PHILIPS

INSTRUCTION MANUAL

DC-MICROVOLTMETER PM2434

9447 024 34..1

PHILIPS

9499 470 12502

CONTENTS

(gener.	AL / ALLGEMEINES / GENERALITES	
	1-1	Introduction	3
	1-1	Einleitung	10
	1-1	Introduction	17
	1-2	Technical data	3
	1-2	Technische Daten	10
	1-2	Caracteristiques techniques	17
	1-3	Accessories	4
	1-3	Zubehör	11
	1-3	Accessoires	18
	1-4	Circuit description	5
	1-4	Schaltungsbeschreibung	12
	1-4	Description du circuit	19
	OPERA	ting [,] instructions / gebrauchsanweisung / mode d'emploi	
	2-1	Installation	7
	2-1	Anschliessen des Gerätes	14
	2-1	Installation	23
	2-2	Operation	7
	2-2	Bedienung	14
	2-2	Commande	23
	SERVIC	E DATA	
	3-1	Access	28
	3-2	Checking and adjusting	30
	3-3	List of parts	34

C N.V. PHILIPS' GLOEILAMPENFABRIEKEN - EINDHOVEN - THE NETHERLANDS - 1976. PRINTED IN THE NETHERLANDS

1.

2.

3.

1. GENERAL

1-1. Introduction

The Philips d.c. microvoltmeter PM 2434 is a very sensitive instrument for the accurate measurement of a direct voltages from 10 μ V to 1000 V.

Its internal resistance is:

 $1 M\Omega$ in the range of $10 \mu V - 30 mV$

10 MQ in the range of 100 mV - 300 mV

100 $M\Omega$ in the V ranges.

For indicating the polarity at the input sockets, a separate indicator has been provided.

Electrical zero setting is effected by means of a combined coarse-fine adjustment at the front of the instrument.

The instrument has been provided with a fully isolated recorder output.

This efficiently designed instrument can be employed for all applications in modern electronics.

1-2 **Technical data**

Numerical values followed by a statement of tolerances indicate guaranteed properties. Numerical values without tolerances are intended for information only and indicate the properties of an average instrument.

A. Measuring range

D.c Voltage	10 μV 1000 V in 17 ranges
Input	Floating
Maximum voltage between Hi-Lo and 🛨	1000 V d.c.
Input impedance	$1~M\Omega~\pm~2\%$ in the range of $10~\mu V~\ldots~30~mV$ 10 $M\Omega~\pm~3\%$ in the range of 100 mV $\ldots~300~mV$ 100 $M\Omega~\pm~3\%$ in the range of 1 V $\ldots~1000~V$
Accuracy	 ± 1% of reading ± 1% f.s.d. in the 10-μV and 30-μV ranges (exclusive of noise and drift). ± 1% of reading ± 0.5% f.s.d. in the other ranges
Pre-deflection	5 scale divisions in the 10–µV range
Drift	± 0.2 μV/°C
Common mode rejection ratio	160 dB at 50 Hz and d.c. Impedance beteen Hi and Lo 1 kΩ Max. voltage beteen Lo and ± 750 V
Serial mode rejection ratio	> 90 dB for 50 Hz signals
Overload protection	Max. 500 V d.c. or 350 V _{rms} in the 10 μV 300 mV range 1500 V d.c. or 1000 V _{rms} in the 1 V range
	1000 V range.

may be introduced.

Height 190 mm

Width 140 mm Depth 250 mm

3.5 kg.

rear of the instrument.

Distinct indication from 1 µV upward

B. <u>General data</u> Supply

a. Mains 115 V - 230 V ± 15%, freq. 50-60 Hz.
b. Battery box PM 9204, which can be fitted at the rear of the instrument.
Operation per charge 72 hours Charging and operation possible simultaneously.

The specified data refer to a ambient temperature of

 15° C - 40° C. Between 0-15°C and 40-50°C additional error of ± 1%

Temperature range

Calibration

Polarity and null indication Recorder output

Output voltage at f.s.d. id 1 V, fully separated from the input. Output impedance ca. 1 k Ω .

There is an output for a calibration voltage of 1 mV at the

Mechanical data

Dimensions

Weight

1-3 Accessories

A. Accessories supplied as part of the equipment

- 1. Set of measuring leads
- 2. Mains lead
- 3. Short-circuiting strip
- 4. Manual
- B. Optional accessories
 - 1. Battery supply unit type PM 9204

The battery supply unit can be fitted to the rear of the instrument to provide battery operation.

Characteristics:	
Nominal voltage	5 V
Capacity	3.5 Ah.
Max. charging current	350 mA
Max. trickle charging current	35 mA
Life per charge, in conjunction with the PM 2434	75 h.
Recharging time	15 h.

It is advisable to use the PM 9204 for very sensitive measurements, because the housing of the instrument can then be used as a GUARD.

The instrument should not then be connected to the mains.

The earth socket, which is connected to the housing of the instrument, should now be connected to that point of the circuit under test which has the most suitable potential with respect to the Lo socket.

2. EHT probe type PM 9246 (Fig. 1, page 20)

The HT probe type PM 9246 is suitable for measuring direct voltages up to 30 kV. The PM 9246 may be used for the measuring instrument with an input impedance of 100 M Ω , 10 M Ω or 1.2 M Ω (selectable on the probe).

Maximum voltage	30 kV
Attenuation	1000 ×
Input impedance	$600 M\Omega \pm 5\%$
Accuracy	\pm 3% for instrument impedance of 10 MQ and 100 MQ
Relative humidity	20% 80%

3. HF probe PM type 9210 (Fig. 2, page 20) Accessory set for HF probe type PM 9212

Frequency range	PM 9210 100 kHz 1 GHz	PM 9210 + PM 9212 100 kHz 1 GHz
Straight line within 5%	100 kHz 6 MHz	100 kHz 6 MHz
Maximum deviation	3 dB	3,5 dB
Voltages ranges	150 mV 15 V	15 V 200 V
Max. voltage a.c.	30 V	200 V
Max. voltage d.c.	200 V	500 ∨
Input capacitance	2 pF	2 pF
T-piece	optional	
Frequency range	•	100 kHz 1.2 GHz
Impedance		50 Ω
Standing wave ratio		1.25 at 700 MHz; With 1.15 at 1 GHz

Probe type PM 9210 in combination with the probe accessories (adjustable earthing pin and Dage adaptor) is suitable for measurements up to a frequency of 100 MHz.

For measurements beyond this frequency it is advisable to use the 50 Ω T-piece and the 50 Ω terminating resistance which are parts of the PM 9212 probe accessories set.

1-4 Circuit description (Fig. 3, page 20)

The test d.c. voltage is supplied to the input sockets "Hi" and "Lo" (BU3 and BU2). The ranges are selected by means of the stepping switch SK3. The d.c. voltage is converted by a chopper into a 190 Hz square-wave voltage. The frequency of 190 Hz has been adopted specially so as to avoid interference with the mains frequency. The chopper is controlled by a 190 Hz square-wave oscillator.

The resulting square-wave voltage is amplified by an a.c. amplifier. This amplifier stage is followed by an attenuator and a second a.c. amplifier. The dividing of the a.c. amplifier into two stages with an attenuator leads to greater stability, because the open-loop gain is reduced. The amplifier a.c. signal is rectified by a demodulator, which is controlled by the same 190 Hz oscillator which controls also the chopper. The resulting d.c. voltage is amplifier in a d.c. amplifier circuit serving as an integrator.

The output voltage is kept constant at 1 V by varying of the gain factor by means of the feedback circuit.

In the ranges of between $10 \mu V$ and 1 mV the test voltage is supplied directly to the chopper via the hum filter. In the other ranges the test signal is first attenuated to 1 mV full-scale deflection by means of the input attenuator.

In the ranges of between $10 \,\mu\text{V}$ and $1 \,\text{mV}$ the gain is controlled by the feedback circuit. In the other ranges the feedback circuit remains set as in the 1 mV range. In this way the output voltage of the overall amplifier remains constant at 1 V full-scale deflection.

The output voltage thus obtained is used for the following functions.

A. Indication of the Test Voltage

By means of a diode bridge the meter will always deflect to the right, irrespective of the polarity of the test voltage.

B. Polarity Indication

The polarity of the test voltage is shown by means of a separate indicator. The sensitive of this polarity indicator is ten times greater than that of the meter; it can therefore be used as a null indicator.

C. Supply of the Recorder Output

The 1 V output of the d.c. amplifier is passed, fully separated galvanically, to the recorder output sockets BU4 and BU5 via a chopper, a transformer, and a demodulator. For calibration of the instrument there is an internal calibration voltage of 1 mV. The instrument can obtain its supply from the mains or from the battery supply unit PM 9204.

2. OPERATING INSTRUCTIONS

2-1 Installation

A. Adjustment to the local mains voltage

Check that the voltage adaptor SK1, at the rear of the instrument, is in the position correcsponding to the local mains voltage, before the instrument is put into operation.

Mains voltage between 100 V and 132 V: 115 V setting.

Mains voltage between 200 V and 264 V: 230 V setting.

The rating of the mains fuses at the rear of the instrument is 125 mA for 230 V and 250 mA for 115 V, both delayed action.

B. Earthing

The instrument can be connected to a mains socket with rim earthing contacts by means of the 3 core mains lead supplied.

The housing of the instrument is then earthed via this lead.

Moreover it is possible to earth the instrument by connecting a separate earthing lead to the earth socket BU1, marked \pm , at the front.

C. Battery supply

To fit the battery supply unit PM 9204 to the rear of the instrument, allow its projections to engage the recesses A, Fig. 5, and secure the unit with screws B.

Connect the 6 pole supply plug of the battery unit to the BATT. socket, BU7, at the rear of the instrument.

The life of the battery unit per charge is approximately 72 hours.

The batteries are automatically charged when the PM 2434 is connected to the mains, and the instrument can be used normally during the charging process.

2-2 Operation (Fig.'s 4 and 5, page 26)

A. Switching on

The PM 2434 does not have a mains switch. The SECONDARY POWER ON switch SK2 controls only the secondary circuit.

By means of this switch the instrument can be switched on, for mains as well as for battery operation.

B. Zero setting

1. Mechanical

Switch off the instrument and check the zero setting of the meter. If necessary, correct the zero by means of the screw below the meter.

2. Electrical

Switch on the instrument by means of the SECONDARY POWER ON switch SK2. Interconnect terminals Lo (BU2) and Hi (BU3).

Set the range selector SK3 to $10\,\mu\text{V}$.

Adjust for minimum deflection by means of the zero control potentiometers "0". (Pointer of polarity indicator must be in the centre position).

C. Calibration

Connect the 1 mV from BU6 to the Hi input. Set the range selector SK3 to 1 mV.

The meter should indicate exactly 100.

If necessary, the deviation can be corrected by means of potentiometer "CAL" (Fig. 5).

D. Measurements

1. Connections

The test voltage should be applied to sockets Lo (BU2) and Hi (BU3). By means of the interconnection link the Lo socket can be connected to the earth socket (BU1) so that one side of the measuring signal will be connected to earth. For floating measurements, remove the link between the Lo and the earth socket.

2. Direct voltage measurements

The voltage ranges can be selected by means of the range selector switch SK3.

For measurements in the most sensitive ranges it is advisable to check the preliminary deflection before each new measurement.

Pre-deflection can be reduced by means of the combined coarse-fine control "0". Parasitic voltages in the measuring circuit, e.g. thermovoltages etc., can thus be eliminated. The input resistance of the instrument has a constant value, viz.

 $1 M\Omega$ in the ranges of $10 \mu V$ to 30 mV.

10 $M\Omega$ in the ranges of 100 mV and 300 mV.

100 MQ in the ranges of 1 V to 1000 V.

As a result of this constant input resistance, very small direct currents (10 pA to 30 nA) can be measured in the corresponding $10 \,\mu$ V to 30 mV ranges.

E. Polarity indication

The polarity indicator gives an indication of the polarity of the voltage applied to the instrument. When the pointer deflects to the "+", the Hi socket is positive with respect to the Lo, and when the pointer deflects to the "-" the Lo socket is positive with respect to the Hi.

As the polarity indicator has a high sensitivety, (full scale deflection at approx. 10% of f.s.d. of the instrument) it is extremely suitable for balancing measuring bridges, compensation circuits etc.

F. Recorder output

To the sockets "Rec" and " 🛨 " (BU4 and BU5) a recorder can be connected.

When the instrument is used as d.c. amplifier, they may also be employed as d.c. output. The output voltage is proportional to the input and is 1 V at full-scale deflection, irrespective of the selected measuring range.

The polarity of the output voltage is the same as the polarity of the input voltage.

The output is fully isolated from the input and one side of it is connected to the housing. The impedance of the recorder output is approx. $1 k\Omega$.

EFFECTS ON THE TEST CIRCUIT

A set-up can be influenced by external interference.

The most important sources of interference, which have the greatest influence in the case of sensitive measurements of electric magnitudes, are the following:

A. Dynamic electric fields

Such field are caused by conductors which conduct alternating currents, and they create around themselves a low-frequency or high-frequency electric field.

B. Static electric fields

These fields are due to frictional electricity or heat, and they occur mainly at the insulating materials acting as charge support then.

The voltage produced in such charge supports is often very high and may reach many thousends of volts.

C. Dynamic magnetic fields

Electromagnetic fields are mainly produced by transformers, chokes, coils, motors etc. The magnetic fields, which often have local definitions, can give rise to great difficulties.

D. Static mafnetic fields

They are produced by permanent magnets and have only a slight influence on the electric circuits as long as the conductor in the field or lines of force remains stationary. As soon as the conductor is set into motion, there is an induction voltage.

In the case of very sensitive measurements the terrestrial magnetism is sufficient to produce an interference voltage in a moving conductor.

E. Thermic influence

There are almost always different interconnected metals (soldering points) in the electric circuits, which can act as thermoelectric couples and give rise to more or less high voltages, depending on the material at the various connections.

These voltages remain constant as long as the contact temperature is constant. In this way, these voltages can be compensated.

F. Climatic influence

The humidity of the air is an important factor in sensitive test, especially in the case of high ohmic circuits.

To reduce the influence of these types of interference it is imperative that:

- a shielded cable is used,
- the connections are kept short,
- the circuit is not submitted to temperature fluctuations,
- measures are adopted to prevent changes in the humidity of the air during the tests.

Note: If possible, a test should be repeated with the polarity reversed.

Fig. 1.

Fig. 2.

ST284

PM 2434

Fig. 5.

3. SERVICE DATA

3-1 Access (Fig.'s 7 and 8)

A. Dismantling of Housing

To remove the panels of the housing, proceed as follows:

- Loosen the screws N, Fig. 4 of the carrying handle.
- Remove the side panels and the carrying handle.
- Give the bayonet screw C a quarter turn.
- Remove top panel.
- Remove screw D and pull out the bottom panel to the rear.
- B. Rear panel

The rear panel can be hinged down after the screws E have been taken out and the side panels have been pressed out a little.

Note: Make certain that, when the cover plate is fitted again to the rear panel, the spacers are mounted again on the supply transformer and that the insulating tape on this plate has not been damaged (Fig. 6).

Fig. 6. Rear panel with cover plate

C. Test System

The test system is removed as follows:

- Loosen the screws F, K, and M a few turns.
- Take out the screw H.
- Unsolder the wiring.
- Press the side panels outward a little and take out the test system.

- D. Replacement of Null Potentiometer Assembly
 - Unsolder the wiring, resistors, and VL1 from the base plate L. Unsolder also the wires of the test system.
 - Loosen screws H a few turns. Remove screws M and the knobs of SK3 and R1.
 - Hinge down the front panel. Loosen the nut of SK3.
 - Remove the screws K and take out the base plate with potentiometer.
 - Replace these with a new assembly.

Fig. 7.

3-2 Checking and adjusting

The values and tolerances given in this section are factory data. They may depart from the specifications given in Section 1-2. Values given without tolerances are intended for information only; they are representative of any instrument.

Mechanical Zero Setting

With the instrument switched off, check whether the pointer of the meter indicates zero. Departures can be corrected by means of the screw below the meter.

Mains Supply

- Check whether SK1, Fig. 5, is set to the position corresponding with the local mains voltage.
- Connect the instrument to the mains voltage and set SK2, Fig. 4, to the position SECONDARY POWER ON
- The supply voltages must be +12.3 V and -12.3 V, with a tolerance of \pm 1 V with respect to Lo Test points:

+ 12.3 V	U3/12
LO	U3/11
- 12.3 V	U3/10

These voltages must be tested under load.

Battery operation

- Apply a voltage of 5 V to BU7, the positi e to pin b and the negative to pin d, Fig. 9.
- Check the current consumption. This should be less than 31 mA.
- Check the supply voltages of +12.3 and -12.3 V.
- Reduce the voltage from 5 V to 4.4 V. The drop in the output voltage should be less than 0.4 V.

Power Consumption

About 100 mA at a mains voltage of 220 V. About 220 mA at a mains voltage of 110 V.

Direct Current Settings

The d.c. settings must be tested with points BU2 and BU3 short-circuited.

A. A.c. amplifier

TS105	collector collector	2.8 V 5.7 V
TS105	emitter	5.1 V
TS106	emitter	5.1V
TS107	base	3 V
TS107	collector	7.4V
TS108	base	-3 V
TS108	collector	-7.4 V

B. D.c. amplifier

TS111	base	0	V
TS111	collector	5.2	V
TS112	base	0	V
TS112	collector	5.2	V
TS115	collector	12	V
TS116	collector	-12	V

C. $M\Omega$ - Ω converter

TS201	drain	1.4	V
TS201	source	4.2	V
TS202	drain	1.4	V
TS202	source	4.2	V
TS205	collector	12	V
TS205	emitter	0	V
TS206	collector	-12	V

D. 5.6 kHz oscillator

TS215 collector	- 0.7 V
TS216 collector	- 0.7 V
GR210 cathode	11.8 V
GR216 cathode	-11.8 V

E. 190 Hz oscillator

 R211/R212
 5.2 V

 TS211 emitter
 6.1 V

 TS213 emitter
 - 5.2 V

Output: 190 Hz square-wave voltage +0.5 ... -4.5 V. Outputs A and B are mutually displaced by 180°.

AD JUSTMENTS

A. 190 Hz oscillator

SK3 set to 10 mV range. Adjust the frequency, with the help of R210, to 190 Hz \pm 2 Hz, using a Lissajoux figure on the oscilloscope. Measure at points 8 and 10 of U2 (Fig. 13);

B. Null point and recorder output

Short-circuit the input of the instrument to BU2 and BU3, Fig. 4 . Set SK3 to 10 μV . Check the control range of R1 (ZERO).

Turned fully to the right, the indicator should indicate "+" and the meter more than 100 scale divisions.

Turned fully to the left, the indicator should indicate "-" and the meter more than 100 scale divisions.

By means of R1, set the indicator to zero (centre of scale).

Connect U2/4 to U2/6, Fig. 13.

By means of R203, adjust the voltage across BU4 and BU5 to \pm 0.5 mV.

Disconnect U2/4 from U2/6.

By means of R1, set the meter to 100 scale divisions.

By means of R238, adjust the voltage across BU4 and BU5 to 1 V \pm 10 mV.

C. Current offset TS101 - 102

Set the meter to zero with R1.

Disconnect the short-circuit between BU2 and BU3.

By means of R118, set the meter to zero.

If the control range is too small, R116 and R117 must be adjusted as follows:

Set R118 to its centre position.

Read the meter.

Mount R116 and R117 in accordance with the table below.

																	urcun		
Pos	Neg	0 20	40	60 	80 	100	120	140	160	180	200	220	240	260	280	300	320	→ μV 340	360
R116	R117	3. 6	10k	5			12	?k					15	¢	2		- 1	18k	
R117	R116	10k	2	8k2		2 2	6k8			5ka	5.		4k7	3k9		3k3		2k7	
а [—]		0 20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360
																 in	dicat	→µV ion	

indication

After R116 and R117 have been mounted, set the meter by means of R118 to zero again (SK3 set to 10 $\mu V).$

Check the zero point after fitting of the right-hand side panel. Any deviation must be less than 7.5 μV .

D. Calibration of the meter

Set SK3 to the 1 mV range. Connect a voltage of 1 mV across BU2 and BU3. By means of R25 (CAL, Fig. 5) set the meter to 100. Invert the voltage. The meter must now indicate 100 ± 0.5 scale divisions.

E. Linearity

Set SK3 to 1 mV

Input voltage across BU2 and BU3	Deflection of meter	Recorder output
0.8 mV	80 ± 1 scale divisions	$0.8 V \pm 10 mV$
0.6 mV	60 ± 1 scale divisions	$0.6 V \pm 10 mV$
0.4 mV	40 ± 1 scale divisions	$0.4 V \pm 10 mV$
0.2 mV	20 ± 1 scale divisions	$0.2 V \pm 10 mV$

F. Reference voltage

Connect BU3 to BU6. Set SK3 to 1 mV. By means of R308, set the meter to 100 ± 1 scale divisions.

G. Input attenuator

The input attenuator, after components have been exchanged, requires adjustment again in the following manner: Set SK3 to 100 mV. Connect a voltage of 100 mV across BU2 and BU3. By means of R101, adjust the meter delfection to 100 ± 0.5 scale divisions. Set SK3 to 1 V. Connect a voltage of 1 V across BU2 and BU3. By means of R104, adjust the deflection of the meter to 100 ± 0.5 scale divisions. Set SK3 to 100 V. Connect a voltage of 100 V across BU2 and BU3.

By means of R28, adjust the deflection of the meter to 100 ± 0.5 scale divisions.

H. Final check

After the above adjustments, the instrument must comply with the specifications given in the table below:

Position of SK3	Voltage across BU2 and BU3 (+)	Indication		
		0–100, scale	0-30 scale	
10 μV	$10 \mu V \pm 0.5 \%$	100 ± 1.5		
30	$30 \mu V \pm 0.5 \%$		30 ± 1.5	
100	$100 \mu V \pm 0.1 \%$	100 ± 1		
300	$300 \mu\text{V} \pm 0.1 \%$	n 11	30 ± 1	
1 mV	$1 \text{ mV} \pm 0.1 \%$	100 ± 1		
3	3 mV ± 0.1 %		30 ± 1	
10	10 mV ± 0.1 %	100 ± 1		
30	$30 \text{ mV} \pm 0.1 \%$		30 ± 1	
100	$100 \text{ mV} \pm 0.1 \%$	100 ± 1		
300	$300 \text{ mV} \pm 0.1 \%$		30 ± 1	
1 V	1 V ± 0.1 %	100 ± 1		
3	$3 V \pm 0.1 \%$		30 ± 1	
10	$10 V \pm 0.1 \%$	100 ± 1		
30	30 V \pm 0.1 %		30 ± 1	
100	$100 V \pm 0.1 \%$	100 ± 1		
300	$300 V \pm 0.1 \%$		30 ± 1	
1000	1000 V \pm 0.1 %	100 ± 1		

3-3 List of parts

A. Mechanical

Item	Fig.	Qty.	Ordering number	Description
1 2 3 4 5	10 10 10 - 10	1 1 1 1	5322 344 64025 5322 344 64026 5322 456 14004 5322 456 14005 5322 310 10044	Meter M1 250 μA 334 Ω Polarity indicator M2 Text plate front Text plate rear Handle bracket ASSY
6 7 8 9 10	10 10 10 10 10	1 1 1 2	532241340112532241370037532241434052532241370067532246060014	Knob for SK3 Knob cap Knob for R1 Knob cap Ornamental frame
11 12 13 14 15	10 - 11 11	2 2 1 4 4	532246060017532252010182532240450451532246250101532246240157	Ornamental strip Bracket pivot Stand up Foot Foot cap
16 17 18 19 20	- 11 11 10	1 2 4 14 1	532225690086532246270366532269340001532232564034532250514143	Strip holder Slide piece Print support Insulating plug Nut
21 22 23 24 25	11 10 10 10	4 1 1 1 1	532253264098532253254156532253264099532229030001532232110071	Pin Bush for R1 Bush for SK3 Interconnection strip Mains cable
B. <u>Miscell</u>	aneous			
BU1 BU2 t/r BU7 BU8 LA101	4 5 5 12	1 5 1 1 1	532229040012532229040011532226740127532226530066532213420102	Earth terminal Terminals Six–pole socket Mains input socket Neon lamp
SK 1 SK 2 SK 3 U1 U2	5 4 11 11	1 1 1 1	532227720014532227710323532229384007532221674011532221674012	Sliding switch Power on switch Range selector switch Printed wiring board Printed wiring board
U3 VL1 VL2 VL2 T1	11 - 11 11 11	1 1 1 1	532221674013532225260019532225640026532225330007532214630277	Printed wiring board Spark gap Fuse holder Fuse 125 mA d.a. Mains transformer

PM 2434

ltem	Fig.	Qty.	Ordering number	Description
TS201-	а ¹ а 10 в ¹			
202	13	2	5322 142 64003	Transformer
T301	14	1	5322 142 60131	Transformer
R1 a-b	11	1	5322 218 64029	Zero potentiometer with mounting plate

Fig. 10. Front view with item numbers

Fig. 11. Rear view

Resistors					
No.	Ordering number	Value (Ω)	%	Series	Description
R2 R3 R4 R5 R6	5322 116 50703 5322 116 50636 5322 116 54149 5322 116 50965 5322 116 54151	681k 2k74 215k 1k21 68k1	0.25 1 0.25 1 0.25	MR54E MR25 MR34E MR25 MR24E	Metal film Metal film Metal film Metal film Metal film
R7 R8 R9 R10 R11	532211650928532211654152532211654054532211651041532211654191	274E 21k5 121E 6k81 30k1	1 0.25 1 0.25 1	MR25 M24E MR25 MR24E MR25	Metal film Metal film Metal film Metal film Metal film
R12 R14-R16 R15 R17 R18	532211654153532211650748532211654154532211654155532211651056	1M 10k 316k 100k 11k	0.25 1 0.25 0.25 1	MR54E MR25 M34E MR24E MR25	Metal film Metal film Metal film Metal film Metal film
R19 R20 R21 R29 R30	532211650421532211650525532211650748532211650493532211650947	31k6 14k7 10k 27E4 3k16	0.25 1 0.25 1 0.25	MR24E MR25 MR24E MR25 MR24E	Metal film Metal film Metal film Metal film Metal film
R103 R106 R107 R108 R109	5322 111 24011 5322 111 24012 5322 116 54191 5322 116 50875 5322 116 50875	8M66 86M6 30k1 59k 59k	1 . 1 1 1	MR25 MR25 MR25	Carbon Carbon Metal film Metal film Metal film
R111 R112 R118 R120-R156 R143	5322 111 30336 5322 116 50452 5322 101 14024 5322 116 54153 5322 101 14025	1G 10E 2k2 1M 220E	10 1 20 1 20	MR25 MR30	Carbon Allen Bradley Metal film Potentiometer Metal film Potentiometer
R154 R159 R203 R232-R233 R238	532211650913532211650577482210310083532211654156532210120076	6k34 215k 220E 154k 4k7	1 1 10 1 20	MR25 MR30 MR30	Metal film Wire-wound potentiometer Metal film Potentiometer
R301 R302 R309 R310	532211220069532211220083532211654157532211650354	39E 120E 169k 133E	10 10 1	MR30 MR30	Wire-wound 5.5 W Wire-wound 5.5 W Metal film Metal film

Ca	pa	CI	tor	"S
	r -			~

No.	Ordering code	Value	%	V	Description
C101 C102, C103 C104 C105	5322 121 40176 5322 121 40015 5322 121 40057 4822 124 20372	1 μF 0.47 μF 68 nF 47 μF	10 10 10	100 250 100 4	Polyester Polyester Polyester Electrolytic
C106- C107 C108 C109 C110 C111, C115, C117 C112	5322 124 20377 5322 124 20373 5322 121 40232 4822 124 20565 5322 121 40197 5322 124 20375	68 μF 47 μF 0.22 μF 100 μF 1 μF 68 μF	10 10	16 10 100 4 100 6.3	Electrolytic Electrolytic Polyester Electrolytic Polyester Electrolytic
C113 C114 C116 C118 C201	532212140233532212010107532212140256482212420372532212140197	0.68 μF 1 nF 2.2 μF 47 μF 1 μF	10 10 10 10	100 500 100 4 100	Polyester Ceramic Polyester Electrolytic Polyester
C202- C203 C208- C209 C210- C211 C212- C213 C214	482212420574532212140175532212150424482212420368532212150097	150 μF 0.47μF 1 nF 33 μF 10 nF	10 1 1	16 100 63 16 63	Electrolytic Polyester Polyester Electrolytic Polyester
C301 C302 C303 C304 C305	532212420411532212420382482212210014532212420373482212010107	680 μF 100 μF 2.2 nF 47 μF 1 nF	10 10	16 10 500 10 500	Electrolytic Electrolytic Ceramic Electrolytic Ceramic
C306- C307 C308- C309	4822 124 20368 4822 124 20368	33 μF 33 μF		16 16	Electrolytic Electrolytic

Transistors

Туре	Ordering number	Pos.
BSY81 BC109C BC179 BCY57 BCY71	532213044041532213040144532213040353532213040491532213040373	TS101TS102TS109TS110 TS103TS105 TS104 TS106TS107TS115 TS108TS113TS114TS116
BCY87 BFS21A BCY71 BCY57 BSV80	532213040423532213040709532213040373532213040491532213034044	TS111TS112 TS201TS202 TS203TS204TS206TS211 TS205TS212TS213TS214 TS207TS208TS209TS210
BSX20 BFY55	5322 130 40417 5322 130 40323	TS215TS216 TS301

Туре	Ordering number	Pos.
BAX16	5322 130 30273	GR101GR102GR103GR104GR105 GR107GR108GR109GR110GR111 GR112
AAZ15	5322 130 30229	GR106
BAX16	5322 130 30273	GR201
AAZ15	5322 130 30229	GR202
BAX13	5322 130 40182	GR203GR204GR205GR206GR207 GR208GR209GR210GR211GR212 GR213GR214
BAV10	5322 130 30594	GR215GR216
BY164	5322 130 30414	GR301
BZX29-C6V8 BAX13 BZX79-C6V2 BZX79-C15	5322 130 30609 5322 130 40182 5322 130 34167 5322 130 30781	GR302 GR303GR305GR306GR307 GR304 GR113GR114

Diodes

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS (excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

②Day Month Year 1 5 0 4 7 5 = 15 April 1975

③Type number/Version 0 P M 3 2 6 0 0 2 =

Oscilloscope PM 3260, version 02 (in later oscilloscopes this number is placed in front of the serial no)

(4) Factory/Serial number D O O O 7 8 3 = DO 783 These data are mentioned on the type plate of the instrument

Component/sequence no.

⑤ Nature of call: Enter a cross in the relevant box⑥ Coded failure description

Location

These four boxes are used to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual). Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet.

These six boxes are intended to pinpoint the faulty component. A. Enter the component designation as used in the circuit diagram. If the designation is alfa-numeric, the letters must be written (starting from the left) in the two left-hand boxes and the figures must be written (in such a way that the last digit occupies the right-most box) in the four right-hand boxes. B. Parts not identified in the circuit diagram: 990000 Unknown/Not applicable 990001 Cabinet or rack (text plate, emblem, grip, rail, graticule, etc.) 990002 Knob (incl. dial knob, cap, etc.) 990003 Probe (only if attached to instrument) 990004 Leads and associated plugs 990005 Holder (valve, transistor, fuse, board, etc.) 990006 Complete unit (p.w. board, h.t. unit, etc.) 990007 Accessory (only those without type number) 990008 Documentation (manual, supplement, etc.)

Category

- 0 Unknown, not applicable (fault not present, intermittent or disappeared)
- 1 Software error
- 2 Readjustment
- 3 Electrical repair (wiring, solder joint, etc.)
- 4 Mechanical repair (polishing, filing, remachining, etc.)
- 5 Replacement (of transistor, resistor, etc.)
- 6 Cleaning and/or lubrication
- 7 Operator error
- 8 Missing items (on pre-sale test) 9 Environmental requirements are
- not met

Dob completed: Enter a cross when the job has been completed.

(1) Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

990009 Foreign object 990099 Miscellaneous

1 2 = 1,2 working hours (1 h 12 min.)

Fig. 13. Unit 2

Fig. 14. Unit 3

CARBON RESISTOR 5%-1/8W (CR25)

Fig. 15. Schematic diagram