D/GITFH. PE’ECISIDNLTD
L] []

Tha

COPYRIGHT 1990 DIGITAL PRECISION LTD : :
PUBLISHED BY DIGITAL PRECISION LTD, 222 THE AVENUE, IDNDON E4 9SE

TOOLKIT IXIIXIX

the SuperToolkit Il (by Tony Tebby) by providing many new
facilities and making some of its existing facilities even more
powerful.

You will almost certainly already have a copy of SuperToolkit II
built into your disk interface. Virtually all the TOOLKIT III
extensions, however,”do not require you to have SuperToolkit II.

Because TOOLKIT III alters the way in which the QL works a small
number of its commands may not be sujtable for use on "alien"
environments like the ST/QL Emulator, the Amiga/QL emulator and
the THOR. Also, its use with "new" device drivers (such as the.
ones accompanying QL hard disks) is not recommended: make backups
of your programs and data before experimenting. .

To even further enhance TOOLKIT III buy TURBO, which incorporates
the 200 command TURBO toolkit.

If you have bought TOOLKIT III on ROM you get both a ROM and a

disk. If you have bought only the disk version and now want the
ROM, send us £28§. . -

1. Contents of TOOLKIT IIIX

The following paragraphs contain a comprehensive list of the
TOOLKIT III extensions. Default parameters are often included,
for ease of use: parameters which may be omitted are enclosed in
square brackets []. Commands which require the use of Super-
Toolkit 1] are marked with an asterisk *.

Section 2: File Maintenance and Information

The commands in this group all make use of the DATA directory,
which may be set or changed by the SuperToolkit II commands
DATA_USE, DDOWN, DUP or DNEXT. The current DATA directory may be
found by using the DATAD$ function or executing the DLIST command.

Please refer to the SuperToolkit Il manual for a description of
standard directories.

Commands beginning with a 'W' are wildcard commands. These ‘
generate prompts requiring a response from the user, therefore may
not always be suitable for incorporation into your SuperBASIC

programs. T
Commands
* DIR_USE name . . sets PROGD$ and DATADS
USER number selects user number
SETUSER name,number sets the USER number of a file
SETRO name set file to READ ONLY
SETRW name set file to READ/WRITE .
SETSYS name set file to SYSTEM status
SETDIR name set file to DIRECTORY status
SETDIR_A [dev_] set all files to DIRECTORY
status
SETHOST name set file to HOST ONLY status

SETNET name set file to HOST/NET status

Commands (continued) o

* WSETUSER [#channel,] [name,] wildcard SETUSER
number

* WSETRO [#channel,) [name} wildcard SETRO

* WSETRW [#c¢hihnel,1 “fname} ~-~--» ~-wildcard SETRW... .

* WSETSYS [#channel,] . [name] wildcard SETSYS

* WSETHOST [#channel,] ([name] wildcard SETHOST

* WSETNET [#channel,] [name] wildcard SETNET

Functions

* FACC (#channel) or FACC (\name) find file access byte
Section 3: Loading and Executing Binafy Files

Some binary load operations are extended in order not to avoid the
appearance of the 'not complete’ message when executing a RESPR
command. Alternatively a program may be activated as a job. The
DATA directory is used.

-

Commands

LRESPR name : load file into mehory and call

MJOB address make job at address- and start
like EXEC '

MJOB_W address make job at address and start
like EXEC_W

ROM_INIT address o initialise ROMcode at address

Functions ' ‘ |

RESPR (size) . get space in resident procedure

area or common heap
Section 4: Job Control

All multitasking facilities of QDOS are accessible through Toolkit
I1, so only one extra command is provided.

Commands

RJOB_A remove all jobs excépt Supers, .
BASIC A

Functions

JOBID refurns ID of job from whicﬁ it

was invoked

Section S5: Channels

There are several extensions to SuperBASIC in order to accéss
channels which are currently open.) - - S

Commands

CHANNELS [#channel] list all open channels

CLOSE% channel close an internal channel
CONPIPE [#INPUT,] #output connect outputpipe with input-

pipe

Functions

b e

PEND ((#channel)] m‘chéck channel for pending input

CH_BASE { (#channel)] : find rase of channel definition
block .
WN_BASE ((#channel)] find rase of window definition
i, block
Section 6: Keybbard Queue Ac@ess '

These commands enable the user to gain direct access to the
keyboard queue. The functions return 2 value or error code.

Commands e Y
QWAIT ‘ wait for keyboard queue to
change

Functions

QIN (byte) or QIN ('string’) put oyte/string into current
, queue

QOUT get a byte from current queue

QTEST .- find status of current queue

Section 7% Memory Management and Access ..

TOOLKIT III contains'a group of commands which make a number of
forms of accessing memory both easier and faster. By their very
nature these routines are ‘dangerous': use them with care.

Commands

RESET [value] - reset machine

DOKE$ address,string put string at memory address

DOKE_F address,float _ put float at memory address

MEMCOPY addrl,addr2,n copy n bytes from addr! to
addr2 e o ,

MEMSWAP addrl,addr2,n swap n bytes from addr! ‘with’
addr2

Functions

DEEK$ (address,length) gel string from memory addrgss

DEEK_F (address) gel float from memory address . -

BV_BASE find base of basic variable

lists and stacks
Section 8: Supe;BASIC Programming and Editing

These commands should assist the user in writiné and editiﬁg his
own SuperBASIC programs.

Commands

BASREF [#channell] " list all SuperBASIC PROCs and
REPLACE ([ranges,] oldname,newname §§;lace all old names with new
REPLACES$ ([ranges,] old$,new$ gzﬁiace all old$ with new$

Section 9: Databasg Handling

This group of powerful commands enables the SuperBASIC user to
write his own database applications using 2 and 3-dimensional
string arrays. The functions return a value/position or an error

code. The.load/save.gperatio
with any type of array.

ns and the analytic functions work _ ..
All arrays handled by the new commands

may be sub-arrays of their main dimension.

Commands

SARRAY name,array
SARRAY_O name,array
LARRAY name,array
SORT array$

SORT array$,field
SORT_I array$ [,field]
Functions

ADIM (name)

ADIMN (name,i)

ATYP (name)

SEARCH (array$,search$,start)
SEARCH (array$,search$,start,field)

save an array to a file

SARRAY with overwrite

load an array from a file

sort 2-dimensional string array
sort 3-dimensional string array
by field

inverted SORT

find no. of dimensions of a
saved array

find dimension.i of a saved
array . .

find type of a saved array
search 2-dimensional string
array from start for search$

search 3-dimensional string ..
array from start for search$
using field

Section 10: More Extensions to SuperBASIC

There are various other extensions which will be useful in a

variety of circumstances.

Functions

INPT$ ([#channel,] [buffer,] string)
KEY$ (([#channel,] [keylist$])

ISINT (string)
ISFLT (string)
UPPERS$ (string)
LOWERS$ (string)
SGN (integer)
FRAC (float)
ROUND (float)
CINT (integer)
ODD (integer)
PRED (integer)

PRED (char$)

edit a string with a
buffer
wait for a key of keylists TR
return ERR.XP if string is no)
integer
return ERR.XP if string is no
float
convert string to upper case
convert string to lower case
signum function
return fraction of a float
round to nearest long integer
convert integer to unsigned
float -
return | for odd value, 0 for
even
return predecessor of an
integer
return predecessor of a
character

Functions (continued)

SUCC (integeTr) voees c Faturn sucéessor of an inteéger’

SUCC (char$) return successor of a character

DIV_L (integer,integer) longword integer division

MOD_L (integer,integer) longword modulo function

AND_L (integer,integer) . binary AND for long integers

OR_L (integer,integer) Ce --binary-OR for-long. . integers: .

XOR_L (integer,integer) binary XOR for long integers

Section 11: Extras

Commands “h abeee . oachhe I SR M e "'""l‘” et

TK3_EXT . initialise TOOLKIT-III (and
SuperToolkit II, too, if
present) .

DEVLINK link all additional devices

EXTRAS [#channel] list all extras linked to

' SuperBASIC e o o

Functions

QDOS$ return QDOS version

ISDEV checks if named device is
linked in (ie; “present") or
not . . , -

Section 12: Extended Device Drivers

All drivers present at RESET time are enhanced to fully support
the SuperToolkit II subdirectories (DUP< DDOWN etc) so that every
program is bound to a specific subdirectory. The file access byte
is used for additional status information in the file header.

Section 13: MEMory Device
Memory can be accessed like 5 filé. using thé.unfdﬁe'MEM dé&féé.

In order to allow the use of commands which do not use the file
pointer (eg: SBYTES) a relative base address can be specified.

Section 14: Extensions to QDOS

In order to handle the new file attributes directly via QDOS -there

are some new traps and system variables. T
S

2. File Maintenance and Information

2.1 User Arééé

TOOLKIT III is able to handle 16 different user areas, numbered 0
to 1S, in order to make file access by different users accessing °
the same medium (eg; .via the Fileserver) more reliable. The user.
number has to be set by executing the USER command. This user
number is written to the file header automatically whenever a new
file is saved to a medium. The user number of a file can be
changed by the actual owner using the SETUSER or WSETUSER command.
The default user number is zero. User areas are ignored when
using microdrives.

There are two rules to bear in mind when considering user areas:
a) Any user can only access files which are in his user area.
b) System files can be read by any user.

Please refer to the SuperToolkit II manual (which may be part.ef
your disk interface manual) for a description of wildcard names.

Commands which require the use of SuperToolkit II are marked with
an asterisk ¥, '

Commands
USER number . selects user number o
SETUSER name, number sets the USER number of a file
* WSETUSER [#channel,] [name,] wildcard SETUSER
number
Examples
USER 4 sets the actual user number to 4
SETUSER fred,7 sets the USER number of 'fred' to 7

WSETUSER#!,fred_,! prompts all files starting with 'fred_' in
, channel #1 and sets them to USER 1, if con-
firmed
WSETUSER 3 prompts all files in command channel and sets
them to USER 3, if confirmed

Hints ' Tl

PRINT PEEK(163894) returns the actual user number
POKE 163894,10 is equivalent to USER 10

2.2 System files

Files which are set to SYSTEM status are not shown in the
directory listing, but can be read by any user. They are
particularly useful where several users need to work with the same
program (eg; a word-processing utility), because it is not
necessary to have a copy of the program in each user area.

SYSTEM files are automatically made READ ONLY for all users other
than the owner of the file. The SYSTEM status, similarly, can
only be changed by the user who owns the file. It cannot be
changed via NETWORK. The SYSTEM status is ignored when using
microdrives.

Commands

SETSYS name - set file to SYSTEM status . .

SETDIR narnie I + = - get file to- DIRECTORY status
SETDIR_A [dev_] set all files to DIRECTORY
status
+ WSETSYS ([#channel,] [name] wildcard SETSYS

Examples

AR

SETSYS john sets file 'john' to SYSTEM status
SETDIR test_exe resets SYSTEM status of file 'test_exe' .

2.3 READ ONLY files
Because it's often more useful to write-protect singléhfiies, as
opposed to the entire medium, the READ ONLY flag is introduced.

If a file has been set to READ ONLY status, it is not permitted to
delete the file and any exclusive OPEN will act as OPEN_IN.

g

Commands
SETRO name set file to READ ONLY
SETRW name set file to READ/WRITE s
* WSETRO [#channel,] [name]) wildcard SETRO
* WSETRW [#channel,] (name] wildcard SETRW
Examples
SETRO flp2_myfile sets 'flp2_myfile' to READ ONLY
WSETRW test_ prompts all files starting with ‘test_' in
command channel and sets them to READ/WRITE if
confirmed
2.4 HOST ONLY status

1f a file is set to HOST ONLY it cannot be accessed via NETWORK.

Commands -’ St e
SETHOST name sef file to HOST ONLY status
SETNET name . set file to HOST/NET status

* WSETHOST ([#channel,] [name] wildcard SETHOST

* WSETNET [#channel,] [name]) wildcard SETNET .. -

2.5 The file access byte _ el

All information about the file status is stored in the file access
byte, which is part of the file header. Please refer to a QDOS
manual for further information about file headers.

The format of this byte is:
B7 B6 BS - B4 B3 B2 Bi BO
: : : : USER no.

.
N S

unused
ﬁOST ONLY status
éYSTEM sfatus
ﬁEAD ONLY status

The file access byte is ignored when using microdrives, because it
would slow down file access considerably.

Functions

* FACC (#channel) or PFACC (\name) find file access byte

Examples

PRINT FACC(\fred) prints file access byte of file 'fred’

PRINT FACC(#ch)&&128 returns READ ONLY status of a file channel
PRINT FACC(#ch)&&64 returns SYSTEM status of a file channel

PRINT FACC(#ch)&&32 returns HOST ONLY status of a file channel
PRINT FACC(#ch)&&!5 returns user number of a file channel

2.6 Setting the directory tree

To simplify operations involving PROG and DATA, a new command,
DIR_USE, is introduced, which sets both to the same name. The
DATA device is used as the subdirectory name.

Please see the SuperToolkit II manual and Section 12 of this
manual for further information .on subdirectory structures.

Commands

* DIR_USE name . sets PROGD$ and DATADS

3. Loading and Executing Binaxry Files
3.1 . Memory -allocation and loading

Because the original RESPR and LRESPR commands return the 'not
complete' message whenever they are executed when a job is
running, they have been redefined here. The reason for the error
message is that the resident procedure area (RPA) cannot expand if
there is anything in the transient program area (TPA) . The new.
commands will, where necessary, allocate space in the common heap
instead of using the RPA. Virtually every well-behaved program
will run properly in the common heap.

Commands

LRESPR name load file into memory and call
See SuperToolkit II manual for further information.

Functions

RESPR (size) get space in residéﬁf'procedure
area or common heap e

Examples

LRESPR f1p2_codefile loads and executes '£1p2_codefile'

3.2 Executing binary files as jobs

There are two new commands to start binary files as jobs instead
of CALLing them. A job header is created automatically and the
priority set to 32. The jobname is set to ‘MakeJob'. Again,
virtually every well-behaved program will run properly.

Commands
MJOB address make job at address and start
like EXEC
MJOB_W address make job at address and start
' like EXEC_W
3.3 Installing ROM code

. B . -
ROMcode can be installed at any even memory address. If there is °
no correct ROM header ERR.NF is reported. Do not use both ROM
TOOLKIT III and the RAM based TOOLKIT III at the same time! '

Commands

ROM_INIT address initialise ROMcode at address
4. Job Control

Because all multitasking facilities of QDOS are accessible through
SuperToolkit II and TURBO toolkit, only two keywords have -been
added. In the case of the command, any open channels belonging to
the particular job are closed before the job is removed. The .
function answers the question "Who am I?"

Commands

[S

RJOB_A - remove all jobs except Super-—
BASIC

Functions "= r o o o g N

JOBID - returns ID of joB from which it
was invoked

5. Chamémmels

5.1 General channel handling

There are two new commands and one function to access channels
which are currently open.

CHANNELS displays a list of all open channels, including the
internal channel number, the tag number, the owner job and a
detailed description of the channel.

Example
Channel tag owner name
0 0 0 CON_512x50a0x206 SuperBASIC #0
1 | 0 CON_256x202a256x0 SuperBASIC #!
2 2 0 CON_256x202a0x0 SuperBASIC #2
3 3 0 CON. (Slave. Channel) =
4 7 1 CON_512x256a0x0 Job | console window
5 8 1 RAM1_temp open file of job |
6 11 0 SCR_T100x50a200x100 SuperBASIC screen
7 12 0 PAR channel to printer
8 13 | 55 ANON *** what's that?!!!
9 17 2 NSV _ Net Server channel

The CLOSE%Z command enables the user to close a channel using its
internal channel number. This is particularly useful when
something has gone wrong eg: a channel remaining open after the
owner job has been killed. Slave channels should never be closed!

Commands

R
CHANNELS [#channel] list all open channels A
CLOSE% channel close an internal channel
5.2 Pipe handling

Because SuperBASIC is unable to open the passive end of a pipe, a
new command is introduced: the CONPIPE command can be used in two
different ways.

Type 1:¢ CONPIPE #input TO #output - e
creates an output pipe and connects it with an input

pipe. The output channel must already exist, eg; as a
SCR channel.

10

Example

10 OPEN#3;pipe;136 _create input pipe

20 OPEN#4,scr create dunmy channel
30 CONPIPE #3 TO #4 connect pipe

40 PRINT#3, 'Pipe Test' fill pipe

S0 INPUT#3,a$ get string from pipe
60 CLOSE#3, #4 close both channels

E

Type 2: CONPIPE #channel
converts an input pipe to an output pipe

Example
10 OPEN#3,pipe_256 create input pipe
20 PRINT#3, 'Hello pipe!’ fill pipe
30 CONPIPE #3 - convert pipe
40 INPUT#3,2% get string from pipe
50 CLOSE#3 close channel

The choice of type will depend on the application. Type 1 is to
be preferred when a pipe is needed for more than one goperation.

Type 2 should be optimal for simple operations. Please refer to a

QDOS manual for further information about pipes.

‘Ihe PEND function checks a channel for pending input, which is
normally quite the opposite of an EOF (#ch) call, and is very
useful in pipe handling.

Commands

CONPIPE (#INPUT,] #output ggggect outputpipe with input-
i .

Functions

PEND [(#channel)]) check channel for pending input

The default channel is #1.

5.3 Accessing channel definition blocks

Two new functions are intended to help the user to éccess the
channel definition blocks. CH_BASE returns the base address of
the whole channel definition block and WN_BASE returns the start

address of the window definition block. Of course, the latter™-.

will only return an address when used with a window channel.

On a standard QL the result of WN_BASE is usually CH_BASE + $18,
but if extended screen drivers are used (for example QJunp's
Pointer Environment) this might not be the case. Please refer to
a QDOS manual for further information. .

Functions

- "

CH_BASE [(#channel)] find base of channel definition

block .
WN_BASE [(#channel)] ' find base of window definition
block

The default channel is #1.

i1

Examples

: a
PRINT PEEK_L (CH_BASE(#ch)+8)

returns the owner job ID of a channel'
PRINT PEEK (WN_BASE(#ch)+44)
N S U returns _the paper colour of a window

6. Keyboard Queue Access

In order to access the current keyboard queue directly a command
and three new functions are introduced. All three functions
return an error code; alternatively one of them returns a byte.

Possible return values/error codes are:

0 0.K.

>0 extracted byte (QOUT only)
-1 ERR.NC queue empty/full
-10 ERR.EF end of file

QIN puts a byte or string into the current keyboard queue,
depending on the type of the parameter. If a string value is
desired it should be enclosed within apostrophes. -

QOUT extracts a single byte from the current queue and returns it.
If the queue is empty ERR.NC is returned.)

QTEST simply checks the status of the current queue, without
making any changes.

Sometimes it may be necessary to select or re—activate a queue.
This can be done by reading the channel for a short time.

Example

dumny=INKEY$ (#0) will select the command channel (#0)
The command QWAIT is used to detect a change in the keyboard

queue. This is particularly useful if you want to start another

job using a command string, which should be typed in after the job
has loaded.

Example

EX flp!_job_exe : QWAIT : dummy=QIN('Hello job...") T
This line starts 'flpl_job_exe' as a job and types in ‘'Hello
job...' after loading, assuming that this job has an active cursor
(and a queue) after loading.

Why not start Quill and automatically load a document...?

Please refer to a QDOS manual for a detailed description of
queues. . ’

Commands

QWAIT wait for keyboard queue to
change

12

Functions

‘QIN (byte) or QIN ('strling') put byte/string into current
queue R ’ g

QOuT get a byte from current queue

QTEST find status of current queue

7. Memory Management and Access
All commands in this éhapter should be used with great care!

7.1 Advanced PEEKs and POKEs

" Some new commands have been provided in order to make storage of
strings and floats in memory easier to handle and faster in
operation. We've used DEEK and DOKE instead of PEEK and POKE in
order to prevent collisions with TURBO toolkit. ’

DOKEs and DLEEKs are used to store/retrieve a string in/from
memory. Siunce there is no restriction on the type of string they
can also be used to store and restore an ampount of memory (maximum

32766 bytes). The memory address must be even.
Examples -
TOOLKIT III Syntax SuperBASIC equivalent

———— i —— —— A T Ao (- T ST W - —— — v - G w—— -

10 a$=DEEK$(131072,32766) 10 DIM a$(32766)
20 FOR n=1 TO 32766
30 a$=a$&CHR$ (PEEK(131071+n))
40 END FOR n

These programs store the actual screen image (except the last two
bytes) in a$. To restore it simply type ‘'DOKE$S 131072,a$"' using
the TOOLKIT III syntax. Can you spot the difference?

10 PRINT DEEK$ (49148 ,PEEK_W(49146)) ’

10 n=PEEK_W(49146) :DIM a$(m)
20 FOR n=1 TO m
30 a$=a$&CHRS (PEEK (49147+n))
40 END FOR n
S0 PRINT a$

or simply: 10 PRINT VERS$

DOKE_F and DEEK_F enable you to store/retrieve floating point
numbers in/from memory using the internal QDOS format (6 bytes).

Commands

DOKE$ address,string put string at memory address
DOKE_F address,float put float at memory address
Functions

DEEK$ (address,length) get string from memory address
DEEK_F (address) get float from memory address

13

7.2 MOVEing and SWAPping memory

. a
Two new commands are intended to make the handling of large
amounts of memory easier<and faster.

MEMCOPY copies any amount of memory from one address to another
(intelligently, if:blocks overlap). and MEMSWAP simply does what
one might expect: it swaps two blocks of memory. ‘ s

All addresses and lengths of blocks must be even.

Commands

MEMCOPY add: ! ,addr2,n copy n bytes from addrl to

MEMSWAP add: ! ,addr2,n 233;2n bytes from addrl with
addr2

Examples

This prograw rolls the entire screen image:

10 FOR n=1 TO 256 256 lines to roll -
20 m$=DEEK$(131072,128) store first line

30 MEMCOPY 131200,131072,32640 roll up 255 lines

40 DOKES$ 163712,m$ put stored line

50 END FOR n
The following program turns the screen image upside—down:

10 FOR n=0 TO 127
20 MEMSWAP 131072+n*128,163712-n*128,128
30 END FOR n

7.3 Accessing the SuperBASIC variable lists and stacks
In order t. access SuperBASIC's variable lists and stacks
(BV_VARS) .t is necessary to know the actual base address. Please
refor to a DOS manual for further information.

Functions

BV_BASE find base of basic variable
lists and stacks ‘

R S

Examples

123 PRINT PEEK_W(BV_BASE+104) prints the actual line number

100 PRINT BV_BASE+PEEK_L(BV_BASE+24) prints the start address
of the name table

7.4 Intelligent RESET

The new RESET performs a standard system reset, but closes all
open channcls first. Optionally a memory reduction can be done,
using multiples of 32K, eg; RESET 128 resets to 128KB.

Commands

RESET {value] resets machine

14

8. SuperBASIC Programming and lzéti1:irlg:
8.1 Replacgment of names and strings

To assist the SuperBASIC user in editing programs two powerful
REPLACE commands have been designed, to replace either names
(variable names, device names) or strings. Every comment after a
‘REMark' statement is handled as a string, too. Alternatively a
range of line numbers' could be specified, using the same syntax as
"RENUM"' .

When replacing strings the search string and the replacement
string must have the same length. Both must be within quotation
marks or apostrophes. The name and string search is case
independent .

Commands

REPLACE ([ranges,] oldname,newname replace all old names with

newname
REPLACES$ [ranges,] old$,new$ replace all old$ with new$
Examples . -
Before After REPLACE 20 To 40,a,byte
and REPLACE 10,flpl_file,Test
10 OPEN#3,flpl_file 10 OPEN#3,Test
20 BGET#3,a 20 BGET#3,byte
30 a=256-a 30 byte=256-byte
40 BPUT#3\0,a 40 BPUT#3\0,byte
50 CLOSE#3 50 CLOSE#3
Before After | :PLACE$ 'test', 'DEMO'
and R] °LACE Test,Number
10 REMark This is a Testprog 1L REMark This is a DEMPprog
20 Test=0 20 Nuwmber=0
30 REPeat loop 30 REPeat loop
40 IF Test=10:EXIT loop 40 IF Number=10:EXIT loop
S0 PRINT 'Test Nr.';Test S0 PRINT 'DEMO No. ' ;Number
60 Test=Test+1 60 Nu asber=Number+1
70 END REPeat loop 70 END REPeat loop
80 REMark Test End 80 RIFidark DEMO End e
..
8.2 Listing PROCedures anu FuNctions
BASREF lists all existing SuperBASIC PROCedures and FuNctions.
Commands
BASREF [#channel] list all SuperBASIC PROCs and
FNs .

Example

Proc Test Line 100

Proc Long_Name_Procedure Line 320

FN SuperFunc Line 1340

15

9. Database Handling
a
9.1 SAVEing and LOADing arrays

These powerful commands and functions enable the SuperBASIC user
to save and lead_any, type of array or subarray (main dimension
only). The speed of these operations is comparable with SBYTES " "~
and LBYTES, so that several minutes of sequential record loading
is a thing of the past. When loading back an array it has to be
pre-dimensioned using the same type and dimensions. The main
dimension can be changed by loading the array to a subarray.

Three analytical functions have been provided which can be used to
find certain information relating to a saved array._ These
functions return either a value or an error code. If a non-array
file is accessed ERR.OR will be returned. Please refer. to
Appendix A for the format of a saved array.

Commands

SARRAY name,array save an array to a file
SARRAY_O name,array SARRAY with overwrite
LARRAY name,array load an array from a file '~

Functions

ADIM (name) . find no. of dimensions of a
saved array
ADIMN (name,i) find dimension i of a saved
. array e o
ATYP (name) find type of a saved array
Examples

This program fills an integer array saves it to a file and
analyses its structure:

10 DIM i%(100) (imension array

20 FOR n=0 TO 100 .oop to fill array

30 i%(n)=RND(32767) 111l with random integers

40 END FOR n ¢nd of loop

50 SARRAY flpl_test_ary,i% save array to ‘flpl_test_ary'

60 CLEAR clear memory

70 PRINT ADIM(flpl_test_ary) print No. of dimensions.,

80 PRINT ADIMN(flpl_test_ary,l) print first dimension Mo
(100) ,

90 PRINT ATYP(flpl_test_ary) print array type

(3 = integer)

The following part of a program saves a floating point array,
which has been dimensioned using 'DIM f(10,10)' and loads it back
into a bigger array. This process could be used to enlarge a
dimensioned array. .

1000 SARRAY raml_temp,f save array to 'rami_temp'
1010 DIM (20,10) -nlarge array

1020 LARRAY remi_temp,.f (0 TO 1.) load array as a subarray
1030 DELETE raml_temp .elete temporary file

16

The third example is a program which analyses the structure of any
type of a saved array:
a

100 CLS:f$=INPT$(36,DATADS) get filename
110 t=ATYP(f$):SELect ON t analyse type
120 =1:PRINT'Floating Point'

130 =2:PRINT'String'

140 =3:PRINT'Integer’ '

150 =REMAINDER:PRINT'No array':STOP

160 END SELect t

170 PRINT'(';:d=ADIM(fS$) get dimensions
180 FOR n=1 TO d

190 PRINT ADIMN(f$.n):

200 IF n=d:PRINT') ' :ELSE PRINT',';

210 END FOR n

9.2 Sorting database arrays i

A database array has to be a 2 or 3-dimensional string array, the
latter having the usual field/record structure. These arrays can
be sorted in ascending (SORT) or descending (SORT_I) order.

A type 2 comparison is used to do the sorting, but empty records
are always sorted to the end of the array. Please refer to your
QL User Guide for further information about comparison types.

Parts of an array can be sorted using a subarray of the main
dimension. Nevertheless only string arrays can be sorted: these
can be filled with integer or floating point numbers in ASCII
format. So there is no need for any other array type.

When sorting 3-dimensional arrays the order field has to be
specified using its index number.

Commands

SORT array$, sort 2-dimensional string array

SORT array$,field sort 3—-dimensional string array
by field

SORT_I array$ [,field] inverted SORT

Example

This program sorts a 2-dimensional random character array in
ascending order. Only a subarray is sorted because record 0 is -
used as a header.

100 x=19:y=40

110 CLS#0:PRINT#0,'Setting up array...'
120 DIM a$(x,y)

130 a$(0)='SORT Test:'

140 FOR n=1 TO x

1S0 x$='':FOR m=1 TO y

160 x$=x$&CHR$ (RND(6S TO 90))

170 END FOR m

180 a$(n)=x$

190 END FOR n

200 CLS:PRINT a$

210 PRINT#0,'Sorting...'

220 SORT a$(! TOx):CLS#2:PRINT#2,a$

17

o

9.3 Searching database arrays

a n.ot St
In order to make it possible to write advanced database applica-
tions using SuperBASIC, only one key operation is still missing:
the SEARCH function enables the user to search a database array
for a specified string. 1If a 3-dimensional string array is used,
the search field -must-be specified.. The number,. of .the record from
which the search is to start has, in any case, to be specified in
order to allow a repeated search, eg: to find the next occurrence
of a string.

The search function returns either the nunber of the matching
record or -1 if the string cannot be found. The search is case
independent. Subarrays of the main dimension can be used.

Functions

SEARCH (array$,search$,start) search 2-dimensional string
array from start for search$
SEARCH (array$.search$,start.field)
search 3-dimensional string
array from start for search$

using field -
Examples
a=SEARCH (adr$,'Miller',0,0) returns first occurrence of
‘Miller' in field 0 of a 3-dim-
ensional string array adr$
a=SEARCH (adr$, 'Miller',a,0) -- returns next occurrence
PRINT SEARCH(num$,PI,0) returns first occurrence of PI

in a 2-dimensional string array
filled with floating point num-
bers

The following program creates a 2-dimensional string array and
fills it with random integers. Then the numbers of all records
containing '10' are listed:

10 DIM num$(100,2) create array
20 FOR n=0 TO 100:num$(n)=RND(10) fill array
30 n=-1:REPeat loop loop to search array
40 m=SEARCH (num$, 10,m+1) search RS
S0 if m<O0:EXIT loop ' no more matches?
60 PRINT'10 found in record';m print record number
70 END REPeat loop end of loop
10. More Extensions to SuperBASIC

These extensions may or may not be of value to users because most
can be written in SuperBASIC, but they are easier to use if
present as resident extensions. L

10.1 String operations

Four new functions are included which read strings or characters
from a console and/or manipulate them.

18

R T

INPTS can be regarded as an advanced INPUT commapd..allowing .a....:
. default string and a maximum buffer length to be specified. If no
buffer length is specified the' lepgth of the default string is

used.

KEY$ scans the keyboard using'a given list of characters and
returns a character if it is included in the list. When used
without any given character list this function is equivalent to -
INKEYS (#ch,-1). o o '

ISINT and ISFLT check whether an entire string is convertible to
integer/float and return ERR.XP if not. These functions are
particularly useful in avoiding the appearance of 'error in
expression' when reading numbers using the INPUT command.

UPPERS and LOWERS convert a string to upper/lower case, ‘including
all foretgn characters. ‘

The default channel for INPTS$ and KEYS$ is #1.

Functions

INPT$ ([#channel,] [buffer,] string)
KEY$ ([#channel,][keylist$])

edit a string with a ™~
buffer

wait for a.key of keylists.. .

ISINT (string) . return ERR.XP if string is no
' integer
ISFLT (string) return ERR.XP if string is no
float

UPPERS$ (string)
LOWERS$ (string)

Examples

convert string to upper case
convert string to lower case

a$=INPT$ (10, 'Test') allows editing of the default string 'Test'

using the default channel and a buffer length
of 10 characters

conlirw$=KEY$ ('YyNn'&CHR$(27))

waits for a character of 'YyNn' or ESC to be
pressed

a$=UPPERS$ (INPT$ (#2,36,DATADS))

reads a filename in channel #2 using a buffer,

of 36 characters and the DATA device as the
default string and returns it converted to
upper case

The following program demonstrates the testing of. parameters:. . -

100
110
120
130
140
150
160
170
180
190
200

WMON 4:ng=""

PRINT'Test FLOAT or INTEGER Input (F/I)?';
CURSEN: s$=UPPERS$ (KEY$('FfIi')) :CURDIS:PRINT .s$
AT 2,0:1F s$='F'
PRINT'Float:';:n$=INPT$(12,n$)
éFSéSFLT(n$):BEEP 3000,1000:GO TO 130

L

PRINT'Integer:';:n$=INPT$(12,n$)

IF ISINT(n$) :BEEP 3000,1000:GO TO 130

END IF

PRINT\\'0.K."

19

gt

10.2 Other functions

Several new functionssare built in to enhance or replace the
standard SuperBASIC set~of mathematical and binary functions.

SUCC and PRED return the successor/predeéessor of an integer

number orucharactcr.MwThey_&:gwpaxgiqula;ly”g§g§g;wggwREPeg&l

loops.

* o .
R P S T

SGN returns | for a'Bositive number, 0 for zero and -1 for
negative numbers. The argument has to be an integer.

CINT converts a signed integer to an unsigned float, which can be
useful when reading integers from a file.

ODD simply tests whether an integer is odd or not. Please note
that 'i=0ODD(x)' is equivalent to 'i=x&&l'. .

ROUND rounds a float to the nearest long integer, and FRAC returns
the fraction of a floating point number.

DIV_L and MOD_L are intended to replace the QDOS operators 'DIV'
and” 'MOD', but work correctly with negative values and are able to

handle long integers.

AND L, OR_L and EOR_L should replace the QDOS operators. '&&', 'ii'
and '""', but work with long integers_too.

Functions

SGN (integer)
FRAC (float)

ROUND (float)
CINT (integer)

ODD (integer)
PRED (integer)
PRED (char$)

SUCC (integer)

SUCC (chars$)

DIV_L (integer,integer)
MOD L (integer,integer)
AND_L (integer,integer)
OR_L (integer,integer)
XOR_L (integer,integer)

Examples

PRINT PRED(100)

PRINT SUCC('a')

PRINT SGN(-4)

PRINT CINT(-100)

PRINT FRAC(PI)

PRINT ROUND(10003.5S)
PRINT ODD(37)

PRINT DIV_L(131072,65000)
PRINT MOD_L(131072,65000)
PRINT EOR_L(100000,12345)

20

.signum functjion.

return fraction of a float ™
round to nearest long integer
convert integer to unsigned
float :

return 1 for odd value, 0 for
even

return predecessor of an
integer

return predecessor of a
character

return successor of an integer
return successor of a character
longword integer division
longword modulo function S
binary AND for long integers ™
binary OR for long integers
binary XOR for long integers

99

65436
.141593
10004

072
12281

—— DD

The following (slow) program inverts the screen image:
0 FOR n=13107F TO 163839 STEP 4
20 POKE_L n,EOR_L(PEEK_L(n).-1)
30 END FOR n

11. Itxtras
11.1 Linking the extensions

To link all SuperBASIC extensions and/or device driver extensions
to the system two commands are provided:

TK3_EXT initialises all new SuperBASIC conmands and functions
incTuding those from SuperToolkit II, if present, so TK2_EXT is no
longer needed.

DEVLINK links all additional directory devices to the extended
device driver system. Normally this is done at RESET time, but if
any new devices (eg; RAMPRT from QJump) are loaded this command
must be used to make them fully compatible with the new features.
DEVLINK is executed automatically whenever TK3_EXT is used.

During the linkage several commands are redefined for compatibil-
ity: FLP_USE, FLP_TRACK, FLP_START, FLP_SEC, RAM_USE and NFS_USE.

Anyone currently using a FLP_OPT command ﬁusf“noﬁ déé”thé'new'FLP<
commands.

The 'WIN' device is not supported because hard disks have their
own advanced device drivers.

Commands .
TK3_EXT initialise TOOLKIT III (and
SuperToolkit II, too, if
. present)
DEVLINK link all additional devices
11.2 System information

EXTRAS lists all resident extensions to SuperBASIC, including
their type (PROCedure or FuNction) and their decimal start
address.

The QDOS$ function returns the internal code number of the QDO§*'“a~

version in use, eg; 1.13 for MG or 1.10 for JS.

Commands

EXTRAS [#channell] list all extras linked to
SuperBASIC

Functions

QDOS$ return QDOS version

ISDEV checks if named device is
linked in (ie; "present") or
not

21

12 Extended Device Drivers

s . .
All device drivers, which were present at RESET time or have been
linked by DEVLINK or TK3_EXT, are extended to make full support of
the SuperToolkit II subdirectory structures. Originally these are
only usable from SuperBASIC, but TOOLKIT III extends them to work:
properly at _eyery aggess level, eg; machine code, TRAPs etc. .
Please refer to the SuperToolkit II manual (which may be part of
your disk interface manual) for a detailed description of
subdirectory structures and directory control.

The DATA device is used as the subdirectory name. It can be
changed using one of the commands DATA_USE, DUP, DDOWN, DNEXT or
DIR_USE. The latter is introduced by TOOLKIT 111: DIR_USE sets
the DATA and PROG device, so it's an easy way to change them both.

The subdirectory structures work via NETwork using the NFS device,
which can be specified by executing the NFS_USE command. Please
refer to the SuperToolkit II manual for a detailed description.

A file from the root directory can be accessed from any directory
level by separating the device name from the file name using a
backslash, eg;: FLP!_\FULL_NAME. 1In SuperBASIC this name has to
be enclosed in quotes or apostrophes.

Please note that subordinate directories must not have the same
name, eg; TEST_TEST _CODE is not allowed. This is necessary

because the operating system must be able to distinguish the
directory levels.

It is a good idea to give the Start program of each subdirectory’
the name 'BOOT', because it is then possible to achieve a list of
all subdirectories using a line similar to 'DIR flpl__boot'.

Example '

. Suppose you require to copy all files from FLP_2 to a
subdirectory named 'GAME' on FLPI1_, you can use the following
line:

WCOPY flp2_,flpl_GAME_ and confirm with 'A' for ALL

2. To start the copied game using the BOOT program, the
following line can be used: hal
DDOWN game : LRUN flpl_boot o

13. The MEMorxry Device

It is possible now to access memory as a file using the 'MEM'
device. The file pointer position is used as an address. This
address is relative to a base address to allow operation with
commands which do not use the actual file pointer (eg; SBYTES).
If not specified this base address is 0. .

Syntax: MEM[_K[_B]] where K*¥1024+B gives the base
address of the MEM device.

22

~ Examples

The following'program’gets ‘the-turrent MODE of mnetwork station: 2y

This

10
20
30
40

OPEN#3,N2_MEM
BGET#3\163892,m
PRINT m&&8

CLOSE#3

6pen MEM device with base 0°

get MC status register

extract MODE and print it

close channel

SBYTES N1_MEM-128,131072,32768

base address is 128K = 131072

line transfers the current screen image to network station 1:

The following program sets the user number of network station 3 to

7.
10
20
30
14.

In order to handle the new file attributes and the
byte directly via QDOS, some new TRAP #3 functions

OPEN#3,N3_MEM_160
BPUT#3\ 547

CLOSE#3

open MEM device with base 160K

set user number to 7
close channel

IExtensions to QDOS

FS.SETRO DO
FS.SETSS DO
FS.SETUS DO
FS.SETHO DO

mnnu

$4C
$4D
$4E
$4F

Call parameters

D1

D2.

There

SV
SV
SV
SV
*

SV

.USER
. PROG
.DATA
.DEST

.QTK3

are

=0 reset or <>0 set
or user number

timeout

channel ID

set READ ONLY status

- set SYSTEM status

set USER number
set HOST ONLY status

Return parameters

file access
are introduced:

-—

DI undef ined

D2 preserved
D3. preserved

AO preserved
Al undefined
A2 preserved
A3 preserved

also a few system variables:

LEQU
EQU
EQU
EQU

EQU

$36
$AC
$BO
$B4

$DC

user number (byte)

pointer to PROGD$ (long)

pointer to DATAD$ (long)

pointer to DESTD$ (long)

"internal use only (long)

23

1£F3?EHJIII?(A

Saved arrays have a special header at the beginning of the file.
This header has the following structure:

Fileposition ™ = 0-===+-ATK3 —oopwumoo (string)
4 -— ‘Array Type (word) "+
6 ——= Offset to data (word)
g8 ——= No. of dimensions (word)
10 ——— Index 1 (word)
12 -—— Multiplier | (word)
"'XX --- Index x (word)
XX --- Multiplier x (word)
Offset ——— Start of data
The following example program analyses the structure of'a saved
array. Lt could also have been written using direct access to the
special header at the beginning of the file.
100 WMON 4 |

110 UNDER { : PRINT' ARRAY ANALYSER' :UNDER 0

120 PRINT\'Enter dev_name:'; o

130 f$=INPT$(36.DATAD$&'TEST_ARY')

140 dd=ADIM(f$) : IF dd(O:PRINT\‘Error:":REPORT#).Qd:STOP 4

150 st=FACC(\f$)&&128 o

160 PRINT\'File is';

170 IF st=0:PRINT'READ/WRITE‘\:ELSE PRINT'READ ONLY'\

180 PRINT\‘Arraytype is';

190 tt=ATYP(f$):SELectWON tt

200 =l:PRINT'String'\\:a$='array$'

210 =2:PRINT'F10at‘\\:a$='array'

220 =3:PRINT'Integer'\\:a$=‘array%'

230 =REMAINDER : PRINT' (Unknown) "\\

240 END SELect

250 PRINT'No of Dimensions: ' !dd\\

260 DIM dms%(3)

270 FOR n=1 TO dd

280 dms%(n)=ADIMN(f$,n)

290 PRINT‘Dimension‘!n;':'!dms%(n)

300 END FOR n

310 com$='DIM'&as$&’ ('

320 FOR n=1 TO dd

330 com$=com$&dms%(n) e

340 1IF n<>dd:com$=cons$&’,’ Tl

350 END FOR n

360 com$=com$&"') : LARRAY f$.‘&a$&':PRINT#2.‘&a$&':CLS#0:
CLEAR' &CHR$ (10)

370 a$=INKEY$(#0):er=QIN(com$):REPORT er

24

APPENDIX B

- This little example pmogram prints a complete directory llst1ng
including all necessary data on the curreft prirntér devxce.'

100 WMON 4:UNDER {:PRINT'FULL DIRECTORY LIST' :UNDER O

110 PRINT\'Which device:";:dd$=INPT$(S,DATADS)

120 OPEN#3,DESTD$:BPUT#3,27,78,4,1S

130 WIDTH#3,120:STAT#3,dd$:PRINT#3

140 OPEN DIR#4 dd$: count 0

150 REPeat loop

160 1’ EOF(#4) :EXIT loop

170 GLET#4\count*64+14,a$:1F as$='"':GO TO 280

180 PRINT#3,a$;

190 GLF#4\count*64 high%,low%:length= hlgh%*65536+CINT(low%)—
64

200 PRINT#3,TO 40;length;

210 BGET#4\count*64+4 facb, ty

220 IF facb&&l128:as= *READ ONLY :ELSE a$-'READ/WRITE"
END IF:PRINT#3,TO 50;a$;

230 IF facb&é&b4: a$- SYSTEM" : ELSE a$="'DIRECTORY':
END IF:PRINT#3,TO 64;a$; .

240 PRINT#3,TO 78;'USER'!facb&&15;TO 88; 'TYPE'!type; L

250 IF facb&&32:a$="'HOST ONLY':ELSE a$='HOST/NET':
END IF:PRINT#3,TO 98;a$: '

260 GET#4\count*64+S2 hxgh% low%: a$‘DATE$(hxgh%*65536+
CINT(low%)). e o .

270 PRINT#3,TO 112;a$ o ’

280 BGET#4\count*64+64:count=count*l

290 END REPeat loop .

300 CLOSE A

Copyright Notice

S lams

Copyright 1988 Martin Berndt & Ultrasoft ‘ . e

Copyright 1990 Digital Precision Limited

All trademarks are acknowledged. References within this
manual to the products of other companies neither constitute
any endorsement of such products or companies or imply any
approval by such companies of this product.

25

N

