The following artical appeared in the "teletopics" section of the November 1983 issue of Television magazine.
The long-awaited flat-screen Sinclair pocket TV set was officially launched
on September 16th, though you can't for the present go out and buy one. To start
with the set will be available by mail order only ? and you can't send in your
money for that either. You send in an order, on a special application form which
will be dealt with in order of receipt. The reason given for this rather unusual
arrangement is that production is at present limited ? the aim is to increase
this to 10,000 a month by the end of the year. There's been some criticism of
these arrangements, especially from the trade, but it's obviously difficult
to get new technology to the mass production stage and it's as well that this
much talked about product should be brought out into the open. Application forms
are available from Sinclair Research Ltd., Stanhope Road, Camberley, Surrey
GU15 3PS.
The set has a 2in. screen, measures 5½ x 3½ x 1¼ in. and
weighs 9½oz. A special Polaroid flat battery that provides 15 hours'
operation has been produced to power it ? there's also a mains adaptor. The
set itself goes on sale at £79.95, with the 6V Polaroid lithium batteries in
packs of three at £9.95 per pack and the adaptor at £7.95, all prices inclusive
of VAT, postage and packing. Normal retail and export sales are expected to
start during the first half of 1984. Sir Clive Sinclair predicts sales rising
to a million or more a year worldwide, and speaks of the set "achieving for
television what the transistor radio did for wireless, creating a new one-per-person
product".
The set has some interesting technical features. It is for example a multi-standard
receiver with automatic switching between most u.h.f. standards worldwide except
for France. Most of the circuitry is contained within a single i.c. that uses
innovative digital techniques to monitor the vision and sound signals and adjust
the circuitry automatically to suit the transmission standard. The i.c. was
jointly developed by Ferranti and Sinclair Research and is being produced by
Ferranti. Manufacture of the flat-screen tube (the gun is mounted to one side
and the phosphor is deposited on the rear section of the viewing part) has been
subcontracted to Timex in Dundee, using Sinclair designed and owned automatic
plant. Assembly of the sets has been subcontracted to Thorn.
Apart from the tube and the i.c., the main electronic items consist of the video
output transistor, line and field output stages, the tube power supply generator
and the tuner. The latter measures just 31 x 23 x 11mm and uses hybrid microminiature
components with advanced surface mounting. It's output is at 230MHz, which has
been chosen to avoid image frequency problems in the u.h.f. band.
The special i.c. uses a combination of linear and digital techniques. The majority
of the logic in the i.c. is used to synthesize the field and line scan waveforms
digitally, an arrangmenet that allows for multi-standard operation. Fig. 1 shows
a block diagram of the chip. A digital countdown circuit is used, with a high-frequency
voltage-controlled oscillator that's locked to a multiple of the received line
sync pulses. In addition to driving the line logic, the voltage-controlled line
oscillator synchronises an identical oscillator in the sound detector circuit.
There's also count down from line to field rate, with on-chip logic giving a
525 or 625 line display by adjusting the count and VCO centre frequency. Additional
logic improves the line and field lock noise immunity.
For correct display on the flat screen the field scan waveform must be modulated
by a line frequency correc- tion waveform. The field sweep and correction waveform
are both generated digitally, followed by digital-to-analogue conversion. No
set-up components or adjustments are required. A further DAC working at line
rate produces the signal to drive the line output stage.
After amplification the vision signal is applied to a novel low-level envelope detector and then d.c. restored. The intercarrier sound signal is converted to a 250kHz second i.f. The sound channel local oscillator operates at 5.75MHz on 625 lines and 4.75MHz on 525 lines, enabling 4.5 MHz, 5.5 MHz and 6MHz intercarrier sound signals to be demodulated without external switching.
The tube's folded electron optics would produce a raster with curved vertical edges and horizontal edges in the form of the sides of a trapezium without correction. The previously mentioned field correction waveform eliminates the trapezium distortion. Optical techniques are used to overcome the other distortion. First, the height is reduced by two thirds with the width held constant. This narrows the angle at which the beam strikes the screen, reducing both the distortion and the deflection power required. A Fresnel lens which is part of the faceplate restores the height optically.
The connections to the electron gun and the electrostatic deflection assembly are screen printed on to the baseplate. There are three sets of deflection plates ? for line and field deflection and to bend the electron beam so that it strikes the rear phosphor screen. The focusing electrode consists of a transparent tin oxide coating on the tube's front face. Sinclair say that the brightness is up to three times that achieved with a conventional c.r.t. using the same beam energy. A major technical breakthrough is claimed for the perfection of a new method of vacuum forming the glassware.
The main competition is Sony's Watchman, which is at present being produced at a rate of 200,000 a year. It sells in the UK at £249. A mark II version is at present being developed and is expected to sell at around £135. It will be smaller and lighter than the present version and will incorporate a redesigned tube.