P 2093 REFERENCE MANUAL 9

Utility Programs

9 GENERAL
The wutility programs associated with the 8088
Copower Board can be divided into two sections:

* those running under CP/M and
those running under MS-DOS

The names of these utilities and their related
files are given in the following table:

CP/M Utilities Related Files
MSUTIL MSUTIL.COM
MSUTIL .MSG

MSUTILT.MAC
MSUTILM.MAC

TEST88 TEST88.COM
MSCONF MSCONF .COM
MSCONF .DAT

IBMKEY.TAB) See Note below:
PHIKEY.TAB)
CONF IG.MSG

MSBOOT MSBOOT.COM

502

P 2093 REFERENCE MANUAL

MS-DOS Utilities
MSSORT/PCSORT

CONFIG.SYS
ANSI.SYS
CLEAR SCREEN
JREBOOT
‘DEBUGGER

Note:

MSKEY.TAB =

W%&

xu”‘M
I
.Hllm!!ﬂu:l; ﬂ ‘

I
I
Related Files h

MSSORT.EXE
PCSORT.EXE
CONFIG.SYS
ANSI.SYS
CLR.COM
REBOOT.COM
DEBUG.COM

IBMKEY.TAB OR PHIKEY.TAB

depending on keyboard requirements

502

P 2093 REFERENCE MANUAL _ 9

1

i
C

il

9.1

9.1.

502

1

Utility Programs

CP/M Utilities

MSUTIL
The utility MSUTIL is an extension of the CP/M
utility UTIL and is used to format and copy MS-
DOS and CP/M floppy disks, and to transfer files
between the two systems. It is also wused to
configure a hard disk for MS-DOS operation.
The. program is driven by menus and prompts. A
complete description of the formatting and
copying procedures is not required. Points of
interest are given in the following paragraphs.
The program is called up, under CP/M, with:
MSUTIL [CR]
and the following menu displayed:
SELECT:

1 - FORMAT FLOPPY DISK

2 - COPY FLOPPY DISK

3> - CONFIGURE HARD DISK FOR MS-DOS

to escape enter <ESC> OR <0>

P 2093 REFERENCE MANUAL

h000

I
il

Utility Programs Dl

FORMATTING WITH MSUTIL

All connected drives can be used for formatting.
The program will access the drives in the order
in which they are entered and continue until an
empty drive is found. This will be indicated by
the message 'DISK ERROR'.

Successful formatting will be indicated by the
message .'READY:n'; where n = the drive number.
The formatted disk can then be removed and a new
disk inserted for formatting on the next cycle.

The program will format the following:

P2000C DOUBLE SIDED - CP/M or MS-DOS

P2000C 160K - CP/M
P2000M - CP/M
P2500 300K - CP/M
P2500 600K - CP/M
P3500 - CP/M
P5020 320K - CP/M
IBM-PC - CP/M-86 or 360K MS-DOS
RAINBOW 400K - CP/M
KAYPRO 200K - CP/M

It must be pointed out that, in the cases listed
below, diskettes formatted with this utility may
not be fully compatible with their host systems
due to the difference in head widths:

P2000C 160K - CP/M
P2000M - CP/M
IBM-PC - CP/M-86 or 360K MS-DOS

502

P 2093 REFERENCE MANUAL 9

502

Utility Programs

After the whole disk has been formatted, the
operating system is checked. If it is MS-DOS,
the BPB (BIOS Parameter Block) is written into
the first sector. Then two reset FATs (File
Allocation Table) and an empty directory are
written onto the disk.

With CP/M, no action is taken. It may lead to
difficulties if you format IBM PC CP/M-86 disks
because they use an extra media identifier byte
on the last address of the boot sector. Its
value should be 01. To make this correction,
load MS-D0OS, start DEBUG, put the CP/M-86 disk
into drive B and type:

L1000,1,0,1 and press carriage return
E 11FF <CR>

ES 01 <CR>

wi000,1,0,1 <CR>

COPYING WITH MSUTIL

Selection of SOURCE and DESTINATION disks is
made from the following list:

P2000C DOUBLE SIDED - CP/M or MS-DOS

P2000C 160K - CP/M
P2000M - CP/M
P2500 300K - CP/M
P2500 600K - CP/M
P3500 - CP/M
P5020 320K - CP/M
IBM-PC - CP/M-86 or 360K MS-DOS
RAINBOW 400K - CP/M
KAYPRO 200K - CP/M

P 2093 REFERENCE MANUAL

|

) "WJHY l
il

The destination disk must be formatted correctly.

Utility Programs

If the source and destination disks are of the
same type, 1t is possible to make a physical
copy of the source disk by entering 'y' to the
prompt:

"Make PHYSICAL (track to track) copy (y/n)?"

This will produce a complete copy, which will
include unwanted 'deleted' files.

Entering 'n' to the above prompt - or if the
source and destination disks are of different
types - will produce a list of the files on the
source disk and the possibility to copy all of
the files (enter '*'), or a selected file (enter
the number to the left of the file name).
Leading zeros must be entered.

This method will only copy the actual files and
the appropriate directory entries.

If your source disk is MS-DOS and has a
subdirectory, you can select this subdirectory
by its number. Then it will be displayed and can
be selected for copying.

CONFIGURATION OF THE HARD DISK WITH MSUTIL

The P2000C MS-DOS implementation assumes that
the hard disk has two partitions, one each for
CP/M and MS-DOS.

502

P 2093 REFERENCE MANUAL 9

502

Utility Programs

CP/M is the primary partition and it is
activated first in all cases. The MS-DOS
partition 1is located in the upper part of the
CP/M range and above it. The address of the MS-
DOS partition is found in the CP/M directory
under the filename MSDOS.ALL wunder USER-31
(normally not accessible).

To prevent CP/M writing into the MS-DOS area the
directory entry of the MSDOS.ALL file must
declare all MS-DOS blocks as occupied.

After entering the hard disk configuration
program, the current CP/M implementation is
examined to see if it contains one, and only
one, configured hard disk volume in the lower
range (5 MB low or 2 MB). If not, the message:

'"No harddisk in this CP/M configuration' or
'Too many harddisk volumes in this CP/M
configuration'

is displayed and the procedure aborts.

If the CP/M configuration contains 5MB high
and/or 8MB hard disk volumes, the user is first
warned that they will be overwritten. The
procedure will only be continued if the wuser
acknowledges the requirement by typing the word:

'YES'.

P 2093 REFERENCE MANUAL

Utility Programs

The user is asked to switch the hard disk on and
press any key. The hard disk directory is then
checked and 1if it already has the MSDOS.ALL
file the wuser is warned that the whole MS-D0S
part of his hard disk will be overwritten. In
this case the user has to type 'YES' to continue
the procedure.

The program calculates and dispiays following
values:

- maximum hard disk size (HS)
- CP/M volume size (CS)
- highest allocated CP/M group (HC)

The maximum hard disk space (HS - HC) and the
minimum hard disk space (HS - CS) are displayed.
The wuser has to enter the required MS-DOS size
(between the minimum and maximum values - see
example below) and the program then:

- Puts the MSDOS.ALL file into the CP/M directory

- Configures the appropriate MS-DOS Driver
Parameter Block and writes it into the
booter sector.

- Writes the booter sector into the first MS-DOS
location.

- Writes the first and second File Allocation
Tables (FAT).

- Writes an MS-DOS directory with two 'deleted'
entries and a 'name' entry.
The 'deleted' entries are prepared for the
10.SYS and MSDOS.SYS entries and the 'name'
entry is 'HARDDISK'.

502

P 2093 REFERENCE MANUAL 9

502

Utility Programs

If any of these steps fail, the reason is
displayed together with the message:

'Program aborted, MSDOS not installed'.

Example:

The wuser has a 10 MB hard disk and the lower
CP/M range is 5 MB lor j. He has already used 2
MBytes in CP/M and wishes to reserve an
additional 1 MByte space for CP/M. Thus he will
have to select 7 MB as the MS-D0S size.

If all these steps are successful, the user is
informed of the actions to take in order to use
the hard disk as the MS-DOS booting device. All
the details are in Chapter 2.9.

P 2093 REFERENCE MANUAL

10

9.1.2

Utility Programs

TEST88

The 8088 maintenance program checks the general
hardware functions. These include:

- memory behaviour

- all interrupts (in both directions)
- refresh circuit

- common memory access lock

- the 8087 mathematics coprocessor

It is also possible to start a simple 8088
memory debugger from the maintenance program.

502

P 2093 REFERENCE MANUAL 9

502

Utility Programs

Test Philosophy

The maintenance program is started from the CP/M
environment by entering:

TEST88 [CR]

The program first carries out some checks to
confirm that the 8088 Copower Board is present
and operating. In the case of 'fatal' error, or
if the board is not fitted, the following
message is displayed:

'"NO ANSWER FROM SLAVE BOARD'

9 P 2093 REFERENCE MANUAL

i
Utilit {HHE O
y Programs mm

12 ! ﬂlm i

This message could indicate that the board has
not been fitted correctly. No further testing is
possible!

If the initial checks are completed satisfact-
orily, the following message is displayed:

'"IS THE 8087 MATH COPROCESSOR INSTALLED ? [Y or NJ'

If Y(es) additional tests will be carried out,
during the test procedure, to check the 8087.

On start-up, the user can make the following
selections:

LONG MEMORY TEST -
SHORT MEMORY TEST -
INT. & COPROC. TEST
REFRESH & LOCK TEST
8088 MEMORY DEBUGGER

|
O~ wnr-

EXIT PROGRAM

0 or ESC

502

P 2093 REFERENCE MANUAL 9

P2l

502

13

Utility Programs

Testing

SHORT TEST:
The short test is described in full.

The first function of the SHORT TEST is a check
of the memory. After calculating the checksum of
the 7280 memory the 8088 memory is filled with a
test pattern.

The test program runs in the common (Z80) memory

The display line shows the letter 'z,
indicating that the program is running in Z80
memory, followed by a dot '.' as each 16K block
is filled.

The memory contents are then checked.

As each block is checked, one dot is cleared
from the right. If an error 1is found, the
character 'e' will be displayed momentarily and
the standard error message will be displayed at
the end of the test.

The Z80 checksum is then verified. Any error is
indicated with the message:

'checksum error:'

P 2093 REFERENCE MANUAL

14

P00

u?“
o i
Utility Programs il

If no fault is found in the 8088 memory, the
program is moved to the lower addresses in the
8088 memory and the test is,K repeated on
locations above the program. The display line
shows the letter 'E', indicating that the
program is running in External (8088) memory,
followed by a dot '.' as each block is filled.

As each block is checked, one dot 1is cleared
from the right. If an error is found, the
character 'e' will be displayed momentarily and
the standard error message will be displayed at
the end of the test.

The 780 memory checksum is then verified again;
any error is indicated by the display of the
message 'checksum error'.

Note: Because of intermediate calculations, . a
memory error in 8088 memory will also
cause a /80 checksum error to be shown.
If both errors are indicated on the same
pass the checksum error can be ignored.

Following the memory test the refresh circuitry
is checked. This 1is indicated in the display

1line as follows:

ZER

502

P 2093 REFERENCE MANUAL 9

I

502

I

j‘ﬂf'u“ il ‘li | il
i I

15

Utility Programs

All interrupts are then generated in both direc-
tions. The display shows:

ZERI

False interrupt numbers are displayed with the
common message in the form:

'GGG1XX00'

This display is explained in the functional
description.

On completion, a further pass is started with
the memory test.

OTHER TEST ROUTINES:

The LONG test is similar to that described above
except that all bit-combinations on all the
memory addresses are checked.

The individual INT. & COPROC. TEST (interrupt
and coprocessor), and REFRESH & LOCK TEST, check
those functions only.

All tests can be terminated by entering 'ESC' or
'0'.

P 2093 REFERENCE MANUAL

16

Utility Programs

Functional Description

REFRESH & LOCK TEST:

The program runs in common memory. The first 16K
block of the 8088 memory is filled with a
pseudo-random pattern and the program locks the
8088 memory. At this stage the 8088 awaits a
fetch from common memory and the 8088 memory is
not disturbed (no read or write). The refresh
circuit is active to preserve memory contents.

After a few seconds the 8088 is released and the
memory contents are verified. Any errors
indicate a fault in the refresh circuitry or the
dynamic memory.

INTERRUPT & COPROCESSOR TEST:

The whole 8088 memory is first filled with 'ES'
with the instruction 'IN A, [E5]' to all unused
memory locations.

In the event of a program crash the logic
analyser can be triggered on an input
instruction.

If the 8087 Math Coprocessor is present a very
simple test is made at this stage.

502

P 2093 REFERENCE MANUAL 9

502

17

Utility Programs

The program then generates an interrupt table in
the range 0 - 3FFH with a starting address for
each 256 interrupt entries. Interrupt service
routines are then generated in the range 400H -
BFFH, pointed to by the interrupt table.

Each routine loads the register AL with its own
interrupt number and jumps to a common routine
which:

- sets a memory byte with the contents of AL

- sets a ready flag

- returns

The 780 CPU generates an interrupt with a
special number, waits for the ready flag and
then checks the received number.

If the flag is not set within a set time, or if
the received number is incorrect, the interrupt
number is noted. An error summary is displayed
at the end of the test; for example:

PASS 00215 INTERRUPT ERRORS ON : 0010XXXX

This would indicate that interrupts are false on
the addresses:

00100000 - 00101111

P 2093 REFERENCE MANUAL

18

T

Utility Programs hmm

MEMORY TESTS:

The memory tests load the memory with a pseudo-
random pattern. This 1is necessary as the
sequence must be reproducible for verification.

The base pattern is 96H, inverted for each pass.
This gives a base pattern of 96H for odd number
passes and 69H for even number passes, allowing
each bit to be checked in both directions.

(96H = 10010110: 69H = 01101001).

For the short test, the pattern is XORed with FF
and this value is rotated one position left. The
result is written to the next memory cell. One
permutation is excluded to give a 7 byte cycle:

D2, A5, 4B, 2D, 5A, B4, 69

For the following short test pass, the values
(inverted) will be:

2D, 5A, B4, D2, A5, 4B, 96

The long test works in a similar way, except
that the XORed value is counted down from FF to
0 after every test cycle. For the first test the
base pattern is the same as for the short test
(96 XOR FF = 69). For the second cycle 96 XOR FE
= 68. The permutation cycle is:

DO, Al, 43, 0D, 1A, 34, 68

502

P 2093 REFERENCE MANUAL ' 9

"

AH'

‘1!!\\

M

502

\lIW

19

Utility Programs

For the following long test pass the values are
again inverted.

The short test checks only one possibility for
each memory cell while the 1long test checks
every possible combination. For this reason the
long test requires about 255 times longer than
the short test. ,

The checksum verification tests for any unwanted
interaction between the memories or the
processors. A checksum error means that the 8088
has written into the common memory, indicating a
memory separator circuit defect or processor
interference.

In the event of an error the 8088 sends the
character 'e', and a summary of any false bit
patterns and addresses are displayed in the
form:

PASS 00123: ERROR AT ADDRESS:
0000 11110000 XXXXXXXX: GLlOG10OXX
(0) (F) (0) (00 - FF)

P 2093 REFERENCE MANUAL

20

Utility Programs

This indicates errors in the range OF000 -
OFOFF. The bit summary:

bit 76 543210

G10G10XX

indicates that:

bits 7 & 4 are always OK (G)
bits 6 & 3 are stuck at 1 (1)
bits 5 & 2 are stuck at 0 (0)
bits 1 & 0 are faulty in both directions (X)

If no errors are found the following pass starts
automatically. The display line is cleared but
any error messages are scrolled and accumulated
on the screen. If a printer is connected, all
messages are printed.

The program is not crash-proof as it runs 1in
RAM. If it does not respond to 'ESC' or '0' (to
terminate test), a total failure is indicated.
The program cannot run in common memory.

502

P 2093 REFERENCE MANUAL 9

21

Utility Programs

8088 MEMORY DEBUGGER:

On entering the debugger, the following prompt
message is displayed:

'Commands: C,D,F,G,M,S,SK,0,"esc", ?
Entry: Command Start address End address Other_info'

The command code may be followed by a space (not
necessary). The separator between the operands
may be a space or a comma. An automatic caps-
lock function is implemented, i.e., lower case
characters cannot be entered.

The command line format differs from that in the
P2000 Maintenance Program Debugger.

The commands, with examples, are shown below.
'CR' indicates the CARRIAGE RETURN key.
COMMAND C: - COMPARE MEMORY BLOCKS

Example: C 14000 14FFF 5000

This command will compare the block 14000 -

14FFF with the block 5000 - 5FFF. Any
differences will be displayed.

502

P 2093 REFERENCE MANUAL

22

I

Utility Programs ﬂw

COMMAND D: - DISPLAY MEMORY BLOCKS
Example: D 6000 607F

The content of locations 6000 to 607F is
displayed (HEX and ASCII). The program stores
the last displayed address and the length of the
block. Therefore, to see the next block (6080 to
60FF), the user has only to type D and 'CR'. D
and 'CR' as an initial entry displays the
contents of locations 0000 to OOFF. (0000 is the
first address of the default disk buffer.)

A long display may be stopped and restarted with
CTRL-S. Any other character cancels the command.

COMMAND F: - FILL MEMORY BLOCK WITH ONE BYTE
Example: F 8233 875D 55

The memory locations 8233 to 875D will be filled
with 55H.

502

P 2093 REFERENCE MANUAL 9

502

23

Utility Programs

COMMAND G: - GO TO AN ADDRESS (CALL A PROGRAM)
Example 1: G 5000

Starts 8088 program at location 5000 and returns
immediately to the debugger.

Example 2:

Set up the following program in the 8088 memory
from address 00000.

0000 Z2E CS:
0001 Cé 06 0010 12 MOV BYTE PTR [10],12H
0006 Fa HLT

In machine code this is:

2e, C6, 06, 10, 00, 12, F4
The program will simply set the contents of
address 10 to 1ZH.

See paragraph SET MEMORY !!

SO 'CR' SET memory from address 00000
00000 XX 2E 'CR' Cs:

00001 XX C6 'CR'

00002 XX 6 'CR'

00003 XX 10 'CR'

00004 XX 0 'CR'

00005 XX 12 'CR!'

00006 XX F4 'CR'

00007 XX . 'CR' quit SET command

P 2093 REFERENCE MANUAL

2 4 I m] mul m llI
Utility Programs ‘ mm
510 'CR' SET memory from address 10
00010 XX FF 'CR' set content of address 10 to FF
00011 XX . 'CR' quit SET command
G O 'CR' start [GO TO] program at
address 0

You will now return automatically to the 8088
Memory Debugger

S10 'CR! check content of address 10,
it should be 12H
00010 12 --——————- ‘address 10 is set (to 12H)

by the program!!

COMMAND M: - MOVE MEMORY BLOCK
Example: M 4000 4FFF 5000

The block 4000 - 4FFF is copied to 5000 - SFFF.

502

P 2093 REFERENCE MANUAL 9

"!!

P20

502

25

Utility Programs

COMMAND S: - SET MEMORY
Example: S 4000

The entered start address and its contents will
be displayed.

4000 21 - original contents 21H

The contents can be altered [enter new valuel],
or left unchanged [enter 'CR']. The next address
will then be displayed. To cancel the
command, enter '.'

4000 21 31 - changes contents to 31H
4001 00 10 - changes contents to 10H
4002 50 CR - leaves contents as 50H
4003 32 3A - changes contents to 3AH
4004 55 . - cancels command

P 2093 REFERENCE MANUAL

I I [VHN"I‘["T
|

Utility Programs mm

COMMAND SK: - SEEK STRING IN MEMORY
Example: SK CD F9 Fé6

All addresses where the string 'CD F9 F6' occur
are displayed.

COMMAND 0-0r "esc": -
EXIT FROM DEBUGGER INTO MENU TABLE

Note: The "0O" or "esc" must be followed by CR
to close the command line.

502

P 2093 REFERENCE MANUAL 7 9

i

iy

0o
C

27

1

Utility Programs

9.1.3 MSCONF

This program works in the same way as the normal
P2000C configuration program (CONFIG) wused in
the CP/M environment, except that it uses the
data file MSCONF.DAT instead of CONFIG.DAT.

The program is called up, under CP/M, with:
MSCONF [CR]

This wutility should only be used when it is
required to configure the P2000C in the PC mode.
It is used to set up:

internal codes
screen codes

keyboard codes
printer tables

Use the program CONFIG when the normal P2000C
configuration is required.

502

P 2093 REFERENCE MANUAL

28

)

C

W

502

P 2093 REFERENCE MANUAL 9

I

Tl
o

29

| y\}%m

Utility Programs

9.1.4 MSBOOT

The MS-D0OS bootstrap program is entered with:
MSBOOT [CR]

The MSBOOT program is used to install software
interface support drivers so that peripherals
can be accessed from the 8088 Copower Board.

The program then attempts to load and execute a
system disk for the MS-DOS operating system.

The MSBOOT program can be started automatically

using the 'autostart' feature of CP/M-80 and set
up during the normal CP/M configuration.

502

P 2093 REFERENCE MANUAL

30

o

o

i

it

wl [

fl
i |

il

When booting from a floppy disk it may be found
convenient to boot the CP/M system from drive 2
with the MS-DOS system disk in drive 1. This
will allow MSBOOT to proceed without having to
remove the CP/M system disk.

Utility Programs

Information for transferring the MSBOOT program
to hard disk is given in the section on MSUTIL.

502

P 2093 REFERENCE MANUAL 9

el

H!

9.2

9.2.1

502

2000
C

31

Utility Programs

MS-D0OS Utilities

MSSORT.EXE AND PCSORT.EXE

The appropriate version of the sort program,
either MSSORT or PCSORT will be copied to SORT
when the installation batch files are used to
install the required mode. Run INSTIBM.BAT or
INSTPHI.BAT as appropriate.

MSSORT

The program MSSORT.EXE is the normal MS-DOS sort
program (SORT.EXE) and has a collating sequence
from 0 to 255. It should always be used when in
the MS-D0OS P2000C mode.

PCSORT

PCSORT.EXE is a variation of the MS-DOS sort
program (SORT.EXE) and has a collating sequence
designed to suit the IBM PC character codes (for
example, "A umlaut" will sort between A and B).
This program should be used when in the MS-D0S
PC mode.

9 P 2093 REFERENCE MANUAL

32

Utility Programs

9.2.2 CONFIG.SYS

This 1is the file that MS-D0S. reads during
startup to determine some settings which can be
defined by the user. Some default settings have
been supplied on the MS-DOS disk in the
CONFIG.SYS, INSTIBM.SYS and INSTPHI.SYS files.
As these settings may not be appropriate for
your particular needs, the CONFIG.SYS file can
be edited wusing the simple line editor EDLIN.
After editing it is necessary to reboot MS-D0S
before the new settings take effect.

More details of the CONFI.SYS file and how it is
used by MS-DOS can be found in Appendix D of the
MS-D0OS User Guide.

Note: Do not confuse the above "SYS" files with
ANSI.SYS which is not a text file.

502

P 2093 REFERENCE MANUAL 9

33

Utility Programs

9.2.3 ANSI.SYS

502

The program ANSI.SYS is an installable device
driver which is used to convert the ANSI escape
sequences for controlling the terminal into the
control codes and escape sequences required by
the P2000C terminal.

This driver does not allow the reassignment of
keys or the attachment of text strings to the
function keys, as is possible with the IBM PC
ANSI driver.

Note: ANSI.SYS is a code file and should not be
confused with the other "SYS" files which
are text files.

P 2093 REFERENCE MANUAL

I

i
o]
Utility Programs m

9.2.4 CLR.COM

9.2.

5

The program CLR.COM is provided so that a clear
screen function is available in the P2000C mode.

The program generates a HEX OC character and
sends it via a BIOS interrupt call to the 780
terminal software.

The program will not operate correctly if the
ANSI device driver is installed.

REBOOT.COM

The program REBOOT.COM is provided to allow a
restart of the MS-DOS system without needing to
go back to the CP/M environment, and therefore
avoids the use of MSBOOT.

When the system is started from a floppy disk
the wuser is prompted as to whether he wishes to
load MS-DOS or return to the CP/M environment.

When the system is started from a hard disk the

‘user is not prompted, and the system reloads the

MS-DOS immediately. This is because the system
is designed to allow an "AUTOSTART" through CP/M
and into MS-D0OS with no operator intervention
other than pressing the RESET switch on the
P2000C computer.

502

P 2093 REFERENCE MANUAL 9

P2onn}
C

35

H

Utility Programs

9.2.6 MS-DOS DEBUGGER

OVERVIEW OF DEBUG

The DEBUG Utility (DEBUG) is a debugging pyogram that-provides-
controlled testing environment for binary an'éxecutable object3
files. Note that EDLIN is used to’ ource filess . i's
EDLIN's counterpart for binary files. DEBUG eliminates the need
to reassemble a program to see if a problem has been fixed by a
minor change. It allows you to alter the contents of a file or
the contents of a CPU register, and then to immediately reexecute
a program to check on the validity of the changes.

All DEBUG commands may be aborted at any time by pressing
<Ctrl>/<Break>. <Ctrl>/<Num Lock suspends the display, so that
you can read it before the output scrolls away. Entering any
key other than <Ctrl>/<Break> or <Ctrl>/<Num Lock> restarts the
display.
HOW TO START DEBUG
DEBUG may be started two ways. In the first method, you start
DEBUG and then enter all commands in response to the DEBUG prompt
(a hyphen). In the second method, you enter all commands on the
command line used to start DEBUG.
Summary of Methods to Start DEBUG

Method 1 DEBUG<CR>

Method 2 DEBUG [<pathname> [<arglist>]]<CR>

Method 1: DEBUG
To start DEBUG using method 1, enter:

DEBUG<CR>
DEBUG responds with the hyphen (-) prompt, signaling that it is
ready to accept your commands. Since no filename has been
specified, current memory, disk sectors, or disk files can be
worked on by using other commands.

502

9 P 2093 REFERENCE MANUAL

1

36 1 WW T

Utility Prograns C

Warnings 1. When DEBUG (Version 2.0) is started, it sets up a
program header at offset 0 in the program work
area. You can overwrite the default header if no
<pathname> is given to DEBUG. If you are
debugging a .COM or .EXE file, however, do not
tamper with the program header below address 5CH,
or DEBUG will terminate.

2. Do not restart a program after the Program
terminated normally message is displayed. You
must reload the program with the N and L commands
for it to run properly.

Method 2: Command Line
To start DEBUG using a command line, enter:

DEBUG [<pathname> [<arglist>]]<CR>

For example, if a <pathname> is specified, then the following is
a typical command to start DEBUG:

DEBUG FILE.EXE<CR>

DEBUG loads FILE.EXE into memory starting at 100 hexadecimal in
the lowest available segment. The BX:CX registers are loaded
with the number of bytes placed into memory.

An <arglist> may be specified if <pathname> is present. The

<arglist> is a list of filename parameters that are to be passed
to the program <pathname>. Thus, when <pathname> is loaded into
memory, it is loaded as if it had been started with the command:

<pathname> <arglist>
Here, <pathname> is the file to be debugged, and the <arglist> is

the rest of the command line that is used when <pathname> is
invoked and loaded into memory.

502

P 2093 REFERENCE MANUAL 9
1“ 37

Utility Programs

¢

PARAMETERS

All DEBUG commands accept parameters, except the Quit command.
Parameters may be separated by delimiters (spaces or commas), but
a delimiter is required only between two consecutive hexadecimal
values, Thus, the following commands are equivalent:

DCS:100 110
D CS:100 110
D,CS:100,110

Table 10-1
DEBUG Command Parameters

PARAMETER DEFINITION

<address> A two-part designation consisting of either an
- alphabetic segment register designation or a four-

digit segment address, and an offset value. The
segment designation or segment address may be
omitted, in which case the default segment is
used. DS is the default segment for all commands
except G, L, T, U, and W, for which the default
segment is CS. All numeric values are
hexadecimal.

For example:

CS:0100
04BA:0100

The colon is required between a segment
designation (whether numeric or alphabetic) and an
offset.

<byte> A two-digit hexadecimal value to be placed in or
read from an address or register.

<drive> A one-digit hexadecimal value to indicate which
drive a file is loaded from or written to. The
valid values are 0-3. These values designate
the drives as follows: 0=A:, 1=B:, 2=C:, 3=D:.

<list> A series of <byte> values or of <string>s. <list>
must be the last parameter on the command line.

Example:

FCS:100 L8 42 45 52 54 41 'ABC'

502

P 2093 REFERENCE MANUAL

i

I

i
il

Utility Programs im

Table 10-1 (Continued)
DEBUG Command Parameters

PARAMETER DEPINITION

<range> An address range specifying a lower and upper
address. Two formats can be used:

<address> <address> or
<address> L <value>

where <value> is the number of bytes in hex to be
processed.

Example: CS:100 110
CS:100 L 10

The following is illegal:

CS:100 CS:110
“ Error

The limit for <range> is 10000 hex. To specify a
<value> of 10000 hex within four digits, enter
0000 (or 0).

<sector> <sector> 1- to 3-digit hexadecimal values used to
indicate the starting relative sector on the disk
and the number of disk sectors tobe written or
loaded. Relative sectors are obtained by counting
the sectors on the disk surface. The first sector
(relative sector 0) is at track 0, sector 1, head
0. Numbering continues for each sector on that
track and head, and then continues with the first
sector on the next head of the same track. When
all the sectors on all heads of that track have
been counted, numbering continues with the first
sector on head 0 of the next track.

<string> Any number of characters enclosed in quote marks.
Quote marks may be either single (') or double(").
If the delimiter quote marks must appear within a
<string>, the quote marks must be doubled. For
example, the following strings are legal:

'This is a "string" is okay.'
'This is a ''string'' is okay.'

However, this string is illegal:

'This is a 'string' is not.' 502

P 2093 REFERENCE MANUAL 9

39

Utility Programs

Table 10-1 (Continued)
DEBUG Command Parameters

PARAMETER DEFINITION
Similarly, these strings are legal:

"This is a 'string' is okay."
"This is a ""string"" is okay."

However, this string is illegal:
"This is a "string"™ is not."

Note that the double quote marks are not necessary
in the following strings:

"This is a ''string'' is not necessary."
. . . . y
'This is a ""string"" is not necessary.'

The ASCII values of the characters in the string
are used as a <list> of byte values.

<value> A hexadecimal value up to four digits used to
specify a port number, numbers to be added or
subtracted (Hexarithmetic command), number of
bytes, or the number of times a command should
repeat its functions.

COMMANDS

Each DEBUG command consists of a single letter followed by
parameters. Additionally, the control characters and the special
editing functions described in Chapter 6 apply inside DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the
command line and indicates the error with an up-arrow (") and the
word Error."

For example:

DCS:100 CS:110
® Error

Any combination of upper-case and lower-case letters may be used
in commands and parameters.

The DEBUG commands are summarized in Table 10-2 and are described
in detail on the following pages.

502

9 P 2093 REFERENCE MANUAL

40

Utility Programs

Table 10-2
DEBUG Commands

DEBUG Command

Al<address>]

C<range> <address>
D(<range>]

E<address> [<1list>]

F<range> <list>
G[=<address> [<address>...]]
H<value> <value>

I<value>

Ll<address> [<drive> <sector> <sector>]]
M<range> <address>
N<filename> [<filename>]
O<value> <byte>

Q

Rl<register-name>]

S<range> <list>
T[=<address>] [<value>l]

Ul<range>]

wWl<address> [<drive> <sector> <sector>ll].

" ""i"‘ oy

P

C

Punction
Assemble
Compare
Dump
Enter
Fill

Go

Hex
Input
Load
Move
Name
Output
Quit
Register
Search
Trace
Unassemble

Write

502

P 2093 REFERENCE MANUAL 9

41

Utility Programs

A (Assemble)
Command

Purpose Assembles 8086/8087/8088 mnemonics directly into
memory.

Format Al<address>]
Comments If a syntax error is found, DEBUG responds with
“Error
and redisplays the current assembly address.

All numeric values are hexadecimal and must be 1-4
characters. Prefix mnemonics must be specified in
front of the opcode to which they refer. They may alsc
be entered on a separate line.

The segment override mnemonics are CS:, DS:, ES:, and
SS:. The mnemonic for the far return is RETF. String
manipulation mnemonics must explicitly state the string
size. For example, use MOVSW to move word strings and
MOVSB to move byte strings.

The assembler automatically assembles short, near, or

far jumps and calls, depending on byte displacement to
the destination address. These may be overridden with
the NEAR or FAR prefix. For example:

0100:0500 JMP 502 ; a 2-byte short jump
0100:0502 JMP NEAR 505 ; a 3-byte near jump
0100:0505 JMP FAR 50A ; a 5-byte far jump

The NEAR prefix may be abbreviated to NE, but the FAR
prefix cannot be abbreviated.

DEBUG cannot tell whether some operands refer to a word
memory location or to a byte memory location. In this
case, the data type must be explicitly stated with the
prefix "WORD PTR" or "BYTE PTR". Acceptable
abbreviations are "WO" and "BY". For example:

NEG BYTE PTR [128]
DEC WO [SI]

502

9 P 2093 REFERENCE MANUAL
42 P20
«m»'

Utility Programs m

A (Assemble)
Command

DEBUG also cannot tell whether an operand refers to a
memory location or to an immediate operand. DEBUG uses
the common convention that operands enclosed in square
brackets refer to memory. For example:

MOV AX,21
MOV AX,[21]

Load AX with 21H
Load AX with the
contents of memory
location 21H

~e So wo wo

Two popular pseudo-instructions are available with
Assemble. The DB opcode assembles byte values
directly into memory. The DW opcode assembles word
values directly into memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB 'THIS IS A QUOTE: "'

DB "THIS IS A QUOTE: '"

DW 1000,2000,3000,"BACH"

Assemble supports all forms of register indirect
commands. For example:

ADD BX,34[BP+2].([SI-1]
POP [BP+DI]
PUSH [S1]

All cpcode synonyms are also supported. For example:

LOOPZ 100
LOOPE 100
JA 200
JNBE 200

For 8087 opcodes, the WAIT or FWAIT must be explicitly
specified. For example: ‘

FWAIT FADD ST,ST(3) ; This line will assemble
; a FWAIT prefix
i

LD TBYTE PTR [BX] This line will not

502

P 2093 REFERENCE MANUAL 9
;!IN'”31:ii1!€!%iit|l!m? i

43

I

Utility Programs

C (Compare)
Command

Purpose Compares the portion of memory specified by <range> to
a portion of the same size beginning at <address>.

Format C<range> <address>
Comments If the two areas of memory are identical, there is no
display and DEBUG returns with the (-) prompt. If
there are differences, they are displayed in this
format:
<addressl> <bytel> <byte2> <address2>

If only an offset is entered for <range>, the C command
assumes the segment contained in the DS register.

Examples The following commands have the same effect:
C100,1FF 300<CR>
or
C100L100 300<CR>
Each command compares the block of memory from 100 to

1FFH with the block of memory from 300 to 3FFH. The
segment in the DS register is used by default.

502

P 2093 REFERENCE MANUAL

P20

44

Utility Programs

D (Dump)
Command

Purpose Displays the contents of the specifiéd region of
memory.

Format D[<range>]

Comments If a range of addresses is specified, the contents of
the range are displayed. If the D command is entered
without parameters, 128 bytes are displayed at the
first address (DS:100) after the address displayed by
the previous Dump command.

The dump is displayed in two portions: a hexadecimal
dump (each byte is shown in hexadecimal value) and an
ASCII dump (the bytes- are shown in ASCII characters).
Non-printing characters are denoted by a period (.) in
the ASCII portion of the display. Each display line
shows 16 bytes with a hyphen between the eighth and
ninth bytes. At times, displays are split in this
manual to fit them on the page. Each displayed line
begins on a 16-byte boundary.

Examples If you enter the command:
DCS:100 10F<CR>

DEBUG displays the sixteen memory locations from CS:100
to CS:10F in the following format.

04BA:0100 43 61 6E 6E ... 73 70 Cannot open resp
If you enter the following command:

D<CR>
the next 128 bytes are displayed. Each line of the
display begins with an address, incremented by 16 from
the address on the previous line. Each subsequent D

(entered without parameters) displays the 128 bytes
immediately following those last displayed.

502

P 2093 REFERENCE MANUAL 9

E (Enter)
Command

Purpose

Format

Comments

Example

502

45

Utility Programs

Enters byte values into memory at the specified
<address>.

E<address> [<list>]

If the optional <list> of values is entered, the
replacement of byte values occurs automatically. (If
an error occurs, no byte values are changed.)

If the <address> is entered without the optional
<list>, DEBUG displays the address and its contents,
then repeats the address on the next line and waits for
your input. At this point, the Enter command waits for
you to perform one of the following actions:

1. Replace the byte value with a value you enter.
Enter the value after the current value. " If the
value entered in is not a legal hexadecimal value
or if more than two digits are entered, the
illegal or extra character is not echoed.

2. Press the <Space Bar> to advance to the next byte.
To change the value, enter the new value as
described in (1.) above. If you space beyond an
8-byte boundary, DEBUG starts a new display line
with the address displayed at the beginning.

3. Enter hyphen (-) to return to the preceding byte.
If you decide to change a byte behind the current
position, entering the hyphen returns the current
position to the previous byte. When the hyphen is
entered, a new line is started with the address
and its byte value displayed.

4. Press <CR> to terminate the Enter command. The
<CR> key may be pressed at any byte position.

Assume that the following command is entered:
ECS:100<CR>

Suppose DEBUG displays:
04BA:0100 EB._

To change this value to 41, enter 41 as shown:

04BA:0100 EB.41_

9 P 2093 REFERENCE MANUAL

o P2

o

E (Enter)
Command

To step through the subsequent bytes, press the <Space
Bar> three times to see:

04BA:0100 EB.41 10. 00. BC.

To change BC to 42, enter 42 as shown:
04BA:0100 EB.41 10. 00. BC.42_

Now, realizing that 10 should be 6F, enter the hyphen
twice to return to byte 0101 (value 10), then replace
10 with 6F:

04BA:0100 EB.41 10. 00. BC.42-
04BA:0102 00.-_
04BA:0101 10.6F_

Pressing <CR> changes any entered values in memory,

ends the Enter command, and returns to the DEBUG
command level.

502

P 2093 REFERENCE MANUAL 9

P (Pill)
Command

Purpose

Format

Comments

Example

502

47

Utility Programs

Fills the addresses in the <range> with the values in
the <list>.

F<range> <list>

If the <range> contains more bytes than the number of
values in the <list>, the <list)> is used repeatedly
until all bytes in the <range> are filled. If the
<list> contains more values than the number of bytes in
the <range>, the extra values in the <list)> are
ignored. If any of the memory in the <range> is not
valid (bad or nonexistent), an error occurs in all
succeeding locations.

Assume that the following command is entered:
FO4BA:100 L 100 42 45 52 54 41<CR>
DEBUG fills memory locations 04BA:100 through 04BA:1FF

with the bytes specified. The five values are repeated
until all 100H bytes are filled.

9 P 2093 REFERENCE MANUAL

oy
L

w%m

48 ‘H; wl""'y
N 0
Utility Programs it

nm

l
ol

G (Go)
Command

__ e ——————————
Purpose Executes the program currently in memory.

Format Gl=<address> [<address>...]l

Comments If only the Go command is entered, the program executes
as if the program had run outside DEBUG.

If =<address> is set, execution begins at the address
specified. The equal sign (=) is required, so that
DEBUG can distinguish the start =<address> from the
breakpoint <address>es.

With the other optional addresses set, execution stops
at the first <address> encountered, regardless of that
address' position in the list of addresses to halt
execution or program branching. When program execution
reaches a breakpoint, the registers, flags, and decoded
instruction are displayed for the last instruction
executed. (The result is the same as if you had
entered the Register command for the breakpoint
address.)

Up to ten breakpoints may be set. Breakpoints may be
set only at addresses containing the first byte of an
8086 opcode. If more than ten breakpoints are set,
DEBUG returns the BP error message (see the error
message listing at the end of this chapter).

The user stack pointer must be valid and have 6 bytes
available for this command. The G command uses an IRET
instruction to cause a jump to the program under test.
The user stack pointer is set, and the user flags, Code
Segment register, and Instruction Pointer are pushed on
the user stack. (Thus, if the user stack is not valid
or is too small, the operating system may crash.) An
interrupt code (0CCH) is placed at the specified
breakpoint address(es).

When an instruction with the breakpoint code is
encountered, all breakpoint addresses are restored to
their original instructions. If execution is not
halted at one of the breakpoints, the interrupt codes
are not replaced with the original instructions.

502

P 2093 REFERENCE MANUAL 9

G (Go)
Command

Example

502

49

Utility Programs

Assume that the following command is entered:
GCS:7550<CR>

The program currently in memory begins with the current
instruction (current address of CS:IP) and executes up
to the address 7550 in the CS segment. DEBUG then
displays registers and flags, after which the Go
command is terminated.

After a breakpoint has been encountered, if you enter
the Go command again, the program executes just as if
you had entered the filename at the DOS command
level. The only difference is that program execution
begins at the instruction after the breakpoint rather
than at the usual start address.

P 2093 REFERENCE MANUAL

50

H (Hex)
Command

Purpose

Format

Comments

Example

I (Input)
Command

2000

Utility Programs |4|ﬂﬂll"

Performs hexadecimal arithmetic on the two values
specified.

H<value> <value>
First, DEBUG adds the two parameters, then subtracts
the second parameter from the first. The results of
the arithmetic are displayed on one line; first the
sum, then the difference.
Assume that the following command is entered:

H19F 10A<CR>

DEBUG performs the calculations and then displays the
result:

02A9 0095

"Purpose

Format
Comments

Example

Inputs and displays one byte from the port spec1f1ed by
<value>.

I<value>

A 16-bit port address is allowed.

Assume that you enter the follewing command:
I12P8<CR>

Assume also that the byte at the port is 42H. DEBUG
inputs the byte and displays the value:

42

502

P 2093 REFERENCE MANUAL 9

L (Load)
Command

51

Utility Programs

Purpose
Format

Comments

502

Loads a file into memory.
L[<address> [<drive> <sector> <sector>]]

If only the L command is entered (no parameters), DEBUG
loads into memory starting at location CS:100 the file
whose filespec is in the file control block at CS:5C.

A file is placed in the file control block by entering
the filespec on the command line when DEBUG is started,
or by using the NAME command. The L command sets the
BX and CX registers to the number of bytes that have
been loaded into memory.)

If the L command is entered with only the <address>
parameter, the file specified in the file control block
is loaded into memory at the specified address.

Files with a file extension of .COM are always loaded
into memory at location CS:100, regardless of a
specified <address> in the L command.

If the file has a .EXE extension, it is relocated to
the load address specified in the header of the .EXE
file: the <address> parameter is always ignored for
.EXE files. The header itself is stripped off the .EXE
file before it is loaded into memory. Thus the size of
an .EXE file on disk differs from its size in memory.

If the file named by the Name command or specified when
DEBUG is started is a .HEX file, then entering the L
command with no parameters causes DEBUG to load the
file beginning at the address specified in the .HEX
file. If the L command includes the option <address>,
DEBUG adds the <address> specified in the L command to
the address found in the .HEX file to determine the
start address for loading the file.

If L is entered with all the parameters, absolute disk
sectors are loaded into memory. The sectors are taken
from the <drive> specified (the drive designation is
numeric where 0=A:, 1=B:, 2=C:, and 3=D:); DEBUG
begins loading with the first <sector> specified, and
continues until the number of sectors specified in the
second <sector> have been loaded.

The maximum number of sectors that can be loaded by an
L command is hex 80.

P 2093 REFERENCE MANUAL
52 "

|n T ml iy m

. l (I
Utility Programs M:mumll‘ ‘

L (Load)
Command

Example Assume that the following commands are entered:

A>DEBUG<CR>
-NFILE.COM

Now, to load FILE.COM, enter:
L<CR>

FILE.COM is loaded into memory at CS:100 and DEBUG
returns the (-) prompt.

The command:

LCS:100 1 OF 6D<CR>
would load 109 (6D hex) sectors from drive B beginning
with logical sector 15 (OF hex) into memory starting at

address CS:0100. When the records have been loaded,
DEBUG returns the (-) prompt.

502

P 2093 REFERENCE MANUAL 9

21l

I >
|

Utility Programs

M (Move)
Command

Purpose Moves the block of memory specified by <range> to the
location beginning at the <address> specified.

Format M<range> <address>

Comments Overlapping moves (moves where part of the block
overlaps some of the current addresses) are always
performed without loss of data. Addresses that could
be overwritten are moved first. The sequence for moves
from higher addresses to lower addresses is to move the
data beginning at the block's lowest address and then
to work towards the highest. The sequence for moves
from lower addresses to higher addresses is to move the
data beginning at the block's highest address and to
work towards the lowest.

Note that if the addresses in the block being moved

do not have new data moved to them, the data there
before the move remains. The M command copies the data
from one area into another, in the sequence described,
and writes over the new addresses. This is why the
sequence of the move is important.

If only an offset is entered for the starting address
of the <range> parameter or for the <address>
parameter, the M command uses the segment contained in
the DS register.

Example Assume that you enter:
MCS:100 110 CS:500<CR>
DEBUG first moves address CS:110 to address CS:510,
then CS:10F to CS:50F, and so on until CS:100 is moved
to CS:500. You should enter the Dump command, using

the <address> entered for the M command, to review the
results of the move.

502

P 2093 REFERENCE MANUAL

54

N (Name)
Command

Purpose
Format

Comments

P2000

Utility Programs m

______________________________________ e e

Sets filenames,
N<filespec> [<filespec>...]

The N command performs two functions. First, N is used
to assign a filename for a later Load or Write command.
If you start DEBUG without naming any file to be
debugged, the N<filespec> command must be entered
before a file can be loaded. Second, N is used to
assign filename parameters to the file being debugged.
In this case, Name accepts a list of parameters that
are used by the file being debugged.

These two functions overlap. Consider the following
set of DEBUG commands:

-NFILE1l .EXE<CR>
-L<CR>
-G<CR>

Because of the effects of the N command, Name performs
the following steps:

1. (N)ame assigns the filename FILEl.EXE to the
file to be used in any later Load or Write
commands.

2. (N)ame also assigns the filename FILEl.EXE to the
first filename parameter used by any program that
is later debugged.

3. (L)oad loads FILEl.EXE into memory.

4. (G)o causes FILEl.EXE to be executed with
FILE1.EXE as the single filename parameter (that
is, FILEl.EXE is executed ‘as if FILEl.EXE had been
entered at the command level).

A more useful chain of commands might look like this:
-NFILEl.EXE<CR>
-L<CR>

~NFILE2.DAT FILE3.DAT<CR>
-G<CR>

502

P 2093 REFERENCE MANUAL 9

Example

502

55

Utility Programs

Here, Name sets FILEl.EXE as the filename for the
subsequent Load command. The Load command loads
FILEl.EXE into memory, and then the Ncommand is used
again, this time to specify the parameters to be used
by FILE1l.EXE. Finally, when the Go command is
executed, FILEl.EXE is executed as if FILEl FILE2.DAT
FILE3.DAT had been entered at the MS-DOS command
level., Note that if a Write command were executed at
this point, FILE1.EXE (the file being debugged) would
be saved with the name FILE2.DAT! To avoid such
undesired results, you should always execute a N
command before either a Load or a Write.

There are four regions of memory that can be affected
by the N command:

CS:5C FCB for file 1

CS:6C FCB for file 2

CS:80 Count of characters
CS:81 All characters entered

A File Control Block (FCB) for the first filename
parameter given to the N command is set up at CS:5C.
If a second filename parameter is entered, then an FCB
is set up for it beginning at CS:6C. The number of
characters entered in the N command (exclusive of the
first character N) is given at location CS:80. The
actual stream of characters given by the N command
(again, exclusive of the character N) begins at CS:81.
Note that this stream of characters may contain
parameters and delimiters that would be legal in any
command entered at the MS-DOS command level.

A typical use of the N command is:

A>DEBUG PROG.COM<CR>

~NPARAM1 PARAM2/C<CR>

-G<CR>
In this case, the Go command executes the file in
memory as if the following command line had been
entered:

PROG PARAM1 PARAM2/C<CR>

Testing and debugging therefore reflect a normal
runtime environment for PROG.COM.

9 P 2093 REFERENCE MANUAL
T

i
4II||1|"II m ‘

Utility Programs i

56 pid

O (Output)
Command

Purpose Sends the <byte> specified to the output port specified
by <value>.

Format O<value> <byte>
Comments A 16-bit port address is allowed.
Example Enter:

O2F8 4P<CR>

DEBUG outputs the byte value 4F to output port 2F8.

Q (Quit)
Command

Purpose Terminates the DEBUG utility.
Format Q
Comments The Q command takes no parameters and exits DEBUG
without saving the file currently being operated on.
You are returned to the MS-DOS command level.
Example To end the debugging session, enter:
Q<CR>

DEBUG is terminated and control returns to the MS-DOS
command level.

502

P 2093 REFERENCE MANUAL 9

57

Utility Programs

R (Register)

Command

Purpose
Format

Comments

502

Displays the contents of one or more CPU registers.
Rl<register-name>]

If no <register-name> is entered, the R command dumps th
register save area and displays the contents of all
registers and flags.

If a register name is entered, the 16-bit value of that
register is displayed in hexadecimal, and then a colon
appears as a prompt. You then either enter a <value>
to change the register, or press <CR> if no change is
wanted.

The only valid <register-named>s are:

AX BP SS

BX SI [oF]

CX DI IP (IP and PC both refer to the
DX DS PC Instruction Pointer).

SP ES F

Any other entry for <register-name> results in a BR
Error message.

If F is entered as the <register-name>, DEBUG displays
each flag with a two-character alphabetic code. To
alter any flag, enter the opposite two-letter code.
The flags are either set or cleared.

The flags are listed below with their codes for SET and
CLEAR:

FLAG NAME SET CLEAR
Overflow ov NV

Direction DN Decrement UP Increment

Interrupt EI Enabled DI Disabled
Sign NG Negative PL Plus
Zero ZR NZ
Auxiliary

Carry AC NA

Parity PE Even PO 0dd
Carry (03 4 NC

P 2093 REFERENCE MANUAL

58

I

i

o

Utility Programs

R (Register)

Command

Example

Whenever you enter the:command RF, the flags are
displayed in the order shown above in a row at the
beginning of a line. At the end of the list of flags,
DEBUG displays a hyphen (-). You may enter new flag
values as alphabetic pairs. The new flag values can
be entered in any order. You do not have to leave
spaces between the flag entries. To exit the R
command, press <CR>. Flags for which new values were
not entered remain unchanged.

If more than one value is entered for a flag, DEBUG
returns a DF Error message. If you enter a flag code
other than those shown above, DEBUG returns a BF Error
message. In both cases, the flags up to the error in
the list are changed; flags at and after the error are
not.

At startup, the segment registers are set to the bottom
of free memory, the Instruction Pointer is set to
0100H, all flags are cleared, and the remaining
registers are set to zero.
Enter:

R<CR>
DEBUG displays all registers, flags, and the decoded
instruction for the current location, If the location
is CS:11A, then the display will look similar to this:
AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG NZ.AC PE NC
04BA:011A CD21 INT 21
If you enter:

RF<CR>
DEBUG might display the following flag settings:

NV UP DI NG NZ AC PE NC -

502

P 2093 REFERENCE MANUAL
mm 59
L Utility Programs
il

R (Register)
Command

To change the settings, enter any valid flag
designation, in any order, with or without spaces.

For example:
NV UP DI NG NZ AC PE NC - PLEICY<CR>

DEBUG responds only with the DEBUG prompt. To see the
changes, enter either the R or RF command:

RF<CR>
DEBUG displays the new settings:
NV UP EI PL NZ AC PE CY - _

Press <CR> to leave the flags this way.

S (Search)
Command

Purpose Searches the <range> specified for the <list> of bytes
specified.

Format S<range> <list>

Comments The <list> may contain one or more bytes, each
separated by a space or comma., If the <list> contains
more than one byte, only the first address of the byte
string is returned. If the <list> contains only one

byte, all addresses of the byte in the <range> are
displayed.

Example If you enter:
SCS:100 110 41<CR>
DEBUG displays a response similar to this:

04BA:0104
04BA:010D

502

P 2093 REFERENCE MANUAL

~ P2000
il
. . m
Utility Programs i
T (Trace)
Command

Purpose Executes one instruction and displays the contents of
all registers and flags, and the decoded instruction,

Format T[=<address>] [<value>]

Comments If the optional =<address> is entered, tracing occurs
at the =<address> specified. The optional <value>
causes DEBUG to execute and trace the number of steps
specified by <valued.

The T command uses the hardware trace mode of the 8086
or 8088 microprocessor, Consequently, you may also
trace instructions stored in ROM (Read Only Memory).

Example Enter:

T<CR>

DEBUG returns a display of the registers, flags, and
decoded instruction for that one instruction. Assume
that the current position .is 04BA:011A; DEBUG might
return the display:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG N2 AC PE NC

04BA:011A CD21 INT 21

If you enter:
T=011A 10<CR>

DEBUG executes sixteen (10 hex) instructions beginning
at 011A in the current segment, and then displays all
registers and flags for each instruction as. it is
executed. The display scrolls away until the last
instruction is executed. Then the display stops, and
you can see the register and flag values for the last
few instructions performed. Remember that <Ctrl>/<Num
Lock> suspends the display at any point, so that you
can study the registers and flags for any instruction.

502

P 2093 REFERENCE MANUAL ’

61

Utility Programs

U (Unassemble)

Command

Purpose

Format

Comments

Example

502

Disassembles bytes and displays the source statements
that correspond to them, with addresses and byte
values.,

Ul<range>]

The display of disassembled code looks like a listing
for an assembled file. If you enter the U command
without parameters, 20 hexadecimal bytes are
disassembled at the first address after that displayed
by the previous Unassemble command. If you enter the U
command with the <range> parameter, DEBUG disassembles
all bytes in the range. If the <range> is given as an
<address> only, then 20H bytes are disassembled
starting at that <address>.

Enter:
U04BA:100 L10<CR>

DEBUG disassembles 16 bytes beginning at address
04BA:0100 in the following format:

04BA:0100 206472 AND [SI+72],AH

04BA:0103 69 DB 69

04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
04BA: 0109 65 DB 65

04BA:010A 63 DB 63

04BA:010B 69 DB 69

04BA:010C 66 DB 66

04BA: 010D 69 DB 69

04BA:010E 63 DB 63

04BA:010F 61 DB 61

If you enter:
U04BA:0100 0108<CR>
The display shows:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69

04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

If the bytes in some addresses are altered, the
disassembler alters the instruction statements. The U
command can be entered for the changed locations, the
new instructions viewed, and the disassembled code used
to edit the source file.

P 2093 REFERENCE MANUAL

62

W (Write)
Coummand

Purpose
Format

Comments

WARNING

2000
C

Utility Programs

Writes the file being debugged to a disk file.
Wl<address> [<drive> <sector> <sector>]]

If you enter the W command with no parameters, the file
in memory starting at memory location CS:100 is written
to disk using the filespec contained in the file
control block at CS:5C, The BX and CX registers must
be set to the number of bytes to be written.

If the W command is entered with just the <address>
parameter, the file starting at memory location
<address> is written to disk using the filespec
contained in the file control block at CS:5C., Again,
the BX and CX registers must be set to the number of
bytes to be written.

Note, if a Go or Trace command has been used, the
values placed in the BX and CX registers when the file
was loaded might have been changed.

When a file is loaded, edited urnder DEBUG, and then
written back to disk with the same filespec, the edited
file is written over the original file.

If the W command is entered with all of the parameters,
data is written from memory location <address> to the
specified <drive> (the drive designation is numeric,
where 0=A:, 1=B:, 2=C:, and 3=D:). DEBUG writes the
data to disk beginning at the logical sector number
specified by the first <sector> parameter and continues
to write until the number of sectors specified in the
second <sector> parameter have been written.

Writing to absolute sectors is EXTREMELY dangerous
because the process bypasses the file handler.

502

P 2093 REFERENCE MANUAL 9

i

W (Write)
Command

Examples

502

63

Utility Programs

If you enter:
W<LCR>

DEBUG writes the file starting at memory location
CS:100 to disk using the filespec contained in the file
control block at CS:5C. The number of bytes written to
disk are contained in the BX and CX registers. DEBUG
then display the DEBUG prompt.

Entering:

WCS:100 1 37 2B<CR>
DEBUG writes the contents of memory beginning at
address CS:100 to the disk in drive B:. 2BH sectors of

data are written to disk starting at logical sector
number 37H.

9 P 2093 REFERENCE MANUAL
64 ' ‘l‘rl lli';] ““““I“I]ir

uu'u

Utility Programs

ERROR MESSAGES

Duringthe DEBUG session,you may receive any of thefollowing
errormessages. Each error terminates the DEBUG commandunder
which it occurred, but does not terminate DEBUG itself.

Table 10-3

DEBUG Error Codes

ERROR CODE DEFINITION
BF Bad flag

You attempted to alter a flag, but the
characters entered were not one of the
acceptable pairs of flag values. See the
Register command for the list of acceptable
flag entries.

BP Too many breakpoints
You specified more than ten breakpoints as
parameters to the G command. Reenter the G
command with ten or fewer breakpoints.

BR Bad register
You entered the R command with an invalid
register name. See the Register command for
the list of valid register names.

DF Double flag
You entered two values for one flag. You may
specify a flag value only once per RF
command.

502

P 2093 REFERENCE MANUAL ‘ 10

b

!l
i

i

lm

I
i

10

10.1

502

)

Hardware Installation

INSTALLATION

Terminalboard Software

In order to make use of the 8088 Copower Board,
it is necessary to have the correct release of
the terminalboard software. The Copower Board
is compatible with all releases of the terminal-
board software from release 1.3 onwards.

To check your terminalboard software release it
is simply necessary to press RESET and, before
the IPL message is displayed, press the ESC key.

The software release will be displayed as:

TERMINAL SW-Rel: x.x 5
>

If the indicated release is lower than 1.3, it
will be necessary to replace the terminalboard
ROM.
Fitting instructions are given on the following
page. Please contact your dealer if you require
further information!

10

P 2093 REFERENCE MANUAL

10.2

10.2.1

i
i
i

L

Qe
o

i

u"m‘

I

7

Hardware Installation

Fitting the Board

With your 8088 Copower Board you will find the
P2000C Fitting Instructions for Optional Boards.
If you have a copy of this document which was
prepared before the 8088 Copower Board was in-
troduced, the method of fitting it is the same
as that for the P 2092 Memory Extension Board.

Please follow these instructions carefully.

FITTING THE TERMINALBOARD ROM

The ROM is fitted to a 28 pin I/C socket on the
terminal board.

First, remove the sub-chassis as shown in steps
1 and 2 of the Fitting Instructions and identify
the existing ROM. This is item 7409 and is
located at the bottom right hand corner of the
terminal board.

Note the position of the notch on the body of
the existing I/C and then carefully remove it.
Fit the new I/C, making sure that the pins are
not damaged and that the notch is in the same
position as on the original.

When the P2000C has been re-assembled, the I/C
can be tested by pressing ESC and RESET. The
software release number will be displayed and
testing carried out.

502

P 2093 REFERENCE MANUAL

10

P

10.3

502

0

Hardware Installation

System Upgrades

The 8088 Copower Board can be fitted with:

2 banks of 64KBit chips or
"1 or 2 banks of 256KBit chips
These configurations will give:
128, 256 or 512 KBytes of additional RAM.

If the board is upgraded, i.e., if more or
larger RAMs are fitted, ensure that all chips
are fitted with the same orientation as those
originally fitted.

In addition to the RAM, the B088 is wired to
accept an 8087 Mathematics Coprocessor.

Full instructions for fitting this will be
supplied by your dealer when the device is
purchased.

This maths coprocessor can only be used for
application programs that use the special 8087
instructions. Fitting the device will have no
effect on normal programs.

10

P 2093 REFERENCE MANUAL

10.4

10.5

W A rll iy ||u nlm,‘
|| Ihn i
~ dlllllllm
Hardware Installation MM

Testing After Installation

A complete check of the 8088 Copower Board can
be carried out by running the program TEST88.

The operation of this program is described in
Chapter 9 of this manual.

Restrictions

If 512KBytes of RAM are fitted together with the
8087 math processor, the environmental speci-
fication is down-graded and the equipment must

not be used with an ambient temperature above
25" C.

In all cases ensure that the P2000C is operated
with the tilt-bar down, to allow for efficient
air cooling, and that the cooling slots on the
top of the machine are not obstructed.

502

	09_0001
	09_0002
	09_0003
	09_0004
	09_0005
	09_0006
	09_0007
	09_0008
	09_0009
	09_0010
	09_0011
	09_0012
	09_0013
	09_0014
	09_0015
	09_0016
	09_0017
	09_0018
	09_0019
	09_0020
	09_0021
	09_0022
	09_0023
	09_0024
	09_0025
	09_0026
	09_0027
	09_0028
	09_0029
	09_0030
	09_0031
	09_0032
	09_0033
	09_0034
	09_0035
	09_0036
	09_0037
	09_0038
	09_0039
	09_0040
	09_0041
	09_0042
	09_0043
	09_0044
	09_0045
	09_0046
	09_0047
	09_0048
	09_0049
	09_0050
	09_0051
	09_0052
	09_0053
	09_0054
	09_0055
	09_0056
	09_0057
	09_0058
	09_0059
	09_0060
	09_0061
	09_0062
	09_0063
	09_0064
	10_0001
	10_0002
	10_0003
	10_0004

