURN.
Enter 075 for Column. (The right side fills column 75.)
Press RETURN.

Use the up, down, left, and right arrow keys, and the HOME key to position the cursor in the space'
immediately to the right of the left-hand corner of the border. (You cannot use the RETURN key to
position the cursor at this time since it produces a graphics character during segment mask
design.) You are now ready to connect the top corners of the border with a horizontal line:

Press AL T/9.
Press 6 and hold until the corners are joined.

Use the up, down, left, and right arrow keys, and the HOME key to position the cursor in the space
immediately to the right of the lower left-hand corner of the border. Connect the corners' with a
horizontal line as follows:

Press 6 and hold until the corners are joined.
Press AL T/9.

2234391-9701 4-17

Interactive Screen Generator/Editor

The border is now complete. Fill in the background text information as follows:

4·18

Press F1.
Enter 005 for Row.
Press RETURN.
Enter 009 for Column.
Press RETURN.
Enter FRED'S RACQUET SHOP.

Press F1.
Enter 005 for Row.
Press RETURN.
Enter 058 for Column ..
Press RETURN.
Enter INVOICE #.

Press F1.
Enter 007 for Row.
Press RETURN.
Enter 009 for Column ..
Press RETURN.
Enter PART #.

Press F1.
Enter 007 for Row.
Press RETURN.
Enter 022 for column.
Press RETURN.
Enter DESCRIPTION.

Press F1.
Enter 007 for Row.
Press RETURN.
Enter 037 for Column ..
Press RETURN.
EnterQTY.

Press F1.
Enter 007 for Row.
Press RETURN.
Enter 048 for Column.
Press RETURN.
Enter PRICE.

Press F1.
Enter 007 for Row.
Press RETURN.
Enter 058 for Column.
Press RETURN.
Enter TOTAL.

2234391-9701

Press F1.
Enter 018 for Row.
Press RETURN.
Enter 009 for Column.
Press RETURN.
EntE~r EMPLOYEE NAME.

Interactive Screen Generator/Editor

Your next step is to define the length and position of each field you want to create. Insert a field
four spaces long next to the word INVOICE # as follows:

Press F8. (This inserts a field.)
EntE~r 005 for the Row.
Press RETURN.
EntE~r 067 for the column.
Press RETURN.
Enter 004 for the Length.
Press RETURN.

Insert a field six spaces long beneath the PART # as follows:

Press F8.
Enter 008 for the Row.
Press RETURN.
Ent.:!r 009 for the Column.
Press RETURN.
Ent«:!r 006 for the Length.
Press RETURN.

Insert a field 11 spaces long beneath DESCRIPTION as follows:

Press F8.
Enter 008 for the Row.
Press RETURN.
Enter 022 for the Column.
Press RETURN.
Enter 011 for the Length.
Press RETURN.

Insert a field three spaces long beneath QTY as follows:

Press F8.
Enter 008 for the Row.
Press RETURN.
Enter 037 for the Column.
Press RETURN.
Entler 003 for the Length.
Press RETURN.

2234391·9jr01 4·19

Interactive Screen Generator/Editor

Insert a field six spaces long beneath PRICE as follows:

Press F8.
Enter 008 for the Row.
Press RETURN.
Enter 048 for the Column.
Press RETURN.
Enter 006 for the Length.
Press RETURN.

Insert a field seven spaces long beneath TOTAL as follows:

Press F8.
Enter 008 for the Row.
Press RETURN.
Enter 058 for the Column.
Press RETURN.
Enter 007 for the Length.
Press RETURN.

Insert a field 20 spaces long next to EMPLOYEE NAME as follows:

Press F8.
Enter 018 for the Row.
Press RETURN.
Enter 023 for the Column.
Press RETURN.
Enter 020 for the Length.
Press RETURN.

You have now completed the segment mask. Your screen should look like Figure 4-11.

Field Mask Design. You can use the graphics characters shown in Appendix E, the regular key
board characters, and the special function keys to design field masks.

During field mask design, you create text that appears at specified positions in the application
program. Typically, a field mask provides the information you need to correctly fill in a particular
field or delivers a message commenting on your response. When you complete a given field, the
field mask usually disappears.

Field masks associated with a specific field are displayed either upon entry into that field or when
specified conditions are satisfied. The first field mask you create in this tutorial is to be asso
ciated with the field positioned below DESCRIPTION. To make this association, place the cursor
on the dotted line directly beneath the D and proceed as follows:

Press F10.

Field mask prompts appear on the bottom of your screen:

4-20

Enter DSCRIP for name.
Press RETURN.

2234391·9701

Interactive Screen Generator/Editor

Field ma.sks can be displayed in bright or normal intensity. To specify the bright attribute for field
mask, enter Y in response to the SR pr~mpt. For normal display, accept the initial value, N.

You now select the display attribute YOll want. For this tutorial, proceed as follows:

Enter V for SR.
Press RETURN.

Your screen should look like Figure 4-12 .

.................................•.................. INVOICE.# __

... PART.# DESCRIPTION QTY PRICE TOTAL
--_ -----.... - _-- ---......... .

... EMPLOYEE.NAME. --------............................... .

Figure 4·12. Create Field Mask

2234391-9~701 4·21

Interactive Screen Generator/Editor

To create the field mask for the field labeled DESCRIPTION, complete the following steps:

Press F1.
Enter 009 for Row.
Press RETURN.
Enter 012 for Column.
Press RETURN.
Enter DESCRIPTION ITEMS ARE:.
Place cursor on next line beneath the D.
Enter HAT, RACKET, CLOTHING, BALLS, SHOES.
Press F10. (This displays prompts that allow you to specify what to do with the mask.)

t

The screen is now blank except for the Field Mask Completion prompts on the bottom line. You
now decide whether to keep the mask, delete it, or abort this activity entirely. For this tutorial, pro
ceed as follows:

Enter 1 for Option. (This option saves the field mask.)
Press RETURN.

The segment mask shown in Figure 4-11 should appear.

Sometimes a field mask appears only if the data entered into a field satisfies a particular set of
conditions. These conditions are specified as an attribute of that field during field attribute speci
fication and are associated with an edit set. When the conditions are satisfied, the attributes
listed in the edit set appear on the screen. When an edit set controls the display of a field mask,
the field mask must not be directly associated with a field. Therefore, the cursor must not be in a
field when the mask is created.

You will now create two field masks that are controlled by edit sets. Specify the name of the first of
these masks as follows:

Press F1.
Enter 010 for Row
Press RETURN.
Enter 045 for Column.
Press RETURN.
Press F10.
Enter COMISS for Name. (This names the field mask.)
Press RETURN.
Enter Y for BA.
Press RETURN.

Your screen should look like the screen in Figure 4-12. Now, create the field mask as follows:

4·22

Position the cursor two lines beneath the P of PRICE.
Enter CONGRATULATIONS! YOU WILL.
Position the cursor on the next line beneath the letter C.
Enter RECEIVE A 100/0 COMMISSION.
Press F10. (This displays prompts that allow you to specify what to do with the mask.)
Enter 1 for Option.
Press RETURN.

2234391-9701

Interactive Screen Generator/Editor

The segment mask shown in Figure 4·11 should appear on your screen.

You have completed the design of the field mask COM ISS. Later in this tutorial (during field
attribute specification), you will associate the field mask COMISS with the edit set DOTHIS.

Create thE~ second field mask controlled by an edit set, as follows:

Press F1. (This positions the cursor.)
Enter 014 for Row.
Press RETURN.
Enter 033 for Column.
Press RETURN.
Press F10. (This displays the field mask prompts.)
Enter TOOBAD for Name. (This names the field mask.)
Press RETU RN.
Enter Y for SR.
Press RETURN. (This displays the screen shown in Figure 4-11.)
Enter BETTER LUCK NEXT TIME.
Press F10. (This displays the prompts that allow you to specify what to do with the mask.)
Enter 1 for Option. (This indicates that the mask is finished.)
Pres.s RETURN.

The segment mask shown in Figure 4·11 should appear on your screen.

You haVE~ completed the design of the field mask TOOBAD. Later in this tutorial (during field
attribute specification) you will associate the field mask TOOBAD with the edit set DOTHAT.

You are now ready to leave the mask design mode and select a new activity:

Press CMD.

4.3.3.2 Selection Menu. The Selection menu shown in Figure 4·13 should now appear on your
screen.

Segment Name: ORDERS Segment Mask Name: ORDERM Form Name: ORDERF
Clear the screen: Y Segment fill: Device type: DEFAULT

2234391-97'01

Do you wish to:
* abort this session •••••.•••• (AB)
* design Segment/Field mask ••• (DM)
* specify Field Attributes •••• (SF)
* edit Segment Information •••• (ES)

* save the Intermediate File •• (SI)
* create an FDL File •••••••••• (CF)
* compile the Segment •.••••••. (CS)

Figure 4·13. Selection Menu

4·23

Interactive Screen GeneratorlBditor

As indicated in Figure 4-14, this menu is the central control point in an ISGE session.

INITIATION

PHASE

2

DESIGN

PHASE

3

TERMINATION

PHASE

2281704 (5/8)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

(51)

SAVE
INTERMEDIATE
FILE

(CS)

(OM)

MASK DESIGN
MODE

(PRESS CMD)

FLOW OF CONTROL IN ISGE

(XISGE)

(RJ)

(EJ)

(CF)

CREATE
AN FDL
FILE

(SF)

FIELD ATTRIBUTE
SPECIFICATION
MODE

(PRESS CMD)

Figure 4·14. Flow of Control: Selection Menu

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

(CS)

COMPILE A
SEGMENT

4·24 2234391-9701

Interactive Screen Generator/Editor

During the design phase of ISGE, you can move back and forth between mask design mode and
field attribute specification mode by selecting design segment/field mask (OM) or specify field
attributes (SF) from this menu. You can also choose to abort this session (AB), to edit segment
information (ES), or to terminate this session by selecting one of the following:

• Save the Intermediate File (SI)

• Create an FOL File (CF)

• Compile the Segment (CS)

Termination options are discussed later in this tutorial in paragraph 4.3.4.

Select attributes for the fields you created during segment mask design as follows:

Enter SF.
Press RETURN.

Your screen displays the segment mask shown in Figure 4·11.

4.3.3.3 Field Attribute Specification Mode. You are now in the field attribute specification
mode (Figure 4-15).

In the Held attribute specification mode, you can select attributes for all of the fields in this seg·
ment. Y~ou can select those attributes from either the Field Attribute Specification (FAS) menu or
the Edit Set Specification (ESS) menu. Although the segment mask appears on your screen, you
cannot ~~hange it or the field masks associated with it while you are in field attribute specification
mode.

You can use the regular keyboard characters and special function keys described in Table 4·1 for
this actiivity.

2234391-19701 4·25

Interactive Screen Generator/Editor

INITIATION

PHASE

2
DESIGN

PHASE

3

TERMINATION

PHASE

2281704 (6/8)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

(SI)

SAVE
INTERMEDIATE
FILE

(CS)

(OM)

MASK DESIGN
MODE

(PRESS CMD)

FLOW OF CONTROL IN ISGE

(XISGE)

(RI)

(EI)

(CF)

CREATE
AN FDL
FILE

(PRESS CMD)

Figure 4·15. Flow of Control: FAS Mode

(CS)

COMPILE A
SEGMENT

4·28 2234391-9701

Interactive Screen Generator/Editor

931 Key

F1

F2

F3

F4

ENTER

HOME

RETURN

D,F1

Table 4·1. 931 VOl Active Keys and Special Functions for FAS Mode

Description

Displays FAS menu, toggles FAS menu, and displays menu for attribute
prompt area.

Displays ESS menu.

Moves the cursor into previous field to the left and above the current cursor
position.

Moves the cursor into next field to the right and below the current cursor
position.

Positions the cursor at the Complete prompt on the left side of the menu.

In top section, positions the cursor at the Name prompt. In side section, posi
tions the cursor at the Complete prompt.

Moves the cursor forward one field.

When the cursor is in a field on the left side of menu and D and F1 are pressed
sequentially, the association between the attribute and that field is broken.

To select attributes for a particular field, you must place the cursor in that field. Begin selecting
attributes for the fields in this segment by placing the cursor in the field labeled INVOICE. Now
you can select either the FAS menu or the ESS menu. For this tutorial, select the FAS menu as
follows:

Press F1.

Field Attribute Specification Menu. The FAS menu (Figure 4-16) appears on your screen.

For a complete list of the attributes listed on both the FAS menu and the ESS menu and a descrip
tion of their functions, see Appendix G. For your convenience, this tutorial defines each attribute
as it is introduced.

Note that the first three attributes (row, column, and length) have been filled in with the corre
sponding coordinates for the field you were in when you pressed F1. They should be 005 for the
row, 067 for the column, and 004 for the length.

2234391-9701 4·27

Interactive Screen Generator/Editor

FIE L D A T T RIB UTE S P E C I F I CAT ION

Row: 005 CoL: 067 Length: 004 Name: ______ Function Key: _
Accept DispLay DefauLts: Y Bright: N BLink: N Non DispLay: N G~aphic: N
Same as FieLd: __ ExternaL: N Output OnLy: N FiLL: _ Graphics Input: N
Required: N Minimum Length: __ Tab Stop: N Auto Skip: N
VaLidation on Output: Y Branch To: __ FieLd Mask: __ PostcLear: N
N u mer i c: N S i g ned: N N u mer i c f iLL: _ Dec i maL p Lac e s: __ Fie L d Com p Let e: N

CompLete: _
Other Page: _

InitiaLization: _
Characters: _

Fixed Lengths:
Ranges of VaLues: _
TabLes of VaLues: _
ScaLing/Justify: _

Substitute-Entry: _
Substitute-Out: _

Copy-to-Entry: _
Copy-to-Out: _

Figure 4·16. FAS Menu

Several attributes in this paragraph have default values. To accept these default values, press the
RETURN key. Directions are given for the attributes you are to select. Press the right FIELD key to
move through attributes for which no directions are specified. Note that you cannot press
RETURN to accept the default for the FILL attribute. Instead you must press the SKIP key. For all
other attributes not specified for the following edit set, tab through the attribute by pressing
RETURN. Select attributes for this field as follows:

Enter NVOICE for Name. (This names the field.)
Enter Y for Required. (This specifies that you must enter data for this field.)
Enter Y for Numeric. (This specifies that values entered in this field must be numbers.)
Enter_for Numeric Fill.
Enter Y for Field Complete. (This signifies that you have completed field attribute specifica

tion for this field.)
Press RETURN.

Your screen looks like the screen in Figure 4-11.

4-28 2234391·9701

Interactive Screen Generator/Editor

You have completed the field attribute specification for INVOICE. You are now ready to select
attributes for PARTN. The cursor should be in the field beneath PART #. To select attributes for
this field, proceed as follows:

Press F1.

The FAS menu (Figure 4-16) appears on your screen. Coordinates for the row, column, and length
of the field located beneath PART # appear as follows: row 008; column 009; and length 006. Com
plete the attribute specification for the first part of this menu as follows:

Enterr PARTN for Name. (This names the field.)
Enterr N for Accept Display Defaults. (This allows you to specify display attributes.)
Entelr Y for Blink. (On a VDT, specifying this attribute causes the cursor to blink when it

enters this field.)
Enterr Y for Autoskip. (This causes the cursor to automatically leave this field after you enter

data.)
Press ENTER. (This moves the cursor to the lower left-hand section of the FAS menu.)

The cursor should now be next to the attribute labeled Complete. Use the down arrow key to move
the cursor to the attribute labeled Characters. This attribute allows you to specify what characters
are valid fiQr this field. To select this attribute, proceed as follows:

Press F1.

The screen in Figure 4-17 appears.

FIE L D A T T RIB UTE S P E C I F I CAT ION

Row: 008 Col: 009 Length: 006 Name: PARTN Function Key: __
Accept D'splay Defaults: N Bright: N Blink: Y Non Display: N Graphic: N
Same as Field: __ External: N Output Only: N Fill: _ Graphics Input: N
Required: N Minimum Length: __ Tab Stop: N Auto Skip: Y
Validation on Output: Y Branch To: __ Field Mask: __
Numeric: N Signed: N Numeric fill: _ Decimal places:

Postclear: N
Field Complete: N

Complete: _
Other Page: _

Initialization: _
Characters: _

Fixed Lengths: _
Ranges of Values: _
Tables of Values:
Scaling/Justify: _

Substitute-Entry: _
Substitute-Out: _

Copy-to-Entry: _
Copy-to-Out:

2234391-9701

Character Name: __ Complete:. N

SYNTAX:

LIST CHARacter <clist> = {'char' •. 'char'
'char' /' char' I' char' ,}

EXAMPLE:

LIST CHAR CNAME = A .. Z,O/9,'?',''''.

Figure 4·17. FAS Menu - Character Prompt

4·29

Interactive Screen Generator/Editor

The section on the right side of your screen should now contain a series of prompts. This section
is called the attribute prompt area. The prompts that appear in this area differ according to which
attribute you select. For this attribute, you must complete six prompts. Figure 4·18 labels these
prompts, and the text that follows describes them.

FIE L D A T T RIB UTE S P E C I F I CAT ION

Row: 008 Co l : 009 length: 006 Name: PARTN Function Key: -
Accept Display Defaults: N Bright: N Blink: Y Non Display: N Graphic: N
Same as Field: External: N Output OnLy: N F iLL: - Graphics Input: N
Required: N Minimum Length: - Tab Stop: N Auto Skip: Y
Validation on Output: Y Branch To: FieLd Mask: Postclear: N
Numeric: N Signed: N Numeric f ilL: - DecimaL places: - FieLd Complete: N

Complete: - '3" (j)Character 2 Name:
Other Page: _ ~

® Complete: N

Initialization: _
Characters: _

Fixed Lengths: _
Ranges of Values: _
TabLes of VaLues:
Scaling/Justify: _

Substitute-Entry: _
Substitute-Out: _

Copy-to-Entry: _
Copy-to-Out:

2285374

@
SYNTAX:

LIST CHARacter <clist> = {'char' .. 'char'
'char'/'char'I'char' ,}

5
EXAMPLE:

LIST CHAR CNAME = A .. Z,0/9,'?',''''.

Figure 4·18. FAS Menu - Character Prompt Labeled

1. The name of the attribute you have selected is printed here.

2. Insert the name of the list you are about to create.

3. Using the example shown on the screen as a guide, enter the list of characters that may
be entered in this field.

4.

5.

6.

4·30

The syntax for the FDL statements generated by this specification is shown here.

Look at the format of the text entered after the equal sign in this example. The character
list you enter (step 3) should follow this format.

Enter N if you want to enter additional information; enter Y to return to the FAS menu
when you have completed the prompt responses.

2234391-9701

To respond to these prompts, complete the following steps:

Enter DIGIT for Name. (This names the attribute.)
Press RETURN.
Enter O •• 9,BLANK on the dotted line.
Press RETURN three times.
Enter Y for Complete.
Press RETURN.

Interactive Screen Generator/Editor

The text in the attribute prompt area should disappear. The cursor is on the line labeled Charac
ters. Move the clilrsor to the attribute labeled Fixed Lengths. This attribute allows you to specify
valid lengths for data entered in this field. To select this attribute, proceed as follows:

Press F1.

Respond to the plrompts in the attribute prompt area as follows:

Enter PNLEN for Name. (This names the attribute.)
Press RETURN.
Enter 4 on tlile dotted line.
Press RETURN three times.
Enter Y for Complete.
Press RETURN.

The cursor is now on the line labeled Fixed Lengths. Move the cursor to the line labeled Other
Page. This attribute allows you to gain access to another page of attributes. Respond as follows:

Press F1.

Note that new attributes appear in the list below Other Page. The cursor is next to Complete. Use
the down arrow key to move the cursor next to User Error Msg. Select this attribute to create your
own error messages:

Press F1.

2234391-9701 4·31

Interactive Screen Generator/Editor

A series of prompts appear in the attribute prompt area. During a typical ISGE session, you select
the type of user-defined error message you want. For this tutorial, use the down arrow key to move
the cursor next to Length List. Then proceed as follows:

Press F1.

Respond to the prompts that appear as follows:

Enter ERRPN for Name. (This is the name of the list.)
Press RETURN.
Enter PART NUMBER MUST BE 4 DIGITS on the dotted line.
Press RETURN two times.
Enter Y for Complete.
Press RETURN. (The attribute prompt display disappears and the field attribute specification

display appears.)
Move the cursor to Complete.
Press F1. (This returns the cursor to the Field Complete prompt.)
Enter Y for Field Complete.
Press RETURN.

Your screen now looks Uke the one in Figure 4-11. The cursor is in the field located beneath
DESCRIPTION. To select attributes for this field, proceed as follows:

Press F1.

The FAS menu appears on your screen. Coordinates for the row, column, and length of the field
appear as follows: row, 008; column, 022; and length, 011. Note that the Field Mask attribute con
tains the name DSCRIP, which is the field mask associated with this field during mask design
mode. To complete the field attribute specification for this field, proceed as follows:

4-32

Enter DESCRP for Name. (This names the field.)
Accept the default, Y, for Postclear. (This clears the mask from the screen after the cursor

leaves the field.)
Press ENTER (This moves the cursor to the second section of the FAS menu.)
Move the cursor to Tables of Values.

2234391·9701

Interactive Screen Generator/Editor

The Tables of Values attribute allows you to specify a list of values that are valid or invalid for this
field. The specified table can be inclusive (IN), which means that any value entered in this field
must match a val!ue in the table, or exclusive (EX), which means that any value entered must not be
in the listed table. Complete the prompts for this attribute as follows:

Press F1.
Enter THINGS for Name. (This names the attribute.)
Press RETUIRN.
Enter IN, 'HAT',' RACKET', 'CLOTHING', 'BALLS', 'SHOES' on the dotted line.
Press RETURN three times.
Enter Y for Complete.
Press RETUIRN.
Move the cursor to Complete.
Press F1. (This moves the cursor to Field Complete.)
Enter Y for Field Complete.
Press RETURN.

The segment mask shown in Figure 4-11 appears on your screen. The cursor is in the field located
beneath QTY. To display the FAS menu for this field, proceed as follows:

Press F1.

The row, column, and length values for this field should appear as follows: row, 008; column, 037;
and length, 003. Complete the following steps:

Enter QNTITY for Name. (This names the field.)
Enter N for Accept Display Defaults.
Enter Y for Bright. (This highlights the value.)
Press ENTE!R (This moves the cursor to Complete.)
Move the cursor to Ranges of Values.

The Ranges of Values attribute allows you to specify a list of ranges that are valid or invalid for
this field" The ranges specified can be inclusive (IN), which means that any data entered into this
field must be wi1hin the ranges listed, or exclusive (EX), which means that any data entered into
this field must not be within the ranges listed. Complete the field attribute specification for this
field as f()lIows:

Press F1.
Enter RGEQTY for Name. (This names the attribute.)
Press RETURN.
Enter IN,1/99999 on the dotted line.
Press RETURN three times.
Entelr Y for Complete.
Press RETURN.
Move the cursor to Complete.
Press F1.
Enter Y for Field Complete.
Press RETURN.

2234391-9701 4·33

Interactive Screen Generator/Editor

The segment mask shown in Figure 4-11 appears on your screen. The cursor should be in the field
located beneath PRICE.

Press F1_

The FAS menu appears on your screen. The values for row, column, and length appear as follows:
row, 008; column, 048; and length, 006. Complete the following steps:

Enter PRICE for Name. (This names the field.)
Enter N for Accept Display Defaults.
Enter Y for Brig ht.
Enter Y for Numeric. (This specifies that you can enter only numbers in this field.)
Enter Y for Signed. (This allows you to enter signed numbers in this field and to pass them to

the application.)
Enter 0 for Numeric Fill. (This fills the field with zeros.)
Enter 002 for Decimal Places. (This specifies that the values entered in this field must have

two decimal places.)
Press ENTER.
Move the cursor to Copy-to-Entry.

The Copy-to-Entry attribute copies the field's value into another field or variable. Make the
following entries:

4·34

Press F1.
Enter TOTAL for copy to field/variable. (This names the field that will receive the values

entered in PRICE.)
Press RETURN.
Enter Y for Complete.
Press RETURN.
Move the cursor to Characters.

Press F1.
Enter MONEY for Name. (This names the character list.)
Press RETURN.
Enter 0 •• 9,'.',' + ',BLANK on the dotted lines.
Press RETURN three times.
Enter Y for Complete.
Press RETURN.
Move the cursor to Complete.

Press F1.
Enter Y for Field Complete.
Press RETURN.

2234391-9701

Interactive Screen Generator/Editor

The segment mask shown in Figure 4-11 reappears on your screen. The cursor is now in the field
located beneath TOTAL. Proceed as follows:

Press F1.

The FAS menu appears on your screen. The values for row, column, and length appear as follows:
row, 008; column, 058; and length, 007. Begin the field attribute specification for this field as
follows:

Enter TOTAL for Name.
Enter N for Accept Display Default.
Enter Y for Bright.
Enter Y for External. (This allows the application program to refer to the field in Read, Write,

and Reselt commands. Section 5 describes these commands.)
Press ENTER.
Move the cursor to Other Page.
Press F1.
Move the cursor to Condo Attributes. (This allows you to specify the conditions that deter

mine which edit set is used with this field.)
Press F1.

The attribute prompts for this attribute appear on your screen. Proceed as follows:

Enter BONUSS for Condition. (This names the condition.)
Press RETURN.
Enter PRICE for Field/Variable.
Press RETURN.
Enter DOTHIS for then edit set is. (The edit set DOTHIS will be used if the condition is true.)
Press RETURN.
Enter DOTHAT for else edit set is. (The edit set DOTHATwili be used if the condition is false.)
Press RETURN three times to go to Ranges of Values Name.
Enter RANGES for Ranges of Values Name. (This gives the range of values for the condition

BONUSS.)
Press RETURN five times to go to Complete.
Enter Y for Complete.
Press RETURN.
Move cursor to Other Page.
Press F1.
Move curso,r to Ranges of Values.
Press F1.
EntE!r RANGE$ for Name. (This names the range list for RANGES.)
Press RETURN.
Enter IN,50/99999 on dotted line. (This specifies that if data entered in the field TOTAL is be-

tween 50 and 99999 then DOTHIS applies; otherwise, DOTHAT applies.)
·Press RETUIRN three times.
EntE!r Y for Complete.
Press RETURN.
Move cursor to Complete.

2234391·9701 4·35

Interactive Screen Generator/Editor

Press F1.
Enter Y for Field Complete.
Press RETURN.

The segment mask shown in Figure 4-11 appears on your screen. The cursor should be in the field
located next to EMPLOYEE NAME. Begin attribute specification for this field as follows:

Press F1.

The row, column, and length values for this field appear as follows: row, 018; column, 023; and
length, 020. Complete the attribute speCification for this field as follows:

Enter YRNAME for Name. (This names the field.)
Enter Y for Required ..
Press ENTER.
Move the cursor to Characters.

Press F1.
Enter YOUWHO for Name. (This names the character list.)
Press RETURN.
Enter A •. Z, BLANK on the dotted line.
Press RETURN three times to go to Complete.
Enter Y for Complete.
Press RETURN.
Go to Complete.
Press F1.
Enter Y for Field Complete.
Press RETURN.

Edit Set SpeCification Menu. You are now ready to create an edit set for this field. The cursor can
be anywhere on the screen for this activity. An edit set contains one or more attributes that are
applied to a field when the data entered in that field meets conditions specified in a conditional
attribute statement. You use the Edit Set Specification (ESS) menu to specify attributes for an edit
set. To display this menu, proceed as follows:

Press F2.

Note that the cursor need not be in a field when you specify an edit set for that field.

The ESS menu (Figure 4-"19) appears on your screen.

4·36 2234391·9701

Interactive Screen Generator/Editor

E D I T SET S P E C I F I CAT ION

Edit Set Name:
Fi ll: __ Graphics Input:
Required: _ Minimum Length: _ Tab Stop: _ Auto Skip: _
Validation on Output: _ Branch To: __ Field Mask: __ Postclear: __
Numeric:: _ Signed: _ Numeric fill: _ Decimal places: __

Edit Set Specification Complete: -

Complete: _
()ther Page: _

Initialization: _
Characters: _

Fixed Lengths: _
Ranges of Values: _
Tables of Values: _
Scaling/Justify: _

Substitute-Entry: _
Substitute-Out: _

Copy-to-Entry: _
C()py-to-Out: _

Figure 4·19. 'ESS Menu

The ESS menu contains many of the same attributes listed in the FAS menu. It does not contain
the Position or Display attributes. Although the Array attribute is listed on the ESS menu, you
cannot specify it for an edit set.

Note that you cannot press RETURN to accept the default for the FILL attribute. Instead you must
press SKIP. For all other attributes not specified for the following edit set, tab through the
attribute by pressing RETURN.

Create the edit set DOTHIS and associate it with the field mask COMISS as follows:

Ente!r DOTHIS for Edit Set Name
Enter COMI$S for Field Mask.
Enter Y for Postclear.
Enter Y for Edit Set Specification Complete.
Press RETURN.

2234391-9701 4·37

Interactive Screen Generator/Editor

The segment mask shown in Figure 4-11 appears on your screen. Create the edit set DOTHAT and
associate it with the field mask TOOBAD as follows: '

Press F2.
Enter DOTHAT for Edit Set Name.
Enter TOOBAD for Field Mask.
Enter Y for Postclear.
Enter Y for Edit Set Specification Complete.
Press RETURN.

The segment mask shown in Figure 4-11 appears on your screen. You have now completed the
design phase of this ISGE session. Enter the termination phase as follows:

Press CMD.

The Selection menu shown in Figure 4-13 appears on your screen.

4.3.4 Termination Phase
Figure 4-20 highlights the termination phase of ISGE.

Note that you can terminate an ISGE session in any of three ways:

• Enter SI to save the intermediate segment file created during this session.

• Enter CF to translate the intermediate segment file to FDL statements.

• Enter CS to translate the intermediate segment file and compile the resulting FDL
program.

For this tutorial, use CS as follows:

Enter CS.
Press RETURN.

Prompts requesting the names of four files appear on your screen. Enter the names of the four
files you created at the beginning of this tutorial:

4·38

Enter .EXAMPLE.lMS for Intermediate Segment File Pathname.
Press RETURN.
Enter .EXAMPLE.FDLSRC for FDL Source File Pathname.
Press RETURN.
Enter .EXAMPLE.PROG for Form Program File Pathname.
Press RETURN.
Enter .EXAMPLE.LlST for Listing File Pathname.
Press RETURN.
Enter Y for Complete.
Press RETURN.

2234391-9701

INITIATION

PHASE

2

DESIGN

PHASE

22817()4 (7/8)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

(CS)

FLOW OF CONTROL IN ISGE

(XISGE)

(RI)

(EI)

MASK DESIGN
MODE

(PRESS CMD)

Interactive Screen Generator/Editor

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

Figure 4·20. Flow of Control: Termination Phase

2234391·9701 4-39

Interactive Screen Generator/Editor

The cursor disappears from the screen while this process begins. The following message appears
on your screen: FDL COMPILATION HAS BEGUN. Press RETURN. Enter the WAIT command.
When the background execution is complete, proceed as follows:

Press RETURN.

To check for errors, enter the Show File (SF) command for the file .EXAMPLE.LlST. (Appendix C
explains the FDL error count format.) If you followed directions, your compilation should be error
free.

4.3.4.1 Save Intermediate File (51). When you select this option, the ISGE prompts you for a
path name where the session's intermediate segment file can be saved.

4.3.4.2 Create an FDL File (CF). When you select this option, the ISGE prompts you for two
path names. The first path name is for a file where the session's intermediate segment file can be
saved. This pathname is optional. The second pathname specifies a source file where the FDL
translation can be stored. This pathname is required. ISGE translates the intermediate segment
file into FDL statements, which are stored in the source file.

The CF option calls the FDL builder as a background task. Control immediately returns to SCI. The
FDL builder task is in execution when SCI regains control. The FDL translation is not available
until this background task terminates.

If you enter an invalid pathname for saving the intermediate segment file, the ISGE returns an
error code. (See Appendix C.) You can either abort the session or enter another pathname. If you
enter an invalid pathname for the FDL translation file, the ISGE terminates normally. The FDL
builder detects the error and displays the COBOL error code. See Appendix C for techniques for
recovering from this error.

4.3.4.3 Compile a Segment (CS). When you select this option, the ISGE prompts you for four
file path names. The first pathname specifies a file where the intermediate segment file can be
stored. This pathname is optional. The second file path name specifies a file where the FDL trans
lation can be stored. It is required. The third pathname specifies a program file into which the FDL
is compiled. It is required. The fourth pathname specifies the FDL compilation listing file. It is
required.

The CS option calls the FDL builder as a foreground task. Therefore, the terminal is unavailable
until the FDL translation is complete. Once the translation to FDL is complete, the FDLC is bid as
a background task. The terminal is returned to SCI after you press the RETURN key to acknowl
edge the message that FDL compilation has begun. The compiled segment is not available until
the FDL compiler terminates.

If you specify an invalid pathname for the FDL source file, the ISGE terminates normally; the FDL
builder detects the error and displays a COBOL error code. (See Appendix C for techniques for
recovering from this kind of error.) If you specify an invalid path name for either the program file or
the listing file, the FDL compiler displays an error message. To recover from the error, execute the
compiler by entering the command XFDLC and substitute a valid pathname for the pathname that
was in error.

4·40 2234391-9701

Interactive Screen Generator/Editor

4.3.5 Form Tester
The Form Tester is a utility that allows the form designer to test a completed form without design
ing an application program. Section 7 provides a full description of the Form Tester. Test the seg
ment created in this tutorial as follows:

Enter FORMTSTR. (The TIFORM Test Program menu appears on your screen.)
Enter 01 to open the form.

Note that the Form Tester accepts only default device-dependent segments. If a segment is
device dependent, simply remove the DEVICE statement from the source and then test the seg
ment. After testing, replace the appropriate DEVICE statement.

Your screen should now display the prompts for opening a form. Make the following entries:

Enter .EXAMPLE.PROG for PROGRAM FILE NAME.
Press RETURN.
Enter ORDERF for FORM NAME.
Accept the initial value of ME for TERMINAL NAME.
Press RETURN.
Enter Y for Sure.

The cursor is now in the bottom right-hand corner of your screen. Return to the TIFORM Test Pro
gram menu as follows:

Press RETURN.

Prepare the segment as follows:

Enter 02 for Prepare a Segment.
Press RETURN.

Your screen should now display the prompts for preparing a segment. Proceed as follows:

Enter ORDERS for SEGMENT NAME.
Press RETURN.
Enter ORDERS for READ GROUP.
Press RETURN.
Enter Y for SURE.

The form shown in Figure 4-11 appears on your screen. Enter sample data into each of the fields to
test the attributes you specified in this tutorial. After you test the last field, proceed as follows:

Press RETURN.

A message appears in the middle of the screen, telling you what data was read. The cursor is in
the bottom right corner of your screen. Return to the TIFORM Test Program menu as follows:

Press RETURN.

2234391·9~ro1 4-41

Intreactive Screen Generator/Editor

The TIFORM Test Program menu appears on your screen. Exit this program as follows:

Enter 22.
Press RETURN.
Enter Y for SURE.
Press CMD.

4.3.6 Summary
This tutorial has introduced you to the basic features of ISGE. You created a segment mask,
designed field masks, specified several commonly used field attributes, compiled your segment,
and used the Form Tester. Although the form you created in this tutorial is relatively simple, ISGE
can create very complex forms. See Appendix G for a list of all the attributes that can be assigned
to the fields in a segment and a description of their functions. See Appendix D for additional
examples of ISGE segments. Then you can modify the form you created in this tutorial by incorpo
rating additional field attributes.

4.4 INTERMEDIATE SEGMENT FILE

The intermediate segment is the segment currently being operated on in an ISGE session. During
execution of the ISGE, this segment is stored in a file called the intermediate segment file. Since
the ISGE generates the intermediate segment file automatically, you need not be concerned with
its creation or format.

You can save the intermediate segment file by using any of the three standard routines for termi
nating a session. (See Figure 4-20.) Upon selecting one of the three termination routes, you are
prompted for a path name under which the intermediate segment file can be saved. Specifying this
path name ensures that the intermediate segment file will be saved. You can then retrieve the inter
mediate segment file for editing during a subsequent ISGE session by selecting the Edit Interme
diate Segment (EI) option from the initiallSGE menu (Figure 4-21).

A prompt will appear on your screen asking for a file pathname for the intermediate segment file.
Specify the pathname under which the intermediate segment file you want to edit is stored. For
example, to edit the intermediate segment file created during the tutorial in this section, specify
.EXAMPLE.IMS. ISGE retrieves the file and the Selection menu appears. You can now proceed
with the normal design and termination phases you completed in the tutorial.

4.5 CHANGING A COMPILED SEGMENT

You can change a compiled segment with the current version of TIFORM in either of two ways:

• To correct syntactical errors or context errors, use the Text Editor to change the appro
priate FDL statements in the source file.

• To reposition fields or to redesign a segment mask or field mask, return to the ISGE and
edit the intermediate segment file.

Note that in the current version of TIFORM you cannot edit a compiled segment by using the EC
command from the initial ISGE menu (Figure 4-5). If you attempt to use this command to decom
pile a segment created with the current version of TIFORM, an error message appears.

4·42 2234391·9701

INITIATION

PHASE

2
DESIGN

PHASE

3

TERMINATION

PHASE

228'1704 (8/S)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

(51)

SAVE
INTERMEDIATE
FILE

(CS)

M)

MASK DESIGN
MODE

(PRESS CMD)

Interactive Screen Generator/Editor

FLOW OF CONTROL IN ISGE

(XISGE)

(Rt)

(EI)

(CF)

CREATE
AN FDL
FILE

FIELD ATTRIBUTE
SPECIFICATION
MODE

(PRESS CMD)

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

(CS)

COMPILE A
SEGMENT

Figure 4·21. Flow of Control: Initial ISO E Menu

2234391·9701 4·43/4·44

5

Application Interface

5.1 INTRODUCTION

The TIFORM application program interface routines provide access to the Form Executor. These
routines reside in the TIFORM high-level language (HLL) interface packages, of which there are
five. Through these packages, the application issues commands and passes data to the Executor
and receives status and data in return. All intertask or interprocess communication between the
application and the Executor is handled by these packages, thus providing consistent, error
detecting interfaces. This section describes the ~alling sequences necessary to issue the various
routines in the supported languages.

5.2 APPLICATION INTERFACE PACKAGES

The application interface to the Form Executor supports three application languages. These are
COBOL, FORTRAN, and Pascal. COBOL is supported by two separate interface packages, one for
the 3.1 and previous releases of COBOL and one for the 3.2 and later releases. Paragraph 5.2.1
discusses the COBOL interface packages.

Two interface packages are provided for Pascal. One package requires beginning and ending
addresses of buffers. The other interface requires beginning addresses and sizes of buffers. Para
graph 5.2.2 discusses the Pascal interface packages.

One FORTRAN interface package is provided. You can use this package with FORTRAN-78 but
not with FORTRAN IV (FORTRAN-66). Paragraph 5.2.3 discusses the FORTRAN interface package.

5.2.1 COBOL Application Interface
COBOL is supported by two separate interface packages, one for the 3.1 and previous releases of
COBOL and one for the 3.2 and later releases. While you can use either the 3.2 or 3.1 calling
sequences with COBOL 3.2, it is recommended that you use the calling sequence for 3.2 and later.
You must use the 3.1 calling sequences with the 3.1 or earlier release of the COBOL language.

NOTE

Throughout this section, COBOL 3.1 refers to COBOL 3.1 and pre
vious releases. COBOL 3.2 refers to COBOL 3.2 and later releases.

Some commands require parameters for the addresses of user data areas of variable size. The 3.2
COBOL interface makes use of COBOL run-time subroutines that provide access to the applica
tion data structure. The COBOL 3.1 interface cannot make use of these subroutines. Therefore,
there are certain differences between the 3.2 and the 3.1 COBOL interfaces.

2234391·9701 5·1

Application Interface

The major difference is that the 3.1 interface cannot tell implicitly the size of variable data areas.
This requires that the 3.1 COBOL user pass both the beginning and ending addresses of variable
data areas, while 3.2 COBOL users need only pass the beginning addresses. Variable data areas
are those that have a size determined by the application. Variable data areas are generally buffers
that are used for the exchange of data with the terminal.

For both 3.1 and 3.2 COBOL, data areas that are not of variable size are identified by passing only
the beginning address of the areas. Fixed-length data areas include segment names, group
names, index fields, and count fields.

The following examples illustrate the use of these parameter types.

EXAMPLE 1

* * 3.1 COBOL CALLING SEQUENCE EXAMPLE

01 GROUP1-NAME PIC X(6) VALUE 'GROUP1'.
01 DATA1-BEGIN PIC X(100).
01 DATA1-END PIC X.

CALL "CFSREA" USING GROUP1-NAME, DATA1-BEGIN, DATA1-END.

EXAMPLE 2

* * 3.2 COBOL CALLING SEQUENCE EXAMPLE

01 GROUP-TABLE.
03 GROUP1-NAME PIC X(6) VALUE 'GROUP1'.
03 GROUP2-NAME PIC X(6).

01 DATA-BUFFER-AREA.
03 DATA1 PIC X(4S).
03 DATA2 PIC X(20).

CALL "CXSREA" USING GROUP1-NAME, DATA1.

In the 3.1 COBOL example, the group name in item GROUP1-NAME is fixed length, six bytes. This
parameter is always the same length in every CF$REA call. The read data area, represented by
DATA-BEGIN and DATA-END, may vary in size in different CF$REA calls. Consequently, you must
specify both the start and end addresses so that CF$REA can know how large a buffer it has to
contain the data it reads.

In the 3.2 COBOL example, the group name in GROUP1-NAME is also fixed at six bytes. The read
data area is represented by DATA1 and the size of DATA1 - PIC X(45). An explicit item to indicate
the end of the data area is not required.

5-2 2234391-9701

Application Interface

The term group is used here for all the Read, Write, and Reset commands, but it is always implied
that you can use an external field or variable name instead. Indexing is meaningful for groups
only; otherwise, you can use a field name or a variable name anywhere that a group name is
specified.

The previous example points out another difference. With 3.1 or earlier COBOL, all items used as
parameters must be either 01-level or 77-level items. That is, they must start on word boundaries.

These restrictions do not apply with the use of 3.2 or later COBOL. As the example illustrates, all
items used as p~rameters can be at any level and there is no requirement for starting on word
boundaries. The only exception is that the status block declared by the CX$STS call must be on a
word boundary, so you must declare it at the 01 level.

For both the 3.1 and 3.2 interfaces, form names, segment names, group names, field names, and
variable names are assumed to reside left-justified in a six-character data item, blank-filled on the
right. Index and count items are assumed to reside right-justified in a three-character data item,
zero-filled on the left.

5.2.1.1 COBOL 3.2 Calling Sequences. The entry points provided for COBOL 3.2 access to the
application interface routines are all of the form CX$xxx. Table 5-1 lists these names. The syntax
of the call to each of these entry points is included in the paragraph that describes the functions
performed by each call.

2234391-9701

Table 5·1. COBOL 3.2 Entry Points to Application Interface Routines

Calls

CX$STS
CX$OF
CX$PS
CX$WRI
CX$REA
CX$WWR
CX$WX
CX$REX
CX$RXC
CX$WXR
CX$WRC
CX$WM
CX$AEK
CX$DAK
CX$CN
CX$RF
CX$RFX
CX$PKY
CX$CHF
CX$ASN
CX$SYN
CX$CIC
CX$CF

Meaning

Declare Status Block
Open Form
Prepare Segment
Write a Group
Read a Group
Write With Reply
Write Indexed
Read Indexed
Read Indexed With Cursor Return
Write I ndexed With Reply
Write Indexed With Reply and Cursor Return
Write Message
Arm Event Keys
Disarm Event Keys
Control Functions
Reset Form
Reset Form Indexed
Print Key Command
Change Form
Execute Asynchronously
Synchronize
Change ITCIIPC Communication
Close Form

5·3

Application Interface

5.2.1.2 COBOL 3.1 Calling Sequences. You can only use the COBOL 3.1 calling sequences with
3.1 and earlier releases of COBOL. The entry points provided for COBOL 3.1 (and earlier releases)
access to the application interface are of the form CF$xxx, where xxx is the same as for the entry
points listed in Table 5-1. The syntax of the call to each entry point is included in the paragraph
that discusses the functions performed by each -call. An example of the use of each call is also
included.

5.2.2 Pascal Application Interface
Pascal is supported by two interface packages. The first interface package requires beginning
and ending addresses of variable-length buffers. The second interface package requires the use
of beginning addresses and sizes of variable-length buffers.

Entry points for the first package (type 1) are of the form PF$aaa, where aaa defines the unique
entry point. Entry points for the second package (type 2) are of the form PX$aaa.

The type 1 package uses the EXTERNAL FORTRAN interface, while the type 2 package uses the
more efficient EXTERNAL interface and the Pascal upper bound (UB< array» function.

Any release of Pascal supports either interface package. However, since the packages are linked
separately, you cannot mix calls to the entry pOints.

Table 5-2 lists the entry points of the package requiring beginning addresses and sizes (type 2).
The module .PASCAL.PX$STARTon the object installation media contains the correct Pascal defi
nitions for each of these entry points.

For the type 1 interface package, you must declare each entry point used by the Pascal program
as EXTERNAL FORTRAN. You must declare each parameter as a variable (VAR).

For type 2, each entry pOint must be EXTERNAL. You must declare each parameter as a variable
parameter with the exception of all six-character names (for example, form names and group
names) and parameters that represent the size of data areas. You must not declare these parame
ters as variable. In addition, you must define all data areas used with the type 2 interface as
dynamiC arrays. The lower bound of all such arrays must be one. An example follows.

VAR READ_DATA:PACKED ARRAY[1 •• ?] OF CHAR;

It is recommended that the Pascal upper bound (UB< array» be used for determining the size of
each array.

Even though the syntax of some entries indicates optional parameters, you must always use the
same number of optional entries to avoid a Pascal error.

5-4 2234391·9701

Application Interface

Table 5·2. Pascal Entry Points to Application Interface Routines

Calls

PX$STS
PX$OF
PX$PS
PX$WRI
PX$REA
PX$WWR
PX$WX
PX$REX
PX$RXC
PX$WXR
PX$WRC
PX$WM
PX$AEK
PX$DAK
PX$CN
PX$RF
PX$RFX
PX$PKY
PX$CHF
PX$ASN
PX$SYN
PX$CIC
PX$CF

Note:

Meaning

Declare Status Block
Open Form
Prepare Segment
Write a Group
Read a Group
Write With Reply
Write Indexed
Read Indexed
Read Indexed With Cursor Return
Write Indexed With Reply
Write Indexed With Reply and Cursor Return
Write Message
Arm Event Keys
Disarm Event Keys
Control Functions
Reset Form
Reset Form Indexed
Print Key Command
Change Form
Execute Asynchronously
Synchronize
Change ITCIIPC Communication
Close Form

Type 2 requires beginning addresses and sizes.

The following example shows the use of the type 1 application interface package, which requires
beginning and ending addresses. The procedure declarations use EXTERNAL FORTRAN.

EXAMPLE

PROGRAM FORIMS._DEMOi { TIFORM example in TI

TYPE
{Type 1: end addresses

I:S2 = PACKED ARRAY[1 •• 21 OF

<:S6 = PACKED ARRAY[1 •• 61 OF

STATUS_BLOCK = PACKED RECORD
FORfLSTATUS:CS2i
OPSYS_STATUS:CS2i
EVENT_KEY:CS2i
COMMAND: CS2i
ITEM_NAME: CS6i

CHARi

CHARi

Pascal }
are required.}

2234391-9701 5·5

Application Interface

5·6

{INDEX_01, INDE~02, ITE"-CNT ,CURSOR-POSITION are
aLLocated as one 12-character array since arrays are
aLLocated on word boundaries. GeneraLLy, you can
ignore these fieLds~}

INDEXES_CURSOR: PACKED ARRAY[1 •• 121 OF CHARi
TEXT_LENGTH: INTEGER;
FILLER_1: PACKED ARRAY[1 .. 121 OF CHARi

END;

{DIR-NAME may vary from 2-48 bytes depending on
expected size of pathnames for the
form program fiLe}

DIRECT_NAME = RECORD
DIR_NAME:PACKED ARRAY[1 .• 481 OF CHARi
D_N_END:INTEGER

END;

{TR"-NAME may vary from 2-8 bytes depending on the
expected size of the device name or synonym to be
used for the terminaL.}

TERMINAL-NAME = RECORD
TRM_NAME:PACKED ARRAY[1 .. 41 OF CHARi
T_N_END:INTEGER

END;

{Vary R-BUFF to accommodate maximum user input for any
group read.}

READ_BUFFER = RECORD
R_BUFF:PACKED ARRAY[1 •• 401 OF CHARi
R_B_END:INTEGER

END;

VAR SBLOCK: STATUS_BLOCKi
D_NAME: DIRECT_NAME; T_NAME: TERMINAL-NAMEi
R_BUFFER: READ_BUFFER;
GROUP,SEGMENT,FORM:CS6;

PROCEDURE PFSSTS (VAR SBLK:STATUS_BLOCK); EXTERNAL FORTRANi

PROCEDURE PFSOF (VAR FNAME:CS6;
VAR DIRNME:DIRECT_NAMEi
VAR DIREND:INTEGER;
VAR TRMNME:TERMINAL-NAME;
VAR TRMEND:INTEGER)i EXTERNAL FORTRANi

PROCEDURE PFSPS (VAR SNAME: CS6); EXTERNAL FORTRAN;

PROCEDURE PFSREA (VAR GNAME:CS6;
VAR RDDATA:READ_BUFFER;
VAR RDDEND:INTEGER)i EXTERNAL FORTRANi

PROCEDURE PFSCF; EXTERNAL FORTRAN;

2234391-9701

BEGIN
WITH D_NAME,T_NAME,ILBUFFER DO
BEGIN

PFSSTS (SBLOCK); {Declare the status block.}

01 ILN.AM E [1] : = , ';
{Use default synonym DIRECTRY for form file.}

TRM_NAME: =' TERM' ; {Use synonym TERM for termi na l.}
{Open form.}
PFSOF (FORM, D_NAME, D_N_END, T_NAME, T_N_END);

SEGMENT: =' SEG1 ' ;
PFSPS (SEGMENT); {Activate the segment.}

GROUP:='GROUP1';
PFSREA (GROUP,ILBUFFER,ILB_END); {Read group.}

{Process user input.}

PFSCF
END; {Close the form.}

END.

Application Interface

The following ex:ample shows the same program. However, it is coded to demonstrate the type 2
application interface package. Note that the Pascal function UB is used to provide the size of vari
able length areas and that these size parameters are not variable.

EXAMPLE

PROGRAM FORMS_DEMO; { TIFORM example in TI PASCAL}
{Type 2: sizes are required.}

TYPE
CS2 = PACKED· ARRAY [1 •• 2] OF CHAR;
CS6 = PACKED ARRAY[1 .. 6] OF CHAR;
STATUS_SLOCK = PACKED RECORD

FORM_STATUS:CS2;
OPSYS_STATUS:CS2;
EVENT_KEY:CS2;
COMMAND: CS2;
ITEM_NAME: CS6;

INDEXES_CURSOR: PACKED ARRAY[1 •. 12] OF CHAR;
TEXT_LENGTH: INTEGER;
FILLER_1: PACKED ARRAY[1 .. 12] OF CHAR;

END;
{INDEX_01, INDEX-02, ITEM-CNT, CURSOILPOSITION are
allocated as one 12-character array since arrays are
allocated on word boundaries. The user may ignore
these fields.}

2234391-9701 5·7

Application Interface

5·8

DIR_NAME=PACKED ARRAY[1 .• 101 OF CHAR;
{DIR_NAME may vary from 2-48 bytes depending on

expected size of pathnames for the
form program fiLe.}

TRK-NAME=PACKED ARRAY[1 •. 41 OF CHAR;
{TRM_NAME may vary from 2-8 bytes depending on the

expected size of the device name or synonym to be
used for the terminaL.}

R-BUFF=PACKED ARRAY[1 .. 481 OF CHAR;
{Vary R-BUFF to accommodate maximum user input for any

group read.}
VAR SBLOCK: STATUS_BLOCK;

D_NAME: DIR-NAME; T_NAME: TRK-NAME;
R_BUFFER: R-BUFF;
GROUP,FORM:CS6;

PROCEDURE PXSSTS (VAR SBLK:STATUS_BLOCK); EXTERNAL;

PROCEDURE PXSOF (FNAME:CS6;
VAR DIRNME:PACKED ARRAY[1 •• ?1 OF CHAR;

DIRSIZ: INTEGER;
VAR TRMNME:PACKED ARRAY[1 .• ?1 OF CHAR;

TRMSIZ:INTEGER);
EXTERNAL;

PROCEDURE PXSPS (SNAME:CS6);
EXTERNAL;

PROCEDURE PXSREA (GNAME:CS6;
VAR RDDATA:PACKED ARRAY[1 •• ?1 OF CHAR;

RBFSIZ:INTEGER)i
EXTERNAL;

PROCEDURE PXSCF;

BEGIN

EXTERNAL;

PXSSTS (SBLOCK); {DecLare the status bLock.}

D_NAME:=' ';{Use defauLt synonym DIRECTRY for
form fiLe.}

T_NAME:='TERM'; {Use synonym TERM for terminaL.}

FORM:='FORM01'; {ActuaL form name.}
PXSOF (FORM, D_NAME, UBeD_NAME), T_NAME,

UBeT_NAME»; {Open the form.}

2234391-9701

Application Interface

PX$PS ('SEG001')i {L;teral segment name ;s used.}

{Act;vate the segment.}

GROUP:='GROUP1'i
PX$REA (GROUP,R_BUFFER,UB(R-BUFFER»; {Read user ;nput.}

{Process user ;nput.}

PX$CF {Close the form and term;nate the Executor.}
END.

In the following paragraphs, only the type 2 syntax and examples are presented. For these
examples, the following types are understood:

C$2 = PACKED ARRAY[1 .• 21 OF CHAR;
C$3 = PACKED ARRAY[1 •• 31 OF CHAR;
C$6 = PACKED ARRAY[1 •• 61 OF CHAR;

You can derive the syntax of type 1 calls from the type 2 syntax by the following method:

• Changing the call from PX$aaa to PF$aaa.

• Replacing < iiii size> by < iiii end address>, where iiii is the name of a variable-sized
item (piathname, buffer, and so on).

• Making all parameters VAR.

In addition, < iiii > (beginning of iiii) and < iiii end address> must be in a record to ensure that the
size of iiiii is computed correctly by the interface package.

The parameters referred to as < index-1> , < index-2>, < count>, and < cursor position> must be
specified as three-character packed arrays. The values of these parameters are represented as
character strings. They are not numeric integers upon which arithmetic can be performed.
ENCODE. and DECODE can be used for conversion.

Each type 1 procedure declaration must be EXTERNAL FORTRAN rather than the type 2
EXTERNAL declaration.

5.2.3 FORTRAN Application Interface
FORTRAN applications are supported by a single application interface package. You can use the
interface package for an application written in FORTRAN-78 but not FORTRAN IV (FORTRAN-66).
Entry points are of the form FFaaa, where aaa defines the unique entry point for each function.
Table 5-3, lists these entry points. The aaa of each entry point corresponds to entry points in the
COBOL CF$ and the Pascal PX$ application interface package, which perform the identical
functions.

2234391-9701 5·9

Application Interface

Table 5·3. FORTRAN Entry Points to Application Interface Routines

Call Meaning

FFSTS
FFOF
FFPS
FFWRI
FFREA
FFWWR
FFWX
FFREX
FFRXC
FFWXR
FFWRC
FFWM
FFAEK
FFDAK
FFCN
FFRF
FFRFX
FFPKY
FFCHF
FFASN
FFSYN
FFCIC
FFCF

Declare Status Block
Open Form
Prepare Segment
Write a Group
Read a Group
Write With Reply
Write Indexed
Read Indexed
Read Indexed With Cursor Return
Write Indexed With Reply
Write Indexed With Reply and Cursor Return
Write Message
Arm Event Keys
Disarm Event Keys
Control Functions
Reset Form
Reset Form Indexed
Print Key Command
Change Form
Execute Asynchronously
Synchronize
Change ITC/IPC Communication
Close Form

The following example shows the use of TIFORM in a FORTRAN-78 program.

EXAMPLE

C

C

CHARACTER*2
CHARACTER*2
CHARACTER*3

STATUS(20),BUFFER(11),N1NE
DRCTRY(2), TRMNL(2), INBUF(21)
INDEX1, INDEX2, ECOUNT, CURPOS

DATA NINE/'09 1
/, INDEX1/'OOO'/, INDEX2/ ' OOO ' /

DATA ECOUNT/'OOO'/, CURPOS/'OOO ' /

C DecLare the status bLock_ ••
C

C

CALL FFSTS (STATUS)
DRCTRY(1) = I

TRMNL(1) = I

C Open the form ..•
C

5-10 2234391-9701

Application Interface

CALL FFOF ('FORM1 I, DRCTRY(1), DRCTRY(2),
1 TRMNL(1), TRMNL(2»

C
IF (STATUS(1) .GT. NINE) GO TO 1000

c
C Prepare a segment .•.
C

CALL FFPS ('SEGM1 ')
C

IF (STATUS(1) .GT. NINE) GO TO 1000
c
C Read 40 bytes of the entire segment ••.
C

CALL FFRXC ('SEGM1 I, INBUF, INBUF(21),
1 INDEX1, INDEX2, ECOUNT, CURPOS)

C
IF (STATUS(1) .GT. NINE) GO TO 1000

Process the data

C
C CLose the form •••
C

10100 CALL FFCF

END

5.3 INDEXED OIPERATIONS

Some TIFORM commands allow the application program to specify four indexing parameters.
These parameters (in order) are a first-level index, a second-level index, an elemental member
count, and an intrafield cursor position. A command in which these parameters are legal is called
an indexed command.

The following example shows an indexed read command expressed in COBOL and using the
COBOL 3.1 interf:ace.

EXAMPLE

01 GROUP-NAME PIC X(6) VALUE IS "NAMEXX".
01 DATA-BEGIN PIC X(80).
01 DATA-END PIC xx.
01 INDEX-1 PIC 999.
01 INDEX-2 PIC 999.
01 C:OUNT PIC 999.
01 CURSOR-POS PIC 999.

2234391·9701 5·11

Application Interface

MOVE 03 TO INDEX-1.
MOVE 09 TO INDEX-2.
MOVE 06 TO COUNT, CURSOR-POS.
CALL "CF$REX" USING GROUP-NAME,

DATA-BEGIN, DATA-END,
INDEX-1, INDEX-2, COUNT,
CURSOR-POS. '

When these indexing parameters are allowed on a call, they are optional. The application can
specify as many of these parameters on a given call as necessary to perform the desired opera
tion. Since the parameters' identities within the call are determined positionally, if one is omitted,
all following indexing parameters must also be omitted. An omitted indexing parameter is
assumed to have a value of zero.

You can specify the indexing parameters to condition the basic command being performed. The
indexing parameters can also have values returned in them by the Form Executor. The following
paragraphs discuss the meanings of the indexing parameters in both situations.

The first and second indexing parameters are actually indexes into the structure of the group
specified in the command. The first index identifies a member of the named group. If the member
selected by the first index is itself a group, you can specify the second index to identify a member
of the group selected by the first index.

An indexed command always starts with the first elemental member of the group/field/variable
selected by the indexing, where the first (and only) elemental member of a field/variable is defined
to be the field/variable itself.

When you specify cursor return in a Read or a Write With Reply command and an armed event key
or the Enter key is pressed, these two indexing parameters are modified by the command to point
to the field containing the cursor. If the application read is terminated by any other means, these
two parameters are setto zero since the cursor position is indeterminate.

The third indexing parameter is called the elemental member count parameter, or count. It speci
fies the number of elemental members of the named group to be read, written, or reset by the
command, starting with the elemental member selected by the indexes. If the count is zero on a
Write or a Reset command, the remainder of the named group's elemental members are written or
reset. If the count is zero on a Read command, the entire named group is read, but the cursor is ini
tially placed on the elemental member selected by the indexing. Since a Write With Reply com
mand is in effect a write followed by a read, a zero count on an Indexed Write with Reply command
has two quite different effects and should be avoided.

When you specify cursor return in a Read or a Write with Reply command and the command is
terminated by an armed event key or the Enter key, the elemental member count parameter is set
to the elemental number of the field containing the cursor. A field's elemental number is equal to
one plus the number of elemental members preceding it in the command's specified group. If the
Read command is terminated in any other way, the count parameter is set to zero since the cursor
position is indeterminate.

5-12 2234391-9701

Application Interface

The fourth indexing parameter is called the intrafield cursor position, or cursor. This parameter
specifies the character position within the indexed field where the cursor is placed initially. It is
used by Read commands only, although you can specify it on any indexed command. If you omit it
or specify a zero value, the cursor is positioned in the first character position of the indexed field.

If you specify cursor return and the Read command is terminated by an armed event key, the posi
tion of the cursor within the current field is returned in the cursor parameter. If the Read is closed
with the Enter key, the value returned is the length of the field plus one. If the Read is closed in any
other way, a zero value is returned since the cursor position is indeterminate.

5.4 STATUS BLOCK

All TIFORM comlmands use a 40-byte status block to return common information about the com
mand most recently executed. The area to be used is declared to TIFORM in a Declare Status
Block call. (Refer to the description of the Declare Status Block routine.) Subsequent commands
use the area specified on the most recent Declare Status Block call. Only the first six bytes of the
status block are generally useful. The following example shows the format of the status block,
coded in COBOL

EXAMPLE

* * FIELDS WITHIN TIFORM'S STATUS BLOCK .•.

* 01 TIFORM-STATUS-BLOCK.
05 FORM-STATUS
05 OPSYS-STATUS
05 EVENT-KEY
05 COMMAND
05 ITEM-NAME
05 INDEX-01
05 INDEX-02
05 ITEM-CNT
05 CURSOR-POSITION
05 TEXT-LENGTH
05 FILLER

PIC 9(02).
PIC X(02).
PIC 9(02).
PIC X(02).
PIC X(06).
PIC 9(03).
PIC 9(03).
PIC 9(03).
PIC 9(03).
PIC 9(05) USAGE IS COMP-1.
PIC X(12).

The FORM-STATUS field's value indicates whether the Form Executor was able to completely
execute the last command. A zero value indicates a successful execution. A nonzero value indi
cates some kind of exceptional condition. A value greater than nine indicates a fatal error. A value
less than or equal to nine indicates that a special, nonfatal condition occurred on the command.
Appendix B lists the possible form status codes and their meanings.

2234391·9701

NOTE

Your program should check the FORM-STATUS field after every
command.

5·13

Application Interface

The OPSYS-STATUS field contains the hexadecimal operating system status code if an SVC
caused the error; otherwise, this field contains zeros. This field is intended for reporting purposes
only. Not all form status codes generate an SVC status; however, for those that do, there is always
only a single SVC that generates the SVC status. Appendix B describes the association between
form status codes and SVCs.

The EVENT-KEY field contains the function key code of the event key that terminated the last
command. This value is zero unless an armed function key or a special event key terminated the
last command. Refer to Table 2·2 or 2·4 for a list of the codes for the function keys. This field is
meaningful only when the previous command was one of the Read commands.

The remainder of the fields in the status block are filled in by the interface routines (to communi·
cate information to the Form Executor) and in turn are filled in and returned by the Form Executor.
It is from these status block fields that routines like CF$RXC obtain index and count values from
the Executor. After a command executes, these fields are usually all zeros. The sole exception
occurs on the Read commands, when the cursor position is returned in them.

The TEXT-LENGTH field contains the number of bytes of text (exclusive of the status block) that
were transmitted back to the application by the Executor. If more text than the application's buffer
can hold is sent back by the Executor, this field indicates how much data actually is sent. This
field is meaningful only after Read and Write with Reply commands.

The application program is not required to initialize the status block prior to a call. The interface
routines set all statuses to zeros at the start of each command.

5.5 ITEMS RETURNED FROM READ COMMANDS

The Read commands, in addition to the status codes and their input data, return several other
pieces of information. All Read commands return an event key code in the status block. If the
Read command was terminated by an armed event key, the value returned is one of the codes
shown in Table 2-2 or 2-4. Otherwise, a value of zero is returned.

There are some special nonfatal form status codes that are returned only by Read or Write With
Reply commands. They indicate the method by which the terminal user terminated the read. Table
5-4 lists these special codes.

If you specify cursor return on a Read or Write with Reply command and the user terminates the
Read with an armed event key, the position of the cursor is returned in the indexing variables. If
the user terminates the read with the Enter key, the first three indexing variables are returned and
the cursor position is meaningless.

5·14 2234391-9701

Application Interface

Table 5·4. Nonfatal Form Status Codes

Code Meaning

00 Indicates that the user terminated the Read by pressing Next Field, Forward Tab, Skip,
or Return in the last field of the read.

01 Indicates that the user terminated the Read by pressing Previous Field or Back Tab
from the first field of the Read.

02 Indicates that the user terminated the Read by pressing an armed nonabort event key
or the Enter key.

03 Indicates that the user terminated the Read by pressing an armed abort key.

06 Indicates that the read was terminated by a TERMINATE READ or a TERMINATE READ
IMMEDIATELY statement.

5.6 ARM EVENT KEYS ROUTIN E

This routine issues a command to arm event keys selected by the application. Function keys are
the only event keys that can be armed by the application. The function keys specified by this call
completely replace whatever function keys were armed prior to the call.

To specify that a function key is to be armed requires a three-byte string. The first two bytes are
the function key code. The third byte is the specified function key's attributes. Table 2-2 or 2-4 lists
the functiion key codes. The attribute codes are the character A for an abort key and a blank space
for a nonabort key. To arm several function keys, the application must concatenate three-byte
strings for each key, then pass the total string to the Form Executor via this command.

The effects of the use of armed keys are as follows. If the user presses a nonabort key, the current
Read is terminated, all fields are verified and processed, and the data is returned to the applica
tion with a form status of 02. If the user presses an abort key, the current Read is terminated and
its data is returned to the application with a form status of 03 and without any editing or process
ing. It is the appllication's responsibility to check the EVENT-KEY field of the status block after a
Read command, to detect that an abort key terminated the Read, and to handle the abort key
data. Data returned from a field that the user terminates with an abort key is frequently invalid or
unusable. All function keys are disarmed by a Prepare Segment command.

5.6.1 Arm Event Keys Calling Sequences
The calling sequences for the Arm Event Keys routine are as follows:

COBOL 3.1:

CAl.L "CF$AEK" USING < event code list>, < event code list end>.

COBOL 3.2:

CAl.L "CX$AEK" USING < event code list> .

2234391·9701 5·15

Application Interface

Pascal:

PX$AEK « event code list> , < event code list size);

FORTRAN:

CALL FFAEK « event code list> , < event code list end»

5.6.2 Arm Event Keys Parameters
The following list describes the parameters for the Arm Event Keys routine:

<event code list> is the item (01-level item in COBOL 3.1) containing a string of three-byte
function key specifications, left-justified, and either blank-filled or low-value (binary
zero) filled on the right.

<event code list end> is the item (01-level item in COBOL 3.1) denoting the end of the func
tion code list area.

<event code list size> is the item in Pascal indicating the size of the function code list area.

5.6.3 Arm Event Keys Results
Status is posted. The specified function keys are armed.

5.6.4 Arm Event Keys Examples
The following examples demonstrate the Arm Event Keys routine:

COBOL 3.1:

01 EV-CO-LST PIC X(20) VALUE IS "SPACES".
01 EV-CO-LST-END PIC xx.

* ENABLE F1, F2, F4, FS, F8, CHD
* WITH F4 AND F8 ABORT KEYS

*
MOVE "01 02 04AOS 08A40" TO EV-CO-LST.
CALL "CFSAEK" USING EV-CO-LST, EV-CO-LST-END.

Pascal:

{Use CKEYS to arm the following keys:
{ F1 as an abort key
{ F2 as a nonabort key
{ F3 as an abort key
{ and F4 as an abort key

5·16 2234391-9701

CONST CKEYS = '01A02 03A04A';

VAR EKEYS:PACKED ARRAY[1 •• 121 OF CHAR;

PROCEDURE PXSAEK CVAR KEYS:PACKED ARRAY[1 •• ?1 OF CHAR;
K-SIZE:INTEGER); EXTERNAL;

EKEYS:=CKEYS;
PXSAEK CEKEVS,UBCEKEYS»;

C
C
C
C
C

CHARACTER EKEYS*2(6)
CHARACTER*3 EKEND

DATA EKEYS/'01A02 03A04A'/
Use CKEYS to arm the following

F1 as an abort key
F2 as a nonabort key
F3 as an abort key

and F4 as an abort key
CALL FFAEK CEKEYS(1),EKEYSC6»

5.6.5 Arm Event Keys Program Notes

keys:

Application Interface

Your application should check the status block after each Arm Event Keys command. If the status
code is nonzero, your application should report the code to the user and take the appropriate
end-action.

2234391-9701 5·17

Application Interface

5.7 CHANGE FORM ROUTINE

This routine combines the functions of a Close Form routine followed by an Open Form routine. It
is more flexible than these two routines, since any, all, or none of the form, the form program file,
and the terminal can be changed on a single routine. Furthermore, this routine does not force the
termination of one Form Executor and the bidding. of a second Executor as does a Close/Open
routine pair. Also, some of its options can suppress logical unit number (LUNO) assigns and
releases. Change Form is therefore appreciably faster than a Close Form followed by an Open
Form.

5.7.1 Change Form Calling Sequences
The calling sequences for the Change Form routine are as follows:

COBOL 3.1:

CALL "CF$CHF" USING < form name>, < directory name>, < directory name end>,
< terminal name>, < terminal name end>.

COBOL 3.2:

CALL "CX$CHF" USING < form name>, < directory name>, < terminal name>.

Pascal:

PX$CHF « form name>, <directory name>, <directory name size>,
<terminal name>, <terminal name size»;

FORTRAN:

CALL FFCHF « form name>, < directory name>, < directory name end>,
1 < terminal name>, < terminal name end»

5.7.2 Change Form Parameters
The following list describes the parameters for the Change Form routine:

< form name> can be anyone of the following:

• A six-byte, 01-level item in COBOL 3.1, a six-character packed array in Pascal, or a
six-element character array in FORTRAN containing the name of the form to be
opened. This name must be left-justified and blank-filled on the right within this
item.

• A 01-level, signed, COMP-1 item in COBOL 3.1 or an integer in Pascal and
FORTRAN containing the value - 1, indicating that the form is not to change. The
effect of this option is that the overlay number of the form root of the currently
open form is used to load the new form root during the Open Form phase of the
command.

• A 01-level, signed, COMP-1 item in COBOL 3.1 or an integer in Pascal and
FORTRAN containing the overlay number of the form root of the new form that is to
be opened during the Open Form phase of the command.

5.18 2234391-9701

Application Interface

< directory name> can be anyone of the following:

• The starting address of the 2-48 ~yte item in COBOL 3.1, a 2-48 character packed
array in Pascal, or a 2-48 element character array in FORTRAN containing the
operating system path name specifying the program file in which the specified
form is stored. This item's value must be left-justified and blank-filled to the right.
Synonyms are allowed. If the first type is a blank, the synonym DIRECTORY is
assumed to point to the program file.

• A 01-level, signed, COMP-1 item in COBOL 3.1 or an integer in Pascal and
FORTRAN containing the value -1, indicating that the form program file is not to
ctlange. This option suppfesses the release and assign of a LUNa to the form pro
gram file. Instead, the LUNa assigned to the previously active form program file is
used when loading the form root of the form being opened by this command.

• A 01-level, signed, COMP-1 item in COBOL 3.1 or an integer in Pascal and
FORTRAN containing the LUNa of the new form program file in which the new
form is to be found. This option suppresses the assign of a LUNa to the form pro
gram file. Instead, the LUNa specified is used when loading the form root of the
farm being opened by this command. The LUNa must have been previously
assigned to the form program file and must be either a station local or global
LUNa.

< directory name end> in COBOL 3.1 and FORTRAN must always represent the end address
of the < directory name> parameter. In particular, if < directory name> is a 01-level,
signed, COMP-1 item, then < directory name end> must reside immediately following it.
The difference between the < directory name> and < directory name end> parameters
must be two bytes.

< directory name size> in Pascal must always represent the size of the < directory name>
parameter. In particular, if < directory name> is integer, then < directory name size>
must be two.

< terminal name> can be anyone of the following:

•

•

2234391-9701

The start address of a 2-48 byte area in COBOL 3.1, the 2-48 byte packed character
array in Pascal, or the 2-48 element character array in FORTRAN containing the
device name of the terminal or the pathname of the file on which the form is to exe
cute. The value of this item must be left-justified and blank-filled on the right. Syn
onyms are allowed. If the first byte of the area is a blank, the synonym ME (pointing
to the application's controlling station) is used, causing the form to be executed on
the application's own station.

A 01-level, signed, COMP-1 item in COBOL 3.1 or an integer in Pascal and
FORTRAN containing the value - 1, indicating that the terminal to be used is not
to change. This option suppresses the release and assign/open of a LUNa to the
terminal. Instead, the LUNa already assigned to the currently active terminal is
used for all subsequent terminalI/O.

5-19

Application Interface

• A 01-level, signed, COMP-1 item in COBOL 3.1 or an integer in Pascal and
FORTRAN containing the LUNa assigned to the new terminal on which the speci
fied form is to be executed. This option suppresses the assign of a LUNa to the
terminal. Instead, the specified LUNa is opened and used for all subsequent ter
minall/O.

< terminal name end> in COBOL 3.1 and FORTRAN must always represent the end of the
< terminal name> parameter. In particular, if < terminal name> is a 01-level, signed,
COMP-1 item, then < terminal name end> must reside immediately following it. The dif
ference between < terminal name> and < terminal name end> must be two bytes.

< terminal name size> in Pascal must always represent the size of the < terminal name>
parameter. In particular, if < terminal name> is an integer, then < terminal name size>
must be two.

5.7.3 Change Form Results
Status is posted. The currently open form is closed, and the form specified by the call is opened
on the specified terminal.

5.7.4 Change Form Examples
The following examples demonstrate the Change Form routine:

COBOL 3.1 Example 1:

* A STANDARD CHANGE FORM CALL.
* ****************************
*

01
01
01
01
01

5-20

FORM-NAME PIC X(6) VALUE IS uFORM01".
OIR-NAME PIC XCS) VALUE "PATHNAME".
OIR-NAME-ENO PIC XX.
TERM-NAME PIC XX VALUE "ME".
TERM-NAME-ENO PIC XX.

CALL "CF$CHF" USING FORM-NAME,
orR-NAME, OIR-NAME-ENO,
TERM-NAME, TERM-NAME-ENO.

2234391·9701

COBOL 3.1 Example 2:

* CHANGE ONLY THE FORM. DIRECTORY, TERMINAL ARE UNCHANGED.

*

01 FORM
01 IDIR
01 DIR-END
01 'TERM
01 'TERM-END

PIC X(6) VALUE IS "FORM02".
PIC S9(5) USAGE IS COMP-1 VALUE -1.
PIC XX.
PIC S9(5) USAGE IS COMP-1 VALUE -1.
PIC XX.

CALL "CFSCHF" USING FORM,

Pascal Example 1:

DIR, DIR-END,
TERM, TERM-END.

{ A STANDARD CHANGE FORM CALL.
=============================}

CONST C_FORM = 'FORM01'i
C_DIRC = 'PATHNAME'i
C_TERM = 'ST10'i

VAR FORM:CS6i
DIRC:PACKED ARRAY[1 •• 81 OF CHARi
TERM:PACKED ARRAY[1 •• 41 OF CHARi

PROCEDURE PX$CHF (F_NAME:CS6i
VAR F_DIRC:PACKED ARRAY[1 •• ?1 OF CHARi

F_DSIZ:INTEGER:
VAR F_TERM:PACKED ARRAY[1 •• ?1 OF CHARi

F_TSIZ:INTEGER)i
EXTERNALi

FORM:=C_FORMi DIRC:=C_DIRC TERM:=C_TERMi
PX$CHF (FORM,DIRC,UB(DIRC),TERM,UB(TERM»i

2234391-9701

Application Interface

5·21

Application Interface

Pascal Example 2:

{CHANGE ONLY THE FORM. DIRECTORY, TERMINAL ARE UNCHANGED.
===}

VAR FORM:CS6i
DIRC:PACKED ARRAY[1 .• al OF CHARi
TERM:PACKED ARRAY[1 .. 41 OF CHARi

PROCEDURE PXSCHF (F_NAME:CS6i
VAR F_DIRC:PACKED ARRAY[1 •• ?1 OF CHARi

F_DSIZ:INTEGERi
VAR F_TERM:PACKED ARRAY[1 •• ?1 OF CHARi

F_TSIZ:INTEGER)i
EXTERNALi

DIRC::INTEGER:=-1i TERM::INTEGER:=-1i
PXSCHF (FORM,DIRC,UB(DIRC),TERM,UB(TERM»i

FORTRAN Example 1:

C
C A STANDARD CHANGE FORM CALL.
C

CHARACTER CFORM*6,CDIRC*8,CTERM*4
INTEGER DIRC(4),TERM(2)
EQUIVALENCE (CDIRC,DIRC(1»,(CTERM,TERM(1»
CFORM='FORM01'
CDIRC='PATHNAME'
CTERM='ST10'

C THE ASSIGNMENTS ABOVE ALSO DEFINE DIRC AND TERM
C BECAUSE OF THE EQUIVALENCE

CALL FFCHF (CFORM,DIRC(1),DIRC(4),TERM(1),TERM(2»

5·22 2234391-9701

FORTRAN Example 2:

C
C CHANGE ONLY THE FORM. DIRECTORY, TERMINAL ARE UNCHANGED.
C

C IFORM=' FORM02'
CDIRC(1)=-1
C'TERM=-1

CALL FFCHF (CFORM,DIRC(1),DIRC(4),TERM(1),TERM(2»

5.7.5 Change Form Program Notes

Application Interface

Your application should check the status block after each Change Form command. If the status
code is nonzero, your application should report the code to the user and take the appropriate
end-action.

2234391-9701 5·23

Application Interface

5.8 CHANGE ITC/IPC COMMUNICATION ROUTINE

This routine disconnects the application from the Executor it is using or it connects the applica
tion to an existing Executor. It enables one application task to pass an Executor/terminal to
another application task without closing and reopening a form. Thus, the application can be writ
ten as a series of independent tasks to circumvent memory limitations.

A secondary use of this routine is to permit one application task to communicate serially with the
Executors associated with two or more terminals.

The OX10 Form Executor uses the intertask communication facility (ITC). The ONOS Form Execu
tor uses the interprocess communication facility (IPC). Though there are some differences
between ITC and IPC, TIFORM treats them identically.

5.8.1 Change ITC/IPC Communication Calling Sequences
The calling sequences for the Change lTC/I PC Communication routine are as follows:

COBOL 3.1:

CALL "CF$CIC" USING < CIC argument>.

COBOL 3.2:

CALL "CX$CIC" USING < CIC argument>.

Pascal:

PX$CIC (VAR<CIC argument>:INTEGER);

FORTRAN:

CALL FFCIC « CIC argument>)

5.8.2 Change ITC/IPC Communication Parameters
The < CIC argument> parameter is always an 01-level, signed, COMP-1 item in COBOL 3.1 or an
INTEGER item in Pascal and FORTRAN. The function of the Change ITCIIPC Communication rou
tine is determined by the value of < CIC argument> as follows:

• Value = -1 breaks the connection between the application task and its Executor. The
Executor is not terminated. The binary run 10 of the Executor is returned in < CIC argu
ment> . The application task must have a form open (that is, it must be connected to an
Executor) to issue a - 1 Change ITCIIPC Communication routine.

• Value = positive integer between 0 and 255 establishes a connection between the
application task and an existing, disconnected Executor. The value in < CIC argument>
must be the binary run 10 of the Executor to which the application is to be connected.
The application must not be connected to an Executor when it issues a positive Change
ITCIIPC Communication routine, and the Executor specified by the value of < CIC argu
ment> must not be connected to any application task. The value of < CIC argument> is
not changed by a positive Change ITC/IPC Communication routine.

5·24 2234391.9701

Application Interface

5.8.3 Change ITC/IPC Communication Results
Status is posted. If < CIC argument> = - 1 on the call, the task 10 of the Executor with which
communication is presently taking place is returned in < CIC argument> and communication with
that Executor is suspended. If < CIC argument> is positive, communication with the Executor
denoted by the run 10 found in < CIC argument> is resumed.

5.8.4 Change ITC/IPC Communication Examples
The follclwing examples demonstrate the Change ITC/IPC Communication routine:

COBOL 3.1:

This example illustrates the serial processing of more than one terminal, using the COBOL 3.1
calls.

01 FORM PIC X(6) VALUE "FORM01".
01 DIR PIC X(10) VALUE ".FORM.PATH".
01 DIR-END PIC xx.

*
01 TERM1 PIC X(4) VALUE "ST01".
01 TERM1-END PIC XX.
01 TERM2 PIC X(4) VALUE "ST02".
01 TERM2-END PIC XX.

*
01 SEGMENT PIC X(6) VALUE "SEGT01".

*
01 TERM1-TASK-ID PIC S9(5) USAGE COMP-1.
01 TERM2-TASK-ID PIC S9(5) USAGE COMP-1.

*
01 GROUP PIC X(6) VALUE "GROUP1".
01 GRP-DATA PIC X(18).
01 GRP-DATA-END PIC XX.

* START UP TERMINAL 1.

*

*

CALL "CF$OF" USING FORM,
DIR, DIR-END,
TERM1, TERM1-END.

CALL "CF$PS" USING SEGMENT.

* SUSPEND COMMUNICATION WITH TERMINAL 1.
**
*

MOVE -1 TO TERM1-TASK-ID.
CALL "CF$CIC" USING TERM1-TASK-ID.

* * START UP TERMINAL 2.

*

2234391-9701 5·25

Application Interface

*

CALL "CF$OF" USING FORM,
DIR, DIR-END,
TERM2, TERM2-END.

CALL "CF$PS" USING SEGMENT.

* SUSPEND COMMUNICATION WITH TERMINAL 2.
**
*

MOVE -1 TO TERM2-TASK-ID.
CALL "CF$CIC" USING TERM2-TASK-ID.

* * RE-ESTABLISH COMMUNICATION WITH TERMINAL 1.
**
*

CALL "CF$CIC" USING TERM1-TASK-ID.
* * CONTINUE FORMS PROCESSING WITH TERMINAL 1.

*

CALL "CF$REA" USING GROUP, G-DATA, G-DATA-END.

COBOL 3.2:

This example shows one way that an Executor can be passed from task to task. A synonym
is used to pass the Executor's run 10 from one task to the other. Note that this is a COBOL 3.2
example using subroutines provided only by COBOL 3.2.1.

5·26

*
* THE FIRST COBOL TASK.

01 EXEC-ID PIC S9(S) USAGE IS COMP-1.
01 DISP-EXEC-ID PIC 9(2).
01 ERROR-CODE PIC 99.
01 EXEC-SYN PIC XeS) VALUE "EXECTASK".
01 GROUP PIC X(6) VALUE "GROUP1".
01 WRITE-DATA PIC X(23).

CALL CX$WRI USING GROUP, WRITE-DATA.
* * DISCONNECT FROM AND GET THE TASK 10 OF THE EXECUTOR.
**
*

MOVE -1 TO EXEC-ID.
CALL "CX$CIC" USING EXEC-ID.

* * SET A SYNONYM TO THE EXECUTOR;S TASK 10.

*

2234391-9701

MOVE EXEC-ID TO DISP-EXEC-ID.
CALL "C$SETS" USING ERROR-CODE, EXEC-SYN, DISP-EXEC-ID.

* * BID THE SECOND COBOL TASK, THEN TERMINATE.
**
*

CALL "C$CBID" USING ERR, SECOND-ID, LUNO, FLAGS.
STOP RUN.

***~~**

**
* THE SECOND COBOL TASK.

*

01 EXEC-SYN
01 DISP-EXEC-ID
01 EXEC-ID
01 ERROR-CODE
01 STATUS-BLOCK.

03 FORM-STATUS

01 GROUP
01 READ-DATA

PIC XeS) VALUE "EXECTASK".
PIC 99.
PIC S9(S) USAGE IS COMP-1.
PIC 99.

PIC 9(2).

PIC X(6) VALUE "GROUP1".
PIC X(23).

* THE SECOND COBOL TASK GETS THE EXECUTOR'S SYNONYM
* BY GETTING THE VALUE OF THE SYNONYM.
**
*

*

CALL "iC$MAPS" US I NG ERROR-CODE, EXEC-SYN, D I SP-EXEC- I D.
MOVE DISP-EXEC-ID TO EXEC-ID.

* RESUME PROCESSING WITH THE EXECUTOR.

* CALL "CX$CIC" USING EXEC-ID.

* * ESTABLISH THE STATUS BLOCK AND CONTINUE.
**
*

CALL "CX$STS" USING STATUS-BLOCK.
CALL "CX$REA" USING GROUP, READ-DATA.

2234391-97'01

Application Interface

5·27

Application Interface

Pascal Example 1 :

PROGRAM FIRST_TASKi

{The first PascaL task disconnects from the Executor and
gets its run 10, then sets a synonym to ~he 10 vaLue.}

VAR EXEC_ID:INTEGERi

PX$WRI (GROUP, WRITE_DATA, UB(WRITE_DATA»i

{Disconnect from and get the task 10 of the Executor.}

EXEC_ID:= -1i
PX$CIC (EXEC_ID)i

{Set a synonym to the Executor's task 10 with a
user-provided externaL procedure.}

{Bid the second PascaL task with a user-provided procedure,
then terminate.}

BID_TASK (ERR,SECOND_ID,LUNO,FLAGS)i
ESCAPE FIRST_TASKi

{==}

{==}

PROGRAM SECOND_TASKi

{The second PascaL task gets the Executor's run 10
by getting the vaLue of the synonym with a user
provided procedure.}

VAR EXEC_ID:INTEGERi

{Get the vaLue of the synonym containing the Executor's
run ID.}

{Connect and resume p~ocessing with the Executor.}

5·28 2234391·9701

Application Interface

pxsc:r C (EXEC_ID) i

{EstabLish the status bLock and continue.}

PXSs"rs (STATUS_BLOCK) i

PXSREA (GROUP, READ_DATA, UB(READ_DATA)i

{===
==
===}

Pascal Example 2:

This example illustrates the serial processing of more than one terminal with the same task.

VAR TERM1_RUN_ID, TERM~RUN_ID: INTEGERi
OIRY: PACKED ARRAY[1 •• 101 OF CHARi
TERM1: PACKED ARRAY[1 •. 41 OF CHARi
TERM2: PACKED ARRAY[1 •• 41 OF CHARi

PROCEDURE PXSOF (FRM:SS6i
VAR DIR:PACKED ARRAY[1 •• ?1 OF CHAR:

DIRSIZ:INTEGERi
VAR TRM:PACKED ARRAY[1 •• ?1 OF CHARi

TRMSIZ:INTEGER)i EXTERNALi

PROCEDURE PXSPS (SEG:SS6)i EXTERNALi

PROCEDURE PXSCIC (VAR CIC_ARG:INTEGER)i EXTERNALi

DIRY:='.FORM.PROG'i
TERM1:='ST01'i

{Start up terminaL 1.}

PXSOf ('FORMAA',DIRY,UB(DIRY),TERM1,UB(TERM1»i

PXSPS ('SEGT01')i

{Suspend communication with terminaL 1.}

TERM"_RUN_I,D: =-1 i
PXSC:rC (TERM1_RUN_ID)i

2234391-9701 5·29

Application Interface

{Start up terminal 2.}
TERM2='ST02'i
PX$OF ('FORMAA,DIRY,UB(DIRY),TERM2,UB(TERM2»i

PX$PS ('SEGT01')i

{Suspend communication with terminal 2.}

TERM2_TASK-ID:=-1i
PX$CIC (TERM2_RUN_ID)i

{Reestablish communication with terminal 1.}

PX$REA <. .••

FORTRAN Example 1:

5·30

C
C The first FORTRAN task disconnects from the Executor and
C gets its run 10, then sets a synonym to the 10 value.
C

INTEGER EXECID

CALL FFWRI (GNAME, WDATA(1), WDATA(END»
C
C Disconnect from and get the task 10 of the Executor.
C

EXECID= -1
CALL FFCIC (EXECID)

·C

C Set a synonym to the Executor's task 10 with a
C user-provided external procedure.
C

CALL SETSYN (ERRCODE,EXECSYN,EXECID)
C
C Bid the second FORTRAN task with a user-provided procedure,
C then terminate.

CALL BIDTSK(TASK,IERR)

C
C
C
C

===

--

2234391-9701

C The second FORTRAN task gets the Executor's run 10
C by getting the vaLue of the synonym with a user-
C provided procedure.
C

C
C
C

INTEGER EXECID

C Get the vaLue of the synonym containing the Executor's
C run 10.
C

CALL GETSYN (ERRCODE,EXECSYN,EXECID)
C
C Connect and resume processing with the Executor.
C

CALL FFCIC (EXECID)
C
C EstabLish the status bLock and continue.
C

CALL FFSTS (STATUS)
C

CALL FFREA (GNAME, RDATA(1), RDATA(END»

C
C Continue executing form.
C

FORTRAN Example 2:

Application Interface

This example illustrates the serial processing of more than one terminal with the same task.

C

INTEGER T1RUNID, T2RUNID
CHARACTER*10 DIRY
CHARACTER EOIRY
CHARACTER*4 TERM1
CHARACTER ETERM1
CHARACTER*4 TERM2
CHARACTER ETERM2

OIRY='.FORM.PROG'
TERM1='ST01 1

C Start up terminaL 1.
C

CALL FFOF ('FORMAA ' ,DIRY,EDIRY,TERM1,ETERM1)
C

CALL FFPS ('SEGT01')

2234391-9:701 5·31

Application Interface

C
C Suspend communication with terminal 1.
C

T1RUNID=-1
CALL FFCIC (T1RUNID)

C
C Start up terminal 2.
C

TERM2='ST02'
CALL FFOF ('FORMAA',DIRY,EDIRY,TERM2,ETERM2)

C
CALL FFPS ('SEGT01')

C
C Suspend communication with terminal 2.
C

T2TASKID=-1
CALL FFCIC (T2RUNID)

C
C Reestablish communication with terminal 1.
C

CALL FFCIC (T1RUNID)
C

CALL FFREA (.•••
C
C Continue processing the form.
C

5.8.5 Change ITC/IPC Communication Program Notes
Your application should check the status block after each Change ITC/IPC Communication com
mand. If the status code is nonzero, your application should report the code to the user and take
the appropriate end-action.

5·32 2234391-9701

Application Interface

5.9 CLOSE FORM ROUTINE

This routine terminates form processing. To simplify error handling, a close can be done whether
the form was successfully opened or not.

5.9.1 Close Form Calling Sequences
The calling sequences for the Close Form routine are as follows:

COBOL 3.1:

CALL "CF$CF".

COBOL. 3.2:

CALL "CX$CF".

Pascal:

PX$CF;

FORTRAN:

CALL FFCF

5.9.2 Close Form Parameters
None.

5.9.3 Close Form Results
Status is posted. The form is closed. The terminal is released. All communication with the current
instance of the Form Executor is ceased and the Executor is terminated.

5.9.4 Close Form Examples
The foUowing examples demonstrate the Close Form routine:

COBOL. 3.1:

CAll "CFSCF".

Pascal::

PROCEDURE PXSCF; EXTERNAL;

PXSCFi

2234391-9701 5·33

Application Interface

FORTRAN:

CALL FFCF

5.9.5 Close Form Program Notes
Your application should check the status block after ·each Close Form command. If the status
code is nonzero, your application should report the code to the user and take the appropriate
end-action.

5·34 2234391-9701

Application Interface

5.10 CONTROL FUNCTIONS ROUTINE

This routine allows the application to specify various control functions to the Form Executor. The
specified functions are performed immediately before control is returned to the application. Each
control function is assigned an integer by which it is known. If the application issues a Control
Functions routine with an argument of + N, the Executor is said to be in control mode N.

5.10.1 Control Functions Calling Sequences
The calling sequences for the Control Functions routine are as follows:

COBOL 3.1:

CALL "CF$CN" USING < control arg> .

COBOL 3.2:

CALL "CX$CN" USING < control arg> .

Pascal:

PX$CN « control arg>);

FORTRAN:

CALL FFCN « control arg>)

5.10.2 Control Functions Parameters
The < control arg> parameter is the 01-level, signed, COMP-1 item in COBOL 3.1, the signed inte
ger item in Pascal, or the INTEGER*2 item in FORTRAN containing the control action code. If the
code is + N, the Nth control action is turned on. If the code is - N, then the Nth control action is
turned off. The legal control action codes and their meanings are described in the following
paragraphs.

Codes 1 through 3 and 6 through 7 apply to all terminal device types, while codes 4 and 5 apply
only to keyboard send/receive (KSR) devices and are ignored for other device types. See paragraph
2.9 for a complete description of forms processing of KSR device types.

Code Meanings

1 Disable the termination of a read on a Back Tab or Previous Field key when in the first
field of the Read. When these keys are entered, sound a warning beep and position the
cursor at the first character of the first field of the Read. This mode relieves the applica
tion of the responsibility of checking for form status 01 after each Read command.

2 Disable the Erase Input key; allow it to perform like Erase Field. Also, clear a message
from the message area of the screen immediately upon acknowledgement by the user.
This mode is used by the ISGE and is not particularly useful for a general application.

3 Disable deblanking from the right for field and variable values.

2234391-97'01 5-35

Application Interface

4 Place the KSR terminal in the immediate write mode. Usually, the terminal is in the
delayed write mode.

5 I/O on the KSR terminal is to be unformatted. Normally, 1/0 is to be formatted.

6 If no data is entered, return ASCII nulls instead of blanks. The default is for the Executor
to return blanks.

7 When enabled, the Previous Line and Next Line keys are forced to move the cursor to
the first column of the selected field. If off, the Previous Line and Next Line keys leave
the cursor in the same screen column that it started in. This mode is especially useful
when dealing with columnar numeric data.

8 When enabled, performs symmetric processing to the application.

9 When enabled, suppresses the Print key message to the screen.

10* When enabled, allows an open extend on the 820. User's 820 files are concatenated.

11 When enabled, validation execution takes place on a Previous Field key out of the first
field in a read.

12 When enabled and Print Key task is being used, inhibits the printing of header and trailer
lines for screens.

13* When enabled, allows an open extend on the 820.

5.10.3 Control Functions Results
Status is posted.

5.10.4 Control Functions Examples
The following examples demonstrate the Control Functions routine:

COBOL3.1:

01 CONT-ARG PIC: S9(S) COMP-1.

MOVE 1 TO CONT-ARG.

CALL "CF$CN" USING CONT-ARG.

MOVE -1 TO CONT-ARG.

CALL "CF$CN" USING CONT-ARG.

·See Program Notes.

5·36 2234391·9701

Pascal:

VAR CONDITION:INTEGER;

PROCEDURE PX$CN <VAR COND:INTEGER)i EXTERNAL;

CONDJ[TION:=1;
PX$CN <CONDITION);

CONDl[TION:=-1 ;
PX$CN <CONDITION);

FORTRAN:

INTEGER CONDITION

CONDITION=1
CALL FFCN <CONDITION)

CONDITION=-1
CALL FFCN <CONDITION)

5.10.5 Control Functions Program Notes

Application Interface

Your application should check the status block after each Control Functions command. If the sta
tus code is nonzero, your application should report the code to the user and take the appropriate
end-action.

Both control modes 10 and 13 must be activated as follows:

1. Open the form.

2. Issue the control mode.

3. Change the form. Explicitly declare each parameter the same as in the Open Form. Do
not use defaults.

2234391·97'01 5-37

Application Interface

5.11 DECLARE STATUS BLOCK ROUTINE

This routine must be the first routine issued and may be reissued at any time thereafter. Its pur
pose is to notify the interface routines of the address in memory assigned by the application for
construction of the 40-byte status block. This block must begin on a word boundary. Therefore, if
you are using COBOL 3.1, you must declare this block at the 01 level. The interface routines save
the status block address specified on the last Declare Status Block call. The status of each
subsequent call is placed in the block at this address, formatted as shown and discussed in
paragraph 5.4.

5.11.1 Declare Status Block Calling Sequences
The calling sequences for the Declare Status Block routine are as follows:

COBOL 3.1:

CALL "CF$STS" USING < status block> .

COBOL 3.2:

CALL "CX$STS" USING < status block>.

Pascal:

PX$STS (VAR < status block> :ST ATUS_BLOCK);

FORTRAN:

CALL FFSTS « status block>)

5.11.2 Declare Status Block Parameters
The < status block> parameter is the 40·byte long item (01·level item in COBOL 3.1) where the
interface routines construct the status block.

5.11.3 Declare Status Block Results
When your program issues the Declare Status Block routine, TIFORM can access the status block
and return the appropriate status values after subsequent routine calls.

5.11.4 Declare Status Block Examples
The following examples demonstrate the Declare Status Block routine:

COBOL 3.1

*
*
*

*
*
*
*01
*
*

5·38

.•• PICK UP STATUS BLOCK DEF'N FROM COpy LIB .•.

COPY CLIB.CSSTATUS.

FIELDS WITHIN TIFORM'S STATUS BLOCK •••

TIFORM-STATUS-BLOCK.
05 FORM-STATUS
05 OPSYS-STATUS

PIC 9(02).
PIC X(02).

2234391-9701

* 05 EVENT-KEY PIC 9(02).
* 05 COMMAND PIC X(02).

* 05 ITEM-NAME PIC X(06).

* 05 INDEX-01 PIC 9(03).

* 05 INDEX-02 PIC 9(03).
* 05 ITEM-CNT PIC 9(03).

* 05 CURSOR-POSITION PIC 9(03).

* 05 TEXT-LENGTH PIC 9(05)

* USAGE IS COMP-1.
* 05 FILLER PIC X(12).

CALL "CFSSTS" USING TIFORM-STATUS-BLOCK.

Pascal:

TYPE
CS2 = PACKED ARRAY[1 •• 2] OF CHARi
CS6 = PACKED ARRAY[1 •. 6] OF CHARi

STATUS_BLOCK = PACKED RECORD
FOR~STATUS:CS2i
OPSYS_STATUS:CS2i
EVENT_KEY:CS2i
COMMAND:CS2i
ITEM_NAME:CS6i
INDEXES_CURSOR:PACKED ARRAY[1 •• 12] OF CHARi
TEXT_LENGTH: INTEGERi
FILLER_1:PACKED ARRAY [1 •. 12] OF CHARi
ENDi

VAR SBLOCK:STATUS_BLOCKi

PROCEDURE PXSSTS(VAR SBLK:STATUS_BLOCK)i EXTERNAL;

PXSSTS (SBLOCK)i{Declare status block.)

2234391-91'01

Application Interface

5·39

Application Interface

FORTRAN:

*

INTEGER SBLOCK(20),TLENGTH
CHARACTER*2 STATUS,OPSYS,EVENT,COMAND
CHARACTER*12 INDCUR,FILL
CHARACTER*6 ITEM

EQUIVALENCE
C

(SBLOCK(1),STATUS),
(SBLOCK(2),OPSYS),
(SBLOCK(3),EVENT),
(SBLOCK(4),COMAND),
(SBLOCK(S),ITEM),
(SBLOCK(8),INDCUR),
(SBLOCK(14),TLENGTH),
(SBLOCK(fS),FILL)

C
C
C
C
C
C

5.11.5 Declare Status Block Program Notes
If you fail to declare the status block, errors occur at run-time.

5·40 2234391-9701

Application Interface

5.12 DISARM EVENT KEYS ROUTINE

This routine disarms all function keys. It is precisely equivalent to an Arm Event Keys call with no
keys specified.

5.12.1 Disarm Event Keys Calling Sequences
The calling sequences for the Disarm Event Keys routine are as follows:

COBOL 3.1:

CALL "CFSDAK".

COBOL 3.2:

CALL "CXSOAK".

Pascal:

PX$DAK;

FORTRAN:

CALLFFDAK

5.12.2 Disarm Event Keys Parameters
None.

5.12.3 Disarm Event Keys Results
Status is posted. All function keys are disarmed.

5.12.4 Disarm Event Keys Examples
The following examples demonstrate the Disarm Event Keys routine:

COBOL 3.1:

CALL "CF$DAK".

Pascal:

PROCEDURE PX$DAKi EXTERNALi

2234391-9701 5·41

Application Interface

FORTRAN:

CAll FFDAK

5.12.5 Disarm Event Keys Program Notes
Your application should check the status block after each Disarm Event Keys command. If the
status code is nonzero, your application should report the code to the user and take the
appropriate end-action.

5-42 2234391-9701

Application Interface

5.13 EXECUTE ASYNCHRONOUSLY ROUTINE

The Execute Asynchronously routine forces the next routine issued to execute asynchronously.
That is, for the routine that follows the Execute Asynchronously routine, control is returned to the
application immediately after the interface routine has sent it to the Executor. The interface rou
tine does not wait for a reply from the Executor. Thus, the Execute Asynchronously routine per
mits the application to continue its processing while the Executor processes the next routine.

The Execute Asynchronously routine affects only a single routine, the routine issued immediately
following. Subsequent routines are executed synchronously.

The status of an asynchronously executed routine is lost unless it is followed by the Execute
Asynchronously routine.

5.13.1 Execute Asynchronously Calling Sequences
The calling sequences for the Execute Asynchronously routine are as follows:

COBOL 3.1:

CALL "CF$ASN".

COBOL 3.2:

CALL "CX$ASN".

Pascal:

PX$ASN;

FORTRAN:

CALLFFASN

5.13.2 Execute Asynchronously Parameters
None.

5.13.3 Execute Asynchronously Results
Following the issuance of the next TIFORM routine, control is returned immediately to the appli
cation without waiting for the completion of processing of that routine by the Executor.

2234391-97101 5-43

Application Interface

5.13.4 Execute Asynchronously Examples
The following examples demonstrate the Execute Asynchronously routine:

COBOL 3.1:

* * THE READ CALL IS TO BE EXECUTED ASYNCHRONOUSLY.
**
*

CALL "CFSASN".
CALL "CFSREAu USING GRP, R-DATA, R-DATA-END.

* * PERFORM UNRELATED PROCESSING.

*

PERFORM DO-SOMETHING-ELSE.
* * SYNCHRONIZE APPLICATION AND EXECUTOR.
**
*

CALL "CFSSYN".
* * PROCESS THE RESULTS OF THE READ.

* PERFORM STATUS-CHECK.

Pascal:

5·44

PROCEDURE PXSASN; EXTERNAL;
PROCEDURE PXSSYN; EXTERNAL;
PROCEDURE DO_SOMETHING_ELSE;

{ THE READ CALL IS TO BE EXECUTED ASYNCHRONOUSLY.
==}

PXSASN;
PXSREA (GROUP,R_DATA,UB(~DATA»;

{ PERFORM UNRELATED PROCESSING.
==============================}

DO_SOMETHING_ELSE;

{ SYNCHRONIZE APPLICATION AND EXECUTOR.
======================================}

PXSSYN;

{PERFORM STATUS CHECK ON PREVIOUS COMMAND.}

{ PROCESS THE RESULTS OF THE READ.}

2234391-9701

FORTRAN:

C
C THE READ CALL IS TO BE EXECUTED ASYNCHRONOUSLY.
C

CALL FFASN
CALL FFREA (GNAME,RDATA(1),RDATA(END»

C
C PERFORM UNRELATED PROCESSING.
C

CALL UNRELATE
C
C SYNCHRONIZE APPLICATION AND EXECUTOR.
C

CALL FFSYN
C
C PERFORM STATUS CHECK ON PREVIOUS COMMAND.
C
C PROCESS THE RESULTS OF THE READ.

5.13.5 Execute Asynchronously Program Notes

Application Interface

Your application should check the status block after each Execute Asynchronously command. If
the statu:s code is nonzero, your application should report the code to the .user and take the appro
priate end-action.

2234391-9701 5·45

Application Interface

5.14 OPEN FORM ROUTINE

This routine accepts a form name, a program file name, and a terminal name. It validates the
names, bids the Form Executor, and passes the names to it. An Open Form must be issued before
any other TIFORM function, other than Declare Status Block, can be performed.

The form directory name and the terminal name are both specified to this routine by their starting
and ending addresses. If the actual text of these names is shorter than the space specified, they
must be blank-filled on the right. Synonyms may be used in these two parameters. The synonym
resolution is done by the interface routines prior to paSSing the names to the Executor, using the
application"s synonyms. All the rules of synonym resolution in pathnames apply.

Upon return, status is posted in the status block, the form is marked OPEN (if there have been no
errors), and control is returned to the application.

5.14.1 Open Form Calling Sequences
The calling sequences for the Open Form routine are as follows:

COBOL 3.1:

CALL "CF$OF" USING < form name>, < directory name>, < directory name end>,
< terminal name>, < terminal name end>.

COBOL 3.2:

CALL "CX$OF" USING< form name> , < directory name> , < terminal name> .

Pascal:

PX$OF «form name>, <directory name>, <directory name size>, <terminal name>,
< terminal name size»;

FORTRAN:

CALL FFOF « form name>, < directory name>, < directory name end>,
<terminal name>, <terminal name end»

5.14.2 Open Form Parameters
The following list describes the parameters for the Open Form routine:

5·46

< form name> is the six-byte item containing the name of the form to be opened. (This item is
a 01-level item in COBOL 3.1, a CHAR item in Pascal, and a CHARACTER*6 item in
FORTRAN.) The name of the form must be left-justified, blank-filled on the right within
this item.

< directory name> represents the starting address of the 2 - 48 byte directory name area in
which the pathname/synonym specifying the program file in which the specified form is
stored must reside. The entry in this field must be left-justified and blank-filled on the
right. If the first byte of the area is a blank, the synonym DIRECTRY is assumed to point
to the program file.

2234391·9701

Application Interface

< directory name end> in COBOL 3.1 and FORTRAN represents the end address of the
path name area.

< directory name size> in Pascal represents the size of the pathname area.

< terminal name> represents the start address of the 2 - 48 byte terminal/file name area in
which the device name or file path name (or a synonym specifying the terminal or file) on
which the Form Executor is to execute the specified form must reside. The entry in this
'field must be left-justified and blank-filled on the right. If the first byte of the area is a
blank, then the synonym ME (pointing to the application's controlling station) is used,
causing the form to be executed on the application's own station.

< terminal name end> in COBOL 3.1 and FORTRAN represents the end address of the
terminall name area.

< terminal name size> in Pascal represents the size of the terminal name area.

5.14.3 Open Form Results
Status is posted. The Form Executor is put into execution for this application. The Form Executor
acquires the specified terminal and opens the specified form.

5.14.4 Open Form Examples
The following examples demonstrate the Open Form routine:

COBOL 3.'1:

01 FORM-NA;ME PIC X(6) VALUE IS "FORM1".

* * FORCE THE USE OF THE "DIRECTRY" SYNONYM •.•
*

01 DIRECTORY-NAME PIC X(Z) VALUE IS SPACES.
01 DIRECTORY-NAME-END PIC X(Z).

* * EXPLICITLY SPECIFY STATION #5 .••
*

01 'TERMINAL-NAME PI C X (8) VALUE IS "ST05".
01 TERMINAL-NAME-END PIC X(Z).

CALL "CF$OF" USING FORMNAME,
DIRECTORY-NAME,
DIRECTORY-NAME-END,
TERMINAL-NAME,
TERMINAL-NAME-END.

2234391-9701 5·47

Application Interface

Pascal:

DIR-NAME:PACKED ARRAY[1 •. 10J OF CHARi

TRM-NAME:PACKED ARRAY[1 .. 4J OF CHARi

VAR D_NAME:DIR-NAMEi
T_NAME:TRM-NAMEi

PROCEDURE PX$OF (FNAME:C$6i
VAR DIRNME:PACKED ARRAY[1 .• ?J OF CHARi

DIRSIZ:INTEGERi
VAR TRMNME:PACKED ARRAY[1 •• ?J OF CHARi

TRMSIZ:INTEGER)i
EXTERNALi

D_NAME:='.FORM.FILE'i {Full pathname.}
T_NAME:='TERM'i {Synonym.}

{Note literal is used for form name.}
PX$OF ('FORM01', D_NAME,U8(D_NAME),T_NAME,U8(T_NAME»i

FORTRAN:

CHARACTER*2 DRCTRY(2), TRMNL(2),

CALL FFOF ('FORM01', DRCTRY(1), DRCTRY(2),
1 TRMNL(1), TRMNL(2»

5.14.5 Open Form Program Notes
Your application should examine the status block after every Open command and take the appro
priate end action in case of errors. You can only open one form at a time. To open a second form,
you must close the first form or use the Change Form routine, which is a combination Close and
Open Form.

5·48 2234391-9701

Application Interface·

5.15 PREPARE SEGMENT ROUTINE

This routine causes a specified segment of the currently open form to be loaded into the Form
Executor, its background mask to be displayed, and all default values of the segment's fields to be
displayed. This routine must be issued before any Read, Write, or Reset' routine affecting the
groups, fields, or variables of a segment can be issued.

This routine causes the Form Executor to discard whatever segment is active when the routine is
issued. It also ca~ses all event key arming to be reset.

5.15.1 Prepare Segment Calling Sequences
The calling sequences for the Prepare Segment routine are as follows:

COBOL 3.1:

CALL "CF$PS" USING < segment name> .

COBOL 3.2:

CALL "CX$PS" USING < segment name>.

Pascal:

PX$PS « segment name>);

FORTRAN:

CALL FFPS « segment name>)

5.15.2 Prepare $eqment Parameters
The < segment name> parameter is a six-byte item (01-level item in COBOL 3.1) containing the
name of the seg!ment of the current form to make active. The name must be left-justified and
blank-filled on the right within this item.

5.15.3 Prepare Segment Results
Status is posted. The specified segment is loaded into the Form Executor and made active. The
background and default values of the segment's fields are displayed.

5.15.4 Prepare Segment Examples
The following examples demonstrate the Prepare Segment routine:

COBOL 3.1:

01 SEG-NAME PIC X(6) VALUE IS "SGNAME".

CALL IIICFSPS" USING SEG-NAME.

2234391·9701 5·49

Application Interface

Pascal:

VAR SEGMENT:CS6;

PROCEDURE PXSPS (SNAME:CS6); EXTERNAL;

SEGMENT:='SEG001';
PXSPS (SEGMENT);

FORTRAN:

CHARACTER SNAME*6

SNAME='SEG001'
CALL FFPS (SNAME)

5.15.5 Prepare Segment Program Notes
Your application should check the status block after each Prepare Segment command. If an error
occurs, your application should report the error to the user in order to identify the problem. Note
that there is no close segment operation. The Prepare Segment command automatically closes
the current segment (if any) before preparing the new segment.

5-50 2234391-9701

Application Interface

5.16 PRINT KEY ROUTINE

This routirne prints the current contents of the screen (or the virtual screen for a KSR device) on the
terminal's associated printer or queues the contents for later printing if that printer is busy. This
routine provides the application program with the same printing capability that is available to the
terminal user via the Print key. Paragraph 2.11 describes the operation of the Print key.

5.16.1 Print Key Calling Sequences
The calling sequences for the Print Key routine are as follows:

COBOL 3.1:

CALL "CF$PKY".

COBOL 3,,2

CALL "CX$PKY".

Pascal:

PX$PKY;

FORTRAN:

CALL FFPKY

5.16.2 Print Key Parameters
None.

5.16.3 Print Key Results
The current VDT screen image or KSR virtual screen image is written to a file that is either immedi
ately printed or, if the printer is busy, is queued for later printing.

5.16.4 Print Key Examples
The following examples demonstrate the Print Key routine:

COBOL 3 .. 1:

CALL "CF$PKY" ..

2234391·9701 5·51

Application Interface

Pascal:

PROCEDURE PX$PKY; EXTERNAL;

PX$PKY;

FORTRAN:

CALL FFPKY

5.18.5 Print Key Program Notes
Your application should check the status block after each Print Key command. If the status code
is nonzero, your application should report the code to the user and take the appropriate end
action.

5-52 2234391-9701

Application Interface

5.17 READAGROUP ROUTINE

This routine performs a read operation on the entire group named. See paragraph 1.4.3 for a dis
cussion of the functions of a group read.

5.17.1 Read a Group Calling Sequences
The calling sequences for the Read a Group routine are as follows:

COBOL 3.1:

CALL "CF$REA" USING < group name>, < read data> , < read data end>.

COBOL 3.2:

CALL "CX$REA" USING < group name>, < read data>.

Pascal:

PX$REA « group name> ,< read data> ,< read data size»;

FORTRAN:

CALL FFREA « group name>, < read data>, < read data end»

5.17.2 Read a Group Parameters
The following list describes the parameters for the Read a Group routine:

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group, field, or variable to read. The name must be left-justified and blank-filled on the
right within this item.

< read data> is an item (01-level item in COBOL 3.1) into which the group's elemental mem
bers vallues are read.

< read data end> is an item (01-level item in COBOL 3.1) indicating the end of the read data
area.

< read data size> is an item indicating the size of the read data area.

5.17.3 Read a Glroup Results
Status is posted. The group's elemental members are read and their values are placed in the read
data area.

2234391·9701 5·53

Application Interface

5.17.4 Read a Group Examples
The fol/owing examples demonstrate the Read a Group routine:

COBOL 3.1:

01 GROUP-NAME PIC X(6) VALUE IS 'NAME02'.
01 READ-DATA PIC X(80).
01 READ-DATA-END PIC X(2).

CALL "CFSREA" USING GROUP-NAME,
READ-DATA, READ-DATA-END.

Pascal:

VAR GROUP:CS6
R_DATA:PACKED ARRAY[1 •. 301 OF CHAR;

PROCEDURE PXSREA (GRPNAM:CS6;

GROUP:='GROUP1';

VAR READAT:PACKED ARRAY[1 .. ?1 OF CHAR;
REASIZ:INTEGER); EXTERNAL;

PXSREA (GROUP,R-DATA,U8(R_DATA»;

FORTRAN:

CHARACTER GNAME*6,RDATA*2(40)

C Read group one.
GNAME='GROUP1'

CALL FFREA (GNAME,RDATA(1),RDATA(40»

5.17.5 Read a Group Program Notes
Your application should check the status block after each Read a Group command. After a read
operation, the status block returns several nonzero codes that are not errors. For instance, 01 indi
cates a partial read terminated by exiting the first field backward. Depending on the requirements
of your application, you may need to treat non-fatal (less than 10) status codes individual/y.

5-54 2234391-9701

Application Interface

5.18 RE,AD INDEXED ROUTINE

This routine reads a portion of a group as specified by the indexing parameters. These parameters
are not altered by the routine. For information regarding group indexing, see paragraph 1.4.3.

5.18.1 Read Indexed Calling Sequences
The calling sequences for the Read Indexed routine are as follows:

COBOL 3 .. 1:

CALL "CF$REX" USING < group name>, < read data>, < read data end>, < index-1> ,
< index-2> , < count>, < cursor position> .

COBOL 3,.2:

CALL "CX$REX" USING < group name>, < read data>, < index-1> , < index-2>, < count>,
< cursor position> .

Pascal:

PX$F~EX « group name>, < read data>, < read data size>, < index-1 >, < index-2 >,
< count>, < cursor position»;

FORTRAN:

CAl.L FFREX « group name>, < read data>, < read data end>, < index-1> , < index-2>,
1 < count> , < cursor position»

5.18.2 Read Indexed Parameters
The following list describes the parameters for the Read Indexed routine:

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group/field/variable to read.

< read data> is an item (01-level item in COBOL 3.1) into which the group's elemental mem
bers' values are placed.

< read data end> is an item (01-level item in COBOL 3.1) indicating the end of the read buffer.

< read data size> in Pascal is an item indicating the size of the read buffer.

< index-1> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the first-level
index of the group's first elemental member to read.

< index-2> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the second
level index of the group's first elemental member to be read.

2234391-9701 5·55

Application Interface

< count> is a three··byte item (01-level numeric item in COBOL 3.1) specifying the number of
elemental members to read.

< cursor position> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the
initial cursor position in the indexed field.

5.18.3 Read Indexed Results
Status is posted. The indexed elements are read and their values are placed in the read data area.

5.18.4 Read Indexed Examples
The following examples demonstrate the Read Indexed routine:

COBOL 3.1:

01
01
01
01
01
01
01

5-56

GROUP-NAME PIC X(6) VALUE IS "NAMEXX".
DATA-BEGIN PIC X{SO).
DATA-END PIC xx.
INDEX-1 PIC 999.
INDEX-2 PIC 999.
COUNT PIC 999.
CURSOR-POS PIC 999.

MOVE 03 TO INDEX-1.
MOVE 09 TO INDEX-2.
MOVE 06 TO COUNT, CURSOR-POS.
CALL "CF$REX" USING GROUP-NAME,

DATA-BEGIN, DATA-END,
INDEX-1, INDEX-2, COUNT,
CURSOR-POS.

2234391·9701

Application Interface

Pascal:

VAR GROUP:CS6;
R_DATA:PACKED ARRAY[1 •• 14] OF CHAR;
X._1 , ~2, COUNT, CR..POS: CS3;

PROCEDURE PXSREX (GRP:CS6
VAR READAT:PACKED ARRAY[1 •. ?] OF CHAR;

REASIZ:INTEGER;
VAR X1,X2,CNT,CPOS:CS3); EXTERNAL;

{Read the 2nd through 4th elements of the first row of the array.}
GROUP:='ARY1 ';
X_1 :='001'; ~_2:='002'; COUNT:='003'; CR..POS:='OOO';
PXSREXCGROUP,R_DATA,UBCR..DATA),X-1,X_2,COUNT,CR..POS);

FORTRAN:

CHARACTER GNAME*6,RDATA*80,REND*2
CHARACTER*3 INDEX1,INDEX2,COUNT,CURPOS

C Read the 2nd through 4th elements of the first row of the array.
GROUP='ARY1
INDEX1='001'
INDEX2='002'
COUNT:'003'
CURPOS='OOO'

CALL FFREX (GNAME,RDATAC1),RDATA(40),INDEX1,INDEX2,COUNT,CURPOS)

5.18.5 Read Indexed Program Notes
Your application should check the status block after each Read Indexed command. After a read
operation, the status block returns several nonzero codes that are not errors. For instance, 01 indi
cates a partial read terminated by exiting the first field backward. Depending on the requirements
of your application, you may need to treat non-fatal (less than 10) status codes individually.

2234391·9701 5·57

Application Interface

5.19 READ INDEXED WITH CURSOR RETURN ROUTINE

This routine is the same as Read Indexed except that the indexing parameters are altered to indi
cate which field the cursor was in when screen input was terminated. The indexing parameters
point to the last field read. If the Read was terminated by an armed event key or the Enter key, the
indexing parameters indicate the final position of the cursor.

5.19.1 Read Indexed With Cursor Return Calling Sequences
The calling sequences for the Read Indexed With Cursor Return routine are as follows:

COBOL 3.1:

CALL "CF$RXC" USING < group name>, < read data>, < read data end>, < index-1> ,
< index-2> , < count> , < cursor position> .

COBOL 3.2:

CALL "CX$RXC" USING < group name>, < read data>, < index-1> , < index-2>, < count>,
< cursor position> .

Pascal:

PX$RXC « group name>, < read data>, < read data size>, < index-1 >, < index-2 >,
< count>, < cursor position»;

FORTRAN:

CALL FFRXC « group name>, < read data>, < read data end>, < index-1> , < index-2>,
1 < count> , < cursor position»

5.19.2 Read Indexed With Cursor Return Parameters
The following list describes the parameters for the Read Indexed With Cursor Return routine:

5·58

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group/field/variable to read.

< read data> is an item (01-level item in COBOL 3.1) into which the group's elemental mem
bers' values are placed.

< read data end> is an item (01-level item in COBOL 3.1) indicating the end of the read buffer.

< read data size> in Pascal is an item indicating the size of the read buffer.

< index-1> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the first level
index of the group's first elemental member to read. The first-level index of the field con
taining the cursor is returned in this parameter.

< index-2> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the second
level index of the group's first elemental member to read. The second-level index of the
field containing the cursor is returned in this parameter.

2234391-9701

Application Interface

< count> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the number of
elemental members to read. The elemental member number of the field containing the
cursor is returned in this parameter.

< cursor position> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the
character to start reading within the indexed field. The position of the cursor within the
current field is returned in this parameter.

5.19.3 Read Indexed With Cursor Return Results
Status is posted. The elemental members' values are read into the read area. The cursor position
is returned in the indexing parameters.

5.19.4 Read Indexed With Cursor Return Examples
The following examples demonstrate the Read Indexed With Cursor Return routine:

COBOL 3,,1:

01
01
01
01
01
01
01

GROUP-NAME PIC X(6) VALUE IS "NAMEXX".
D'ATA-BEGIN PIC X(80).
DATA-END PIC X(2).
INDEX-1 PIC 999.
INDEX-2 PIC 999.
COUNT PIC 999.
CURSOR-POS PIC 999.

MOVE 03 TO INDEX-1.
MOVE 09 TO INDEX-2.
MOVE 06 TO COUNT.
CALL "CFSRXC" USING GROUP-NAME,

DATA-BEGIN, DATA-END,
INDEX-1, INDEX-2, COUNT,
CURSOR-POS.

2234391-9701 5·59

Application Interface

Pascal:

VAR GROUP:CS6;
R_DATA:PACKED ARRAY[1 .. 14J OF CHAR;
X_1,X-2,COUNT,CR-POS:CS3;

PROCEDURE PXSRXC (GRP:CS6
VAR READAT:PACKED ARRAY[1 .. ?J OF CHAR;

REASIZ:INTEGER;
VAR X1,X2,CNT,CPOS:CS3); EXTERNAL;

{Read the second through fourth elements of the first row of
the array, and get the cursor position.}

GROUP:='ARAY ';
X_1:='001'; X-2:='002'; CNT:='003';
PXSRXC(GROUP,R_DATA,UB(R-DATA),X_1,X-2,COUNT,CR-POS);

FORTRAN:

CHARACTER GNAME*6,RDATA*2(40)
CHARACTER*3 INDEX1,INDEX2,COUNT,CURPOS

C Read the second through fourth elements of the first row of
the array, and get the cursor position.

GNAME='ARAY
INDEX1='001'
INDEX2='002'
COUNT='003'
CURPOS='OOO'

CALL FFRXC (GNAME,RDATA(1),RDATA(40),INDEX1,INDEX2,COUNT,CURPOS)

5.19.5 Read Indexed With Cursor Return Program Notes
Your application should check the status block after each Read Indexed With Cursor Return
command. After a read operation, the status block returns several nonzero codes that are not
errors. For instance, 01 indicates a partial read terminated by exiting the first field backward.
Depending on the requirements of your application, you may need to treat non-fatal (less than 10)
status codes individually.

5·60 2234391-9701

Application Interface

5.20 RESET FORM INDEXED ROUTINE

This routine is the same as Reset Form except that the index and count parameters can be used to
specify a portion of a group. For information regarding group indexing, see paragraph 1.4.3.

5.20.1 Reset Form Indexed Calling Sequences
The calling sequences for the Reset Form Indexed routine are as follows:

COBOL 3 .. 1:

CALL "CF$RFX" USING < group name>, < index-1> , < index-2>, < count>.

COBOL 3,,2:

CALL "CX$RFX" USING < group name>, < index-1> , < index-2>, < count>.

Pascal:

PX$RFX « group name>, < index-1> , < index-2>, < count»;

FORTRAN:

CALL FFRFX« group name>, < index-1> , < index-2>, < count»

5.20.2 Reset FOlrm Indexed Parameters
The following list describes the parameters for the Reset Form Indexed routine:

< group name> is the six-byte item (01-level item in COBOL 3.1) containing the name of the
group/field/variable to reset to its default value.

< index-1> is the three-byte item (01-level numeric item in COBOL 3.1) containing the first
index of the first member of the named group to reset.

< index-2> is the three-byte item (01-level numeric item in COBOL 3.1) containing the second
index of the first member of the named group to reset.

< count> is the three-byte item (01-level numeric item in COBOL 3.1) containing the number
of elemental members to reset.

5.20.3 Reset Form, Indexed Results
Status is posted. The specified elemental members of the specified group are reset to their
default values.

2234391-9701 5·61

Application Interface

5.20.4 Reset Form Indexed Examples
The following examples demonstrate the Reset Form Indexed routine:

COBOL 3.1:

01
01
01
01

GROUP-NAME
INDEX-1
INDEX-2
COUNT

PIC X(6) VALUE IS "NAME99".
PIC 999.
PIC 999.
PIC 999.

MOVE 2 TO INDEX-1.
MOVE 2 TO INDEX-2.
CALL "CFSRFX" USING GROUP-NAME, INDEX-1, INDEX-2.

Pascal:

VAR GROUP:CS6;
X-1,X-2,COUNT:CS3;

PROCEDURE PXSRFX (GRP:CS6; VAR X1,X2,CN:CS3); EXTERNAL;

{Reset four fields beginning with row two, column three.}
GROUP:='ARAY ';
X_1:='002'; X_2:='003'; COUNT:='004';
PXSRFX (GROUP,X_1,X_2,COUNT);

FORTRAN:

CHARACTER GNAME*6
CHARACTER*3 INDEX1,INDEX2,COUNT

C Reset four fields beginning with row two, column three.
GROUP='ARAY
INDEX1='002'
INDEX2='003'
COUNT='004'
CALL FFRFX (GROUP,INDEX1,INDEX2,COUNT)

5·62 2234391·9701

Application Interface

5.20.5 Reset Form Indexed Program Notes
Your appllication should check the status block after each Disarm Event Keys command. If the
status code is nonzero, your application should report the code to the user and take the
appropriate end-action.

2234391-97011 5·63

Application Interface

5.21 RESET FORM ROUTINE

This routine reinitializes all the fields in the specified group to their default values.

5.21.1 Reset Form Calling Sequences
The calling sequences for the Reset Form routine are as follows:

COBOL 3.1:

CALL "CF$RF" USI NG < group name> .

COBOL 3.2:

CALL "CX$RF" USING < group name> .

Pascal:

PX$RF « group name»;

FORTRAN:

CALL FFRF « group name>)

5.21.2 Reset Form Parameters
. The < group name> parameter is the six-byte item (01-level item in COBOL 3.1) containing the

name of the group/field/variable to reset to its default value.

5.21.3 Reset Form Results
Status is posted. All the elemental members of the specified group are reset to their default
values.

5.21.4 Reset Form Examples
The following examples demonstrate the Reset Form routine:

COBOL 3.1:

01 GROUP-NAME PIC X(6) VALUE IS "NAMEYY"

CALL "CF$RF" USING GROUP-NAME.

5·64 2234391-9701

Pascal:

VAR GROUP:CS6i

PROCEDURE P~SRF (GRP:C$6)i EXTERNALi

GROUP:='GROUP8'i
PX$RF (GROUP)i

FORTRAN:

CHARACTER*6 GNAME

GROUP='GROUP8'
CALL PX$RF (GROUP)

5.21.5 Reset Form Program Notes

Application Interface

Your application should check the status block after each Reset Form command. If the status
code is nonzero, your application should report the code to the user and take the appropriate end
action.

2234391-9701 5·65

Application Interface

5.22 SYNCHRONIZE ROUTINE

This routine synchronizes the operation of the application and the Executor following the asyn
chronous execution of the previous routine. Because the Synchronize routine itself does not
affect the status block, it allows the application to receive and examine the statuses of an
asynchronously executed routine.

5.22.1 Synchronize Calling Sequences
The calling sequences for the Synchronize routine are as follows:

COBOL 3.1:

CALL "CF$SYN".

COBOL 3.2:

CALL "CX$SYN".

Pascal:

PX$SYN;

FORTRAN:

CALL FFSYN

5.22.2 Synchronize Parameters
None.

5.22.3 Synchronize Results
If the previous routine was executed asynchronously, the application is suspended until the Exec
utor completes the processing of the previous routine. Results of the routine are returned to the
application, and the application is restarted. The status that is posted following the execution of
this routine is the status of the asynchronously executed routine. If the previous routine was not
executed asynchronously, the Synchronize routine has no effect.

2234391-9701

5.22.4 Synchronize Examples
The following examples demonstrate the Synchronize routine:

COBOL 3.'1:

* * THE READ CALL IS TO BE EXECUTED ASYNCHRONOUSLY.
**
*

CALL "CFSASN".
CALL "CFSREA" USING GRP, R-DATA, R-DATA-END.

* * PERFORM UNRELATED PROCESSING.

*

PERFORM DO-SOMETHING-ELSE.
* * SYNCHRONIZE APPLICATION AND EXECUTOR.
**
*

CALL "CFSSYN".
* * PROCESS THiE RESULTS OF THE READ.
*

PERFORM STATUS-CHECK.

2234391-9701

Application Interface

5·67

Application Interface

Pascal:

PROCEDURE PXSASN; EXTERNAL;
PROC~DURE PXSSYN; EXTERNAL;
PROCEDURE DO_SOMETHING_ELSE;

{ THE READ CALL IS TO BE EXECUTED ASYNCHRONOUSLY.
==}

PXSASN;
PXSREA CGROUP,R_DATA,UBCR_DATA»;

{ PERFORM UNRELATED PROCESSING.
==============================}

{ SYNCHRONIZE APPLICATION AND EXECUTOR.
======================================}

PXSSYN;

{PERFORM STATUS CHECK ON PREVIOUS COMMAND.}

{ PROCESS THE RESULTS OF THE READ.}

FORTRAN:

C
C THE READ CALL IS TO BE EXECUTED ASYNCHRONOUSLY.
C

CALL FFASN
CALL FFREA CGNAME,RDATA(1),RDATACEND»

C
C PERFORM UNRELATED PROCESSING.
C

CALL UNRELATE
C
C SYNCHRONIZE APPLICATION AND EXECUTOR.
C

CALL FFSYN
C
C PERFORM STATUS CHECK ON PREVIOUS COMMAND.
C
C PROCESS THE RESULTS OF THE READ.

5.22.5 Synchronize Program Notes
Your application should check the status block after each Synchronize command. If the status
code is nonzero, your application should report the code to the user and take the appropriate end
action.

5·68 2234391-9701

Application Interface

5.23 WRITE A GROUP ROUTINE

This routine performs a write operation on the entire group.

5.23.1 Write a Group Calling Sequences
The calling sequences for the Write a Group routine are as follows:

COBOL 3,.1:

CALL "CF$WRI" USING < group name>, < write data>, < write data end> .

COBOL 3,.2:

CALL "CX$WRI" USING < group name>, <write data>.

Pascal:

PX$WRI « group name> , < write data> , < write data size>);

FORTRAN:

CAL.L FFWRI « group name), < write data> , < write data end»

5.23.2 Write a Group Parameters
The following list describes the parameters for the Write a Group routine:

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group, field, or variable to write. The name must be left-justified and blank-filled on the
right within this item.

< write data> is an item (01-level item in COBOL 3.1) containing the data to write into the
elemental members of the specified group.

< write data end> is an item (01-level item in COBOL 3.1) indicating the end of the write data
area.

< write data size> in Pascal is the size of the write data item.

5.23.3 Write a Group Results
Status is posted. The data is written into the group's elemental members, giving them new values.

2234391-9701 5·69

Application Interface

5.23.4 Write a Group Examples
The following examples demonstrate the Write a Group routine:

COBOL 3.1:

01 GROUP-NAME PIC X(6) VALUE IS 'GROUP1'.
01 DATA-BEGIN PIC X(SO).
01 DATA-END PIC X(2)

CAll "CFSWRI" USING GROUP-NAME,
DATA-BEGIN, DATA-END.

Pascal:

VAR GROUP:C$6i
DATA-AREA:PACKED ARRAY[1 .. 4SJ OF CHARi

PROCEDURE PX$WRI (GRPNAM:C$6i

GROUP:='GROUP1'i

VAR D_AREA:PACKED ARRAY[1 .. ?J OF CHARi
DSIZE:INTEGER)i

EXTERNAli

PX$WRI (GROUP,DATA-AREA,UB(DATA-AREA»i

FORTRAN:

CHARACTER GNAME*6,WDATA*2(40)

GNAME='GROUP1'

CAll FFWRI (GNAME,WDATA(1),WDATA(40»

5.23.5 Write a Group Program Notes
Your application should check the status block after each Write a Group command. If an error
occurs, your application should report the error to the user in order to identify the problem.

5·70 2234391-9701

Application Interface

5.24 WRITE INDEXED ROUTINE

This routine enables the user to specify the index parameters to cause a selective write to a por
tion of a group. These parameters are not altered by the routine. For information regarding group
indexing, see paragraph 1.4.3.

5.24.1 Write Indexed Calling Sequences
The calling sequences for the Write Indexed routine are as follows:

COBOL 3.1:

CALL "CF$WX" USING < group name>, < write data>, < write data end>, < index-1> ,
< index-2> , < count>, < cursor position> .

COBOL 3.2:

CALL "CX$WX" USING < group name>, < write data>, < index-1> , < index-2>, < count>,
< cursor position>.

Pascal:

PX$\NX«groupname>, <writedata>, <writedatasize>, <index-1>, <index-2>,
<count>, <cursorposition»;

FORTRAN:

CALL FFWX « group name>, < write data>, < write data end>, < index-1> , < index-2>,
1 < count> , < cursor position>)

5.24.2 Write Indexed Parameters
The following list describes the parameters for the Write Indexed routine:

< gr()up name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group/field/variable to write.

< wriite data> is an item (01-level item in COBOL 3.1) containing the data to write to the
named group.

< write data end> is an item (01-level item in COBOL 3.1) indicating the end of the write data
area.

< write data size> in Pascal is an item indicating the size of the write data area.

< index-1> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the first-level
index of the group's first elemental member to write.

2234391-97011 5·71

Application Interface

< index-2> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the second
level index of the group's first elemental member to write.

< count> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the number of
elemental members to write.

< cursor position> is ignored if specified.

5.24.3 Write Indexed Results
Status is posted. The write data is written into the group's elemental members.

5.24.4 Write Indexed Examples
The following examples demonstrate the Write Indexed routine:

COBOL 3.1:

01
01
01
01
01
01
01

5-72

GROUP-NAME PIC
DATA-BEGIN PIC
DATA-END PIC
INDEX-1 PIC
INDEX-2 PIC
COUNT PIC
CURSOR-POSITION PIC

MOVE 05 TO INDEX-1.
MOVE 08 TO INDEX-2.

X(6) VALUE IS "NAMEOO".
X(SO).
X(2).
999.
999.
999.
999.

MOVE 03 TO COUNT. MOVE 02 TO CURSOR-POSITION.
CALL "CFSWX" USING GROUP-NAME,

DATA-BEGIN, DATA-END,
INDEX-1, INDEX-2, COUNT.

2234391-9701

Pascal:

VAR GROUP:CS6;
W __ D A T A : PA C KED A R RAY [1 .• 1 01 0 F C H A R ;
X __ 1 , >L2, COUNT, CILPOS: CS3;

PROCEDURE PXSWX (GRP:CS6;
VAR WRTDAT:PACKED ARRAY[1 •• ?1 OF CHAR;

WRTSIZ:INTEGER;
VAR X1,X2,CNT,CPOS:CS3); EXTERNAL;

{Write the third and fourth element of GROUP9.}
GROUP:='GROUP9';
X_1:='003'; X_2:='OOO'; CNT:='002'; CILPOS:='OOO';
PXSWX (GROUP,W_DATA,UB(W_DATA),>L1,>L2,COUNT,CILPOS);

FORTRAN:

CHARACTER GNAME*6,WDATA*2(40)
CHARACTER*3 INDEX1,INDEX2,COUNT,CURPOS

C Write the third and fourth element of GROUP9.
GNAME='GROUP9'
INDEX1='003'
INDEX2='OOO'
COUNT='002'
CURPOS='OOO'

CAL.L FFWX (GNAME,WDATA(1),WDATA(40),INDEX1,INDEX2,COUNT,CURPOS)

5.24.5 Write Indexed Program Notes

Application Interface

Your application should check the status block after each Write Indexed command. If an error
occurs, your application should report the error to the user in order to identify the problem.

2234391-9701 5·73

Application Interface

5.25 WRITE INDEXED WITH REPLY AND CURSOR RETURN ROUTINE

This routine is the same as Write Indexed With Reply except that the indexing parameters are
modified by the routine to indicate the field and column the cursor was in when the Read was
terminated. If the Read was terminated by an armed event key or the Enter key, the indexing
parameters indicate the final position of the cursor.

For more information regarding group indexing, refer to paragraph 1.4.3.

5.25.1 Write Indexed With Reply and Cursor Return Calling Sequences
The calling sequences for the Write Indexed With Reply and Cursor Return routine are as follows:

COBOL 3.1:

CALL "CF$WRC" USING < group name> < write data>, < write data end>, < read data>,
< read data end>, < index-1> , < index-2>, < count>,
< cursor position> .

COBOL 3.2:

CALL "CX$WRC" USING < group name>, < write data>, < read data>, < index-1> ,
< index-2> , < count> , < cursor position> .

Pascal:

PX$WRC (< grou p name>, < write data>, < write data size>, < read data>,
< read data size>, < index-1 >, < index-2 >, < count>, < cursor position»;

FORTRAN:

CALL FFWRC « group name> , < write data> , < write data end> , < read data> ,
1 < read data end>, < index-1> , < index-2>, < count>, < cursor position»

5.25.2 Write Indexed With Reply and Cursor Return Parameters
The following list describes the parameters for the Write Indexed With Reply and Cursor Return
routine:

5·74

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group/field/variable to write and read.

< write data> is an item (01-level item in COBOL 3.1) containing the data to write to the
named group.

< write data end> is an item (01-level item in COBOL 3.1) indicating the end of the write data
area.

< write data size> in Pascal is an item indicating the size of the write data area.

< read data> is an item (01-level item in COBOL 3.1) into which the group's elemental mem
bers' values are placed.

2234391-9701

Application Interface

< read data end> is an item (01-level item in COBOL 3.1) indicating the end of the read buffer.

< index-1> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the first-level
index of the group's first elemental member to write/read. The first-level index of the
field containing the cursor is returned in this parameter.

< index-2> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the second
level index of the group's first elemental member to write/read. The second-level index
of the field containing the cursor is returned in this parameter.

< count> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the number
of elemental members to write/read. The elemental number of the field containing the
cursor is returned in this parameter.

< cursor position> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the
character to start writing/reading within the indexed field. The position of the cursor
within the current field is returned in this parameter.

5.25.3 Write Indexed With Reply and Cursor Return Results
Status is posted. The data from the group's elemental members is placed in < read data>. The
current cursor position is returned in the indexing parameters.

5.25.4 Write Indexed With Reply and Cursor Return Examples
The following examples demonstrate the Write Indexed With Reply and Cursor Return routine:

COBOL 3.1:

01
01
01
01
01
01
01
01
01

GROUP-NAME PIC
WRITE-DATA PIC
WRITE-DATA-END PIC
READ-DATA PIC
READ-DATA-END PIC
INDEX-1 PIC
INDEX-2 PIC
COUNT PIC
CURSOR PIC

MOVE 02 TO INDEX-1.
MOVE 06 TO INDEX-2.
MOVE 04 TO COUNT.

X(6) VALUE IS "NAMEXX".
X(SO).
X(2).
X(SO).
X(2)
999.
999.
999.
999.

CALL "CF$WRC" USING GROUP-NAME,

2234391·9701

WRITE-DATA, WRITE-DATA-END,
READ-DATA, READ-DATA-END,
INDEX-1, INDEX-2, COUNT, CURSOR.

5·75

Application Interface

Pascal:

VAR GROUP:C$6;
W_DATA,R-DATA:PACKED ARRAY[1 .. 18] OF CHAR;
X-1,X-2,COUNT,CR-POS:C$3i

PROCEDURE PX$WRC (GRP:C$6;
VAR WRTDAT:PACKED ARRAY[1 .. ?] OF CHAR;

WRTSIZ:INTEGER;
VAR READAT:PACKED ARRAY[1 .. ?] OF CHAR;

REASIZ:INTEGER;
VAR X1,X2,CNT,CPOS:C$3); EXTERNAL;

{Write and read five elements beginning in row 2, column 4,
beginning with the sixth character of that element.}
GROUP:='ARYS ';
X-1:='002'i X-2:='004'i CNT:='OOS'; CR-POS:='006';
PX$WRC(GROUP,W_DATA,UB(W_DATA),R-DATA,UB(R-DATA),

X-1,X-2,COUNT,CR-POS);

FORTRAN:

CHARACTER GNAME*6,WDATA*2(40)
CHARACTER RDATA*2(40)
CHARACTER*3 INDEX1,INDEX2,COUNT,CURPOS

C Write and read five elements beginning in row 2, column 4,
C beginning with the sixth character of that element.

GNAME='ARYS
INDEX1='002'
INDEX2='004'
COUNT='OOS'
CURPOS='006'

CALL FFWRC (GNAME,WDATA(1),WDATA(40),RDATA(1),RDATA(40),
1 INDEX1,INDEX2,COUNT,CURPOS)

5.25.5 Write Indexed With Reply and Cursor Return Program Notes
Your application should check the status block after each Write Indexed With Reply and Cursor
Return command. If the status code is nonzero, your application should report the code to the
user and take the appropriate end-action.

5·76 2234391·9701

Application Interface

5.26 WRITE INDEXED WITH REPLY ROUTINE

This routine writes values to a portion of a group and reads values back from the same fields.
There are two data buffers, one for writing and one for reading. The same buffer can be used for
both. The indexing parameters allow the user to select a portion of the group to write and read.
These parameters are not altered by this routine. For information regarding group indexing, refer
to paragraph 1.4.3.

5.26.1 Write Indexed With Reply Calling Sequences
The calling sequences for the Write Indexed With Reply routine are as follows:

COBOL 3,.1:

CALL "CF$WXR" USING < group name>, < write data>, < write data end>, < read data> ,
< read data end>, < index-1> , < index-2>, < count>,
< cursor position>.

COBOL 3.2:

CALL "CX$WXR" USING < group name>, < write data>, < read data>, < index-1> ,
< index-2> , < count> , < cursor position> .

Pascal:

PX$'WXR « group name>, < write data>, < write data size>, < read data>,
< read data size>, < index-1 >, < index-2 >, < count>, < cursor position»;

FORTRAN:

CALL FFWXR « group name> , < write data> , < write data end> , < read data> ,
1 < read data end>, < index-1> , < index-2>, < count>,
1 < cursor position»

5.26.2 Write Indexed With Reply Parameters
The following list describes the parameters for the Write Indexed With Reply routine:

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group/field/variable to read.

< write data> is an item (01-level item in COBOL 3.1) containing the data to write into the
group"s elemental members.

< write data end> is an item (01-level item in COBOL 3.1) indicating the end of the write data
area.

< write data size> in Pascal is an item indicating the size of the write data area.

2234391-9701 5·77

Application Interface

< read data> is an item (01-level item in COBOL 3.1) into which the group's elemental mem
bers' values are placed.

< read data end> is an item (01-level item in COBOL 3.1) indicating the end of the read buffer.

< read data size> in Pascal is an item indicating the size of the read buffer.

< index-1> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the first-level
index of the group's first elemental member to read.

< index-2> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the second
level index of the group's first elemental member to read.

< count> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the number of
elemental members to read.

< cursor position> is a three-byte item (01-level numeric item in COBOL 3.1) specifying the
character to start reading within the indexed field.

5.26.3 Write Indexed With Reply Results
Status is posted. The write data is placed in the group's elemental members, and the members'
new values are placed in the read buffer.

5.26.4 Write Indexed With Reply Examples
The following examples demonstrate the Write Indexed With Reply routine:

COBOL 3.1:

01
01
01
01
01
01
01
01
01

GROUP-NAME PIC
WRITE-DATA PIC
WRITE-DATA-END PIC
READ-DATA PIC
READ-DATA-END PIC
INDEX-1 PIC
INDEX-2 PIC
COUNT PIC
CURSOR PIC

MOVE 03 TO INDEX-1.
MOVE 09 TO INDEX-2.

X(6) VALUE IS "NAMEXX".
X(80).
X(2).
X(80).
X(2).
999_
999.
999.
999.

MOVE 06 TO COUNT, CURSOR_
CALL "CF$WXR" USING GROUP-NAME,

WRITE-DATA, WRITE-DATA-END,
READ-DATA, READ-DATA-END,
INDEX-1, INDEX-2, COUNT, CURSOR.

5-78 2234391-9701

Pascal:

VAR GROUP:CS6i
W_DATA,R_DATA:PACKED ARRAY[1 .. 20] OF CHAR;
X_1,~2,COUNT,CR_POS:CS3i

PROCEDURE PXSWXR (GRP:CS6i
VAR WRTDAT:PACKED ARRAY[1 .. ?] OF CHARi

WRTSIZ:INTEGERi
VAR READAT:PACKED ARRAY[1 .. ?] OF CHARi

REASIZ:INTEGERi
VAR X1,X2,CNT,CPOS:CS3); EXTERNALi

{Write and read four fields beginning with the fifth.}
GROUP:='GROUP7';
X-1:='005'i 1_2:='000'; CNT:='004'i CR_POS:='OOO';
PXSWXR: (GROUP, W __ DATA, UB (W_DATA) , R_DATA, UB (R_DATA) ,

X_1,X_2,COUNT,CR_POS);

FORTRAN:

CHARACTER GROUP*6,WDATA*2(40)
CHARACTER RDATA*2(40)
CHARACTER*3 INDEX1,INDEX2,COUNT,CURPOS

GROUP='GROUP7'
I NDE):1 =' 005 '
INDEX2='000'
COUNT='004'
CURPOS='OOO'
CALL FFWXR (GROUP,WDATA(1),WDATA(40),RDATA(1),RDATA(40),

1 INDEX1,INDEX2,COUNT,CURPOS)

5.26.5 Write Indexed With Reply Program Notes

Application Interface

Your application should check the status block after each Write Indexed With Reply command. If
the status code is nonzero, your application should report the code to the user and take the appro
priate end··action.

2234391-9701 5·79

Application Interface

5.27 WRITE MESSAGE ROUTINE

This routine writes a character string to the message area on the screen. For a VDT, the message
area is the twenty-fourth line of the screen. The terminal operator must respond to this message,
as with TIFORM error messages, by pressing the Return key or the Enter key to indicate that the
user sees the message. This call provides the application with a method to issue its own error
messages in a way consistent with that of TIFORM.

Note that the maximum length message that can be written is 78 characters, not 80.

5.27.1 Write Message Calling Sequences
The calling sequences for the Write Message routine are as follows:

COBOL 3.1:

CALL "CF$WM" USING < message>, < message end>.

COBOL 3.2:

CALL "CX$WM" USING < message>.

Pascal:

PX$WM « message> , < message size>);

FORTRAN:

CALL FFWM « message> , < message end>)

5.27.2 Write Message Parameters
The following list describes the parameters for the Write Message routine:

< message> is the item (01-level item in COBOL 3.1) containing the text to display.

< message end> is an item (01-level item in COBOL 3.1) indicating the end of < message>.

< message size> in Pascal is the item containing the size of < message>.

5.27.3 Write Message Results
The message is written on line 24 of the display and status is posted.

5·80 2234391-9701

5.27.4 Write Mesisage Examples
The following examples demonstrate the Write Message routine:

COBOL 3.1:

01 ME:SSAGE PIC X (78) VA lUE "WHOOPS-A-DAI SY •.• ".
01 MSG-END PIC xx.

CAll "CFSWM" USING MESSAGE, MSG-END.

Pascal:

VAR MESSAGE:PACKED ARRAY[1 .. 18J OF CHARi

PROCEDURE PXSWM (VAR MSG:PACKED ARRAY[1 .. ?J OF CHARi
MSGSIZ:INTEGER)i EXTERNAL

MESSAGE:='This is a message.'i
PX$WM (MESSAGE,UB(MESSAGE»i

FORTRAN:

CHARACTER MESSAGE*2(9)
DATA MESSAGE"This is a message."

CAll FFWM (MESSAGE(1),MESSAGE(9»

5.27.5 Write Message Program Notes

Application Interface

Your application should check the status block after each Write Message call. If the status code is
nonzero, your application should report the code to the user and take the appropriate end-action.

2234391-9701 5·81

Application Interface

5.28 WRITE WITH REPLY ROUTINE

This routine writes values to a group and reads values back from the same fields. There are two
data buffer parameters, one for writing and one for reading, but the same buffer can be used for
both functions.

5.28.1 Write With Reply Calling Sequences
The calling sequences for the Write With Reply routine are as follows:

COBOL 3.1:

CALL "CF$WWR" USING < group name>, < write data>, < write data end>, < read data>,
< read data end> .

COBOL 3.2:

CALL "CX$WWR" USING < group name>, < write data>, < read data>.

Pascal:

PX$WWR « group name> , < write data> , < write data size> , < read data> ,
< read data size>);

FORTRAN:

CALL FFWWR « group name> , < write data> , < write data end> , < read data> ,
1 < read data end»

5.28.2 Write With Reply Parameters
The following list describes the parameters for the Write With Reply routine:

5·82

< group name> is a six-byte item (01-level item in COBOL 3.1) containing the name of the
group, field, or variable to write. The name must be left-justified and blank-filled on the
right within this item.

< write data> is an item (01-level item in COBOL 3.1) containing the data to write into the
elemental members of the specified group.

< write data end> is an item (01-level item in COBOL 3.1) indicating the end of the write data
area.

< write data size> in Pascal is an item indicating the size of the write data area.

< read data> is an item (01-level item in COBOL 3.1) into which the group's elemental mem
bers' values are read.

2234391-9701

Application Interface

< read data end> is an item (01-level item in COBOL 3.1) indicating the end of the read data
area.

< read data size> in Pascal is an item indicating the size of the read data area.

5.28.3 Write With Reply Results
Status is posted. The write data area is written into the group's elemental members. The new
values of the group's elemental members are read into the read data area.

5.28.4 Write Witlll Reply Examples
The following examples demonstrate the Write With Reply routine:

COBOL 3.'1:

01 GROUP-NAME PIC X(6) VALUE IS "NAME09".
01 WRITE-DAJA PIC X(SO).
01 WR I TE-DAiTA-END PIC X(2).
01 READ-DATA PIC X(SO).
01 READ-DATA-END PIC X(2).

CALL "CFSWWR" USING GROUP-NAME,

Pascal:

VAR GROUP:CS6i

WRITE-DATA, WRITE-DATA-END,
READ-DATA, READ-DATA-END.

~_DATA,R-DATA:PACKED ARRAY[1 .. 34] OF CHARi

PROCEDURE P~SWWR (GRPNAM:CS6i

GROUP:='GROUP1'i

VAR WRTDAT:PACKED ARRAY[1 •. ?] OF CHARi
WRTSIZ:INTEGERi

VAR READAT:PACKED ARRAY[1 •. ?] OF CHARi
RDSIZ:INTEGER)i EXTERNALi

PXSWWR (GROUP,W_DATA,U8CW_DATA),R-DATA,U8(R-DATA»i

2234391·9701 5·83

Application Interface

FORTRAN:

CHARACTER GNAME*6,WDATA*2(40)
CHARACTER RDATA*2(40)

GNAME='GROUP1'

CALL FFWWR (GNAME,WDATA(1),WDATA(40),RDATA(1),RDATA(40»

5.28.5 Write With Reply Program Notes
Your application should check the status block after each Write With Reply command. If the
status code is nonzero, your application should report the code to the user and take the appropri
ate end-action.

5·84 2234391-9701

6

Linking Application
Programs That Use TIFORM

6.1 INTRODUCTION

After you compile your application program containing TIFORM high-level language (HLL) routine
calls, you are ready to link it with the HLL interface modules. There are two techniques for linking
these modules to use the Form Executor. The multitask version allows several tasks to use the
Form Executor at the same time. In the linkable version, the Form Executor is linked directly with
your application program and resides in the same program file.

6.2 USING MULTITASK TIFORM

An application program uses TIFORM by calling the routines described in Section 5. These rou
tines reside in the TIFORM high-level language (HLL) interface modules, of which there are five.
Each HLL interface module implements one unique calling sequence. An application program
using TIFORM must be linked with one of these interface modules. The modules define the entry
points for the routines described in Section 5 and provide all communication with the TIFORM
Form Executor task.

Figure 6-'1 shows how several applications can share the Form Executor in a multitasking
environment.

There are five interface modules provided with the TIFORM installation: one for FORTRAN, two
for COBOL, and two for Pascal. These modules reside in the directory .S$TIFORM.O and have the
following names:

.S$TIFORM.O

.CF$MTASK COBOL3.1 interface module .

. CX$MTASK COBOL 3.2 interface module .

. FF$MTASK FORTRAN interface module .

. PF$MTASK Pascal external FORTRAN interface module .

. PX$MTASK Standard Pascal interface module.

You must explicitly include one of these modules in a link edit of the application.

2234391-9701 6·1

Linking Application Programs That Use T1FORM

APPL. # 1 APPL. #2 APPL. # 3 APPL. #4

TIFORM EXECUTOR

SHARED PROCEDURES:

DEVICE INDEPENDENT MANAGER -- ONE
SHARED PROCEDl.RE PER SYSTEM

DEVICE DEPENDENT MANAGERS -

EXECT911 -- ONE COpy PER SYSTEM
WHEN A TIFORM APPLICATION USES A VDT DEVICE

EXECT820 -- ONE COpy PER SYSTEM
WHEN A TIFORM APPLICATION USES A KSR DEVICE

EXECT820 (SHARED) EXECT911 (SHARED)

APPL. # 1
COpy OF

EXECUTOR
TASK

FORM 1
(SEE NOTE 1)

NOTES:

820 TASK

J

APPL. :#: 2
COpy (iF

EXECUTOR
TASK

FORM 2

911 TASK I 911 TASK I 911 TASK

I

APPL. :#:3
COpy d'F

EXECUTOR'
TASK

APPL. #4
COpy OF

EXECUTOR
TASK

FORM 3
(SEE NOTE 2)

1. A FORM CONSISTS OF A GROUP OF SEGMENTS, SEGMENT MASKS. AND A FORM ROOT.
EACH COMPONENT OF THE FORM RESIDEs IN A OVERLAY.

2. THIS ILLUSTRATES HOW MORE THAN ONE APPLICATION CAN USE A SINGLE FORM.

2285375

Figure 6·1. Multitask TIFORM

6·2 2234391-9701

Linking Application Programs That Use TIFORM

For compatibility with previous releases of TIFORM, the following aliases are defined in
.S$TIFORM.O to allow existing link control files to continue to work:

CF$XFACE is an alias of CF$MTASK

FF$XFACE is an alias of FF$MTASK

PF$XFACE is an alias of PF$MTASK

The following five examples show the link control files necessary to link TIFORM with the
following:

• COBOL

3.1

3.2

• Pascal

Standard Pascal

External FORTRAN

• FORTRAN

EXAMPLE 1

; Link control file of COBOL 3.1 TIFORM example •.•
,
PROCEDURE RTCOBOL

INCLUDE .SSSYSLIB.RCBPRC
TASK FORMTSTR

INCLUDE .SSSYSLIB.RCBTSK
INCLUDE .SSSYSLIB.RCBMPD
INCLUDE .EXAMPLE.COBOLOBJ
INCLUDE .S$TIFORM.O.CF$MTASK

END

2234391-9701

The COBOL program.
Include CF$xxx modules.

6·3

Linking Application Programs That Use TlFORM

EXAMPLE 2

Link control file of COBOL 3.2 TIFORM example ...
;
PROCEDURE RTCOBOL

INCLUDE .SSSYSLIB.RCBPRC
TASK FORMTSTR

INCLUDE .SSSYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE .EXAMPLE.COBOLOBJ
INCLUDE .SSTIFORM.O.CXSMTASK

END

The COBOL program.
Include CXSxxx modules.

EXAMPLE 3

Link control file of FORTRAN TIFORM example ..•
;
LIBRARY .FORT78.0SLOBJ
LIBRARY .FORT78.STLOBJ
LIBRARY .SCI990.SS0BJECT
TASK FORTST

INCLUDE .EXAMPLE.FORTNOBJ
INCLUDE .SSTIFORM.O.FFSMTASK
INCLUDE .SCI990.S$OBJECT.SSTCAS
INCLUDE .SCI990.SS0BJECT.SSSTOP
INCLUDE .SCI990.SS0BJECT.SSSETS
INCLUDE .SCI990.SS0BJECT.SSIO
INCLUDE .SCI990.SS0BJECT.SSMAPS

END

Pick up SCI SSxxxx modules.

The FORTRAN program.
Get FFxxx modules.
Include enough SSxxxx modules
to override the modules in
.STLOBJ and allow synonym
resolution to work.
*

EXAMPLE 4

6·4

Link control file of EXTERNAL FORTRAN
Pascal TIFORM example ...

;
LIBRARY .TIP.OBJ
TASK EXAMPLE

INCLUDE (MAIN)
ALLOCATE
INCLUDE .EXAMPLE.PASCLOBJ
INCLUDE .SSTIFORM.O.PFSMTASK

END

The Pascal example program.
Include PFSxxx routines.

2234391-9701

Linking Application Programs That Use TlFORM

EXAMPLES

Link control file of TI Pascal TIFORM example •..

LIBRARY .TIP.OBJ
TASK EXAMPLE
INCLUDE (MAIN)
ALLOCATE
INCLUDE .EXAMPLE.PASCLOBJ The Pascal example program.
INCLUDE .SSTIFORM.O.PXSMTASK Include PXSxxx routines.

END

6.3 LINKABLE TIFORM EXECUTORS

If you do not want your application system to use a separate task for the TIFORM Executor, you
can link the TIFORM Executor directly with some component of the application. The primary
advantage of this process is that the ITCIIPC communication used by the standard multitask
TIFORM is eliminated when the application and the Executor are linked together. (Under DX10,
TIFORM uses the ITC. Under DNOS, TIFORM uses the IPC.) The primary disadvantages are that
the Executor uses much of the address space when linked with an application and that a linkable
Executor can support only a single terminal type. Figure 6-2 shows the structure of a TIFORM
application linked directly with a linkable Executor.

The standard TIFORM Executor and the HLL interface modules in .S$TIFORM.O are not suitable
for linking directlly with an application. Special modules are needed. Consequently, a separate
directory,. TIFRMINS.LlNKD, is provided on the object release disk. This directory contains
the necessary components for building linkable Executors. Due to the size of the directory and the
rarity of the need for a linkable Executor, this directory is not copied by the TIFORM installation. It
exists only on TIFRMINS.

6.3.1 Building a Linkable Executor
To create a linkable Executor, first install the SCI command BLDLlNKD in .S$PROC. The source
for this procedure is in the TIFRMINS.LlNKD directory. The BLDLlNKD command builds the spe
cific linkable Executor requested. It assumes that the synonym @TIFRMINS points to the direc
tory under which the .LlNKD directory resides.

The BLDLlNKD command prompts for the following information:

BUILD A LINKABLE TIFORM EXECUTOR
LANGUAGE(CFS,CXS,PFS,PXS,FFS): CXS

TERMINAL(VDT,820): VDT
LINKED OUTPUT DIRECTORY:

LISTING DIRECTORY:

2234391-9701 6·5

Linking Application Programs That Use TlFORM

2285376

APPLICATION PROGRAM

•
•
•

CALL TIFORM INTERFACE -
ROUTINEs (LINKED WITH

APPLICATION)

•
•
•

INTERFACE ROUTINES

OPEN FORM
PREPARE SEGMENT

••. ETC.

LINKABLE TIFORM EXECUTOR

INTERPRETS COMMANDS
FROM INTERFACE ROUTINES

TO DRIVE THE FORM AND
THE TERMINAL

FORM
SEGMENTS

AND MASKS
VDT

-

Figure 6·2. TIFORM With a Linkable Executor

Each linkable Executor constructed consists of a specific language interface together with sup
port for a specific terminal. The first two prompts request the language interface and the terminal
type. The last two prompts request pathnames for the directories into which the object module
and link map of the Executor are to be placed. Both files are created using the following file name:

< language type> < terminal type>

For example, a linkable Executor using the COBOL 3.2 interface modules and support for the 911
terminal is given the file name CX$911 within the specified directories.

The BLDLlNKD procedure first constructs a link control stream using the Copy/Concatenate (CC)
SCI command. It then performs a link edit, placing the linked object module and the link map list
ing files in the specified directories. Once this link edit is finished, the linkable Executor is ready
for use.

6·6 2234391-9701

Linking Application Programs That Use TlFORM

6.3.2 Using a Linkable Executor
Linking an application with a linkable Executor differs from the multitask examples shown pre
viously in two respects. First, instead of including an HLL interface module from .S$TIFORM.O,
you must iinclude the linkable Executor module built by BLDLlNKD. Second, the module NFM$TB
(in the directory @TIFRMINS.LlNKD) must reside at the end of the application task's address
space, so you must explicitly include it last.

For example, asswme that a COBOL 3.2/VDT linkable Executor is created and its object module is
placed in the directory .S$TIFORM.O. Assuming the synonym TIFRMINS is assigned to the direc
tory conta.ining LlNKD, the following example shows the link control stream for this Executor.

EXAMPLE:

;
Link control file showing use of a linkable
COBOL 3.2, VDT linkable executor •..

PROCEDURE RTCOBOL
INCLUDE .SSSYSLIB.RCBPRC

TASK APPLICTN
INCLUDE .SSSYSLIB.RCBTSK
INCLUDE .SSSYSLIB.RCBMPD
INCLUDE .EXAMPLE.COBOLOBJ
INCLUDE .SSTIFORM.O.CXS911
INCLUDE TIFRMINS.LINKD.NFMSTB

END

The COBOL program.
Include linkable executor.
Include final module.

If you link the Form Executor directly with your application, the resultant program contains the
version of the Form Executor of the latest release. It does not contain any patches that may have
been applied since the release. In order to apply the latest patches to the linkable Executor, you
must save the link map containing the load address of NFM$TB. The TIFORM Release Information
discusses how you apply patches to the linkable Executor.

2234391·9701 6·716·8

7

Form Tester Utility

7.1 INTRODUCTION

The Form Tester utility permits the testing of any form without the need of a special program to
drive the form. In addition, it provides for the deletion of form segments, segment masks, and
roots from a form program file. If you are using the OX10 operating system, you can use the Form
Tester and the Intertask Channel Clearer utility to develop your forms. If you are using the ONOS
operating system, you only need the Form Tester.

7.2 FORM TESTER

This paragraph explains how to use the Form Tester. You invoke the Form Tester by entering the
following SCI command with no parameters:

FORMTSTR

The basic cycle of interaction between you and the Form Tester is as follows:

1. The Form Tester clears the screen, displays a menu of all the possible TIFORM com
mands, or activities (Figure 7-1), and asks which command it should issue. Enter the
appropriate two-digit number.

2. The Form Tester clears the screen and displays a menu requesting values for all the
parameters of the specified activity. Enter the desired value for each parameter, left
.iustified in its field. The Form Tester does not check the accuracy of the values entered.

3. After you enter the last parameter value, the prompt SURE? appears on the bottom (left
side) of the screen. An N response redisplays the menu of commands; the command is
not issued. Respond with Y to issue the response.

4. The Form Tester issues the command to the Form Executor. When the Form Executor
returns control, the Form Tester positions the cursor in the lower right corner of the
screen. Either press the Return key to return to step 1, or enter an activity number. If you
enter an activity number, the menu for the selected activity appears.

2234391·9701 7·1

Form Tester Utility

FORM TEST PROGRAM

PLEASE SELECT YOUR ACTIVITY:
1) OPEN A FORM
2) PREPARE A SEGMENT
3) WRITE A GROUP
4) READ A GROUP
5) WRITE WITH REPLY
6) WRITE INDEXED
7) READ INDEXED
8) READ INDEXED WITH CURSOR RETURN
9) WRITE INDEXED WITH REPLY

10) WRITE INDEXED WITH REPLY AND CURSOR RETURN
11) WRITE A MESSAGE
12) ARM EVENT KEYS
13) DISARM EVENT KEYS
14) CONTROL FUNCTIONS
15) RESET FORM
16) RESET FORM INDEXED
17) CHANGE FORM
18) CHANGE ITC/IPC COMMUNICATION
19) CLOSE FORM
20) DISPLAY FORM STATUS
21) DELETE FORM'S OVERLAYS
22) END PROGRAM

Figure 7·1. Form Tester Activity Selection Menu

The following paragraphs explain each of the Form Tester activities. The first 19 activities of the
Activity Selection menu request that specific TIFORM commands be executed. For more detailed
explanation of these TI FORM commands, refer to Section 5. The last three activities-activities
20,21, and 22-request special actions of the Form Tester.

7·2

NOTE

When the Form Tester prompts you for a name, such as a segment
name, you must enter the name in uppercase characters only. The
Form Tester does not map uppercase to lowercase. When execut·
ing one of your segments, you can enter lowercase characters if
your field definitions accept lowercase.

2234391·9701

Form Tester Utility

7.2.1 Open a Form (Activity 1)
This activity opens the specified form. It prompts you for a form name, a program file name, and a
terminal name. The form name is the name you specified in your FOL source. This is also the name
of the form root ove.rlay in the program file. The program file name identifies where the form over
lays reside on disk. You can use a synonym for the program file pathname. The initial value for the
TERMINAL NAME prompt is ME. You can enter any valid station 10, such as ST01. If you enter a
station ID other than your own (ME)~ that station must be available. If that station is in use, the
Form Tester returrns a status code of 57, indicating that it cannot assign a LUNO to the terminal.
The activity validates the prompt responses, bids the Form Executor, and passes them to it. You
must issue an Open Form command before any other activity, other than activities 21 and 22, can
be performed.

7.2.2 Prepare a Segment (Activity 2)
This activity loads a specified segment of the currently open form into the Form Executor. It dis
plays its background mask and all default values of the segment's fields. The activity prompts you
for a segment name and then a group name. If you enter a group name, a read is issued for that
group in addition to the prepare segment. This results in the execution of the Read and the display
of the segment mask. Usually, a prepare segment followed by a separate read clears the segment
mask, and the Read takes place on an empty screen. Since a segment name is implicitly a group
name, you can prepare and read the entire segment by entering the segment name for both the
segment name and group name prompts.

7.2.3 Write a Group (Activity 3)
This activity performs a Write operation for an entire group. It prompts you for a group name and
the write data value. It presents four lines of underscores where you can enter the write data value.

7.2.4 Read a Group (Activity 4)
This activity perflorms a read operation for an entire group. It prompts you for a group name. A
message then appears on your screen displaying the data read.

7.2.5 Write With Reply (Activity 5)
This activity writes values to a group and reads values back from the same fields. It prompts you
for a group name and the write data value. It presents four lines of underscores where you can
enter the write data value. A message then appears on your screen displaying the data read.

7.2.6 Write Indexed (Activity 6)
This activity writes a portion of a group as specified by the index parameters. These parameters
are not altered by the activity. The activity first prompts you for a group name and the write data
value. It presents four lines of underscores where you can enter the write data value. The next
prompt, INDEX 1, asks you for the first-level index of the group's first elemental member to write.
The initial value is 000. The INDEX 2 prompt asks you for the second-level index of the group's first
elemental member to write. The initial value is 000. The COUNT prompt asks you to specify the
number of elemental members to write. The initial value is 000. The CURSOR POSITION prompt
asks for a cursor position. The initial value is 000.

2234391-9701 7·3

Form Tester Utility

7.2.7 Read Indexed (Activity 7)
This activity reads a portion of a group as specified by the index parameters. These parameters
are not altered by the activity. The activity first prompts you for a group name. The next prompt,
INDEX 1, asks you for the first-level index of the group's first elemental member to read. The initial
value is 000. The INDEX 2 prompt asks you for the second-level index of the group's first elemental
member to read. The initial value is 000. The COUNT prompt asks you to specify the number of
elemental members to read. The initial value is 000. The CURSOR POSITION prompt asks for a
cursor position. The initial value is 000. A message then appears on your screen displaying the
data read.

7.2.8 Read Indexed With Cursor Return (Activity 8)
This activity is the same as Read Indexed (activity 7) except that the index parameters are altered
to indicate which field the cursor was in when screen input was terminated. The index parameters
point to the last field read. If the Read was terminated by an armed event key or the Enter key, the
index parameters indicate the final position of the cursor. The activity first prompts you for a
group name. The next prompt, INDEX 1, asks you for the first-level index of the group's first ele
mental member to read. The initial value is 000. The INDEX 2 prompt asks you for the second-level
index of the group's first elemental member to read. The initial value is 000. The COUNT prompt
asks you to specify the number of elemental members to read. The initial value is 000. The
CURSOR POSITION prompt asks for a cursor position. The initial value is 000. A message then
appears on your screen displaying the data read.

7.2.9 Write Indexed With Reply (Activity 9)
This activity writes values to a portion of a group and reads values back from the same fields. The
index parameters allow you to select a portion of the group to write and read. These parameters
are not altered by the activity. The activity prompts you for a group name and the write data value.
It presents four lines of underscores where you can enter the write data value. The next prompt,
INDEX 1, asks you for the first-level index of the group's first elemental member to write. The ini
tial value is 000. The INDEX 2 prompt asks you for the second-level index of the group's first ele
mental member to write. The initial value is 000. The COUNT prompt asks you to specify the
number of elemental members to write. The initial value is 000. The CURSOR POSITION prompt
asks for a cursor position. The initial value is 000. A message then appears on your screen display
ing the data read.

7.2.10 Write Indexed With Reply and Cursor Return (Activity 10)
This activity is the same as Write Indexed With Reply except that the index parameters are modi
fied by the activity to indicate the field and column the cursor was in when the Read was termi
nated. If the Read was terminated by an armed event key or the Enter key, the index parameters
indicate the final position of the cursor. The activity prompts you for a group name and the write
data value. It presents four lines of underscores where you can enter the write data value. The next
prompt, INDEX 1, asks you for the first-level index of the group's first elemental member to write.
The initial value is 000. The INDEX 2 prompt asks you for the second-level index of the group's first
elemental member to write. The initial value is 000. The COUNT prompt asks you to specify the
number of elemental members to write. The initial value is 000. The CURSOR POSITION prompt
asks for a cursor position. The initial value is 000. A message then appears on your screen display
ing the data read.

7.2.11 Write a Message (Activity 11)
This activity writes a character string to the message area on the screen. It provides one line of
underscores where you can enter the message text. The maximum length of the message that can
be written is 78 characters.

7-4 2234391-9701

Form Tester Utility

7.2.12 Arm Event Keys (Activity 12)
This activity allows you to arm event keys. Function keys are the only event keys that you can arm.
The function keys specified by this activity completely replace whatever function keys were armed
prior to the call. The activity prompts you for the first key to arm and then asks you if you want to
abort the arming of that key. It continues prompting until you enter 15 keys or press Return with
out entering a value.

7.2.13 Disarm Event Keys (Activity 13)
This activity disarms all function keys. It is equivalent to an Arm Event Keys call with no keys
specified. There are no prompts other than the standard SURE? prompt.

7.2.14 Control Functions (Activity 14)
This activity speclifies various control functions to the Form Executor. The activity prompts you for
the code specifying the control function. It presents a list of the various control functions and
their corresponding codes.

7.2.15 Reset Form (Activity 15)
This activity reinitializes all fields in the specified group to their default values. It prompts you for
a group name.

7.2.16 Reset Form Indexed (Activity 16)
This activity is the same as Reset Form (activity 15) except that you can use the index and count
parameters to specify a portion of a group. The activity first prompts you for a group name. The
next prompt, INDEX 1, asks you for the first-level index of the group's first elemental member to
write. Th,e initial value is 000. The INDEX 2 prompt asks you for the second-level index of the
group's first elemental member to write. The initial value is 000. The COUNT prompt asks you to
specify the number of elemental members to write. The initial value is 000. The CURSOR
POSITION prompt asks for a cursor position. The initial value is 000.

7.2.17 Change Form (Activity 1n
This activity allows you to change a form, the form program file, and/or the terminal/file. If you
enter a Y under CHANGE for FORM, underscores prompting for a form root overlay number, under
OVERLAY/LUNO, are displayed. If you do not enter an overlay number, underscores prompting for
the form name are displayed. If you enter a Y for PROGRAM FILE, underscores prompting for a
logical unit number (LUNO) are displayed. If you do not provide a LUNO, underscores prompting
for a patlhname are displayed. Similarly, for the TERMINAUFILE, underscores prompting for a
LUNO or path name are displayed. You can also enter a terminal name (for example, ST07) as
input. There is no prompting for a parameter value if the response is N for any parameter, and the
existing value for that parameter is used when the Change Form command is issued.

7.2.18 Change I~C/IPC Communication (Activity 18)
This activity disconnects the current Executor and connects another Executor. A form must be
open whE~n you use this activity. The activity prompts you for the run 10 of the Executor you want
to use. Y()u should specify the run 10 in decimal rather than in hexadecimal.

7.2.19 Close Form (Activity 19)
This activity terminates form processing. To simplify error handling, you can issue a close even if
the form was not successfully opened. The only prompt that appears is the standard SURE?
prompt.

2234391-9701 7·5

Form Tester Utility

7.2.20 Display Form Status (Activity 20)
This activity displays the status of the current Form Tester session. Figure 7-2 shows the format
of this display. You can either press the Return key to return to the selection menu or enter an
activity number.

7·6

STATUS BLOCK CONTENTS •..

FORM STATUS - 00
OS STATUS - 00
EVENT KEY - 00

INDEX 1 - 000
INDEX 2 - 000

ITEM COUNT - 000
CRSR-POSTN - 000

TEXT LENGTH - 0

DATA READ WAS -

SESSION STATUS ••• DISCONNECTED FROM EXEC

FORM NAME OPEN:
CURRENT SEGMENT NAME:

LAST GROUP NAME:
INDEX 1: 000 ITEM COUNT: 000
INDEX 2: 000 CRSR-POSTN: 000

CONTROL MODES: 1=OFF 2=OFF 3=OFF 4=OFF
5=OFF 6=OFF 7=OFF 8=OFF
9=OFF10=OFF11=OFF12=OFF

EVENT KEYS:

DATA WRITTEN WAS - __ __

PROGRAM FILE NAME:

TERMINAL NAME: STOO

NOTE: Underscores represent positions where data is displayed.
They are not actually part of the display.

Figure 7·2. Form Tester Status Display

2234391·9701

Form Tester Utility

7.2.21 Delete Form's Overlays (Activity 21)
This activity allows you to delete segments, segment masks, and roots from a form program file. A
form must not be open when you use this activity. When you enter a form name, all segments and
segment masks of that form are listed on a form that might be several pages long. You can protect
an element from deletion by changing its associated Y to N. You can use the Command key to
abort this operation during the first two screens involved in the deletion process. Press Enter or
Return for each list of elements to begin the deletion process. When the process is complete, a
list of the elements is displayed. An error code field is associated with each element. If no error
code is displayed, the element is deleted successfully. If an error code is displayed for an element,
that element is not deleted. The first two digits of the error code specify the SVC on which the
error occurred; the last two digits specify the error. To determine the reason the element is not
deleted, consult either the DX10 Operating System Error Reporting and Recovery Manual (Volume
VI) or the DNOS Messages and Codes Reference Manual, depending on the operating system you
are using.

7.2.22 End Program (Activity 22)
This activiity terminates the Form Tester program.

7.3 DX10 INTERTASK CHANNEL CLEARER

The Form Executor communicates with an application program via the DX10 Intertask Communi
cation (lTG) facility. ITC is a standard DX10 service that permits the establishment of communica
tion channels and the exchange of data between two tasks.

Occasionally, a message sent via ITC gets left in a channel. This occurs particularly during appli
cation development. Such unreceived messages can eventually congest the DX10 ITC buffer
space, inhibiting any further communication between the application and the Form Executor.

Congested ITC channels are detected by retry time-out logic in the message-sending routines of
the HLL interface modules and the Form Executor. If the HLL interface routines cannot send a
message, a form status of 21 (DX10 status of > FF) is returned to the application. If the Form Exec
utor cannot send a message, the TIFORM error 98 is declared, causing the HLL interface routines
to return a form status of 24 to the application.

There are two ways to clear congested ITC channels. Performing an initial program load (IPL) for
DX10 clears the ITC channels. If performing an IPL is not practical, you can use the Intertask
Channel Clearer utility. Its effect is similar to performing an IPL for DX10 in that all messages are
cleared from all ITC channels.

2234391-9701 7·7

Form Tester Utility

To execute this program, enter the following DX10 command:

7·8

XT PROGFILE=.SSTIFORM.PROG, TASK=CLEAR

Note

Because this utility clears all messages from allITC channels, take
care to ensure that no other processes that use ITC are running
before executing this utility. Sort/Merge uses the ITC queues, as do
several of the DX10 terminal emulation packages (for example, 3270
emulation and some modes of 3780/2780 emulation).

2234391·9701

Appendix A

Keycap Cross-Reference

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this
manual. This appendix contains specific keyboard information to help you identify individual keys
on any supported terminal. For instance, every terminal has an Attention key, but not all Attention
keys look alike or have the same position on the keyboard. You can use the terminal information in
this appendix to find the Attention key on any terminal.

The terminals sUlPported are the 931 VOT, 911 VOT, 915 VOT, 940 EVT, the Business System
terminal, and hard-copy terminals (including teleprinter devices). The 820 KSR has been used as a
typical hard-copy terminal. The 915 VOT keyboard information is the same as that for the911 VOT
except where noted in the tables.

Appendix A contains three tables and keyboard drawings of the supported terminals.

Table A-1 lists the generic keycap names alphabetically and provides illustrations of the
corresponding keycaps on each of the currently supported keyboards. When you need to press
two keys to obtain a function, both keys are shown in the table. For example, on the 940 EVT the
Attention key function is activated by pressing and holding down the Shift key while pressing the
key labeled PREV FORM NEXT. Table A-1 shows the generic keycap name as Attention, and a
corresponding illustration shows a key labeled SHIFT above a key named PREV FORM NEXT.

I

Function keys, such as F1, F2, and so on, are considered to be already generic and do not need
further definition. However, a function key becomes generic when it does not appear on a certain
keyboard but has an alternate key sequence. For that reason, the function keys are included in the
table.

Multiple key sequences and simultaneous keystrokes can also be described in generic keycap
names that are applicable to all terminals. For example, you use a multiple key sequence and
simultaneous keystrokes with the log-on function. You log on by pressing the Attention key, then
holding down the' Shift key while you press the exclamation (!) key. The same information in a table
appears as Attentionl(Shift)!.

Table A-2 shows some frequently used multiple key sequences.

Table A-3 lists the generic names for 911 keycap designations used in previous manuals. You can
use this table to translate existing documentation into generic keycap documentation.

Figures A-1 through A-5 show diagrams of the 911 VOT, 915 VOT, 940 EVT, 931 VOT, and Business
System terminal, respectively. Figure A-6 shows a diagram of the 820 KSR.

2274834 (1/14)

2234391-9701 A·1

Keycap Cross-Reference

A·2

Generic Name

Alternate
Mode

Attention 2

Back Tab

Command 2

Control

Delete
Character

Enter

Erase Field

Notes:

911
VOT

"lone

Table A·1. Generic Keycap Names

940
EVT

ALT ,~ [j."
"',., ...•. , .. ,', .. ;;

931
VOT

~EL"
HAR .~ .• *""~'

~ ~

~
~

usiness
System
Termi

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions

'On a 915 VDT the Commanej Key has the label F9 and the Attention Key has the label FlO

2284734 (2/1,1)

820'
KSR

[j •••.
.. ,•...•.... , .. , .. ,"",.,' •.•

2234391-9701

Generic Name

Erase Input

Exit

Forward Tab

F1

F2

F3

F4

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

[8':'
ESC .~

.... : : : ...

[WAS .'::
SKIP i

.:::.: .•... : .•.•. ~ : " :.~

~
~

940
EVT

raii ..

931
VOT

Business
System
Terminal

'The 820 KSR terminal has been used as a typical hardcopy terminal with t''le TPD DeVice Service
Routine (DSR) Keys on other TPD deVices may be missing or have (1lfferent fUf)ctlof)S

2284734 (3/14)

2234391-970"

Keycap Cross-Reference

820'
KSR

[IJ
[[)J

A·3

Keycap Cross-Reference

A·4

Generic Name

F5

F6

F7

F8

F9

F10

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

940
EVT

931
VOT

ness
System
TQrnr\in~1

'The 820 KSR terminal has been used as a typical hard-copy termtnal with the TPD Device Service
Routine (DSR) Keys on other TPD devices may be missing or have different functions.

2284734 (4/14)

820 1

KSR

~:
........................... ::

~ ..
~

2234391-9701

Generic Name

F11

F12

F13

F14

Home

Initialize Input

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

ffi
LW

[Wo i
..................................••

5 .•.

ffi W

940
EVT

fiiiI :::.· lAII

931
VOT

~ S""TO I
... :i

F0}
~

ru ,.I~ ... s
System
Terminal

'The 820 KSR terminal tlas been used as a tYPical hard-copy terminal with th!' TPD Dl'vlct' Service
Routrne (DSR) Keys on other TPD deVices may be miSSing or have tllffprent fur)('tl()r1~

2284734 (5/14)

2234391-9701

Keycap Cross-Reference

820 1

KSR

JiiiI LIII
~- ...

",,,,,"J

FiiiI ~ I!III

~
[IJ

[®J

A·S

Keycap Cross-Reference

A·6

Generic Name

Insert
Character

Next
Character

Next Field

Next Line

Previous
Character

Previous Field

Notes:

Table A·1. Generic Keycap Names (Continued)

911
VOT

or

fa
~

or

§
La

940
EVT

931
VOT

~.".".I."N S., " .• ,:, .• ,. ~

rr.=iI.,., ... , ... ' ,., i: ~

Business
System
Terminal

riiiI lIII

r.I ' ••• lMIJ

'The 820 KSR terminal has been used as a tYPical hardcopy tCrIllilldi Wlttl Hlt' TPD Dr'vlet' Sr'fVICt'
Routine (DSR). Keys on other TPD devices may be missing or have (lllfl'ft'llt flJlwtHlilS

2284734 (6/14)

820'
KSR

None

None

None

or

~
~

None

None

2234391-9701

Table A·1. Generic Keycap Names (Continued)

Generic Name

Previous Line

Print

Repeat

Return

Shift

Skip

Uppercasie
Lock

Notes:

911
VOT

Frfi ~

WAS .
SKIP

...••

940
EVT

931
VOT

See
Note 3

~,
RETURN .'

' .. ,",' ,., ...

U S"'FTol .. , ... , .. :'

s .. c .. A• p ...•. S., •••••. · ..• : •. ~

Business
System
Terminal

See
Note 3

Fiii1.-... : ,•.•..• :. ~

'The 1320 KSR terminal has been used as a tYPical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions

JThe ~:eyboard is typamatic. and no repeat key is needed.

2284734 (7/14)

2234391-9701

Keycap Cross-Reference

820'
KSR

None

None

A·7

Keycap Cross-Reference

2284734 (8/14)

A·8

Table A·2. Frequently Used Key Sequences

Function

Log-on
Hard-break
Hold
Resume

Key Sequence

Attention/(Shift)!
A ttent ion/(Cont rol)x
Attention
Any key

Table A·3. 911 Keycap Name Equivalents

911 Phrase

Blank gray
Blank orange
Down arrow
Escape
Left arrow
Right arrow
Up arrow

Generic Name

Initialize Input
Attention
Next Line
Exit
Previous Character
Next Character
Previous Line

2234391-9701

N
N

~
c.>
~
<0
-..J

~

»
cO

\
V

CURSOR CONTROL
AND -=::DIT

2284734 (9/14)

SPEC IAL CONTROL , A~ __ ~

Fl F2 F3 .. 4 FS F6 F7

\ v,.----------""
DATA ENTRY

Figure A·1. 911 VOl Standard Keyboard Layout

NUMERIC PAD

'" CD
'<::
o
Q)

"t)

()
(3
C/)
C/)

:h
CD

<b
Ci3
:::3
o
CD

~
...A.

o

1\..'
I\.)
w
~
w
~
cD
--..J

~

~------v~-------J

CURSOR CONTROL
AND EDI T KEYS

2284734 (10;14)

FUNCTION
KE:YS STATUS LED" r---------______________________________ ~A \ A

R .~.' 11 ' F2 .JI1 F3 lfi ~4 1I1 F5 J1 F6 JJr F7 J1 F8lfi F9 E FlO 1 :;~.;:: : : ;= ;~ : : : ... / .. :

~ ~~ __ -J

DATA ENTRY
KEYS

Figure A·2. 915 VOl Standard Keyboard Layout

o 0 o 0
IDLE EXEC TEST COMM

o 0 o 0
ERR MODE DS01 DS02

~------~vr-------~

NUMERIC
KEY PAD

" Cb
'<:
C')
III

"t:J
()
(3
en
en
:0
Cb

<b q;
;:)
C')

Cb

N
N
~
~
~

~
cO
~

~

~

:2DI~~@]@]~f]:](}Dm[[l@]@] [II IJIJDI CBB I I' ,I ,

~~

2284734 (tt/14)

Figure A·3. 940 EVT Standard Keyboard Layout

[)I

" (!)
'<:
C')
ru
"tl
C)

a
CI)
CI)

::b
(!)

CD
Cti
:;)
C')
(!)

~ ...
I\)

~,

I'V
W
~
W
~
cO
" ~

STATUS

2284734 (12/14)

ON/OFF REV
LINE BKGND

DISPLAY
BRIGHT DIM

SPEC
CHAR

..... -.-.-.-.-.-.-.-.-.-.-.-.:.~.:.-.-.-.-... -.-.-.-.~.: ... ;.:.;.;.;.;.;.;.:.: . ..;:~;~;~;~:.;.;.:.:.:.:~:~;~~:~:~:.:.:.:.:.:.:.:.:~:.:.:.:.:.:.:.:.'.'•... -.

Figure A·4. 931 vor Standard Keyboard Layout

LWm08

~
\b

'<::
C)
Q)

"'0
C)

a
CI)
CI)

:h
\b

CD
<ti
::J
C)
\b

I\)
I\)
(..,)
~
(..,)

~
cO
~

~

~
w

L~lL:Jr~lL:JL:JL:...lL.:JL':J

2284734 (13/14)

IERASE~I~I~t ~~~l~i

Figure A·5. Business System Terminal Standard Keyboard Layout

~
CD
'<:
(')
Q)

"'0
C)

a
CI)
CI)

:0
CD
CD
Cti
::::J
(')
CD

~
~

J:::.

"-'
I\)
c..>
~
c..>
~
to
~

~

[Q][gJ[gJ

0 0

fj fj
-

.-;. y.~.~.~.~.-.-.-.-.-.-.-.-.-.-.-.-.......... ;.:.:.~.-.-..

2284734 (14/14)

Figure A·6. 820 KSR Standard Keyboard Layout

~
(J)

'<:
(')
Q)

"tl
(),
o
C/)
C/)

:XJ
(J)

<b
~
::J
(')
(J)

Appendix B

TIFORM Status Codes

TIFORM returns to the application two status codes indicating the success or failure of the last
command executed. They are returned in the status block declared by the application on the last
Declare Status Block call executed. The operating system (OS) status contains the code returned
by the operating system on the last supervisor call (SVC); it is zero unless the last SVC failed, in
which case it contains the reason for the failure. The form status contains TIFORM's internal
status code. Form status values of nine (09) or less indicate that the operation was completed
successfully, and are informative only. Values of ten (10) or greater indicate that a fatal error
occurred. In the event of a fatal error, the form is automatically closed, and the Form Executor
terminates.

Table B-1 gives the possible values in this field and their meanings.

Note that the TIFORM error codes are decimal and the OS error codes are hexadecimal. A right
angle bracket (» preceding a value indicates a hexadecimal value.

Table B·1. TIFORM Status Codes

Description

Operation completed successfully:

Complete read;terminated by exiting last field forward
Partial read; terminated by exiting first field backward
Partial read; terminated by an armed nonabort event key
Partial read; terminated by an armed abort event key
Error while opening terminal (SVC >00 as status)
Open Form command issued while form is open
Partial read: terminated by TERMINATE READ [IMMEDIATELY]
Terminal disconnected

Fatal errors:

Change lTC/I PC Communication command issued to connect to a new executor
while application is currently connected to an executor

Command (not Open Form) issued while form is closed
Insufficient number of arguments in call argument list
Open Form parameter (file name/term-name) is too long
Segment too complex for terminal-dependent buffer size
Terminal read or write error (SVC > 00 as status)

2234391-9701

Code

00
01
02
03
04
05
06
07

10
12
13
14
15
19

B·1

TlFORM Status Codes

Table B·1. TIFORM Status Codes (Continued)

Description

lTC/I PC error while sending to terminal
Executor has prematurely terminated (SVC > OE as status)
Failure to assign LUNa to lTC/I PC channel
Executor has prematurely terminated (SVC > OE as status)
Failure to close LUNa to lTC/I PC channel
Cannot start Executor (SVC > 28 as status)
Failure to open LUNa to ITC/IPC channel
Failure to release LUNa to lTC/I PC channel

Invalid index or field count (nonnumeric, too big)
Invalid group, field, or variable name
Invalid segment name
Internal error in Form Executor
Excessive nesting of group definitions (10 levels max)

Invalid application command code
Application command code not currently supported
Form or segment not in specified file (SVC > 31 as status)
Cannot load form/segment from file (SVC > 14 as status)
First command not Open Form
Cannot assign LUNa to terminal (SVC > 00 as status)
Terminal type specified in an Open/Change Form command not supported by

TIFORM
Cannot assign LUNa to form file (SVC > 00 as status)

Improperly formatted Arm Event Key command
Unable to Close/Release the terminal (SVC > 00 as status)
Unable to execute the Print Key task (SVC > 28 as status)
Invalid mode code specified
Unable to release the LUNa on the form program file during a Change/Close

Form command

Application task terminated
Executor unable to send a message to the application due to ITC/IPC buffer

congestion

Code

21
22
23
24
25
27
28
29

32
33
34
36
37

51
52
53
54
55
57

58
59

60
61
62
63

64

98

99

Several form status codes are accompanied by an as status code. This as status code is the error
status code from the second byte of an SVC block. For proper interpretation, an SVC opcode must
be prefixed to this as status code to yield an as error number. The SVC opcode to append is
shown in the table with each error that returns an as status code. To interpret the resultant as
error number, refer to either the DX10 Operating System Error Reporting and Recovery Manual or
the DNOS Messages and Codes Reference Manual, depending on the operating system you are
using.

B·2 2234391-9701

TlFORM Status Codes

For example, if a form status code of 59 is returned with an OS status code of > 27, then the OS
error> 0027 should be looked up in the appropriate OS error manual, yielding the explanation NO
FILE DEFINED BY NAME SPECIFIED. Similarly, a form status code of 53 with an OS status code of
> 58 yields a OS enor number of> 3158 and the explanation NAME NOT IN DIRECTORY.

Frequently an application program combines the two codes into a single four-byte code for
brevity. The first two bytes of such a combined code are the TIFORM status code. The last two
bytes are the operating system status code.

2234391-9701 8·3/8·4

Appendix C

TIFORM Error Codes

C.1 INTRODUCTION

This appendix contains the error codes and diagnostics that may be generated during the
development and use of a form. Paragraph C.2 describes the TIFORM error messages, paragraph
C.3 describes the FDLC diagnostics, and paragraph C.4 describes the ISGE error codes.

C.2 TIFORM ERROR MESSAGES

Messages provide information about the TIFORM operation in progress. TIFORM generates two
types of messages as follows:

• Information Messages - Provide statistics or indicate the present phase of the
TIFORM operation.

• Error Messages
terminates.

Indicate an unrecoverable error was encountered and TIFORM

If the error is a file input or output error, the operating system displays the appropriate message
and terminates the execution attempt.

All messages are preceded by a code indicating the source, type, and number of the message, as
in the following:

aaa TIFORM nnnn < message>

2234391-9701 C-1

TlFORM Error Codes

The aaa is the message source, which can be one, two, or three characters long, as follows:

Source Code Meaning

Informative message

U User fatal error

S System fatal error

H Hardware fatal error

us User or system fatal error

UH User or hardware fatal error

SH System or hardware fatal error

USH User, system, or hardware fatal error

The nnnn is the message number.

Table C-1lists the message numbers and their corresponding internal message codes.

U TIFORM-0012

U TIFORM-0013

C-2

Table C-1. TIFORM Error Messages

COMMAND (NOT OPEN FORM) ISSUED WHILE FORM IS CLOSED.

Explanation:
The application issued a command other than an Open Form command while
the form was closed.

User Action:
Check the application at the command that received the error for a previous
Close command or for failure to issue an Open Form command.

INSUFFICIENT NUMBER OF ARGUMENTS IN CALL ARGUMENT LIST.

Explanation:
The application issued a command that did not specify enough parameters.

User Action:
Check the application at the command that received the error against the defi
nition of the command.

2234391·9701

U TIFORM·0014

U TI FORM-0015

U Til FORM-0019

U TI FORM-0021

U TI FORM-0022

2234391·9701

TlFORM Error Codes

Table C·1. TIFORM Error Messages (Continued)

OPEN FORM PARAMETER (FILENAMEITERM-NAME) IS TOO LONG.

Explanation:
The application issued an Open Form or Change Form command that specified
a file name or a terminal name that contains too many characters.

User Action:
Check the application command that received the error for the length of the
parameter used to specify the file name or the terminal name. The maximum
length is 48 characters.

SEGMENT TOO COMPLEX FOR TERM I NAL-DEPEN DENT BUFFER SIZE.

Explanation:
The segment name specified by the Prepare Segment command is so complex
that the object code does not fit in the terminal-dependent buffer.

User Action:
A solution may be to compile the segment with the NOSYMT option.

TERMINAL READ OR WRITE ERROR.

Explanation:
An error occurred when the TIFORM Executor tried to read from or write to the
terminal or file.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

ITCIIPC ERROR WHILE TRYING TO SEND TO TERMINAl.

Explanation:
The TIFORM interface routines received an ITC/IPC error trying to write to the
TIFORM Executor.

User Action:
Check the system log for errors related to this task.

EXECUTOR HAS PREMATURELY TERMINATED.

Explanation:
An error occurred when the TIFORM Executor tried to read from or write to the
terminal or file.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

C·3

TlFORM Error Codes

u TI FORM-0023

U TI FORM-0024

u TIFORM-0025

u TI FORM-0027

u TI FORM-0028

C-4

Table C-1. TIFORM Error Messages (Continued)

FAILURE TO ASSIGN LUNO TO ITC/IPC CHANNEL.

Explanation:
An error occurred when the TIFORM Executor tried to assign a LUNO to the
path name of the ITC/IPC channel for the form device.

User Action:
Check the TIFORM directory .S$TIFORM for the existence or correctness of the
path name of the device ITC/IPC channel. You can use the SCI procedure
RESETCHN on the TIFORM directory to reestablish the correct pathname.

EXECUTOR HAS PREMATURELY TERMINATED.

Explanation:
An error occurred when the TIFORM Executor tried to read from or write to the
terminal or file.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

FAILURE TO CLOSE LUNO TO ITC/IPC CHANNEL.

Explanation:
An error occurred when the TIFORM Executor tried to close the LUNO to the
current ITC/IPC channel.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

CANNOT START EXECUTOR.

Explanation:
An error occurred while trying to start the TIFORM Executor.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

FAILURE TO OPEN LUNO TO ITC/IPC CHANNEL.

Explanation:
An error occurred when the TIFORM Executor tried to open the LUNO to the
current ITC/IPC channel.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

2234391-9701

u TI FORM-0029

u TI FORM-0030

U TIFORM-0032

U TI FORM-0033

U TI FORM-0034

2234391-9701

TIFORM Error Codes

Table C-1. TIFORM Error Messages (Continued)

FAILURE TO RELEASE LUNO TO ITCIIPC CHANNEl.

Explanation:
An error occurred when the TIFORM Executor tried to release the LUNO to the
current ITCIIPC channel.

User Action:
Check Appendix B for furtt,!er information concerning TIFORM status codes.

UNABLE TO ASSIGN LUNO TO TIFORM PROG FILE.

Explanation:
The form program file specified on the Open Form cannot be accessed.

User Action:
Check the form program file parameter of the Open Form command that
received the error for correctness.

INVALID INDEX OR FIELD COUNT (NONNUMERIC, TOO BIG).

Explanation:
The index, field count, or cursor position specified on the indexed operation
that failed was not a numeric value or was too large.

User Action:
Check the index, count, or cursor value in the application command that
received the error.

INVALID GROUP, FIELD, OR VARIABLE NAME.

Explanation:
The application command specified a segment name, group name, field name,
or variable name not available with the currently prepared segment.

User Action:
Check the application command that received the error to ensure that the cor
rect segment name was prepared. Check the application to ensure that the cor
rect segment, group, field, or variable name was referenced by the operation in
error.

INVALID SEGMENT NAME.

Explanation:
The Prepare Segment command issued by the application specified a segment
name not available with the currently opened form.

User Action:
Check the application command that received the error to ensure that the cor
rect segment name was requested.

C·s

TlFORM Error Codes

U TI FORM-0036

U TIFORM-0037

U TlFORM-0051

U TIFORM-0052

U TIFORM-0053

C-6

Table C-1. TIFORM Error Messages (Continued)

INTERNAL ERROR IN FORM EXECUTOR.

Explanation:
The TIFORM Executor is in an abnormal error condition.

User Action:
Attempt to reproduce the problem, then notify the TI customer representative
of this condition.

EXCESSIVE NESTING OF GROUP DEFINITIONS (10 LEVELS, MAX).

Explanation:
The group name specified on the previous command is defined as containing
groups, which also are defined as containing groups. This nesting exceeds ten
levels.

User Action:
Redefine the groups involved in the appropriate segment.

INVALID APPLICATION COMMAND CODE.

Explanation:
An invalid application command code was specified in a TlFORM command.

User Action:
The specified call is not a legal TIFORM command. Correct the application
involved. The link map of the application may have unresolved references
related to this illegal command.

APPLICATION COMMAND CODE NOT CURRENTLY SUPPORTED.

Explanation:
An application command code that is not currently supported was specified in
a TI FORM command.

User Action:
The specified call is not a valid TI FORM command. Correct the application
involved. The link map of the application may have unresolved references
related to this illegal command.

FORM OR SEGMENT NOT IN SPECIFIED FILE.

Explanation:
The application issued either an Open Form or Prepare Segment command
containing a form name or segment name, respectively, that is not contained in
the form program file specified in the Open Form command.

User Action:
Check the application command to ensure that the correct and valid program
name was specified on the Open Form command. Also, check the Open Form
or Prepare Segment command that received the error to ensure that the correct
form name or segment name, respectively, was specified.

2234391·9701

U TIFORM-0054

U TI FORM-0055

U TI FORM-005?

U TIFORM-0058

U Til FORM-0059

2234391-9701

TlFORM Error Codes

Table C-1_ TIFORM Error Messages (Continued)

CANNOT LOAD FORM OR SEGMENT FROM FILE.

Explanation:
An error occurred when trying to access the form or segment named in the
Open Form or Prepare Segment command, respectively.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

FIRST COMMAND NOT OPEN FORM.

Explanation:
The TIFORM Executor received a command other than Open Form while the
form was closed.

User Action:
Check the application, at the command that received the error, for a previous
Close command or for failure to issue an Open Form command.

CANNOT ASSIGN LUNO TO TERMINAL.

Explanation:
The TIFORM Executor cannot gain access to the terminal specified in the Open
Form command.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

TERMINAL TYPE SPECIFIED IN OPEN/CHANGE FORM COMMAND, NOT
SUPPORTED.

Explanation:
The TIFORM Executor does not support the type of terminal specified in the
Open Form or Change Form command.

User Action:
Attempt this operation on a terminal type referenced in this manual. If
the manual specifies that TIFORM supports this terminal type., notify the TI
customer representative.

CANNOT ASSIGN LUNO TO FORM FILE.

Explanation:
A system error occurred when the TIFORM Executor tried to assign a LUNO to
the form program file specified.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

C-7

TlFORM Error Codes

U TI FORM-0060

U TIFORM-0061

U TIFORM-0062

U TIFORM-0063

U TI FORM-0064

c-s

Table C-1_ TIFORM Error Messages (Continued)

IMPROPERLY FORMA TIED ARM EVENT KEY COMMAND.

Explanation:
The application issued an Arm Event Key command that indicated a buffer that
is not formatted correctly.

User Action:
Check the application command that received the error to verify that the buffer
specified on the call contains an event key list formatted as specified in
Section 5.

UNABLE TO CLOSE OR RELEASE THE TERMINAL.

Explanation:
An error occurred during the attempt to close or release the terminal or file cur
rently used as the forms display device.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

UNABLE TO EXECUTE THE PRINT KEY TASK.

Explanation:
The TIFORM Executor received an error trying to bid the Print Key task.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

INVALID MODE CODE SPECIFIED IN A CONTROL FUNCTIONS COMMAND.

Explanation:
The application issued a Control Functions command that indicated a buffer
containing an invalid control code.

User Action:
Check the application command that received the error to verify that the buffer
specified on the call contains a control code formatted as specified In
Section 5.

UNABLE TO RELEASE LUNO OF FORM PROGRAM FILE DURING CHANGE!
CLOSE FORM.

Explanation:
The TIFORM Executor received an error trying to release the form program file
during a Close or Change Form command.

User Action:
Check Appendix B for further information concerning TIFORM status codes.

2234391·9701

U TlFORM-0097

U TIFORM-0098

u TIFORM-0099

U TIFORM-0100

U TIFORM-0101

U TI FORM-01 02

2234391-9701

TlFORM Error Codes

Table C-1_ TIFORM Error Messages (Continued)

EXECUTOR HAS TERMINATED ...

Explanation:
The TIFORM Executor abnormally terminated due to external circumstances.

User Action:
Check the system log for further information.

APPLICATION TASK HAS TERMINATED.

Explanation:
The application task abnormally terminated due to circumstances unknown to
the TI FORM Executor ..

User Action:
Check the application recovery process or the system log for more information.

EXECUTOR UNABLE TO SEND TO APPLICATION DUE TO ITCIIPC
CONGESTION.

Explanation:
The ITCIIPC buffers are full, thus the TIFORM Executor is unable to send any
messages to the application.

User Action:
Execute the CLEAR task from the program file .S$TIFORM.PROG using the
Execute Task (Xn command.

Shut 'er Down Clancey She's a Pumping Mud.

Explanation:
An error occurred in the TIFORM Executor that is not identifiable.

User Action:
Please call the TI customer representative.

OUTPUT PROCESSING ERROR, VERIFY ALL DATA.

Explanation:
An error occurred during final validation processing.

User Action:
Check all data just received for correctness.

FIELD 1/0 ABORT ERROR. RE-ENTER DATA.

Explanation:
The TIFORM Executor received an 1/0 abort event key sequence.

User Action:
Reenter the data in the appropriate field.

C-g

TlFORM Error Codes

U TI FORM-011 0

U TIFORM-0111

U TIFORM-0112

U TIFORM-0113

U TIFORM-0114

C-10

Table C-1. TIFORM Error Messages (Continued)

SCREEN HAS BEEN SENT TO PRINTER ?1.

Explanation:
The Print Key task successfully sent the current screen image to the specified
printer.

User Action:
No user action necessary.

SCREEN HAS BEEN SENT TO A FILE ?1.

Explanation:
The Print Key task successfully sent the current screen image to the specified
file.

User Action:
No user action necessary.

CANNOT ACCESS PRINTER ?2.

Explanation:
The Print Key task cannot gain access to the specified print device.

User Action:
Check the device specified as the print device for this terminal to ascertain the
problem.

CANNOT ACCESS LOGICAL NAME: TIFRMPRT.

Explanation:
The Print Key task attempted to access the standard logical name TIFRMPRT
but received an error.

User Action:
The logical name TIFRMPRT must be assigned to the spooler task if the speci
fied print device is declared a spooler resource.

CANNOT ACCESS SPOOLER.

Explanation:
The Print Key task received an error attempting to access the spooler via the
logical name TIFRMPRT.

User Action:
Check spooler status.

2234391-9701

U TIFORM-0128

U TI FORM-0129

U TI FORM-0130

TIFORM Error Codes

Table C·1. TIFORM Error Messages (Continued)

TIFORM DISCONNECT ON A SEND.

Explanation:
The TIFORM Executor received an error trying to send data to the application
via the ITCIIPC channel.

User Action:
Check the application and system log for abnormal task termination. Also,
ensure that the task is issuing a Close Form command before it terminates.

TIFORM DISCONNECT ON A RECEIVE.

Explanation:
The TIFORM Executor received an error trying to receive data from the applica
tion via the ITCIIPC channel.

User Action:
Check the application for abnormal termination or termination without issuing
a Close Form command. Also check the system log for task errors related to the
application task.

ERROR TRANSLATING STATION NUMBER FOR PRINT KEY TASK.

Explanation:
The Print Key task attempted to read the screen image of a device name that is
too large or nonnumeric.

User Action:
Check the application for previous TIFORM status codes.

C.3 FDL COMPILER DIAGNOSTICS

During the one-pass compilation process, the FDLC writes diagnostics to two user-specified files.
One of these files is the listing file where the diagnostics are included immediately following
either the statement that contained the error or the statement that was being processed at the
time an error condition was discovered. The other file is the error file that contains an image of
each erroneous statement followed by the diagnostic message. If you do not specify an error file,
the terminal local file is used as a default.

2234391-9701 C·11

TlFORM Error Codes

An error message is always preceded by eight asterisks. Following the asterisks and preceding
the text of the error message, there are two numbers that represent the error message number and
the severity level, respectively. These numbers are written in the format xxx,y where xxx repre
sents the error number and y the severity level. Table C-2 reproduces the error number, severity
level, and text of each error message and provides a short explanation of the error. The conven
tions used for severity levels are as follows:

Severity Level

WARNING

ERROR

1
2
3
4

5
6
7
8
9

Meaning

Lowest warning

Highest warning

Current statement discarded
Current statement discarded
Current statement discarded
Current statement/block structure discarded
Immediate abort

The severity levels are intended for future enhancements to the error recovery strategies of the
FDLC. At this time they take on the following significance. All warning levels are equivalent and
indicate that despite something being amiss, the compilation process remains unaffected. Sever
ity levels five through eight are essentially indistinguishable insofar as the action the compiler
takes, but their numerical rating is hopefully indicative of the seriousness of the error. Severity
level nine, however, is special and does in fact produce an immediate abort.

When an error in a statement requires that the statement be discarded, the compiler does so by
scanning for the first occurrence of the sequence of end-of-statement characters (that is, a period
followed by a blank). Compilation begins again with the next record containing an FDL statement.
If the end-of-statement characters were inadvertently omitted from the statement being dis
carded, the subsequent statement is lost during the resynchronization process. The loss of this
additional statement, however, is not apparent from the error message file and it may, in fact, pro
duce misleading diagnostics. In general, omission of the end-of-statement characters may cause
peculiarities in compilation results and you are cautioned to be alert to this situation. When
attempting to decipher peculiar diagnostics, first ascertain whether any FDL statements are miss
ing the sequence of end-of-statement characters.

The FDLC termination message displayed at the user's terminal can be one of two formats,
depending upon the success of attempts to acquire user files. If a file error occurs during
initialization, an immediate abort occurs and the termination message is one of error messages
numbers 1, 2, 6, or 7 in Table C-2. If the initialization process is successful, the FDLC termination
message is in the following standard format:

FDL ERROR COUNTS: xxx xxx xxx xxx/xxx xxx xxx xxx xxx

C-12 2234391-9701

TlFORM Error Codes

Each xxx represents the error count for a particular severity level. The severity levels are repre
sented from left to right in increasing order from one to nine with the slash separating warnings
from errors. Thus, the following termination message indicates that three warnings have been
issued (two of severity level two and one of severity level four) and nine errors have been detected
(five of severity level six and four of severity level seven).

FDL ERROR COUNTS: 000 002 000 001/000 005 004 000 000

Table C-2 contains the text, error number, and severity level of all FDLC diagnostics. Ampersands
indicate variable length compiler-supplied parameters. They represent such items as line num
bers, column numbers, file names, operating system or SCI error numbers, and user-specified
names, keywords" numerics, and so on. It should be apparent in most cases which parameter item
the ampersand represents.

Table C·2. FDL Compiler Diagnostics

Error Number/Severity Level/Message Text

001,9 ,,05 error & assigning a LUNO to &
002,9 05 error & opening &
003,9 05 error & reading &
004,9 05 error & writing &
005,9 05 error & closing &

006,9 5CI erro,r &. opening & as msg file
oo7,9 5CI error &. getting parameter number &

oo8,7 Column &: expected FDL verb;
found -&-

009,7 Column &: expected end-of-statement,
found-&-

2234391·9701

Explanation

These five messages all report OS SVC errors gen
erated by trying to perform the indicated action
against the specified file. See the error manual of
the For an explanation of the error code, refer to
either the DX10 Operating System Error Reporting
and Recovery Manual (Volume VI) or the DNOS
Messages and Codes Reference Manual, depend
ing on the as you are using.

These two messages report an SCI error while
trying to perform the indicated action against the
specified file. For an explanation of the error code,
refer to either the DX10 Operating System Error
Reporting and Recovery Manual (Volume VI) or the
DNOS Messages and Codes Reference Manual,
depending on the as you are using.

The first token of an FDL command must be one of
a special set of keywords called verbs. If the first
token is not a verb, this message reports' the
column in which the first token starts and the
erroneous token.

An FDL statement must end with an end-of-state
ment token, a period followed by a blank. If the
FDLC finds some other token where it expects to
find an end-of-statement, this message reports the
column in which the token starts and the erroneous
token. This message is most commonly caused by
forgetting to end an FDL statement with a period. In
this case, the first token of the next statement is
reported as the erroneous token. The FDLC's error
recovery then discards the rest of the next state
ment looking for an end-of-statement token.

C·13

TlFORM Error Codes

Table C·2. FOL Complier Oragnostics (Continued)

Error Number/Severity Level/Message Text

010,7 Column &: -&- ill-formed token

011,4 This attribute specified previously for
this field

012,6 Part number -&- must be 6 digits
013,6 Revision number -&- must be 2 digits

014,6 Bad row number -&-

015,6 Name -&- too long

016,6 Bad column number -&-

017,8 More than 255 "M" statements in this
mask

018,6lII-formed function key number -&-
019,8 -&- contains too many digits for a

function key number.

020,7 0S error & trying to install & as an overlay

C·14

Explanation

The rules defining the legal tokens of the FDL lan
guage are quite rigid; for example, numbers cannot
contain alphabetic characters, alphanumeric
words cannot contain double quotes, and so on.
This message reports that while trying to isolate
the next token of an FDL statement, the FDLC
found a character that violates FDL's rules. The
message reports the column where the ill-formed
token starts and the ill-formed token. The rightmost
character of the ill-formed token is the character
that made it ill-formed.

Each attribute can be specified only once for a
given field. This message reports that the attribute
specified by the current statement has already
been specified at least once for this field.

The part number and revision number on a FORM
statement must be precisely six and two digits
long, respectively.

A row number must be an unsigned decimal integer
between 1 and 24 inclusive.

A name in FDL must be no more than six characters
long.

A column number must be an unsigned decimal
integer between 1 and 80 inclusive.

No more than 255 background text statements are
allowed within a Single segment mask or field mask
block. This message appears following the 256th
background text statement.

Function key numbers in an FKEYS statement
must be two digit unsigned decimal numbers.

At the end of each segment, segment mask, and
form, the FDLC installs an overlay with the name of
the form/segment/mask into the program file speci
fied in the XFDLC command. This message reports
the OS SVC error and the name of the overlay when
such an installation fails.

2234391-9701

TlFORM Error Codes

Table C·2. FDL Compiler Diagnostics (Continued)

Error Number/Severity Level/Message Text

021,6 lmproper decimal digit in -&-

022,2lncompatible THEN/ELSE clauses

023,6 Reference to -&- incompatible with ref
on line &

024,6 Reference to -&- incompatible with
def on line &

025,6 Definition of -&- incompatible with ref
on line &

026,6 Double definition: -&- already defined
on line &

027,6Il1egal statement in current context: &

028,6 ,,-&- not defined previously as an array

029,4 Attributes overridden by an OUTPUT
statement

030,6 -&- referenced on line & but never
defined

032,7 END name -&- does not match name
defined on line &

2234391·9701

Explanation

Self-explanatory.

There are two kinds of IF CONDITION statements,
that is, conditional branching and conditional
attribute selection. They differ only in the objects
of their THEN and ELSE clauses. Conditional
branching specifies THEN/ELSE GOTO < name>;
conditional attribute selection specifies THEN/
ELSE EDITS = < name>. This message reports a
mixture of the two kinds of THEN and ELSE
clauses. This message also appears if neither the
THEN nor the ELSE clause is specified.

These messages report inconsistencies in the defi
nition and/or use of a name. Since the FDLC is a
one-pass compiler, the "ref" line number reported
is that of the last reference to the specified name.

Appendix F lists the contexts of FDL and which
statements are legal in which contexts. This mes
sage reports that the current statement is not legal
in the current context and states what the current
context is.

A A < name> « row> ,< col» reference in a group
specification requires that < name> already be
defined as a field array. This message reports that
this is not the case.

An output field cannot have editing or processing
attributes. This message reports that attributes
were specified in conjunction with the OUTPUT
statement and they were ignored.

When the end of a segment block occurs, the FDLC
scans its name table for undefined names. This
message is used to report each undefined name.
The line number given is that of the last reference
to the specified name.

The name on each END statement must match the
name defined on the corresponding beginning block
statement. This message reports a mismatch, stating
the name on the END statement and the line number
of the beginning block statement.

C·15

TlFORM Error Codes

Table C·2. FDL Compiler Diagnostics (Continued)

Error Number/Severity Level/Message Text

033,4 Segment longer than & bytes

034,7 Column &: expected &; found -&-
035,7 Column &: expected "&"; found -&-

036,7 Column &: null literals are not allowed
037,7 DECIMAL attribute is illegal on LEFT

justify statement

038,7 -&- contains too many characters for
a CHAR LIST item

039,7 -&- does not match preceding
SEGMENT MASK -&-

040,1 Control mode settings updated in form
root &

041,B END processing omitted due to severe
error on line &

042,6 Field length specified incorrectly or not
specified at all

043,B Array increments out of bounds

044,9 Name table overflow

C·16

Explanation

Self-explanatory .

These messages report a syntax error. The FDLC
was looking for a particular keyword or syntactic
construct but found something else. These mes
sages report the keyword/construct the FDLC
expected and the keyword/construct the FDLC
found. Where there are several possible legal syn
tactic constructs, these messages only report the
last one as the expected construct; the construct
actually found was none of the legal possibilities.

Self-explanatory.

A CHARACTER LIST statement consists of single
character items (possibly quoted) separated by
commas and/or ellipsis. This message reports that
the specified item is more than one character long.

The segment mask name defined in the segment
statement does not match the name defined in the
segment mask statement.

If the control modes are updated/edited In the form
root, a warning message is displayed notifying the
change.

Certain errors within a FIELD block are severe
enough to force the FDLC to suppress the process
ing normally performed on an END FIELD state
ment. This message is actually a warning that an
earlier error invalidated the compiled object form.

A field length must be an unsigned nonzero posi
tive decimal integer. Every POSITION statement
must specify a length.

A field array must not specify a position outside the
bounds of the screen. The size of the screen is
determined from the specified DEVICE type.

Too many names and/or field array elements were
specified. Approximately 400 names/array ele
ments can be defined but the preCise number
depends on the mix of named items and field array
elements.

2234391-9701

TIFORM Error Codes

Table C·2. FDL Compiler Diagnostics (Continued)

Error Number/Severity Level/Message Text Explanation

045,6 DISPLAY attribute specification incorrect A field cannot have both true graphics (GRAPHICS

046,8 & (line &) is SAME AS & (line &), an
OUTPUT field

047,6 Mask/selgment uses rows/columns
outside device limits (&1&)

INPUT) and virtual graphics (DISPLAY GR = y)

A SAME AS statement references a field that has
the OUTPUT attribute. This is invalid.

A row/column number exceeds the device's limits.

048,8 The following fields/edit sets are involved By using the SAME AS attribute, a loop has been
in a SAME AS loop... created.

049,1 -&- defined on line &

050,4 -&- is an invalid device type

051,6 This field extends beyond column &

052,6 This mask element extends beyond
column &

053,6 Field name -&- is & chars too long for
its array

054,7 -&- has row/column index out of
range

055,9 A & named & already exists

056,7 Segment mask not specified with
segment

The symbol is caught in a SAME AS loop.

TI FORM does not currently support the named
device.

The length of the field causes one or more column
positions to appear past the right boundary of the
screen. The length of the lines of the screen is
determined from the specified DEVICE type.

The length of the element causes one or more char
acters to appear past the right boundary of the
screen. The length of the lines of the screen is
determined from the specified DEVICE type.

The name of a field that has the ARRAY attribute
along with the array element suffix appended by
the FDLC exceeds six characters. You must
shorten the field name by the specified number of
characters.

A group member that is an array reference has an
index that references a nonexistent element of the
array.

All names of segments/segment mask/forms must
be unique.

A segment mask is not specified in the SEGMENT
statement.

057,8 Cannot compile segment mask & without You cannot compile a segment mask by itself. You
segment must compile a segment with it.

058,6 Cannot compile negative attribute with
SAME AS

2234391-9701

If you use the SAME AS attribute in a field/edit set,
you cannot use negative attributes in conjunction
with it.

C·17

TlFORM Error Codes

Table C·2. FDL Compiler Diagnostics (Continued)

Error Number/Severity Level/Message Text

059,7 Error in attempting to delete overlays

060,1 Form root has been expanded to -&
bytes.

62,6 A field is positioned outside of device
limits.

63,8 Segment compilation errors, overlays not
installed.

65,6 0N COMPLETION destination must be
current field.

C.4 ISGE ERROR MESSAGES

Explanation

When the DELSEG option is in effect, the compiler
either cannot find the appropriate overlay or the
overlay is not a segment or segment mask.

For optimum execution, the form root should be no
greater than 2000 bytes.

A field cannot be positioned outside of the row and
column limits of the device in use.

When fatal errors occur, the segment mask overlay
and the segment overlay are not installed, and the
form root is not modified.

ON COMPLETION processing for a COpy TO state
ment can take place on the the current field (*) only.

This appendix presents all the error messages that the ISGE produces. The text of each message
is shown with an explanation of the error and suggestions for recovery.

Each ISGE error message requires confirmation. A blinking cursor is displayed to the right of the
message. You must press the Return key or the Enter key before the ISGE continues.

The value nnnn in a message represents an error code. The leftmost two digits contain the ISGE
error code; the rightmost two digits contain the SVC error code (if any). The ISGE error codes are
discussed immediately following the explanation of the message in which they may appear.
Depending on the OS you are using, you can find the definition of SVC error codes in either the
DX10 Operating System Error Reporting and Recovery Manual (Volume VI) or the DNOS Messages
and Codes Reference Manual.

C.4.1 Intermediate Segment File Recovery
Various fatal errors could cause the ISGE to abort before the ISGE session can be terminated
cleanly. Depending on the error, special action may be necessary to recover the intermediate
segment file, even though saving the intermediate segment file was specified. If an abort nullifies
an intermediate segment file save, there are two places where a copy of the aborted session's
intermediate segment file might be found. First, the ISGE keeps its working copy of the intermedi
ate segment file for terminal STnn in the following file:

S$TIFORM.ISGE.STnn

C·18 2234391·9701

TlFORM Error Codes

This file is deleted if the ISGE terminates normally, but after an abort it may still exist. If no other
ISGE session has been started on terminal STnn subsequent to the aborted session, this file con
tains the aborted session's intermediate segment file.

The other place to look for the intermediate segment file is in a file of the following name:

S$TIFORM.ISGE.aaa

The value aaa is a unique three-character name between AAA and zzz..1f no intermediate segment
file save was specified, but FDL construction was specified, the ISGE creates a new "aaa" name
and copies the session's intermediate segment file into that file before starting the FDL construc
tion task in background. A successful FDL construction deletes this file before terminating. If the
FDL construction task aborts, the session's intermediate segment file is left in this file. To recover
the aborted sess,ion's intermediate segment file, you should first execute the List Directory (LD)
command on .S$TIFORM.ISGE to get the names of all such files. You must determine which file is
the applicable intermediate segment file experimentally.

Once you locate the aborted session's intermediate segment file, you should copy it into some
other file of your choice. The ISGE reuses its files whenever it runs so you must save them
explicitly if you want to retain them.

C.4.2 List of Messages

CURSOR IS NOT POSITIONED IN AN ACTUAL FIELD
While in screen drawing mode, you made an attempt to delete or move a field but the cursor
was not positioned on a field when you pressed the function key. Either reposition the cursor
so it lies in a field before you attempt the operation again, or supply row/column coordinates
other than the cursor position.

EDITOR ABORTING
The ISGE is aborting the session because of a fatal error from either the TIFORM Executor or
the file handler portion of the ISGE. This message is displayed after several of the following
fatal error messages.

< nnnn> FATAL ERROR WHILE DECOMPILING SEGMENT
The ISGE encountered a fatal error situation while decompiling a segment and its mask. The
ISGE terminates after reporting the error.

If the error is the result of an invalid program file path name, the following error code is
returned:

Code Description

62xx LUNO assignment error

2234391-9701 C·19

TIFORM Error Codes

C-20

If an invalid segment name was entered, one of the following error codes is returned:

Code Description

61xx Load overlay error

63xx Overlay number error

The following error codes indicate that the segment's object form is bad:

Code Description

4100 Cannot decompile 3.1.0 segments

4200 Overlay loaded is not a segment mask

4300 Matching relative address not found in name table

4400 Length list definition incorrect

4500 Segment does not contain a valid symbol table

If the segment to be decompiled exceeds any of the ISGE's size limitations, one ot-the follow
ing error codes is returned:

Code

5100

5200

5300

5400

5500

5600

Description

Some item is longer than 578 bytes.

Segment has more than 320 different names.

Edit sets are nested more than 10 levels deep.

Segment has more than 100 fields.

Object for segment or mask is more than 4000 bytes
long.

The number of named user-specified error messages
exceeds 100.

2234391-9701

TlFORM Error Codes

FATAL FIILE HANDLER ERROR. CMD BLOCK FOLLOWS.
This message indicates an internal error within the logic of the ISGE. The ISGE aborts the
session after displaying this message. After this message is displayed, the ISGE's internal
command block is displayed. Digits 7 through 10 of the command block contain one of the
following error codes:

Code Description

9100 Invalid command sent to Decompiler

9200 Invalid command received from ISGE

9300 Invalid command received from Decompiler

94xx 1/0 operation on ISGEFILE failed

94xx 1/0 operation on PATHFILE failed

FDL BUILDER CANNOT OPEN FDL SOURCE FILE. OS ERROR < nn> ON < pathname>.
You specified an invalid path name for the t:=DL source file. The value < nn> is a COBOL 1/0
error code described in the appropriate COBOL reference manual as listed in the Preface.
You can retrieve the intermediate segment file containing the segment just generated or
edited from one of the following three places:

• If you specified an intermediate segment file path name at the termination of the
ISGE, the intermediate segment is in that file.

• If you terminated the ISGE with a COMPILE FDL command and you did not specify
an intermediate segment file path name, the intermediate segment is in the system
file .S$TIFORM.ISGE.STxx, where xx is the ID of the terminal on which the ISGE is
running.

• If you terminated the ISGE with a BUILD FDL command and you did not specify an
intermediate segment file pathname, the intermediate segment is in a system file
under the directory .S$TIFORM.lSGE. You must execute the List Directory (LD)
command on this directory in order to determine the file's specific path name. The
file name to look for in the list directory is a three character name in the range
AAA - ZZZ. If more than one of the file names falls in this category, the one con
taining the intermediate segment for which the error message was generated is·
most likely to be the file name having the highest value. To verify that you selected
the correct intermediate segment file, you can perform the Show File (SF) com
mland on the file. The segment name should be in the first record of the file.

Once you determine the intermediate segment file's pathname, you should copy the intermediate
segment to one of your files. You can execute the ISGE again, retrieve the intermediate segment,
and specify a valid FDL source file at termination.

2234391-9701 C-21

TIFORM Error Codes

FIELD OVERLAPS AN EXISTING FIELD
You made an attempt to insert a field on top of an existing field. You can abort the insert field
command with the Command key, or you must supply alternate row/column coordinates.

12xx FILE ERROR WHILE OPENING INTERMEDIATE FILE
You specified an invalid pathname for an intermediate segment file, and the ISGE is unable
to open the file. The ISGE prompts for another path name, or the session may be aborted.

< nnnn> FILE ERROR WHILE TERMINATING
You specified an invalid path name for the file in which the intermediate segment is to be
saved at the end of the session. The ISGE prompts for another path name. One of the follow
ing error codes is returned with this message:

Code

11xx

13xx

Description

Error in rename executed to save the intermediate
segment fi Ie

Invalid pathname specified to save the intermediate
segment file

FORM ERROR. STATUS BLOCK FOLLOWS.
This message indicates an internal error in the logic of the ISGE. The ISGE received an error
from the TIFORM Executor. The 40-byte TIFORM status block is displayed after this message
appears. The fatal error code is in the first four characters of the status block. The ISGE
aborts the session after displaying the error message.

INVALID ROW, COLUMN, OR LENGTH VALUE
This message indicates that you specified a row, column, or length value that exceeds the
dimensions of the VDT screen.

ISGE WAS UNABLE TO DELETE TEMPORARY FILE: < path name> SVC ERROR CODE = xx.
The ISGE created a file for the FDL compiler to use, and the FDL compiler was unable to
delete it before terminating. This error does not affect the results of the ISGE in any way. If
this message is displayed, you should perform a delete file operation on the file whose path
name is specified to avoid cluttering the system with unnecessary files.

ROLL MUST BE "U" OR "0"

C-22

On either an insert or delete lines command, you specified a roll value other than U or D. You
can abort the command with the Command key, or you must specify the roll value as U or D.

2234391-9701

Appendix D

Examples of FDL Form Definitions

This appendix contains several examples of segments written in the Form Definition Language
(FDL). They illustrate many of the possible FDL constructs.

These examples reside in the directory .S$TIFORM.TESTFORM on the installation disk. You can
compile them by using the FDL Compiler and then execute them by using the Form Tester.

Note that all comments are legally placed throughout the segments.

The first segment is the FDL produced during the ISGE tutorial in Section 4. The source that the
ISGE produces should be exactly like this segment, without the comments.

EXAMPLE

SEGMENT MASK ORDERM,CLEAR=Y.

DISPLAY GR =Y.
M(003,005)

(Def;ne the screen mask ORDERM, clear
the screen before d;splay;ng.)

(Turn graphics mode on to draw
the border.)

'BLLL'

M(003,075)
M(004,005)
M(004,075)
M(005,005)
DISPLAY GR
M(005,009)
M(005,058)
DISPLAY GR
M(005,075)
M(006,005)
M(006,075)
M(007,005)
DISPLAY GR
M(007,009)
M(007,022)
M(007,037)
M(007,048)
M(007,.058)
DISPLAY GR
M(007,075)
M(008,005)
M(008,075)
M(009,005)
M(009,075)
M(010,005)

2234391-9701

'C' •
, I ' •
, I ' •
, I

=N.
'FRED' 's RACQUET
'INVOICE #' .
=Y.
, I ' .
, I ' •
, I ' .
, I
=N.
'PART #'.
'DESCRIPTION'.
'QTY'.
'PRICE' .
'TOTAL'.
=Y.
, I ' •
, I ' •
, I ' •
, I ' .
, I ' •
, I ' .

(Turn the graphics mode of write
SHOP'. requested text on screen.)

(Graph;cs mode on.)

(Graphics mode off.)

(Graph;cs mode on.)

0·1

Examples of FDL Form Definitions

D·2

M(010,075) 'I'.
M(011,005) • I'.
M(011,075) 'I'.
M(012,005) • I'.
M(012,075) 'I'.
M(013,005) 'I'.
M(013,075) 'I'.
M(014,005) 'I'.
M(014,075) 'I'.
M(015,005) 'I'.
M(015,075) 'I'.
M(016,005) 'I'.
M(016,075) 'I'.
M(017,005) 'I'.
M(017,075) 'I'.
M(018,005) 'I
DISPLAY GR =N. (Graphics mode off.)
M(018,009) 'EMPLOYEE NAME'.
DISPLAY GR =Y. (Graphics mode on.)
M(018,075) 'I'.
M(019,005) 'I'.
M(019,075) 'I'.
M(020,005)

'DLLL'

M(020,075) 'E'.

END SEGMENT MASK ORDERM. (End screen mask drawing.)

SEGMENT ORDERS, (ORDERF),ORDERM. (Define segment ORDERS, put into form root
ORDERF, and use segment mask ORDERM.)

FIELD NVOICE. (Field named NVOItE.)
POSITION (5,67)L4.
REQ.

(Positioned at line 5, column 67, 4 bytes long.)
(A value must be entered into this field.>

NUMERIC. (The value must be numeric.>
END FIELD NVOICE. (End of field NVOICE.)

FIELD PARTN. (Field named PARTN.)
POSITION (8,9)L6. (Line 8, column 9, 6 bytes long.>
DISPLAY BR=Y. (Highlight this field's value.)
AUTOSKIP. (Automatically move cursor to next field.>
CHAR LIST=DIGIT. (Value must be between 0 and 9.>
LENGTH LIST=PNLENiDIAGNOSTIC=ERRPN.

END FIELD PARTN.

(Value must be 4 digits in length, if not
a user error message will appear.)

2234391·9701

Examples of FDL Form Definitions

FIELD DESCRP. (Field named DESCRP.)
POSITION (8,22)L11. (Line 8, column 22, 11 bytes long.)
DISPLAY MASK DSCRIP,POSTCLEAR. (Show field mask DSCRIP on screen.)
TABLE LIST=THINGS. (Value must be specified in this list.)

END FIELD DESCRP.

FIELD QNTITY.
POSITION (8,37)L3.
DISPLAY BR=Y.
RANGE LIST=RGEQTY.

END FIELD QNTITY.

FIELD PRICE.
POSITION (8,48)L6.
DISPLAY BR=Y.

(Field named QNTITY.)
(Line 8, column 37, 3 bytes long.)
(Highlight this field.)
(Value must be between 1 and 99999.)

(Field named PRICE.)
(Line 8, column 48, 6 bytes long.)

SIGNED NUMERIC, FILL=' " DEC=2.
(Value will be signed, justified right,
filled with leading blanks, and will
have two digits to the right of the
decimal point.)

COPY TO TOT A L.
CHAR LIST=MONEY.

(Copy the value to the field TOTAL
o through 9, + and. are the only valid chars.)

END FIELD PRICE.

EXTERNAL TOTAL. (Allow field TOTAL to be available to the
application.)

FIELD TOTAL.
POSITION (8,58)L7.
DISPLAY BR=Y.
RANGE LIST=RANGES.

IF COND BONUSS ON PRICE
THEN EDITS=DOTHIS
ELSE EDITS=DOTHAT.

END FIELD TOTAL.

FIELD YRNAME.
POSITION (18,23)L20.
REQ.
CHAR LIST=YOUWHO.

END FIELD YRNAME.

(Field named TOTAL.)
(Line 8, column 58, 7 bytes long.)

(This statement ignored because of conditional
statement.)
(If the value is between 50 and 99999 in
field PRICE then select attributes from
DOTHISiotherwise select attributes from

DOTHAT.)

(Field named YRNAME.)
(Line 18, column 23, 20 bytes long.)

(A through Z are the only valid
characters.)

FIELD MASK DSCRIP,CLEAR=N. (Field mask DSCRIP, do not clear screen before
DISPLAY BR=Y. showing: highlight this mask.)
M(9,12) 'DESCRIPTION ITEMS ARE:'. (Mask text that will be displayed.)
M(10,12) 'HAT, RACKET, CLOTHING, BALLS, SHOES'.

END FIELD MASK DSCRIP.

FIELD MASK COMISS,CLEAR=N. (Field mask COMISS.)
DISPLAY BR=Y.
M(10,44) 'CONGRATULATIONS! YOU WILL'.
M(11,44) 'RECEIVE A 10% COMMISSION'.

END FIELD MASK COMISS.

2234391-9701 0·3

Examples of FDL Form Definitions

0·4

FIELD MASK TOOBAD,CLEAR=N. (Field mask TOOBAD.)
M(14,33) 'BETTER LUCK NEXT TIME! '.

END FIELD MASK TOOaAD.

LIST CHAR DIGIT=O .. 9,BLANK.

LIST CHAR MONEY=O .. 9, , , , , +' , B LAN K.

LIST CHAR YOUWHO=A .. Z,BLANK.

LIST RANGE RGEQTY=IN,1/99999.

LIST RANGE RANGE$=IN,SO/99999.

LIST LEN PNLEN=4.

LIST TABLE THINGS=IN,'HAT','RACKET', 'CLOTHING', 'BALLS',
'SHOES'.

CONDITION BONUS$. (Condition named BONUS$.)
RANGE LIST=RANGE$.

END CONDITION BONUS$.

EDIT SET DOTHIS. (Edit set named DOTHIS.)
DISPLAY MASK COMISS,POSTCLEAR.

(If condition was true display field mask.)
END EDIT SET DOTHIS.

EDIT SET DOTHAT. (Edit set named DOTHAT.)
DISPLAY MASK TOOBAD,POSTCLEAR.

(If condition was false, display field mask.)
END EDIT SET DOTHAT.

ERROR MESSAGE ERRPN='PART NUMBER MUST BE 4 DIGITS'.
(User defined error message.)

END SEGMENT ORDERS. (End of segment ORDERS.)

2234391·9701

Examples of FDL Form Definitions

EXAMPLE

SEGMENT MASK MlAB01,ClEAR=Y.
M(02,33) 'USED BODY PARTS'.
M(04,43) 'INVOICE #'.
M(05,11) 'DATE: / /'.
M(05,47) 'TERMS:'.
M(06,08) 'SOLD TO'.
M(10,08) 'PART #'.
M(10,21) 'QTY'.
M(10,36) 'DESCRIPTION'.
M (1 0, 69) , P RIC E ' •
M(18,55) 'SUBTOTAL
M(20,60) 'TAX
M(22,54) 'TOTAL AMT
DISPLAY GR=Y.
M (11,011)

Def;ne a mask for th;s segment
Def;ne constant background text

(f;eld t;tles)

*
*
*
*
*
*
*
*
*
*

Enter the v;rtual graph;cs mode.

'AA'

M(11,73) 'AAAAAAA'.
M(12,01) 'A'.
M(12,16) 'I'.
M(12,25) 'I'.
M(12,65) 'A'.
M(12,79) 'A'.
M(13,01) 'A'.
M(13,16) 'I'.
M(13,25) 'I'.
M(13,65) 'A'.
M(13,79) 'A'.
M(14,01) 'A'.
M(14,16) 'I'.
M(14,25) 'I'.
M(14,65) 'A'.
M (14, 79) 'A'.
M(15,01) 'A'.
M(15,16) 'I'.
M(15,25) 'I'.
M(15,65) 'A'.
M (1 5 , 79) 'A'.
M(16,01) 'A'.
M(16,16) 'I'.
M(16,25) 'I'.
M(16,65) 'A'.
M (16, 79) 'A'.
M(17,01)

'AA'

2234391·9701 0·5

Examples of FDL Form Definitions

D·6

M(17,73) 'AAAAAAA'.
M (18,65) I A I •

M (18,79) I A I •

M(19,65) 'AAAAAAAAAAAAAAA'.
M(20,65) 'A'.
M(20,79) 'A'.
M(21,65) 'AAAAAAAAAAAAAAA'.
M(22,65) 'A'.
M(22,79) 'A'.
M(23,65) 'AAAAAAAAAAAAAAA'.

SEGMENT SLAB01,(FLAB01),MLAB01.

FIELD NVOICE.
POSITION(4,53)L10.

REQUIRED.
CHAR LIST=DIGIT.
JUST L,FILL='O'.

FIELD MONTH.
POS(+1,17)L2.
AUTOSKIP.

REQ.
RANGE LIST=RANGE1.
JUST R,FILL='O'.

FIELD DAYS.
POS(,20)L2.
TAB.

AUTOSKIP.
REQ.
RANGE LIST=RANGE2.
JUST R,FILL='O'.

FIELD YEAR.
POS (, 23) L2.
TAB.
REQ.
MIN LEN=2.
CHAR LIST=DIGIT.
VALUE='811.

FIELD TERMS.
POS(5,53)L23.
IF COND COND01 ON NVOICE

THEN EDITS=DOTHIS
ELSE EDITS=DOTHAT.

End of segment mask block
Start segment SLAB01, make segment an

entry into form root FLAB01, and
use the mask MLAB01.

Define a field named NVOICE.
This field is positioned at line 4,

column 53 and is 10 bytes long.
A value must be entered into this field.
Allow only digits.
Justify the value to the left and fill

with zeros.
End of this field block.

Define field named MONTH.
Line 5, column 17, 2 bytes long.
Automatically move the cursor to the

next field when this field is filled.

Allow digits between 1 and 12 only.
Justify right and fill with O's.

Field named DAYS.
Line 5, column 20 and 2 bytes long.
Place cursor in this field if using
the Forward Tab key.

Allow digits between 1 and 31 only.

Field named YEAR.
Line 5, column 23 and 2 bytes long.

Value entered has to be at least 2 bytes.
Allow digits between 1 and 9 only.
Intialize this field with 81.

Field named TERMS.
Line 5, column 53 and 23 bytes long.
Select attributes on the basis of whether

the value is between 1 and 5 million
or its not.

2234391-9701

Examples of FDL Form Definitions

FIELD SOLD01.
POS(+1,17)L59.
REQ.

FIELD SOLD03.
POSITION (8,17)L59.
SAME AS SOLD01.

FIELD SOLD02.
POSITION (-1,)L59.
SAME AS SOLD01.

FIELD PARTN.
POSITION (12,8)L5.

ARRAY DIM(3,1),INC(2,1).

CHAR LIST=DIGIT.
LENGTH LIST=LEN001.

FIELD QUANT'.
POS(12,20)L5.
ARRAY DIM(3,1),INC(2,1).
CHAR LIST=DIGIT.
RANGE LIST=RANGE3.

FieLd named SOLD01.
Line 6, coLumn 17 and 59 bytes Long.

FieLd named SOLD03.
Line 8, coLumn 17 and 59 bytes Long.
Same attributes as the 'SOLD01' fieLd.

FieLd named SOLD02.
Line 7, coLumn 17 and 59 bytes Long.

FieLd named PARTN.
Position of upper Left fieLd of array:
Line 12, coLumn 8 and 5 bytes Long.
Three rows, one coLumn, one Line
skipped between rows, no positions
between coLumns.

VaLue must be five characters Long.

FieLd named QUANT.
Line 12, coLumn 20 and 5 bytes Long.

JUST R,FILL=' , ON ENTRY.
VaLue must be between 1 and 99999.
Justify immediateLy after vaLue is

entered into the fieLd.

FIELD DESCR. FieLd named DESCR.
POSITION (12,26)L38.
ARRAY DIM(3,1),INC(2,1).
TABLE LIST=TABLE1.
DISPLAY MASK MASK01, POSTCLEAR. DispLay fieLd mask MASK01

FIELD PRICE.
POSITION (12,68)L8.
ARRAY DIM(3,1),INC(2,1).
CHAR LIST=MONEY.

FieLd named PRICE.
Line 12, coLumn 68, 8 bytes Long.

o through 9,+, and .,
are the onLy vaLid chars.

JUST R,FILL=' ',DEC=2 ON ENTRY.
JUST R,FILL='O' ON OUTPUT.
SCALE R,02 ON OUTPUT.

EXTERNAL SUBTOT.

FIELD SUBTOT.
POSITION (18,68)L8.
OUTPUT.

EXTERNAL TAX.

FIELD TAX.

2234391-9701

POSITION (20,68)L8.
OUTPUT.

ALLow fieLd SUBTOT to be avaiLabLe to the
application.

FieLd named SUBTOT
Line 18, coLumn 68, 8 bytes Long
Cannot enter data to this fieLd.

FieLd named TAX.

0·7

Examples of FDL Form Definitions

0·8

EXTERNAL TOTAMT.

FIELD TOTAMT.

LIST

POSITION (22,6S>LS.
OUTPUT.

CHAR DIGIT=O .• 9,BLANK.

F;eld named TOTAMT.

LIST CHAR MONEY=O •• 9,'.',',',BLANK.

LIST RANGE RANGE1=IN,1/12.

LIST RANGE RANGE2=IN,1/31.

LIST RANGE RANGE3=IN,1/99999.

LIST RANGE RANGE4=IN,1/5000000.

LIST LEN LENOO1=5.

LIST TABLE TABLE1=IN,'LEGS','EYEBALLS','FINGERS','HEARTS',
'KIDNEYS'.

CONDITION COND01.
RANGE LIST=RANGE4.

EDIT SET DOTHIS.
END EDIT SET DOTHIS.

EDIT SET DOTHAT.
REQ.

Cond;t;on named COND01.

Ed;t set named DOTHIS.
Blank ed;t set.

Ed;t set named DOTHAT.

GROUP GROUP1=NVOICE,DAYS,MONTH,YEAR,TERMS,SOLD01,SOLD02,
SOLD03.

GROUP GROUP2=PARTN(*,*>,QUANTC*,*>,DESCR(*,*>,PRICE(*,*>.

GROUP GROUP3=SUBTOT,TAX,TOTAMT.

FIELD MASK MASK01, CLEAR=N. F;eld mask named MASK01.
M(22,1> 'INVENTORY ITEMS INCLUDE:'.
M(23,1> 'LEGS, HEARTS, FINGERS, EYEBALLS, KIDNEYS'.

End of segment SLAB01.

2234391-9701

Examples of FDL Form Definitions

EXAMPLE

SEGMENT MASK OGRPSM,CLEAR=Y. Def;ne segment mask OGRPSM.
M(01,10) 'ORDERED GROUP TEST: GROUP NAME IS OGRP'.

SEGMENT OGRPS,(OGRPF),OGRPSM. Def;ne segment OGRPS

FIELD AA 111 •
POS (1,1)L1.

FIELD AA310.
P~S (3, 1 0) L1 •

FIELD AA620.
P~S (6,20)L1.

FIELD AA930.
P~S (9,30)L1.

FIELD AA1240.
POS(12,40)L1.

FIELD AA1550.
PO S (15, 50) L1 •

FIELD AA1860.
P~S (18,60)L1.

FIELD AA2170.
P~S (21, 70) L1 •

FIELD AA2480.
P~S (24,80)L1.

FIELD AA180.
P~S (1,80)L1.

FIELD AA370 ..
P~S (3,70)L1.

FIELD AA660.
P~S (6,60)L1.

FIELD AA950.
P~S (9,50)L1.

FIELD AA1530.
P~S (15,30)L1.

FIELD AA1820.
P~S (18,20)L1.

FIELD AA2110.
P~S (21,10)L1.

FIELD AA241.
P~S (24,1)L1.

Def;ne numerous f;eld at random locat;ons
on the screen. All f;elds be;ng of
1 byte long. Read the spec;f;ed ordered
group names below to test for ordered
groups.

ORDER GROUP LSPIRL = AA11,AA241,AA2480,AA180,AA310,AA2110,AA2170,
AA370,AA620,AA1820,AA1860,AA660,AA930,AA1530,
AA1550,AA950,AA1240.

ORDER GROUP IOSPRL = AA11,AA241,AA2480,AA180,AA310,AA2110,AA2170,
AA370,AA620,AA1820,AA1860,AA660,AA930,AA1530,
AA1550,AA950,AA1240,AA950,AA1550,AA1530,AA930,
AA660,AA1860,AA1820,AA620,AA370,AA2170,AA2110,
AA310,AA180,AA2480,AA241,AA11.

ORDER GROUP PONG = AA11,AA2480,AA310,AA2170,AA620,AA1860,AA930,
AA1550,AA1240,AA1530,AA950,AA1820,AA660,AA2110,
AA370,AA241,AA180.

2234391-9701 0.910.10

Appendix E

Graphic Characters

This appendix contains information on the graphic characters available on the 911 VDT, 931 VDT,
Business System terminal, and 940 EVT. Figure E-1 shows the keyboard positions for the graphic
characters available on the 911 VDT. Figure E-2 shows the keyboard positions for the graphic
characters available on the 931 VDT. The keys that produce the graphic characters on the 940 EVT
and Business System terminal are the same as the keys that produce graphic characters on the
931 VDT. Figure E-3 defines the VDT graphic character sets.

When displaying data to a field mask with the graphics display attribute, the keys with the ASCII
codes specified in Figure E-3 are translated into the corresponding graphic character. All other
characters are translated to a space. For information on the ASCII codes that the keys on each
terminal produce, refer to either the DX10 Operating System Application Programming Guide
(Volume /II) or the DNOS Supervisor Ca/l (SVC) Reference Manual, depending on the operating
system you are using.

2234391-9701 E·1

m
~

I\)
I\)
Co) .,..
~
cO
-..,j

~

ERASE
FIELD

PRINT

+-

INS
CHAR

2263164

(SEE NOTE 2)

(SEE NOTE 1) I FI I F2 I F3 I F4 I FS I F6 I F7 I F8 I CMD I 6
ERASE
INPUT

t

HOME

+

\

REPEAT

--+

DEL J CHAR

UPPER
CASE
LOCK

NOTE: 1. GENERATES HEX CODE 9F
2. GENERATES HEX CODE 9C

SPACE

Figure E·1. Graphic Characters on the 911 VOT

7 8

4 5

t 2

0

9

6

3

•

G)

Q1
1:)
::;,-
o·
Q
Q)

Q1
C')

Cb
(;;

I\)
I\)

~
U)
co
cO
-....i
o

m
W

~I~
ON/OFF REV

STATUS LINE BKGND

2285394

DISPLAY
BRIGHT DIM

SPEC
CHAR

BELL
VOLUME

Figure E·2. Graphic Characters on the 931 VOl

Ci)
Q1
'b :;:,-
c;"
~
Q)

iiJ
()

CD
~

Graphic Characters

CODE CHARACTER ~ CHARACTER CODE CHARACTER CODE CHARACTER

00 I * 01 I" 02 I * 031"

041* 051* 061* 071"

os I * 09 I * OA I * 08 I *

OC I * OD I * OE I * OF I *

,~ I * II I * 12 I * 131 *

141 * 151 * 16 I * 171"
lsi * 19 * IA * 18 I *

lC I * lD I * IE I * IF I *

2Z79759

Figure E·3. VOl Graphic Character Sets

E·4 2234391-9701

Appendix F

Quick Reference to FDL Syntax

Form Definition Language (FDL) syntax definitions use the following notation:

Notation

Uppercase

Lowercase

Braces

Brackets

Three dots

Punctuation

Comments

Meaning

Keywords that must be entered as shown. You can omit the
rightmost letters shown in italics.

Generic terms (listed below) that represent the names, literals, and
numbers used in your application:

• A name consists of a letter followed by up to five additional
letters, numerals, dashes, and dollar signs.

• A literal consists of up to 78 characters enclosed by single
quotes. You can use two Single quotes to r.epresent a single
quote within the text.

• A number is a signed integer, unless stated otherwise.

Enclose lists of items from which you choose one. Vertical bars
separate items on the list.

Enclose lists of items from which you choose one or none. Vertical
bars separate items on the list.

Mean you can enter the preceding item more than once, using
commas as separators.

Must be entered as shown (other than the three dots):

= " * . , . ,

Can be included in the FDL source in four ways:

• Each FDL statement ends with a period followed by a space.
Any text to the right of the period is a comment.

• Any text to the right of an exclamation point is a comment
(unless the exclamation point is part of a literal).

• Any text on a line beginning with a period is a comment.

• Any text on a line beginning with a slash is a comment to be
printed on a new page.

2234391-9701 F·1

Quick Reference to FDL Syntax

F·2

Context: Form Block

FORM form [,part#][,rev#]
DISABLE CONTROL MODE mode .. .
ENABLE CONTROL MODE mode .. .
DEVICE = type
FILLER = char [,DISPLAY = GRAPHICS]

segment-mask-block
segment-block

EN D FORM form

Context: Segment Mask Block

SEGMENT MASK segmask, CLEAR = {YES I NO}
DISPLAY {ND I BR I GR} = {YES I NO} ...
M([row),[col]) literal

END SEGMENT MASK segmask

Context: Segment Block

SEGMENT segment [,(form ...)] [,segmask]
DEVICE = type
ERROR MESSAGE message = literal
EXTERNAL {field I variable } ...
FKEYS keyliofield ...
FILLER = char [,DISPLA Y = GRAPH/CS]
GROUP group = {field I variable I group I array} ...
LIST CHARACTER list = {char I char .. char I char/char} ...
LIST LENG TH list = length ...
LIST RANGE list = {IN, I EX,} {value .. value I value/value} ...
LIST SUBSTITUTE list = valuelliteral...
LIST TABLE list = {IN, I EX,} value ...

condition-block
edit-set-block
field-block
field-mask-block

M([row],[col]) literal
ORDERED GROUP group = {field I variable I group I array} ...
VAR/ABLEvariable = literal

END SEGMENT segment

2234391-9701

Quick Reference to FDL Syntax

Context: Field Block

FIELD field
ARRAY DIMENSION(row,col), INCREMENT(offset,offset)
AUTOSKIP
BRANCH TO iofield
CHARACTER LIST = list [;DIAGNOSTIC= {message I literal}]
COpy FROM {field' variable 'literal I * } ... TO {field' variable I * } ... ON ENTRY
COPY FROM {field I variable 'literal I *} ... TO * ON COMPLETION
DEFAULT = {iofield I variable ,literal}
DISPLAY {ND' BR' BL' GR} = {YES' NO} ...
DIISPLA Y MASK mask [,POSTCLEAR]
EXTERNAL {field' variable} ...
FILLER = char [,DISPLAY= GRAPHICS]
GRAPHICS INPUT
[PASS' FAIL] IF {iofield' variable' *} relop {iofield' variable I *}

[;DIAGNOSTIC = {message I literal }]
I F [NOT] CON DITION condition [PREENTRY I POSTENTRy] ON {iofield I variable' *}

THEN {GOTO iofield I TERMINATE READ [IMMEDIATEL Y] I EDITS = edits}
[ELSE {GOTO iofield , TERMINA TE READ [IMMEDIA TEL Y] I EDITS = edits}]

JUSTIFY LEFT, FILLER = char [ON ENTRY I ON COMPLETION]
JUSTIFY RIGHT, FILLER = char [,DECIMAL = places] [ON ENTRY I ON COMPLETION]
LENGTH LIST = list [;DIAGNOSTlC= {message I literal}]
MINIMUM LENGTH = length [;DIAGNOSTlC= {message I literal}]
NOAUTOSKIP
NO ENTRY
NOTAB
NOTREQUIRED
NOVALIDATE
[SIGNED I UNSIGNED] NUMERIC [,FILL = char] [,DECIMAL = places]
OUTPUT
POSITION [R] (row,col) L length
PROM PT = literal
RANGE LIST = list [;DIAGNOST/C= {message I literal}]
REQUIRED [;DIAGNOSTIC = {message I literal }]
SAM E AS {iofield I ed its, *} [EXCEPT FOR]
SCALE {L I R}, places [ON ENTRY I ON COMPLETION]
SUBSTITUTE LIST = list [ON ENTRY I ON COMPLETION]
TAB
TABLE UST = list [;DIAGNOSTlC= {message I literal}]
TERMINA TE READ [IMMEDIA TEL Y]
VALUE = {iofield I variable I literal }

END FIELD field

2234391-97101 F·3

Quick Reference to FDL Syntax

F-4

Context: Field Mask Block

FIELD MASK mask, CLEAR = {YES I NO}
DISPLAY {NO I BR I GR} = {YES I NO} ...
M([row],[col]) literal

END FIELD MASK mask

{EDIT SET I EDITS} edits
AUTOSKIP
BRANCH TO iofield

Context: Edit Set Block

CHARACTER LIST = list [;DIAGNOSTIC = {message I literal }]
COpy FROM {field I variable I literal I * } ... TO {field I variable 1* } ... [ON ENTRY]
COPY FROM {field I variable I literal I * } ... TO * ON COMPLETION
DISPLAY {NO I BR I BL I GR} = {YES I NO} ...
DISPLA Y MASK mask [,POSTCLEAR]
FILLER = char [,DISPLA Y = GRAPHICS]
GRAPHICS INPUT
[PASS I FAIL] IF {iofield I variable I *} relop {iofield I variable I *}

[;DIAGNOSTIC = {message I literal }]
IF [NOn CONDITION condition [PREENTRY I POSTENTRY] ON {Iofield I variable I *}

THEN {GOTO iofield I TERMINATE READ [IMMEDIATEL Y]I EDITS = edit}
[ELSE {GOTO iofield I TERMINATE READ [IMMEDIATEL Y]I EDITS = edit}]

JUSTIFY LEFT, FILLER = char [ON ENTRY ION COMPLETION]
JUSTIFY RIGHT, FILLER = char [,DECIMAL = places] [ON ENTRY I ON COMPLETION]
LENGTH LIST = list [;DIAGNOSTlC= {message I literal}]
MINIMUM LENG TH = length [;DIAGNOSTIC = {message I literal }]
NOAUTOSKIP
NO ENTRY
NOTAB
NOTREQUIRED
NOVALIDATE
[SIGNED I UNSIGNED] NUMERIC [,FILL = char] [,DECIMAL = places]
PROMPT = literal
RANGE LIST = list [;DIAGNOSTIC = {message I literal }]
REQUIRED [;DIAGNOSTIC = {message I literal }]
SAM E AS {iofield I edits I *} [EXCEPT FOR]
SCALE {L I R},places [ON ENTRY I ON COMPLETION]
SUBSTITUTE LIST = list [ON ENTRY I ON COMPLETION]
TAB
TABLE LIST = list [;DIAGNOSTlC= {message I literal}]
TERM/NA TE READ [IMMEDIA TEL Y]
VALUE = {iofield I variable I literal }

END EDIT SET edits

2234391-9701

Quick Reference to FDL Syntax

Context: Condition Block

CONDITION condition
CHARACTER LIST = list [;DIAGNOST/C= {message I literal}]
[PASS I FAI L] IF {iofield I variable I *} relop {iofield I variable I *}

[;DIAGNOSTlC= {message I literal}
LENGTH LIST = list [;DIAGNOSTIC= {message I literal}]
MINIMUM LENGTH = length [;DIAGNOSTlC= {message I literal}]
RANGE LIST = list [;DIAGNOSTIC = {message I literal }]
TABLE LIST = list [;DIAGNOSTIC= {message I literal}]

END CONDITION condition

Term

Definition of Generic Terms

Meaning

Arrayelement: Field name followed by row and column
Character: Alphanumeric character enclosed in single quotes

array
char
col Column number or offset: Unsigned for absolute column number, signed

condition
edits
field
form
group
iofield
key
length
list
literal
mask
message
mode
offset
part#
places
relop
rev#
row

segmask
segment
type
value
variable

2234391-9701

for offset from previous column specification
Condition name: Unique within its segment
Edit set name: Unique within its segment
I/O or output field name: Uniq-ue within its segment
Form name: Unique within its program file
Group name: Unique within its segment
I/O field name: Unique within its segment
Function key: Device-specific code for a function key
Field length: Positive integer
List name: Unique within its segment
Text string: Up to 78 characters enclosed in single quotes
Field mask name: Unique within its segment
Message name: Unique within its segment
Control mode: See Table 3-1
RowlColumn offset: Positive integer
Part number: Six-digit integer
Decimal places: Positive integer
Relational operator: EQ, NE, LT, LE, GT, or GE
Revision number: Two-digit integer
Row number or offset: Unsigned for absolute row number, signed for offset

from previous row specification
Segment mask name: Unique within its program file
Segment name: Unique within its program file
Device type: See Table 3-2
Value: Possible user response
Variable name: Unique within its segment

F-5/F-6

Appendix G

Quick Reference to the ISG E

G.1 INTRODUCTION

This appendix provides a quick reference for the ISGE. Figure G-1 shows the three major phases
in an ISGE session: initiation, design, and termination. This appendix concentrates on informa
tion you need for the design phase. It describes the function keys you can use when designing a
segment mask or a field mask. Then, it describes each of the prompts on the Field Attribute Selec
tion (FAS) menu and the Edit Set Specification (ESS) menu.

G.2 SEGMENT MASK AND FIELD MASK DESIGN

Table G-1 describes the active function keys you can use when designing a segment mask or field
mask.

Table G-1. Function Keys

Function

Position Cursor
Insert Lines
Delete Lines
Draw Vertical
Copy Block
Move Field
Delete Field
Insert Field
Enter/Leave Field Mask Mode
Leave Edit Screen Mode or Abort
Print

G.3 FIELD ATTRIBUTE AND EDIT SET SPECIFICATION

Generic
Key Name

F1
F2
F3
F4
F5
F6
F7
Fa
F10
Command
Print

The following list explains the prompts on the Field Attribute Specification (FAS) menu and the
Edit Set Specification (ESS) menu. It describes the prompts in the order they appear on the
screens. The differences between the two menus are noted. Figure G-2 shows the FAS menu, and
Figure G-3 shows the ESS menu.

2234391-9701 G-1

Quick Reference to the ISG E

INITIATION

PHASE

2

DESIGN

PHASE

3

TERMINATION

PHASE

2 28 1 704 (1/8)

DESIGN
SEGMENT
MASK

FIELD
MASK
DESIGN

151)

SAVE
INTERMEDIATE
FILE

(Cs)

(OM)

MASK DESIGN
MODE

(PRESS CMD)

FLOW OF CONTROL IN ISGE

(XISGE)

(Ril

(EI)

CREATE
AN FDL
FILE

(SF)

FIELD ATTRIBUTE
SPECIFICATION
MODE

(PRESS CMD)

Figure G·1. ISGE Flow of Control

SPECIFY
FIELD
ATTRIBUTES

EDIT
SET
SPECIFICATION

CSI

COMPILE A
SEGMENT

G·2 2234391-9701

Quick Reference to the ISGE

FIE L D A T T RIB UTE S P E C I F I CAT ION

Row: 005 Col: 067 Length: 004 Name: Function Key:_
Accept Display Defaults: Y Bright: N Blink: N Non Display: N Graphic: N
Same as Field: External: N Output Only: N Fill:. Graphics Input: N
Required: N Minimum Length: ______ Tab Stop: N Auto Skip: N
Validation on Output: Y Branch To: Field Mask: Postclear: N
Numeric: N Signed: N Numeric fi ll:_ Decimal places: ______ Field Complete: N

Complete:
Other Page:

Initialization:
Characters:

Fixed Lengths:
Ranges of Values:
Tables of Values:
Scaling/Justi;fy:

Substitute-Entry:
Substitute-Out:

Copy-to-Entry:
Copy-to-Out:

Figure G·2. FAS Menu

The prompts from Row to Output Only appear only on the FAS menu.

Rowand Column - This attribute indicates the line and column on the segment mask of the first
character of the field.

Length _. This attribute indicates the length of the field.

Name - This attribute indicates the name of the field. It is an optional attribute. If you do not
specify a name, a default name is created.

Function Key - This attribute associates a specific function key with the field so that pressing
the function key causes an immediate branch to the specified field.

Accept Display Defaults - This attribute allows you to specify whether you want to accept the
default values listed for the four display attributes that follow. They are bright, blink, non·
display, and graphics. Enter Y here to accept the defaults for these attributes and to move
the cursor to the next line in the menu; enter N to select any of these four attributes.

Bright - This display attribute specifies that information entered in this field will be brighter than
the rest of the segment mask.

Blink - To the extent that this attribute is supported by the device, the entities in the field will
blink.

2234391-9701 G·3

Quick Reference to the ISGE

E D I T SET S P E C I F I CAT ION

Edi t Set Name: __ _
Fill:_ Graphics Input: __
Requi red:_ Minimum Length: __ Tab stop:_ Auto Skip: __ _
Validation on Output:_ Branch To: Field Mask: Postclear: __ _
Numeric:_ Signed: __ Numeric fill:_ Decimal places: __ _

Edit Set Specification Complete:_

Complete:
Other Page:

Initialization:
Characters:

Fixed Lengths:
Ranges of Values:
Tables of Values:
Scaling/Justify:

Substitute-Entry:
Substitute-Out:

Copy-to-Entry:
Copy-to-Out:

Figure G·3. ESS Menu

Non Display - This display attribute specifies that information entered in this field will not be
displayed.

Graphic - This display attribute specifies that graphics characters can be written to the field.

Same as Field - This attribute specifies that the current field has the same attributes as the field
you name here except for the position and display attributes. If you specify other attributes,
they are discarded and a warning message is displayed.

External - This attribute specifies that the name of the field is external. If a field name is external,
the application can refer to it by name in Read, Write, and Reset commands.

Output Only - This attribute prohibits user input.

The following prompt appears only on the ESS menu.

Edit Set Name - This prompt specifies the name of the edit set being defined.

G·4 2234391-9701

Quick Reference to the ISGE

The remainder of the prompts are identical on both menus.

Fill - This attribute allows you to specify a character that will be used to represent empty field
positions on the screen. The default fill character is the underscore (_).

Graphics Input - This attribute specifies that terminal-dependent graphics characters can be
entered from the keyboard into the field.

Required - This attribute specifies that data must be entered in this field. If a required field is left
empty or filled with blanks, an error message is displayed.

Minimum Length - This attribute specifies a minimum length for data entered in this field.

Tab Stop .- This attribute specifies that the cursor stops in this field when the Forward Tab key is
pressed.

Auto Skip - This attribute specifies that the cursor automatically goes to the next field when the
last character position in this field is filled.

Validation on Output - This attribute specifies that the field is not validated immediately prior to
the return of data to the application.

Branch To - This attribute names the next field to read. The cursor goes to the named field rather
than the next field in normal sequence.

Field Mask - This attribute names a field mask to display when the cursor is in this field.

Postclear - This attribute specifies that the field mask is cleared from the screen when the cursor
leaves the field.

Numeric -- This attribute specifies that only numbers can be entered in this field.

Signed - This attribute specifies that signed numbers can be entered in this field.

Numeric Fill - This attribute allows you to specify the character that will be used to fill spaces
not filled by a number in a field with the attribute Numeric.

Decimal Places - This attribute specifies the number of decimal places for numbers entered into
the field.

Field Complete - Enter an N here to continue specifying attributes for the field; enter a Y if
attribute specification for this field is complete.

Complete - Press the F1 key to return to the field labeled Field Complete.

Other Page - Not all the attributes for this section of the menu can be displayed at one time.
Press the F1 key to see additional attributes. Figure G-4 shows the FAS screen when you
press F1 for Other Page. The ESS screen is identical for thesa attributes.

2234391·9701 G-5

Quick Reference to the ISGE

E D I T SET S P E C I F I CAT ION

Edit Set Name: DOTHIS
Fi ll: Graphics Input: N
Required: N Minimum Length: ______ Tab Stop: N Auto Skip: N
VaLidation on Output: Y Branch To: FieLd Mask: COMISS PostcLear: N
Numeric: N Signed: N Numeric fiLL:_ DecimaL pLaces: __ _

Edit Set Specification CompLete: N

CompLete:
Other Page:

CrossfieLd:
Condo Attributes:

Condo Branch:
Array:

Prompt:
User Error Msg.:

VariabLe:
Group:

Figure G·4. Other Page of FAS Menu

To specify any of the following attributes, you need to position the cursor in the field and press F1.
This displays the prompts for that attribute, shows the syntax for the FDL statements generated
by this specification, and provides an example of an FDL statement that specifies this attribute.
Figure G-5 shows the screen when you press F1 for the Characters prompt. The other prompts
display screens similar to this one when you press F1.

Initialization - This attribute specifies default or initial values for this field.

Characters - This attribute specifies a list of valid characters for this field.

Fixed Lengths - This attribute specifies a list of valid input data lengths for this field.

Ranges of Values - This attribute specifies a list of valid ranges of values for this field.

Tables of Values - This attribute specifies a list of valid tables of values for this field.

Scaling/J ustify - This attribute specifies scaling and/or justification for this field.

G·6 2234391-9701

Quick Reference to the ISGE

FIE L D A T T RIB UTE S P E C I F I CAT ION

Row: 008 Col: 009 Length: 006 Name: PARTN Function Key: ___ ___
Accept Display Defaults: N Bright: N Blink: Y Non Display: N Graphic: N
Same as Field: External: N Output Only: N Fill: Graphics Input: N
Required: N Minimum Length: ______ Tab Stop: N Auto Skip: Y
Validation on Output: Y Branch To: Field Mask: Postclear: N
Numeric: N Signed: N Numeric fill:_ Decimal places: ______ Field Complete: N

Complete: Character Name:_ Complete: N
Other Page:

Initialization:
Characters:

Fixed Lengths: SYNTAX:
Ranges of Values:
Tables of Values: LIST CHARacter <clist> = {'char' .. 'char'

Sca l ; ng/ Just; f~~: , c ha r' / ' c ha r' I' c ha r' ,}
Substitute-Entry:

Substitute-Out: EXAMPLE:
COP)'-to-Ent r'~:

Copy-to-Out: LIST CHAR CNAME = A •. Z,0/9,'?',''''.

Figure G·5. FAS Menu - Character Prompt

Substitute-Entry _. This attribute specifies a list of substitutions to be made on entry into this
field.

Substitute-Out - This attribute specifies a list of substitutions to be made on return to the
application.

Copy-to-Entry - This attribute names the fields to which input data is to be copied on data entry.

Copy-to-Out - This attribute names the fields to which input data is to be copied on return to the
application.

Crossfield - This attribute specifies crossfield comparison edit for the field. The two fields
named here are compared to see if they fulfill one of the following conditions: equal (EQ),
less than (l T), less or equal (lE), not equal (NE), greater than (Gn, or greater or equal (GE).

Cond.Attributes - This attribute specifies conditional attributes for the field. If the stated condi
tion is true, one edit set is selected; if the condition is false, a different edit set is selected.

Cond.Branch - This attribute specifies conditional field branching. If the condition specified is
true, the cursor goes to the field specified rather than to the next field in normal sequence.

Array - This attribute specifies replication of the field into an array.

2234391·9i'01 G·7

Quick Reference to the ISGE

Prompt - This attribute applies only to KSR-type devices. If specified when any other device is
being used, the prompt is ignored during form execution. This attribute specifies KSR unfor
matted input prompt text.

User Error Msg - This attribute specifies custom edit error messages.

Variable - This attribute specifies a variable for this field.

Group - This attribute specifies a group for this segment.

G·8 2234391-9701

Glossary

Array - A collection of fields arranged in rows and columns. All fields in an array have the same
attributes, e'xcept for location.

Attribute - See Field Attribute.

Auto Skip - An attribute of a field that specifies the cursor automatically goes to the next field
after the user enters a character into the last position in the field.

Block - A group of FDL statements that appear together and define one of the components of a
form. FDL contains seven types of blocks, one for each of the components of a form: form,
segment, segment mask, field, edit set, condition, and field mask. The block defines the
structure of, and attaches a name to, these components of the form.

Branch - An attribute of a field that names the next field to read. The cursor goes to the named
field rather than the next field in the usual order.

Character Set - An attribute of a field that determines the set of valid characters the user can
enter into the field.

Condition Block - A series of FDL statements that define a condition. You can define conditions
according to the character composition, length, or value of the data at the time the user
enters data into the field or before the data is returned to your program. The condition can
determine which edit set to apply or where to move the cursor for the next operation. The
CONDITION statement marks the beginning of the condition block and assigns it a name.

Control Mode - One of the 13 methods of operation that your application can specify. Refer to
Table 3-1.

Copy - An attribute of a field that causes a specified field, value, or literal to be copied to another
field or variable after the user enters data into the field that has the attribute. Though the
field with the copy attribute is usually the one copied, this is not a requirement.

Data Buffer - A data structure in the application program used to exchange information with the
Form Executor.

Deblank -- The substitution of ASCII nulls for blanks.

Decimal Places - An attribute of a field that specifies the number of decimal places for numbers
entered into the field.

2234391-97101 Glossary-1

Glossary

Default Value - An attribute of a field that specifies the field automatically receives a value at the
time the segment is displayed. If the cursor never enters the field, this value is also used in
post-processing. The default value is different from an initial value in that the cursor must
enter the field for an initial value to come into effect and in that the initial value is restored
each time the cursor returns. The default value is only displayed once-when the Prepare
Segment routine is called. See also Initial Value.

Delayed Write Mode - A mode of operation unique to KSR-type terminals in which information
passed to the terminal by the use of a Write command from the application is stored in the
virtual screen maintained by the Form Executor, but is not printed. The information written to
the fields of the group is printed only as a result of a subsequent Read command or an action
of the terminal user, such as pressing the Print key. See also Immediate Write Mode.

Device Type - The generic device where the form is displayed. TIFORM supports several types of
VDTs and KSRs.

Display - An attribute of a field that determines how values in the field appear on the user's
screen. TIFORM can support the following display attributes: bright, blink, graphics, reverse,
and nondisplay.

Edit Key - A key on the terminal that allows the user to perform editing functions such as moving
the cursor, erasing input, and closing a read. The functions and effects of edit keys are
determined by the operating system and the Form Executor. See also Function Key.

Edit Set - A set of field attributes that determine how a field is displayed to the user, which kinds
of data it accepts, and what processing follows data entry.

Edit Set Block - A series of FDL statements that define the attributes in an edit set. The EDIT SET
statement marks the beginning of the edit set block and assigns it a name.

Elemental Membership - The set of fields, arrays, and variables that belong to a group. To derive
the elemental group from its FDL, you replace each subgroup with the items it contains until
only fields, arrays, and variables remain.

Event Key - A key used to signal an event rather than enter data. See also Function Key.

Exact Length - An attribute of a field that specifies the user must enter a specific number of
characters when entering data into the field or the entry is rejected.

External Name - A name that your application program can use to reference a field or variable in
your form. You declare a field or variable external by specifying it in an EXTERNAL
statement.

FDL - See Form Definition Language.

FDL Compiler - The software component of TIFORM that translates your FDL statements into a
format usable by the Form Executor and installs them as overlays in a specified program file.

FDLC - See FDL Compiler.

Glossary-2 2234391-9701

Glossary

Field - A part of a segment used for I/O between the application program and the user. Each field
occupies one or more consecutive horizontal positions on a segment, as determined by FDL
statements for the field. Using calls to the interface routines, the application program can
read and write information in the fields for the currently active segment. Output only fields
can only be written by the application program. If read, they return blanks. Input/Output or I/O
fields can be both written and read.

Field Attribute - A characteristic of a field, such as its length, location, or usage.

Field Block - A series of FDL statements that define a field and its attributes. The FIELD
statement marks the beginning of a field block.

Field Mask - Background text that is displayed when the cursor enters the field. Field masks are
often used to display instructions about a particular field but are not used for data entry.

Fill Character - A character that replaces the blank as the filler for input fields on the form.

Fixed Length - See Exact Length.

Form - (1) To the user of a TIFORM application, a sequence of screen displays used to enter data
for the application. (2) To the application program, a collection of segments, previously
defined in FDL and stored together in a program file as overlays.

Form Block - A series of FDL statements that define a form. The FORM statement marks the
beginning of a form block.

Form Definition Language (FDL) - The language that allows you to design flexible, attractive
forms for data entry. FDL is a non-procedural, block-structured language that you can use to
specify the characteristics of your forms. The FDL compiler translates your FDL statements
into a format usable by the Form Executor and installs them as overlays in a specified
program file.

Form Designer - The person who deSigns a TIFORM form for an application program.

Form Executor - The TIFORM run-time associated with the terminal where your forms are
displayed. The Executor receives calls from the TIFORM interface routines linked with your
application program and carries out their instructions according to the characteristics of the
terminal.

Form Tester - A utility that enables you to test your forms without having to write a test program.
The Form Tester serves as an interactive driver program that allows you to simulate calls to
the interface routines and immediately see their results. It also allows you to delete form
segments, segment masks, and roots from a form program file.

Formatted Input - A mode of operation unique to KSR-type terminals in which the entire KSR
screen is available for printing. See also Unformatted Input.

Function Key - A key on the terminal, such as F1, that performs a predefined function for the
user. The effects of function keys are determined by the form designer and/or the application
program. See also Edit Key.

2234391-9701 Glossary-3

Glossary

Generic Key Name - A general name for a key function that applies to all supported terminals.
Appendix A describes the specific key on each terminal that performs the function.

Graphics Input - An attribute of a field that specifies the user can enter graphics characters as
data.

Group - A list of named items that is assigned a group name. These named items can be fields,
variables, or other groups. These items are read in the order they appear on the screen: left to
right, top to bottom. See also Ordered Group.

Immediate Write Mode - A mode of operation unique to KSR-type terminals in which the
contents of the fields of a group are printed immediately following the receipt of the contents
by the Form Executor. See also Delayed Write Mode.

Initial Value - An attribute of a field that specifies the field automatically receives a specified
value whenever it becomes the current field. As the cursor enters the field, the initial value is
displayed, making it easy for the user to enter that value by simply tabbing through the field.
If you do not assign an initial value to the field, its current value is displayed whenever the
cursor enters the field.

Input/Output (110) Field - A field that can be both written and read by the application program.
For instance, an application program can first write a dollar sign into a monetary I/O field and
later read the user's response from the same field.

Interactive Screen Generator/Editor (ISGE) - A utility program that helps you design forms for
your application. Using ISGE, you can create a new segment (screen display) and modify it
until you are satisfied with the layout. ISGE then translates your design into FDL statements
and compiles the resulting FDL program. ISGE leads you through the form definition
procedure with a series of menus and prompts, using the function keys on your terminal for
many common operations.

Interface Routines - Subprograms that allow your application program to access the forms you
create.

Intermediate Segment File - During execution of the ISGE, the segment being operated on is
maintained in a format unique to the ISGE. The file containing a segment in this format is
referred to as an intermediate segment (lMS) file, and the segment is called an intermediate
segment.

Interprocess Communication (IPC) - The DNOS capability that permits two or more tasks to
exchange information.

Intertask Channel Clearer - A DX10 utility that clears intertask communication (lTC) channels.

Intertask Communication (ITC) - A DX10 facility that permits the establishment of
communication channels and the exchange of data between two tasks.

110 Field - See Input/Output Field.

IPC - See Interprocess Communication.

Glossary-4 2234391-9701

Glossary

ISGE - See Interactive Screen Generator/Editor.

ITC - See Intertask Communication.

Justification - An attribute of a field that calls for the Form Executor to left or right justify data
that does not fill the entire field.

Left justification: Usually used for text data where the application program expects to
receive a character string of a certain length, without leading blanks but with enough trailing.
blanks to fill the field.

Right justification: Usually used for numeric data where the application program expects to
receive a valid numeric value, possibly with a sign to the left of the first significant digit or as
the rightmost character in the value.

KSR - A terminal that contains a printer and a keyboard and allows input/output from the
computer.

Linkable Executor .- A special version of the Form Executor that you can link directly with your
application program instead of using the standard Form Executor, which runs as a separate
task.

Minimum Length - An attribute of a field that specifies the user must enter at least a minimum
number of characters when entering data into the field or the entry is rejected.

No Entry - An attribute of a field that allows you to display a field without permitting the user to
enter data into it. Unless you assign the field a no entry or output attribute, the user is free to
enter or modify data in the field. The output and no-entry attributes differ in the way the field
is processed and the other attributes it can have. If you assign the no-entry attribute to a
field, it remains an 110 field with all of the properties of an 110 field except that the cursor can
never enter the field during a read. Post-entry processing occurs as usual, and Read routines
return the appropriate values.

Novalidate - An attribute of a field that exempts it from the usual revalidation that occurs for all
fields just prior to returning data to your program. ..

Numeric - An attribute of a field that specifies the field only accepts numeric data. The user can
enter only the numerals 0 - 9 and, in some cases, blanks, a sign, and a decinal pOint. Numeric
fields are right-justified before they are returned to the application program.

Numeric Fill - An attribute of a field that allows you to specify the character that is used to fill
pOSitions not occupied by a number in a field with the attribute Numeric.

On Completion - A time when a postentry operation is performed on the data entered into a field.
The operation is not performed until the data for all fields in the current application Read is
returned to your program. See also On Entry.

On Entry - A time when a postentry operation is performed on the data entered into a field. The
operation is performed immediately after the user enters data into the field. See also On
Completion.

2234391-9701 Glossary-5

Glossary

Ordered Group - A list of named items that is assigned a group name. These named items can be
fields, variables, or other groups. These items are read in the order specified by their FDL
statements rather than in the order in which they appear on the screen. See also Group.

Output - An attribute of a field that allows you to display a field without permitting the user to
enter data into it. Unless you assign the field an output or no entry attribute, the user is free
to enter or modify data in the field. The output and no-entry attributes differ in the way the
field is processed and the other attributes it can have. If you assign the output attribute to a
field, it becomes an output field and the only other FDL statements allowed in its field block
are POSITION, DISPLAY, and ARRAY. Your program can read, write, and reset the field, but
any Read always returns blanks.

Output-Only Field - A field with the output attribute. An output field can only be written by the
application program. The field cannot be used for data entry.

Overlay - A part of a task that resides on disk until explicitly requested. When requested, the
overlay replaces part of the task previously in memory. Using overlays can reduce the
amount of memory required by a task to the amount required for the largest segment
requiring memory at one time.

Page - The KSR equivalent of the VDT screen.

Position - An attribute of a field that tells how many characters it can contain and where it
begins on the screen or page.

Postclear - An attribute of a field that specifies the field mask is cleared from the screen when
the cursor leaves the field.

Print Key - A key that you can press to print the contents of the terminal's screen when you are
executing a form.

Prompt - An attribute of a field that applies to KSR-type devices only and is used to expand
incomplete background text. If the device type is anything else, the prompt is ignored during
form execution.

Ranges of Values - See Value Range.

Required - An attribute of a field that specifies the field cannot be left empty by the user. If a field
does not have the required attribute, the user can skip it or erase any value already there.

Scaling - A specification in the numeric attribute of a field that calls for the Form Executor to
multiply or divide the value of a numeric entry by a power of ten. When the user enters a
number without a decimal pOint into a field with a left scaling attribute, a decimal point is
inserted a specified number of positions from the right end of the field-in effect dividing the
number by a power of ten. When the user enters a number without a decimal point into a field
with right scaling, a specified number of zeros are inserted at the end of the field-in effect
multiplying the number by a power of ten. If a field has both a scaling attribute and a
justification attribute, the scaling occurs prior to justification.

Glossary-6 2234391-9701

Glossary

SCI - The user interface to the operating system. It prompts the user, interprets responses as
commands, and directs activities in the operating system to satisfy those commands. You
can also use SCI as a programming language.

Screen -- The part of a form that can be displayed on a 24-line by BO-character VDT screen or the
virtual screen of a KSR. See also Page.

Segment - The part of the form displayed for data entry. The segment has fields where the user
can enter data and where the program can display messages. The segment can also contain
segment masks, fields, and field masks.

Segment Block - A series of FDL statements that define a segment block. The SEGMENT
statement marks the beginning of a segment block.

Segment Mask - The part of the segment that consists of graphics or text that is displayed with
the segment but not used for data entry. The segment mask consists of directions, prompts,
borders, and other constant text.

Segment Mask Block - A series of FDL statements that define a segment mask. The SEGMENT
MASK statement marks the beginning of a segment mask.

Signed - A specification of the numeric attribute of a field that specifies signed numbers can be
entered in the field.

Substitute - An attribute of a field that specifies a predetermined substitute replaces the value
that the user enters into the field.

System Command Interpreter - See SCI.

Tab - An attribute of a field that specifies the cursor stops at the beginning of the field when the
user presses the Forward Tab key to exit the previous field.

Tables of Values - See Value Table.

Terminal User - See User.

Terminate - An attribute of a field that specifies a premature termination of the current Read. If
you specify that the termination is to occur IMMEDIATELY, all data is returned to your
program without the usual revalidation or on-completion processing. If you do not specify an
immediate termination, revalidation and on-completion processing occur but the Read
terminates before the user has a chance to enter data in any other fields.

Text Editor - A utility supplied with the operating system that allows you to create and modify
files of data.

Unformatted Input - A mode of operation unique to KSR-type terminals in which only the field
prompts are printed along with the current contents of fields into which the user is to enter
data. See also Formatted Input.

User - The person who uses the completed application program.

2234391-9701 Glossary-7

Glossary

Validation on Output - An attribute of a field that specifies the field is not validated immediately
prior to the return of data to the application.

Value Comparison - An attribute of a field that requires data to pass a comparison test before it
is accepted. The comparison test checks the relationship between the current values of two
fields or variables-not necessarily the field that you assign the value comparison attribute.
When the user enters data into the field, the comparison test is made. Depending on whether
the data entered passes or fails the test, processing continues or the user receives an error
message and tries again.

Value Range - An attribute of a field that applies only to numeric data. If a field has this attribute,
it accepts only values that lie within a defined range or set of ranges. A user who attempts to
enter an unacceptable value receives an error message and must try again.

Value Table - An attribute of a field that specifies the field only accepts values that appear in a
table of valid values. When the user enters a number into a field with this attribute, the
number is compared to a list of valid ranges assigned to the field. If the value does not
appear on the table, the user receives an error message and must try again.

Variable - A storage area within a segment that can be written to and read from by an
application. You can also use variables for validation tests expressed within the segment.
Data contained in a variable is never displayed.

Video Display Terminal - See VOT.

Video Display Unit - See VOU.

VOT - A terminal that contains a VOU and a keyboard and allows input/output from the computer.

VDU - The part of a VOT that contains the cathode-ray tube (CRT).

Glossary-8 2234391-9701

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

• Sections - Reference to Sections of the manual appear as "Sections x" with the sym
bol x representing any numeric quantity.

• Appendixes - Reference to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

• Tables -- References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash H and a number.

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

• Other entries in the Index - References to other entries in the index preceded by the
word "See" followed by the referenced entry.

2234391-9701 Index-1

Index

Activity Selection Menu, FORMTSTR 7.2
Form Tester F7-1 XFDLC 3.1.4

Application Interactions 2.2
Application Interface 1.4

COBOL 5.2.1
FORTRAN 5.2.3
Packages 5.2

Compile a Segment (CS) 4.3.4.3
Compiled Segment Changes 4.5
Compiled 2.0 Segment, Editing a F4-2
Compiler See FDL Compiler
Condition 1.2.2

Pascal 5.2.2 Block 3.1.5.5
Application Interface Routines:

COBOL 3.2 Entry Points to T5-1
CONDITION Statement 3.6
Control Functions Routine 5.10

FORTRAN Entry Points to T5-3 CONTROL MODE Statement 3.7
Pascal Entry Points to T5-2 Control Modes 1.4.7

Application Programs,
Linking TIFORM " Section 6

Arm Event Keys Routine 5.6

Functions T3-1
Copy Attribute 1.3.20
COPY Statement 3.8

Array "............ 1.2.5 Create an FDL File (CF) 4.3.4.2
ARRAY Statement 3.2
Attribute, Field See Field Attribute Data Buffer 1.4.1
Attributes, Field 1.3 Declare Status Block Routine 5.11

ISGE , G.3 DEFAULT Statement 3.9
Attributes of Supported Terminals, Default Value Attribute 1.3.4

Display T1-1
Autoskip Attribute " 1.3.14

Definition:
Sample Form 3.1.2

AUTOSKIP Statement 3.3 Syntax 3.1.3
Delayed Write Mode, 820 KSR 2.9.2

Background Mask Block 3.1.5.3
Block:

Background Mask 3.1.5.3

DELSEG Option, Compiler 3.1.4
Design Phase, ISGE " 4.3.3
DEVICE Statement 3.10

Condition 3.1.5.5 Device Type 1.2.1
Edit Set 3.1.5.6
Field 3.1.5.4
Form 3.1.5.1

Device Types and Characteristics T3-2
Diagnostics, FDL Compiler TC-2
Disarm Event Keys Routine 5.12

Segment 3.1.5.2 Display Attribute 1.3.16
Status 5.4

Block Types, Relationships
Display Attributes of Supported

Terminals T1-1
Among FDL F3-1 DISPLAY MASK Statement 3.12

Branch Attribute 1.3.21 DISPLAY Statement 3.11
BRANCH Statement 3.4 Display Terminals 2.8
Buffer, Data 1.4.1 Edit:
Building a Linkable Executor 6.3.1 Key Functions and Names T2-1
Business System Terminal Keys 2.8.1

Keyboard Layout FA-5 Error Handling 2.8.3
Function:

Calling Sequences: Key Names and Codes T2-2
COBOL3.1 5.2.1.2 Keys 2.8.2
COBOL3.2 5.2.1.1 DX10 Intertask Channel Clearer 7.3

Change Form Routine 5.7
Change /TCI/PC Communication Edit:

Routine 5.8 Key Functions and Nameb.
CHARACTER LIST Statement 3.5 Display Terminal T2-1
Character Set Attribute 1.3.11 820 KSR T2-3
Close Form Routine 5.9 Keys 2.4
COBOL Applications Interface 5.2.1 Display Terminal 2.8.1
COBOL 3.1 Calling Sequences 5.2.1.2 820 KSR 2.9.5
COBOL 3.2: Edit Set 1.2.2,1.3

Calling Sequences 5.2.1.1 Edit Set Block 3.1.5.6
Entry Points to Application Interface Edit Set Specification (ESS) Menu ... 4.3.3.3

Routines T5-1 EDIT SET Statement 3.13
Command: Editing a Compiled 2.0 Segment F4-2

Execute FDL Compiler (XFDLC) 3.1.4 END CONDITION Statement 3.6

Index-2 2234391·9701

EN 0 EDIT SET Statement 3.13
END FIELD MASK Statement 3.17
END FIELD Statement 3.16
EN 0 FORM Statement 3.20
END SEGMENT MASK Statement 3.46
END SEGMENT Statement 3.45
Entry Points to Application Interface

Routines:
COBOL3.2 T5·1
FORTRAN T5·3
Pascal T5·2

Error Codes, TIFORM Appendix C
Error Handling:

Display Terminal 2.8.3
820 KSR 2.9.3

Error Message 1.2.2
ERROR MESSAGE Statement 3.14
Error Messages:

ISGE " C.4
TIFORM C.2, TC·1

Errors File, Compiler 3.1.4
ESS Menu " 4.3.3.3
Exact Length Attribute 1.3.7
Execute Asynchronously Routine 5.13
Execute FDL Compiler

(XFDLG) Command 3.1.4
Execution Environment, TIFORM F1·1
Execution, Form Section 2
EXTERNAL Statement 3.15

FAS Menu " 4.3.3.3
FDL 1.1.1,3.1

Block Types, Relationships
Among F3·1

Form Definition
Example ... " Appendix 0, 3.1.2

Structure 3.1.1
Syntax Quick Reference Appendix F

FDL Compiler (FDLC) 3.1.4
DELSEG Option 3.1.4
Diagnostics C.3, TC·2
Errors File 3.1.4
Listing File ... " 3.1.4
NOSYMT Option 3.1.4
Object Program File 3.1.4
Options 3.1.4
Source Form ." 3.1.4

FDLC See FDL Compiler
Field 1.2.3, 1.4.2

Attribute:
Autoskip ... " 1.3.14
Branch " 1.3.21
Character Set 1.3.11
Copy 1.3.20
Default Value 1.3.4
Display " 1.3.16
Exact Length 1.3.7
Graphics Input 1.3.15
Initial Value 1.3.3
Justification " 1.3.18

2234391-9701

Index

Minimum Length 1.3.6
No Entry 1.3.2
Novalidate 1.3.22
Numeric 1.3.12
Output 1.3.2
Position 1.3.1
Required 1.3.5
Scaling 1.3.17
Substitute 1.3.19
Tabstop 1.3.13
Terminate 1.3.21
Value Comparison 1.3.10
Val ue Range 1.3.8
Value Table 1.3.9

Attributes 1.3
ISGE G.3

Block 3.1.5.4
InputlOutput (1/0) 1.2.3
1/0 1.2.3
Output Only 1.2.3

Field Attribute Specification (FAS):
Menu 4.3.3.3
Mode 4.3.3.3

Field Mask 1.2.3
DeSign 4.3.3.1
Handling, 820 KSR 2.9.4

FIELD MASK Statement 3.17
FIELD Statement , 3.16
File:

Intermediate Segment 4.4
Print Key 2.11.2

Flag 2.11.2.3
Queue 2.11.2.2
Terminal 2.11.2.1

Sequential 2.10
Fill Character . 1.2.1
FI LLER Statement 3.18
FKEYS Statement 3.19
Flow of Control, ISGE F4·1
Form 1.2.1

Block 3.1.5.1
Components 1.2
Definition Example,

FDL Appendix 0,3.1.2
Execution Section 2

Form Definition Language
(FDL) See FDL

Form Executor . 1.1.3
FORM Statement 3.20
Form Tester Section 7, 1.1.4,4.3.5

Activities 7.2
Arm Event Keys (Activity 12) 7.2.12
Change Form (Activity 17) 7.2.17
Change ITCIIPC Communication

(Activity 18) 7.2.18
Close Form (Activity 19) 7.2.19
Control Functions

(Activity 14) 7.2.14
Delete Form's Overlays

(Activity 21) 7.2.21

Index-3

Index

Disarm Event Keys
(Activity13) 7.2.13

Interactive Screen Generator/Editor
(ISGE) See ISGE

Display Form Status Interface Routines 1.1.3
(Activity 20) 7.2.20 Intermediate Segment File 4.4

End Program (Activity 22) 7.2.22
Open a Form (Activity 1) 7.2.1
Prepare a Segment (Activity 2) 7.2.2
Read a Group (Activity 4) 7.2.4
Read Indexed (Activity 7) 7.2.7
Read Indexed With Cursor Return

Recovery C.4.1
Intertask Channel Clearer, DX10 7.3

• 110 Field 1.2.3
ISGE 1.1.2,4.1

Design Changes 4.2
Design Phase 4.3.3

(Activity 8) 7.2.8 Error Messages C.4
Reset Form (Activity 15) 7.2.15
Reset Form Indexed

Field Attributes G.3
Flow of Control F4-1

(Activity 16) 7.2.16 Initiation Phase 4.3.2
Write a Group (Activity 3) 7.2.3
Write a Message (Activity 11) 7.2.11
Write Indexed (Activity 6) 7.2.6
Write Indexed With Reply

Preparation 4.3.1
Quick Reference Appendix G
Termination Phase 4.3.4
Tutorial 4.3

(Activity 9) 7.2.9
Write I ndexed With Reply and

Items Returned From Read
Commands 5.5

Cursor Return (Activity 10) 7.2.10
Write With Reply (Activity 5) 7.2.5

Activity Selection Menu F7-1
Justification Attribute 1.3.18
J USTI FY Statement 3.24

Status Display F7-2
Formatted Input Mode, 820 KSR 2.9.1
FORMTSTR Command 7.2

Key:
Print 1.4.6

FORTRAN: Sequences TA-2
Applications Interface 5.2.3
Entry Points to Application Interface

Routines T5-3

Keyboard Layout:
Business System Terminal FA-5
820 KSR FA-6

Function Keys 1.4.5
Display Terminal 2.8.2
Names and Codes:

911 VDT FA-1
915 VDT FA-2
931 VDT FA-4

Display Terminal T2-2
820 KSR T2-4

940 EVT FA-3
Keycap Name Equivalents,

Use in a Form 2.5 911 VDT TA-3
Use in an Application 2.6
820KSR 2.9.6

Keys:
Display Terminal:

931 VDT Special F4-8 Edit 2.8.1
Function 2.8.2

Generic Keycap Edit 2.4
Names Appendix A, TA-1 Function 1.4.5

GOTO Statement 3.23 820 KSR:
Graphic Character: Edit 2.9.5

Keyboard Positions:
911 VDT FE-1

Function 2.9.6
931 VDT Special Function F4-8

931 VOT FE-2 KSR See 820 KSR
Sets, VDT FE-3

Graphic Characters Appendix E
Graphics Input Attribute 1.3.15

LENGTH LIST Statement 3.25
Linkable Executor:

GRAPHICS INPUT Statement 3.21 Building a 6.3.1
Group 1.2.6 TIFORM 6.3
GROUP Statement 3.22 Using a 6.3.2

Linking TIFORM Application
I F Statement 3.23 Programs Section 6
Immediate Write Mode, 820 KSR 2.9.2 LIST CHARACTER Statement 3.26
Indexed Operations 5.3 List Definition Statements 3.1.5.7
Initial Value Attribute 1.3.3 LIST LENGTH Statement 3.27
Initiation Phase, ISGE 4.3.2 LIST RANGE Statement 3.28
Input/Output (I/O) Field 1.2.3

Index-4 2234391-9701

Index

LIST SUBSTITUTE Statement 3.29 Printer 2.10
LIST TABLE Statement 3.30 810 2.10
List, Validation 1.2.2 PROM PT Statement 3.40
Listing File, Compiler 3.1.4

RANGE LIST Statement 3.41
MASK (BACKGROUND TEXT) Read a Group Routine 5.17

Statement 3.31 Read Commands, Items
Mask Design Mode 4.3.3.1 Returned From 5.5
Menu: Read Indexed Routine 5.18

Edit Set Specification (ESS) 4.3.3.3 Read Indexed With Cursor
Field Attribute Specification Return Routine 5.19

(FAS) 4.3.3.3
Form Tester Activity Selection F7-1

Read Operations 1.4.3
Relationships Among FDL

Selection 4.3.3.2 Block Types F3-1
Minimum Length Attribute 1.3.6
MINIMUM LENGTH Statement 3.32

Required Attribute 1.3.5
REQUIRED Statement 3.42

Multitask TIFORM 6.2 Reset Form Indexed Routine 5.20
Reset Form Routine 5.21

No Entry Attribute 1.3.2 Returned Status 2.2
NO ENTRY Statement 3.33 Routine:
NOAUTOSKIP Statement 3.3 Arm Event Keys 5.6
Nonfatall Form Status Codes T5-4
NOSYMT Option, Compiler 3.1.4
NOTAB Statement 3.48

Change Form 5.7
Change ITCIIPC Communication 5.8
Close Form 5.9

NOTREQUIRED Statement 3.42 Control Functions 5.10
Novalidate Attribute 1.3.22 Declare Status Block 5.11
NOVALIDATE Statement 3.34 Disarm Event Keys 5.12
Numeric:Attribute 1.3.12 Execute Asynchronously 5.13
NUMERIC Statement 3.35 Open Form 5.14

Prepare Segment 5.15
Object Program File, Compiler 3.1.4 Print Key 5.16
Open Form Routine 5.14
Operations:

Indexed 5.3

Read a Group 5.17
Read Indexed 5.18
Read Indexed With Cursor

Read , 1.4.3 Return 5.19
Write ,.................. 1.4.4 Reset Form 5.21

Options, Compiler 3.1.4
ORDERED GROUP Statement 3.36
Output Attribute 1.3.2

Reset Form Indexed 5.20
Synch ron ize 5.22
Write a Group 5.23

Output Only Field 1.2.3
OUTPUT Statement 3.37

Write Indexed 5.24
Write Indexed With Reply 5.26
Write Indexed With Reply and Cursor

Packages, AppHcations Interface 5.2 Return 5.25
Pascal: Write Message 5.27

Applications Interface 5.2.2
Entry Points to Application Interface

Write With Reply 5.28
Routines, Interface 1.1.3

Routines T5-2
PASS/FAIL Statement 3.38 SAM E AS Statement 3.43
Position Attribute 1.3.1
POSITION Statement 3.39

Sample Segment F4-3
Save Intermediate File (SI) 4.3.4.1

Prepare Segment Routine 5.15
Print Key 1.4.6

Files , 2.11.2
Flag File 2.11.2.3
Queue File 2.11.2.2

SCALE Statement 3.44
Scaling Attribute 1.3.17
Segment 1.2.2, F1-2

Block 3.1.5.2
Changes, Compiled 4.5

Routine 5.16 Editing a Compiled 2.0 F4-2
Task, TIFORM 2.11
Task's Execution 2.11.1

Sample F4-3
Segment Mask 1.2.2

Terminal File 2.11.2.1
Print Scrreen, 820 KSR 2.9.7

Design 4.3.3.1
SEGMENT MASK Statement 3.46

2234391-9'701 Index-5

Index

SEGMENT Statement 3.45 SEGMENT MASK 3.46
Selection Menu 4.3.3.2 SUBSTITUTE LIST 3.47
Sequential File 2.10 TAB 3.48
Source Form, Compiler 3.1.4 TABLE LIST 3.49
Statement: TERMINATE READ 3.50

ARRAY 3.2 VALUE 3.51
AUTOSKIP 3.3 \ VARIABLE 3.52
BRANCH 3.4 Statements, List Definition 3.1.5.7
CHARACTER LIST 3.5 Status:
CONDITION 3.6 Block 5.4
CONTROL MODE 3.7 Codes:
COPY 3.8 Nonfatal Form T5·4
DEFAULT 3.9 TIFORM Appendix B, TB·1
DEVICE 3.10 Display, Form Tester F7·2
DISPLAY 3.11 Returned 2.2
DISPLAY MASK 3.12 Structure, FDL 3.1.1
EDIT SET 3.13 Substitute Attribute 1.3.19
END CONDITION 3.6 SUBSTITUTE LIST Statement 3.47
END EDIT SET 3.13
END FIELD 3.16

Synchronize Routine 5.22
Syntax:

END FIELD MASK 3.17 Definition 3.1.3
END FORM 3.20
END SEGMENT 3.45

Quick Reference, FDL Appendix F

ENDSEGMENTMASK 3.46
ERROR MESSAGE 3.14
EXTERNAL 3.15
FIELD 3.16
FIELD MASK 3.17
FILLER 3.18
FKEYS 3.19
FORM 3.20
GOTO 3.23
GRAPHICS INPUT 3.21
GROUP 3.22
IF 3.23
J USTI FY 3.24
LENGTH LIST 3.25
LIST CHARACTER 3.26
LIST LENGTH 3.27
LIST RANGE 3.28
LIST SUBSTITUTE 3.29
LIST TABLE 3.30
MASK (BACKGROUND TEXT) 3.31
MINIMUM LENGTH 3.32
NO ENTRY 3.33

TAB Statement 3.48
TABLE LIST Statement 3.49
Tabstop Attribute 1.3.13
Terminal Device Types, TIFORM .. · 2.7
Terminal User Interactions 2.3
Terminals, Display Attributes

of Supported T1·1
Terminate Attribute 1.3.21
TERMINATE READ Statement 3.50
Termination Phase, ISGE 4.3.4
TIFORM:

Application Programs,
Linking Section 6

Error Codes Appendix C
Error Messages C.2, TC·1
Execution Environment F1-1
Linkable Executor 6.3
Multitask 6.2
Print Key Task 2.11
Status Codes Appendix B, TB·1
Terminal Device Types 2.7

NOAUTOSKIP 3.3
NOTAB 3.48 Unformatted Input Mode, 820 KSR 2.9.1
NOTREQUIRED 3.42 Using a Linkable Executor 6.3.2
NOVALIDATE 3.34
NUMERIC 3.35 Validation List 1.2.2
ORDERED GROUP 3.36 Value Comparison Attribute 1.3.10
OUTPUT 3.37 Value Range Attribute 1.3.8
PASS/FAIL 3.38 VALUE Statement 3.51
POSITION 3.39 Value Table Attribute 1.3.9
PROM PT 3.40 Variable 1.2.4, 1.4.2
RANGE LIST 3.41 VARIABLE Statement 3.52
REQUIRED 3.42 VDT Graphic Character Sets FE-3
SAM E AS 3.43
SCALE 3.44 Write a Group Routine 5.23
SEGMENT 3.45 Write Indexed Routine 5.24

Index·6 2234391·9701

Index

Write Indexed With Reply and
Cursor Return Routine 5.25

Function Keys 2.9.6
Immediate Write Mode 2.9.2

Write Indexed With Reply Routine 5.26
Write Message Routine 5.27
Write Operations1.4.4

Keyboard Layout FA-6
Print Screen 2.9.7
Unformatted Input Mode 2.9.1

Write With Reply Routine 5.28 911 VOT:

XFOLC Command 3.1.4
Graphic Character Keyboard

Positions FE-1

810 Printer 2.10
820 KSR 2.9

Keyboard Layout FA-1
Keycap Name Equivalents TA-3

915 VOT Keyboard Layout FA-2
Oelayed Write Mode 2.9.2
Edit Key Functions and Names T2-3
Edit Keys 2.9.5

931 VOT:
Graphic Character Keyboard

Positions FE·2
Error Handling 2.9.3
Field Mask Handling 2.9.4
Formatted Input Mode 2.9.1

Keyboard Layout FA-4
Special Function Keys F4-8

940 EVT Keyboard Layout FA-3
Function Key Names and Codes T2-4

2234391-9:ro1 Index-7/Index-8

w
z
:J

" z
o
..J
c(

~
::)

o

USER'S RESPONSE SHEET

Manual Title: TIFORM Reference Manual (2234391-9701)

Manual Date: February 1984 Date of This Letter: -----__

User's Name: _____________ _ Telephone: _________ _

Company: ___________________ _____ Office/Department: ______ _

Street Address: ____________________________ _

City/State/Zip Code: __________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them .. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WIU BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

.ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 MIS 2146
Austin, Texas 78769

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Cover Part No. 2310002·0001

~
TEXAS

INSTRUMENTS

