- TERpaR
RSN

Microprogramming
Reference Manual

HP 21MX E-Series Computer

|

HEWLETTﬁ PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed: MAR 1977
Printed in '’

Library Index Number
2MICRO,320.02109-90004

PART NO. 02109-90004

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

LIST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a

vertical line in the outer margin of the page. Original pages do not include a change number and are indicated as change
number 0 on this page. Insert latest changed pages and destroy superseded pages.

Change 0 (Original) Oct 1976
Change 1 March 1977
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
JTAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1977 by HEWLETT-PACKARD COMPANY

il

PREFACE

Are you looking for a better way to accomplish your applications program tasks? Have you
used all the programming methods you can think of to make your library subroutines run as
efficiently as possible in your Real Time Executive (RTE) Operating System environment?
Maybe its time to look into microprogramming.

Primarily, microprogramming is the use of a discrete language to effect control of a specific
computer at the closest possible level without hardware redesign so that you may have the
advantage of executing selected main memory programs at the fastest possible rate available
in the computer. Some other purposes for microprogramming that may be of interest to you are
mentioned in section 1 of this manual.

This manual consists of four parts and eight appendixes that will provide you with the
information necessary to prepare and integrate your microprograms into HP 21MX E-Series
Computers, then execute them when desired. You will find subjects organized as follows:
Part I - Why Microprogramming?

® Program analysis.

® An overview of microprogramming.

¢ Microprogrammable functions of HP 21MX E-Series Computers.

Part IT - Microprogramming Methods.
¢ Microinstruction formats, definitions, and timing.
¢ Gaining access to your microprogramming area.

e How to prepare microprograms.

Part IIT Microprogramming Support Software and Hardware.
® How to microassemble and load object microprograms.
® Using microprogramming support software such as the:

— Microdebug Editor (MDE).

— Writable Control Store (WCS) I/O Utility Routine (WLOAD) and WCS Real Time
Executive (RTE) Driver DVR36.

— Programmable Read-Only-Memory (pROM) Tape Generator.
¢ Using pROM hardware facilities.

® Using extra features of the HP 21MX E-Series Computers.

iii

Part IV Microprogramming Examples.

Appendixes
¢ Microprogramming reference material.
¢ The HP 21MX E-Series Computer base set microprogram listing.

This manual is written for those individuals who have experience as Assembly language
programmers and are familiar with Hewlett-Packard RTE Operating Systems.

The documentation map that follows is a diagram of related manuals. Parts II and III of this
manual contain additional information about microprogramming support software.

iv

error
messages

2100 Series
Relocatable
Subroutines
Manual
02116-91780

HP FORTRAN 1V
Reference Manual

DOCUMENTATION MAP

START

v

RTE-III
General
Information
Manual
92060-90009

21MX E-Series
Computer
Installation and
Service Manual
02109-90002

v

RTE-IIt: A Guide
for New Users
92060-90012

!

il

21MX E-Series
Computer
Operating and
Reference Manual
02109-90001

A

\ 4

21MX E-Series
Microprogramming
Reference Manual
02109-90004

21MX/21MX
E-Series 1/O
Interfacing
Guide
02109-90006

?

v

DVR36 and WLOAD
Programming and
Operating Manual

13197-90001

5951-1321
RTE- lil Programming
and Operating Manual .‘.—
HP FORTRAN languages 92060-90004
Reference Manual < or
02116-9015 RTE-II Programming
and Operating Manual
92001-93001
YOU
ALGOL ARE
Reference Manual — HERE
02116-9072
RTE ASSEMBLER
Reference Manual <,_4
92060-90005
Multi-User
Real-Time BASIC ‘
Reference Manual
92060-90016
¢ A 4
RTE Interactive Batch-Spool
Editor Reference Monitor Reference
Manual Manual
92060-90014 92060-90013
A 4
quick
RTE and BSM reference
Pocket Guide
92060-90010 Manual
92200-93005

?A

quick
reference

21MX E-Series
Microprogramming
Pocket Guide
02109-90008

13304 A Firmware
Accessory Board
Installation and
Service Manual
13304-90001

13047A User
Control Store Kit
Installation and
Service Manual
13047-90001

RTE Operating System
Orivers and Subroutines

13197A Writable
Control Store
Reference Manual
13197-90005

v/vi

PART | — Why Microprogramming?

Section 1

Section 2

Microprogramming Concept

Controllable Functions

PART Il — Microprogramming Methods

Section 3

Section 4

Section 5

Section 6

Section 7
Section 8

Microprogramming Preparation Steps

Microinstruction Formats
Timing Considerations
Mapping to the User’s Microprogramming Area

Microprogramming Considerations
Preparation with the Microassembler

PART Il — Microprogramming Support Software and Hardware

Section 9
Section 10
Section 11

Section 12
Section 13

Using the RTE Microassembler

Using the RTE Microdebug Editor

Writable Control Store (WCS) Support Software
Using pROM Generation Support Software and Hardware

Using Special Facilities of the Computer

PART IV - Microprogramming Examples

Section 14

APPENDIXES
Appendix A

Appendix B
Appendix C

Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Index

Microprograms

Abbreviations and Definitions
Microinstruction Formats

Micro-Order Summary and Specialized Microprogramming
Microprogramming Form

Object Tape Formats

HP 21MX-to-HP 21MX E-Series Micro-Order Comparison Summary
HP 21MX E-Series Computer Base Set Microprogram Listing

Functional Block Diagram

CONTENTS

Section Page
Preface....... ... iii

PART I — WHY MICROPROGRAMMING?

Section 1 Page
MICROPROGRAMMING CONCEPT 1-1
Microprogramming Overview 1-2
Selecting an Analysis Method 1-3
The Microprogramming Process 1-3
Executing Your Microprogram 1-6
Some Microprogramming Related Products 1-7
Summary e 1-8
Section 2 Page
CONTROLLABLE FUNCTIONS 2-1
Computer Functions that Can Be Controlled 2-1
Control Processorcoo il 2-2
Arithmetic/Logic Section 2-2
Main Memory Section 2-2
Input/Output Sectionccvvvvvin.... 2-2
Operator Panelcoiiinas, 2-2
Memory Protecto, 2-5
Dynamic Mapping System 2-5
Dual Channel Port Controller 2-5
A Closer Look at the Functions. 2-5
Some Definitions and Timing Points 2-10
How Do All These Functions Interrelate? 2-10
Control Memory, 2-11
Let’s Talk About The Base Set 2-13
An Operational Overview 2-14
Fetching 2-15
Execution:........... 2-16
Microprogrammed Accessories 2-17
Summary ... 2-17

PART II — MICROPROGRAMMING METHODS

Section 3 Page
MICROPROGRAMMING PREPARATION
STEPS ... 3-1
Environment o i 3-1
Microprogramming Hardware 3-1
Microprogramming Support Software 3-3
The RTE Microassembler 3-3
Microassembler Cross-Reference Generator 3-3
RTE Microdebug Editor 3-3
Driver DVR36cviiiiiiiinin.n. 3-4
WLOAD ..o 3-4
pROM Tape Generator 3-4
Preparatory Steps............ ..., 3-5

Section 4 Page
MICROINSTRUCTION FORMATS 4-1
Microinstruction Binary Structures 4-1
Microassembler Formats 4-5
Word Type I ... 4-6
Word Type IT oo e 4-6
Word Type IIL.o 4-6
Word Type IVo e 4-9
Micro-Order Definitions 4-10
SUMIMATY . ..ottt et e e e e 4-10
Section 5 Page
TIMING CONSIDERATIONS 5-1
Computer Sections Involved in Timing 5-1
Review and Expansion of Timing Definitions
and Termsiiiiiii i 5-2
Timing Variablescccoiiiiiiiiiienenen 5-3
Short/Long Microcyclescovveeeean. 5-3
Pause e 5-4
Freeze 5-5
Overall Timingcoiiiiiiini i .. 5-7
Timing Calculations 5-8
Arithmetic/Logic Section Operations............ 5-10
Control Memory Branches 5-13
I/O Operationscoiiiiiinnein.. 5-13
Main Memory Operations...................... 5-14
Reading from Memory 5-14
Writing to Memoryoooa. 5-15
SUMMATY .« vttt ettt ettt 5-17
Section 6 Page
MAPPING TO THE USER’S
MICROPROGRAMMING AREA 6-1
Control Memory Mapping Method 6-2
Software Entry Points 6-2
The User Instruction Group............. P 6-2
HP Reserved UIG Codescccvvveenn. 6-3
User Area UIG Codescooeenn.. 6-4
User's Area Mapping Example 6-5
Main Memory/Control Memory Linkage 6-5
Assembler Procedure...................... ... 6-7
Parameter Passing 6-8
Control Memory/Main Memory Linkage...... 6-11
Some Main Memory Program Procedures 6-11
The MIC Pseudo-Instruction 6-11
Parameter Assignment Example............. 6-12
Example MIC Pseudo-Instruction Use........ 6-12
Calling Microprograms from FORTRAN 6-13
Summary ... 6-14

ix

CONTENTS (continued)

Section 7

Page
MICROPROGRAMMING
CONSIDERATIONSc. i 7-1
Read and Write Considerations 7-1
Typical Read Operations...................... .. 7-1
Typical Write Operations 7-4
Useof MPCKcoco . 7-7
Conditional and Invalid Operations 7-7
Some Microprogramming Techniques 7-8
The Use of SRGL and SRG2 7-8
Using the ASG Micro-Order 7-10
Setting and Clearing Overflow 7-10
The Use of PNM 7-12
The CNTR Micro-Order 7-12
Magnitude Tests 7-13
Memory Protect Considerations 7-14
The FTCH Micro-Order........................ 7-14
IRCM .. 7-14
INCI ..o 7-14
MPCK ... 7-15
The I0G Micro-Order 7-15
TAK oo 7-15
The IOFF Micro-Order 7-15
Dual Channel Port Controller Considerations 7-16
Microprogrammed /O 7-16
Synchronizing With the I/O Section 7-16
I/O Section Signal Generation 7-17
I/O Control, 7-19
O Output.....oooviii e 7-19
OInput ... i 7-20
Memory Protect in Relation to /O 7-20
Interrupt Handling 7-20
Forming and Executing Microprogrammed
/O Instructionscov... 7-23
Special /O Techniques 7-23
I/O Micro-order Summary 7-24
Dynamic Mapping System Considerations 7-26
Guidelines for Writing Loaders 7-29
SUMMALY ..o e e e e 7-29
Section 8 Page
PREPARATION WITH THE
MICROASSEMBLER
Planning and Preparation
Planningc i
Preliminary Information
Field Template :
Microprogram Entry............ PR SN SN
The Microassembler
Microassembler Rules
Control Commands AP
MIC Assembly Command 8-4
The $CODE Command 8-5
$PAGE Commandcvvein. 8-5
The $LIST and $NOLIST Commands 8-5
$PUNCH and $NOPUNCH 8-5
HP 21MX E-Series Microinstructions 8-6

The Label Field
Micro-Orders

ALan | eado-Mierolnstruction ...

EQU ...
DEF ...
The ONES and ZERO Pseudo-
Microinstruction
Summary

PART III — MICROPROGRAMMING SUPPORT

SOFTWARE AND HARDWARE

Section 9 Page
USING THE RTE MICROASSEMBLER 9-1
Using the Microassembler 9-1
Execution Command 9-1
The Microassembler Output..................... 9-3
Binary Object Code 9-3
Microassembler Listing Output 94
Symbol Table Output 9-4
Using the Cross-Reference Generator 9-5
MESSaZES .« . vttt 9-7
Informative Messages 9-7
Error Messages oot 9-8
Section 10 Page
USING THE RTE MICRODEBUG EDITOR 10-1
Scheduling MDE 10-2
MDE Commandsc..cii. .. 10-3
?2Command 10-4
EXit Command 10-4
DUmp Command, 10-4
LoaD Command 10-4
LUCommandcooviiiviniiinnaninnnn. 10-5
DElete Commandc.coviiiiinnnnn.. 10-5
REplace Commandc.ovvvninen. 10-6
SHow Command 10-7
BReakpoint Command 10-7
CLear Command 10-9
LoCate Command 10-9
PaRameters Command 10-9
RUn Command 10-10
SEt Command 10-11
MeSSages . ..o 10-13
Restrictions on Using the Microdebug Editor 10-15
Calling MDE 10-15

CONTENTS (continued)

Section 11 Page
WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE 11-1
WCS Hardwarec ... 11-1
WCS Software ... 11-2
Section 12 Page
USING pROM GENERATION SUPPORT
SOFTWARE AND HARDWARE 12-1
Using the pROM Tape Generator 12-1
Initialize Phase o 12-2
Punch Phase 12-5
Verify Phaseo, 12-6
pROM Tape Generator Error Messages 12-7
pROM Hardware 12-9
Section 13 Page
USING SPECIAL FACILITIES OF THE
COMPUTER e 13-1
Block I/O Data Transfers......................... 13-2
Block /O Byte Packing Burst Input
Microprogramcoiviiiiiei i 13-3
Block I/O Address/Data Burst Input
Microprogramo.ieiiii i 13-5
Block I/O Word Burst Qutput Microprogram 13-6
Microprogrammable Processor Port 13-6
Hardware Interface 13-7
MPP Microprogramccooon.. 13-8
SUMmMAaryoouiiiiii i 13-9

PART IV — MICROPROGRAMMING

EXAMPLES

Section 14 Page
MICROPROGRAMS 14-1
WCS Initializationcooivuriieienan. 14-2
Microprogramming with MDE 14-4
Shell Sort Example oo 14-6
Microprogrammed I/O Operation Example 14-19
APPENDIX A Page
ABBREVIATIONS AND DEFINITIONS Al
APPENDIX B Page
MICROINSTRUCTION FORMATS.............. B-1
APPENDIX C Page
MICRO-ORDER SUMMARY AND

SPECIALIZED MICROPROGRAMMING C-1
APPENDIX D Page
MICROPROGRAMMING FORM D-1
APPENDIX E Page
OBJECT TAPE FORMATS E-1
APPENDIX F Page
21MX-TO-HP 21MX E-SERIES MICRO-

ORDER COMPARISON SUMMARY F-1
APPENDIX G Page
HP 21MX E-SERIES BASE SET MICRO-
PROGRAM LISTING G-1
APPENDIX H Page
FUNCTIONAL BLOCK DIAGRAM H-1
Index I-1

xi

ILLUSTRATIONS

Title Page
Microprogramming Implementation Process 1-5
Some Microprogramming Products 1-7

HP 21MX E-Series Computer Overall Block

Title Page
Consolidated Microcycle Estimating Flowchart 5-9
Detailed Microcycle Time Determination

Flowchart i, 5-11

Diagram i 2-3 Detailed Pause Time Calculation Flowchart
Simplified Control Processor Block Diagram 2-9 (Using an HP 2102B Memory as an Example) .. 5-16
Control Memory Mapcooiiieeainn.. 2-12 Overflow Register Control 7-11
Word Type/Binary Format Summary 4-1 Scheduling MDE (MDEP) 10-16
Micro-Order Binary Formats 4-3 Calling MDE (MDES).................. 10-16
RTE Microassembler Word Format Summary....... 4-5 Interactive Debugging Operations 10-17
Microassembler Format Micro-Orders 4-7 General Tape Format 12-2
Jump Address Decoding, 4-9 Example 3, Microprogrammed Shell Sort
Basic Timing Definitions 5-2 Flowchart i i, 14-9
Variable Microcycles with Pause Conditions 5-6 Example 4, Microprogrammed Privileged Section
Overall Microcycle Timing Flowchart 5-7 Flowchartccoiiiiiiiiiiiiiiiiii., 14-25

TABLES

Title Page Title Page
Computer Functions ...t 2-6 MEM Signals Invoked by Micro-Orders 7-27
Preparatory Steps..........ooiiiiiiiiiiiiiiiiits 3-5 DMS Micro-Order Control Signals 7-28
Manual/Software References 3-7 Microassembler and Cross-Reference Generator
Micro-Order Definitionscooiiinnn 4-11 Error Messagesocoviureamenaiennieenns 9-8
Summary of Timing Factors 5-18 MDE Operator Command S}.fntax 10-1
Control Memory User Instruction Group Summary of Microdebug Editor Commands 10-3

Software Entry Point Assignments 6-4 Microdebug Editor Error Messages 10-13
Backplane I/O Signal Generation Determined by Default Formats by Vendor 12-4

IR Bits 11 through 6coooennnns 7-18 MPP Signal Summaryccoiieeiiiiiannen 13-7
/O Micro-Order Summarycceeeeeeeesns 7-25 Special Facilities Transfer Rate Summary......... 13-9

Xil

PART |
Why Microprogramming?

Section 1
MICROPROGRAMMING CONCEPT I

MICROPROGRAMMING CONCEPT

Why microprogramming? Because microprograms and microprogramming techniques can be used to. .

Reduce program execution time. By microprogramming often-used routines you can significantly
decrease the program execution time. Large reductions in execution time are enabled because:

— Many instruction fetches are eliminated.
— Microinstructions execute (typically) four to ten times faster than Assembler instructions.
— Multiple operations can occur during a single microinstruction.

~ The microinstruction word width (24 bits) provides a larger instruction repertoire than avail-
able with the Assembler word width (16 bits).

— Many more registers and functions at the microinstruction level are available to you than to
the higher level language programmer.

Implement customized computer instructions. Designing customized instructions (i.e., micropro-
grams) can provide facilities not otherwise readily available. Examples are:
— Postindexing and/or preindexing.

— Stack instructions.

— Special arithmetic instructions (double integer, decimal, etc.). ‘A?‘Jeﬂt,; »

What types of applications can be microprogrammed?

Sort routines (e.g., bubble, shell, radix-exchange, and quicksort).
High-speed or specialized input/output (I/O) transfer operations.
Table searches (e.g., sequential, binary, and link-list).
Transcendental functions (e.g., sine, square root, and logarithms).

Fast Fourier Transform (FFT).

1-1

Concept

You may also create microprograms to control your own customized hardware. References for micro-
programmable algorithms for many of the above applications are given in part IV.

Then why not microprogram everything?

¢ Microprogramming everything would be an unwieldly and unprofitable project. An analysis
should be made to determine those areas that need to be microprogrammed.

¢ Microprograms are not relocatable in control memory.

® Microprograms run separately from the operating system and, when invoked, are in complete
control of the computer. Therefore, if you don’t plan carefully, the operating system’s peripheral
devices, memory, and computer management can be defeated, or even aborted.

Although additional effort is required to become more familiar with the computer in order to write
microprograms, the results will be well worth the effort. The following paragraphs outline the
considerations involved when you decide to microprogram.

1-1. MICROPROGRAMMING OVERVIEW

What is the first thing to consider? Typically, an application program, or perhaps a library routine
running in an RTE environment, may need to have a faster execution speed. This may or may not be
obvious in external operation (i.e., waiting time is too long for a line printer output when a certain
calculation is performed, terminal response too slow, etc.). Whether the excessive time taken is
obvious or not, some method must be used to analyze the programming environment so that you can
identify these areas. Three basic methods can be considered to determine which areas of the program
(memory) are consuming the most computer time:

® Programming analysis devices may be attached to the computer; this is the most accurate but most
expensive method.

® A programmatical analysis method may be used as a middle-of-the-road approach.

e The computer can be checked manually at periodic intervals (i.e., every 10 or 15 seconds) by
halting and recording the program counter (P-register) contents. A profile can thus be obtained,
and a map of the “busy” areas generated; however, this is a tedious and time-consuming task, but a
minimum of material cost is involved.

In summary, it can be seen that the first step is to find out what you're going to microprogram. The

point is that if you spend your time microprogramming some seldom-used library routine, you cannot
expect to realize a significant gain in software efficiency.

1-2

Concept

1-2. SELECTING AN ANALYSIS METHOD

The analysis method we’ll consider in this manual is a middle-of-the-road approach. That is, an
activity profile generation type of program. For example, you can:

e Use an I/O device capable of generating interrupts and cause periodic interrupts to the operating
system.

® Reserve a “word block counter” for (as an example) every 500 words of main memory.

Each time the device interrupts, the P-register could be sampled and the count incremented for the
associated “word block counter”. That is, a record is generated for the program location counter at
periodic intervals. This can be done several hundred thousand times and, at the end of the sample
period, a percentage of time spent in each area of memory can be obtained. Then. . .

® The load map of the program being analyzed can be examined to determine which part(s) of the
program could possibly be microprogrammed to decrease the execution time.

® The resolution for your analysis program could be changed, as could other parameters in the
program, to obtain the desired profile.

This is the general idea of how an activity profile generation program could be used. Also, you may
want to refer to the Contributed Library Catalog, part no. 22999-90040, for programs you may be able
to use.

Once your activity profile generation program output is analyzed, it may be found that some specific
routines (perhaps library subroutines) are indeed consuming too much computer time. Once the
analysis is complete, you're ready to concentrate on a particular area. But remember that:

® The maximum benefit of microprogramming will not be realized by simply imitating the Assembly
language instructions in microroutines.

® In order to determine specifically what to microprogram, the computer functions and program
intent should be studied before you begin to write your microprogram. The final result will be a

microprogrammed solution that executes in much less time and is totally or at least partially
transparent.

Now, what steps are necessary to get your microprogram into operation? An overview of the process
follows.

1-3. THE MICROPROGRAMMING PROCESS

Figure 1-1 provides an overview of the steps involved in microprogramming and some explanation of
the illustration may be helpful:

® After a program analysis has been accomplished, the entry point (address) for the control memory
module that you’ll be using must be determined.

® The microprogram is then written using the information given in part II of this manual.

® The microprogram source file can be prepared and stored on disc.

1-3

Concept

The microassembler (program MICRO, which can be placed in the RTE system at generation time)
is loaded into main memory.

The microprogram source is then microassembled by MICRO and a listing and an object file can be
obtained.

At this point the Microdebug Editor (program MDEP, which can also placed in the RTE system at
generation time) can be loaded into main memory. (The Microdebug Editor may also be called from
your programs in the RTE environment by the name MDES.)

The object microprogram may then be loaded into Writable Control Store (WCS) using the MDE.
(Microprograms can also be loaded into WCS using other programs, such as WLOAD.)

The microprogram can be debugged, edited, and checked out interactively using the MDE and
WCS.

NOTE

The HP 13197A Writable Control Store Kit is an integral part of
microprogramming. Information on writing micro-
programs to be stored in WCS is the primary purpose of this
manual; however, installation and additional reference informa-
tion on WCS will be found in the HP 13197A Writable Control
Store Reference Manual, part no. 13197-90005. Information on
the driver (necessary for operation of WCS in the RTE environ-
ment) and on the WCS 1/0 Utility routine WLOAD is included in
the RTE Driver DVR36 for HP 12978A/13197A Writable Control
Store Board Programming and Reference Manual, part no.
13197-90001.

The ready-to-run microprogram can be stored in one of two ways:

1-4

It can be left in WCS.

You can create a permanent microprogram through the use of the pROM Tape Generator micro-
programming support software. This software, in turn, can be used to generate several different
types of mask tapes that can be used to have Programmable Read Only Memory (pROM’s) fused
{(burned). The pROM’s can then be installed on the HP 13304 A Firmware Accessory Board (FAB)
(attached to the CPU) or on the HP 13047 A User Control Store (UCS) Kit (in the I/O card cage).

NOTE

Information on the pROM Tape Generator (as well as on the RTE
Microassembler and RTE Microdebug Editor microprogramming
support software) is included in this manual. Information you will
need for using pROM’s can be found in the HP 13304A Firmware
Accessory Board Installation and Service Manual, part no.
13304-90001 and the HP 13047A User Control Store Kit Installa-
tion and Service Manual, part no. 13047-90001.

Concept

ACTIVITY PROFILE
GENERATION
PROGRAM

USER
MICROPROGRAMMING
REQUIREMENT

RUN PROGRAM

HP 21MX E-SERIES
ANALYSIS COMPUTER
STUDY RESULTS
AND/OR
PLAN MICROPRQGRAM

CONTROL
MEMORY

ASSIGN ASSEMBLY
LANGUAGE
INSTRUCTION CODE
TO DETERMINE
ACCESS POINT

WRITE THE

PREPARE AND
MICROPROGRAM

/\,NPUT SOURCE
MICROASSEMBLE @ STORE
ON DISC

MICROPROGRAM
’\ LISTING
TNy Disc PROM TAPE
____/ GENERATOR
=
T

RTE
MICRO-
ASSEMBLER

OBJECT CODE ON ==
LOAD DISC FILE (OR TO == -
OBJECT QUTPUT DEVICE!} —
FILE PREPARE SIX
MASK TAPES

RTE

MICRO- NEW (EDITED}
DEBUG
A INTERIM PERFORM
DISC FILE INTERACTIVE
EDITING AND

BURN
pROM’s

CHECKOUT
USING WCS

pROM’s ON 2K UCS
OR FIRMWARE

WRITABLE ACCESSORY BOARD &7
CONTROL
STORE & P
wces) &7

F

CALL MICROPROGRAM
MICRODEBUG EXECUTION
EDITOR
WRITE

MICROPROGRAM
TOWCS

WCS 1/O
UTILITY
ROUTINE
(WLOAD)

USER PROGRAMS
IN MAIN MEMORY

71151)
Figure 1-1. Microprogramming Implementation Process

1-5

Concept

The advantages of executing microprograms from WCS are:
¢ WCS may be reused for many microprograms.

¢ WCS may be used to dynamically swap microprograms in and out of the system to suit a variety of
users.

The disadvantages are:

® Microprograms in WCS can be destroyed by an errant user of the system.

e When computer power is removed, your microprogram is lost and must be reloaded.
e Each WCS board requires an I/O slot in the computer.

The advantage of fusing (burning) pROM’s is:

® The pROM’s are permanently fused and the computer will not lose the microprogram when power
is removed.

The disadvantage is:

e There is much more involved in changing the microprogram with pROM’s than there is with WCS.

1-4. EXECUTING YOUR MICROPROGRAM

If your microprogram is stored in pROM’s, it can be executed immediately through User Instruction
Group (UIG) instructions (105xxx or 101xxx) that link Assembly language routines to microprograms.
The hardware and firmware map each UIG instruction to a unique control memory destination.

If WCS is being used, your microprogram must initially be contained in WCS before execution.
Microprograms that reside in WCS execute at the same speed as pROM’s. Both WCS and pROM
resident microprograms can be used along with the base set in control memory. (The base set is defined
as the computer’s standard instruction set microprograms.)

Either the WCS I/O Utility routine WLOAD can be used to load WCS (through a call from FORTRAN,
ALGOL, or Assembly language) or the MDE can be used to load WCS. The microprogram can then be
called for execution from the main program in the same manner as described for a pROM stored
microprogram. To summarize, your microprograms (when loaded) can be executed in the following
ways:

e Under MDE control.
e By using an Assembly language UIG instruction.
e Through calls from FORTRAN or ALGOL.

Now that you have an overview of the microprogramming process, let’s look at some microprogram-
ming products.

1-6

Concept

1-5. SOME MICROPROGRAMMING RELATED PRODUCTS

Several different products have been mentioned in the previous paragraphs that are directly as-
sociated with the microprogramming environment. Figure 1-2 illustrates products that can be used for
microprogramming your HP 21MX E-Series Computer.

/o 1/0 CARD
SECTION CAGE

PARTIAL HP 2tMX E-SERIES
COMPUTER
PHYSICAL LAYOUT

1O SLOTS FOR

HP 13197A

WRITABLE

CONTROL STORE
(DYNAMIC
MICROPROGRAMMING}

77777 E AND/OR

MEMORY
SECTION HP 13047A
USER CONTROL
STORE KITS
{(PERMANENT

MICROPROGRAMS}

A

N cToO0-wncm <VO0ZTMIZ

|
\
I
|

~el____ INPUT/OQUTPUT

BACKPLANE
MICROPROGRAMMABLE

PROCESSOR PORT

vwcm o™=

|
f
/
P s

4
4

OPERATOR
PANEL

1_/ 1_/ 7 o
CENTRAL PROCESSING UNIT /ﬁj EXTENDER

P27) /'y
- /Q){’ / CONTROL

BASE SET MEMORY

MICROPROGRAMS ; BUS
\

HP 13304A/

HP OR USER SUPPLIED FIRMWARE

FIRMWARE FOR EXAMPLE, FAST FORTRAN PROCESSOR (FFP),
;\82?050” DYNAMIC MAPPING SYSTEM {DMS}, OR USER

DEFINED pROM's

7115-2
Figure 1-2. Some Microprogramming Products

1-7

Concept

1-6. SUMMARY

To effectively create a microprogram, the programmer must be equipped with the following:

® An understanding of what to microprogram.

® An understanding of the computer operation and its architecture.

¢ Knowledge of the methods used to map to and access control memory.

o Knowledge of the microassembly language and microinstruction field effects.

® Knowledge of the appropriate microprogramming hardware and software products.

One way to obtain this information is to attend the Hewlett-Packard 21MX E-Series Computer
Microprogramming course. The above subjects are all expanded upon in the remaining portions of this

manual but remember that the most important step you must take first is to find out what you should
microprogram.

1-8

Section 2
CONTROLLABLE FUNCTIONS TN

CONTROLLABLE FUNCTIONS

Now that the “busy areas” of the program have been identified, you are ready to gain some detailed
knowledge of the computer that is needed before you read information about the microprogramming
language. The following paragraphs describe:

¢ The hardware functions controlled by microinstructions.

® Aspects of the base set microprogrammed operation that will be important for your
microprogramming.

® Enough about Hewlett-Packard products to enable you to take advantage of them (and interface
with them) in your own microprogramming.

To implement your own microprograms you will not need to know the computer design to the “gate”
level. The information in this book should be entirely sufficient for your needs. The base set discus-
sion will help you to become aware of the existing microprogram’s operation. Below is a look at the
overall computer followed by details on the registers and other functions.

2-1. COMPUTER FUNCTIONS THAT CAN BE CONTROLLED

Figure 2-1 illustrates the five major sections in the computer. In order of importance, they are the:

e Control Processor.

® Arithmetic/Logic section.

® Main Memory section.

¢ Input/Output (I/0) section.

® Operator Panel.

Accessories shown in the overall block diagram that are directly associated with microprogramming
are the:

e HP 13197A Writable Control Store (WCS).

e HP 13304A Firmware Accessory Board (FAB).

e HP 13047A User Control Store (UCS) Kit.

The important points about these and other accessories will be covered after a look at the “basic”
computer.

21

Functions

2.2, CONTROL PROCESSOR

The Control Processor includes a special control memory (made of ROM, pROM, or WCS), registers,
logic, and timing signals required to control all of the other sections of the computer. Notice in figure
2-1 that the base set, FAB, WCS, and UCS are all shown associated with the Control Processor by
addressing and microinstruction (bus) lines. The base set (the standard instruction set microprogram)
is part of the “basic” computer. The 3.5K microword capacity FAB, 1K microword capacity WCS, and
2K microword capacity UCS are accessories that are extensions of control memory you can use for your
microprogramming. WCS also communicates with the I/O section to allow microprograms to be
written to and read from main memory. Although some signals for control and loading of WCS are
passed through the I/O section, both WCS and UCS are connected by cabling to the rest of control
memory in an “OR-tied” fashion so that when executing there is no difference in addressing and
microinstruction output. No matter how control memory is physically implemented, it all appears as
one large microprogram facility to the Control Processor.

2-3. ARITHMETIC/LOGIC SECTION

The Arithmetic/Logic section of the computer includes most of the hardware required to actually carry
out the commands of the microinstructions. It contains all working registers in the Central Processing
Unit (CPU) and provides the logic to perform arithmetic and logical operations on data.

NOTE

The CPU consists of not only the Arithmetic/Logic section but the
Control Processor and I/O section. These functions are all physi-
cally located on the board called the CPU.

2-4. MAIN MEMORY SECTION

All programs and data reside in the Main Memory section consisting of one controller and a set of
semiconductor memory modules with which it is designed to operate. The instructions from main
memory are all decoded by the Control Processor.

2-5. INPUT/OUTPUT SECTION

The Input/Output (I/0) section serves as an interface between the computer and external devices. The
/O hardware responds either to Control Processor stimuli (for computer-initiated data or control
operations) or to device stimuli (for device-signaling attention requests), and hence becomes the active
communication link between the computer and peripheral devices.

2-6. OPERATOR PANEL

This is the basic interface between you and the computer. The panel has two registers, several
indicators, and many control switches (described in the HP 21 MX E-Series Computer Operating and
Reference Manual, part no. 02109-90001. The Operator Panel is controlled by base set microroutines.

2-2

Functions

INSTRUCTIONS AND DATA

T == T T T A
r | DUA"Pg:?NNEL) O MEMORY |
| 1 controLLer 1! I PROTECT !
[P S F e —J
L e A" L —/\ — =A—"
\/
ARITHMETIC/ ADDRESSING
LOGIC
SECTION e)
I M-BUS x}
————
e | |
r MEMORY | §
| | EXPANSION]
I | MODULE |
| (DYNamiC
| I MAPPING) |
]
| //L -— - ;)
/ e’ — |l —
P i B
< |
'd | MAIN |
| (SEMICONDUCTOR)
MICROPROGRAM CONTROL | MEMORY |
< > | SECTION I
|
S —— J
I -

Figure 2-1. HP 21MX E-Series Computer Overall

Block Diagram
115-3

2-3/2-4

S-BUS

/N N\

INSTRUCTIONS
AND
COUNTS
TA
D OPERATIONS
DRESSES AND DISPLAY
M'ngmggﬁAM CONTROL < MICROPROGRAM CONTROL
< » PROCESSOR N
< N
> MICROPROGRAM
A CONTROL
ADDRESSES MICROINSTRUCTIONS
ITE
"0
-E A — —— \
I “ | WRITABLE B . —: > BASE SET
|
CONTROL |
| 1 /

m— STORE - i —

K

”
e - -
e ___ T FRwwaARE
e USER A ACCESSORY |
r | g I BOARD — |—
| conTROL >J_ o
| | STOREKIT | — - -
. — — —an —”
I)— — G e t—
L~ e
— —— — a— a—t

v %

OPERATOR PAN

MICROPROGRAMMA
PROCESSOR PORT

)]

DA’

AD

N/

INPUT/
OUTPUT
SECTION

N

PERIPHERALS INTERFACE
A T T T T A AT T READ/WR
’/J—)%/ I —_—dJ FROM/ 1
== i WRITABI
- ksl f———"— CONTRC
ke _ ___7 conTrOL pras IR)\ “sone

AND R
DATA |4// g
AT T -z CONTROL
~ AND

J E— :
(//) DATA
7
e
(MORE PERIPHERALS)
NOTE:
DASHED OUTLINES (_ — —) INDICATE EQUIPMENT

NOT SUPPLIED WITH THE STANDARD COMPUTER.

7115-3

Functions

2-7. MEMORY PROTECT

Memory Protect may interrupt, retain, and report the logical 15-bit address of any instruction that
attempts to enter or alter main memory below a programmable fence, execute certain I/O instructions,
or execute certain instructions flagged by the Dynamic Mapping System. This accessory will also
capture the location of any memory location that may have a parity error. Several circumstances that
affect microprogramming in relation to Memory Protect are discussed in part Il of this manual.

2-8. DYNAMIC MAPPING SYSTEM

The Memory Expansion Module (MEM) shown in figure 2-1 is part of the HP 13305A Dynamic
Mapping System. If installed, the MEM resides (logically) in front of the memory controller and
expands the amount of addressable main memory beyond 32K words. The system “windows” a large
physical memory down to a logical address space of 32K words. The technique of relating a large
physical memory to a logical 32K memory is called “mapping”. Since the “maps” involved may be
dynamically reloaded, accessibility to the entire physical memory is accomplished. Microprogramming
techniques related to the Dynamic Mapping System are discussed in part II of this manual. Note that
when the MEM is absent, the M-bus lines are connected directly to main memory.

2-9. DUAL CHANNEL PORT CONTROLLER

The DCPC provides two data paths, software assignable, between main memory and a peripheral
device (or devices). High-speed transfers are accomplished in blocks of up to 32K words on an I/O
cycle-stealing basis programmatically transparent to the CPU. DCPC microprogramming considera-
tions are also covered in part II of this manual.

2-10. A CLOSER LOOK AT THE FUNCTIONS

In the following paragraphs the computer will be discussed at the level you’ll be using to microprog-
ram. Table 2-1 provides you with more detail on functions that can be controlled by microinstructions
(and other selected functions) and briefly describes the bus system. You should refer to the detailed
block diagram in appendix H when reviewing the table. Once you understand the computer architec-
ture and the effect of micro-orders, you will need only the detailed block diagram and micro-order
charts to write microprograms.

2-5

Functions

Table 2-1. Computer Functions

FUNCTION

DESCRIPTION

CONTROL PROCESSOR

Instruction Register (IR)

The Instruction Register (IR) is a 16-bit register that usually contains
the Assembly (machine) language instructions for execution. (The lower
8 bits of the IR form the counter.)

Control Memory (CM)

Control Memory (CM} receives -a 14-bit address from the Control Mem-
ory Address Register (CMAR) and offers the corresponding 24-bit
microinstruction word to the Microinstruction Register (MIR).

Jump Tables

This ROM is used to map to a CM address from bits contained in the IR.

Microjump Logic (MJL)

The Microjump Logic (MJL) anticipates if and how the Control Memory
Address Register (CMAR) will be loaded for a branch.

Control Memory

Address Register (CMAR)

The Control Memory Address Register (CMAR) is a 14-bit register that
addresses CM. Addressing will progress sequentially (the CMAR is incre-
mented at the beginning of every microcycle) unless a branch or repeat is
to occur.

Save Stack

This is a three-level microsubroutine save register. The 14-bit CMAR
address is “pushed” onto the stack at the beginning of every micro-
subroutine branch (JSB). It is “popped” (with the contents loaded into the
CMAR) when a microsubroutine return (RTN) is executed.

NOTE

“Pushing” the Save Stack means placing the return address
(the address currently in the CMAR) into the Save Stack. “Pop-
ping” the stack means placing the return address into the
CMAR and removing it from the Save Stack.

Microinstruction
Register (MIR)

The Microinstruction Register (MIR) contains the “current” microinstruction
(received from CM).

Field Decoders

Timing and control lines are merged with the field decoders to direct the
rest of the computer to execute the microinstruction in the MIR.

ARITHMETIC/LOGIC SECTION

Arithmetic/Logic Unit (ALU)

The Arithmetic/Logic Unit (ALU) implements all arithmetic and logical
operations in the CPU under direction of the Control Processor.

L-Register

The L-register provides the second operand for the ALU.

Rotate/Shifter (R/S)

This function performs left and right shifts and rotates.

Overflow and
Extend Registers

These are one-bit registers that participate in ALU and shift/rotate
operations.

Conditional Flags

Testable conditional flags associated with the ALU and R/S functions
include:

ALU Bit 0 Set

ALU Bit 15 Set

ALU Carry Out

ALU Ones

ALU Zero

CPU Flag

2-6

Functions

Table 2-1. Computer Functions (Continued)

FUNCTION

DESCRIPTION

ARITHMETIC/LOGIC SECTION (Continued)

Aand B-Registers

These are the main 16-bit accumulators used for arithmetic, logic,
and /O operations.

RAM Registers

This block of sixteen 16-bit registers is a Random Access Memory
(RAM) used for data manipulation and temporary storage of inter-
mediate results. The RAM includes Scratch Registers (S1 through S11),
a Stack Pointer register (SP), Index registers (X and Y), the Program
Counter (P), and S-register (S).

Loaders

The CPU includes a standard paper tape loader ROM and a standard
disc loader ROM. Also included is space for two optional loader
ROM’s. Each loader can contain up to sixty-four 16-bit instructions. The
Remote Program Load (RPL) configuration switches are associated with
the loader ROM's.

M-Register

The 15-bit M-register holds the logical address of any computer main
memory reference. This 15-bit register is loaded from the S-bus and
drives the M-bus. The A-Addressable Flip-Flop (AAF) and B-
Addressable Flip Flop (BAF) functions are also controlled by the M-register.

A-Addressable Flip-Flop
(AAF) and
B-Addressable Flip-Flop
(BAF)

These flags determine whether the A-, or B-, or T-register will be
used for storing data or directing data to the S-bus. They exist
because the A- and B-registers can be addressed as main memory
locations 0 and 1, respectively. AAF or BAF is set or cleared depending
upon the M-bus data.

MAIN MEMORY SECTION

Memory Address Register

This register receives the “physical” main memory address from the M-bus
for a read or write operation. An address must be present here before the
read or write begins. Data is transferred from/to this address on the
selected memory module board from/to the T-register.

T-Register

The T-register is the 16-bit data link between the Main Memory section
and the CPU or DCPC. Data comes from or goes to the address specified
in the Memory Address Register.

INPUT/QUTPUT (I/O) SECTION

I/O Control and Select Logic

I/0 timing and signal generation take place from this function. The inter-
face control signals are generated as a result of the Control Processor
executing /O instructions.

Interrupt Control

Interrupts from devices requesting input or output transfers with the CPU
are sequenced for processing by priority logic in this function.

Central Interrupt Register
(CIR)

This 6-bit register is loaded with the select code (address) of the inter-
rupting device after an interrupt request is recognized. The CIR passes
this address to the S-bus under microprogram control.

2-7

Functions

Table 2-1. Computer Functions (Continued)

FUNCTION DESCRIPTION

OPERATOR PANEL

Display Register (DSPL) The Display Register is the 16-bit Operator Panel register associated with
the panel switches.

Display Indicator (DSPI) This Operator Panel register indicates which register is being displayed by
the DSPL register.

BUS SYSTEM

S-bus This is the main 16-bit data transfer bus in the computer. (See the block
diagram and note the functions that have two-way and one-way transfer
capability.)

T-bus This is the 16-bit resultant data bus in the Arithmetic/Logic section.

M-bus This is a 15-bit memory address bus used by both the CPU and the DCPC.

l/O bus This is a 16-bit bus for data transfers, or for control and status exchanges

to and from external devices.

Select Code (SC) bus This 8-bit bus carries the select code of a device being referenced by the
I/O section or DCPC.

Interrupt Address (I/A) bus This 6-bit bus carries the address (select code) of any /O device
requesting CPU service.

Figure 2-2 is a simplified block diagram of the Control Processor. In a “conventional” computer control
section, specific hardware is dedicated to each function performed by the instruction set. The major
advantage of the “conventional” control section is speed for the instruction set. The major disadvan-
tage is the loss of flexibility for special applications or for enhancements. In the microprogrammed
computer, all distinct logical functions are separated from the sequence in which those functions are
performed. That is, the logical functions are defined by microinstructions (composed of micro-orders)
held in control memory. Because functions can be individually defined by microinstructions, the
microprogrammed computer is much more flexible than the “conventional” type computer. At one time
this caused the microprogrammed computer to be slower in executing some portions of the instruction
set. However, the HP 21MX E-Series Computer Control Processor executes microinstructions at a rate
that is fast enough to keep main memory busy practically all the time so, the speed penalty for using
the microprogrammed architecture is essentially not a factor, especially in the base set. Also, since the
Control Processor in the HP 21MX E-Series Computer is completely microprogrammable, user pro-
grams can be made to execute much faster with the application of user microprogramming. These
combined factors provide this computer with the final advantage over any conventional control section
(hardwired component) type of computer.

2-8

Functions

INSTRUCTION
REGISTER

TOP OF STACK
RTN (RETURN)

ADDRESS
1/0 INTERRUPT < h
——— Jump
TABLES AND
MICROBRANCH TOP OF STACK SAVE
(ﬂ LOGIC RTN (RETURN) o
ADDRESS Y58
—_
CONTROL
MEMORY - P
T T A ADDRESS 3 LEVEL
- < REGISTER SAVE
F - { | STACK
| ‘ 4_l 14-BIT ADDRESS J
| T T T ’
| -
L_~—"
—
EXTRA CONTROL = ’
MEMORY- 1K WCS, — —-
3.5K FAB, AND — — /]
2K UCS BOARDS [CONTROL]
[MEMORY] /
e E {BASE SET) :E ’
| _ Y
= - | — - CONTROL FOR
| | S-BUS
l MICROINSTRUCTIONS 24-BIT :>
| - = - MICROINSTRUCTIONS]
| | o7 T T = v - g — T
|
~ i /' L _ SPECIAL
N FIVE FIELD FUNCTIONS
DECODERS [
\ MICROINSTRUCTION _ COMBINED
BRANCH REGISTER r’ OPERATIONS
ADDRESS |
MODIFICATION = -+ > STORAGE

7115-4
Figure 2-2. Simplified Control Processor Block Diagram

Functions

2-11. SOME DEFINITIONS AND TIMING POINTS

Now to clarify some definitions about control and timing, and then discuss a little more about the
computer’s interrelated functions and operation.

The Control Processor executes “microcoded” “microinstructions” during “microcycles”.

One microcycle (also called a “T” period) is the time interval required to completely execute a
microinstruction.

A microinstruction is a 24-bit coded word (code definition is called the microcode) that defines
specific hardware operations to be performed by the computer.

Each microinstruction is composed of at least one, and up to five micro-orders. Each micro-order
defines a specific operation to be performed in the computer. Some micro-orders accomplish

multiple operations by themselves.

Microinstructions physically reside in control memory and are the basic building blocks of
microprograms.

Segments of microprograms may be called microroutines.

A portion of microcode called from a microroutine will be referred to as a microsubroutine.

Part II of this manual provides specific information on timing that you will need for
microprogramming.

2-12. HOW DO ALL THESE FUNCTIONS INTERRELATE?

All the functions described in the preceding paragraphs are interrelated in an operational sense
through the microprogrammed operation of the computer. Here are a few points to remember:

The computer is always under microprogram control and executing microinstructions at all times
when power is applied, (except when temporarily suspended by DCPC or main memory
contentions).

A microroutine in the base set reads (“fetches”) Assembly language instructions stored in main
memory. The instructions are loaded into the IR and data is directed to the appropriate destina-
tions by the microprogram invoked.

Each Assembly language instruction from main memory is interpreted as a “pointer” (address) to a
microroutine, resident in control memory, that implements the instruction by executing a
sequence of microinstructions.

A few other points should be considered before examining what control memory can accomplish:

The Control Processor decodes each microinstruction into fields, then executes the indicated
micro-orders in the proper sequence.

Each micro-order performs a distinct operation and the micro-orders are not necessarily related to
each other in each microinstruction.

2-10

Functions

Keep the above points in mind as you read through the following steps of how “generally” the Control
Processor might operate in a microroutine:

e The “standard” microinstruction (in the MIR) typically calls for the contents of a register to be
enabled onto the S-bus. Then certain ALU and/or rotate/shift operations take place during the
microcycle and, at the end of the microcycle, a specified destination register is “clocked” to receive
the prevailing data from its input lines.

e While a microinstruction presently in the MIR is being executed, the CMAR is incremented to
present the next sequential address to CM or the MJL determines another address to load the
CMAR.

e Ifa microbranch to a microsubroutine is executed, the incremented address is loaded into the Save
Stack and the branch address is loaded into the CMAR.

e Several branch-on tests exist (e.g., conditions of carry, the sign, a zero result, presence of a
particular bit or Operator Panel setting, etc.) that provide branches to microroutines designed to
react to the condition.

® When a microprogram completes, it usually returns to control memory location 0 (addresses in
octal are five digits, i.e., 00000) to complete fetching (obtaining) the next Assembly language
instruction to be executed from main memory.

You should not be concerned if the details of Control Processor and microprogram operation are not
clear at present. You will gain more knowledge and understanding of the computer operation as you

learn the microprogramming language by progressing through the manual and writing micropro-
grams. Some further points:

e If the microprogram execution time exceeds the interval between pending interrupts allowed by
your particular system application, the interrupts can be lost. Your microprogram must be written
to test for pending interrupts.

¢ When a pending interrupt is detected, the microprogram must yield control to the Halt-Or-
Interrupt (HORI) microroutine (CM location 6 in the base set).

Microprogrammed interrupt handling techniques will be fully described in section 7. Now, what about
control memory content?

2-13. CONTROL MEMORY

Roughly, you can look at control memory as being devoted to serving three areas:

® The standard base set.

¢ HP microprogrammed accessories.

® The user’s microprogramming area.

All 16,384 addressable (24-bit) words of control memory are logically partitioned into sixty-four
256-word modules numbered 0 through 63. Figure 2-3 shows the control memory map (represented in

basic 1K separations) and identifies the “modules” mentioned above. Notice that modules 0 through 3
are dedicated to the standard base set shipped with every computer. The other 60 modules are

2-11

Functions

-

CONTROL MEMORY

MODULE

ADDRESS

SOFTWARE

MODULE ALLOCATION ENTRY
NO. DEC
IMAL OCTAL POINT
0 0-00255/ | 00000-003
-00377 YES
HP BASE SET ; 885)?2-80511 00400-00777 YES
: -00767 | 01000-01377 YES 1K
. 00768-01023 | 01400-01777 YES
01024-01279 | 02000-02377
5 01280-01535 | 02400-02777 28
6 01536-01761 | 03000-03377 NO 2K
: 01762-02047 | 03400-03777 NO
02048-02303 | 04000-04377
9 02304-02559 | 04400-04777 28
10 02560-02815 | 05000-05377 NO — 3K
1 02816-03071 | 05400-05777 NO
12 03072-03327 | 06000-06377 —
13 03328-03583 | 06400-06777 “8
14 03584-03849 | 07000-07377 NO — 4K
AVAILAB 15 03850-04095 | 07400-07777 NO
FOR USES 8 Q409604581 | 10000-10377 NO
M - 10400-10777 N
CROPROGRAMMING : g 04608-04863 | 11000-11377 N8 — 5K
- 04864-05119 | 1140011777 NO
05120-05375 | 12000-12377 —
21 05376-05631 12400-1277 No
777 NO
22 05632-05887 | 13000-13377 NO — 6K
23 05888-06143 | 13400-13777 NO
24 06144-06399 | 14000-14377 NO T
25 06400-06655 | 14400-14777 NO
26 06656-06911 | 15000-15377 NO — 7K
27 06912-07167 | 15400-15777 NO
28 07168-07423 | 16000-16377 NO
29 07424-07679 | 16400-16777 NO | gk
HP DYNAMIC 30 07680-07935 | 17000-17377 NO
MAPPING SYSTEM 31 07936-08191 1740017777 NO
32 08192-08447 | 20000-20377 YES
33 08448-08703 | 20400-20777 NO L ok
HP FAST FORTRAN 34 08704-08959 | 21000-21377 YES
PROCESSOR 35 08960-09215 | 21400-21777 YES
36 09216-09571 | 22000-22377 YES
37 09572-09727 | 22400-22777 YES L 10K
38 09728-09983 | 23000-23377 YES
39 09984-10239 | 23400-23777 YES
HP RESERVED 40 10240-10495 | 24000-24377 YES
41 10496-10751 | 24400-24777 NO 11K
42 10752-10917 | 25000-25377 NO I~
43 10918-11263 | 25400-25777 NO
44 11264-11519 | 26000-26377 YES
45 11520-11775 | 26400-26777 YES .
46 11776-12031 | 27000-27377 YES
47 12032-12287 | 27400-27777 YES
48 12288-12543 | 30000-30377 YES
49 12544-12799 | 30400-30777 YES 13K
50 12800-13055 | 31000-31377 YES B
51 13056-13311 | 31400-31777 NO
52 13312-13557 | 32000-32377 NO
RECOMMENDED 53 13558-13823 | 32400-32777 NO | 4k
FOR USER 54 13824-14079 | 33000-33377 NO
MICROPROGRAMMING 55 14080-14335 | 33400-33777 NO
56 14336-14591 | 34000-34377 YES
57 14592-14847 | 34400-34777 YES L 5K
58 14848-15103 | 35000-35377 YES
59 15104-15359 | 35400-35777 YES
60 15360-15615 | 36000-36377 YES
61 15616-15871 | 36400-36777 NO L 16K
62 15872-16127 | 37000-37377 YES
63 16128-16383 | 37400-37777 NO

7115-5

2-12

Figure 2-3. Control Memory Map

Functions

available for additional microprograms written by you or supplied by Hewlett-Packard. Several
modules have already been allocated to established Hewlett-Packard firmware packages which
include:

e Dynamic Mapping System instructions (module 32).
® The Fast FORTRAN Processor (FPP) package (modules 33 through 35).
e A Hewlett-Packard microprogramming area from module 36 through module 45.

The rest of control memory is for user microprogramming and modules 46 through 63 are recom-
mended. Section 6 of this manual describes how you can enter CM (through the software entry points
shown in the map) by using Assembly language User Instruction Group (UIG) instructions.

NOTE

With the exception of modules 0 through 3 (base set instructions),
there is no restriction on which modules you may use (see figure
2-3) to implement your microprograms. However, Hewlett-
Packard may also use other modules (in addition to those already
reserved) for future firmware accessories.

2-14. LET’S TALK ABOUT THE BASE SET

The complete base set listing, including the Jump Tables, is shown in appendix G. There isn’t a great
amount of detail about the base set here because:

¢ You're probably not yet familiar with all the micro-orders and word types.

® The overall microprogram sequence of operation actually depends upon the sequence of Assembly
language instructions fetched from main memory.

e It’s assumed that you're primarily interested in doing your own microprogramming.

You will, however, be referring occasionally to the base set for examples of microprogramming
techniques that you may want to use in your own microprograms. {You'll also find plenty of applica-
tions type examples in parts II through IV.) Also, you will want to have a basic understanding of how
certain microroutines of the base set can act as utility microroutines for your microprograms.

The base set microprogram provides the capability to execute all the basic Assembly language
instructions described in the HP 21MX E-Series Computer Operating and Reference Manual, part no.
02109-90001. In modules 0 and 1 of the base set are:

® Microroutines to execute instructions in the

~ Memory Reference Group.
— Alter-Skip Group.

— Shift-Rotate Group.

— Input/Output Group.

—~ Extended Arithmetic Group.

2-13

Functions

® Microroutines that

— Control the Operator Panel.

Load the Initial Binary Loader (from the selected Loader ROM).
Execute the built-in firmware diagnostics.

— Handle interrupts.
— Fetch indirect operands.
Also in the base set, modules 2 and 3 contain:

® Microroutines for all the instructions in the Extended Instruction Group (EIG)

® Microroutines to execute all the F loating Point instructions.

The Jump Tables (shown in the block dj i

Jum agram, appendix H) map the data in the I i
location in CM to initiate instruction execution. ’ n fhe T fo the appropriate
Some “typical” operations performed by the base set microprogram include:

® A power-up sequence.

® A “short form” diagnostic check of the CPU and main memory.
® An initial binary loading sequence.

® Operator Panel sequences such as scanning the pushbuttons by making conditional tests and
updating the DSPI and DSPL registers.

® Performing a read (fetch) operation to execute an instruction (e.g., Memory Reference Group,
Floating Point, etc.), then fetching the data to perform an ALU operation, and finally storing in a
register.

® Performing a write operation (e.g., an ISZ instruction).

® Performing I/O operations (e.g., CPU-initiated transfers, or device-initiated transfers of data with
Halt-Or-Interrupt microroutine transitions).

® Reading UIG instructions from main memory that map to the “user” microprogramming area in
control memory.

The timing relationships involved in operations such as the above mentioned will be discussed in
sections 5 and 7. Now, a brief look at how two of these operations are carried out by the base set.

2-15. AN OPERATIONAL OVERVIEW

The base set microprogram (with computer timing) accomplishes the tasks that, in the past, were
performed by “hardwired” portions of the computer control section. The following discussion provides
an overview of how the HP 21MX E-Series Computer Control Processor performs several operations in
parallel in the base set. The microroutines for the Assembly language XOR and ADA instructions are

2-14

Functions

used as examples in this discussion to illustrate several techniques that you should be aware of to
effectively execute your own microprograms. You may find it helpful to look again at the detailed
block diagram in appendix H.

2-16. FETCHING. “Fetching” (as briefly defined in paragraph 2-12) means obtaining the “next”
instruction to be executed from main memory. In this computer, a “look-ahead” technique is used for
this process. That is, fetching is begun while simultaneously completing the execution of the “current”
instruction; fetching is completed while preparing for execution of this “next” instruction. Usually this
is accomplished by starting a read operation (of the main memory address contained in the M-register)
just prior to termination of the “currently” executing instruction microroutine.

For illustrative purposes, suppose that the “currently” executing microroutine is for an XOR instruc-
tion (that had been obtained from main memory location 2000). The M-register has already been
incremented so that as the microroutine for XOR is completing its execution, the read that is initiated
is for main memory location 2001. (Assume that with the completion of the XOR execution, an augend
is left in the A-register and that at main memory location 2001 there is an Assembly language ADA
instruction.)

Upon termination of this “current” Assembly language instruction’s microroutine, control passes to a
Fetch microroutine at the beginning of the base set which completes the read operation by storing the
instruction read from main memory into the IR. In this manner of “look-ahead” reading, the overhead
required for instruction fetching is minimized. Your user microprograms must be designed to termi-
nate in a similar manner and you will see specifically how to do this from information you will read in
section 7.

To continue, in the Fetch microroutine, in addition to completing the read operation by storing the
main memory instruction in the IR, an operand address is always formed in the M-register and
another read operation is started immediately. This is in anticipation that the instruction stored in the
IR is of the Memory Reference Group. If later it is determined that the instruction is of a different type,
the information arriving in the T-register will not be used.

In the example being used, an ADA instruction from main memory location 2001 has been stored in
the IR and an operand address (assume the address is 300) has been formed in the M-register. So the
read operation initiated at the beginning of the Fetch microroutine is obtaining the operand (the
addend) for the ADA instruction from main memory location 300 but the information has not yet
arrived in the T-register.

Next (still in the base set Fetch microroutine), the P- and M-registers are adjusted. During normal
execution P and M are always two and one (respectively) ahead of the current instruction’s address
(the instruction that is executing). After the read operation is initiated (to obtain the operand), the
P-register content is stored in M and P is then incremented.

In the example being used, recall that before the operand address (300) was formed in the M-register it
contained address 2001 (the address of the ADA instruction) and the P-register (if the rules stated
above are followed) contained 2002. Now the content of P is put on the S-bus, stored in M and
incremented through the ALU and stored back in the P-register. Thus, M is now adjusted to 2002 and
P is adjusted to 2003 in preparation for the read operation that will be initiated as the microroutine for
the ADA instruction (from main memory location 2001) is being executed.

2-15

Functions

You can ‘see from the above example that you are now prepared to read the next sequential instruction
from main memory with the P-register one ahead of M and two ahead of the instruction being executed
(preparation to execute the example ADA instruction is being made as will be explained in the next
paragraph). When you study the micro-orders and word types in part II you will see that,

fox" proper operation, the situation for P and M (just described) will also have to exist for your own
microprograms.

Finally in the Fetch microroutine, the Instruction Register (IR) bits are examined to determine the
instruction type. That is, the upper eight bits of the IR are examined to determine where in control
memory to branch to execute the “current” instruction. This branch can be in the base set (as it is in
the exan.lple being used), or within the User’s area, or within the Hewlett-Packard microprogrammed
accessories area. Decoding via the Jump Tables (CM mapping) forces Control Processor operation to
the appropriate CM address to implement the instruction contained in the IR.

In the ADA instruction example being used, the special purpose base set micro-orders used cause the
upper eight bits of the IR to be applied as an address to the J ump Tables (ROM’s) which store the ADA
instruction’s microroutine address into the MJL. The MJL stores this address into the CMAR which
reads the first microinstruction for the ADA microroutine into the MIR. Simultaneously, the special
purpose base set micro-orders enable the interrupt logic and initialize the Save Stack. This is all done
to facilitate branches to microsubroutines which can be made to three levels. This completes the fetch
process. When the appropriate CM address has been reached, “execute” begins.

2-17. EXECUTION. Execution of the Assembly language instruction is carried out by the
specific micro-orders contained in the individual microinstructions of the appropriate microroutines as
they are decoded from the MIR.

Again, using the ADA instruction as an example, the first of the two microinstructions for ADA
immediately begins a read operation from the main memory address (2002) in the M-register (in the
“look-ahead” manner previously described) to obtain the next Assembly language instruction. But,
how do you get the addend from main memory to add to the A-register? Recall that the Fetch
microroutine has already begun a read operation. This read operation gets the ADA operand (addend)
from main memory (via the T-register), places it on the S-bus, routes it “as is” through the ALU, and
stores it in the L-register. So, for Memory Reference Group instructions, the read operation started in
the Fetch microroutine will be used to obtain operands by storing the T-register data in the desired
register.

The last action in the execution of the example ADA instruction occurs as the CMAR increments to the
next CM location (in a branching type microinstruction, other actions can occur) and CM loads the
MIR with the next microinstruction. Through action of the field decoders, the A-register content is
gated onto the S-bus and routed through the ALU with an “add” function enabled. This causes the
S-bus content (the augend from the A-register) to be added to the content of the L-register (the
addend). The microinstruction simultaneously enables a test for an overflow or carry-out condition
then stores the resultant data back in the A-register. In addition, this second microinstruction forces a
return of Control Processor operation to control memory location 0 to complete another main memory
fetch and prepare for another execution operation. (Remember that the read operation had been
started in a similar manner for the ADA instruction. You can see that a considerable amount of work
can be done with a single microinstruction.

To summarize, the main points that you should remember from the above discussion are that:

® A read operation begins in a “look-ahead” manner while the execution of the previous instruction
is carried out. Once a branch to your microprogram is made (by decoding a UIG type instruction), it
is possible for you to stay in the user microprogramming area until it is desired to return to the
fetch microroutine. Before returning, however, you should terminate your microprogram properly.

2-16

Functions

e Some other considerations also exist for write operations and these will be discussed in section 7.

e In regard to staying in your microprogram as long as desired (as mentioned previously in this
section), there is a danger of lost interrupts if you stay too long. These considerations should be
taken into account when you design your microprogram.

e The base set fetch microroutine acts as a utility microroutine for the main memory instruction
fetch and execute preparation. It also takes care of the P- and M-register adjustments. You should
make use of this microroutine in designing your microprograms. Also, in regard to interrupts, the
base set Halt-Or-Interrupt microroutine can be used as another microprogramming aid to handle
interrupts in your microprograms.

Interrupt examples were not included in the operational overview just presented; interrupts are
covered in part II of this manual.

2-18. MICROPROGRAMMED ACCESSORIES

In paragraph 2-13 you found that a few modules have already been reserved for Hewlett-Packard
microprogrammed accessories. Remember that all accessories for the computer do not require addi-
tional microprograms but if they do, the microprograms will generally be supplied as pROM’s to be
mounted on the FAB or on another CM extension (e.g., 2K UCS). Some accessories requiring micro-
programs may be supplied in a form that will require writing the microprogram to WCS before the
instructions involved can be executed. DCPC and Memory Protect do not require additional micropro-
grams. The mapping facility for all Hewlett-Packard microprogrammed accessories is in the base set.
For further information on accessories, see the appropriate manuals. Other microprogramming fea-

tures such as, the Microprogrammable Processor Port (MPP) and the block I/O transfer feature of the
HP 21MX E-Series Computer are described in section 13.

2-19. SUMMARY

Sections 1 and 2 of part I have provided you with the following:

® Reasons for microprogramming.

® An awareness of what to microprogram.

® An overall look at the microprogramming procedure.

® A complete look at the computer hardware controlled by microprograms.

® Introductory information on some Hewlett-Packard accessories directly and indirectly associated
with microprogramming.

® An overview of control memory identifying the user’s area.
® A brief look at some base set operations.

In part I you will learn the microprogramming language and methods for microprogramming up
through preparation with the microassembler.

2-17/2-18

PART I
Microprogramming Methods

&

Section 3
MICROPROGRAMMING PREPARATION STEPS I

MICROPROGRAMMING
PREPARATION STEPS | 3

Assuming that you have analyzed your programming environment (as suggested in section 1) and
have decided to microprogram a portion of your program(s), there are certain steps necessary to
prepare your RTE operating system to accept the microprogramming environment. These are not
precisely the same steps to preparation as shown in figure 1-1 (Microprogramming Implementation
Process), but deal with the “background” situation. That is, as you can surmise from a review of part I,
a certain hardware/software situation must be made to exist in the RTE system which includes:

¢ Installation of some additional control memory “hardware” for storage of the additional micro-
programs (above those used in the base set). Normally this extra control memory must also be in
addition to that which you may have for microprogrammed accessories (such as DMS).

e Installation of microprogramming support software for microprogram development. It must be
realized that, as outlined in part I, it is not necessary to have “extra” software for microprogram-
ming once your microprogram has been “installed” in control memory (CM). The “extra” software
is necessary for development and, when WCS is used for the added CM, a driver and utility routine
are needed for dynamic loading of CM before microprogram execution.

This section outlines the RTE environment and the necessary hardware and microprogramming
support software installation steps.

3-1. ENVIRONMENT

The RTE Microprogramming Support Software package (described in paragraph 3-3) operates only in
the RTE II or III system environment with a software revision date code of 1631 or later. Therefore,
your RTE operating system must basically exist as defined in the Real-Time Executive III Software
System Programming and Operating Manual, part no. 92060-90004 or Real-Time Executive II Software
System Programming and Operating Manual, part no. 92001-93001.

Microprogramming hardware that is to be added (outlined in paragraph 3-2) must conceptually be
installed before system generation. Some microprogramming support software must be installed
during system generation and some may be installed just before use. (Section 8 and part IIT in this
manual provide instructions as to when certain programs may be installed other than at system
generation time.) Paragraph 3-3 describes system requirements for individual microprogramming
support software items.

3-2. MICROPROGRAMMING HARDWARE

The HP 13197A Writable Control Store Kit is the acceptable hardware for microprogram development
and it can, of course, be used for “normal operation” of your microprograms. It must be installed before
system configuration. Two additional WCS (or UCS) boards may be installed. (The total number of
control memory boards that can be installed is dependent upon the computer used.) Control memory
boards in the I/O section should be installed starting at SC 10. The operational states, hardware

Change 1 3-1

supplied, and instaliation guidelines for WCS boards are contained in the HP 13197A Writable Control
Store Reference Manual, part no. 13197-90005. Additional information on the installation of the driver
for WCS follows in paragraph 3-3.

If you are going to install pROM’s, the microprograms must be developed, tapes prepared, and the
pROM’s fused before they can be installed. This means you will have to install WCS (as m’entioned
above) first, and the required microprogramming software (mentioned in paragraph 3-3) before the
pROM’s are ready for installation. Then, depending upon whether you select UCS or the FAB, your
RTE system will have to be disassembled to a certain extent to install the pROM’s, ’

If you select the HP 13304 A Firmware Accessory Board for pROM installation, you will not have to use
an I/O,slot and reco'nﬁgure the RTE system, but you will have to remove the FAB board, install the
pROM’s, configure jumpers, and reinstall the FAB in the computer under the CPU.

NOTE

With an RTE III system, the HP 13305A Dynamic Mapping
System (DMS) will probably be installed, and control memory
module 32 (dynamic mapping instructions) is installed on the
FAB. You will therefore already have the FAB and its cable. You

may or may not have the FAB with an RTE Il system.

fer to the following
11 pPROM’s and configure CM address jumpers on the FABor UCS board, re
To install p

) s Computer Inst
HP 2IMX E Series p 304-90001.

A Firmware Accesso |
L tallation, the pROM’s

the HP 13047A User
then devote 1/0 slot
ecessary following

ur microprogram ins
the instructions in
3047-90001. You must
ystem as I
h 3-1.)

Control Store Kit for yo
4 following
1, part no. 1 :
the RTE operating $
efer to paragrap

t the HP 13047A User
o d then installed on the boar

Installation and Service Manuc
ackplane to UCS and reconfigure .
he RTE System Operating Manual. (

If you sel
must be prepare
Control Store Kit
(SC 10) in the b
instructions int

3-2

Steps

3-3. MICROPROGRAMMING SUPPORT SOFTWARE

In order to develop and run microprograms in a dynamic manner in the RTE operating system
environment you will need some, and possibly all, of the HP 92061 RTE Microprogramming Support
Software Package. The total package is outlined below.

e RTE Microassembler Program

e RTE Microassembler Cross-Reference Generator Program
e RTE Microdebug Editor Program

¢ RTE Microdebug Editor Subroutine

¢ RTE Driver DVR36

e WCS I/O Utility Routine WLOAD

¢ pROM Tape Generator program.

These programs, the driver, and utility routines are described below the applicable part numbers,
installation guides, and appropriate references. Note that to receive the microprogramming support
software on a magnetic tape cartridge you should specify option 020 for the HP 92061 package.

3-4. THE RTE MICROASSEMBLER

This program converts a source microprogram into binary object code which may be directed to an
output device and/or recorded on a disc file. The source may be input from an input device or the
system LS area. The object code may be produced in either a standard format recognized by the
Microdebug Editor program and the WLOAD routine or a special format for the HP ROM Simulator.
The microassembler can also generate a symbol table and listing of source records with the respective
octal code. The RTE system name for the program is MICRO. The program object part number of
MICRO is 92061-16001. In the RTE system, the microassembler can run with or without the File
Manager (FMGR) and requires about 8K words of background. Actually, to use the microassembler
purely for microassembling, no additional microprogramming hardware (i.e., WCS) is needed. All
information on preparation with the microassembler and on microassembler output is contained in
sections 8 and 9 of this manual.

3-5. MICROASSEMBLER CROSS-REFERENCE GENERATOR

The cross-reference generator is used (usually with the microassembler) to generate a cross-reference
table of symbols-to-CM addresses. The program can be run using a microassembler parameter list
option or separately using its RTE system name MXREF. The program object part number is
92061-16002. More detail on the RTE Microassembler Cross-Reference Generator is contained in
section 9 of this manual.

3-6. RTE MICRODEBUG EDITOR

This program allows you to debug and execute microprogram object code. The object code may be input
from a paper tape reader or a disc file, or it may be resident in WCS. The Microdebug Editor (MDE)
allows you to delete or replace microinstructions, set breakpoints, change registers, and so on.
Information on the use of the Microdebug Editor is contained in section 10 of this manual. In the RTE
system, the MDE requires about 8K words of background. When the MDE is user scheduled it is

3-3

Steps

%dgntififad by the program name MDEP. When it is called as a utility in the RTE system environment it
1s identified by the progrtam name MDES. The program object (part number) of the MDE is supplied in
two parts: Microdebug Editor Program MDEP, part no. 92061-16004, and subroutine MDES, part no.

9206'1-.16005. The HP 13197A WCS board is used with the MDE, which uses driver DVR36 and WCS
I/O Utility subroutine WLOAD for operation.

3-7. DRIVER DVR36

l?river DVR36 must be configured into the RTE system during system generation to provide software
linking between the MDE, WLOAD, or Assembly (or FORTRAN) language programs and WCS.

NOTE

The other microprogramming support software can be included

either during system generation or loaded into the system when
required.

DVR36 drives the HP 13197A WCS board(s) for reads and writes (from and to main memory) and
allows control of WCS board functions. The driver implements some resource protection mechanisms
which include ensuring that no two WCS boards are enabled with the same CM address spaces. The
driver utilizes DCPC, if so configured, and transfers data at the fastest rate permitted by the DCPC.
Non-DCPC transfers will take longer; the driver periodically suspends itself to ensure that interrupts
are not held off for too long.

The object part number of the driver is 13197-16001. When configured in the RTE system, the select
code (SC) number of the first WCS should be SC 10 because of hardware constraints. (More details on
DVR36 appear in section 11 of this manual and the driver manual is referenced in table 3-2.) In the
system, the driver can be called directly with an EXEC call, or through the WLOAD routine.
Introductory information on WLOAD follows.

3-8. WLOAD
The WCS 1/0O Utility Routine WLOAD (object part no. 13197-16003) uses DVR36 and transfers

microprogram object code into WCS when called by the MDE or by the Assembly (or FORTRAN)
language program. Section 11 in this manual and table 3-2 contain more information on WLOAD.

3-9. pROM TAPE GENERATOR

The pROM Tape Generator program (object part no. 92061-16003) may be used to generate mask tapes
for fusing (“burning”) pROM’s from the object code produced by the microassembler. For additional
information on the pROM Tape Generator, refer to section 12 in this manual.

Steps

3-10. PREPARATORY STEPS

Condensed information on your preparatory steps for microprogramming appear in table 3-1 with
references to the sections of this manual (or to applicable documents) for details. The letters in the
reference column are keyed to entries in table 3-2. Numerals refer to sections in this manual. WCS
boards to be used for microprogramming must be initialized before use. Section 14 provides examples
of the procedure that you may use.

Table 3-1. Preparatory Steps

REFERENCE
STEP TASKS (Table 3-2 or
manual sections)

1 Establish your microprogramming goal. {Develop your own microprogram 1, 14
directly or try one of the supplied examples first. For example, run a short
microprogram from start to finish by referring to section 14.

2 Become familiar with the computer and steps to microprogramming 2,35, 6
(hardware, timing, and CM mapping).

3 Establish desired CM module and mapping scheme. 6, 8

4 Plan, develop, and write first-pass microprogram {or if desired simple U 4,7 8 14
sample microprogram).

5 Plan, develop, and write main memory linking program (Assembly C L UVe 714
language).

6 Place RTE system off-line and power down if not already in this state. C

7 Install the desired number of HP 13197A WCS board in the computer A B, C

starting at SC 10.

8 Generate and configure the RTE system including at least DVR36. (It is C,DE F
probably desireable to also include at least WLOAD during system
generation).

9 Load the necessary (desired) microprogramming support software (from
the following list) into the RTE system.

O

— WLOAD (if not already loaded)
— Microassembler

— Cross-Reference Generator

— Microdebug Editor (MDEP)

— Microdebug Editor (MDES)

c — I Om

10 Microassemble your source. 9

11 If necessary, correct errors either at the source and microassemble again 9, 10, 11
or debug your microprogram using MDE and WCS.

CAUTION

It is possible to execute your microprogram from the MDE.
Ensure that the RTE system you are using for microprogram-
ming development does not have critical programs or produc-
tion type programs running concurrently.

12 Load main memory program that links to microprogram. C

3-5

Steps

Table 3-1. Preparatory Steps (Continued)

STEP

TASKS

REFERENCE
(Table 3-2 or
Mmanual sections)

13

14

15

16

17

18

19

20

21

22

Execute microprogram from main memory program (or MDE).

CAUTION

Before éxecuting development microprograms, ensure that

your RTE system is not involved in runni ;
nnin
programs, g production

If necelssary,l Correct any logical errors discovered during microprogram
execution. Fix source (by microassembling again) or use MDE.

If you are preparing to fuse pROM's

microassembled object program (can not be done from an MDE

corrected version). Correct source, microassemble and execute micro-
program again. Go to step 16.

—0OR —

If you are going to use dynamic microprogramming and your micro-
program executes properly it can be used through WCS. Development
complete at this point unless this was an example program. To develop

your actual microprogram, go to step 1. If you have special applications
(not fusing pROM's) go to step 20, 21, or 22 as appropriate.

you must do so from a corrected

To prepare mask tapes for pROM generation, load the pROM Tape
Generator program.

Prepare mask tapes and have pROM'’s prepared.
Select appropriate accessory for pROM’'s and mount them.

Place RTE system off-line, power down, install pROM facilities, then start
up and/or reconfigure the system (as appropriate).

If you are going to use the special microprogramming facilities (MPP or
block 1/0O), begin your microprogram development at step 1 withreference
to the appropriate material listed to the right.

If you are going to be microprogramming for system use, start at step 1
with special reference to the appropriate material listed to the right.

If you are going to be microprogramming using HP accessories such as
DCPC, Memory Protect, or DMS, start at step 1 with reference to the
appropriate material tisted to the right.

C, 10, 11

9,10, 11

8 9

10

C K 12

12
M or N

B, C, M, orN

B, P 24 7 13

B,P Q 2 4 7,
appendix C

R ST 47

3-6

Steps

Table 3-2. Manual/Software Reference

REFERENCE
(from table 3-1) MANUAL/SOFTWARE

A HP 13197A Writable Control Store Reference Manual, part no. 13197-90005.

B HP 21MX E-Series Computer Installation and Service Manual, part no. 02109-80002.

C Real-Time Executive lil Software System Programming and Operating Manual, part no.
92060-90004, or Real-Time Executive Il Software System Programming and Operating,
part no. 92001-93001.

D RTE Driver DVR36 for HP 12978A/13197A Writable Control Store Board Programming
and Reference Manual, part no. 13197-90001.

E Driver DVR386, object part no. 13197-16001.

F WCS I/O Utility Routine, object part no. 13197-16003.

G RTE Microassembler, object part no. 92061-16001.

H RTE Microassembler Cross-Reference Generator, object part no. 92061-16002

| RTE Microdebug Editor (stand-alone program, MDEP), object part no. 92061-16004.

J RTE Microdebug Editor (callable subroutine MDES), object part no. 92061-16005.

K RTE pROM Tape Generator, object part no. 92061-16003.

L HP 21MX E-Series Computer Operating and Reference Manual, part no. 02109-90001.

M HP 13304A Firmware Accessory Board Installation and Service Manual, part no. 13304-
90001.

N HP 13047 A User Control Store Kit Installation and Service Manual, part no. 13047-90001.

P HP 21MX/21MX E-Series Computer 1/0 Interfacing Guide, part no. 02109-90006.

Q HP 21MX E-Series Computer Engineering Supplement Package, pan no. 02103-90007.

R HP 12897B Dual-Channel Port Controller Installation Manual, part no. 12897-90005.

S HP 128928 Memory Protect Installation Manual, part no. 12897-30005.

T HP 13305A Dynamic Mapping System Installation Manual, part no. 13305-90001.

U HP RTE Ill: A Guide for New Users, part no. 82060-30012.

\Y HP RTE Assembler Reference Manual, part no. 92060-90005.

3-7/3-8

Section 4
MICROINSTRUCTION FORMATS I

MICROINSTRUCTION FORMATS

4

Before going further into microprogramming, you must learn the “language” in order for discussions
on microaddressing, timing, etc., to be meaningful. In this section you will find:

® The microinstruction word types.

® The 24-bit microinstruction field divisions for each word type.

® The microassembler formats.

® The definitions and uses for all micro-orders.

® The binary format for each micro-order.

Additional information that you will need to use the microassembler is presented in sections 8 and 9.

4-1.

MICROINSTRUCTION BINARY STRUCTURES

Figure 4-1 shows basically how the four microinstruction word types are related. This is an overall
comparison that may help while studying figure 4-2.

BITS

23

22

21

20

19 |18

17

16

WORD
TYPE

WORD
TYPE

WORD
TYPE

WORD
TYPE

Z0—-=-3>TIMTO

b - - — —

ALU

OPERAND
[

CONDITION

I

\
~R—-—0Omon

|

|

}

ADDRESS
(512 WORDS)

mozmon

ocxnmN

_ — - — — —_ — - 4 . =

ADDRESS
(16K WORDS)

MOD. MEANS MODIFIER

71156

Figure 4-1. Word Type/Binary Format Summary

Figure 4-2 shows the binary format of all the micro-orders in their assigned fields. Specific

microinstructions are constructed from the available micro-orders for the particular word type. For
example,

READ NOR P S1 L1
(1001 11110 11110 10000 10010)
is a word type I microinstruction as it would appear in the microinstruction register (MIR).

Note that for word type I in figure 4-2, the S-bus and Store field micro-order mnemonics are nearly the
same. Where there are differences between the two fields, spaces are intentionally included to keep the
similar micro-order mnemonics lined up to simplify the use of the chart.

All micro-order definitions are given in table 4-1. The table can be used in conjunction with figure 4-2,
the binary format, or with figure 4-4, the microassembler format. You'll be using the microassembler
format most, but the bits have to be looked at if you want to find the address of a branch (jump) using a
microassembler listing, want to check the value of a constant, or look at the bit pattern of a
microinstruction to calculate the micro-orders. Appendix C contains a listing of binary fields-to-
micro-orders that will aid you in these tasks.

4-2

Formats

BITS 23|22 | 2112019 (18 [17 (16|15 |14 |13 |12 (11 (10| 9 | 8 6(s6lala 110
FIELDS OPE(R(';‘PT;ON ALU s-BUS STORE SPECIAL
ARS 0001 ADD 00110 A 00011 A 00011 ASG 11000
CRS 0010 AND 10100 B 00100 B 00100 CLFL 01110
DIV 0101 CMPL 11010 CAB 00001 CAB 00001 cov 01011
ENV 1010 CMPS 11111 CIR 01010 DCNT 10101
ENVE 1011 DBLS 00011 CNTR 01011 CNTR 01011 FTCH 11011
LGS 0011 DEC 00000 DES 01110 IAK 11001
WF 0110 INC 01111 DSPI 00111 DSPI 00111 ICNT 10110
MPY 0111 IOR 10001 DSPL 00110 DSPL 00110 INCI 11100
NOP 0000 NAND 11011 101 00101 IOFF 11111
NRM 0100 NOR 11110 100 00101 10G 00110
READ 1001 NSAL 11101 IRCM 01100 ION 00011
RTN 1111 NSOL 10111 L 01010 JTAB 00001
WRTE 1000 ONE 10011 LDR 01100 R 10010
WORD OP1 01110 M 01101 M 01101 L4 10011
TYPE OP2 01101 MEU 01001 MEU 01001 MESP 01010
T 0oP3 01011 MPPA 00010 MPPA 00010 MPCK 11110
oP4 01010 MPPB 01000 MPPB 01000 MPP1 11010
OP5 01000 NOP 01111 NOP 01111 MPP2 01001
OPs 00111 P 11110 P 11110 NOP 00111
oP7 00101 PNM 01110 PRST 01101
oP8 00100 s 11111 S 11111 RJ30 00100
OP10 00010 SP 11011 SP 11011 RPT 10111
OP11 00001 S1 10000 S1 10000 RTN 00000
OP13 11100 52 10001 S2 10001 R1 10100
PASL 10101 s3 10010 S3 10010 SHLT 11101
PASS 10000 sS4 10011 s4 10011 SOV 01100
SANL 11000 S5 10100 S5 10100 SRG1 10001
SONL 10010 S6 10101 S6 10101 SRG2 10000
SUB 01001 s7 10110 s7 10110 SRUN 01000
XNOR 10110 S8 10111 S8 10111 STFL 01111
XOR 11001 s9 11000 s9 11000
ZERO 01100 S10 11001 S10 11001
S11 11010 S11 11010
TAB 00000 TAB 00000
X 11100 X 11100
Y 11101 Y 11101
OPERATION | MODI-
FIELDS (OP) FIER OPERAND STORE SPECIAL
{ ANY 8-BIT CONSTANT TO (SAME AS ABOVE) | (SAME AS ABOVE)
THE S-BUS MODIFIED BY
MM 1110 | cmHl BITS18 AND 19)
11
WORD C'V‘L100
T‘E’E HIGH
01
LOW
00
7115-7

Figure 4-2. Micro-Order Binary Formats (Sheet 1 of 2)

Formats

BITS 23#22 21)20 19 18{17 1615 (14 (1312 (11 (109 (8| 7|6 (543|210
FIELDS BRANCH CONDITION B ADDRESS SPECIAL
R
Atz 0000? A (ANY ADDRESS IN
QL?B 8??:1 N CURRENT 512 WORD
CNTa 01000 c BLOCK. IF THE
MP 1101 | cNT8 01101 | H MICROINSTRUCTION CNDX 00010
JSB 1100 | COUT 00010 |g¢ IS LOCATED IN THE
RTN 1111 E 11001 £ LAST LOCATION OF
FLAG 11000 | N A51219 WORD
HOI 00111 S BLOCK THE TARGET
IR8 11110 | ¢ ADDRESS IS DEFINED
1R11 01001 AS THE NEXT 5121
WORD LO 00100 WORD BLOCK. SEE
TYPE L15 00101 R TABLE 4-1.)
m MPP 01100 |
MRG 11111 (S
NDEC 10011 |,
NINC 10010
NINT 11010
NLDR 10000
NLT 10101
NMDE 10111
NMLS 01011
NRT 10100
NSFP 01110
NSNG 11100
NSTB 10001
NSTR 10110
ONES 00001
OVFL 117011
RUN 00110
RUNE 01010
SKPF 11101
FIELDS BRANCH ADDRESS Ms?’gg.lt\ELR/
{ ANY ADDRESS IN THE IOFF 11111
16K WORD CONTROL 10G 00110
MEMORY) ION 00011
z J74 00101
111
WORD | JMP 1101 | E g?apo 06100
Js8 1100 (B
TYPE o RPT 10111
L' 0 STFL 01111
71158

Figure 4-2. Micro-Order Binary Formats (Sheet 2 of 2)

4-4 Change 1l

4-2,

MICROASSEMBLER FORMATS

Formats

Figure 4-3 is similar to figure 4-1, but is arranged by the microassembler format. (The base set listing,
appendix G, is an example of the microassembler format.) You will be encoding your microprograms
for the RTE Microassembler this way. Note that the microassembler accepts a 72 column format.

MICROASSEMBLER

FIELD
NUMBER

BEGINNING
COLUMN
NUMBER

N

20

25

30

40 72

WORD
TYPE
I

WORD
TYPE

WORD
TYPE

WORD
TYPE

Z20—-=»20mM©V0O

ALU

S-BUS

MOD.

|
muO—w
)

OPERAND

!
|
L
~

FP—OMmMTY

COND.

BRANCH
SENSE

NOYMIOO>
!

|
»w—H4ZmMZ 200

l

|

|
L
~

MOD. MEANS MODIFIER

COND. MEANS CONDITION

=< MEANS MAKE NO ENTRY

71159

Figure 4-3. RTE Microassembler Word Format Summary

Figure 4-4 shows all micro-orders in their respective fields. When you have a good idea what each
micro-order does, you can use this figure and the block diagram (appendix H) to microprogram
expeditiously. Some microinstructions have requirements for the field entries, but the primary consid-

erations in determining their effect are generally:

Word type

S-bus action

Specials and OP codes

Store field action

Branch conditions, if word type III or IV

4-5

Formats

4-3. WORD TYPE I

Word type I is used to execute data transfers and operations between main memory, the I/O section,
Operator Panel, Microprogrammable Processor Port (MPP), and the computer registers. The S-bus
field specifies a register to be enabled onto the S-bus, the ALU field specifies an operation to be
performed between this data and the L-register, and the Store field specifies what register will receive
data at the end of the microcycle. The Special and Operation (OP) fields specify additional operations
(e.g., the Special field can command the Rotate/Shift logic). ALU and condition flags are set or cleared
after each word type I or II execution (if used) and remain in this state until changed by another
microinstruction. Also for word type I and II, the Special field may contain any one of the special
;jnigrd’-qrders except CNDX and J74. Summarizing word type I, you can handle:

® Arithmetic and logic functions

e Shifts and rotates

® Register manipulations

¢ Reading from and writing into memory
¢ Input and output operations

e Interrupts

¢ Subroutine returns

o Loaders

¢ Memory Protect

¢ Dynamic Mapping System operations

® Microprogrammable Processor Port functions

4-4. WORD TYPE II

Word type Il is used for constant generation and storage. The data in the Operand (or Constant) field is
enabled to the S-bus as either the upper byte (bits 15 through 8) or lower byte (bits 7 through 0) while
the alternate byte becomes all logical ones. The IMM micro-order must appear in the OP field. The four
micro-orders that can appear in the Modifier field control formation of the constant. As shown in figure
4-2, bit 18 controls which byte is selected for the constant. (Logical 1 means upper byte.) The ALU can
either pass or complement the entire 16-bit word. Bit 19 (figure 4-2) controls the ALU action. (Logical
1 complements the word.) The Store and Special field entries are identical to those for word type L.

4-5. WORD TYPE III

Word type III is used for conditional microbranches. A microbranch is executed only if the state in the
Condition field is met. You must always have CNDX coded in the Special field for this word type. If
CNDX is not in the Special field, it becomes a word type IV (an unconditional microbranch). The
Branch Sense field may be set (bit 14 a logical 1) by encoding RJS in the field and this will switch the
sense of the condition for the microbranch. (See figure 4-2.) The target address that gets put in the
Control Memory Address Register (CMAR) is always within the current 512,, microword addressing
space (except for conditional branches executed in the last location of the current 512,, microword
block, which will cause a branch into the next higher 512,, block (target address + 512).) The return

4-6

Formats

~
e

4 5 6 7
J 1
L N Y
20 25 30 40 72
—
ALU STORE _S-BUS
ADD NSOL OP11 A MPPA S5 A MEU S5
AND ONE oP13 B MPPB S6 B MPPA s6
CMPL OP1 PASL CAB NOP s7 CAB MPPB s7
CMPS OP2 PASS CNTR P s8 CIR NOP s8
DBLS oP3 SANL DSPI PNM s9 CNTR P s9
DEC OP4 SONL DSPL s 810 DES s $10
INC OPs SUB 100 sP s11 DSPI sp S11
\0R oPe XNOR IRCM s1 TAB OSPL st TAB
NAND oP7 XOR L s2 X 101 s2 X
NOR oP8 ZERO M s3 Y LDR s3 Y
NSAL OP10 MEU s4 M s4
MODIFIER STORE OPERAND
CMHI HIGH { SAME AS ABOVE) (DECIMAL OR OCTAL CONSTANT)
CMLO Low c
(o)
M
M
— E - A
CONDITION BRANCH SENSE ADDRESS N
LONDITION _ADDRESS T
ALZ Lo NRT RJS (ANY IN CURRENT 512 WORD $
ALO L15 NSFP (OR NO ENTRY) BLOCK. IF RTN IS ENTERED
AL15 MPP NSNG IN OP FIELD, THIS FIELD MUST
CNT4 BE BLANK). *IF THE MICRO-
MRG NSTB INSTRUCTION IS LOCATED IN
THE LAST LOCATION OF A
CNT8 NDEC NSTR
w
COUT NING ONES 512, WORD BLOCK THE TARGET
E NINT OVFL ADDRESS IS DEFINED AS THE ,
FLAG NLDR RUN NEXT 612, WORD BLOCK
(SEE TABLE 4-1).
HOI NLT RUNE
IR8 NMDE SKPF
IR11 NMLS
_ADDRESS
(ANY ADDRESS IN
CONTROL MEMORY)
*
J L
C L
Figure 4-4. Microassembler Format
Micro-Orders
7115-10

4-7/4-8

2 2
FIELD
NUMBER 1 2 3
)1
BEGINNING -t
COLUMN
NUMBER 1 o 10 15
LY
FIELDS OPERATION SPECIAL
ARS NOP ASG JTAB RTN
CR& NRM CLFL L1 R1
DI READ cov L4 SHLT
ENV RTN DCNT MESP sov
ENVE WRTE FTCH MPCK SRG1
V;gsg LGS 1AK MPP1 SRG2
4 LWF ICNT MPP2 SRUN
MPY INCI NOP STFL
10FF PRST
10G RJ30
ION RPT
FIELDS OPERATION SPECIAL
WORD IMM AME
vt { SAME AS ABOVE)
I L
A
B
- — -
FIELDS L BRANCH SPECIAL
S
IMP CNDX
JSB { MUST BE ENTERED)
RTN
WORD
TYPE
m
FIELDS BRANCH MODIFIER/SPECIAL
JMP I0FF NOP
JSB 10G RJ30
WORD o i
v J74 STFL
I)
<

NOTES: *SEE TABLE 4-1 FOR ALLOWABLE ADDRESS ENTRIES
ONLY ONE ENTRY PER FIELD

>< MEANS NO ENTRY ALLOWED

7115-10

ENTRIES LEFT JUSTIFIED TO BEGINNING COLUMN OF FIELD

Formats

address is saved for JSB’s. If a RTN micro-order is encoded in the OP field, the address field must be
empty. Table 4-1 outlines what kind of address entries can be made for the microassembler format.
Summarizing word type III, you can accomplish:

® [/O Interrupt sensing

® Data and Arithmetic/Logic section condition sensing

® Operator Panel pushbutton operation sensing

4-6. WORD TYPE 1V

Word type IV is used for unconditional microbranches. Unconditional microbranches are always
executed. As in word type III, a return address is not saved when JMP is encoded in the OP field. A
microbranch modifier may appear in the Modifier/Special field and only seven (IOFF, IOG, ION, J74,
RJ30, RPT, and STFL) are available. Only four of the micro-orders actually modify the address. Word
type IV can be identified by no CNDX code. Also, there will only be at most three fields. The
microbranch target address can be anywhere in the 16K control memory address space. Address field
entries are listed in table 4-1.

As mentioned in paragraph 4-1, you might want to be familiar with the microinstruction bit patterns
so that you can calculate a microbranch address. When you look at a line of microassembler listing and
examine, for example, the octal representation for a JMP microinstruction, you might see:

00311 320 014047 JMP WAIT
where:

00311 is the location of this microinstruction and

320 014047 is the coded content at location 00311

By converting the octal control memory content to the 24-bit word, you can determine the label WAIT
address to be at 00301 as shown in figure 4-5. Note that the separation point between the three left
octal digits and the six right octal digits is between bits 15 and 16. This procedure applies in a similar
manner for any octal content conversion. Also see appendix B.

OCTAL CONTROL
MEMORY CONTENT 3 2 0 0 1 4 0 4 7

(BITS) li3222120191817161514131211109 8 7 6|5 4 32 1 0
BITPATTERN 1 1}]0 1 0[O0 O O0|JO{0 0 1{1 0 0|0 0 O|1 0 O[1 1 1

—_ ! _ b — & } | | |
ore ' ‘ ' ' SPECIAL
TYPE IV oP | ADDRESS ! FIELD
FORMAT | ; - |
| i] I | {
MICRO-ORDERS | ! I
AND ADDRESS { ' JMPp | 0 ! o , 3 ! 0 E 1 NOP }
' (

—

ADDRESS OF WAIT

7115-11 Figure 4-5. Jump Address Decoding
4-9

Formats

4-7. MICRO-ORDER DEFINITIONS

Definitions for each of the micro-orders (binary and microassembler format) appear in table 4-1. Note
that the operation codes (OP field) do not necessarily always dictate the entries in the other fields.
Also, as previously discussed, some word types share the same micro-orders. These definitions are
arranged alphanumerically in the table according to the order of microassembler field occurrence for
word type I through word type IV.

Explanations and examples of the use of many of these micro-orders appear in the sections that follow;
in particular, section 7. You may not want to read all the micro-order definitions before you start
microprogramming. If you have not been involved in microprogramming before and just want to scan

the table and look ahead, refer to sections 6 and 7, and parts III and IV of this manual where you will
find some microprogramming examples.

4-8. SUMMARY

Now you have references for the:

¢ Binary formats of the four word types.

e Binary patterns of all micro-orders.

® Microassembler formats of the four word types.
e Definitions for all micro-orders.

e Octal to binary conversion technique that you can reverse to convert micro-orders to the binary
format.

Also refer to the binary arrangement summary in appendix C.

4-10.

Formats

Table 4-1. Micro-Order Definitions

MICRO-
ORDER DEFINITION
WORD TYPE | OP FIELD
ARS Meaning: Perform a single bit arithmetic shift of the A- and B-registers combined, with the

A-register forming the low-order 16 bits. The direction of the shift is specified in the Special
field: L1 for left, R1 for right.

Required micro-order (field) entries:

opP SPECIAL ALU STORE S-BUS

ARS L1 or R1 PASS B B

If the Special field contains L1, a 0 is shifted into bit 0 of the A-register; bit 14 of the B-register
is lost, but the sign bit (bit 15) remains unchanged. The Overflow register bit is set if B-register
bits 14 and 15 differ before the shift operation. One left shift multiplies by two, i.e., doubles the
number.

ARITHMETIC LEFT SHIFT: SPECIAL = L1
B-register A-register

15] 14| @ ® o o o o ¢ o 0o e 1| 0O 15| 14| ¢ ¢ o ¢ ¢ ¢ 0o ¢ o | 1| O }4— Zero

¥ k_k_ k_k L

If the Special field contains R1, the sign (bit 15) is copied into bit 14 of the B-register and bit 0
of the A-register is lost. B-register bit 15 remains the same.

ARITHMETIC RIGHT SHIFT: SPECIAL = R1
B-register A-register

15|14 | o ¢ o ¢ o ¢ 0o 0o o| 11 0 | 151141 ¢ o o s o s s o o 1 0 Lost

A A A \AN_A AN A

4-11

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
CRS

Meaning: Perform a single bit circular rotate/shift on the combined A- and B-registers with the
A-register forming the fow order 16 bits. The direction of the rotate is specified in the Special
field: L1 for left, and R1 for right.

Required micro-order (field) entries:
OoP SPECIAL ALU STORE S-BUS

CRS L1 or R1 PASS B B

If the Special field contains L1, bit 15 of the B-register is transferred to bit 0 of the A-register.

CIRCULAR LEFT SHIFT: SPECIAL = L1

B-register A-register

1 0H1514-------- 1]0

®_ R _ k_®_ Rk_®_J Xk _

16140 © o o o o o o @

If the Special field contains R1, bit 0 of the A-register is transferred to bit 15 of the B-register.

CIRCULAR RIGHT SHIFT: SPECIAL = R1

B-register A-register

C—»{i/‘mk;.......;;\i;wmk;......;L1\\/0‘JD

4-12

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
DIv Meaning: Perform a divide step where the divisor is in the L-register and the 32-bit dividend is

in the A- and B-registers (least significant bits in the A-register). This microinstruction is
usually repeated (16 times for a full word divisor) by specifying the Special field micro-order
RPT in the preceding microinstruction. This performs the successive subtractions required in
a divide algorithm.

Required micro-order (field) entries:

OoP SPECIAL ALU STORE S-BUS

DIV L1 SUB B B

The divide step is executed as follows:
a. Subtract the L-register from the B-register (ALU = B-L)

b. i a borrow is required to complete the subtraction, the ALU Carry Out flag is clear (O).
This carry out result means that the divisor (L-register) is too large. The ALU result is not
stored. The A-register and B-register are left shifted one bit and the divide step is
complete.

¢. If aborrow is not required to complete the subtraction, the ALU Carry Out flag is set (1).
This means that the divisor is small enough and the result of the subtraction is left shifted
one bit and stored back into the B-register. Bit 15 of the A-register shifts into bit 0 of the
B-register and bit O of the A-register is set to 1 (the carry out result). The divide step is
complete.

Usage: The base set divide operation is shown in appendix G under the Extended Arithmetic
Group instruction microroutings at label DIV. This can be used as an example in your
microprogramming. When performing 16 divide steps, the numbers in the A- and B-registers
should have a 32-bit left shift executed before the RPT and the first divide step. This is
accomplished for proper bit alignment before the division. Also, the counter should be set for
the desired number of repeat steps before the 32-bit left shift. Example:

INITIAL CONTENTS:

B-register A-register L-register
Dividend 16 Most Dividend 16 Least [()A\S:g:ute
Significant bits Significant bits

Value)

(Left Shifted)

AFTER REPEAT 16
TIMES OF DIVIDE

STEP:
B-register A-register L-register
Remainder 16-Bit Quotient Divisor
Doubled of (B, A) /L (Unchanged)

4-13

rormats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | - OP FIELD (CONT.)

ENV

Meaning: Enable the overflow logic for the current ALU operation. If ADD is coded in the ALU
field, the Qverflow register does not set unless requested.

Usage: To detect an overflow (i.e., set the Overflow register bit), ENV or ENVE (see below)
must be specified in the OP field of the microinstruction in which the condition is to be tested.
The Overflow register is set if the S-bus and L-register bits 15 are the same and bit 15 output
from the ALU is different. Caution is advised in the use of DEC (decrement) or INC (increment)
in conjunction with ENV. The L-register is always compared with the S-bus. Section 7 provides
further information on programmatically setting and clearing the Overflow register.

ENVE

Meaning: Enable the overflow and extend logic for the current ALU operation.

Usage: To detect (test for) an overflow (i.e., set the Overflow register bit), ENV (see above) or
ENVE must be specified in the OP field of the microinstruction in which the condition is to be
tested. To set the Extend register as a result of the ALU operation, the ENVE micro-order must
be specified in OP field of the microinstruction. The Extend register bit is set if there is a carry
generated by the ALU (ALU Carry Out flag = 1).

Example:
opP SPECIAL ALU STORE S-BUS
[ENV) ADD s3 S8
[ENVE)

i i [ister.
See section 7 information on programmatlcally setting and clearing the Overflow reg

4-14

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
LGS

Meaning: Perform a single bit logical shift of the A- and B-registers combined, with the
A-register forming the low order 16 bits. The direction of the shift is specified in the Special
field: L1 for left, R1 for right.

Required micro-order (field) entries:
oP SPECIAL ALU STORE $-BUS
LGS L1 or R PASS B B

If the Special field contains L1, a 0 is shifted into bit 0 of the A-register and bit 15 of the
B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL = L1

B-register A-register

LOSI‘——“514""""'10H1514""""10|‘_29f0

®_ ®_ k_k_ ®_ R _ | 2

If the Special field contains R1, a 0 is shifted into bit 15 of the B-register and bit 0 of the
A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL = R1

B-register A-register

zem‘,[g 140 68 eeeeas 1]oH15 14l1]0—|—>Lost
A A

A A A A A A

4-15

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER
DEFINITION
WORD TYPE I - OP FIELD (CONT,)
LWF ing: ' '
l:/l;zzn;grgrﬁ;eg;rt? aco;S ftlnt r?tanonal shift of a 17-bit operand in the Rotate/Shifter where bit
| e ag (link with flag). The data rotates | f it iS i
field, or right one bit if R1 is in the Special fi i o Pt LS 1 the opocial
ecial field. If ifi
CPU flag and mo i . p’age‘ neither L1 or R1 are specified, LWF clears the
ROTATIONAL RIGHT SHIFT: SPECIAL = R1 ROTATIONAL LEFT SHIFT: SPECIAL = L1
ALU Contents ALU Contents
14].-.......1
AN A
CPU Flag CPU Flag
MPY

lMe‘aning: Perform a muttiply step where the multiplier is in the L-register and the multiplicand
IS in the A-register.

Required micro-order (field) entries:

opP SPECIAL ALU STORE $-BUS
MPY R1 ADD B B

The multiply step is executed as follows:

a. It bit 0 of the A-register is a one, the L-register is added to the S-bus (B-register value).
The result is shifted right one bit and stored into the B-register with the ALU Carry Out flag
forming bit 15,

b. i bit 0 of the A-register is a zero, the S-bus (B-register vaiue) is shifted right one bit and
stored back into the B-register with the ALU Carry Out flag forming bit 15.

c. Ineither case, the A-registeris shifted right and ALU bit O fills vacated bit position 15. Bit O
of the A-register is lost. The multiply step is complete.

Usage: This microinstruction is usually repeated 16 times by specifying the Special field
micro-order RPT in the preceding microinstruction.

Each step of the multiply aigorithm effectively multiplies the L-register by the A-register bit that
corresponds to the step; i.e., step one multiplies the L-register by bit O of A-register, step two
multiplies the L-register by bit 1 of the A-register, etc. Thus to multiply the L-register by all 16
bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts and additions, the initial content of
the B-register is added to the final result of the multiply algorithm. If the B-register is not zero
before the multiply steps are begun, 16 multiply steps will yield the 32-bit result in the B- and
A-registers (where the least significant bits (LSB's) are in the A-register).

4-16

Table 4-1. Micro-Order Definitions (Continued)

Formats

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (Cont.)
MPY (B,A) = [(AxL) + B)
(Continued)

This may be useful in some computational procedures. For example: X(2) = X (1) + (YxZ).

Initial Contents:

INITIAL CONTENTS:

B-register A-register L-register
Value to be added L -
ta the final result Multiplicand Multiplier
AFTER REPEATING THE
MULTIPLY STEP 16 TIMES:
B.register A-register L-register
(AxL) +B (AxL) +8 L
16 Most 16 Least Multiptier
Significant bits Significant bits {Unchanged)

4-17

‘‘‘‘‘‘ w“woewu/
iU~
ORDER DEFINITION
WORD TYPE t - OP FIELD (CONT.)
NOP Meaning: No operation is specified for the OP field.
Usage: This is the default micro-order when the QP field is left blank.
NRM

Meaning: Perform a one bit shift on the 48-bit combined value of the B-register, A-register
and S-bus data (normalize a 48-bit floating point number) as follows.

Left shift: The left normalizing shift requires that the following micro-orders be used:

or SPECIAL ALY STORE

S-BUS
NRM L1 PASS .

*Desired Register

This will arithmetically shift the B-register, A-register, and S-bus data left one bit. if B-register
bits 15 and 13 are different before the shift, the Repeat flip-flop is cleared. (Refer to the
explanation of normal Repeat flip-flop operation under RPT inthe 3

s sepion, Pecil feld. This operaton

B-register A-register S-bus

-

-

"——"_——__
- Zero

[{ [S \[5} ”ght (lOll(lalZ g S [equ‘es thatt e EO oW Icro-0 de be use

S-BUS
opP SPECIAL ALY STORE ==

R/l

“Desired Register

i g | . e
. . ' \ (

4-18

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (Cont.)
NRM A second application of the NRM micro-order is in “denormalization™, or aligning floating point
(Continued) numbers (with different exponents). In this case, one or the other of the numbers is operated

on to adjust the exponent and shift the floating point into the proper position. The number of
alignment shifts is passed into the counter and the microinstruction below is repeated the
appropriate number of times.

oP SPECIAL ALU STORE S-BUS

NRM R1 PASS S1 S

Usage: The use of NRM in the left shift application is not as obvious as right shift. For
example, assume a 48-bit two's complement number in the B-, A-, and S1-registers is to be
quickly normalized. The following demonstrates the process:

ALU/ S-BUS-
LABEL op SPECIAL COND. STORE ADDRESS
NRM48 IMM LOW CNTR 0
DBLS L B
XOR B
JMP CNDX AL15 *+4
RPT
NRM L1 PASS S1 S1
JMP NRM48+ 1

Upon exit, the number is normalized and the counter contains the two's complement of the
number of shifts performed.

NOTE

Floating point numbers are considered normalized when the mantissa sign
bit and adjacent bit are opposite in polarity and the mantissa falls in a range
of a set of numbers between zero and everything up to but not including
one.

4-19

y\-—rwraf

READ Meaning: Read data from main memory at the address specified in the M-register and store
into the T-register. The CPU will pause if main memory is busy.

Usage: The M-register must be loaded prior to or during the microinstruction containing the
READ micro-order. The data from main memory must be removed from the T-register within
three microinstructions after the READ. Optimum performance is realized when the maximum
number of microinstructions allowable are used between READ and TAB. Refer 1o section 7
for READ micro-order use considerations.

RTN Meaning: Jump to the return address, i.e., branch by “popping” the “top™ address in the
Save Stack into the CMAR. Note that there can be three levels of microsubroutines (JSB's).

Usage: For word type |, CNDX is not allowed in the Special field so the “pop” operation and
branch are unconditionally made.

\

\NME M%&Nﬂg \N(\\ﬁ \h@ G&l& \ﬂ me UQQ\%\@I ‘\mo the main memory address specified in the

M-register. The CPU will pause it main memary s busy.
oinstruction containing the WRTE

st be loaded during the micr

Usage: The T-register mu on 7 for WRTE micro-order use considerations

micro-orders. Refer 10 secti

4-20

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND Il - SPECIAL FIELD
ASG Meaning: Bits 6 and 7 of the Instruction Register (IR} determine which of the following
functions are to be performed:
IR bit Alter/Skip Group
7 6 Instruction
0 1 (CLE) Clear Extend register
1 0 (CME) Complement Extend
register
1 1 (CCE)} Set Extend
register
Also, this micro-order loads the top of the Save Stack into the CMAR if the Alter/Skip Group
conditions are not satisfied. It does not “pop” the Save Stack (i.e., the address also remains in
the stack). The operation specified in the ALU field is forced to a PASS if IR bit 2 is a zero.
Usage: This micro-order is used in the base set microprogram to implement the Alter/Skip
Group instructions. It will not normalty be used by the microprogrammer. Refer to section 7
use considerations.

CLFL Meaning: Clear the CPU flag.

Ccov Meaning: Clear the Overflow register. Refer to section 7 for information on programmatically
setting and clearing the Overflow register.

DCNT Meaning: Decrement the counter (the lower 8 bits of the IR) by one.

FTCH Meaning: This micro-order (for use only in the base set) adjusts the Save Stack and performs
other operations in relation to Memory Protect. If you are going to perform system emulation
you will find further details on this micro-order in appendix C. Otherwise, it is not to be used for
“normal” microprogramming.

IAK Meaning: Freeze the computer until time period T6 and then load the interrupt address into
the Central Interrupt register (CIR) and generate an IAK signal to the I/O section. Also clears
the Indirect Counter in Memory Protect.

Usage: Not normally used by the user microprogrammer. Refer to section 7 for interrupt
handling techniques.

ICNT Meaning: Increment the counter (the lower 8 bits of the IR) by one.

INCI Meaning: Increment the Indirect Counter in Memory Protect (if installed) by one.

Usage: Used by microprograms that implement indirect addressing. If INCI is executed three
times before the next FTCH or IAK appears in the Special field, the Interrupt Enable flag is set
to allow the CPU to recognize interrupts. Used to prevent multiple indirect addressing levels
from holding off recognition of /O interrupt requests. If the following microinstruction includes
a JTAB in the Special field, the actual branch called by JTAB is made only if the condition
mapped by bits 19 through 14 of that microinstruction are met. Refer to section 7 for interrupt
handling techniques.

4-21

ce of an |AK or FTCH, or three ocC

r A Currences of INC/ i
recognized if Memory Protect isi n

e Special
nstalled.

Meaning: Freeze the CPU urtj 4 [
/ time period T2 ‘ i imi
signals dependent upon the instructioz in the lR.Then e ine gereraion oo mnd

nput and output reqy; i i
" p Quire cooperation between the /O section and

rity with the 110 System is mangd
; - atory. Refer to secti
cuting 1/0 microinstructions. tion 7 for

ION Meaning: Turn on the Interr

Ut Enable flag and gligw fhe CPUtg

T o T SE000ZE power g g

e il

SUICe can be detected in g Ways:

a. Ifa JTAR micro-order i executed and an interrupt is pending or

o the Run flip-flop is clear,
execution is forced to control memory (CM) location 6 (

the Halt-Or-interrupt microroutine)

b. A.test for interrupt pending or Run flip-flop clear can be performed by the executing
microprogram by having an HOI encoded in the Condition field of a word type 1l
microinstruction. Or, a test for a pending interrupt can be made by having NINT encoded
in-aword type Il Condition field. The micra-arder ION allows interrupts to be recognized.
However, interrupts are not generated by the interrupt system unless an STF 0 1O control
command has been executed. Refer to the discussion of the interrupt system in the HP

21MX E-Series Computer Series Operating and Reference Manual. Refer to section 7 for
interrupt handling considerations.

JTAB Meaning: This micro-order (for use only in the base set) maps inst.ructions 'mlthel IR to the
proper location in CM. If you are going to perform system emulation, you will fm? furtheyry
details on this micro-order in appendix C. Otherwise, it is not to be used for “normal
microprogramming.

L1 Meaning: Left shift one bit command to the Rotate/Shifter.

Lost @—f 15| 14 | o o o o o ¢ o o o @ 1 0 l€&— Zero

Usage: Refer to MPY, DIV, CRS, LGS, ARS, NRM, and LWF. Without one of the previous OP
field mlicro—orders, L1 performs a one bit logical left shift on data leaving the ALU.

4-22 Change 1

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE | AND Il - SPECIAL FIELD (CONT.)

L4 Meaning: Four bit left rotate command to the Rotate/Shifter.

TO R/S L115‘14113[12l11l1019[8[7[6‘5[4)3|2[1lO]

[Tl [T s o[/ [o s s s 21 o]

TO T-bus

MESP Meaning: Dynamic Mapping System (DMS) signal generation micro-order used in conjunc-
tion with the MEU micro-order in the Store and S-bus fields. Eight different functions are
performed (designated QO through Q7 for reference) by combinations of MESP and MEU. The
combinations of these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MESP and MEU micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MESP and MEU micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand the
DMS before using these micro-orders.

MPCK Meaning: Request a Memory Protect check of the address in the M-register for a Memory
Protect fence or DMS violation.

Usage: This micro-order is used with any instruction that may cause a Memory Protect or
DMS violation by entering or modifying protected memory. It need not be used if Memory
Protect is not installed in the computer. It is subject to the following:

a. Micro-orders IRCM, M, or PNM can not be specified in the Store field.

b. The M-register must have the address to be checked when the microinstruction using
MPCK is executed. (MPCK is usually used with the WRTE micro-order in the OP field.)
Refer to section 7 for reading, writing and I/O considerations using MPCK.

c. Ifthere is not a READ or WRTE micro-order in the OP field (of the same microinstruction),
the MPCK must follow the microinstruction containing a READ or WRTE by one or two
microinstructions. The MPCK must never be further than two microinstructions away if
Dual-Channel Port Controlier (DCPC) is installed in the computer. The microinstruction
below demonstrates a typical use of MPCK.

OoP SPECIAL ALU STORE S-BUS

WRTE MPCK PASS TAB S1

4-23

ORDER]
DEFINITION

WORD TYPE | AND ll - SPECIAL FIELD (CONT.)

MPP1

e

e Re ><() e }”E 2 1 erie O/Hpul'e //O / te }aC”g GU/O’G 0] urthe
@] auo a ‘7 ‘) (] N 3 S anua
f t E mpie miCroprc amme i se ca t)e ou (i seclio o}
M 2

Meaning: i
eaning: Generate a signal PP2SP (use to be defined by user) to the MPP

Usage: Refer to the HP 21M

. X/21MX E-Series Co .
informati . mputer 1/0 Interfacin '

ation. Example microprogrammed use can be found in section 1% ()Gf%g: i
NOP manual.

Meaning: No operation in the Special field.

PRST

Meaning: This micro-order will clear the A- [
g Th der wil clear the A- and B-Addressabl fip-fops (AAF and BAH

Usage' Thi |

- TSy e sy e i

| Oprogrammer o gg -
Vi Rl i (ATMES 1 Ga access 0 main memary locaions

read and write operation considerations.
RJ30

Meaning: ‘ S
deﬂnitio% O\;vgjg;?se(ijd:ni'gﬁr? t;t/ri)e tor Il microinstruction (available also in word type V), the
. ical to that of a READ micro-order in a w ‘ :
ord t i
read operation takes place and no address modification action is deﬁsrzzz)‘ OP field (e, a

RPT

Meaning: Repeat th microl m m

. e next microinstruction for th i

’ o e nu ber of times specified b it
numboer in the least significant four bits of the 1R counter. pectiec by e posite

Usage: The next micrainstruction must be a word type | and must not contain RTN in the OoP
field or RTN or JTAB in the Special field. The Repeat flip-flop is set by this migro-order which
prevents the updating of the Microinstruction Register (MIR) and CMAR at the end of the next
microinstruction. The counter decrements after each execution of the next micrainstruction
and, when the lower four bits are all zeros, the Repeat flip-flop is cleared. (Refer 1o the NRM,
OP field micro-order for exception.) If the four least significant bits of the counter are zeros, the
next microinstruction will be repeated 164, (20,) times.

Meaning. Return from a microsubrouting; 1.€., branch to the CM address in the Save Stack.
This address is loaded nto the CMAR. If the Save Stack is empty (no microsubroutine
previously executed), a returmn is made to CM location 0 (zero).

Usage: Three ievels of microsubroutines are the maximum allowable. RTN Qverrides the
effect of a JMP or JSB in the OP field which are not allowable with RTN encoded inthe Special
field.

Meaning: Right shift one bit command to the Rotate/Shifter.

Usage: Used in conjunction with the shift and rotate micro-orders. Refef to MFY, D.lV. A.RS,
NEM, CRS, LGS, and LWF. Without one of the previous micro-orders, a single pit logical right
shift is executed.

4-24

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND Il SPECIAL FIELD (CONT.)
SHLT Meaning: Clear the Run flip-flop.
Usage: The Run flip-flop and RUN LED on the Operator Panel is actually cleared at the
completion of the word type | or Il microinstruction following the one specifying SHLT. This
micro-order should be used with caution by the microprogrammer.
SOV Meaning: Set the Overflow register. Refer to section 7 for information on programmaticaily
clearing and setting the Overflow register.
SRG1 Meaning: Execute the shift/rotate function specified by bits 6 through 9 of the IR. (Refer to the

HP 21MX E-Series Computer Operating and Reference Manual.) The shift/rotate function is
performed on the data that leaves the ALU. If IR bit 5 is set, clear the E-register after the shift.
The function performed in the Rotate/Shifter is determined by IR bits 6 through 9 as follows:

9B8IT756 FUNCTION PERFORMED IN ROTATE/SHIFTER

1000 Arithmetic left shift one bit.

1001 Arithmetic right shift one bit.

1010 Rotational left shift one bit.

1011 Rotational right shift one bit.

1100 Arithmetic left shift one bit, clear sign (bit 15).

1101 Rotational right shift one bit with E-register forming bit 16
17th bit).

1110 Rotational left shift one bit with E-register forming bit 16 (the
17th bit).

1111 Rotational left shift four bits.

Oxxx

No shift (bits 8,7, and 6 can have any setting) except if bits 87, and 6
are 101 or 110 the E-register could be undesirably updated. (Refer
to the HP 21MX E-Series Computer Operating and Reference
Manual Shift/Rotate Group information for instructions on how to
avoid this situation)

Usage: Refer to section 7 for considerations when using SRG1.

4-25

Table 4-1. Micro-Order Definitiong (Continued)

DEFINITION
WORD TYPE | AND NSPECIAL FIELD (CONT))

Meaning: Execute the shift/rotate f
HP 21Mx E-Series Computer O
performed on the data that legv
unless IR bit 3 was s
or I microinstruct
IR bits 0,12 and

unction specified by bits 0,1,2, and 4 of the IR. (Refer to the
perating and Reference Manual.) The shift/rotate function is

esthe ALU. The top of the Save Stack is loaded into the CMAR
et (a logical 1) and bit 0 of the T-bus wag Z€r0 during the lagt word type |
ion executed. The function performed in the Rotate/Shifter is determined by

4 as follows:

BITS

4 210 FUNCTION PERFORMED IN ROTATE/SHIFTER

1000 Arithmetic left shift one bit.
1001 Arithmetic right shift one bit,
1010 Rotational left shift one bit.

1011 Rotational right shift one bit.

1100 Arithmetic left shift one bit, clear sign (bit 15).

i i i i the
1101 Rotational right shift one bit with E-register forming bit 16 (
17th bit).

[i [[the
1110 Rotational left shift one bit with E-register forming bit 16 {(
17th bit).

1 111 Rotational left shift four bits.

i if bits 2,1, and 0
tting) except if bits 2,1,
i i 1, and 0 can have any se . sona 0
. o (blt31 120 the E-register could be undeswably updatggfe(rlznce
o t:wm ,‘?hrD 27MX E-Series Computer Operat/ngt.ansd Jererence
v ; i i for instruction
i information
Manual Shift/Rotate Group
avoid this situation.)

Usage: Refer to section 7 for considerations when using SRG2.
sage:

SRUN Meaning: Set the Run flip-flop.

p X
[S] {LJN CcO d (0] Ota et e ne ()(i 6] S exel lei

STFL Meaning: Set the CPU flag.

4-26

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | ALU FIELD
NOTE
Symbols used in the following ALU field equations are defined here for
reference.
+ means arithmetic function +
- means arithmetic function —
. means logical function “and”.
+ means logical function “or".
) means logical function “exclusive or".
SorL means the one's complement of the S-bus or the one’s comple-
ment of the L-register.
ADD Meaning: Add the data placed on the S-bus to the contents of the L-register.
AND Meaning: Logical “and” the L-register and S-bus: (L S).
CMPL Meaning: One's complement the L-register.
CMPS Meaning: One's complement data on the S-bus.
DBLS Meaning: Perform the following arithmetic function in the ALU with the S-bus: S plus S.
DEC Meaning: Decrement data on the S-bus by one.
INC Meaning: Increment data on the S-bus by one.
I0R Meaning: Logical “inclusive or” the L-register and S-bus: (L+S).
NAND Meaning: Logical “nand" the L-register and S-bus: (L+S).
NOR Meaning: Logical “nor” the L-register and S-bus: (L+S).
NSAL Meaning: Logical “and” the complement of the S-bus and the L-register: (S L).
NSOL Meaning: Logical "or” the complement of the S-bus and the L-register: (S+L).
ONE Meaning: Set all 16 bits (logical one’s) input to the Rotate/Shift logic.
OP1 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus 1.
oP2 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+T) plus 1.
OP3 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
S plus (SeL) plus 1.
OP4

Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus (S+L) plus 1.

4-27

+ viriliaw

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER
DEFINITION
WORD TYPE | - ALY FIELD (CONT.)
OPs5 Meaning: i
g: Perform the following logical function i -
S<T). This micrm. ion in the ALU with the L-re iste -bus:
(S+L). This micro-order has the same effect as the SANL micro-order. gister and S-bus:
OPe6 Meaning: i
g: Perform the following logi ion i .
S plus (S- L), 9 fogical function in the ALU with the L-register and S-bus.
Oop7 Meaning: i
ning: Perform the following Io ical ion i ;
(S+L) plus (S L), 9 fogical function in the ALU with the L-register and S-pus:
\
OP8 Meanin
g: Perform the followin | i
(S+L) minus 1. g logical function in the ALU with the L-register ang S-bus
OP10 Meaning: Perf ;
. o] . . . _
S L) pglus o m the following logical function in the ALU with the L-register and S-bus:
OP11 Meaning: i - .
(S+a|i])m§lﬁspgrform the following logical function in the ALU with the L-register and S-bus:
OP13 Meaning: Pas . . :
ol n%j'cro_ofdzlrl Zeros to the Rotate/Shifter. Thig micro-order has the same effect as the
PASL Meaning: Pass the L-register's contents to the Rotate/Shifter.
PASS Meaning: Pass the S-bus data to the Rotate/Shifter. PASS is the default micro-order (NOP)in
the ALU field. If no micro-order is encoded in the ALU field in a word type | microinstruction, a
PASS will be inserted during microassembly. Data is not modified when a PASS appears in the
ALU field.
SANL Meaning: Logical "and" the S-bus and the complement of the L-register (S« T); pass the result
to the Rotate/Shifter. This micro-order has the same effect as the OP5 micro-order.
SONL Meaning: Logical “or” the S-bus and the complement of the L-register (S+L): pass the result
to the Rotate/Shifter.
SuUB Meaning: Subtract the L-register from the S-bus and pass the result to the Rotate/Shifter.
XNOR Meaning: Logical “exclusive nor” the L-register and S-bus (L&S); pass result to the Rotate/
Shifter.
XOR Meaning: Logical “exclusive or’ the L-register and S-bus (L&S); pass the result to the
Rotate/Shifter.
ZERO Meaning: Pass all zeros to the Rotate/Shifter. This micro-order has the same effect as the

OP13 micro-order.

4-28

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND II- STORE FIELD
A Meaning: Store the data on the T-bus in the A-register.
B Meaning: Store the data on the T-bus in the B-register.
CAB Meaning: Store the data on the T-bus in the A- or B-register according to the value of IR bit 11:
IR bit 11 zero means A-register.
IR bit 11 one means B-register.
CNTR Meaning: Store the lower eight bits of the S-bus (bits 0-7) in the counter (lower 8 bits of the
IR).
Usage: Refer to section 7 use considerations.
DSPI Meaning: Store the one’'s complement of the lower eight bits of the S-bus in the Display

Indicator on the Operator Panel. (Note that only the least significant six bits are displayed.)
This display indicates which register (or function) information appears in the Operator Panel
Display Register. Refer to the HP 21 MX E-Series Computer Operating and Reference Manual
for details on the Operator Panel and its operation in the normal and special modes. The six
indicators on the Operator Panel are associated with the S-bus bits as follows:

Display Indicator
(S- bus) bit

Register Displayed
in Normal Mode

Function Displayed
in Special Mode

NOTE: Bits 7 and 6 not used.

Usage: The Operator Panel Display Indicator or Indicators can be it by bits 5 through 0 from
the S-bus as follows:

orP SPECIAL MOD. STORE OPERAND

IMM LOW DSPI 3738

e

Lights indicator pointing to M-register.

whereas:
oP SPECIAL MOD. STORE OPERAND
IMM LOW DSPI 0108

et

Lights all indicators (Special mode) except the function “t" mode (i.e.,
indicates that DMS map content is displayed in the Display Register).

4-29

for information on interfacing with Memory Protect
L | .
i Meaning: Store the data at the gy

USage: The Legist
\

DEFINITION

Meaning: Store the data
should be Coordinateq

Qn the S-bus in the O
with the Display In

pe
t

rator Pane| Dj ' '
e Isplay Register, This information

or.

during execytion of

significant ten b i
10 is 210 s of the M-register and Clear the

-bus into the least

upper five bits of the M-register if S-bus bit

Usage: Refer to section 7

'putaf the ALY fnfg fne Legiser

eris used
as the secong 0D&rand in arthmetic functions

Meaning: Store the data on the S-bus in the M-register.

Usage: Do not store into the M-register between the READ micro-order and the subsequent

TAB if references to the A- or B-registers are possible. Refer to section 7 for TAB micro-order
use considerations.

MEU

Meaning: DMS signal generation micro-order used in conjunction with Special field micro-
order MESP and S-bus field micro-order MEU. Eight different functions are performed (desig-
nated QO through Q7 for reference) by combinations of MESP and MEU. The combinations of
these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MEU and MESP micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MEU and MESP micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand the
DMS before using these micro-orders.

MPPA
and
MPPB

Meaning: Generate the signals MPPAST and MPBST (use to be defined by user) to
the MPP.

Usage: Refer to the HP 21MX/21MX E-Series Computer 1/O Interfacing Guide for further
information. Example microprogram use can be found in section 13 of this manual.

NOP

Meaning: No store operation is performed; this is the default micro-order when the Store field
is left blank.

Meaning: Store the data on the T-bus in the P-register (Program Counter).

4-30

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND It - STORE FIELD (CONT.)
PNM Meaning: Store the data on the T-bus in the P-register (Program Counter), and the data on the
S-bus in the M-register.
Usage: Useful in microprograms which perform muttiword READ operations from main mem-
ory, where the P-register points to the address in main memory to be read. In a single
microinstruction, the microprogram can store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an application is as follows:
oP SPECIAL ALU STORE S-BUS
READ INC PNM P
Refer to section 7 for the use of PNM in microinstructions with READ and WRTE micro-orders.
If MPCK is used in the Special field, PNM cannot be used in the Store field.
S Meaning: Store the data on the T-bus in the S-register.
SP Meaning: Store the data on the T-bus in the SP-register.
S
thru Meaning: Store the data on the T-bus in the indicated Scratch Register (S1 through S11).
S
TAB Meaning: Store the data on the T-bus in the A-register if the AAF (A-Addressable flip-flop) is
set; store the data on the T-bus in the B-register if the BAF (B-Addressable flip-flop) is set;
store the data on the S-bus in the T-register (Memory Data Register) if neither AAF nor BAF is
set. Data on the M-bus (as it loads the M-register) determines the setting of AAF or BAF as
follows:
M-bus address FF States Register referenced
when M-register by TAB in store
store is specified | AAF | BAF | (or S-bus) field.
0 1 0 A
1 0 1 B
Any other value 0 0 T
Note that the PRST micro-order clears the AAF and BAF flip-flops.
Usage: This micro-order must occur concurrently when a WRTE micro-order is used. The
T-register is internal to the Main Memory section. It must not be used as a working register.
TAB may not be in both the Store and S-bus fields. Refer to section 7 for microprogramming
considerations and the use of TAB.
X Meaning: Store the data on the T-bus in the X-register.
Y

Meaning: Store the data on the T-bus in the Y-register.

4-31

S

I

Meaning: Place the contents of the B-register on the S-bus

CAB

R b.it 11 zero means A-register.
IR bit 11 one means B-register.

CIR

Meaning: Place the contents of the CIR on the S-bus

(bits 5 through 0).

CNTR

M H .
S_Zir;'-nt% Place the.contents of the counter (lower 8 bits of the IR)
» e upper 8 bits are ones. See “NOTE” under |0 below, and

on the lower 8 bits of the

DES

Meaning: Enable the Remote Program Load Con“ T

21080 g e

WP g e e Thag
e il 00 g S Olong

T

A closed switch represents a logical 1 on the S-bus,

Switch No. 8 7 6 (5 | 4 3| 2 1

S-Bus bit 15114 101 9 8 71686 0

Undriven S-bus bits are logical ones.

Usage: Used in the base set microprogrammed bootstrap routine. Refer to the HP 21MX

E-Series Operating and Reference Manual operating procedures for additional loader infor-
mation. Also refer to section 7 of this manual. See “NOTE” under IOl, below, and TAB

“Usage”, page 4-34.

DSPI

Meaning: Place the eight bits of the Operator Panel Display Indicator (complemented) on the
S-bus. The upper eight bits of the S-bus are set to ones.

Usage: Refer to the DSPI Store field definition for Display Indicator bit significance.

DSPL

Meaning: Place the contents of the Operator Panel Display Register on the S-bus.

0]

Meaning: Enable the 1/O bus onto the S-bus.

Usage: This is used to transfer data from an /O device to the S-bus. See section 7 for
considerations in I/O microprogramming.

NOTE

When |01 is used in conjunction with select code 01, 02, 03, 04, or 05,
the following microinstruction’s S-bus field must not have CNTR, DES,
or LDR if the unspecified (and assumed to be "1") S-bus bits must be
in a known state; similarly, the microinstruction must not be word type

Il (IMM).

4-32 Change 1

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | - S-BUS FIELD (CONT.)

LDR

Meaning: Place four bits from a Loader ROM on the S-bus. The address of these four bits in
the ROM is contained in the counter. Determination of which of the four available Loader
ROM's is specified by bits 15 and 14 in the Instruction Register. Example seguence:

INSTRUCTION REGISTER

lelull: [[[F 0T

15]1

-

n n

———r

L———V Select Loader ROM nn, where nn is between binary 00 and 11

COUNTER ROM nn

JGTS T“l [3 [ZTJO 0 1—[_2_ 3 Octal addresses range

1 from0to 377.
LOADED ROM ADDRESS a 415161 7! Each addressed location

i 4-bit-byte
100110121 contains a Y

\\ |L3 of data.
\

rrrr was contents of
ROM nn, address a

15]14[13[12]11]10] 98] 7] 6 54(3210

Usage: Refer to the base set microroutine (appendix G), Initial Binary Loader for an example
of the LDR micro-order use. Guidelines for writing loaders appear in section 7. See "NOTE”
under 101, page 4-32, and TAB "Usage”, page 4-34.

Meaning: Place the 15-bit contents of the M-register on the S-bus. Bit 15 of the S-bus is zero.

MEU

Meaning: DMS signal generation micro-order used in conjunction with Special field micro-
order MESP and Store field micro-order MEU. Eight different functions are performed (desig-
nated Q, through Q, for reference) by combinations of MESP and MEU. The combinations of
these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MEU and MESP micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MEU and MESP micro-orders are available for

you to write microprograms using your DMS facifity. You should thoroughly understand DMS
before using these micro-orders.

Change 1 4-33

A R o §

further information Exampl
NOP
Ugage: This is the default
microinstruction.
R
S
—
SP ing:
Meaning: Place the contents o

Meaning: Al ones are on the S-pus.

micro-
rp order when the S-pus field is not Specified in a

M h .
eaning: Place the content of the P-register on the S-bus

Meaning: Place the content of the S-register on the S-bus

"the SP-register g (ng S'DUS\

—_—
p—
< ——

TAB

E\Ajﬁ?rid?ace the contents of the T-register (Memory Dat
- I iD-

e A_regf;ses;a:rl]etglpsﬂobp) nor the BAFl(B-Addressable flip-lop) is set: place the cont
S-bus if the BAF is set eDat_ o t,f ne AP is set; place the contents of the B-register gnetr:wts
AAF or BAF Refer 10 IAAFagn h? M-bus (ag it |Qads the M-register) determines the settingoef
order : BAF flip-flop setting information under the Store field TAB micro-

a Register) on the S-bug if neither

Usage: TAB may not be used in the S-bus and Store fields simultaneously. Data in the
T-register must be removed within three microinstructions after the READ micro-order is used.
A microinstruction with a TAB micro-order in the S-bus field must not be foliowed by a
microinstruction with a DES, CNTR, or LDR S-bus field micro-order where the unspecified
(and therefore, assumed to be "1”) S-bus bits are required to be in a known state. The S-bus
field TAB also must not be followed by a word type Il microinstruction where the byte that is not
the Operand is required to be in a known state. Refer to section 7 for considerations when

using TAB.

Meaning: Place the contents of the X-register on the S-bus.

Meaning: Place the contents of the Y-register on the S-bus.

WORD TYPE Il - OP FIELD

MM

Meaning: Place 16 bits on the S-bus consisting of the 8-bit binary Operand and 8 bits of'ones.
Determination of which 8 bits of the S-bus receive the Operand and which 8 bits receive all

ones is made by the Modifier field.

Usage: Refer to the word type Il Modifier field micro-orders for Operand examples.

WORD TYPE Il - SPECIAL FIELD

(Al Special field micro-orders are the same as for word type 1.)

4-34 Change 1

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - MODIFIER FIELD
CMHI Meaning: The 16 bits received by the S-bus consist of the following:
Bits 15 through 8 = Operand. (Refer to the information on word type |l Operand.)
Bits 7 through 0 = all ones.
The S-bus data is then complemented as it passes through the ALU.
Usage: See below.
MICROINSTRUCTION:
oP SPECIAL MODIFIER STORE OPERAND
IMM CMHI L 3678
BIT NO. 15|14]13]12]11]10| 9|8 |76 |5|al3]|2|1]o0
S-bus
CONTENT [1|t |11]o|r {1 1|1 v 1] ti1 1] 1]
OPERAND (3678}
Result BIT NO. 15/14 1312 |11|10| 9|8 | 7|6 |5|4 3|21 10
Outof ALV nrent [0 |0 o] o 1|oflo|o|olo|loflojojo]|o]o
OPERAND Complemented
CMLO

Meaning: The 16 bits received by the S-bus consist of the following:

Bits 15 through 8 = all ones.

Bits 7 through 0 = Operand. (Refer to the information on word type Il Operand.)
The S-bus data is then complemented as it passes through the ALU.

Usage: See below.

MICROINSTRUCTION:

oP SPECIAL MODIFIER STORE OPERAND
IMM CMLO s2 0208
BIT NO. 151411311211 [10| 9 | 8 716|543 211 0
S-bus
CONTENT 1 1 1 1 1 1 1 1 ojo0]| 0 1 0|00 0
OPERAND
Result BIT NO. 15|14 |13 |12 (11 (10| 9 | 8 716|543 211 0
Out of ALU
CONTENT oto0|j]0j 00|00 0 1 1 1 0 1 1 1 1

OPERAND Complemented

4-35

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - MODIFIER FIELD (CONT.)
HIGH Meaning: The 16 bits received by the S-bus consist of the following:
Bits 15 through 8 = Operand. (Refer to the information on word type Il Operand.)
Bits 7 through 0 = all ones.
The S-bus data is then passed through the ALU without modification.
Usage: See below.
MICROINSTRUCTION: -
or SPECIAL MODIFIER STORE OPERAND
IMM HIGH S5 2328
S-bus and BIT NO. 1514113 12|11 {10] 9|87 |6|85|ai3|2[1]0
Result Out
of ALU CONTENT |1 |OJoOo| 1|1 (o1]o| 1|1 1}r]1]1][1]n
OPERAND
LOW Meaning: The 16 bits received by the S-bus consist of the following:

Bits 15 through 8 = all ones.
Bits 7 through 0 = Operand. (Refer to the information on the word type || Operand.)

The S-bus data is then passed through the ALU without modification.

Usage: See below.

MICROINSTRUCTION:

OoP SPECIAL MODIFIER STORE OPERAND

IMM LOW S11 1118
S-bus and BIT NO. 15{14 (13|12 |11{10| 9 | 8 7|6 |5 | 4|3 2 |1 0
Result Out
of ALU CONTENT 1 1 1 1 1 1 1 1 0 1 0 011 0 0|1

OPERAND

4-36

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE Il - STORE FIELD

(All Store field micro-orders are the same as for word type |.)

WORD TYPE !l - OPERAND FIELD

The Operand (eight bits) must be an integer (used as a constant). The integer can be an octal or decimal
numbper within the following constraints:

a. The decimal number must be in the range 0 to 255.

b. The octal number must be in the range 0 to 377, followed by "B”.
Examples:

1178, 117, 198, 5, 10B

WORD TYPE Ill - BRANCH FIELD

JMP Meaning: Branch to the CM address specified in the Address field of word type 1l if the
condition in the Condition (and Branch Sense) field is met. If the Branch Sense field is blank
(RJS not specified), make the microbranch if the condition specified in the Condition field is
true. 1t RJS is specified in the Branch Sense field, make the microbranch if the condition
specified in the Condition field is false.

Usage: Used in conjunction with Special field micro-order CNDX for word type Ill to branchin
a microprogram if conditions are met as described in the Condition and Branch Sense fields.
For example:

BRANCH
BRANCH SPECIAL CONDITION SENSE ADDRESS

JMP CNDX AL1S +2
A microbranch will occur if bit 15 of the ALU output was set during execution of the last word
type | or Il microinstruction.

BRANCH
BRANCH SPECIAL CONDITION SENSE ADDRESS

JMP CNDX AL15 RJS ADDRESS

Here, a microbranch will occur if bit 15 of the ALU output was not set. If bit 15 was set, the next
sequential microinstruction will be executed (no microbranch takes place).

JSB Meaning: Perform a branch to the CM address specified in the Address field of word type Il if
the condition in the Condition (and Branch Sense) field is met. If RIS is not specified in the
Branch Sense field, the microbranch will be made if the condition specified in the Condition
field is true. If RJS is specified, the microbranch will be made if the condition is false. If the
branch is made, the current microinstruction address plus one is pushed onto the Save Stack
to be used as the return address.

Usage: Three levels of microsubroutine branches can be made.

4-37

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - BRANCH FIELD (CONT.)

RTN Meaning: Branch to a return address; i.e., branch by “popping” the Save Stack into the
CMAR using the address in the Save Stack. Note that there are three levels of microsubroutine
branches (JSB's) so there can be three levels of RTN.

Usage: For word type lll, CNDX is always specified in the Special field and the “pop”

operation is made only if the state in the Condition and Branch Sense fields is met. Otherwise,

the next microinstruction is executed.

Also of interest may be the discussions of JSB for word types | and Il and special considera-

tions about returns when the word type | Special field mnemonics ASG and SRG2 are used.
WORD TYPE Il - SPECIAL FIELD

CNDX Meaning: This Special field micro-order specifies word type Ill - conditional branches and
returns.

Usage: Used in conjunction with JMP, JSB, or RTN in the Branch field.
WORD TYPE IIl - CONDITION FIELD

ALZ Meaning: The ALU output was equal to zero as a result of the last word type | or |l
microinstruction execution.

ALO Meaning: Bit zero of the last output from the ALU was set by the last word type | or Il
microinstruction execution.

AL15 Meaning: Bit 15 of the last output from the ALU was set by the last word type | or Il
microinstruction execution.

CNT4 Meaning: The last four bits of the counter are zeros.

CNT8 Meaning: All eight bits of the counter (lower byte of the IR) are zeros.

CouTt Meaning: The ALU Carry Out flag bit was set by the last ALU operation in the last word type |
or Il microinstruction execution.

E Meaning: The Extend (E) register bit is set.

FLAG Meaning: The CPU flag bit is set.

HOI Meaning: The Operator Panel RUN/HALT switch is not set to RUN or there is an interrupt
pending (i.e., halt-or-interrupt).

Usage: This micro-order is used to check for interrupts. Use is necessary because micro-
programs cannot be interrupted unless a check for interrupts is made. Refer to section 7 for
considerations in using HOI.

IR8 Meaning: Bit 8 of the IR is set.

IR11 Meaning: Bit 11 of the IR is set.

LO Meaning: Bit zero of the L-register is set.

L15 Meaning: Bit 15 of the L-register is set.

4-38

Table 4-1. Micro-Order Definitions (Continued)

Formats

MICRO-
ORDER DEFINITION
WORD TYPE Iil - CONDITION FIELD (CONT.)
MPP Meaning: Test for a signal MPP (use to be defined by the user) received at the MPP.
Usage: Used in conjunction with the MPP1 and MPP2 Special field micro-orders and with
MPPA and MPPB Store and S-bus field micor-orders of word type | microinstructions. Refer to
the HP 21MX M-Series and E-Series Computers I/O Interfacing Guide for further information.
Example microprogram use will be found in section 13 of this manual.
MRG Meaning: A Memory Reference Group instruction is in the IR; i.e., IR bits 14, 13, and 12 are
not all zero.
NDEC Meaning: The Operator Panel DEC M/m pushbutton is not actuated.
NINC Meaning: The Operator Panel INC M/m pushbutton is not actuated.
NINT Meaning: An interrupt is not pending.
NLDR Meaning: The Operator Panel IBUTEST pushbution is not actuated.
NLT Meaning: The Operator Panel Register Select (left) pushbutton is not actuated.
NMDE Meaning: The Operator Panel MODE pushbutton is not actuated.
NMLS Meaning: Memory was not lost as a result of the last power down or power failure.
NRT Meaning: The Operator Panel Register Select (right) pushbutton is not actuated.
NSFP Meaning: A standard Operator Panel is not installed on the computer.
NSNG Meaning: The Operator Panel INSTR STEP pushbutton is not actuated.
NSTB Meaning: None of the following Operator Panel pushbuttons are actuated:
INSTR STEP
Register Select right (—)
Register Select left (<)
MODE
IBL/TEST
INC M/m
DEC M/m
STORE
RUN
PRESET
NSTR Meaning: The Operator Panel STORE pushbutton is not actuated.
ONES Meaning: All 16 bits of the last output from the ALU were set (tested before the Rotate/Shifter)
as a result of the last word type | or I microinstruction execution.
OVFL Meaning: The Overflow register bit is set.
RUN Meaning: The computer's Run flip-flop is set.

Change 1

4-39

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Iil - CONDITION FIELD (CONT.)
RUNE Meaning: The Operator Panel key operated switch is in the OPERATE position.
NOTE
In LOCK position, the RUN and HALT switches are disabled. Microroutine
will nat be executing while switch is in the R or STANDBY positions.

SKPF Meaning: The I/O signal SFS is present (I/O time is T3 to T5) and the addressed /O device
flag is set; or, the /O signal SFC is present ()/O time is T3to T5) and the addressed I/O device
flag is clear.

Usage: Refer to section 7 for information on /O microprogramming considerations for use of
the SKPF micro-order.
WORD TYPE Ill - BRANCH SENSE FIELD
RJS Meaning: Perform the branch or return specified in the Branch field if the condition specified

in the Condition field is not met. The Condition field micro-order specifies the condition under
which a branch or return can take place; the RJS micro-order in effect reverses the sense of
the condition. For example, if a conditional branch is specified if the Flag bit is set (jump if Flag
bit set), the RJS micro-order will reverse the condition so that the branch occurs if the Flag bit
is not set.

If the Branch Sense field is blank (NOP), the condition sense is not reversed (i.e., is the same
as described in each of the Condition field micro-orders).

4-40

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE HI - ADDRESS FIELD

A branch may be made to any address in the current or next 512,, word control memory block for word type ll1.
The entry for the microassembler format can be an octal, decimal, or a computed address.

A decimal address (d) must be in the range 0to 511. An octal address (kB) must be in the range 0B to 7778,
where the "B" signifies octal. If the word type Ill is located in the last address in a 512, word block (i.e., address
is xx777,), the range is defined as the next 512,, word block. A computed address which is within the decimal or
octal range must be in one of the following forms:

+d
*—d
LABEL +d
LABEL —d
“+kB
*—kB
LABEL +kB
LABEL —kB
LABEL
where:
* means “this address”.
d means a decimal number.
Kk means an octal number (followed by B).

LABEL means a microinstruction or pseudo-instruction label that is defined elsewhere in the microprogram.

Examples:
BRANCH

BRANCH SPECIAL CONDITION SENSE ADDRESS
JMP CNDX NSNG +2
JMP CNDX FLAG —4
JsSB CNDX CNT4 RJS FETCH +1
JSB CNDX IR8 TIME -4
JMP CNDX IR11 RJS *+7B
JMP CNDX LO “~2B
JMP CNDX ALZ LOOP
RTN CNDX ALZ RJS

NOTE

When RTN is encoded in the Branch field, no address should be encoded.
The address in the Save Stack is used 1o load the CMAR.

Except as noted above, the target address of the branch must be within the current 1000 octal (512 decimal}
locations (two modules). The complete absolute address must be specified. For example, if a conditional branch

microinstruction is within CM addresses 03000 and 03777, no target address may be outside the range 03000 to
03777.

Refer to section 6 for additional information on CM addressing. Refer to section 8 for information on using the
RTE Microassembly language.

4-41

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

JMP

WORD TYPE IV - BRANCH FIELD

JSB

Mganing: Branch unconditiona
micro-order)
CM.

lly to the address (

m . . L
Spocified I the Achoa oot e ay be modified by a Modifier/Special field

address may be anywhere in the 16K word

Usage: Refer to the Modifier/Special field micro-orders and the Address field discussions

Meaning: Branch unconditionall [i
ni . y 1o the microsubroutine locate
modified by a Modifier/Special field micro-order)

d at the CM address (may be
address is stored on top of the Save St

C I et

Usage: Refer to information in the wo

. rd type Il Branch fi ipti
ATN microeardr mon 1 " leld JSB description. Also refer to the

word type | Special field for additional information.

WORD TYPE IV - MODIFIER/SPECIAL FIELD

IOFF

Meaning: Turn off the Interrupt Enable flag to disable reco

not disable power fail Mem gnition of normal interrupts. (Does

ory Protect, or parity interrupts.)

Usage: Nomodifieation '
a Wgrd t mOdlf‘lCat‘lon N made (0the microbranch address when this micro-order is used in
. ype IV mluomstlructllon. After three occurrences of INC, IAK, or FTCH in the Special
field of a word type | microinstruction. interrupts are again recognized if Memory Protect is
installed. IOFF should be used with caution since holding off interrupts could cause the loss of
input or output data. Refer to section 7 for interrupt handling.

10G

Meaning: Freeze the CPU until time period T2. Then enable the generation of VO timing
signals dependent upon the instruction in the IR. Perform the JMP or JSB in the word type IV
Branch field while modifying the fourth and third bits (bits 8 and 7, figure 4-2) of the Address
field (according to the I/Q instruction jump table) for the final address. Bits 8, 7, and 6 of the IR
determine the microbranch address modification as follows:

ASSEMBLY IR ADDRESS FIELD
LANGUAGE BITS BITS 8 AND 7
INSTRUCTION IN IR _8,—7,_6_ _riE_PL—ACEEY_
MIA or MIB 100 00
LIA or LIB 101 01
OTA or OTB 110 10
HLT 000 11
CLO or CLF 001 11
STO or STF 001 11
SFC or SOC 010 11
SFS or SOS 011 11
STC or CLC 111 1

Usage: 10G can also be used in the Special field of word type |, but there is no microbranch

address modification since the JMP or JSB is not present. Familiarity with the /O system is

mandatory to properly use this micro-order. Refer to section 7 for more information about
forming and executing 1/O microinstructions.

4-42

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE IV - MODIFIER/SPECIAL FIELD (CONT.)

[ON Meaning: Turn the Interrupt Enable flag on and allow the CPU to recognize standard device
interrupts until the micro-order IOFF is executed. Modify the first and second bits (bits 6 and 5,
figure 4-2) of the Address field two least significant bits according to bits 1 and 0 of the IR (i.e.,
IR bits 1 and 0 replace bits 6 and 5 in the Address field).

Usage: An interrupt from any /O device can be detected in two ways:

a. IfaJTAB is executed and an interrupt is pending or the Run flip-flop is clear, execution is
forced to location 6 in CM.

b. A test for interrupt pending or Run flip-flop clear can be performed by the executing
microprogram by having an HO! encoded in the Condition field of a word type 1l
microinstruction. Or, atest for interrupt pending can be made by having NINT encoded in
the Condition field. The micro-order ION allows interrupts to be recognized. However,
interrupts are not generated by the interrupt system unless a STF 0 /O control command
has been executed. Refer to the discussion of the interrupt system in the HP 2TMX
E-Series Computer Reference Manual. Refer to section 7 for considerations for interrupt
handling.

J74 Meaning: Maodify the four least significant bits of the Address field (bits 8, 7, 6 and 5, figure
4-2) with bits 7 through 4 of the IR; i.e., IR bits 7 through 4 replace bits 8 through 5 in the
microbranch Address field to determine the actual JMP or JSB address.

NOP Meaning: No operation. This is the default operation if no other micro-order is specified in the
Special field for word type IV. No modification is made to the JMP or JSB address.

RJ30 Meaning: Modify the four least significant bits of the Address field (bits 8, 7, 6 and 5, figure
4-2) with bits 3 through 0 of the R and begin a READ operation of main memory; i.e., IR bits 3
through O replace bits 8 through 5 in the branch Address field to determine the actual JMP or
JSB address. The READ operation is the same as described for the word type | OP field.

Usage: Refer to the word type 1 OP field READ micro-order definition for M-register
considerations.

RPT Meaning: Repeat the next microinstruction for the number of times specified by the positive

number in the least significant four bits of the (IR) counter. No modification to the microbranch
Address field is made.

Usage: Same as for the word type | and Il Special field RPT micro-order.

STFL Meaning: Set the CPU flag and then perform the JMP or JSB to the address specified in the
Address field. No modification is made to the address.

4-43

wvnucH DEFINITION

WORD TYPE IV - ADDRESS FIELD

A branch may be made to any address in CM. The entry for the microassembler format can be an octal, decimal,
or computed address. Same as requirements for the Address field in word type Il

A decimal address (d) must be in the range 0 to 16383. An octal address (kB) must be in the range 0B to

377778, where the "B" signifies octal. A camputed address which is within the decimal or octal range must be in
one of the foliowing forms:

+d

+-d
LABEL +d
LABEL —-d
"+ kB

*—~kB
LABEL +kB
LABEL ~kB

LABEL

Where:
' means “this address”.
d means a decimal number.
k means an octal number (followed by B).
LABEL means & microinstruction or pseudo-instruction label that is defined elsewhere in the microprogram.
Examples:
MODIFIER/ ADDRESS
NO ENTRY) ADDRESS
BRANCH SPECIAL (NO ENTRY) (NO ENTHY)
- +11
JSB OFF FETCH
IMP

(Refer to the word type ill Address field examples.)

S t a
C on o add S Hee to sectlo 8 f() O on o e

RTE Microassembly language.

4-44

Section 5
TIMING CONSIDERATIONS TN

TIMING CONSIDERATIONS

Certain details about computer timing must be considered for microprogramming applications so that
you can:

e Intelligently and effectively make the most use of computer time when you execute your
microprograms.

e Synchronize microinstructions properly for the operations that you wish to perform with your
microprograms.

The information you need about the computer’s timing to effectively microprogram can be categorized
into four areas:

e Basic definitions of the time periods and an idea of the functions involved in timing.

o Conditions that can vary the speed of execution of your microprograms.

¢ How to estimate execution time for an individual microcycle and for an I/O cycle.

¢ How to determine the overall effect of combined timing factors on an executing microprogram.
This section will provide you with all the basic computer timing information that you will need for
microprogramming. Section 7 provides additional information on considerations involved in combin-
ing micro-orders and microinstructions for synchronizing various operations. The subject of timing

involves many aspects of computer operation but the discussions in this manual will be limited to
timing only as it relates to your user microprogramming.

5-1. COMPUTER SECTIONS INVOLVED IN TIMING

There are three parts or “functions” of the computer that must be considered when
microprogramming:

¢ The Control Processor and Arithmetic Logic section.

¢ The Main Memory section.

o The I/O section.

Each of these “functions” essentially operates asynchronously until they are required to communicate
in order to perform a “unit” task such as a main memory read or write operation, or some 1/0
operation.

In normal operation, the Control Processor and Arithmetic Logic section can operate at the fastest rate

of any of the functions in the computer. Main memory is the next slowest and the I/O section
(understandably) requires the longest cycle time.

5-1

Timing

Some operations involving main memory take some additional time if certain accessories (DMS or
DCPC) are installed. The timing factor for DMS will be discussed in this section but, for the micro-
programming application, DCPC operation can only be estimated as taking a percentage of overall
microprogram execution time. Section 13 provides some guidelines on calculations when considering
DCPC. There is an internal main memory operation (refresh) that can be calculated by taking a
percentage of overall microprogram execution time; this is also discussed in section 13. In the timing
calculations in this section, these “unpredictable” factors (DCPC and memory refresh) will be consi-
dered transparent for user microprogramming applications.

5-2. REVIEW AND EXPANSION OF TIMING DEFINITIONS AND
TERMS

Recall from the section 2 timing definitions that the Control Processor executes one microinstruction
during one microcycle. The microcycle (also designated a T-period) is the time required to completely
execute the microinstruction (which is composed of up to five micro-orders). In order to sequentially
execute the micro-orders in the various fields of any particular microinstruction, it can be seen that
another timing interval is needed. In figure 5-1 you will see that each microcycle is partitioned into a
number of intervals designated P1 through P5 and also, for reasons which will be discussed shortly,

ONE COMPLETE I/O CYCLE
r A~ ™
ONE T-PERIOD OR MICROCYCLE
—_—— ’_’H
T3 T4 T5 T6 T2 T3 T4 TS T6 T2 T3 ETC
L | 1 [| | [| L [i |}
4 I 1 T 1 T 1 1 1 [
ANY ANY
T-PERIOD T-PERIOD
CAN BE CAN BE
COMPOSED OF OR COMPOSED OF
P-INTERVALS P-INTERVALS
AND E-INTERVALS
4 PI P2 P3
LP1JP2JPSIP s l | 11 N
] T] T T 1 P T S T L T 1 | 1
A P-INTERVAL |
l‘— 35NS EACH AN E-INTERVAL
35NS EACH fe—
175N§ ———
105NS
N J
v
f@——— 280NS
A SHORT MICROCYCLE
(USUALLY USED FOR
ARITHMETIC AND LOGIC . — 9
OPERATIONS)
A LONG MICROCYCLE
(ALWAYS USED IN 1/O
OPERATIONS FROM T3
THROUGH T5).

7115-13 o N
Figure 5-1. Basic Timing Definitions

5-2

Timing

that intervals designated E1 through E3 also exist. Each E- or P-interval is always 35 nanoseconds
long. One exception, which will be discussed shortly, is when a pause condition exists. A crystal-
controlled (28.5 MHz) oscillator and timing circuits generate the 35-nanosecond intervals which are
the basic “building blocks” for making up the microcycles.

Figure 5-1 also shows that any Input/Output (I/O) timing cycle is composed of five microcycles
(T-periods T2 through T6). An I/O cycle is the time required to generate all the /O signals necessary to
execute any particular [/O instruction. All VO signals and their respective generation times are
described in the HP 2I1MX/21MX E-Series Computer I/O Interfacing Guide, part no. 02109-90006.

T-periods are initiated at the start of a P1 interval. Note in figure 5-1 that the length of a microcycle
can vary. That is, a T-period can be either 175 nanoseconds long, or E-intervals can be inserted to
extend the T-period to 280 nanoseconds. These variations and some other variable timing factors are
discussed in the next paragraph.

5-3. TIMING VARIABLES

There are essentially three variable factors to consider in computer timing. They are the:

¢ Short or long microcycle.
¢ Pause.

¢ Timing freeze.

Each of these factors is discussed in the following paragraphs.

5-4. SHORT/LONG MICROCYCLES

As seen in figure 5-1, a short microcycle consists of five 35-nanosecond intervals that run in sequence
from P1 through P5. The long microcycle consists of eight 35-nanosecond intervals that always run in
the sequence P1, P2, P3, E1, E2, E3, P4, and P5. The Arithmetic/Logic section in the computer is
designed to operate with a 175-nanosecond microcycle. There are three reasons for the Control
Processor timing circuits to switch to long (eight 35-nanosecond intervals) microcycles:

¢ Certain I/O interfaces may not be able to accommodate a T-period of less than 196 nanoseconds
during execution of an I/O instruction. Therefore, if an I/O operation is indicated, long microcycles
are always generated from T3 through T5.

¢ The Memory Expansion Module (MEM), which is part of the DMS, is unable to gate data onto the
S-bus fast enough when a 175-nanosecond microcycle is used. Therefore, if an MEU micro-order is
in the S-bus field of a microinstruction, a long microcycle will be generated.

® The Microinstruction Register (MIR) is clocked at the beginning of each microcycle (P1) and the
Control Memory Address Register (CMAR) is conditionally loaded at P3 of each microcycle. If a
microbranch microinstruction is to be executed, only two P intervals, P4 and P5 (70 nanoseconds),
would be left in a short microcycle to access control memory (CM) and reload the CMAR with the
address of the new microinstruction then carry out the tasks normally associated with P4 and P5.

5-3

Timing

This would not be enough time to correctly reload the CMAR and access CM since CM has a
worst-case access time of approximately 140 nanoseconds.* Therefore, if a microbranch is to be
made, long microcycles are generated and the three extra 35-nanosecond times are added after P3
to allow enough time to complete the microbranch. A conditional microbranch microinstruction
with the branch condition not met, will leave the Control Processor in the short microcycle mode.

Most microcycles will be short but a change to long microcycle timing could occur, based on prevailing
conditions, during P3 of every microcycle. That is, the conditions that determine a switch to long
microcycles are monitored at every P3. So, as could be expected, a great deal of microprogrammed
condition testing, /0, or DMS activity involving the S-bus will make the computer run slower.

5-5. PAUSE

As mentioned in a general way in paragraph 5-1, main memory and the Control Processor operate
asynchronously until they must communicate (in a “handshaking” manner) to accomplish read or
write operations. The “pause” in microcycle timing is used to interact with an asynchronous memory
interface. This feature permits greater performance with existing systems and compatibility with
various speed memories.

A pause operates in the following way. A read or write operation can be started with the appropriate
micro-order in any microcycle. Memory is then engaged in completing the operation under its own
timing (asynchronously). If the Control Processor, through another microinstruction, requests another
memory operation while memory is completing the first (or another) task, a conflict in timing occurs.
This possible conflict is monitored by the Control Processor at P3 of every microcycle before the
Control Processor actually makes the request for the use of main memory. If a conflict is detected (i.e.,
there is an attempt to use memory while it is busy), the Control Processor will go into the pause state
(suspend all timing clocks) until main memory is no longer busy.

A pause is accomplished by effectively having the timing circuits “latch-back” into P3 so that P3 is
repeated for the appropriate number of times until the pending request can be processed. Pause time,
therefore, will always be an integer multiple of 35 nanoseconds. At the end of the pause, the Control
Processor timing will progress to either P4 or E1 (the long microcycle) depending upon the short/long
microcycle conditions as discussed in paragraph 5-4.

When a memory operation has been started and memory is still busy, the conditions that can cause a
pause in a microcycle are:

® An attempt to begin another read or write operation; that is, having a READ or WRTE in the OP
field, or an RJ30 in the Special field of a microinstruction.

® An attempt to enable the T-register for storage from the S-bus (TAB in the Store field) or for
reading the contents of the T-register onto the S-bus (TAB in the S-bus field; e.g., to obtain the
results of a read operation).

e DCPC cycle in process or memory refresh operations but, as stated in paragraph 5-1, this will be
transparent for microprogramming.

*Base set CM access time is approximately 90 nanoseconds; Writeable Control Store (WCS) CM access
is about 132 nanoseconds; and Firmware Accessory Board (FAB) CM access takes the longest time
(approximately 140 nanoseconds).

5-4

Timing

Figure 5-2 shows four typical examples of microcycles with a pause. Figures 5-2A and 5-2B are both
short microcycles. Figures 5-2C and 5-2D are examples of long microcycles. Given specific state
information (memory cycle time, memory operation being performed, etc.), the length of the extended
P3 interval can be determined. Figure 5-2 shows these typical length pauses under both read and write
conditions. Paragraph 5-8 specifically covers these calculations.

5-6. FREEZE

The Control Processor and I/0 section operate asynchronously until an I/O instruction begins execu-
tion and communication is needed. That is, although T-periods run sequentially from T2 through T6,
and each T-period is initiated by P1 of any microcycle, I/O microinstructions must begin at the
appropriate part of an I/O cycle. The freeze condition therefore suspends microinstruction execution
(but continues T-period generation) until the “appropriate” T-period starts.

As far as microprogramming is concerned, a freeze exists to synchronize microinstruction execution
with T2 or T6. Again it should be noted that DCPC activity and some memory operations may also
cause freeze conditions, but these will not be considered here. For microprogramming purposes, the
two factors causing a freeze condition are:

® An I/O operation is to be performed (an IOG micro-order in the Special field of a microinstruction).
This will suspend all microinstruction execution until T2 starts. I/O type microinstructions can
then be executed properly in the appropriate T-periods (i.e., during T3 through the end of T5).

¢ An interrupt acknowledge operation is to be performed (an IAK micro-order in the Special field of

a microinstruction). This will suspend all microinstruction execution until T6 starts. During T6
the CIR is loaded and an IAK is generated.

The timing freeze can begin at the end of any microcycle. When I/O instructions are to be executed,
long microcycles will always exist from T3 through T5 (as mentioned in paragraph 5-4).

In summary, it should be noted that the two freeze conditions mentioned above are mutually exclusive.
Only one freeze can be initiated per microcycle, but a freeze condition may exist for several microcy-
cles. In other words, if the Control Processor is not at the beginning of a T2 when an IOG micro-order is
decoded, there will be a freeze until the start of the next T2; if the Control Processor is not at the

beginning of a T6 when an IAK micro-order is decoded, there will be a freeze until the start of the next
T6.

5-5

Timing

SOME OP OR SPECIAL FIELD OPERATION DATA
S-BUS / THAT WiLL NOT CAUSE LONG MICROCYCLE STARTS. DESTINATION
ENABLED REGISTER CLOCKED.
~— e . —
A.P11P21P3|P31P31 | | JAT[[| | P3 | P4 | P5 |
[[| | [| | - [| | | T [
e - y}
PAUSE TIME

Bl 560NS -

m
lw)

A TYPICAL SHORT MICROCYCLE WITH A PAUSE DUE TO A READ OPERATION UNDERWAY (E.G., READ ENCOD
IN PREVIOUS MICROINSTRUCTION WITH A TAB IN S-BUS FIELD OF THIS MICROINSTRUCTION).

€ >
A L L T a0 N R T B T T T R B ML W
1 1 Tt T 1 17 1 1 T T T]
F’A@ETlME
595NS -

ATYPICAL SHORT MICROCYCLE WITH A PAUSE DUE TO A WRITE OPERATION UNDERWAY (E.G., WRTE ENCODED
IN PREVIOUS MICROINSTRUCTION WITH ANOTHER WRITE ATTEMPTED IMMEDIATELY IN THIS MICROINSTRUC-

TION).

AN OPERATION STARTS THAT

WILL CAUSE A LONG MICROCYCLE ~~——» 105NS ADDED

r N —

CP1[P21P3|PBJ | 14} 51 | 'IP31E11E21E3|P41P5
: | | | T | | - | 1 |] |]] |

N ~ J

PAUSE TIME

- 665NS P

ATYPICAL LONG MICROCYCLE WITH A PAUSE DUE TO A READ OPERATION UNDERWAY (E.G., READ ENCODED IN
PREVIOUS MICROINSTRUCTION WITH A TAB IN S-BUS FIELD AND RTN IN SPECIAL FIELD OF THIS MICRO-

INSTRUCTION).
DP1|P21P3|P31 | L) | | | P3 | E1 [E2 | E3 ; P4 | P5
.]] | | | - |] | 1]
— ~— J
PAUSE TIME
- 700NS >

A TYPICAL LONG MICROCYCLE WITH A PAUSE DUE TO A WRITE OPERATION UNDERWAY (E.G., WRTE ENCODED
IN PREVIOUS MICROINSTRUCTION WITH READ, RTN ENCODED IN THIS MICROINSTRUCTION).

NOTE: MEMORY READ AND WRITE TIME EXAMPLES ARE FOR ONE TYPE
OF COMPUTER WITH A SPECIFIC MEMORY. FOR ACTUAL MEMORY
CYCLE TIMES REFER TO YOUR COMPUTER DOCUMENTATION.

7115-14
Figure 5-2. Variable Microcycles with Pause Conditions

5-6

Timing
5-7. OVERALL TIMING

Figure 5-3 shows the sequence of timing events occurring in any given microcycle, which always starts
at P1. The decision of whether or not to freeze is made at the end of the microcycle. The decision to
pause or not to pause and whether or not to go to long microcycles is made in P3. It can be seen that if
all three variable timing conditions are to be considered, the pause comes before the effect of long/short
microcycles and a freeze will occur after the effect of either a pause or long/short microcycle.

ADVANCE T- - — —
PERIOD: START
T2, T3, T4, Ts,
OR T6.
START
P1
INTERVAL.
NO
T2 OR T6 YES e}
STARTING FREEZE
? ?
Y
GO THRU FREEZE
P2 FOR
INTERVAL. ONE
T-PERIOD. L
-
T-PERIODS
GO ON BUT
NO OTHER
ACTIVITY.
START
P3
INTERVAL.
COMPLETE
P4 AND P5
INTERVALS.
SEE FIGURE
__] saT0
DETERMINE
PAUSE.

I
SEE FIGURE
5-4 TO
DETERMINE ——
SHORT/LONG.

[

LONG

NO
MICROCYCLE
?

COMPLETE
E1, E2 AND
E3 INTERVALS.

7115-15

Figure 5-3. Overall Microcyele Timing Flowchart

Timing

Freeze or pause conditions prevail whenever communication is required between the Control Pro-
cessor and the I/O section or the Main Memory section. That is, a freeze occurs to synchronize the
Control Processor with the I/O section (an I0G or IAK Special field micro-order decoded). A pause
occurs to suspend Control Processor operations and wait for main memory if an attempt is made to use
main memory while it is still busy. If you do not attempt to use main memory while it is busy (i.e., use
a READ, WRTE, RJ30, or TAB micro-order in any microinstruction), you may continue Control
Processor operation. In other words, you can continue to execute microinstructions between memory
operations if the above-mentioned micro-orders are not executed.

Long microcycles prevail whenever additional time is required to complete a task in a microcycle, such
as for I/O operations. Also, lono microcycles prevail whenever control memory branches are to be
made.

Figure 5-4 may be used in conjunction with figure 5-3 as a quick reference for estimating the time
taken to complete a microcycle. Detailed calculations for typical microinstruction and microprogram
execution times are discussed in paragraph 5-8.

When one or both DCPC channels are busy, the Control Processor is effectively in a freeze condition.
This is why DCPC operations are considered transparent to the microprogrammer. Careful analysis of
the processes you wish to accomplish with microprogramming, with the timing factors kept in mind,
will provide maximum performance gain.

5-8. TIMING CALCULATIONS

The flowchart illustrated in figure 5-5 can be used to calculate the execution time for individual
microcycles and also for estimating overall microprogram execution time. The flowchart is to be read
from left to right once for each microcycle. To estimate the execution time for a microroutine,
repetitive cycles through the flowchart must be made, noting times and remembering conditions
encountered during earlier microcycles.

All conditions that change timing (for user microprograms) during any microcycle are shown in figure
5-5 along with times (in nanoseconds) that should be summed while proceeding through the micro-
cycle. Specific micro-orders determine timing changes. Therefore, all calculations described in this
section are made by comparing micro-orders against the chart. The examples that follow consider
events as they occur through a microcycle with increasing complexity of timing calculations.

5-8

Timing

T-175 _
PAUSE = 0
_— SEE NOTE 1
DOES THIS
MICROINSTRUC-
TION CONTAIN A
READ OR WRTE
MICRO-ORDER?
DOES THIS
MICROINSTRUC-
IS THE SUM (R) OF E%Nwﬁggg“'“ A 1S THE SUM (S) OF
ALL MICROCYCLE - ALL MICROCYCLE
TIMES BEFORE QADER IN THE TIMES
S-BUS FIELD?
THIS MICRO- ' BEFORE THIS
CYCLE, BUT MICROCYCLE,
AFTER THE LAST BUT AFTER THE
MICROCYCLE YES LAST MICRO-
CONTAINING A CYCLE CONTAIN-
READ MICRO- ING A READ OR
ORDER, PLUS WRTE MICRO-
175NS, GREATER ORDER, PLUS
THAN THE MAIN 175NS GREATER
MEMORY READ THAN THE CYCLE
CYCLE-TIME? TIME OF THE
(R+T > M? SEE LAST INITIATED
NOTE 2)) MAIN MEMORY
CYCLE?
PAUSE EQUALS (S + T> M? SEE
MEMORY CYCLE NOTE 2.)
TIME MINUS
SUM.
s s oSO —
PREVIOUSLY EXE-
TIME MINUS g
SUM . CUTED MICRO-
: INSTRUCTIONS
CONTAIN AN 10G
IN THE SPECIAL
FIELD?
DOES THIS
MICROINSTRUC-
TION HAVE AN
MEU IN THE
SPECIAL FIELD?
WILL THIS
MICROINSTRUC-
TION CAUSE A
BRANCH?
(RTN, JMP, JSB)
BRANCH
2
MAKE T =
280
MICRO CYCLE
TIME 1S NOTES:
PAUSE + T 1. TIMES ARE [N NANOSECONDS.
2. THIS EXAMPLE IS TYPICAL FOR ONE TYPE OF COMPUTER
WITH A SPECIFIC MEMORY, I.E., 2102B. FOR ACTUAL MEMORY
CYCLE TIMES REFER TO YOUR COMPUTER DOCUMENTATION.
TYPICAL MEMORY CYCLE TIMES USED (M, ABOVE) WITHOUT
DMS ARE:
READ = 560 NS
WRITE = 595 NS
WITH DMS: APPROX. 630 NS FOR READ OR WRITE.
7115-16

Figure 5-4. Consolidated Microcycle Estimating Flowchart

5-9

Timing

5-9. ARITHMETIC/LOGIC SECTION OPERATIONS

The fastest microcycle timing is found when microprogrammed operations deal with the Arithmetic/
Logic section registers. For example, suppose the timing for the following portion of a microroutine is
to be estimated:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
FIRST STFL CMPS B B
SECOND CMPS A A
THIRD INC A A
i ETC.?

Read figure 5-5 from left to right with the first microinstruction in mind. The total time for the first
two intervals (P1 + P2) is 70 nanoseconds. The Special field in the first microinstruction does not
contain an RJ30 and the OP field does not contain a READ or WRTE. Also, the S-bus field does not
contain TAB. Thus, in following the timing line into P3, note that no pause condition exists.

Continuing in P3, since an I/O operation is not being performed, you will not be concerned about the
T-period in existence. The answer here will follow the decision line labeled “unknown” and assume
here no IOG in the Special field within the last three microinstructions. Also, a microbranch will not
occur since there is no MEU in the S-bus field of this microinstruction and no JSB, JMP, or RTN
micro-orders coded. With conditions as they are, the Control Processor timing circuits will not switch
to a long microcycle. Following the timing line in figure 5-5 through the end of P3, time in this
microcycle thus far is 105 nanoseconds. Intervals P4 through P5 are executed immediately making the
total time for execution of the microinstruction labeled FIRST = 175 nanoseconds. Recall that it was
assumed that no freeze conditions are in effect for this example, thus the timing line can be followed
back to the beginning of P1.

Microinstructions SECOND and THIRD are executed in a similar manner (check the microroutine
using the flowchart). The total time for this microroutine is 525 nanoseconds.

5-10

Timing

I0G

IN SPECIAL

FIELD
?

"— FREEZE DETERMINATION

I1AK

IN SPECIAL

FIELD
”?

YES
SEE NOTE 2.

SEE NOTE 2.

FREEZE ONE
MICROCYCLE
“— (ADD175NS).
ADVANCE

T-COUNTER.

FREEZE ON
MICROCYCLE
(ADD 175NS).
ADVANCE
T-COUNTER.

A PERCENTAGE OF
" THE ESTIMATE AS

]

Figure 5-5. Detailed Microcycle Time
Determination Flowchart

5-11/5-12

#i COMPLETE MICROCYCLE ———3

g~ ——————————— b ———35NS - ——%f ——-35NS ——3
BEGIN BEGIN
INTERVAL. INTERVAL.
DOES THIS
MICROINSTRUC-
TION CONTAIN AN
UNCONDITIONAL
5 ORSATISFIED
CONDITIONAL
‘é'\m' ‘#A?CBh%F_‘ SUMOF ALL AP-
\NCH _| R MIcRO- PROPRIATE TIMES
A IS TIME FOR ONE
' MICROCYCLE.
) LONG
——— P MICROCYCLE —
INSERT THREE
35NS INTERVALS
DESIGNATED
E1, E2, E3.

NOTES:

1. CONDITIONAL MICROBRANCHES NOT MET MAY BE DIFFICULT TO DETERMINE. ASSUME
BRANCHES MET BASED ON YOUR APPLICATION.
2. TO DETERMINE WHICH T-PERIOD IS PRESENT WHEN BEGINNING AN |/O CYCLE TREA1
RANDOM.

7115-17

>|ﬁ LONG/SHORT DETERMINATION

- IF LONG MICROCYCLE, ADD 105\

YES
OR
UNKNOWN

WAS I0G
IN SPECIAL

FIELD AT T2
?

IOG INSPECIAL
FIELD MUST HAVE
BEENWITHIN
LAST THREE
MICROINSTRUC-
TIONS. 10G
CAUSES SYN-
CHRONIZATION
WITHSTART OF
T2 PERIOD. AND
GENERATES LONG
MICROCYCLES
FROMSTART OF

VIE T3TOEND OF
AND T5.

ISTRUC-
ECUTION.

— PAUSE DETERMINATION

LY. IF PAUSE, 35NS + PAUSE TIME + ANY DMS TME ——————————

TAB IN S-BUS
FIELD OF THIS
MICROINSTRUC-

TION?

SEE FIGURE 5-6
TODETERMINE.

PAUSE CONDITION

STOPMICRO-
INSTRUCTION
EXECUTION AND
T-PERIOD
GENERATION.

SEE FIGURE 5-6
TOCALCULATE
PAUSE LENGTH.
ITWILLBE MULTI-
PLES OF 35NS.

PAUSE
TERMINATED
?

RE 5-6
IMINE.

NO
7'}
LAST
MEMORY CYCLE N YES
COMPLETE
?
NO
DMS ADD 35NS TO RESU!
INSTALLED WRITE PAUSE TIMING
ANDENABLED TIME OR 70NS MICROIM
? TO READ. TIONEX

|_— START MICROCYCLE TIMING >|L
| I I
F——3NS-————-3NS - —— P ———————— ———-
| I
BEGIN P1 | |
INTERVAL. ol BEGIN P2 1 BEGIN P3
—> ADVANCE T INTERVAL. T INTERVAL.
T-COUNTER.
READ, WRTE IN
OPFIELD, RJ30IN
ADVANCE TO SPECIALFIELD OF
NEXT T-PERIOD. THISMICROIN-
STARTS T2, T3, T4, STRUCTION. A
T5,0RT6. TIMES WRTE MUST HAVE
MEMORY RE- FIELD
FRESHACTIVITY STORE FIELD.
ARE IGNORED. IF
ACTIVE, CALCU-
LATEASAPER- SEE FIGURE
CENTAGEOF 5-6 TO _
OVERALL MICRO- DETERMINE. r
PROGRAM EXE-
CUTION TIME.

LAST
MEMORY
CYCLE
COMPLETE
?

SEE FIGU

TODETE}

Timing

5-10. CONTROL MEMORY BRANCHES

The switch to long microcycles is made in P3 when any of the three conditions shown in figure 5-5 can
be answered affirmatively. For example, consider a control memory branch condition shown in the
following portion of a microroutine. In this example the microcycle times are included in the right-
hand column.

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
TIME C(NS)
CIF BRANCH MET) CIF NOT MET)
START ADD L 53 175 175
ONE JSB CNDX LI5S CLEAR 280 175
TWO INC S3 L 175
THREE RTN CLFL A s3 280
CLEAR IMM RTN CMHI L 3778 280
735 NS 805 NS
CETC.)

By using figure 5-5 and checking the microroutine, it can be seen that the JSB and RTN micro-orders
in the microinstructions labeled ONE, THREE, and CLEAR can cause long microcycles.

5-11. 1/O OPERATIONS

Suppose the T-period is T4 and the Control Processor has just placed the first microinstruction of your
microroutine in the MIR. Suppose further that part of the microroutine is as follows (note the time
column):

ALU/
OP/ MOD/ S-BUS/ _
LABEL BRCH SPCL COND STR ADDRESS COMMENTS Computer
Museum: .4
* TIME (NS) C
XXX 10G IRCM S4 T4 175
* \ ¥ ' T5 175
* (SUSPENDED EXECUTION UNTIL T2) Te 175
* (NOW EXECUTION CONTINUES) T2 175
NOP T3 280
NOP T4 280
S5 101 TS 280
INC S8 S3 Te 175
T2
(ETC.)D

Change 1 5-13

Timing

The microinstruction at label XXX includes micro-orders in the S-bus and Store fields as well as the
I0G micro-order in the Special field. As P1 and P2 occur, the S-bus and Store field micro-orders will be
executed but the effect of the IOG in the Special field is not felt until the end of the microcycle. Also, (in
following the timing line in figure 5-5) note that the freeze condition is not in effect until the
microinstruction labeled XXX completes execution. At the end of the microcycle, the IOG micro-order
causes all microinstruction execution to be suspended until T2 completes. The total waiting time in the
freeze condition in this case is 525 nanoseconds. Note that with a freeze condition present, T-periods
will be short microcycles until synchronization occurs. Time T3 starts the I/O cycle and each mi-
croinstruction is executed in the appropriate long microcycle (T-period). If T6 is short (as shown in the
example), the total time for the I/O cycle will be 1.120 microseconds. If T6 had been long (e.g., a RTN
coded), the total time for the I/O cycle would be 1.225 microseconds. This example microroutine is used
only to illustrate the freeze until T2 starts. Section 7 provides appropriate microprogramming consid-
erations. An TAK micro-order in the Special field can cause a freeze until the start of T6. That is,
(follow the timing line in figure 5-5) at the end of the microcycle where an IAK Special field
micro-order has been included in the microinstruction just executed, a freeze will occur until the end of
T6. During the T6 period microcycle, the appropriate functions for the IAK micro-order will be
executed.

5-12. MAIN MEMORY OPERATIONS

Typical main memory cycle times for reading and writing differ. Therefore, calculations for read and
write operations are discussed separately. The example read and write times are for an HP 2102B
Memory.

5-13. READING FROM MEMORY. First consider a read from main memory with a TAB
micro-order in the S-bus field two microinstructions after the microinstruction containing the READ
micro-order. In the example microroutine below, assume no memory operation is in progress as the
microroutine begins at label START (assume you do not have the DMS installed. The letters shown in
the timing comments are keyed to the text explanation that follows this microroutine.

ALU/

OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
. TIME (NS)
START PASS 1 P 175 A
FIRST READ PASS DSPL S11 175 N
SECOND INC PNM P 1755
THIRD DEC X X 175<>B >560~—C
DATA PASS S2 TAB 210<—D Y
END RTN IRCM S2 280~—E

(ETC.)

5-14

Timing

Using figure 5-5 note that START executes in 175 nanoseconds. In FIRST (using figure 5-5), note that
although there is a READ in the OP field of this microinstruction (which begins a memory operation)
there is not a memory operation already in progress; thus, FIRST also executes in 175 nanoseconds.
Point A shows where the main memory read cycle timing starts (the request for memory is made at the
end of the microcycle). No delays occur for execution of the microinstructions labeled SECOND and
THIRD; they each execute in 175 nanoseconds as shown at point B, while main memory is still busy
executing the read request. (Note that these two microinstructions do not contain micro-orders that
would cause a freeze.)

Now the microinstruction labeled DATA begins to execute. Figure 5-5 shows that if there is a TAB in
the S-bus field while memory is busy, there will be a pause time added to the microcycle. Figure 5-6
can be used to calculate the time as follows. At the first decision point in the flowchart, no READ, or
WRTE, or RJ30 micro-order is encoded in this microinstruction. Entry is made at step I (figure 5-6
because there is a TAB micro-order encoded in the S-bus of the microinstruction under consideration.

In step I add the execution times for microinstructions labeled SECOND and THIRD which = 350
nanoseconds (point B). In step II the result = 525 nanoseconds. Since the last operation (in the
microinstruction labeled FIRST) was a READ, the flowchart in figure 5-6 directs you to step III which
when completed provides pause time = 35 nanoseconds in this case. Returning to figure 5-5, the result
through P3 = 4 x 35 nanoseconds = 140 nanoseconds. Since microinstruction DATA will be short, P4
and P5 are entered immediately with a resulting total time for this microinstruction = 210
nanoseconds (point D). Microinstruction END will be long (point E) because of the CM branch. You
may look at the partial microroutine just illustrated and consider that you can simply subtract the
time for all microinstructions executed (before the microinstruction labeled DATA but after the one
labeled FIRST) from the memory cycle time and in this case obtain 210 nanoseconds; however, this

procedure will not always yield correct results. The next microprogram example illustrates why this is
S0.

5-14, WRITING TO MEMORY. Consider a write operation to main memory using the follow-
ing microroutine. For this example, assume the DMS is installed. Also, consider conditions for the
microbranch (in microinstruction CHECK) not met and no memory operation in progress as entry is
made. Again note that the microroutine in these examples is used only to show timing relationships.
Consult section 7 for microprogramming considerations in write operations.

ALU/
oP/ MOD/ S-BUS/

LABEL BRCH SPCL COND STR ADDRESS COMMENTS

. TIME (NS)

ENTER INC X X 175+>A B

WRITE WRTE MPCK PASS TAB X 175 e

CHECK JMP CNDX ALZ RJS #+2 175 «—C

G0 READ RTN INC PNM P 560~ 2070 (SEETEXT)
(ETC.)

5-15

Timing

DECISION TO
PAUSE OR NOT
STARTS AT P3. AT
THIS POINT
ASSUME PAUSE
TIME = 0.

READ

YES OR WRITE NO

OPERATION
STARTED

STEP | y

CALCULATE TIME
OF ALL MICRO-
CYCLES SINCE

THE END OF THE
LAST MICROIN-

STRUCTION CON-

TAINING A WRTE,
READ, OR RJ30
MICRO-ORDER.

?

READ OR WRTE
IN OP FIELD OR
RJ30 IN SPECIAL
FIELD OF THIS
MICROINSTRUC-
TION?

TAB
YES IN 8-BUS
STEP Il I FIELD
?
ADD 175 NANO- |
SECONDS TO NO
T'MES$SS'|"D N TAB IN S-BUS IN THIS MICRO-
i FIELD IS TO OB- INSTRUCTION.
TAIN DATA FROM
A PREVIOUS
READ. (TAB MUST
NOT BE IN STORE
FIELD WITHOUT
WRTE IN
OP FIELD.
LAST
TIME
MEMORY YES
OPERATION N T >
READ S
WRTE MICRO-
ORDER IN OP NO NO PAUSE
FIELD MUST HAVE |—
TAB IN STORE
FIELD.
NO NO PAUSE
STEP IV STEP Il ¢
SUBTRACT TIME SUBTRACT TIME
FOUND IN STEP II FOUND IN STEP II
FROM 595NS. THIS FROM 560NS. THIS
IS PAUSE TIME. IS PAUSE TIME.
PAUSE TIME FROM
STEPIIOR V. ADD
THIS TIME TO
LONG OR SHORT s
MICROCYCLE
TIME FOUND IN NO PAUSE
FIGURE 55 O PAUS
FLOWCHART.
— ——
NOTES:
y 1. ALL CALCULATIONS TO BE IN NANOSECONDS.
2. THIS EXAMPLE IS TYPICAL FOR ONE TYPE OF COMPUTER
PAUSE WITH A SPECIFIC MEMORY. FOR ACTUAL MEMORY CYCLE

TIMES REFER TO YOUR COMPUTER DOCUMENTATION.
TYPICAL MEMORY CYCLE TIMES FOLLOW (COULD BE FASTER
OR SLOWER DEPENDING ON ACTIVITY):

WITHOUT DMS: READ OR RJ30 = 560 NS

WRTE = 595 NS
WITH DMS: READ OR RJ30 =630 NS
WRTE =630 NS

3. DCPC AND MEMORY REFRESH ACTIVITY IGNORED HERE.
CALCULATE THEIR TIMES AS A PERCENT OF TOTAL
MICROPROGRAM EXECUTION TIME.

7115-18

5-16

Figure 5-6. Detailed Pause Time Calculation Flowchart
(Using an HP 2102B Memory as an Example)

Timing

Microinstructions labeled ENTER and WRITE (point A) both execute in 175 nanoseconds each and the
main memory write cycle timing begins at point B. Microinstruction CHECK executes in 175 ns (point
C) since branch conditions are not met, then a read from main memory is next attempted. Using the
flowcharts in figures 5-5 and 5-6 it can be seen that the calculation for the time shown at point E is

made for microinstruction GO as shown below. (The write time at point D is 630 nanoseconds because
of the DMS factor.)

105 nanoseconds time for P1,P2,P3 (from figure 5-5)

245 nanoseconds add pause time (calculated in figure 5-6)
35 nanoseconds add for DMS

105 nanoseconds add for E1,E2 E3 (RTN in SPCL field)
70 nanoseconds add for P4,P5

560 nanoseconds total time spent in microinstruction GO.

5-15. SUMMARY

Table 5-1 is a summary of some times used in this section that may be helpful if you are making
execution time estimates. With the information presented in this section you should now be able to
verify that the following microroutine executes in the noted time. Assume no memory cycle in progress
as the microroutine is entered and no DMS activity occurring:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
* TIME (NS)
START READ CLFL PASS M S1 175
PASS L S2 175
ENVE ADD S3 TAB 385
READ PASS M S3 175
IMM CMLO L 374B 175
ADD L S3 175
ENVE ADD S3 TAB 210
RTN CNDX OVFL 2807175
RTN sov 280
(ETC.)

If no overflow, the total time is 1.750 microseconds. If an overflow, the total time is: 1.925 mic-
roseconds.

5-17

Timing

Table 5-1. Summary of Timing Factors

ITEM TIME
P period 35 nanoseconds
P4 plus P5 70 nanoseconds
E1 through E3 105 nanoseconds
Short microcycle 175 nanoseconds
Long microcycle 280 nanoseconds
Typical main memory read cycle 560 nanoseconds
Typical main memory write cycle 595 nanoseconds
DMS factor (WRTE) 35 nanoseconds
DMS factor (READ) 70 nanoseconds

5-18

Section 6

MAPPING TO THE USER’S
MICROPROGRAMMING AREA 1

MAPPING TO THE USER’S
MICROPROGRAMMING AREA || 6

In order to have operational flexibility using your HP 21MX E-Series Computer microprogramming
facilities you must have an understanding of the methods used to branch from main memory to control
memory and then back to your program in main memory when your microprogrammed operation is
complete. This section provides information that will enable you to:

® Understand the control memory mapping scheme.

¢ Link to the user’s microprogramming area from your Assembly language (or FORTRAN) program.
® Pass parameters to your microprogram.

® Understand control memory branch address modification (using some of the available micro-
orders).

¢ Return from control memory (making a “normal” exit).

e Pass parameters back to your main memory program.

For this discussion on mapping it will be assumed that your microprograms have already been
prepared (using the microassembler and probably the Microdebug Editor) and placed in some facility
of control memory (e.g., WCS, FAB, or UCS). Section 8 describes how to assign starting addresses to
your microprograms. Various microassembler pseudo-microinstructions, which also exist and are
capable of modifying control memory addresses while preparing microprograms, are described in
section 8. Section 7 provides information on how to check for and handle interrupts when you are in
your microprograms.

Part III in this manual describes methods used to get microprograms into control memory. The
methods include creating and installing permanent microprograms and using the “dynamic” micro-
programming method (the WCS facility). By using WCS and the WCS related microprogramming
support software (DVR36, WLOAD, and the Microdebug Editor), microprograms can be loaded into
control memory (WCS) and swapped (or overlayed) with other microprograms.

As is obvious from the above discussion, the information related to passing control in your program
from main memory to control memory and back is considerably interrelated. It is important that the
concepts of main memory/control memory links be firmly established first. Then, with an understand-
ing of the mapping, parameter passing, and branching techniques described in this section; the
interrupt handling and control memory address assignment methods described in sections 7 and 8; and

the microprogramming support software used to control WCS; you will have complete microprogram
address manipulation and transfer capability.

6-1

Mapping

6-1. CONTROL MEMORY MAPPING METHOD

As mentioned in section 2, the Control Processor is always in control of the computer and the base set
microroutines cause the read operations to occur for all instructions (and data) from main memory.
this manner, all 16-bit instructions are placed in the Instruction Register (IR) and decoded. (Data can
be considered as “parameters” which can be loaded into the desired and appropriate registers by your
microprogram to later perform certain operations; parameter passing will be discussed later in this
section). For instructions, the process of decoding the Instruction Register bits determines which
control memory address (which microprogram) is called by the instruction received from main mem-
ory. The decoding process (mapping method) discussion in this paragraph is at the level you will need
for “normal” user microprogramming and the instruction codes you may use to map to particular
control memory entry points are defined. If you are planning an extensive microprogramming effort,
however, you may be interested in the details of the mapping process contained in appendix C.

In

6-2. SOFTWARE ENTRY POINTS

Recall that the control memory map in figure 2-3 shows all modules of control memory, their module
boundary addresses, and whether or not the module has available “software entry points”. The
software entry points are the bit patterns which, when placed in the Instruction Register (from your
main memory program), will cause the Control Memory Address Register to be finally loaded (through
mapping) with a desired control memory module entry address. If you again examine figure 2-3 you
will see that 25 modules of control memory have such software entry points.

The hardware/firmware combination in the Control Processor is the facility that imposes restrictions
on control memory software entry points. By using the proper instruction codes you may (with
discretion) map to any obtainable location. However, as mentioned in section 2, certain areas of control
memory may be used for HP microprograms and/or microprogrammed computer enhancements. Thus,
the use of descretion in accessing control memory. It is recommended that you restrict your use of the
software entry point instruction codes to those set aside for entrance into the user’s microprogramming
area. The instruction codes for most software entry points (excluding modules 0 and 1 of the base set)
will be defined shortly and the instruction codes for entrance into the user’s area (the primary concern
of this section) will be identified.

Once in a control memory module, you may have microinstructions that branch to any control memory
location. Again, the use of discretion is implied since the areas shown in figure 2-3 reserved for HP
microprograms and/or microprogrammed accessories may be filled with microprograms. .But you
could, for example, branch and use a microroutine of the base set then return to your own microprog-
ram if you prepare your microprogram correctly.

6-3. THE USER INSTRUCTION GROUP

For the purposes of mapping to the “user” areas, the HP 21MX E-Series Computer ba'se set has a
reserved block of binary codes called the User Instruction Group (UIG). These codes (UIG 1nstruc't10ns)
permit you to link Assembly language routines to your microprograms. The key to the UIG is the
upper byte (most significant bits) of the calling code which must have the format:

6-2

Mapping

105xxx (bit 11 of the IR = 1)
or;
101xxx (bit 11 of the IR = 0).
where:
xxx equals values to be defined in the following paragraphs.

Control memory module selection is determined by the value of bits 8 through 4 in the Instruction
Register (still part of the coded UIG instruction). In general, a secondary index (composed of bits 3
through 0) directly determines which address in the first 16 locations of the selected module will be
used for entry.

Bit 11 in the third octal digit (105xxx or 101xxx) of the UIG instruction in the IR can be used as an
indicator (for your microprograms) by micro-orders which test the Instruction Register data. For
example, the Store field and S-bus field micro-order CAB tests IR bit 11 to select either the A- or
B-register.

The value of bits 8 through 4 of the UIG instruction in the IR is not directly translatable into a control
memory module number but these bits help determine the address of branches in the control memory
base set Primary Mapping Table, which in turn direct a branch to the desired module.

6-4. HP RESERVED UIG CODES. As mentioned in paragraph 6-2, 25 modules of control
memory have software entry points assigned, but modules 0 and 1 of the base set must be disregarded
in this discussion since codes for access to those modules do not fall within the UIG. All modules of
control memory that are accessible through the UIG instructions are shown in table 6-1. This table is
arranged in UIG instruction (binary code) order. The modules these codes map to are shown along with
the control memory entry addresses.

As can be seen from table 6-1, all modules below module 46 accessible with UIG instructions have been
reserved for HP use and are not recommended for normal user microprogramming. Also, as noted in
the table, modules 2, 3, 32, and 39 have a mapping situation that is slightly different than the one used
for modules with a single UIG module selection code (one combination of bits 8 through 4). This
multiple entry point mapping is used only for modules reserved for HP use (base set or HP accessories)
and it will not be discussed in this manual. The module selection codes (bits 8 through 4) briefly
mentioned in paragraph 6-3 are further discussed in appendix C. Refer to the appendix if you require
more information about the module selection codes or the HP reserved area.

To avoid access to the HP reserved area do not use the following UIG instruction (binary codes) for
main memory to control memory linking:
105000 through 105137
or
200 through 437
101 (or 105) 460 through 477
700 through 777

6-3

Table 6-1. Control Memory User Instruction Group Software Entry Point Assignments

CONTR
R?hh’:ilENOF UIG INSTRUCTION MODULE ENTROYLP%T:I’IT%RY
M
USE:?SJ%XSLUES MAPPED (RANGE OF ADDRESSES)
TO (OCTAL) (NOTE 3) USE
105000-105137
3 O1xxx (NOTE 1) Floating Point
105140-105157 60
s 36000-36017 User area
o 60-105177 62 37000-37017 User area
. (or 105) 200-217 34 21000-21017 FFP
1
{or 1055 220 237 35 21400-21417 FFP
101 O 105
(or.) 240 257 36 22000-22017 HP Reserved
101 (or 105) 260-277 37
22400-22417 HP Reserved
101 {(or 105) 300-317 38
23000-23017 HP Reserved
101 (or 105) 320-337 40
o 24000-24017 HP Reserved
(or 105) 340-357 44 26000-26017 HP Reserved
101 (or 105) 360-377 45 26400-26417 HP Reserved
101 (or 105) 400-437 39 23420 (NOTE 2) HP Reserved
101 (or 105) 440-457 46 27000-27017 User area
101 (or 105) 460-47
o ((105) 7 39 23400 (NOTE 2) HP Reserved
or -
) 500-517 47 27400-27417 User area
101
(or 105) 520-537 48 30000-30017 User area
101 (or 105) 540-557 49 30400-30417 User area
101 (or 105) 560-577 50 31000-31017 User area
101 (or 105) 600-617 56 34000-34017 User area
101 (or 105) 620-637 57 34400-34417 User area
101 (or 105) 640-657 58 35000-35017 User area
101 (or 105) 660-677 59 35400-35417 User area
101 (or 105) 700-737 32 20xxx (NOTE 1) DMS
101 (or 105) 740-777 2 01xxx (NOTE 1) EIG
NOTES:
1. xxx signifies last three digits for the entry address. See appendix C for details.
2. 101 (or 105) 400-417 and 101 (or 105) 420-437 all map to CM address 23420, 101 (or 105) 460-477
start mapping at CM address 23400. See appendix C.
3. All modules except 2, 3, 32, and 39 have 16 entry points. See appendix C.

6-5. USER AREA UIG CODES. Modules 46 through 63 comprise the primary user’s micro-
programming area. (Modules 4 through 31 are also addressable once in control memory.) The modules
in the user’s area that have UIG module selection codes assigned are designated as user area modules
in table 6-1. As apparent from the table, 11 of the 18 modules in the range 46 through 63 are directly
accessible. Entry to other control memory modules will require an extra branch after reaching control

memory.

6-4

Mapping

As can also be seen in table 6-1, each module has 16 possible control memory software entry points
provided by the UIG instruction secondary index (UIG instruction bit 3 through 0 combination). The
secondary index directly determines which control memory address (of the first 16 locations in the
selected module) will be loaded into the Control Memory Address Register. The ranges of values for
UIG instructions you should use to access the respective control memory addresses are summarized
below. Since each module may be entered at 16 different locations, 176 direct entry points into the
recommended user’s microprogramming area are available.

Summary of UIG instructions (binary codes) you can use:

105140 through 105177

(uter -
and amputer
440 through 457

101 or 105 500 through 677

6-6. USER’S AREA MAPPING EXAMPLE

A typical example of mapping to the user’s microprogramming area through the base set using a
recommended UIG instruction is discussed below. Information about the proper procedure to use in
main memory and for returning to main memory is also included. The depth of the discussion should
be sufficient for your normal microprogramming needs.

6-7. MAIN MEMORY/CONTROL MEMORY LINKAGE. Suppose that your main memory
program has a UIG instruction 105602 (octal) written into a particular location designated “I”. The
UIG instruction may or may not have address pointers and/or operands in main memory locations I +
1,1+ 2, etc. For example:

MAIN MEMORY

Location Contents
| 105602
1+ 1 .
|+ 2 .

During execution, UIG instruction 105602 maps to control memory location 34002 as follows. The base
set Fetch microroutine completes the read and IR store operation (as described in paragraph 2-16) for
your 105602 UIG instruction and begins the mapping procedure by executing these microinstructions:

CONTROL MEMORY
(Fetch Microinstructions, start at CM location 00000)

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
FETCH READ FTCH I;’ASS IRCM TAB IR=105602, L =0
JTAB INC PNM P M=I1+1,P=1+2

6-5

AT

The JTAB micro-order i

ndexes th i i
the Contro] Processor J ot e ont bits o

fthe 10 ' ion (i
Ump Tablos o vpe following 5602 UIG instruction (in the IR) through

ALY/

op/
LABEL BRCH speL oop/ Sous/

COND STR ADDRESS COMMENTS

MAC1 JMP
J74
MACTABL 1 BEGIN MAPPING TQ USER AREA

: . -4, and causes
s Primary Mapping Table. At the indicated address in the

memory branch is directed. This branch is made to the
34000) by the appropriate microinstruction as follows:

ent';ry at a particular address in the base set’
Prlmary Mapping Table, another control
desired module (in this case CM address

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
MACTABL1 JMP ' 234208

JMP RJ30 34000B COMPLETE MAPPING TO USER AREA

Note that the branch to control memory address 34000 is modified by an RJ30 Special field micro-
order. The RJ30 implements the secondary index and causes the Control Memory Address Register to
be loaded with the final module entry point address (one of the first 16 locations). In this case, since the
UIG instruction is 105602, the microinstruction’s branch address field bits are replaced with the
Instruction Register bits that will cause entry to be made at control memory address 34002. (Refer to
table 4-1 for the explanation of RJ30). The RJ30 micro-order simultaneously starts a read operation
from main memory location I + 1. (See the Fetch microroutine previously described.)

Upon reaching the user microprogramming area (at address 34002) the following situation exists:

IR = 105602,

L = 0, (FTCH cleared the L-register)

P =1+ 2

M =1+ 1,and a READ of main memory location I + 1 is in progress.

6-6

Mapping

Microinstructions at your control memory entry points should usually have been previously prepared
to cause an additional branch to the control memory address where the desired microroutine begins.
Typically the first 16 locations in a user module are set up with unconditional branches (word type IV)
to the actual microroutines as follows (module 56 used in this example):

ALY/

OP/ MOD/ S-BUS/
LOCATION LABEL BRCH SPCL COND STR ADDRESS COMMENTS
34000 JMP . INSTOOMC ENTRY POINT 1
34001 JMP INSTO1MC ENTRY POINT 2
34002 JMP INSTO02MC ENTRY POINT 3
34003 JMP INSTO3MC ENTRY POINT 4
34007 JMP . INSTO7MC ENTRY POINT 8
34010 JMP INSTO8MC ENTRY POINT 9
34017 JMP . INST15MC ENTRY POINT 16
34020 INSTO2MC S3 TAB BEGIN MICROROUTINES

READ RTN iNC PNM P EXIT

In this example the microinstruction at the entry address causes a branch to control memory location
34020 where the actual microroutine begins.

The TAB micro-order (location 34020) is used to obtain the results of the RJ30 initiated main memory
read operation that occurred while in the base set Primary Mapping Table. In this example the data is
stored in S3. This data could be a parameter address passed from your main memory program. The
data obtained by this RJ30 initiated read operation must be taken from the T-register while at the first
microinstruction in your microroutine, or at the latest, during execution of the next microinstruction
(refer to table 4-1 for the explanation of a READ micro-order). If desired, the results of the RJ30
initiated read operation may be ignored.

6-8. ASSEMBLER PROCEDURE. An Assembly language procedure for invoking a micro-
program and passing parameters is discussed below. Paragraph 6-11 provides some additional infor-
mation. The basic concepts of invoking microprograms and passing parameters should be evident from
the information presented here.

6-7

Basically, the microprogram i

s invoked and parameters are passed using an Assembly language
procedure such ag follows:

ASMB,L
NAM TEST,7
ENT TEST MACRO
EXT ISC,NMBR IBUF
TEST NOP
MACRO ocCT 105603 MICROPROGRAM OP CODE
DEF *14 RETURN ADDRESS, ALSO FTN COMPATIBILITY
DEF ISCq,1) SELECT CODE

DEF NMBR(l) DATA COUNT

DEF IBUF(,1) DATA BUFFER
JMP TEST |
END

As can be seen from the above, a UIG Instruction (as described in preceding paragraphs) appears in an
OCT statement. This is used at the point in the Assembly language source pProgram where the branch
is to occur. The valye to be inserted should be OCT 101xxx (or 105xxx) (where xxx is in the range
shown in table 6-1) to properly map to the desired control memory module address. If parameters are to
be passed, they are usually defined ag constants (via DEF or OCT statements) immediately following

the OCT statement as seen in the example ahove, The Microprogram procedures for accessing param-
otarg are presented in the following paragraph.

1 to
i f microprograms show how
i PARAMETER PASSING. he flouo‘v‘ndgg t:vo :)i{ril I;‘iﬁify referegces. The initialization
in main memory and resolve indirect m € et
acce’sS paﬁameﬁelr‘xsli:;oprogram (microassembler control commands and pseudollns'Zr:}l]celm s will be
portl(?g ?1 ir??:ter sections. The primary thing you should observe in these ex?ngt;s elnt& method used
3951‘13;;(;316 parameters. Pay particular attention to the P- ar}lld M-re,cir‘lstegeag i?ning nie: Rematks and
. f i 1 Note that any line
luded in the microprograms.
explanatory notes are inc

section 7.

EXAMPLE 1.

Mapping

ACCESSING A PARAMETER LIST FROM A MICROPROGRAM

PAGE 0002 RTE MICRO=-ASSEMRLER REV.A 760805

0oo01l

0002
0003
0004
0005
0006
noov
00018
0no09
0010
0011

0012
0013
0c1l4
0015
0016
0017
00118
0019
0020
0021

0022
0023
00724
0nzs
0026
0027
0028
0029
0030
0031
on32
0033
0034
0035
0036
0037
n038
N039
nn4o
0041
0042
0043
0044
0045
0046

34003

34030

34031
340327
34033

34034
34035
34036
34037

34040
34041
34042
14043

34044

327

343

227
307
010

227
307
363
010

2?27
010
307
010

227

END OF PASS 2:

n01407

176547

174725
n16647
000507

174725
N16647
007123
001147

174725
145107
016647
033207

174700

NO ERRORS

MICMXE oL
$CODE=MPORBJ s REPLACE

21MX E~-SERIES
0BJECT T0 DISC

INDIRECT EQU 34355R USER WRITTEN

INDIRECT

u MICROPROGRAM

(SEE EXAMPLE 2)
ORG 34003R 105603 => 34003
JMP INSTO3MC SAVE ENTRY

POINTS

THIS MICROPROGRAM TS AN EXAMPLE OF HOW TO

RETRIEVE MAIN MEMORY PARAMETERS AND ADDRESSES

4+

A USER WRITTEN MICROSUBROUTINE (SEE EXAMPLE 2)

WILL BE USED TO RESOLVE INDIRECT ADDRESSES

*

INITIALIZE THE CNTR

THE USER WRITTEN TNNDIRECT MICROPROGRAM (EXAMPLE 2).

IF INTERRUPTED, USFES THE CNTR TO ADJUST P (I.E.

SET P TO MAIN MEMORY ADDRESS + 1 OF THE

MICROPROGRAM 0P CONF)
ORG 340308

INSTO3MC IMM LOwW CNTR 3778 CNTR = =)

LM
-]
%

x ¥ & %

*

GET PARAMETERS:
SELECT CODE.

DATA COUNT.

READ DCNT INC

JSR

READ DCNT INC

JSR

IMM L&

CMLO

READ DCNT 1INC

JSR

NOTE 1,

10pP

PNM

L

DNM

3
S4

PAM
S3

$5

RUFFER ADDRESS

o)
INDIRECT
TAR

o)
INDIRECT
3038

TAB

P
S3
INDIRECT
M

GET SELECT CODE
RESOLVE ADDR
L = SELECT CODE

GET DATA COUNT
RESOLVE ADDR
(SEE NOTE 1)
S4 = DATA COUNT

GET BUFFER ADDR
(SEE NOTE 1)
RESOLVE ADDR
S5 = BUFFER ADDR

ONE NON=FREF7ABLE MICROINSTRUCTION MAY

PRECEDE AND/0OP FOLLOW THE JSB INDIRECT'S

READ RTM

END

INC

PNM

p

START FETCH FOR
NEXT MAIN MEMORY
INSTRUCTION

Changel 6-9

EXAMPLE ». RE
: S(H;VIBH}IDH)IRE
CT‘BLAIN’BJEBJCH{
S?REFERENCES

2IMX Fegpp
OBJECT T1p 5?§c
BASE SET HALT-
OR~INTERRUPT
MICROROUT [NE

EN MICROSUHR
{ ouT
REFERENCES TN

LEVEL RFQUIRES AN ADDITIONAL MEMORY

E INITIALIZED THE CNTR
MICPOSUBPOUTINE. IF
NDULST P

(I.E SET P 71

1 OF THE MICROPROGRAM Op
THE BASE sgT

AND A READ OF THE FINAL ADDRESS

INTERRUPTS

INDIRECT LEVEL

INDIRECT 2
NORTN

INDIRECT 72
NOy RTMN
INDIRECT 2
NOs RTN
INTERRUPT OR
INSTR STEP?
NOs NEXT ADDR
YESs ADJUST P
EXIT TO HORI

ION.

0001
noo2z MICMXE o
0003 $CODE=INDORy,R
0004 HOR1 EQU EPLACE
0005 #
0006 ®
0007
0008 - ORG 343554
0009 * THIS IS an
- EXAM

0010 * THAT RESOLvES I:gE NF A USER wRITT
001] ») IPECT MAIN MEMQpy
0012 * EACH INDIRECT
0013 ® CYCLE
0014 * AT ENTRY,

® THE
0015 8 (SEECéLLING,P“OGRAM MUST HAV
0016 XAMPLE 1) Sp THAT

% INTERR THIS
0017 UPTED, wILL cnRREC

* MAIN M TLY A
0018 s Conk) greny ADDRESS
0020 o HALTLORoINTERpeE TN TO HORI L
00?? N FRRUPT MICROROUTINE
00é2 * AT EXIT,

*
0023 THE FINAL (DIRECT) MAIN MEMORY ADDRESS WILL MAVE

#* BEEN DETERMINED,
0024) WILL BE IN PROGRFSS
0025 M
0026 # FOR THE FIRST THREE [NDIRECT LEVELS,
0027 ® ARE NOT CHECKED
0028 o
0029 @ AFTER THE THIKDs OR ANY SUCCESSIVE,
0030 # INTERRUPTS ARE CHECKFD FOR AND SFRVICED
0031 &
0032 34355 230 000647 INDIRECT READ M TAB
0033 34356 367 140007 RTN CNDX AL1S5 RJS
0034 *
0035 34357 230 000647 READ M TAB
0036 34360 367 140002 RTN CNDX AL15 RJS
0037 #
0038 34361 230 000643 NEXT READ ION M TAR
0039 34362 367 140007 RTN CNDX AL1S RJS
0040 34363 323 157042 JMP CNDX HOT RJS NEXT
0041 34364 1336 057047 JMP CNDX NSMG RJS NEXT
0042 M
0043 34365 010 026507 L CNTR
0044 34366 320 000307 JMP HORT
0045 END
END OF PASS 2: Np ERRORS

6-10 Change 1

Mapping

Parameters may be passed back to your main memory programs by writing the values (loaded into the
T-register) into the desired locations (address loaded into the M-register) since you have direct control
of the registers while you are executing microinstructions in control memory.

6-10. CONTROL MEMORY/MAIN MEMORY LINKAGE. It is the microprogrammers re-
sponsibility to have stored and/or adjusted the values in the P, M, and other applicable registers (using
the appropriate micro-orders) when entering a microprogram so that the respective registers may be
restored with the desired values before returning control to main memory. When preparing to exit a
microprogram and return to the base set Fetch microroutine, the following must be accomplished to
properly interface with the next main memory instruction. Assume that a main memory location
designated “J” contains the next instruction. Upon microprogram completion you must ensure:

P
M

J+ 1

dJ, and a read operation of location J starts within three microinstructions before microp-
rogram exit.

Note that the last example in paragraph 6-7 and the last part of microprogram EXAMPLE 1, both end
in the manner stated above.

6-11. SOME MAIN MEMORY PROGRAM PROCEDURES

Information on another Assembly language instruction and a FORTRAN procedure that can be used
to invoke microprograms is included in the following paragraphs. Further information on Assembly
language procedures can be found in the RTE Assembler Reference Manual, part no. 92060-90005.
Examples of FORTRAN procedures are included in parts III and IV of this manual. Also refer to the
FORTRAN Language Manual, part no. 5951-1321. For information on other languages, refer to the
appropriate manuals as shown in the documentation map in the preface of this manual.

6-12. THE MIC PSEUDO-INSTRUCTION

An Assembly language program can also call a microprogram with a mnemonic code which has been
assigned earlier in the program. That is, with a MIC pseudo-instruction, you can define a source
language instruction which passes control and a series of parameter addresses to a microprogram. In
this use of the MIC instruction, a UIG instruction (binary code) is assigned to a mnemonic so that
whenever the mnemonic appears, the code is written into that location in the assembled program. The
number of parameters is also specified in the following format for the MIC pseudo-instruction:

MIC opcode, fcode, pnum comments
where:
opcode = any three-character alphabetic mnemonic

fcode = a UIG instruction (octal) from table 6-1

pnum the number of associated parameter addresses (zero to seven) (may be an expression

which generates an absolute result).

6-11

MIC MIO,105602B,3

Aflter this .ab.ove statement in the source, you may use the MIO statement in your source program
whenever 1t is necessary to pass control to a particular microprogram with the entry point at control
memory address 34002 by using the following:

MIO ISC NMBR IBUF I

An example of a short but complete Assembly language program illustrating some of the procedures
outlined thus far appears in the next paragraph.

6-14. EXAMPLE MIC PSEUDO-INSTRUCTION USE. The Assembly language use princi-
ples are summarized in the following example. Note that the two MIC instructions are declared first.
One has no parameter addresses to pass, the other has four. SRT could be a sort microroutine and MIO
a microprogrammed 1/O operation. In source statement sequence number 0014, designation *+35 is
used to limit the list and make the program FORTRAN callable. ISC is the select code, NMBR the

count, and IBUF a reserved data buffer (5 locations).

6-12

EXAMPLE 3: MIC PSEUDO-INSTRUCTION USE

PAGE 0002 # 01

0001
0002
0003+
0004
0005+
0006
0007+
0008
0009+
0010+
0011
0012+
0013+
0014

0015+
0016+
0017
0018
0019
0020
0021
0022+«
0023
0024
0025
0026

00000

00000 000000

00001 105600

00002 105602
00003 000007R
00004 000013R
0000S 000014R
00006 000015R

00007 018001X
00010 000012R
00011 000012R
00012 000006

00013 000016
00014 000005
00015 000000

=+ NO ERRORS*

6-15. CALLING MICROPROGRAMS FROM FORTRAN

ASMB, L

START

SORT

mMCIO

RC

ISC
NMBR
I1BUF

NAM
mIC
MIC

NOP

SRT

mIO

EXT
JSB
DEF
DEF
DEC

ocT
DEC
BSS
END

MIC PSEUDO INSTRUCTION USAGE
SRT,105600B,0

MI0,105602B,4

#+5]SC NMBR IBUF

EXEC
EXEC
*+ 2
RC

16

START

Mapping

Treating a microprogram as an external subroutine is a typical way to invoke a microprogram from
FORTRAN. The process (using the example MIO microprogram) is shown below followed by explana-

tions.

FTN4,LM

SUBROUTINE FTNMP (ISC, NMBR, IBUF)
DIMENSION IBUF (1)

CALL MIO (ISC, NMBR, IBUF)

END
END$

6-13

The M in the compiler co

language. The CALL MIO
addresses ag follows:

JSB MIO
DEF *+4
DEF 00000,
DEF 00001,
DEF 00002,

The load time JSB replace routine would appear as follows:

ASMB,L
NAM RPLCE
MIO RPL 105602
END

The MIO RPL 105602 statement above alerts the RTE relocatin
MIO are to be replaced with 105602 and, if loaded with the p
causes the RTE relocating loader to substi

for the JSB MIO. In this way, the FORTRAN program accesses
time.

g loader that all external references to
rogram shown first in this paragraph,

’

the microprogram directly at execution

6-16. SUMMARY

Equipped with knowledge gained through information in this section, you should have no troublz
planning where you want your microprograms placed in control memory. You sh(;uld ha\lre a ngl(())(;.
understanding of linking between main memory and control memory. The concept 3o0 cqntro Izgrs foz
branching has been presented so that, if necessary, you may also use the J74 and RJ II’.IICI‘OE)I‘ o o
CM branch address modification in your microroutines. The concepts of parameter passing shou

be clear.

6-14

Section 7
MICROPROGRAMMING CONSIDERATIONS I

MICROPROGRAMMING
CONSIDERATIONS |[7

Some key points that you will want to be aware of when writing microprograms are presented in this
section. The assumption is that you will refer to section 4 for complete descriptions of micro-orders, but
the additional considerations in this section include:

® The techniques to use for microprogrammed read, write, and arithmetic operations.

® Microprogramming with the Memory Protect or Dual Channel Port Controller (DCPC) installed.
® Microprogrammed Input/Output operations.

¢ Microprogramming with the Dynamic Mapping System installed.

Some guidelines for writing IBL loaders are also included.

7-1. READ AND WRITE CONSIDERATIONS

Microprogrammed main memory read and write operations are easily implemented and will be
successful when the guidelines outlined below are followed. Conditionally valid and invalid methods of
using the READ and WRTE micro-orders are also discussed in paragraph 7-5.

7-2. TYPICAL READ OPERATIONS

Load the M-register before or during microinstructions containing READ in the OP field. Do not
modify the M-register until at least two microinstructions after the READ (See the information in this
paragraph on reading the A- and B-registers with a TAB micro-order.). A simple READ with the M > 1
is performed as follows:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ - M S3 175 NS

S4 TAB 560 NS

The T-register contents must be placed on the S-bus no later than two microinstructions after a READ
is specified, because the T-register is disabled by the Main Memory Section after the second micro-
instruction is executed. Microinstructions may be used between READ and TAB. When using one
microinstruction between READ and TAB, the microroutine may appear as follows:

Considerations

ALU/
OP/ MOD/
LABEL BRCH SPCL COND STR
READ ' M
INC S3

S4

S-BUS/
ADDRESS

S3
S3
TAB

COMMENTS

175 NS
175 NS
560 - 175 = 385 NS

Note that if a DCPC is active, freezable microinstructions (e.g., I0G) may not be used between READ
and TAB. Also, no more than two microinstructions may be executed between READ and TAB. If there
is no DCPC activity, neither restriction applies. When using two microinstructions, the microroutine

may appear as follows.

ALY/
OP/ MOD/
LABEL BRCH SPCL COND STR
READ M
INC S3
MM LOW L
AND S4

S-BUS/
ADDRESS

S3
S3

TAB

COMMENTS

175 NS
175 NS
175 NS
560 - (175 x 2) = 210 NS

For utilizing main memory address 00 as the A-register, use the following microinstructions:

ALU/
oP/ MOD/
LABEL BRCH SPCL COND STR
ZEROD S3
READ M
] S4

7-2 Change 1

S-BUS/

ADDRESS

S3
TAB

COMMENTS

175 NS,AAF=1, READ INHIBITED
175 NS, S4 =A-REGISTER

Considerations

For utilizing main memory address 01 as the B-register, use the following microinstructions:

ALY/
oP/ MOD/
LABEL BRCH SPCL COND
MM éMLD
READ

If reading main memory location 00:

ALU/
oP/ MOD/
LABEL BRCH SPCL COND
ZEROD
READ PRST

If reading main memory location 01:

ALY/
OP/ MOD/
LABEL BRCH SPCL COND
ImMm E}MLD
READ PRST

STR

S3

sS4

STR

S3

S4

STR

S3

S4

S-BUS/
ADDRESS

376B

TAB

S-BUS/
ADDRESS

53
TAB

S-BUS/
ADDRESS

376B
S3
TAB

COMMENTS

S3 = 1
175 NS, BAF = 1,READ INHIBITED
175 NS, 54 = B-REGISTER

COMMENTS

175 NS, PRST CLEARS AAF
560 NS, S4 = CONTENTS OF MAIN
MEMORY LOCATION O

COMMENTS

53 =1

175 NS, PRST CLEARS BAF

560 NS, S4 = CONTENTS OF MAIN
MEMORY LOCATION 1

Memory address 00 and 01 may be written into (refer to paragraph 7-3 by using the Special field
micro-order PRST one microinstruction before the TAB micro-order is used. In read or writes the main
rule is that PRST precede the TAB micro-order by one microinstruction. Note that (see the last two
microroutines) main memory locations 00 and 01 may be used for Hewlett-Packard generated
microroutines; therefore, the use of main memory locations 00 and 01 is not recommended.

1-3

Considerations

M.icroprogra‘mmed successive READ’s may appear as follows but note that if two READ’s are coded
without an intervening TAB, the result of the first READ is lost.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

READ M S3 175 NS
READ M TAB 560 NS
M TAB 560 NS

If the M-register is modified between READ and TAB, the decision between the A-register, B-register,
and main memory may be made incorrectly. For example:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM CMLD S4 376B S4 =1
ZERD S3
READ M S3 READ A-REGISTER, AAF =1
M S4 M=1, BAF =1, AAF = 0
SS TAB S5 = B-REGISTER, NOT A-REGISTER

7-3. TYPICAL WRITE OPERATIONS

Load the T-register with data to be written to main memory in the same microinstruction that
contains the WRTE micro-order or the DCPC could alter the T-register before the WRTE is executed.
Do not alter the T-register unless initiating WRTE, since the T-register is internal to the Main
Memory section and is used by both the CPU and the Dual Channel Port Controller (DCPC). The
T-register is not intended to be used as a general purpose register, but to be used only in referencing
main memory. A simple write operation with M > 1 is accomplished as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3

WRTE MPCK TAB S4 175 NS

7-4

Considerations

For interpreting main memory address 00 as the A-register, use the following microinstructions:

ALU/
oP/ MOD/

LABEL BRCH SPCL COND
ZERD

WRTE MPCK

S-BUS/
ADDRESS

S3
sS4

COMMENTS

M=20, AAF =1
175 NS, A-REGISTER = S4, MAIN
MEMORY LOCATION 0 UNALTERED

For interpreting main memory address 01 as the B-register, use the following microinstructions:

ALY/
OP/ MOD/

LABEL BRCH SPCL COND STR
ImmM (.DMLD

WRTE MPCK

S-BUS/
ADDRESS

376B

S4

COMMENTS

S3 =1

175 NS, B-REGISTER = S4, MAIN
MEMORY LOCATION 0 UNALTERED

Writing into main memory location 00 is accomplished as follows:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND STR
ZERD
PRST
WRTE MPCK

S-BUS/
ADDRESS

S3
S4

COMMENTS

PRST CLEARS AAF
175 NS, MEMORY LOCATION 0 = S4,
A-REGISTER UNALTERED

7-5

Considerations

Writing into main memory location 01 is accomplished as follows:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM CMLO S3 376B S3 =1
PRST M S3 PRST CLEARS BAF
WRTE MPCK TAB S4 175 NS, MAIN MEMORY LOCATION 1

* = 54, B-REGISTER UNALTERED

Note that (see the last two microroutines) main memory locations 00 and 01 may be used for Hewlett-
Packard generated microroutines; therefore, using main memory locations zero and one is not
recommended.

Microprogrammed successive WRTE’s may appear as follows:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3
WRTE MPCK TAB S4 175 NS
M S5 175 NS

WRTE MPCK TAB S4 595-175 = 420 NS

In all the WRTE examples above, MPCK checks the M-register, which must be loaded in a mic-
roinstruction preceding (not necessarily immediately) the MPCK. To write into protected main
memory, omit MPCK.

CAUTION

Writing into protected main memory must be done with caution
because of the possibility of crashing the system environment.

After the execution of a microinstruction containing a WRTE, the 595 nanoseconds needed to write
into main memory does not extend succeeding microinstructions unless they attempt to access main
memory before 595 nanoseconds has elapsed.

7-6 Change 1

Considerations

7-4. USE OF MPCK

In an active DCPC environment, the use of the MPCK micro-order in a microinstruction containing a
WRTE micro-order ensures that the Memory Protect check will be made correctly. The Store field of a
microinstruction with READ and MPCK micro-orders must not contain M, PNM, or IRCM because
this will result in an erroneous Memory Protect check. A correct sequence of microinstructions might
appear as follows:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3 M = ADDRESS TO BE WRITTEN INTQ.
WRTE MPCK TAB sS4 MPCK AS USED HERE WILL CORRECTLY
CHECK FOR A MEMDORY PROTECT
VIOLATION.
READ M SS MPCK AS USED HERE WILL CORRECTLY
MPCK CHECK FOR A MEMORY PROTECT
* VIOLATION.

7-5. CONDITIONAL AND INVALID OPERATIONS

The READ/WRTE sequence shown below is conditionally valid. That is, if there is no DCPC activity
the sequence will work.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ . M S3 175 NS

WRTE TAB TAB 595 NS

The following READ is conditionally valid:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ M S3 175 NS
INC S3 S3 175 NS
IMM LOW L 0 175 NS
ZERD sS4 175 NS

SS TAB 175 NS

7-7

Considerations

Note that both examples will fail frequently in an environment in which there is DCPC activity.
Any number of microinstructions may separate a READ and TAB if there is no DCPC activity.

The microroutine sequences shown below are examples of invalid use of READ and WRTE:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ M S3 READ WILL COMPLETE, BUT
, WRTE THE WRTE IS INHIBITED
READ M S3

WRTE TAB 177777 WRITTEN INTQ MEMORY.

When an /O cycle is in progress, a READ or WRTE must not be initiated before T6 in the cycle under
either of the following conditions:

® An input or output routine is in progress. (Refer to paragraph 7-22 for microprogrammed I/O
considerations.)

o A skip flag test of the I/O system is taking place.

7-6. SOME MICROPROGRAMMING TECHNIQUES

Techniques for using the alter-skip related micro-orders and for performing microprogrammed arith-
metic operations are included in the following paragraphs.

7-1. THE USE OF SRG1 AND SRG2

Micro-order SRG2 is sensitive to the contents of the Instruction Register (IR). In particular, bits 4, 2, 1,
and 0 control a variety of shift/rotate actions. However, SRG2 causes the top of the Save Stack to be
loaded into the CMAR unless an SRG2 skip condition is met. This pseudo-RTN is usually undesirable
in a user microprogram. The simplest way to prevent the undesired loading of the CMAR is to satisfy
an SRG2 skip condition by setting bit 3 of the IR and having bit 0 of the T-bus be clear. IR bit 3 = 1is
the equivalent of an Assembler SL*. By ensuring that T-bus bit 0 = 0 as execution of the SRG2 begins,
the SRG2 skip test is satisfied and the CMAR is not loaded from the Save Stack. The lines at labels
SRG2.1, and SRG2.2, and SRG2.3 in the following microroutine illustrate the above technique.

7-8

OoP/
LABEL BRCH SPCL
SRG2.1 IMM
SRG2.2
SRG2.3 SRG2

ALU/
MOD/ S-BUS/
COND STR ADDRESS

l._ClN CNTR 37B
ZERD
5S4 S3

Considerations

COMMENTS

IRC4-0) = 11111 = SL+, =#LF,
T-BUS €0) = 0.
S4 = CONTENTSOF S3ROTATEDLEFT 4.

As shown in line SRG2.1, the CNTR micro-order may be used in place of IRCM if only IR bits 7 through
0 are significant. Storing into the counter does not alter IR bits 15 through 8. In regard to IRCM, note
that if IR bit 10 = 0, the upper five bits of the M-register will be automatically cleared (zeroed) as bits 9
through 0 of the IR are stored into the M-register. If IR bit 10 = 1, bits 14 through 10 of the IR are
stored into the M-register (in addition to IR bits 9 through 0) to form an operand address.

Micro-order SRG1 is also sensitive to the contents of the IR, but does not cause loading of the CMAR
from the Save Stack; therefore, the use of SRG1 is straightforward as shown in lines SRG1.1 and

SRG1.2 below.

OoP/
LABEL BRCH SPCL
SRG1 .1 IMM
SRG1.2 SRG1

ALU/
MOD/ S-BUS/
COND STR ADDRESS

HIGH IRCM 3

S6 S5

COMMENTS

IRC(9-5) = 11111 = «LF, CLE.

S6 = CONTENTS OF SSROTATEDLEFT 4,
AND E-REGISTER = 0.

7-9

Considerations

7-8. USING THE ASG MICRO-ORDER

Micro-order ASG is sensitive to the contents of the IR. In particular, IR bits 7 and 6 may be used to
clear, complement, or set the E-register. However, ASG causes the top of the Save Stack to be loaded
into the CMAR unless an ASG skip condition is met. This pseudo-RTN is usually undesirable in a user
microprogram. The simplest way to prevent the undesired loading of the CMAR is to satisfy an ASG
skip condition by setting bit 0 of the IR. For an ASG, IR bit 0 = 1 is the equivalent of an Assembler
RSS, i.e., a satisfied ASG skip condition. With the use of the microinstructions shown below, the
E-register will be set, and the microinstruction following the ASG will be executed next:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM I._UN IRCM 301B IRC?7,6,1) =1,1,1 = CCE, RSS.
ASG CCE

7-9. SETTING AND CLEARING OVERFLOW

Some guidelines for programmatically setting and clearing the Overflow register are shown below.
The use of the SOV, COV, ENVE micro-orders are involved.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

*

EXPLICITLY SETTING & CLEARING OVERFLOW

SOV EXPLICITLY SETS OVERFLOW
cov EXPLICITLY CLEARS OVERFLOW
*
» SETTINGOVERFLOWWITHSHIFT OPERATION
ARS L1 B B IF B15 NOT = B14 PRIOR TO L1,
» OVERFLOW WILL BE SET AFTER ARS
» EXECUTES
» SETTINGOVERFLOWARITHMETICALLY
IMM COV HIGH L 200B L = 040377 = LARGE + NUMBER
MM HIGH S3 200B 53 = 040377 = LARGE + NUMBER
ENVE ADD S3 S3 OVERFLOW WILL BE SET
*
IMM cOV HIGH L 0 L1S = 0
IMM HIGH S3 177B 53 = 077777
ENVE INC S3 s3 QVERFLOW WILL BE SET
*
» THE FOLLOWINGWILL NOT SET OVERFLOWCORRECTLY
IMM cOV HIGH L 200B L = 040377 = LARGE + NUMBER
IMM CMHI S3 200B 53 = 137000 = LARGE - NUMBER

ENVE SUB S3 S3 OVERFLOW WILL NOT BE SET

The rule for setting the Overflow register arithmetically is summarized in figure 7-1.

7-10

Considerations

START

OVERFLOW
REGISTER
SET

OVERFLOW
REGISTER
UNALTERED

END

7115-23

Figure 7-1. Overflow Register Control

7-11

Considerations

7-10. THE USE OF PNM

For time-critical loops, the PNM micro-order can be used as shown in the microroutine below to reduce
loop execution times. The microinstruction at label LOOP uses PNM to initialize M for the current
READ and to update P for the next READ. Since these functions usually require two micro-
instructions, loop execution time reduces by one microinstruction. Saving P and initializing P with the
buffer address (assumed to be in B) uses two control memory locations. Microprogram specifications
determine whether the control memory/execution time tradeoff is worth while. Note that the restora-
tion of P is “buried” in preparing to exit the microprogram, as in line MPEND:

ALU/
OP/ MOD/ S-BUS/

LABEL BRCH SPCL COND STR ADDRESS COMMENTS

S3 P SAVE P

P B P = BUFFER ADDRESS
LoorP READ iNC PNM P READ BUFFER, UPDATE BUFFER
LOOPEND ADDRESS.
MPEND READ RTN INC PNM S3 FIX, P, START FETCH FOR NEXT
* INSTRUCTION.

7-11. THE CNTR MICRO-ORDER

If a loop requires 256 or fewer repetitions, and the IR contents are not required, the CNTR micro-order
can be used as shown in the microroutine below to reduce loop execution time. Incrementing the CNTR
is “buried” in line LOOP. Since loop count updating using a scratch register, (or general purpose
register) would require a separate microinstruction, loop execution time is reduced by one micro-
instruction using this method. Initializing the CNTR with the loop count uses one control memory
location. Microprogram specifications determine whether the control memory/execution time tradeoff
is worth while. Note that ICNT does not use the ALU; therefore, arithmetic operations may be
performed in the same microinstruction:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
CNTR A CNTR = - LOOP COUNT.
LOOP READ ICNT iNC PNM P READ BUFFER, UPDATE BUFFER
* ADDRESS AND LOOP COUNT.

LOOPEND JMP CNDX CNT8 RJS LoOP COUNT = 0?7 NO, CONTINUE.

7-12 Change 1

Considerations

7-12. MAGNITUDE TESTS

If the magnitude of the difference between two operands is less than 32768, the limited test shown in
the microroutine that follows may be used to determine whether one of the elements to be compared is
arithmetically less than, equal to, or greater than the other element. To understand the limitation of
the test, consider integers of —1 (element 1) and + 32767 (element 2). Subtracting — 1 from + 32767
yields + 32768, which is a number that cannot be correctly represented by a 16-bit signed integer. The
result of the subtraction is ALU bit 15 set, and bits 14 through 0 clear. The AL15 conditional test
selects the C1.GT.C2 microinstruction. Clearly, element 2 (+ 32767) is greater than element 1 (—1),
and the test has failed.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

*+ LIMITEDLESSTHAN, EQUAL TO, GREATER THANTEST.

* L S3 L =C1 (FIRST ELEMENT).
SUBTRACT SUB S4 ALU = C2 - C1.
JMP CNDX ALZ EQUAL ALU =07 YES, C1 = C2.
JMP CNDX AL15 C1.GT.C2 AL15 =07 YES, C1 GREATER THAN C2,
C1.LT.C2 NO, C1 LESS THAN C2.
EQUAL
C1.6GT.C2

The test in the microroutine that follows holds for all 16-bit signed integers. Consider how integers of
—1 and + 32767 are now analyzed. Based on the XOR of the two elements, the ALZ test for equality
fails, the AL15 RJS test for equal signs fails, and the L15 test for element 1 less than element 2
succeeds which causes the C1.LT.C2 microinstruction to be selected correctly.

Note that when the signs of the elements being compared are opposite, subtraction is unnecessary
since the negatively signed element must be smaller. Note also that when the signs of the element
signs are the same, subtraction always yields a result which causes correct microinstruction selection.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

* GENERAL LESSTHAN, EQUAL TO, GREATER THANTEST.

L S3 L = C1 (FIRST ELEMENT).
X0R S4 ALU = C2 XOR C1.
JMP CNDX ALZ EQUAL ALU =07 YES, C1 = C2.
JMP CNDX AL15 RJS SUBTRACT SIGNS = ? YES, SUBTRACT.
JMP CNDX L15 C1.LT.C2 L15 =17 YES, C1 LT C2.
JMP C1.GT.C2 NO, C1 GT C2.
SUBTRACT SUB S4 ALU =C2 - C1.
JMP CNDX AL1S C1.GT.C2 AL15 = 1?7 YES, C1 GT C2.
C1.LT.C2 . NO,C1 LT C2.
EQUAL
C1.G6T.c2

7-13

Considerations

7-13. MEMORY PROTECT CONSIDERATIONS

¥f the HP .12892B Memory Protect (MP) accessory is used with the HP 21MX E-Series Computer, there
Is a relationship between certain micro-orders and Memory Protect that should be understood.

The Main Memory section and /O section are involved in the Memory Protect functions. You will also
want to refer to the read/write and microprogrammed /O considerations in this section (in addition to
the discussion of MP related micro-orders presented in the following paragraphs) for a complete
understanding of the microprogramming/Memory Protect relationship.

Memory Protect can only be enabled or disabled through use of the /O system; there are no micro-
orders that directly perform these operations. When an STC 05 instruction enables MP, main memory
access cannot occur below the value set in a Fence register and no I/O operations (except those
referencing select code 01) can occur. The Memory Protect functions are disabled by any interrupt,
interrupting to a non-I/O type instruction in a trap cell. Refer to the discussion of the Memory Protect
accessory in the HP 21 MX E-Series Computer Operating and Reference Manual and have an under-
standing of MP details before microprogramming with this accessory installed. The key points to
remember when studying the following descriptions of MP related micro-orders (also refer to table 4-1)
are that MP effectively does not allow any I/O and that at the microprogramming level you are not
necessarily under the “protective umbrella” of MP when performing main memory operations. These
factors impose upon you the responsibility of being acutely aware of the effect of your microprogram.

7-14. THE FTCH MICRO-ORDER

The FTCH micro-order stores the present contents of the M-register into the MP Violation register,
clears the MP Violation Flag flip-flop, and resets the MP Indirect Counter (indirect address levels).
The FT'CH micro-order also performs operations on CM addressing logic and is therefore to be used
only in the base set. Refer to table 4-1.

7-15. IRCM

The IRCM micro-order causes MP hardware to record the type of instruction being stored in the IR and
whether or not IR bits 5 through 0 equal 01. When MP is enabled (by an STC 05 instruction):

® Only I/O instructions with a select code of 01 may be executed.

® The IR must be loaded prior to initiating an I/O cycle with the IOG to ensure that the signal
decoding logic is enabled.

When MP is not enabled:
e No restriction is placed on select codes that are otherwise valid.

o The IR may be loaded during the execution of a microinstruction initiating the I/O cycle with IOG.

7-16. INCI

The INCI micro-order should be used whenever another level of indirect addressing is to be im-
plemented by a microprogram. After three counts of the MP Indirect Counter, the MP hardware

7-14

Considerations

effectively performs an ION micro-order (i.e., a pseudo ION), thus enabling recognition of I/O inter-
rupts by branch conditional type microinstructions. INCI has special considerations involved if used
just before a microinstruction containing the JTAB micro-order. Refer to table 4-1 and appendix C for
INCI and JTAB use. Also see interrupt handling techniques in this section.

7-17. MPCK

The MPCK micro-order should be used (particularly in main memory write operations) to ensure that
a microprogram will not alter memory below the protective address “fence” set in MP. When this
micro-order is used and a MP violation is detected:

e All subsequent READ microinstructions end with invalid data in the T-register.
® No WRTE micro-order will be executed.

e All I/O signals from the computer are inhibited until after the next FTCH or IAK micro-order is
executed.

® Any attempt to alter the P- or S-register will fail.

Refer to the read and write considerations outlined in paragraph 7-4 for using MPCK and to table 4-1
for restrictions when using MPCK.

7-18. THE I10G MICRO-ORDER

If Memory Protect is enabled, the use of the IOG micro-order causes a check of the select code and the
MP Violation Flag flip-flop is set if the select code (IR bits 5 through 0) is not equal to 01. If an MP
violation is detected, the actions described for the MPCK, micro-order (above) take place.

7-19. IAK

When an IAK micro-order is executed, the MP Indirect Counter is cleared. The IAK micro-order also
causes the computer to “freeze” (i.e., stop executing microinstructions) until I/O period T6 occurs and
then issue an IAK signal, acknowledging receipt of an interrupt request, to the requesting device. If
the interrupt device select code is 05, the PARITY indicator on the Operator Panel is cleared and the
MP Violation Flag flip-flop is cleared. Whenever IAK executes, logic in the MP hardware determines
whether or not the MP should be disabled (clear the control bit). This hardware determination is made
six microinstructions after the IAK. MP is disabled if no I/O instruction (IOG) micro-instruction is
executed or if a halt is executed. To re-enable Memory Protect, an STC 05 instruction is required.

7-20. THE IOFF MICRO-ORDER

The IOFF micro-order turns off recognition of I/0 interrupts but does not disable Memory Protect. The
Memory Parity function shares the same interrupt location as MP and the Operating and Reference
Manual provides information for determining the source of an interrupt. The DMS accessory also
works in conjunction with MP for certain functions which are also described in the Operating and
Reference Manual.

7-15

manual de.zﬁnes and describes the timing for the computer. Summary information on timing is
presented in subsequent paragraphs but you should be familiar with the concepts presented in section
D before attempting microprogrammed VO.

Also provided in subsequent paragraphs are applicable information on signal generation by the I/O
section; I/0O control, and data transfer guidelines for microprogramming; and interrupt handling rules.
In addition to the information in paragraph 7-13, Memory Protect in relation to I/O is discussed
briefly. Guidelines for forming and executing microprogrammed I/O instructions are included and
some special I/O techniques are covered. These special techniques are referenced from section 13.

7-23. SYNCHRONIZING WITH THE 1/O SECTION

The I/O cycle consists of five T-periods designated T2 through T6. Specific I/O activity is restricted to
certain T-periods in order to synchronize data flag setting, data latching, and resolving multiple
interrupt requests. (Section 14 provides an example of I/O microprogramming that you can reference
while studying the following information.) Microinstructions in T-periods generally execute in 280
nanoseconds for each T-period (see section 5 on timing variations).

A microprogram becomes synchronized with the I/O system when the Control Processor detects an IOG
micro-order. When this occurs, the Control Processor “freezes” (i.e., stops executing microinstructions)
until period T2. Any other micro-orders in the microinstruction containing I0G are executed without
delay but the IOG is not executed until T2. The next microinstruction is executed during period T3, the
next during T4, and so on. IOG may be used in any microinstruction that does not require some other

Special or Modifier micro-order.

*Refer to HP 21IMX E-Series Computer Operating and Reference Manual specifications for DCPC
latency.

7-16

Considerations

As can be realized, the relationship between microinstruction execution and the I/O T-periods places
certain restrictions on the use of some registers and micro-orders. In order for your microprograms to
execute properly, you must observe the following rules:

e Do not start an I/O cycle (using IOG) before data is transferred from the T-register following a
READ operation. The reason is that if the IOG causes a freeze, the data in the T-register will be
invalid. For example, a microinstruction sequence similar to the following must not be

programmed:
ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ iNC PNM P

10G PASS S4 TAB

® Load the Instruction Register before issuing an IOG unless there is no chance that Memory Protect
is enabled. (See paragraph 7-31 on special techniques.)

The following conditions will always cause the Control Processor to freeze in order to synchronize with
the I/O section:

e An IOG is in the Special field and either the cycle period is not T2 or the DCPC is operating.

¢ An JAK micro-order is in the Special field and either the I/O cycle period is not T6 or the DCPC is
operating.

It should be noted that the HP 21MX E-Series Computer main memory read and write operations may
cause microinstruction execution delays that are defined as “pauses”. This is not the same as “freez-
ing” to synchronize with the I/O section. Refer to section 5 for details.

7-24. 1/0 SECTION SIGNAL GENERATION

When the IOG micro-order is executed, the I/O system sends I/O backplane signals to the I/0O devices
starting at period T3 according to the contents of the Instruction Register (IR). These signals are
different and separate from micro-orders. For example, on a data output transfer, the IOG micro-order
causes the I/O section to generate the 100 signal during T3 and T4 (caused by IR bits 8,7, and 6 =
1,0,0). But the micro-order 100 (which only serves to connect the S-bus and I/O bus) must be
microprogrammed to be present during T4 and T5. If the proper microprogramming sequence is not
followed there will be (in this case) a race condition between the backplane IOO signal and the effect of
the I00 micro-order.

7-17

B = il

. BACKPLANE
1100 IF; ,; BACKPLANE I/O SIGNAL
6 I/0 SIGNAL TIME GENERAL USE
X X
y 00 0 none T3 Clear the Run flip-glop on the CPU (HLT).
X x 0
0 0 1 STF T3 Set device flag (STF).
X
X 1 x x 1 CLF T4 Clear device flag (CLF).
X X 0 1 iti
y 0 SFC T3-T5 SKPF condition is true if and only if the
device flag is clear (SFC).

X Xy 0 1 1 ition |

SFS T3-T5 SKPF condition is true if and only if the

device flag is set (SFS).

X X y 1 0 x 101

\ T4 If the corresponding select code is not
between 1 and 7 (during T4 only), transfer
the input data latch on the device onto the

/O bus (MIA/B, LIA/B).
TS Transfer the input data latch on the device

onto the 1/O-bus.

X X 11 x i

y 100 T3-T4 Store the /0 bus into the input data latch
on the device (OTA/B).

0 x y 11 1 S1LY T4 Qat lay

e deviee contrl fag STC)

Xy 111

CLC T4 Clear device control flag (CLG).

NOTE:

"Bit entries with x are not significant for the /O signal specified. If bit 9 is set the device flag is cleared: if bit 9 is
clear the device flag is not altered. Bit 9 entries with y indicate the option available to hold or clear the device
flag in these instructions. Bits 5 through 0 (not shown) indicate the select code for the device. (Assembler
instructions STO, CLO, SOC, and SOS all referring to the Overflow register always have bits 5 through 0 = 01
(octal).

In order for your microprogram to perform an I/O operation, IR bits 5 through 0 must contain the select
code (SC) of the device that is to respond to the I/0 signals. As shown in table 7-1, IR bits 11 through 6
determine which I/O signals are sent. The IR must be loaded prior to or during occurrence of the IOG to
ensure that the correct signals are sent to the desired SC (refer to paragraph 7-23). If Memory Protect
is enabled, the IR must be loaded prior to issuing IOG (refer to paragraphs 7-13 and 7-28). With certain
exceptions, I/O can not be done with MP enabled (refer to paragraph 7-31).

Select codes 00,01,02,03,04, and 05 are usually used by the interrupt system, the Operator Panel, D}lal
Channel Port Controller (DCPC), power fail, and Memory Protect/parity interfaces and accessories.
For a description of the effect of I/O signals on these select codes, refer to the HP 21MX E-Series

Computer Operating and Reference Manual.

7-18

Considerations

7-25. 1/0 CONTROL

A microprogram can generate I/O control signals for the select code of an I/O device without I/O data
transfer. As previously described, IR bits 5 through 0 must contain the SC of the device and bits 11
through 6 may specify any of the following control signals:

STF CLF SFC SFS STC CLC HLT

Note that CLF can be generated in conjunction with any other signal simply by setting IR bit 9 to 1 as
shown in table 7-1. For example, the Assembly language instruction combination STC,C can be
simulated by setting IR bits 11 through 6 to 0x1111 (where x means “don’t care”). (Refer to table 7-1.)
An /O control routine with the IR specifying STC and select code 05 can be used to re-enable Memory
Protect.

For SFS and SFC, the state of the device flag may be tested by a conditional branch microinstruction
(word type III) having micro-order SKPF in the Condition field. Micro-order SKPF is true only when
the SFS I/0 signal is present and the flag is set, or when SFC is present and the flag is clear. The SKPF
test should be microprogrammed to occur during I/O period T4 or T5 (i.e., two or three microinstruc-
tions after the IOG). Any operation desired may be performed as a result of this test; for example,
incrementing the contents of the P-register causes a skip in the main memory program. Refer to
paragraph 7-30 for examples of forming and executing I/O control microinstructions.

7-26. 1/0 OUTPUT

An I/O output routine must use both the IOG and IOO micro-orders. (Special exceptions are discussed
in section 13). The IR must contain the bits that specify the IOO signal and the SC of the IOO device.
The same bit pattern for STC.C also specifies the IOO signal. The IOO micro-order connects the S-bus
to the 1/O bus. Do not confuse this with the I0O backplane I/O signal (refer to paragraph 7-24). The
microprogram must put the proper data on the S-bus, then direct it onto the I/O bus. The 100

backplane signal latches the 1/0 bus data into the I/O device interface card. Detailed timing require-
ments are:

® During I/O period T3, the S-bus must be driven by the register containing the output data to
prepare for the transfer to the I/O bus.

® During T4 and T5, the S-bus must be driven by the same register and the I00O micro-order must be
in the Store field. This ensures valid data on the 1/O bus.

For example, an OTA/B instruction can be simulated by the following sequence of microinstructions:

ALY/
opP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
G0 I10G T2
CAB T3
100 CAB T4

RTN 100 CAB TS5

7-19

Considerations

7-27. 1/0 INPUT

An /O input routine must use both the I0G and 101 micro-orders, and the IR must contain the bits
that specify the IOI signal and the SC of the I/O device. Special exceptions are discussed in section 13.)
The IOI signal transfers data from the I/O device interface card to the I/O bus and the IOI micro-order
connects the I/O bus to the S-bus to allow data to be present for latching into a register. The IOI
micro-order is used in the I/O cycle during T5 to input data from the I/O bus onto the S-bus. Do not
confuse this with the 101 backplane I/O signal present during T4 and T5. (Refer to paragraph 7-24.)
For example, an LIA/B instruction can be simulated by the following microinstruction sequence:

ALY/
opP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
INPUT 106G T2
NOP T3
NOP T4

RTN CAB 101 T8

You can see from the above that parts of some I/O microroutines may have unused microinstruction
periods. Caution is required when using these periods. Until all I/O-related microinstructions have
been executed for an I/O cycle, do not use microinstructions that may cause the CPU to freeze. (Refer to
paragraph 7-23.) In the above 1/O input example, if the T3 and T4 NOP’s were replaced by READ and
TAB micro-orders (in T3 and T4 respectively), the CPU would pause in the middle of T4 and IOI would
not be executed until too late to correctly handle the data transfer. On the other hand, during an I/O
control routine that is not generating SFS or SFC signals, many kinds of microinstructions can be used
after the IO0G.

7-28. MEMORY PROTECTION IN RELATION TO 1/0

When an instruction is loaded into the Instruction Register, Memory Protect (MP) records information
about the instruction. When an IOG micro-order is detected, MP checks the select code (IR bits 5
through 0). If the SC is not equal to 01, MP inhibits any I/O signals and prevents the Control Processor
from altering main memory or the P- or S- registers, and generates an interrupt request. (A micropro-
gram cannot prevent this if MP is enabled.) Thus, MP protects a portion of memory and maintains
compatibility with HP software operating systems for I/O operations even in the microprogramming
environment. Refer to the HP 2IMX E-Series Computer Operating and Reference Manual and to
paragraph 7-13 for further details on Memory Protect.

7-29. INTERRUPT HANDLING

Once a microprogram starts executing, it has complete control over the computer until it terminates. It
can not be interrupted, suspended, or terminated unless the microprogram itself checks for interrupts.
It is not desirable to hold off interrupts for very long and you must decide how long your micropro-
grams can be allowed to execute before testing for an interrupt. In making this decision, consider the
impact that a long non-interruptible microprogram can have in the RTE environment.

7-20

Considerations

When a microprogram detects an interrupt, it should execute a JSB to a microroutine that saves
whatever is necessary to allow the microprogram to continue after the interrupt is serviced or to
provide for complete restart of the microprogram. (Refer to microprogram examples in section 14 for
an illustration.) The P-register must be set to point to an address one location beyond the main
memory instruction that invokes the microprogram (the instruction that was interrupted). The
M-register will be adjusted to point to the address of the main memory instruction that will handle the
interrupt. It will be readjusted later so no special conditions are placed on M. For example, suppose
your main memory instruction invoking a microprogram resides in the location designated I. Then, if
your microprogram tests for and detects an interrupt you must:

e EnsureP=1+ 1.

e Execute a RTN (or JMP to control memory location 6 if in a microsubroutine). This is described in
more detail below.

If parameters are saved, the microprogram must be written to begin with a test that determines the
starting point of the microprogram based on whether or not the microprogram was interrupted.

Generally, to initiate interrupt service, your microprograms must branch (JMP) or return (RTN) to
control memory location 6 where the base set microprogram takes the trap cell address from the
Central Interrupt Register and gives control to a main memory routine which services the interrupt.
When the main memory interrupt routine which services the interrupt terminates, the interrupted
microprogram is restarted (assuming the P-register was properly set upon interrupt detection). A
check must be made to see if the interrupt system is turned on.

The presence of a pending interrupt or halt request can be detected by a microprogram in two ways:

¢ Executing a conditional test microinstruction (JMP CNDX) having HOI or NINT in the Condition
field.

¢ Executing a JMP or RTN to CM location 0; a pending interrupt or halt will cause control memory
addrss 6 to be loaded into the CMAR to handle the interrupt.

Using a RTN to pass control to control memory location 6, as shown in the microroutine below, line
EXIT1, will not work if the microroutine being exited was entered with a JSB. Using a JMP to location
6, as in line JUMP (in the microroutine below) will always work. NINT may also be used to check for
interrupts. Note that NINT is not sensitive to halts.

7-21

Considerations

ALU/

OoP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

JMP CNDX HOI EXIT1 INTERRUPT? YES, EXIT
EXIT1 RTN DEC P P FIXP, RTN (??),

JMP CNDX HOI EXIT2 INTERRUPT? YES, EXIT.
EXIT2 DEC P P FIXP, EXIT TO HALT-0OR-
JUMP JMP 6 INTERRUPT MICROROUTINE.

When the Halt-Or-Interrupt microroutine is reached, the P-register is decremented and a test is made
to see if the Operator Panel was used to cause a halt. If not, an IAK micro-order freezes the Control
Processor until I/O period T6, then causes the I/O system to send an IAK signal to the interrupting
device. A CIR micro-order causes the interrupting device’s SC (trap cell address) to be placed on the
S-bus, then this is stored into the lower-order 6 bits of the M-register (high order bits = 0). A read from
the address in the M-register obtains the first instruction of the main memory interrupt handling
program,

Suppose a microprogram is to be interruptible, but only by emergency interrupts (i.e., halt, parity
error, DMS, Memory Protect). An HOI conditional test detects emergency interrupts, but also detects
1/O interrupts. However, issuing an IOFF prior to the HOI test prevents detection of I/O interrupts.
Issuing an ION after the HOI test reenables detection of /O interrupts. The microroutine below
illustrates this process. Note that IOFF and ION control only the detectability of power fail and I/O
interrupts, and do not turn off or turn on the interrupt system. Note also that I/O interrupts held off by
an IOFF condition remain pending (i.e., are not lost), and are detectable when the ION condition is
re-established:

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
I0FF PREVENT DETECTION OF I/0
* INTERRUPTS
JMP CNDX HOI INTRPT TEST FOR DETECTABLE INTERRUPTS,
I.E., HALT, PARITY ERROR,
DMS, MEMORY PROTECT.
10N REENABLE DETECTION OF 1/0
* INTERRUPTS.

7-22 Change 1

Considerations

7-30. FORMING AND EXECUTING MICROPROGRAMMED 1/O
INSTRUCTIONS

The following continuous example microroutines show how to accomplish formation and execution of
some microprogrammed I/O instructions. These examples are offered as models for you to write
microprograms that perform I/0 functions. Note that putting the select code (SC) in the L-register is
prerequisite to using the IOR in the STC line. MPP and block I/O transfers require somewhat different
I/O instruction formats. MPP and block I/O transfers are discussed in section 13.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

]

* READCIR (CENTRAL INTERRUPT REGISTER)

CIR L CIR L=SC (SELECT CODE).
*
* FORMANDEXECUTE STC SC, C.
STC IMM L4 CMLO S8 303B S8 = 001700 = STC 0,C.
IOR S8 S8 FORM STC SC,C.
*
106 IRCM S8 T2 EXECUTE STC, SC,C.
*
* FORMANDEXECUTELI*SC.
LT» IMM CMHI S4 376B S4 = 000400 = LI 0.
IOR 54 S4 FORM LI+ SC.
*
106 IRCM 54 T2 EXECUTES LI+ SC.
NOP T3 SEE NOTE 1.
NOP T4 SEE NOTE 1.
S5 101 T5 S5 = DATA.
*
» FORMANDEXECUTE OT* SC,
aTs MM LA CMLO S9 77B S9 = 000600 = OT* 0.
IDR S9 59 FORM DT* SC.
*
106 IRCM S9 T2 EXECUTE OT# SC.
S5 T3 SEE NOTE 4.
100 S5 T4 DATA CLOCKED OUT AT,
100 S5 TS5 T4/TS INTERFACE.
*
» FORMANDEXECUTE SFSSC.
SFS IMM cMLO S10 77B S10 = 000300 = SFS 0,
IOR S10 510 FORM SFS SC.
*
WAIT 106 IRCM S10 T2 EXECUTE SFS SC.
NOP T3 SEE NOTES 1, AND 2.
JMP CNDX SKPF RJS WAIT T4 SEE NOTE 3.
*
* LOADCIR, ACKNDWLEDGE INTERRUPT
1AK 1AK T6
* .
*NOTES::

* 1. ANY NON-FREEZABLE MICROINSTRUCTIONS MAY BE USED IN PLACE OF THE NOP.

* 2. THE FLAG CAN BE SENSED NO EARLIER THAN T4,

* 3. EACH ATTEMPT TO SENSE THE FLAG REQUIRES AN I0G: THEREFDRE, THE JMP TARGET FOR
UNSUCCESSFUL SENSING OF THE FLAG MUST BE WAIT NOT **# 7, ‘

4. SEE PARAGRAPH 7-24, SIGNAL GENERATION C1.E., THE 100 SIGNAL AND 100 MICRO-0RDER ARE NO
ONE IN THE SAME).

* % %

Change 1 7-23

Considerations

7-31. SPECIAL /O TECHNIQUES

The following microroutine shows how to perform microprogrammed I/O with both the interrupt
system and Memory Protect enabled. This is desirable when writing I/O data into main memory in a
DMS environment, and/or Memory Protect checks are required. The microroutine shown assumes that
S3 and S5 have previously been initialized with the device select code and current buffer address,
respectively. An input function, LT*, will be performed: **” indicates that the microroutine selects the
input data register.

Lines FAKESC and REALSC work together to enable execution of an I/O instruction with Memory
Protect enabled. Micro-order I0G, in addition to initiating an I/O operation, checks the I/O operation
select code (i.e., IR bits 5 through 0). If the select code is 01, the I/O operation proceeds. Attempting to
use any other select code inhibits the [/O operation and generates a Memory Protect interrupt.
However, IOG checks the select code before the store into the IR in line REALSC completes; therefore,
the select code of 01 stored into the IR in line FAKESC is tested and the I/O operation proceeds with no
Memory Protect interrupt generated. Note that the real operation code and select code stored into the
IR in line REALSC determine the actual I/O operation performed.

If the write to main memory generates a DMS or Memory Protect interrupt, the HOI conditional test
detects the interrupt and terminates the microprogram. The IOFF micro-order prevents detection of
[/O interrupts permitting “privileged” I/O as required for the MPP or block 1/O transfer. Section 13
contains examples of MPP and block I/O microprograms.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
L S3 L = SC (SELECT CODE).
IMM CMHI S4 376B S4 = 000400 = LI+ 0.
10FF I0R S4 sS4 S4 =L1+5SC.
FAKESC IMM LOW IRCM 1 IR(5-0) = 1.
REALSC 106G IRCM S4 IR=1LI* SC.
*
M SS M = BUFFER ADDRESS.
S6 101 S6 = DATA.
WRTE MPCK TAB S6 WRTE DATA, DO MPCK.
*
JMP CNDX HO1 INTRPT TEST FOR HALT, POWER FAIL,
* PARITY ERROR, DMS, OR

MEMORY PROTECT INTERRUPTS.

7-32. T/O MICRO-ORDER SUMMARY

All micro-orders that are generally used in I/O microprogramming are summarized in table 7-2 for
your reference.

7-24 Change 1

Considerations

Table 7-2. I/O Micro-Order Summary

MICRO- WORD
ORDER TYPE FIELD CONDENSED MEANING
IAK [Il Spec. At T6, load the CIR and issue the IAK signal.

IOFF* 1, Spec. Disable normal interrupt recognition.

10G*~ [N Spec. Freeze action until T2 then do what is in the IR.

ION** (Al Spec. Re-enable normal interrupt recognition.

100 [, 1l Store Connect the S-bus to the I/O bus (for output); used after an 10G
micro-order.

CIR [S-bus Put the CIR content on the S-bus.

10) | S-bus Connect the /O bus to the S-bus.

HOI 1 Cond. If there is a halt or an interrupt pending, branch to the CM address
in this microinstruction address field.

NINT I Cond. If there is no interrupt pending, branch to the CM address in this
microinstruction address field.

SKPF 1l Cond. Check to see if /O signal SFS is present (T3 to T5) and the
addressed VO device’s flag is set. If the above conditions are true,
branch to the CM address shown in this microinstructions address
field.

_ OR —
Check to see if SFC signal is present (T3 to T5) and the /O
device's flag is clear.
NOTES:

*This micro-order can also be used in the Special field of a word type IV (unconditional branch
microinstruction).

**This can be used in the Special field of word type IV microinstructions. The branch microaddress is modified
by bits in the IR. See table 4-1 expianations.

7-25

Considerations

7-33. DYNAMIC MAPPING SYSTEM CONSIDERATIONS

If you have the HP 13305A Dynamic Mapping System (DMS) installed there are a number of
Assembly language instructions that may be used to program the accessory. These Assembly language
instructions invoke HP written microroutines in the HP reserved area of CM to operate DMS
according to HP’s design specifications. The micro-orders used in HP’s microinstructions and micro-
routines for controlling DMS are also available for your microprogramming use.

It is beyond the scope of this manual to discuss HP’s method of operating DMS or describing operation
of the DMS hardware. However, a discussion of the three micro-orders (referenced from table 4-1) you
may use and the DMS signals generated is within the scope of user microprogramming. (For more
information on HP 13305A DMS operation and the applicable HP Assembler language instructions
refer to the HP 21MX E-Series Computer Operating and Reference Manual). A prerequisite to using
the DMS micro-orders described below is that you be thoroughly familiar with the DMS and its
operation.

With DMS instatled, the Memory Expansion Module (MEM), residing (logically) in front of the main
memory controllej{f Yforms a 20-bit address from the 15-bit main memory address received on the
M-bus. DMS always “looks at” the M-bus address and MEM creates the 20-bit address for DMS
according to control signals received from the Control Processor. The control signals, of course, are
generated because of the Control Processor’s decoding of microinstructions from CM. The three
micro-orders; MESP (in the Special field), MEU (in the Store field), and MEU (in the S-bus field) that
can be used in microinstructions involving DMS, must be used in tandem. That is, a signal sent to the
DMS is generated from the “decoding” of a specific combination of the three micro-orders.

There are three signals generated directly from control memory that are used to control the MEM. In
the Special field, “MESP” generates MESP. In the Store field, “MEU” generates the MEST signal. In
the S-bus field “MEU” generates MEEN.Other signals which directly affect the MEM are MPCK,
READ, TEN, IAK (CIREN). Table 7-3 indicates what ‘control line’ signal is generated by each
combination of the micro-orders. The three micro-orders are used in a one-of-eight command structure.
Because a combination of all three micro-orders must be used (Special field, Store field, S-bus field)
only word type I microinstructions are used for DMS. Table 7-4 lists all the functions performed by
each of the control signals referenced by table 7-3. The DMS functions are performed only in the
microcycle during which they are asserted (with the exception of Q,, port 1).

7-26

Considerations

Table 7-3. MEM Signals Invoked by Micro-Orders

MEM RULES
LABEL opP SPEC ALU STORE S-BUS SIGNAL (SEE NOTES)
@ @ MESP @ MEU MEU Q, 1,2, 3
@ @ MESP @ MEU $ Q, 1,23
@ @ MESP @ $ MEU Q, 1,2, 3
@ @ MESP @ $ $ Q, 1,3
@ @ * @ MEU MEU Q, 3
@ @ * @ MEU $ Qs 3, 4
@ @ > @ $ MEU Qs —
@ @ * @ $ $ Q; —
@ = Any legal code
* = Any legal code except MESP
$ = Any legal code except MEU p
I gmputer
RULES GOVERNING MEM SIGNALS: Museum
1. Must have a READ or RJ30 or WRTE in progress. A
2. Must not occur in the next microinstruction following a READ or RJ30 or WRTE.
3. Must not occur in the same microinstruction as READ or RJ30 or WRTE.
4. Must be a READ or RJ30 or WRTE in progress before use of the micro-order.

Additional control information:

When issuing a Q; command, further information is needed to indicate the utility register into
which you wish to store information. Since the information has been presented on the S-bus and
none of the registers require more than 11 bits of information themselves, several of the S-bus bits
are reserved for determination of which register is activated.

e Bit 14 indicates that the MEM State Registers are to be loaded (i.e., enable/disable MEM; select
system/user map). Bits 9 and 8 contain the status information.

e Bit 13 indicates that the Address Register is to be loaded. Bits 7 through 0 contain the address

information.
e Ifa Q,signal has preceded this step by exactly one microcycle (i.e., Q;, Qs in a row), then bit 14 will
indicate that the Fence Register is to be loaded. Bits 10 through 0 contain the fence information.
'

Bit 15 is used to override the Protected Mode, thus allowing these registers (specifically the State
Registers) to be altered under microprogram control at any time.

7-27

Considerations

Table 7-4. DMS Micro-Order Control Signals

SIGNAL FUNCTION
Q, - Enable SYS/USR map to S-bus per MEAR bit 5:0 = SYS, 1 = USR.
2. Store S-bus into PORTA/PORTB map per MEAR bit 7:0 = PORTA, 1 = PORTB.
. Relative map address specified by MEAR bits 4 through 0.
Q - Store S-bus into maps per MEAR bits 6 and 5:00 = SYS, 01 = USR, 10 = PORTA, 11 =
PORTB.
. Relative map address specified by MEAR bits 4 through 0.
Q, - Enable maps to S-bus per MEAR bits 6 and 5:00 = SYS, 01 = USR, 10 = PORTA, 11 =
PORTB.
2. S-bus bits 13 through 10 are always low.
. Relative map address specified by MEAR bits 4 through 0.
Q, . Select opposite program map (does not change currently selected map per Q).
. Can generate DMAFRZ to CPU.
Q, . Set "Status Command” flag through next Control Processor cycle (defines Q, operation).
. Reset to currently selected program map (nullifies Q).
3. Set “Enable Base Page Fence" Flag through next Control Processor cycle (partly defines
Q, operation).
Q; . Store S-bus into MEM (other than maps)
a. MEM State Register (2 bits) = S-bus bits 9,8: If S-bus bit 9 = 0, disable MEM: = 1,
l enable MEM. If S-bus bit 8 = 0, select SYS maps; = 1, select USR maps.
b. MEM Base Page Fence Register (11 bits) = S-bus bits 10 through 0.
¢. MEM address Register (7 bits) = S-bus bits 6 through 0.
. Register selected by S-bus bits 15 through 13: If S-bus bits 15 through 13 = 000 = Base
| Page Fence Register; 001 = Address Register; 010 = State Register.
Qy . Enable MEM data (other than maps) onto S-bus.
a. Normally enables MEM Violation Register.
b. If preceded By Q, signal microinstruction, Status Register enabled.
Q; . No MEM (DMS) microinstruction specified (NOP state for MEM).
Notes:
1. MEAR is the MEM Address Register.
2. MAP bits 9-0 are transferred to/from S-bus bits 9-0.
3. MAP bits 11, 10 are transferred to/from S-bus bits 15, 14.
4. USR = User.
5. 8YS = System.

7-28 Change 1

Considerations

7-34. GUIDELINES FOR WRITING LOADERS

Table 4-1 describes the HP IBL loader microprogram techniques, bit patterns for the Operator Panel
registers, and information on the Remote Program Load Configuration Switches. Normally the HP
supplied IBL microprograms will suffice for all user needs. If, however, you desire to write your own
loader the guidelines outlined below may be of assistance. In addition, refer to the base set listing in
appendix G (the IBL and Operator Panel microroutines) for examples of a workable loader and
information on the use of the DES, LDR, DSPI, and DSPL micro-orders.

If you write your loader, it should be prepared exactly in the way you wish it to execute. The base set
will configure the select code according to the information entered into the Operator Panel. One
method that may work for you is to write the loader first in Assembly language then convert it to
“machine code,” then to a microprogram and finally, fuse the pROM’s. If you have a double select code
(i.e., magnetic tape or disc, SC10 and SC11, for example) the data channel select code should come
first, then the command channel. In addition, follow these guides:

® There should be 64 (main memory) words or less designed to start at x7700, where x = 0, 1,
2,....7.

e All select codes in the loader I/O instructions will be configured at IBL time as follows:

— S-register bits 11 through 6 will be taken as the configuring select code, 10 (octal) will be
subtracted from the configuring select code and the result added to the select code part of all
loader I/0O instructions except: if the select code in a loader I/O instruction is less than 10 (octal),
the select code will not be modified.

— Note that loader constants having bit 15 on, bits 14 through 12 off, bit 10 on, and bits 8 through
6 anything but 000 (this prevents halts from being configured), will be interpreted as /O
instructions and will be configured as per the information just presented above.

e At IBL time:

— Word 64 of the loader will be forced to the starting address of the loader in two’s complement
form.

— Word 63 of the loader will be unconditionally configured as described above (i.e., S-register bits
11 through 6 will be taken as the configuring select code, etc.). The standard HP loaders use
word 63 as DCPC Control Word 1.

7-35. SUMMARY

In using any of the guidelines and microroutine examples presented in this section you must make the
final judgement as to “usability” and “workability” of the microprograms you create because of the
wide range of applications for microprograms. The base set (appendix G) should be referred to as an

example of “correct” microprogramming. Also, section 14 provides examples of microprograms you
may be able to use.

With the completion of your study of this section you are prepared to write microprograms for use in
the HP 21MX E-Series Computers. The use of microprogramming support software is also necessary
and the following sections of the manual provide all the rest of the information you need.

7-29/7-30

Section 8
PREPRATION WITH THE MICROASSEMBLER IR

PREPARATION WITH
THE MICROASSEMBLER|[g

With the information in this final section of part II you will be able to prepare your microprograms so
that they will be accepted by the RTE Microassembler. If properly prepared, your microprogram will
be processed (using information in section 9) to generate micro-object code which is ready to load into
WCS for execution in the computer. The section provides:

® A suggested method for preparing your microprograms.
® A description of the microassembler character set, fields, and other rules for preparation.
® Microassembler control methods.

® Methods of making microprogram starting address assignments and making other modifications
using the pseudo-microinstructions.

The information in this section requires as a prerequisite, a study of the preceding sections (particu-
larly sections 4 and 6).

8-1. PLANNING AND PREPARATION

Using the information on the microassembler (starting in paragraph 8-6) you can prepare your
microprogram for input to the microassembler on punched cards, paper tape, or magnetic tape
cartridges. It is suggested, however, that it may be easier to prepare the microprogram on a disc file.
To prepare a file containing a microprogram, use the RTE system Interactive Editor as outlined below.

8-2. PLANNING

Plan the microprogram essentially the same way as for an Assembly language program but base the
objective on the concepts discussed in section 1. Steps that must be taken to achieve the objective
should be clear and the logical sequence for the microprogram perhaps prepared in flowchart form.

To prepare a microprogram taking full advantage of your system’s RTE Interactive Editor program
(EDITR), all that is needed is pencil, paper, and the system console. The instructions given here are
intended for use at the system console in a single-user environment. If you are operating in a
Multi-Terminal Monitor (MTM) environment, it is assumed that you have taken the HP RTE training
course or have the assistance of a person familiar with the MTM.

The EDITR program provides the tool for generating the source code, and the RTE FMGR program
provides a means for storing microprogram sources as files. The files can be accessed later for editing
and microassembling. Complete instructions for using these RTE system programs are beyond the
scope of this manual which only provides guidelines for use to prepare and edit microprograms.
Complete information on the EDITR and FMGR is provided in other documentation supplied with
your RTE-II or RTE-III system. If you have an RTE-II system, it is recommended that you obtain a
copy of RTE-1l1: A Guide for New Users, part no. 92060-90012, from a Hewlett-Packard Sales and
Service Office. The manual provides information on using the EDITR and FMGR for program prepara-
tion in either the RTE-III or RTE-II system environment.

8-1

Preparation

8-3. PRELIMINARY INFORMATION. When preparing your microprograms using the
EDITR, the first two lines of your microprogram should be the microassembler control instructions
MICMXE and $CODE; the last line should be the psuedo-microinstruction END. Paragraph 8-6
provides all the details on the microassembler you will need. You should read through these or refer to
them before actually going on-line. After the microprogram is written, press any key on the system
console to get an RTE prompt character (*). Then type RU,FMGR and press the RETURN key. The
system responds by outputting a FMGR prompt character (:). Type LS and press RETURN, the system
outputs another FMGR prompt. Type RU,EDITOR and press RETURN; the system outputs SOURCE
FILE? followed by the EDITR prompt character (/). Enter a space (blank) character and press
RETURN; the system outputs EOQF. At this point the system console should show the following:

*RU,FMGR

LS

:RU,EDITR
SOURCE FILE?
/A

EOF

/

where:
A means a space (blank) character.

Typing errors can be corrected by backspacing (or use a CONTROL H) then retyping the correct entry.

After completing the above, make subsequent corrections using the EDITR as described in the EDITR
documentation.

8-4. FIELD TEMPLATE

It should be noted at this point that if desired, you can prepare complete short microprograms using
the Microdebug Editor. The starting column for each field in microinstructions is taken care of for you
by the MDE in this case. Examples in section 14 use this method to illustrate and familiarize you with
the microprogramming support software. Details on the Microdebug Editor are included in section 10.

The method you can use to identify the starting columns for microinstruction fields when preparing
microprograms for input to the microassembler with the RTE Interactive Editor (as described in
paragraph 8-3) is to use the Editor Tab function. So, at this point, to create a “pseudo-coding form” that
will locate the starting point of each field (assuming you have followed the instructions in
paragraph 8-3); enter the following after the EDITR prompt showing on the console:

T;10,15,20,25,30,40

Press RETURN and the system will output another EDITR prompt. You may now enter your
microprogram as described in the next paragraph. Remember to enter a space after each prompt (/) to

reach column one of your “coding form”. Use the semicolon (;) key as a tab key to reach desired
microinstruction fields.

8-2

Preparation

8-5. MICROPROGRAM ENTRY

When you have a template (pseudo-coding form), enter your microprogram (prepared according to the
rules to follow). Enter a space after each prompt (/) to reach column one of your “pseudo-coding form”
(usually the EDITR “Tab” function) and terminate each line by pressing the RETURN key. You can
list any line in your microprogram by entering the number of the desired line. After entering your
complete microprogram, go back to line 1 and list the entire program by entering Lnr (where nn is the
number of lines in the program file) immediately following the EDITR prompt. Check the program for
errors and make any corrections as necessary. Now assign the file a new name by entering ECnew
(where new is a new file name) immediately after the prompt. For example:

/ECJOE1

The system outputs the message END OF EDIT followed by a FMGR prompt. At this point you will
have created a file that contains your first microprogram. If your system console is a teleprinter (TTY),
you have a hard copy of your microprogram; if your console is a CRT terminal, obtain a hard copy on
the system list device by using the FMGR LIst command (LI, JOE1). Check the copy and correct any
errors. Delete the “pseudo-coding form” line from your microprogram before microassembling (using
information in section 9).

8-6. THE MICROASSEMBLER

The RTE Microassembler translates symbolic HP 21MX E-Series microprograms into binary object
code. The object code is produced in either a standard format recognized by the RTE Microdebug Editor
and the WLOAD subroutine or a special format to be used as input to the HP ROM Simulator. The
source may be entered from an input device or the RTE system LS tracks. (Microassembler execution
will be described in section 9.) Object code may be generated to an output device as well as to a disc file.
The microassembler can also produce a symbol table map, listing of source records and generated code,
and a cross-reference symbol table which will all be described in section 9. The rules for preparation
with the microassembler are described in this section. The hardware/software environment for the
microassembler is described in section 3.

8-7. MICROASSEMBLER RULES

The RTE Microassembler accepts 72-character fixed-field source records (from the devices mentioned
in paragraph 8-6). The 72-column format allows sequencing of card decks if you choose to prepare your
source records on that type of medium. Each source record falls into one of the following categories:
e Comment

e Control command

® Microinstruction

¢ Psuedo-microinstruction

An asterisk in column one of a source record indicates that the entire microassembler source is a
comment. Control commands are described in paragraph 8-8. The microinstruction source records that
may be used are described in detail in section 4 (in particular see figures 4-3 and 4-4) but general

requirements for microassembler use are discussed in this section. The psuedo-microinstructions are
fully described in this section.

8-3

Preparation

Where there are deviations from specifications for a particular type of source record (or field as
described below) the difference will be so noted. Any ASCII character may appear in the comments
source record (i.e., asterisk in column one). Most characters are legal in labels except as noted in
paragraph 8-15. A space may only begin a field if no micro-order is specified in that field.

8-8. CONTROL COMMANDS

Control command source records affect external characteristics of the microassembly (e.g., listing and
object code formats). The control command must start in the first column. Blanks are permitted only
preceding and within comments following the control command. Control commands may be in-
tersperced with other source records to specify control over the microassembly process. Certain control
commands must be used (as mentioned in paragraph 8-3) in specific places in your microprograms. To
wit: the first source record of your microprogram must be a “MIC” control command. There are options
that may be used with some of the control commands and they are so noted in the description of each
command that follows. There should be only one control command per source record. All control
commands except MIC begin with a “$” (Dollar character) in column 1. No intervening spaces are
allowed in any control statement other than as specified.

8-9. MIC ASSEMBLY COMMAND. For the HP 21MX E-Series Computer, a MICMXE con-
trol command must be the first line in the source file. This command indicates whether the source is a
HP 21MX or HP 21MX E-Series Computer microprogram, respectively, and specifies certain micro-
assembly options. The form of the command for this computer is:

MICMXEpi,p2, . ..
where:
“pl, p2, .. .” indicates a list of parameters. The parameters are optional and may appear in any

order. The microassembly options are:

= Output object code to the punch device.

= Produce standard (relocatable) format object code.

Produce special format object code for the HP. ROM Simulator.
= List source and generated code on list device.

= List a symbol table map on the list device.

Q 39 -0 n I W
Il

= QGenerate a cross-reference on the list device.

If “B” is not specified, no punched output is produced (this option does not affect the $CODE outPut).
The “R” and “S” optional parameters are mutually exclusive; if neither is specified, the micro-
assembler defaults to the format specified for the “R” parameter. The “R” and “S” parameters affect
both the punched and $CODE (control command) output. (Note that the “B, R,” and ".S” Parametfers
operate in a manner similar to Assembler conventions.) The “S” option is a special 32-m1cr01.nstruct10n
object code format. This special HP ROM Simulator format is reserved for system maintenance.
Appendix E describes the format.

If the “L” option is not specified, only error and pass-completion messages will be written on the list
device. $LIST commands will be ignored. The “T” option provides a listing of label names ?nd the
corresponding octal address used in the microprogram. The “C” option, and all the options for
microassembler output are described in section 9.

8-4

Preparation

An example of the use of the MIC control command (starting in icolumn 1) would appear as shown
below:

MICMXE,L,T |

Here, note that the microassembler will default to the standard format object code.

8-10. THE $CODE COMMAND. The $CODE command dire‘cts object code to be written to the
specified file. The command has the following form:

$CODE=FNAME]| :{security] [:[crlabel]] [, REPLACE]

The “FNAME” parameter specifies the name of the file to be created. For the “R” parameter, a type 5
file is created for the object code to permit a checksum of the records. A type 3 file is created for “S”
format object code (to prevent a checksum of the records, which would be invalid due to the different
format) blanks are not permitted between subparameters (as indicated in paragraph 8-8). The “%”
notation for octal values generally accepted in the microassembler is treated as an alphanumeric
character string here (to be consistent with RTE). If a file with the same name already exists and the
REPLACE option is specified, the existing file is purged. Othersze, object code is generated only to
the punch device. The “security” and “crlabel” parameters indicate the file security code and disc
cartridge label respectively; these sub-parameters are optional.

Object code generated to the $CODE file depends on the “R” or “S” option specified in the MICMXE
command. For the suggested method of preparing your microprogram this control command should
appear immediately after the MIC command.

8-11. $PAGE COMMAND. The $PAGE command causes a page eject and, optionally, replaces
the heading during the listing of the microprogram. The forms of the command are:

$PAGE
$SPAGE=title

The first foim simply causes a page eject; the current heading is not altered. The second form,
additionally, replaces the heading with the character string following the equal sign. The heading
(title) is truncated after 60 characters. The $PAGE command is ignored when listing is disabled.

8-12. THE $LIST AND $NOLIST COMMANDS. The $LIST and $NOLIST commands have no
parameters. The two commands control the source listing in the second pass of the microassembly. The
$NOLIST command disables the listing of the source records and generated code until a subsequent

$LIST command is encountered. These commands are ignored if the “L” option is omitted in the MIC
assembly command.

8-13. $PUNCH AND $NOPUNCH. The $PUNCH and $NOPUNCH commands have no pa-
rameters. The effect that NOPUNCH/$PUNCH have on the output depends on the object code format
and the device. For “R” MIC command parameter format, disjoint code groups always cause a new
(DBL) record to be written to the device of $CODE file. For “S”, if the “missing” portion of code
(between two disjoint code groups) does not extend beyond the buffer, the space is simply filled with
microwords containing all 1 bits. Otherwise, leader or an end-of-file separates disjoint code groups on a
punch device or $CODE file respectively (after padding the remainder of the buffer as before).

8-5

Preparation

8-14. HP 21MX E-SERIES MICROINSTRUCTIONS

The. format of the four microinstruction word types and all the micro-orders that can be used in the
various fields are described in section 4 (in particular, figures 4-3 and 4-4). These source records can

contain up to 72 characters with the legal field entries. To summarize section 4 information, the
general uses for the four word types are defined below:

® Word type I executes:

— Data transfers between main memory, the I/O section, and the Arithmetic/Logic section.

— Logical and arithmetic functions on data.
® Word type II specifies data to be transferred to a specific register.
NOTE

Recall that the CNDX and J74 micro-orders are not permitted in
the Special field for word types I and II.

® Word type III executes a conditional branch based on flags or data values. When the OP field
micro-order is “RTN”, the address field (field 6) must be empty: comments must not appear before
column 31. Field numbers are reviewed next.

® Word type IV executes an unconditional branch or microsubroutine branch.
Microinstruction source records and psuedo-microinstruction source records (to be described in para-

graph 8-19) have similar fixed-field formats and are distinguished by the mnemonic in the OP field.
Each microinstruction source record contains seven fields with the starting column of each field as

follows:

FIELD COLUMN MEANING
1 1 Label
2 10 OP/Branch
3 15 Special, or Branch modifier
4 20 ALU, Branch Condition, or IMM modifier
5 25 Store, or Branch Sense
6 30 S-bus, Branch Address or, IMM operands
7 40 Comments (see allowable exception below)

A mnemonic in any field must begin in the first column of that field. The seventh, (Comment) field
must be separated from the last field by at least one blank column. For word type I microinstructions,
the Comment field must not appear before column 35.

8-6

Preparation

As shown in figure 4-4, the fields are fixed for microassembly language source records. A few things to
remember about the fields are:

e Field 1 can contain a label that is no longer than eight characters.

e Field 2 contains a micro-order no longer than four characters. This field can also contain a
psuedo-microinstruction (refer to paragraph 8-19 for the explanation of psuedo-microinstruction
mnemonics).

¢ Field 3 contains a micro-order no longer than four characters.
® Field 4 contains a micro-order no longer than four characters.
¢ TField 5 contains a micro-order no longer than four characters.

¢ TField 6 contains a micro-order no longer than four characters (word type I,) or an operand (word
type I1,) or an address (word types III and IV).

e Field 7 contains comments only. Field 7 ends in column 72.

Some additional comments on the fields follow.

8-15. THE LABEL FIELD. As mentioned above, a label (field 1) may be comprised of up to
eight characters. The label may contain any ASCII character except a plus (+) or a minus (~). The
first character must not be numeric or an asterisk (*), dollar sign ($), or a percent sign (%). Each label
should be unique within the microprogram and cannot contain spaces within the label. Names which
appear in EQU psuedo-microinstructions (refer to paragraph 8-19) may not be used as source record
labels in the same microprogram.

8-16. MICRO-ORDERS. Fields two through six may contain any of the legal micro-orders used
in word types I through IV. Refer to figure 4-4 for a list of the legal micro-orders. Word type II contains
an operand in field 6 which must conform to the constrains listed in table 4-1.

8-17. ADDRESS FIELDS. Word types III and IV have address expressions in field 6. The
address expressions may have one of the following forms:

number

label

label+ number
label— number
*

*+ number
*—number

The asterisk means “current address”. If “number” is preceded by a percent sign (%) or followed by a
“B”, the string represents an octal quantity. For EQU psuedo-microinstructions, any “label” must have

appeared previously in a Label field. Refer to the table 4-1 explanations of the Address fields for
further information.

Preparation

8-18. COMMENT FIELD. This optional field can be any string of characters up to the limit of

the source record (column 72). If you have comments that are long you may use an asterisk source
record in the next line.

8-19. PSEUDO-MICROINSTRUCTIONS

Psuedo-microinstructions have a direct affect on the object code generated; however, they are not
composed of micro-orders as defined by the Control Processor. The format of pseudo-microinstructions
differs slightly from that of the microinstructions. The fields are as follows:

FIELD COLUMN(S) MEANING
1 1-9 Label
2 10 OP
3 30-39 Operand

The Operand field may start in any column between 30 and 39 inclusive. A Comment field may start in
any column, separated by at least one blank column from the last field. The pseudo-microinstructions
that can be used include ORG, ALGN, END, EQU, DEF, ONES, and ZERO. The function and
constraints for the use of each pseudo-microinstruction are included below. Note the CM address
assignment and modification pseudo-microinstructions include ORG and ALGN. EQU and DEF are
also used in conjunction with CM addressing.

8-20. THE ORG PSEUDO-MICROINSTRUCTION. The starting address of each micropro-
gram must be assigned by an ORG pseudo-microinstruction. The form of the ORG pseudo-
microinstruction source record is:

LABEL oP OPERAND
— ORG expression

The ORG pseudo-microinstruction specifies the control memory address of the subsequent micro-
instructions. An ORG must precede the first generated microinstruction. Subsequent ORG pseudo-
microinstructions are permitted: however, the specified CM address must not be less than the address
of the next microinstruction. If the first ORG is not included the microassembler will default to set the
CM address of subsequent microinstructions to CM location 27000 (octal). The Operand field may be
any expression. Any label must have appeared previously in a Label field.

Section 6 on mapping and section 2 provide information on CM locations and CM software entry points
of which you should be aware before using the ORG in a microprogram. Since it is unlikely that any of
your microprograms will use an entire module, you should organize (or “map”) each of your modules to
accommodate several microprograms. This is done by placing branch microinstructions in some (or all)
of the module starting addresses that can be accessed by OCT main memory instructions. Each of these
branch microinstructions should point to a microprogram located within the module. For example:

8-8 Changel

Preparation

ALU/
OoP/ MOD/ MOD/ S-BUS/
LOCATION LABEL BRCH SPCL COND STR ADDRESS COMMENTS
ORG ' 270008
MICPRO1 EQU 27011B
MICPRO2 EQU 270658
MICPRO7 EQu ' 27270B |
MICPRO10 EQU 273158 «
27000 JMP RU30 MICPRO1 START ADDRESS 1
27001 JMP MICPRO2 START ADDRESS 2
27002 JMP MICPRO3 START ADDRESS 3
27007 JMp ' MICPRO7 START ADDRESS 7
27010 JMP MICPR010 START ADDRESS 10

END

* THE BEGINNING OF THE MICROPROGRAM WITH ENTRY POINT
*+ _ABEL MICPRO1 SHOULD THEN ORG AT LOCATION 27011B.

Each label referenced by a JMP micro-order must be defined in a microprogram that maps the module.
In most cases, the number of required starting addresses will be unknown| until the number of
prepared microprograms uses all (or almost all) 256 locations in a module. To|allow for these cases,
module addresses can include the RJ30 micro-order to modify the target address by using bits 3
through 0 of the OCT main memory instruction. The microprogram pointed to by using the JMP,RJ30
microinstructions should be simply a table of starting addresses of other microprograms. Examples of
mapping techniques are discussed further in section 6.

Using the information provided and your present and anticipated microprogramming requirements,
you can determine whether or not your module should be mapped. You should also be able to
determine the starting addresses of some of your microprograms. The module miapping microprogram
should consist of a MICMXE control command, an ORG psuedo-microinstruction specifying the first
module location (e.g., 27000), a list of EQU pseudo-microinstructions associating values with labels, a
sequence of branch microinstructions, and an END pseudo-microinstruction.| After preparing and
microassembling the mapping microprogram, load it into the desired Writable Control Store (WCS)
board by usii.;, the microdebug editor (MDE) or WLOAD subroutine. (Refer to sections 10 and 11 for
information on loading.) Once the module map is loaded into WCS, MDE or WLOAD can be used to
load each microprogram into WCS beginning at the microprogram’s starting jaddress.

Change 1 8-9

Preparation

8-21. ALGN. Th

L

ALGN alters the cont
(i.e., the next microw
This is useful for set
microinstruction (i.e.,

e form of the ALGN psuedo-microinstruction is:
ABEL oP OPERAND
— ALGN —

rol memory address so that subsequent microwords start on a 16-word boundary
ord is located at the next address where the lower 4 bits of the address are zero).
ting the origin of tables which are indexed by the lower four bits of a branch
using the RJ30, J74, etc., micro-orders). Examples of the use of ALGN (and some

of the other pseudo-microinstructions) appear in section 4.

8-22, THE ENI
microinstruction is:

L

The END pseudo-mid
record in any microp

D PSEUDO-MICROINSTRUCTION. The form of the END pseudo-

ABEL op OPERAND

END

roinstruction marks the end of a microprogram. This must be the last source
rogram.

8-23. EQU. The|form of the EQU pseudo-microinstruction is:
LABEL oP OPERAND
label EQU expression

The EQU pseudo-micfoinstruction associates the value of the expression with the label. This is useful

for symbolically referencing locations external to the microprogram (ie., branch target addresses).
Examples of EQU might look like:

8-10

Character
column:
1 10 30
Fields: Field 1 Field 2 Field 6
HALT EQU 340008
Content: RELO EQU 360008
START EQU RELO

8-24.

LABEL

label

The DEF pseudo-microinstruction generates a 24-bit microword with the cdntents equal to the
absolute value of the expression address in control memory. The “label” field may be left blank.
Examples of the use of the DEF pseudo-microinstruction might look like:

OP

DEF

DEF. The form of the DEF pseudo-microinstruction is:
OPERAND!

expression

Character
column:
1 10 30
Fields: Field 1 Field 2 Field 6
DEF SRF+ 150
Content: AD1 DEF ASGNOP
DEF 416B

DEF is not normally used for user microprogramming.

8-25.

and ZERO pseudo-microinstructions are:

LABEL

label
label

The ONES and ZERO pseudo-microinstructions each generate a microword with the content equal to

OP

ONES
ZERO

OPERAND

Preparation

THE ONES AND ZERO PSEUDO-MICROINSTRUCTIONS. The form of the ONES

either all ones or zeros, respectively. The “label” field may be blank. An example of the use of ONES is:

Character
column:
1 10
Fields: Field 1 Field 2
Content: NEG 1 ONES
An example of using ZERO would be:
Character
column:
1 10 40
7 ¢
Fields: Field 1 Field 2 S Field 7
T C
Content: NULL ZERO NO BITS
/

ONES and ZERO are not normally used for user microprogramming.

Change 1

8-11

Preparation

8-26. SUMMARY

The information presented thus far should bring you to the point where your microprogram is
complete and ready to microassemble then execute using the information in part III. The control

command and pseudo-microinstructions are summarized below.

¢ (Control commands (start in column one):

MICMXE,B,L,T,C,R(or S)
$CODE=FNAME]| :[security] [:[crlabel]]] [REPLACE]

$PAGE=title
$LIST
$NOLIST
$PUNCH
$NOPUNCH

® Pseudo-microinstructions:

§ Columns 1-9

LABEL

label
label
label
label

10
oP

ORG
ALGN
END
EQU
DEF
ONES
ZERO

30-39
OPERAND

expression

expression
expression

See figure 4-4 for a summary of all the micro-orders you have available for microinstructions.

812 Changel

PART Il
Microprogramming Support
Software and Hardware

Section 9
USING THE RTE MICROASSEMBLER N

USING THE RTE MICROASSEMBLER

This section provides instructions for actually microassembling your microprograms. The assumption
here is that you have prepared your microprogram using the information from part II of this manual.
It is also assumed that the RTE Microassembler is present in the RTE II or III operating system. Refer
to section 3 in this manual for guidelines on preparing for microprogramming. Some additional
information on using the RTE system is provided but, for complete coverage, it is expected that you
will refer to the RTE system manuals listed on the documentation map in the preface of this manual.

This section provides information on executing the microassembler and information on output such as:

¢ Binary object code
® Microassembled listings

¢ Symbol table output

In addition you will find information on the RTE Microassembler Cross-ReferenceGenerator and
microassembler messages output to the list device and operator’s console.

9-1. USING THE MICROASSEMBLER

As described in section 8, the microassembler accepts fixed-field microprogram source records of up to
72 characters in length. Each source record contains either one microinstruction, one psuedo-
microinstruction, or one microassembler control command. The microassembler processes the input
source records and produces the binary object code of the microprogram. If specified by the initial
microassembler control command (MICMXE), the microassembler also produces a microprogram
listing in both symbolic and octal format, a symbol table, and error messages. Refer to sections 4 and 8
for descriptions of microinstructions acceptable by the microassembler. Section 8 also contains a
description of pseudomicroinstructions and microassembler control commands. The following para-
graphs provide a procedure for microassembling a microprogram. The procedure assumes that you are
using the RTE system console and that the microassembler program, MICRO, is discresident. If
MICRO is available only on paper tape, load it using the RTE LOADR as described in the RTE II/II]
Operating Manual. If the microprogram source is not in a disc file, MICRO can read it from some input
device in the system. Section 3 provides more information on preparing to use microprogramming
support software.

9-2. EXECUTION COMMAND

The microassembler may be scheduled in the RTE system with one of the following commands. All

parameters are optional. (The instructions that follow this definition explain one method of executing
the microassembler.)

RU,MICRO,input,list,output,lines,console
ON,MICRO,input,list,output,lines,console

® The “input” parameter indicates from what logical unit (LU) the source is to be read; the default is
LU 5, an input device. If the “input” LU is 2, the system disc, the source is read from the system LS
tracks. You must move the source onto the LS tracks prior to entering the ON command.

9-1

Microassembling

If the microprogram was prepared and sto

NOTE

If MICRO is run from the File Manager (:RU,MICRO), the input

default is LU 1, not LU

The "list” parameter indicates to what
the standard list device.

The “output” parameter indicates to wh
is LU 4, possibly a paper tape punch,

The "lines” parameter indicates the n
three-line header. The default is 56.

The “console” parameter indicates the
default is LU 1, the operator console.

5.

logical unit the listing is to be written. The default is LU 6,
1at logical unit the object code is to be directed. The default
or magnetic tape (some output device).

umber of printable lines on the list device, exclusive of a

logical unit to which special messages are written. The

red in a disc file using the method suggested in section 8,

perform the final edit and prepare to microassemble the program as follows:

9-2 Change 1

Press any key on the system console to get an RTE prompt (*). Then enter RU,FMGR to get a

FMGR prompt (:). Make the following

LS
MS, name

where;

FMGR entries one at a time:

name is the name you assigned to the microprogram during program preparation. The system

outputs the following:

FMGR 015
LS LU lu TRACK trk

where:

FMGR 015 is a “non-error” message, [u is the LU number of the disc, and trk the disc track

number.

Run the microassembler program by entering the following command after the FMGR prompt:

RU, MICRO, 2, list,output,lines,console

where:

2 is the logical unit (LU) number of/ the disc LS track. In this procedure, it is assumed that the

microprogram source was input to

the disc as described above. If you are using some other

input device, insert that device’s LU number. If no input device is specified, this parameter

defaults to LU number 1 or 5 as

explained at the beginning of paragraph 9-2. The other

parameters have also explained previously.

The program title, MICROASSEMBLER, is printed

included in the MICMXE microassembler control cg

Microassembling

and pass 1 begins. If the “T” parameter is
mmand (in the source microprogram), the

microassembler prints the symbol table at the conclusjon of pass 1. Pass 2 begins immediately and
the microassembler outputs the listing (“L” parameter) and if the “R” parameter was specified,

relocatable object tape; this completes the microasse

NOTE

If pass 2 fails to begin, check that the RO\L
The microassembler will cycle in a loop

on.

Paragraphs 9-3 through 9-7 describe the various outputs
information messages are described in paragraph 9-8.

9-3.

The following paragraphs describe all forms of output fron

® Binary object code.

® Source and octal microprogram listing.
® Symbol table.

®

Messages.

The cross reference generator, which can be an output

specified in the MICMXE control command, is described

9-4. BINARY OBJECT CODE

The standard object code output by the microassembler
consists of one or more microinstruction records. Appendix
tape. One microinstruction record holds up to 27 microi
information. Each source microinstruction requires 32 bit;

address and 24 bits for the microinstruction. Therefore
comprises:

Five words of header plus 2n words for n microinstruct

5 + 2n words for one microinstruction record.

The maximum number of microinstructions in one microi

maximum record length equals 5+ (2x 27): 59 words. The

When the microprogram consists of more than 27 microinst
produced with the last one haveing 27 or less microinstruc

THE MICROASSEMBLER OUTPUT

mbly.

tput” device is turned on.
until the punch is turned

of the microassembler. Error messages and

™

n the RTE Microassembler. The forms are:

of the microassembler if the “C” option is
in paragraph 9-7.

to a disc file or some other output device
E shows the format as it appears on paper
nstructions and 5 16-bit words of header
s (two words) in the object format: an 8-bit
the length of the microinstruction record

3

ions (two words for each microinstruction)

nstruction record is 27. Consequently, the
ldst object record is a four-word End Record.
ructions, a series of instruction records are
tions. For example, if 57 microinstructions

are assembled, three microinstruction records and an Em? Record are produced as follows:

9-3

Microassembling

® Microinstruction record 1, consisting|of 5 words of header and 54 words for 27 microinstructions:
59 words total.

® Microinstruction record 2, consistinglof 5 words of header and 54 words for 27 microinstructions:
59 words total.

°

Microinstruction record 3, consisting of 5 words of header and 6 words for 3 microinstructions: 11
words total.

® The End Record, consisting of 4 words.

The total microassembler object code is 133 words for the microprogram.

The standard object format is accepted by all programs that accept standard relocatable format.
Therefore, the object code can be stored from an imput device into a disc file as a binary relocatable by
the FMGR STore command. If the microprogram includes a $CODE microassembler control command
as described in section 8, the microassembler automatically stores the object code into a disc file.

The microassembler outputs non-standard HP ROM Simulator object code to the device if the “B” and
S” parameters are included in the MICMXE microassembler control command as described in section
8. Appendix E also shows the format of this type of object tape.

9.5. MICROASSEMBLER LISTING OUTPUT

The microassembler prints the microprogram source and the generated octal code on the system list
device if the "L" parameter is included in the MICMXE microassembler control command (Refer to
section 8 for details on MICMXE.) Appendix G (the base set) is an example of listing output. Section 14
provides examples of user microprograms. Note that from left to right the listing output contains a line
number (decimal), the CM address (octal), the 24-bit microinstruction content at that address in octal
form, then the seven fields of microinstructions.

9-6. SYMBOL TABLE OUTRUT

The microassembler prints a symbol table on the list device if the“T” parameter is included in the
MICMXE microassembler control comm nd (section 8). An example symbol table output is shown
here. The actual content will, of course depend upon your microprogram. The left column of the
symbol table lists the symbols or labels sed in the microprogram. Absolute octal addresses for the
symbols are also output. If addresses are terminated by the letter “X” it indicates a symbol defined by
an EQU pseudo-microinstruction in the microprogram.

YMBOL TABLE

MOVE 032412X
GOT 032421X
RET 032427X
LAS 032717X
ouU 032011
ER 032012

94

Microassembling

9-7. USING THE CROSS-REFERENCE GENERATOR

Assuming that the RTE Microassembler Cross-Reference Generator program is configured into the
RTE software system, it is run automatically by the micrgassembler if the microprogram includes the
“C” parameter in its MICMXE microassembler control command. However, you can run the generator
independently by using either an RTE or FMGR command as follows:

ON,MXREF,input,list,lines, console
RUMXREF input,list,lines,console

The parameters are optional and correspond to those |defined for the microassembler execution
command described in paragraph 9-2. Informative messages and error messages output by the Cross-
Reference Generator (MXREF) ard described in paragraphs 9-8 and 9-9. Additional points about the
Cross-Reference Generator follow:

o MXREF does not flag erroneous statements. In fact, MXREF looks at only the label and expression
fields, using field 2 and, in some cases, field 3 to determine the instruction format.

® Statements which contain invalid mnemonics in field 2 are treated as word type IV micro-
instructions, causing field 6 to be cross-referenced as an expression.

o MXREF will cross-reference characters in the label and expression fields of statements which do
not permit labels or expressions.

® Inthe cross-reference output, the first line number is the line on which the symbol was defined (ie.,
appears in the label field); subséquent line numbers are lines on which the symbol was referenced.
(If the symbol appears in the label field of more than dne statement, subsequent “definitions” are
cross-referenced as references to the first occurrence.

e MXREF flags undefined and unreferenced symbols

NOT DEFINED
NOT REFERENCED

ith the messages:

® The output does not exceed 72 icharacters per line.

e MXREF outputs some summary statistics which may| be of general interest, viz.:

number of symbols (defined and undefined)
number of references (excluding definitions)
number of source lines (including control commands).

9-5

Microassembling

The first four mentioned above allow MXREF to cross-reference programs which may not be correct
micro-programs. The resulting cross-refer

ence listing may be useful in determining the external
symbols which must be defined with an E(

WU statement, or in finding all references to a misspelled
symbol. An example MXREF output is shown below.

PAGE 0001 RTE MICRO CROSS—~REFERENCE REV.A 760718
SYMBOLS=0012 REFERENCES=0013 SOURCE LINES=0144

COMPARE 0071 0134

ENDCHK 0133 0105
EXIT 0143 0045 0055
HORI 0030 01165
INTCHK 0105 0087 0090

INTEXIT 0112 #oNOT REFERENCED##

INTRTN 0122 0040
SETY 0050 0139
SORT 0036 0031

STRTPASS 0062 0138

SUBTRACT 0089 0085

SWAP 0096 0088

Microassembling

9-8. MESSAGES

The microassembler and Cross-Reference Generator output two kinds of messages. Error messages are
output to the system list device; informative messages are output to either the system list device or to
the operator’s console (which is not necessarily logical unit 1). Informative messages and error
messages described in paragraph 9-9, are described in paragraphs 9-9 and 9-10 respectively.

9-9. INFORMATIVE MESSAGES

The applicable one of these two messages are printed on the system list device:

END OF PASS n: NO ERRORS

This is the normal pass-completion message where|n is the pass number.

END OF PASS n: e ERRORS

This message indicates the number of errors detected during the pass; n is the pass number ande
is the number of error messages.

The messages that can be output to the operator’s console follow:

/MICRO: RE-INPUT SOURCE AND *GO

This message means that the microassembler was unable to get necessary disc tracks when the
microprogram source was input from a device other than the disc. To recover, reposition the
source, and schedule the micqoassembler with the RTE GO command (GO,MICRO, etc.). This-

message can appear between the two microassemply passes and before the cross-reference
generation.

/MICRO: END

This is the normal conpletion message for the microassembler.

/MICRO: END WITH ERRORS

Error messages appear on the list device.
/MICRO: ABORT
This message means that the microassembler detected an irrecoverable error and aborted.

/MXREF: END

This is the normal completion message for the Cross-Reference Generator.

/MXREF: RE-INPUT SOURCE AND *GO

Same as for the microassembler RE-INPUT message except applicable to the Cross-Reference
Generator when the “C” option’s used with the “MIC” control command.

/MXREF: ABORT

This message indicates that a irrecoverable error was detected in the Cross-Reference Generator.

9-1

Microassembling

9-10. ERROR MESSAGES

The microassembler checks each microinstruction for errors d

detected, an error message is written to

record, the source record itself is printed

**ERROR e IN Inl (See In2) message:

where:

e is an error number defined in tab

le 9-1;

In1 is the line number of the source line containing the error;

[n2 is the line number of the previgus source line (if any)

message 1s the error message.

Table 9-1 gives the complete meaning of ¢ach error message rec

sembler action taken.

Table 9-1. Microassembler and

containing the same error.

Cross-Reference Generator Error Messages

ERROR
NUMBER MESSAGE/MEANING/RECOVERY
1 DUPLILCATE LABEL IN FIELD 1. The microinstruction label is the same as a
previously used label or EQU symbol. This occurrence of the symbol is ignored and
its first definition holds
2 INVALID OP IN FIELD 2. A NOP micro-order is ﬂnsened in field 2.
3 INVALID SPECIAL IN RIELD 3. A NOP is inserted in field 3.
4 INVALID CONDITION IN FIELD 4. An ALZ is inserted in field 4.
5 INVALID ALU IN FIELD 4. A PASS micro-order is inserted in field 4.
6 INVALID MODIFIER IN FIELD 4. A HIGH micro-order is inserted in field 4.
7 INVALID STORE IN FIELD 5. A NOP is inserted|in field 5.
8 INVALID S-BUS IN FIELD 6. A NOP is inserted in field 6.
9 INVALID SENSE [N FIELD 5. Micro-order in field 5 is not RJS and is ignored.

10 MISSING ORG. Origin|is set to 27000B.

1 INVALID CONSTANT IN FIELD 6. The Operand of a word type Il microinstruction
is out of range. A value of 0 is inserted in field |6.

12 $CODE IGNORED: NO BUFFER SPACE. Insufficient memory for object code
buffer. Object code islonly punched on tape (if B parameter included in MICMXE
microassembler control command).

|

*13 $CODE IGNORED: CANNOT BUILD FILE. Object code is punched only on tape (if
B parameter included in MICMXE microassembler control command. This
message is followed by the FMGR error code.

9-8

uring microassembly. If an error is
the list device. Following all error messages for a source
The form of the error message is:

overy procedure, and/or the microas-

Table 9-1. Microassembler and Cross-Reference Generator Error Messages (Continued)

W

Microassembling

ERROR
NUMBER

MESSAGE/MEANIEG/RECOVERY

14

16

17

*18

19

00

*21

22

23

24

*25

26

27

28

*29

30

*31

32

INVALID FILE REFERENCE. Syntax error gccurred in filename, security, or crlabel
specification. (Refer to the Batch and Spoal Manual.) Object code is only punched
on tape (if B parameter included in MICMXE microassembler control command).

NOT TYPE-3 SRECIAL IN FIELD 3. A NOP is inserted in field 3.

NOT TYPE-1/2 SPECIAL IN FIELD 3. A NOP is inserted in field 3.

NOT TYPE-4 SPECIAL IN FIELD 3. A NOP is inserted in field 3.

INVALID CONTROL COMMAND. The microassembler assumes the parameter
defaults of the MICMXE control command.

INVALID EXPRESSION IN FIELD 6. Branch address is out of permitted range, or
target label address is undefined. A valué of O is inserted into field 6.

NO SOURCE. Microprogram source input device is not ready or the micro-
assembler program (MICRQO) was given incorrect input device LU number. Check
input device; and MICRO command. Make necessary correction and micro-
assemble again.

MISSING END/| The microprogram has no END statement. Correct and
microassemble again.

SYMBOL TABLE OVERFLOW. The mictoprogram has too many fabels: or
insufficient memory to build symbol table.

ADDRESS OUT QF RANGE IN FIELD 6. Branch address is out of permitted range.
A value of 0 is inserted into field 6.

LABEL NOT ALLOWED IN FIELD 1. The characters in field 1 are ignored.

FIELDS 4 & 5
instructions.

UST BE BLANK. These fields are ignored in word type IV

ADDRESS SPACE OVERFLOW. Branch address is greater than 377778 (16383).
A value of O is inserted into field 6.

INVALID OR MISEING MICRO COMMAND | The MICMXE microassembler control
command is incorrect or missing; microassembly aborts. Correct the line and
microassemble again.

DUPLICATE MICRO OPTION IGNORED. A parameter appears more than once in
the MICMXE control command. The first appearance is accepted; the others are
ignored.

FILE I/O ERROR. [This message is followed by a FMGR error code. Object code is

punched only on tape (if B parameter included in MICMXE microassembler control
command).

INVALID MICRO |OPTIONS. A microassembler control command has incorrect
parameter(s). The parameter(s) is ignored.

INVALID LABEL IN FIELD 1. The label contains a plus (+) or minus (—) sign or
begins with a percent (%) character.

SECOND $COD
subsequent ones

IGNORED. Only one $CODE control command is aflowed:;
re ignored.

Change 1

99

Table 9-1. Microassembler and Cross-Reference Generatar Error Messages (Continued)

Microassembling l

MESSAGE/MEANING/RJCOVERY

ERROR
NUMBER
*33 EXPRESSION NOT A%OWED IN FIELD 6. The c¢haracters in field 6 are ignored.

CROSS REFERE?LCE GENERATOR MESSAGES

1 SYMBOL TABLE OVERFLOW N
2 NO SOURCE J

are flagged with a double asterisk (

2. Unless the microassembly process is aborted ({MICRO: ABORT message listed on system console),
you can correct any of the above errors by using the Microdebug Editor and execute the microprogram
from WCS. However, the resulting object code is not suitable for buring pROM's. To bum pROM'’s, you
must correct the microprogram source and|reassemble to get an errof-free object code direct from the

NOTES
1. Messages flagged with a single astensk)| have no eftect on generated code. Non-recoverable errors
microassembler.

9-10

Section 10
USING THE RTE MICRODEBUG EDITOR N

10

USING THE RTE
MICRODEBUG EDITOR

The Microdebug Editor (MDE) allows you to load microprogram object code into WCS, debug the code,
and execute the microprogram. Using the debugging features as illustrated in section 14, you may also
write short microprograms using the MDE. In order to us¢ MDE, it is necessary that the WCS boards
be assigned subchannel base addresses or initialized for| the transfer of the microcode. Complete
information required to write WCS initialization programs is given in the Driver DVR36 Manual.
Example WCS initialization procedures are included in section 14.

MDE provides its own prompt character ($) and responds to its own set of operator commands. When
you use MDE, you must observe the operator command|syntax (described in table 10-1) and the
following conventions:

® A numeric parameter is assumed to be positive unless preceded by a minus sign (—).

® A numeric parameter with the letter “B” suffix indic
numeric parameter is assumed to be decimal.

tes the parameter is octal. Otherwise the

e Two adjacent commas (,,) or colons (::) mean a parameter assumes its default value.
® Leading blanks (spaces) and blanks preceding or following a comma or a colon are ignored.
e All inputs must be terminated by a carriage return (CR).

Table 10-1. MDE Operator Command Syntax

ITEM MEANING
UPPER CASE These characters are literals and must be specified as shown.
lower case These characters only indicate the type of information required.
REad This combination means that the RE is literal and must be used as shown; the
remaining characters are for information only and need not be used.
[.item] ltems within brackets are optional. Yol can default the item by omitting it or by
replacing it with a comma if other items follow it.
Jftem1 This indicates that any one of the items listed may be used. You can default the
,item?2 selection by omitting it or by replacing it with a comma if other items follow it.
,item3
item1 This indicates that one of the items listed must be used.
item?2
item3
namr This indicates one parameter with up to two subparameters separated by colons.
Subparameters are allowed on the first parameter only. Examples:
namr=filename [:security code [:criabel])
-and-
namr=logical unit number

Change1 10-1

MDE

10-1. SCHEDULING MDE

You can schedule the Microdebug Editor
FMGR RU command. (MDEP can also
section.) To schedule MDEP use either ¢
ON,MDEP[,ZuZ[,lu2[,lu3[,lu4]]]]
RU,MDEP[,ZuZ[,lu2[,lu3[,lu4]]]]

where:

lul is the logical unit (LU) number of

program (MDEP) by using either an RTE ON command or an
be called by another program as shown at the end of this

f the following commands:

the console you are going to use to communicate with MDE;

lu2 is the LU number of the WCS board you will be using;

lu3 is the LU number of an additional WCS board (if required);

lu4 is the LU number of a third WCS board (if required).

Upon initial execution, MDE must dete
following request:

COMPUTER TYPE: 1=21MX,2=21
TYPE(1 OR 2)?

You must respond by entering the numbet

of MDE unless the RTE system is re-boo

MDE requires the driver DVR36 and WC#

all WCS logical units in a WCS LU table (}
can load, read, modify, debug, and dump m
MDE, when used as routine MDES, may

ment. The MDE operations work with all 1

by the operator commands. Termination
logical units.

10-2

rmine the computer type you are using by making the

MX E=SERIES

r “2”, This request will not appear with any subsequent use
ted or MDE is rescheduled.

5 /0 Utility routine WLOAD for its operations. MDE locks
WSCLT); any LU’s added to the WCSLT are also locked. You
icroprogram object code by using MDE operator commands.
also perform these operations in your applications environ-
he WCSLT LU’s and with control memory addresses issued
pf MDEP (or the MDES calling program) unlocks all WCS

10-2. MDE COMMANDS

Table 10-2 summarizes the commands for using the MI
mands are given below. MDE will not allow operations i
valid range of control memory address parameters is 2000
sign ($) character as a prompt.

Table 10-2. Summary of Microdeb

E; more detailed explanations of the
n the base set area of control memory

ug Editor Commands

MDE

com-
. The

through 37777 octal. MDE outputs a dollar

CONTROL
COMMANDS DESCRIPTION
?? Explains error code.
EX Terminates MDE.
/0
COMMANDS DESCRIPTION
DU Dumps specified binary object cade of current WCS-resident microprogram(s)
to a LU or disc file.
LD Loads microprogram binary object code onto WCS (write verified).
LU Add or delete WCS logical units to or from a WCS LU table (WCSLT).
EDIT
COMMANDS DESCRIPTION
DE Delete microinstruction at specifjed control memory addresses by replacing
with NOP's.
RE Replace microinstruction at spegified address.
SH Show microinstruction at specified address on the operator console.
DEBUG
COMMANDS DESCRIPTION
BR Set breakpoint into microprogram at specified control memory address.
CL Clear breakpoint in microprogram at specified control address.
LC Locate object code in control memory for use with breakpoint.
PR Set up additional parameters for| use with next MDE RU command.
RU Execute microprogram by executing the appropriate main memory instruction.
SE Set registers to values desired for next execution of MDE RU command.

10-3

MDE

10-3. ?? COMMAND

This command expands an MDE error cod
command format is:

?,number]

where:

number is the error number. If nuz

number is xx, error code xx is expan
table 10-3)

10-4. EXIT COMMAND

This command terminates the MDE. (If in
is:

EXit

10-5. DUMP COMMAND

e. (MDE error codes are listed and defined in table 10-3.) The

mber is omitted, the last error code issued is expanded. If
ded. If number is 99, all error codes are expanded. (Refer to

1 MDES, returns to calling program.) The command format

This command transfers the contents of WCS to a file or logical unit. The command format is:

DUmp,namri| ,xxxxx,yyyyy]]

where:

namrl is the logical unit number or the name of a file to which the object code is to be transferred.

If namrl is a file, the file is created

xxxxx and yyyyy are the upper and

by this command.

lower control memory addresses of the object code to be

transferred. The range xxxxx to yyyyy inclusive are transferred for all LU’s in the WCS logical
unit table (WCSLT). If xxxxx and yyyyy are zeros (default values), all logical units in the WCSLT

are transferred.

10-6. LOAD COMMAND

This command loads the binary object COd‘
format is:

LD,namrl
where:

namrl is the logical unit number o

transferred. If namrl is a file, it may

of a $CODE control statement.

Any microprograms residing in WCS tha

104

e into WCS; the entire load is write verified. The command

r the name of a file from which binary object code is to be
have been created by the DU command or by microassembly

t are overlayed by an LD command are lost.

10-7. LU COMMAND

This command adds or deletes WCS logical units to or froz
LU’s that are in the WCSLT. The command format is:

LU [, lu2],... lux]]]

where:

MDE

m the WCSLT and enables or disables WCS

lul, lu2, ete. are WCS LU’s for MDE use. A maximum of 12 LU entries are permitted. A negative

LU number causes the LU to be deleted from the WC

SLT. An LU entry prefixed by the letter “E”

logically enables that LU and, prefixed by the letter “D” disables that LU. (The WCS board or

boards must already be physically enabled.) Valid L
63.

U numbers must be in the range 0 through

MDE responds to the LU command by outputting a status table as follows:

LU# RANGE
lul XXXXX-YYYYY
lu2 XXXXX-YYYYY
lux XXXXX-YYYYY

where:

lul, lu2, etc., are the WCS LU’s currently used by

xxxxx-yyyyy is the range of control memory set for

STATUS

MDE;
a particular LU;

z is “1” for an enabled LU, “0” for a disabled LU (disabled includes downed LU’s), or “P” for a

pseudo-disabled (physically-enabled) LU.

The LU command adds LU’s to the WCSLT in the order

they are entered. If the LU parameters are

defaulted, the current WCSLT is displayed. All LU’s in the WCSLT are locked by MDE and released

when MDE or the calling program is terminated.

10-8. DELETE COMMAND

This command deletes a microinstruction or range of

microinstructions from WCS. The deleted

microinstructions are replaced by NOP micro-orders (PASS in the ALU field). The command format is:

DElete xxxxx[,yyyyy]

where:

xxxxx and yyyyy are the lower and upper control memory addresses of the range of microinstrue-

tions to be deleted. If yyyyy=0 (default), only xxxxx

is deleted.

10-5

MDE

10-9. REPLACE COMMAND

This command replaces a microinstructio

n or range of microinstructions in
o WCS. The command

REplace xxxxxl,yyyyyl,01]

where:

x?cxxx and yyyyy are the lower and upper control memory addresses of the range of microinstruc-
tions to be replaced. If Yyyyy=0 (default), only xxxxx is considered. The optional letter “O” causes

the object code as well as the micro-orders of each microinstruction to be displayed as each replace
is made.

MDE responds to the REPLACE command as follows:

xxxxx field2 field3 field4 field5 field6 zzz 22222
$$

where:

field2 through field6 are the micro-orders of the microinstruction at control memory address
xxxxx and zzz zzzzz is the object code of the microinstruction. $$ is a prompt for your response.

You may respond to the $$ prompt as follows:

nfield2,nfield3,nfield4,nfield5 nfield6

www wwwww
/ or nn or A
where:

nfield2 through nfield6 are the desired replacement micro-orders for each field of the new
microinstruction. The field micro-orders must be entered in the order shown. If any field is
defaulted by ,, or omitted, that field remains the same as in the original microinstruction.

www wwwww is the new microinstruction (in octal) displayed by MDE if the REPLACE com-
mand was used with the optional letter “O”. If www or wwwww=0 (default), the old value
remains.

/ leaves the current microinstruction unchanged and moves to the next one. If control memory
address yyyyy is exceeded, the REPLACE command is terminated.

nn is a positive integer from 1 through|/99 and causes the REPLACE command to move its pointer
nn locations in control memory, displaying each microinstruction as it increments. If yyyyy is not
exceeded, the last microinstruction displayed is the one ready to be replaced. If yyyyy is exceeded,
the REPLACE command is terminated.

The letter “A” terminates the REPLACE command; all the remaining microinstructions are un-
changed.

10-6

MDE

Each time a microinstruction is replaced the new microinstruction is microassembled and the RE-
PLACE command pointer moves to the next microinstruction. If yyyyy is exceeded, the REPLACE
command is terminated.

10-10. SHOW COMMAND

This command displays a microinstruction or range of microinstructions residing in WCS. The
command format is:

SHow xxcexxl,yyyyyl,01]
where:

xxxxx and yyyyy are, respectively, the lower and upper control memory addresses of the range of

microinstructions to be displayed. If yyyyy=0 (default), only xxxxx is displayed. The optional

letter “O” causes the object code as well as the microingtruction to be displayed.

MDE responds to the SHOW command as follows:

xxxxx field2 field3 field4 field5 field6 zzz zzzzz

yyyyy field2 field3 field4 field5 field6 zzz zzzzz

where:

field2 through field6 are the micro-orders of the microinstruction at a particular control memory
address and zzz zz2zz is the object code of the microinstruction.

10-11. BREAKPOINT COMMAND

This command sets a breakpoint or breakpoints at a control memory address or addresses. This
command may also simply display the current set of breakpoints. The command format is:

BReakpoint],breakl|,break2l,break3]]]

where;

breakl, break2, and break3 are the control memory addresses of the breakpoints to be set. If

break1=0 (default), the current set of breakpoints is displayed. The maximum number of break-
points that can be set is three.

10-7

MDE

MDE responds to the BREAKPOINT command as follows:

where:

Before setting a breakpoint, you must loca&e the desired contr

BREAK1 xxxxx
BREAK2 xxxxx
BREAKS3 xxxxx

BREAK1, BREAK2,and BREAK3 d
address of a breakpoint.

esignate the breakpoints and xxxxx is the control memory

ol memory address by using a LOCATE

(LC) command. Also, observe the following rules when using breakpoints:

10-8 Change 1

When a breakpoint executes, all regis

command (paragraph 10:16) are saved.
that are not saved.

ters (except the counter) that can be displayed by the SET
Note that the IR and the M-register are two of the registers

A breakpoint cannot be set on a micrdinstruction that uses any bits in the Instruction Register.

A breakpoint can be set within a mic

rosubroutine but, if this is done, it cannot be reentered.

A breakpoint cannot be set at the control memory address of a microinstruction passing data from

the T-register within two microinstru
A breakpoint can be set on a conditio

A breakpoint may be set on a microin
however, the register will not be rest

A breakpoint may be set on a microin

but continued execution will be unpr
I0G, IOI, ION, and 100.

Breakpoints cannot be set in the CM

If there is no control memory entry
breakpoints cannot be performed.

If you do not have enough room in co
code, either you must overlay some of]

not allowed.

The counter cannot be saved on the

ctions following a READ micro-order.
nal branch microinstruction but it cannot be reentered.

struction that uses a register which is lost when breaking;
ored if execution continues.

struction that uses any one of a set of Special micro-orders
edictable. This set of Special micro-orders is: INCI, IOFF,

area occupied by the MDE breakpoint cbject code.

point address available for MDE, debug operations using

ntrol memory for your microprograms and the MDE object
your object code or debug operations using breakpoints are

HP 21MX E-Series Computer.

10-12. CLEAR COMMAND

This command clears breakpoints previously set by a BRE
is:

CLear{,breakl1{,break2(,break3]]]

where:

breakl, break2, and break3 are the control memory

breakl=0 (default), then all breakpoints are cleared
can be cleared is three.

10-13. LOCATE COMMAND

This command locates the breakpoint object code in conty
Also, this command moves breakpoint object code from 4
command format is:

LCxxxxx yyyyy

where:

xxxxx is the starting control memory address of the se

code is moved and will occupy up to 114 (162 octal
xxxxx. Location vyvyy is the breakpoint reentry point
valid control memory entry point address but must

As an example of LOCATE command usage, suppose a mi

to 34153B and the breakpoint object code can be placed 1
Assuming that entry point 34002B is not used by a micr
would be:

LC,34200B,34002B

Every time the LOCATE command is used all breakpoin

BREAKPOINT command for use with the relocated object

across two WCS LU’s provided that both LU’s are enable

10-14. PARAMETERS COMMAND

This command sets up parameters in memory for use with
microprogram to be executed. These parameters are in
registers. The command format is:

PR

MDE

AKPOINT command. The command format

addresses of breakpoints to be cleared. If
The maximum number of breakpoints that

ol memory to enable breakpoints to be set.
buffer in memory to control memory. The

quence of break point object code. The object
control memory locations beginning with
n control memory. Location yvyyy must be a
not be used by any microprograms.

croprogram occupies CM addresses 34020B
nto “unused” addresses 34200B to 34362B.
program, the example LOCATE command

ts are cleared; they can be reset with the

code. Breakpoint object code can be located
2d.

the main memory instruction that calls the
addition to those that may be passed via

Change1 10-9

MDE

MDE responds as follows:

P+ 1=contents1
P+ 2=contents2
P+ 3=contents3
P+ 4=contents4
P+ 5=contents5
P+ 6=contents6
P+ 7=contents7
P+ 8=contentsd
P+ 9=contents9
P+10=contents10

P+ax=
where;

P+1,P+ 2 etc., are the memory locations relative to the instruction that calls the microprogram;
contentsl, cc.mtents2, etc., are the octal contents of each location; x is an integer from 1 through 10;
and P+x= is a prompt. for you to enter new contents or leave the old contents unchanged.

Each location in the range P+ 1 through P+ 10 is displayed one at a time {followed by the prompt
P+x=) to allow you to create the desired calling instruction parameters. You can respond to the
prompt with the following:

/ or R or xxxxx or DEF.yy or A

where:

The / character leavesi the current location unchanged; the letter “R” designates the current
location as a valid return address for|the microprogram; xxxxx is a decimal number from -32767
through 32767 or an actal number from “77777B through 77777B; DEF.yy creates a DEF to
address P+ yy; the letter "A“ terminates the PARAMETERS command and all remaining loca-

tions are left unchanged.

10-15. RUN COMMAND

This command executes a microprogram. If required, program parameters can be preset using the

PARAMETERS or SET commands.

CAUTION

It is strongly recommended that your RTE system be in a non-
critical or a single-use operating mode before you execute a
microproéram. Execution of an unproven microprogram can have
unpredictable and und sirable results, including the destruction

of the system.

10-10

MDE

The command format is:

RUn ,105yyyB
,101222 8B

where:

105yyyB and 101zzzB are OCT instruction values corresponding t%o control memory entry point
addresses;

yyy and zzz are octal values which you should predetermine by ujsmg the information given in
section 6.

If you default the optional RUN command parameters, the RUN command will do one of two things
depending on the last return from microprogram execution. If the last return was from a breakpoint,
the RUN command will resume execution at the most recent breakpoint. If the last return was a
normal return, the RUN command will reexecute the last main memory instruction used to link with
the microprogram. When a RUN command executes, one |of the follow1hg messages should be output
upon return from microprogram execution:

RETURN P-+xx

where:
xx is a decimal number from 1 through 10 and the message indicates a normal return, or

BREAK yyyyy
where:

yyyyy is the address of a breakpoint and the message indicates a'return from a breakpoint.
Note that the RUN command cannot enable a disabled WCS LU.

10-16. SET COMMAND

This command sets the saveable registers for the next RUN command. This command also displays the
contents of the saveable registers at the last break in the execution or last return from a RUN
command. The command format is:

SEt[,pI[,p2...[p25]11]

10-11

MDE

where:

pl, p2, etc., are any of the following:

A (A-register) S1
B (B-register) ; S2
X (X-register) | S3
Y (Y-register) \ S4
O (O-register) S5
E (E-register) S6
S (S-register) S7
L (L-register) S8
P (P-register) ‘ S9
FLAG (CPU Flag) S10
DSPL (Display Begister) S11
DSPI (Display Indicators) SP (Stack Pointer)

CNTR (Counter$ Always=0

If the SET command is given without any parameters, all register values are shown.

MDE responds to the SET command by displaying any of the requested values as follows:

A=xxxxxx FLAG=x S5=xxxxxx
B=xxxxxx DSPL=xxxxxx S6= xxxxxx
X=xxxx%% DSPI=xx S6=xxxxxX
Y=axxxxxx CNTR=0 S7T=xxxxxx
O=x S1= xacxxxx S8=xxxxxx
E=x S2= xxxxxx S9=xxxxxx
S=xxxxxx SB=xxxxxx S10=xxxxxx
L=xxxxxx Sd=xxxxxx S11=xxxxxx
P=xxxxx SP=uxxxxxx

Register n=xxxxxx
Register n=
where:

x, xx, xxx, or xxxxxx aré the contents|or the condition of a particular register or flag in octal or
binary; Register n is the first register in your set of registers and Register n= 1s a prompt for you
to enter a new value 1Jn register n or leave the old unchanged.

The prompt is displayed after each requested register. You can respond to the prompt with the
following: i

/ or xxxxx or A

10-12 Change 1

MDE

where:

/ leaves the current register unchanged and moves to the next requested register; xxxxx is an octal
number from -77777B to 77777B or a decimal number from -32767 to 32767; and the letter "A"
terminates the SET command and all remaining registers are left unchanged. Note that MDE
always outputs octal numbers.

All registers except A, B, X, Y, O, E, and S are set to zero for a normal return from microprogram
execution. The counter cannot be used with breakpoints. All other registers not saved by MDE cannot l
be assumed to remain in a given state during debug operations.

NOTE

All numbers output from the MDE aré in octal. MDE does not
designate this however. If you are entering numbers and you
desire octal form, so designate by following the number with B.

10-17. MESSAGES

Table 10-3 lists all MDE error messages. []
Table 10-3. Microdebug Editor Error Messages

ERROR

CODE MESSAGE/MEANING

MDEOOCO MDE BREAK. Break set into program 1D segment.

MDEOO1 WCSLT FULL. WCS logical unit table is full. Use the LU command to display current
entries in table and to delete unwanted LU's.

MDEOQQO2 ILLEGAL PARAMETER. lilegal parameter or subparameter in input.

MDEQO3 WCSLT LU LOCKED. One or more WCS|U:U's in the WCSLT are already locked by
another program.

MDEOQ0O4 NO RN AVAILABLE. A resource number to lock WCS LU'S is not available.

MDE005 INPUT ERROR. lllegal command or command syntax incorrect.

MDEOOG ILLEGAL LU. LU given to MDE is not dfiven by driver DVR36.

MDEQO7 (LLEGAL DEVICE. Attempted /O operation with a device having equipment type
(driver number) of 30 or higher.

MDE008 ERROR # UNDEFINED. The error number specified does not exist.

MDEO00O9 LU # UNDEFINED. The LU number given to MDE to be removed from the WCSLT
i5 not in the WCSLT.

MDEOQ10 CHECKSUM OR REC. FORMAT ERROR. Invalid record format or checksum error.
MDEO1 1 NO LU'S. WCS can't be loaded or dumpedi because the WCSLT is empty or has no
LU's set up for the desired control memory address range.

MDEQ12 VERIFY ERROR. A write verify error occurfed during the last /O operation to WCS.
MDEO13 NO DCPC. The last requested I/Q operation did not complete due to a non-

responding DCPC channel.
L

Change 1 10-13

MDE
Table 10-3. Microdebug Editor Error Messages (Continued)
ERROR
CODE MESSAGE/MEANING

MDEO14 INVAlle ADDPRESS. Invalid WCS address specified; or last requested /O opera-
tion did not gomplete;|or attempted to set a breakpoint in MDE microcode or on a
reentry address; or attempted to clear non-existent breakpoint: or attempted to set
reentry address in MDE microcode; or locate not completed.

MDEOQ15 ADDRESS GONFLICTL The address associated with and assign base address,
enable, or write request conflicts with another WCS subchannel. Last requested /O
operation did not complete.

MDEO16 DATA| OVERRUN. The loading of data into WCS overran the available WCS.
Loading is partially complete.

MDEOQ17 LU DISABLED. A W3S LU requested for an /O operation is psuedo-disabled,
disabled, or|down.

MDEO18 FMP BRROR -XXXXX. An FMP call resulted in the error condition described by the
listed error code (-XXXXX). Refer to FMP error codes in the Batch-Spool Monitor
manual.

MDEO19 YO ERR EOF EQU XX. An end-of-file occurred on EQT entry number XX.

MDEQ20 MICRO ERR|XX. Micraassembler error XX occurred during a REPLACE command.

MDEO21 ILLEGAL REGISTER. [The register requested by a SET command is not valid for
MDE.

MDEQ22 NO MACRQ. The attempted RUN command had no prior main memory instructign
call ta a microprogram; or attempted setting a breakpoint without MDE breaprIlnt
microcode located: dr breakpoint reentry address not a valid control entry point
address or ho WCS LU contains the reentry address.

MDEO023 USER M|CFrO ERR. User microprogram returned incorrectly.

MDEO24 BKTBL FULiL. Breakpoint table is full. Use CL command to delete some break-
points befo‘?e trying to set new ones.

10-14

MDE

10-18. RESTRICTIONS ON USING THE MICRQDEEBUG EDITOR

Microprograms provide you with a very privileged mode o
system, a microprogram executes beyond the control of th
can destroy the system. This means that it is imperative th
before executing a developmental microprogram.

Subroutine MDES locks all WCS LU’s that it uses, thereby

another user in a multi-user RTE environment. This ensu

ram will remain intact but does not prevent another user’s
enters your object code.

The LoaD command uses WCS I/O Utility routine WLOA
the WCSLT. Object code from two microprograms having

be developed simultaneously (i.e., no two microprograms
tions at the same time).

10-19. CALLING MDE

As previously mentioned, you can prepare a program for t

(MDES) or scheduling MDE as a program (MDEP). Reme

software modules.

Figure 10-1 and figure 10-2 show respectively, the Assem

ences to schedule MDEP and to call MDES. MDES ma

microprogram object code; if this is done, some additional

Subroutine MDES is functionally identical to MDEP. T

command returns to the calling program rather than termi
registers are set to their values when MDES is called inst
MDEP nor MDES will clear breakpoints when exited; youn
debugging your object code. Figure 10-3 outlines a recom;

operations between you, MDES, and your MDES calling

f computer ope
e RTE system
at you exercis

preventing an

program from
i

D to load into
the same cont
can occupy th

he purpose of
bly language

y also be cal

mended seque
program.

ires that'the o

mber that MI]

pration. In an RTE operating
and, if improperly designed,
e an extra measure of caution

y I/O operations to WCS from
bject code of your microprog-
executing an instruction that

WCS using the LU array in
rol memory addresses cannot
e same control memory loca-

calling MDE as a subroutine
DEP and MDES are separate

and FORTRAN calling sequ-
led via a breakpoint in the

rules for using MDES must be observed.

he main difference is that an MDES EX
nating the pragram. The software saveable
ead of being set to 0 as in MDEP. Neither
nust clear any breakpoints when you finish

nce of interactive debugging

Change 1 10-15

MDE

Purpose: Toprogrammatically schedule thepreran‘MDEp.
Format: EXT EXEC
SCHED BSB EXEC TRANSFER CONTROL TO RTE
EF RTN RETURN POINT
DEF ICODE REQUEST CODE
EE g?hP NAME OF PROGRAM TO SCHEDULE
EE 22 OPTIONAL
3 PARAMETER
DEF P4 S
RTN %GU *
')
ICODE ﬁEC 23|0R 24 23=SCHEDULE W/WAIT,24=N
L 7 = D NAIT
MDEP SC 3,MDEP NAME OF PROGRAM
P1 DEC LU1 OPERATOR CONSOLE LUCDEFAULT=1)
P2 DEC Lu2 WCS LU
P3 DEC LU3 WCS LU
P4 DEC LUA WCS LU
DIMENSION MDE(3)
ICODE=23 OR 24
MDEC1)=2HMD
MDE(2)=2HEP
MDE(3)=2H
CALL EXECCICODE ,MDE,I1,12,13,14)
[1 thru I4 are identical to the Assembly language
schedule request parameters P1 thru P4.
7115-28 Figure 10-1 Scheduling MDE (MDEP)
Purposa;! To:alltheutilitysubroutineMDES.
N Bl
Format.:? o JSB MDES JUMP SUBROUTINE
DEF RTN RETURN POINT
DEF P1
DEF P2 OPTIONAL
DEF P3 PARAMETERS
DEF P4
DEF PS5
RTN EQU
P1 DéC LU1 OPERATOR CONSOLE(DEFULT=1)
P2 DEC LU2 WCS LU
P3 DEC LU3 WCS LU
P4 DEC LU4 WCS LU
PS5 BSS 1 ERROR CODE(0=SUCCESSFUL
COMPLETION,-1=SUBROUTINE
ABORTED)
CALL MDESCI1,I2,13,14,15)
[1 thru I5 are identical to P1 thruP5 in the
Assembly language call.
7115-29 2. Calling MDE (MDES)

10-16

Figure 10

MDE

User Program

START
JSB MDES

MACRO1
PARAMETER
NOP
RETURN

MACRO2
PARAMETER
RETURN1
RETURN2

JSB MDES

END

Subroutine
—

Call

Microcode
—

Breakpoint

Microcode
—

Breakpoint

Subroutine
-

Call

{Debugoperatxons.Examlnestate

MDES Operatiom

Initialize

load WCS, etc. Exit MDES back to
calling program.

of registers, change registers,
modify microcode, set new
breakpointls, etc. Continue in
microprognam.

Additional debug operations.

Completion/ of debug operations.

Clear breakpoints, dump microcode,

etc. Exit back to end of program.

debug operations. Set
desired breakpoints into microcode,

7115-30

Figure 10-3. Interactive Debugging Operations

10-17/10-18

Section 11

WRITABLE CONTROL
STORE (WCS) SUPPORT SOFTWARE I

system, essentially you have Jjust anpther fi

file of micro-object code in a disc ile. In
le). effective (i.e., executable through use of main memo y UIG 1
microprogram must be placed in control memory. As |empha
your facility for dynamic control memory (CM) is Writable
ou want to place your micro-object code.

le of data; even after

microassembly, you still have Just a order ¢ Kk
r to make your

microprogram (fi
octal codes) the

sections 1 and 3),
which is where y

sized previously (in
Control Store (WCS),

NOTE [

Although you may of course execute microroutines Wilen they
reside in any facility of CM (e.g., FAB and UCS as well as WCS),
WCS is essential for microprogram development and dynamic
microprogramming. (Dynamic microprogramming is defined as
the ability to swap microprograms in and out of WCS as desired.)
More information on this is in paragraph 11-2.

This section outlines the hardware and software necessary to transfer your microprogram (from the

file you created in the RTE system) into WCS then, modify your microprogram as required for proper
execution.

11-1. WCS HARDWARE

Before anything can be done about moving microprograms from main memory to control memory you
have to have a WCS board or boards installed in the I/O section of the computer and properly
configured for CM and the RTE system. Some details on the WCS boards you can use follow but for
complete board configuration and installation information refer to the HP 13197A Writable Control
Store Reference Manual. You should also refer to section 3 to review the ste?s necessary to prepare for
microprogramming with the RTE system.

You may use the HP 13197A WCS board in the computer for dynamic microprogramming. The
HP 13197A WCS has a capacity of 1024 microwords (1K) which is four CM modules. No hardware
configuring is necessary to use the 13197A WCS. If one WCS board is used, it is advised (in the WCS
manual) that it be installed in SC 10 in the computer. The driver takes carelof setting appropriate CM
addresses on the board from addresses assigned in your microprogram (the driver is described in

paragraph 11-2).

For normal use, a maximum of three WCS boards can be connected with the CM cables supplisad.
Standard maximum WCS configurations (capacities) are 3K of WCS in the HP 21MX E-Series
Computer for either an RTE II or RTE III system.

‘ 11-1

WCS

11-2. WCS SOFTWARE

Manipulating microwords between main memory and WCS via the I/O section is the task of the WCS

microprogramming Suppo
WLOAD comprise this sof

DVR36 drives the WCS bg
conforming to constraints f
have the same CM addre
WCS), and read requests

coordinates between the sy

large quantities of micro
transfers.

WCS boards must be inij

microprogram object code

booted up. Complete inforn

DVR36 manual. (Section

13197A).) The WCS initi

generation or loaded on-li
generation and program 1

To transfer microprogram

WCS, you call the driver g

from a file or LU, you u
Assembly language or FO

t software. Driver DVR36 and the WCS I/O Utility (library) routine
tware.

ards for data transfers (of micro-object code through the I/O section while
or the RTE system I/O. The driver ensures that no two enabled WCS boards
sses assigned. Control requests, write requests (writing microroutines to
(reading microroutines from WCS) are possible using DVR36. WLOAD
ystem and WCS. WLOAD uses DVR36 to perform its operations and move
robject code to WCS. Also, if so configured, DVR36 utilizes DCPC for

tialized (i.e., assigned subchannel base addresses) for the transfer of
to the boards. WCS initialization is required whenever the RTE system is
nation required to write WCS initialization programs is given in the Driver
14 contains an example initialization procedure for the 1K WCS (HP
alization program can be included in the RTE system during system
ne. (Refer to the RTE-II/-1II operating manual for information on system
pading.)

s between WCS and a main memory buffer or to make control requests to
[irectly with an RTE system EXEC call. To load WCS with microprograms
se WLOAD. The procedures to use for calling the driver or WLOAD in
RAN are detailed in the DVR36 and WLOAD manual (reference section 3

for the manual part number, object software part numbers, and procedures for including the software

(loading) in the RTE syste

ples) provides additional d
locking, unlocking, enabli
the system. Note that, wit
assigned at configuration

The Microdebug Editor als

tasks with WCS. All the

Microdebug Editor is incly
microprogramming suppo1

you will not have to get i

11-2 Change 1

ET
.) Complete configuring information is also contained in the driver manual
where appropriate RTE sy

'stem manual references are also made. Section 14 in this manual (exam-
etails on using FORTRAN to control WCS operations including initializing,
ng, and disabling your WCS boards, and executing your microprogram in
h the HP 13197A WCS board, your subchannels should have different LU’s
time.

0 uses DVR36 and WLOAD to perform microprogram editing and execution
information you need to operate the driver and utility routine with the
nded in section 10. All the information required to operate with the WCS
t software directly in the RTE system is included in the driver manual and
nvolved in operating details unless you so desire.

Section 12
USING pROM GENERATION
SUPPORT SOFTWARE AND HARDWARE N

USING pROM GENERATION SUPPORT
SOFTWARE AND HARDWARE |[12

This section provides instructions for generating pROM mask tapes by using the pROM Tape
Generator program (PTGEN). The mask tapes enable a microprogram to be fused {“burned”) into
programmable read-only memory (pROM) semiconductor integrated circuits (IC’s.). Before generating
pROM tapes, the microprogram should be completely debugged and its source should be corrected and
microassembled again to provide the object code required by PTGEN. PTGEN can provide a variety of
pROM mask formats, including those of a variety of pROM vendors. Note that the program must be in
the system prior to use and see section 3 for preparatory information.

|
|

12-1. USING THE pROM TAPE GENERATOR

Run program PTGEN by entering the following command:
RU,PTGEN,userin,list,objectin,ptapein,ptapeout
The command parameters are defined as follows:

userin is the logical unit (LU) that you will use to respond to PTGEN queries. The default is LU 1.

list is the LU on which all PTGEN queries and error messages are written. The default is LU 1.

objectin is the LU from which the microassembler object code is read. If this is LU 2, the disc file
name will be requested. The default is LU 5. Note that the object code must be produced by the
microassembler, not by the Microdebug Editor.

ptapein is the LU from which the punched pROM mask tapes are read for verification. This LU
must accept the output of the ptapeout LU. The default is LU 5.

ptapeout is the LU on which the pROM mask tapes are punched; This should be a paper tape
punch to be accepted by most pROM vendors. The default is LU 4.

pROM mask tape generation is divided into three phases: Initialize, Pupch, and Verify. A temporary
disc file (named ??PTMP) will be created during the Initialize Phase if the objectin parameter specifies
a logical device other than the disc. This temporary file is purged before PTGEN terminates. Each
phase includes a series of queries to which you must respond. In most cases, you can default a response
by entering a “null line”; i.e., a blank (space) character. Also, in making responses, you need only enter
the first letter of the following words: YES, NO, COMMENTS, REPLACE, OCTAL, DECIMAL, and
ALL. PTGEN error messages are described at the end of this section. |

Each PTGEN query shown in this section is preceded by a reference number; this number is not part of
the actual query. ‘

12-1

Generating pROM Tapes

12-2. INITIALIZE PHASE
i

During the Initialize Phase, :you must set up the desired format of the pROM mask tapes. (Figure 12-1
shows the general format for the mask tapes.) The Initialize Phase queries are listed and described

below.

1.0 NUMBER OF WORDS PER PROM?

Respond with the number of words (locations) to be contained in each pROM.

1.1 NUMBER OF BITS PER PROM WORD?

Respond with the number of bits per microinstruction contained in each pROM. This should be a
divisor of 24, the number of bits per microinstruction. The acce

and 24.

1.2 UNUSED-LOCATION LEVEL (H/L)?

Respond with H or L to indicate the level used to initialize unused portions of the pROM (due to the
use of the ORG and ALGN psuedo-microinstructions). If you respond with a null line, the default is

H. If H is specified, all ones are generated; otherwise, the buffer is initialized to zeros.

7/

LEADER GRAPHIC LEADER COMMENT

TAPE ID

<ETC-

[/7

COMMENT

RUBOUTS

ptable values are 1, 2, 3, 4, 6, 8, 12,

START-TABLE CHECKSUM

CHARACTER

ADDRESS (*) CHARACTER

END-WORD

CHARACTER

START-WORD

CHARACTER

END- WORD

END-TABLE

RUBOUTS TRAILER

N CHARACTER

CHARACTER

NOTE

pROM ADDRESSES PRECEDE EACH LINE (SEQUENCE OF pROM WORDS
TERMINATED BY A CARRIAGE-RETURN/LINE-FEED) AND HAVE ONE OF THE
FOLLOWING FORMS:

i
frfff-Uin

WHERE:

“fffff” AND "I’ ARE THE OCTAL OR DECIMAL ADDRESSES OF THE FIRST AND
LAST pROM:WORDS ON THE LINE RESPECTIVELY, DEPENDING ON THE FOR-
MAT SELECTED. EACH LINE CONTAINS UP TO 8 pPROM WORDS BUT DOES NOT
EXCEED 72 CHARACTERS.

7115-32

12-2

Figure 12-1. General Tape Format

Generating pROM Tapes

1.3 PUNCH TAPE ID (Y/N)?
Respond with Y or N to punch or omit the mask tape ID (identification). The format of the punched
tape ID is :

aaaaa-aaaaa (bb-bb)

where:

aacaa-acaaa represents the low and high control memory address and bb-bb represents the left
and right bit number represented in the truth table. Note that “a” is octal and “b” is decimal. The
graphic presentation of the tape ID is such that when you look at the punched tape, the hole
patterns form recognizable characters.

1.4 DEFAULT VENDOR FORMAT (NAME)?

If desired, respond with the name of a pROM vendor and thereby default to that vendor’s format,
bypassing much of the Initialize Phase. The vendors recognized by PTGEN are: HP, INTEL, MMI,
and SIGNETICS. (Refer to table 12-1 for vendor formats.) If you spedify one of these vendors, the
dialogue continues at query 3.0; if you enter a null line, the dialogue continues at 2.0.

2.0 NUMBER OF COMMENT LINES?
Enter the number of comment lines. These usually identify the user and the contents of the tape and
are punched preceding the truth table.

2.1 PUNCH RUBOUTS (Y/N)?

If you enter Y, a series of rubout characters are punched on the mask tapes before and after the
truth table; if N, none.

2.2 PUNCH CHECKSUM (Y/N)?

Enter Y or N to punch or omit a checksum. The checksum is a numeric string of four decimal
characters that represents the number of high-level characters in the truth table. If startand
end-table characters delimit the table, the checksum is punched immediately after the start-table
character.

2.3 START-TABLE,END-TABLE CHARACTERS?
If startand end-table characters are required to delimit the truth table, enter the two characters,
separated by a comma (,); enter a null line if the characters are not required.

2.4 START-WORD,END-WORD CHARACTERS?
If startand end-word characters are required to delimit each word in the truth table, enter the two
characters, separated by a comma; enter a null line if the characters are not required.

2.5 HIGH-LEVEL,LOW-LEVEL CHARACTERS?
Enter the required highand low-level characters, separated by a comma. If you enter a null line, the
default characters are H and L for the high and low levels.

2.6 PROM ADDRESS FORMAT (0/D,1/2)?

If desired, the pROM addresses (not the control memory address) can precede each “line” punched
from the truth table. (A “line” refers to a sequence of pPROM words, terminated by a carriage return
and line feed.) The response consists of two parts, separated by a comma. The first part of the
response is either of the letters “O” or “D” and indicates whether the addresses are to be punched in
octal or decimal form. The second part of the response indicates whether one or two addresses are to
be punched for the pPROM words in a line; a “1” provides only the first address; a “2” provides both
the first and last addresses. A null response suppresses the punching of any pROM addresses.

12-3

Generating PROM Tapes

pROM
PART

4K

1K

1K
(Using
HP pROM
Writer)

Parts that HP has used with PTGEN tapes are:

21MX

Signetics
825115

MMI
6301

Harris
1024

Table 12-1. Default Formats by Vendor
ITEM HP INTEL MMI/SIGNETICS

Number of comment lines 3 5 9
Rubouts punched No Yes Yes
Checksum punched Yes No No
Start/end-table characters — — SE
Start/end-word characters — B,F B,F
High/low-level characters H.L P.N H L
PROM address format D,2 0,1 0.1
Note: The formats generéted are as follows:

Intel BPNF format as defined in Intel's 1976 data catalog.

MMI TWX ASCIl BHLF format as defined in MMI's 1973 through 1976 pROM
(Monolithic device data sheets.

Memories,

Inc.)

Signetics Accepts both the Intel and MMI formats given above.

HP This format is recognized by the HP pROM Writer (part no. 12909-16005),

which is supported only in DOS and BCS environments.

21MX E-SERIES

Signetics
825141

MMI
6301

Harris
1024

12-4

Generating pROM Tapes

The following queries depend on the type of logical unit specified by the objectin parameter in the
RU,PTGEN command; only one of the queries will be asked.

3.0 OBJECT CODE FILE NAME? |

This query is asked if you specified LU 2 as the objectin parameter. Rqspond by entering the name of
the disc file in which the microassembler was directed to store the microprogram object code. The
file name has the following format:

filenamel {security][{crlabel]]]

(Refer to the Batch and Spool Monitor Manual for details.) The documentation map in the preface
shows the part no.

3.1 TEMPORARY FILE NAME? ‘

If you did not specify LU 2 as the objectin parameter, PTGEN mmst store the object code in a
temporary disc file during the Punch Phase for use during the Verify Phase. PTGEN automatically
attempts to create this file (using ??PTMP as the file name); the query is given only if the attempt

fails. You may respond to the query by entering a file name, optionally followed by the word
“REPLACE”, as follows: |

filenamel [security][{criabel]]][, REPLACE]

If a name conflict arises and REPLACE is specified, the exisiting file is purged and a new file is
created. If a name or access conflict arises and REPLACE is not specified or the existing file cannot
be purged, the query is repeated. You may respond with a null line to default the query. In that case,
you will have to re-input the source for the Verify Phase.

12-3. PUNCH PHASE

After the Initialize Phase, the pROM mask tapes are punched. One mask tape is punched for each
pROM I.C. containing w locations of b bits each, as specified during the Initialize Phase. The number
of mask tapes punched for w locations of object code equals 24/b. The truth table for the most
significant bits is punched first. A complete truth table is always punched, using the unused-location
character to represent unused portions of the pROM.

The pROM mask tapes are punched according to the specifications you give to PTGEN during the
Initialize Phase. Carriage-return and line-feed sequences are appropriatély punched in the truth table
to aid visual verification of mask tapes when listing them off-line. Before punching each mask tape,
PTGEN asks if you want to modify any comment lines; if you do not, it uses the comments from the
previous mask tape.

12-5

Generating pROM Tapes

The queries asked during the Punch Phase are listed and described in the following paragraphs

4.0 NEXT PUNCH ADDRESS, BIT-NUMBER?
Respond by entering a nﬁll line to ski
Other acceptable responses are:
aaaaa,bb |
aaaaa, ALL

ALL

p or terminate the Punch Phase and go to the Verify Phase.

ALL or aaaaa, ALL means that al] object code or all bit fields within the specified address range is to

be punched. The aaaata,bl.) eans that object code for a specific pPROM is to be punched. The “¢” is an
octal address and the “b” is a decimal (or octal, if followed by B) bit number in the range to be punched.

These are normalized to the lowest address and the left-most bit number in the truth table. For

example, if the address specified for a 4x256 pROM is 2100,20 the truth table punched will include the
addresses 2000 through 2377 and bits 23 through 20.

4.1 REPLACE COMMENTS FOR TAPE aaaaa,bb?

The aaaaa,bb is similar to the specification described for 4.0, above. Respond with Y to modify

comments; with N to leave the comment lines unchanged from the previous mask tape. Comments
are initialized to one blaf‘lk character each.

4.2 COMMENT LINE n:'

Respond with a null line to leave the comment unchanged from the previous mask tape. Otherwise,

enter the new comment line. Comment lines may be up to 72 characters long. This query is repeated
for each comment line, where n is the comment line number.

After the pROM tapes are punched, query 4.0 is repeated (see above).

12-4. VERIFY PHASE

After all of the pROM mask tapes have been punched, they may be verified by reading them via the
ptapein device. When loadinlg a punched pROM tape, it must be positioned in the reader so that the
graphic ID (if there is one) will not be read. Also, the tape must be positioned before any comment
lines, regardless of whether or not you intend to verify comments. The queries and messages of the
Verify Phase are listed and described in the following paragraphs.

5.0 NEXT VERIFY ADDRESS BIT-NUMBER?
Respond with a null line| to terminate the Verify Phase. Other acceptable responses are:

aaaaa,bb
aaaaa, ALL[,COMMENTS]
ALL[,COMMENTS]

ALL or acaaa,ALL means that all object code or all bit fields within the specified address range is to
be verified. Also, if either of these two responses is given, then the mask tapes must be loaded in the
same order in which they were punched. The aaaaa,bb means that object code for a specific pPROM is to
be verified. The “a” is an octal address and the “b” is a decimal (or octal, if followed by B) bit number in
the range to be verified. These are normalized to the lowest address and the left-most bit number in the

truth table. (Refer to 4.0 in the Punch Phase.) If COMMENTS is specified, the comment lines are
verified.

12-6 Change 1

Generating pROM Tapes

5.1 RELOAD OBJECT TAPE AND *GO

This message is omitted if the object code can be read from a disc file. If this message is issued,
PTGEN suspends itself to allow you to load the object code tape in the objectin device. After you load
the object tape, enter the RTE GO command to resume the verification operation. Note that if the

object tape is incorrectly positioned in the tape reader, PTGEN is aborted after the GO command is
given.

5.2 LOAD PROM TAPE aaaaa,bb AND *GO
After this message is issued, PTGEN suspends itself to allow you to load a pROM mask tape in the
ptapein device. Load the mask tape and enter the GO command. If the verify operation is successful

and comments are not to be verified, the next pROM tape is verified or PTGEN resumes at query
5.0.

If a verify error is detected, the error is reported and the pROM mask tape is repunched. You may
change the comment lines on the new pROM tape to distinguish it from the erroneous mask tape.

If comments are to be verified (COMMENTS specified when specifying address range), the dialogue
continues with the following:

5.3 COMMENTS FOR TAPE aaaaa,bb
This line is followed by a display of all of the comment lines.

5.4 ERRORS IN COMMENTS (Y/N)?
Respond with N or a null line if the comments are valid. The Y response is treated as a verify error.

5.5 REPLACE COMMENTS FOR TAPE aaaaa,bb?
Respond with Y to modify comments; respond with N or a null line to leave comments unchanged.

5.6 COMMENT LINE n:

Respond with a null line to leave the comment unchanged or enter a new comment line. The
comment line may include up to 72 characters. This query is repeated for each comment line; n is
the comment line number.

After the new mask tape has been punched, PTGEN resumes at query 5.0 (or 5.1 if you are verifying
all of the mask tapes). If ALL or aaaaa,ALL was specified, repunched mask tapes should not be verified
until after all of the tapes in the original range have been processed.

12-5. pROM TAPE GENERATOR ERROR MESSAGES

The error messages that might be issued by the pROM tape generator (PTGEN) are as follows:

1 INVALID FILE SPECIFICATION OR EXTRA INPUT.
The file designation was not in the proper format or REPLACE was misspelled.

2 INVALID VENDOR NAME.

The vendor name was misspelled or is not among those recognized by PTGEN. In the latter case,
enter a null line and proceed to specify the details of the pROM tape format.

12-7

Generating pROM Tapes

3 NO OBJECT CODE. |

An END record was encquntered as the first record, or a null line was enter

oo ed in response to query

4 INVALID RESPONSEf OR EXTRA INPUT.
The response was not in the proper format or was not a proper response (e.g., not Y or N).

5 INVALID NUMBER OR EXTRA INPUT.
The response was an improperly formed number or not in the required range.

6 /O ERROR READING OBJECT CODE.
Self explanatory.

7 CANNOT CREATE TEMPORARY FILE.
This message is followed by a File Manager error code.

8 CANNOT PURGE TEMPORARY FILE.
This message is followed by a File Manager error code.

9 CANNOT OPEN OBJECT CODE FILE.
This message is followed by a File Manager error code.

10 INVALID OBJECT CODE RECORD.

This could be due to a checksum error, or the record might not have been created by the microas-
sembler,

11 INVALID ADDRESS SPECIFICATION OF EXTRA INPUT.
The response was not in the proper format or COMMENTS was misspelled.

12 ADDRESS NOT FOUND IN OBJECT CODE.
The pROM address rangeispecified is not included in the object code. This might be due to typing the
wrong address.

13 'O ERROR READING RESPONSE.
A transmission error occurred on the input device; PTGEN aborts.

14 INSUFFICIENT MEMORY.
There is insufficient memory for the pROM or comment buffer. In the case of the comment buffer, if
some space can be allocated it is indicated by the following message:

nnnn LINES AVAILABLE

15 VERIFY ERROR — pROM TAPE REPUNCHED.

An error occurred in verifying the punched pROM mask tape. This might be due to an affirmative
response to query 5.4, an I/O error, or a compare error. In these cases, the error message is followed
by one of the following messages, respectively:

TAPE aaaaa,bb
TAPE aaaaa,bb LINE nnnn
TAPE aaaaa,bb LINE nnnn COLUMN cc

If nnnn equals the number of comment lines, an I/O error occurred while reading one of the comments.

12-8

Generating pROM Tapes

12-6. pROM HARDWARE

When the mask tapes have been generated and pROM’s fused you may mount them on one of the
boards available for installation in the computer. The HP 13304 A Firmware Accessory Board can hold
3.5K microwords of control memory. Details on mounting pROM’s, configuring, and installing this
accessory are contained in the HP 13304A Firmware Accessory Board Installation and Service Manual.
The FAB board is installed in the computer under the CPU board. The 2K microword capacity HP
13047A User Control Store board may have pROM’s mounted and be installed in the I/O section of the
computer. Details for pPROM mounting and installation are contained in the HP 13047A User Control
Store Kit Installation and Service Manual, part no. 13047-90001.

12-9/12-10

Section 13
USING SPECIAL FACILITIES OF THE COMPUTER I

USING SPECIAL FACILITIES OF
THE COMPUTER|[13

|
There are two functions of the HP 21MX E-Series Computers that can be considered as special
facilities. These include the block I/O data transfer feature and the Microﬁrogrammable Processor Port
(MPP), also available for data transfers. Either of these facilities is cdntrolled by a microprogram
written by you, stored in control memory, and called into execution with a UIG instruction in the
manner described in preceding sections of this manual. |

The block I/O facility is, in essence, a microprogramming technique for executing high- speéd data
transfers through the I/O section. It is made possible because of special signal lines on the I/O
backplane. Although the I/O section is used, the process is not a standard I/O transfer opératlon
Paragraph 13-1 explains the block 1/O data transfer facility. |

The MPP may be used for interfacing special external hardware to the HP 21MX E-Series Computer
(e.g., computer-to-computer linking) under direct microprogram control. Very high data-transfer rates
are possible using the MPP which is, in essence, another microprogramining technique that controls
special signal lines. These signal lines are on a specifically designated connector which is not part of
the I/O section. Paragraph 13-5 explains the MPP facility.

The information on block I/O and the MPP in this section relates specifically to the microprogramming
techniques involved in controlling these facilities. Example microprog}rams are provided simply to
illustrate the techniques involved. Your actual application design should be based on these examples
and the information contained in the other applicable sections of this manual. WCS and its micro-
programming support software can be used to control microprogram placement in control memory in
the same manner as any other microprogram (refer to section 11). A summary of typical transfer rates
obtainable appears under paragraph 13-8.

Either of these special facilities will require special interfacing hardware that will be controlled by the
applicable microprogram. Information that you will need for the hardware design is contained in the
HP 21MX M-Series and E-Series Computers I'O Interfacing Guide, part no. 02109-90006. The I/O
Interfacing Guide also contains details you will need on the specific signals (pin numbers, etc.,)
controlled by the micro-orders shown in the microprograms in this section.

Change 1 13-1

opeclat

13-1. BLOCK 1/O LATA TRANSFERS

Block I/O data transfers intp or out of main memory through the I/O section are performed by using the
IOI and 100 S-bus and Store field micro-orders in microprograms without the I0G Special field
micro-order in any of the ﬂour previous microinstructions. When used in the manner shown in the
example microprograms (ﬂaragraphs 13-2 through 13-4), these two micro-orders cause backplane
signals BIOI and BIOO, re‘jspectively, to be generated which may be utilized by specially designed
hardware for non-standard \I/O data transfers. A strobe signal (BIOS) is generated at interval P3 (35
nanoseconds) to be used by }the hardware/microprogram combination to obtain the high data-transfer
rates. If IOG is used in the microprogram to synchronize the Control Processor and I/O section to T2 for
“standard” 1/O operations, ‘ithe above-mentioned signals are not generated. Table 4-1 explains the
normal use of the I0G, IOI,%and IOO0 micro-orders and the other micro-orders shown in the following

example microprograms. (Specifically, IRCM and SKPF are applicable.)

Transfers for block I/O are &xade on a full 16-bit word basis with up to 32K words being transferred
(depending upon available ﬁnemory). The main memory calling sequence for each of the example
microprograms is shown 1nl the microprogram comments. The direction of transfer (in or out) is
designated by whether the IQI (S-bus field, “input”) or I00 (Store field, “output”) micro-order is used
and this depends upon the microprogram called. Input microprograms are described in paragraphs
13-2 and 13-3. An output microprogram is described in paragraph 13-4. When using these micropro-
grams, as well as any micro@})rogram, it is the programmer’s responsibility to be aware of the total
system and times taken for bursts, word counts, etc. Interrupts should not be held off for so long that
data is lost. ‘

The 1/0 Interfacing Guide pr%vides some suggestions on variations of the transfer technique;srisslr;(;w:f
and guidelines on hardware data buffering. Also see the I/O Interfacing Guide for a comp

block I/O and DCPC transfe?r techniques.

13-2 Change 1

Special

13-2. BLOCK I/O BYTE PACKING BURST INPUT MICROPROGRAM

Operation of the block I/O microprogram shown in EXAMPLE 1 ig explained by the comments
included in the listing. The microprogram performs its own STC, as shown in lines BURSTIN through
REALSC, for several reasons. (Lines, as mentioned here, refer to labels in the microprogram examples
that follow.) First, having the RTE operating system execute a STC at the Assembler level incurs
considerable operating system overhead. Second, having the user program execute a STC at the
Assembler level requires turning off Memory Protect. If the microprogram detects a DMS or Memory

Protect violation, it is very complex and time-consuming to correctly indicate these conditions to the
operating system.

The data transfer takes place with the interrupt system on the Memory Protect enabled, so that DMS
and Memory Protect interrupts, as well as any other emergency interrupts, are detectable.

FAKESC and REALSC work together to allow execution of a STC with Memory Protect enabled. Refer
to the coding techniques discussion in section 7 (performing microprogrammed I/O with Memory
Protect and interrupts on), for a complete explanation. }

The IOFF micro-order in line SETPM prevents the HOI conditional tesﬁs in lines WAIT1 and WAIT2
from detecting I/0 interrupts. I/O interrupts so held off remain pending)(i.e., are not lost) and may be
serviced at the termination of the microprogram. To operate correctly as block I/O micro-orders, the
SKPF RJS tests following lines SKPF1 and SKPF2; and, the IOI's in \hnes BURST1 and BURST2,
require that an I0G not be executed in any of the three preceeding mldromstructlons However, this
does require a hardware modification (see the I/O Interfacing Guide.) !

EXAMPLE 1: BLOCK 'O BYTE PACKING BURST INPUT MICRO]#?ROGRAM

MICMXE, L SPECIFY§21MX E-SERIES.
$CODE=BI001 SAVE MI¢RD—DBJECT ONDISC.
ORG 340008 105600 MAPS TO 34000

*

BLOCK I/0 BYTE PACKING BURST INPUT MICROPROGRAM

*

THIS MICROPROGRAM:
1. INPUTS DATA IN A "BURST" MANNER.
2. PACKS THE INPUT DATA AND STORES IT IN MAIN MEMORY.

3. ISINTERRUPTIBLE BY EMERGENCY INTERRUPTS(I.E., PARITY ERROR, DMS, MEMORY PROTECT);
» POWER FAIL AND I/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST DATA TRANSFER.

* 4, ASSUMES THAT THE I/0 CARD PASSING DATA TO THE CPU INDICAT¢S PRESENCE OF A SINGLE
* BYTE BY SETTING THE 1/0 CARD’S FLAG AND THAT IN THE EiVENT OF AN EMERGENCY
* INTERRUPT INCOMING DATA IS NOT LOST. |

* 5. REQUIRES THE FOLLOWING CALLING SEQUENCE ;

* LDA COUNT A NEGATIVE BYTE COUNT

* LDB BUFAD B BUFFER ADDRESS

* LDX SC X SELECT CODE

* CLE INITIAL ENTRY TO MICROCODE

* OCT 105600 MICROPROGRAM 0P CODE, ;

* 6. HAS A MAXIMUM TRANSFER RATE OF ABOUT 500 KB/S (KILUBYTES/}SECUND) IN A NON-DCPC

* ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT, BURST RATES u)P T0 250 KB/S ARE
* ATTAINABLE. ‘

Change 1 13-3

EXAMPLE 1. ‘
LE 1: BLOCK 1/q BYTE PACKING BURST INPUT MICROPROGRAM (Continued)

BURSTIN

*

SETPM

WAIT1
SKPF1

*

BURST1

END1
¥

WAIT2
SKPF2

*

BURST2

WRTE12

END2

WRTE1

DONE

ODDBYTE

*

ODDINT

INTRPT

*

STCNTRL

FAKESC
REALSC

Jmp
ALGN
Jmp

JSB

JMp

JMp

Jmp

JMP

JMP

WRTE

JMP
Jmp

WRTE

READ

READ
IMM

JSB
Jmp

IMM

JMP

IMM

IMM
RTN

13-4 Change 1

CND

10FF

CNDX

CNDX

L4
L4

CNDx

CNDX

CNDX

MPCK

CNDX

MPCK

ION
RTN

L4

106
END

DEC

INC

HOI

SKPF

INC
ALZ

HOI
PASS
SKPF

IOR

INC
INC
ALZ

INC

INC

INC
LOW

LOW
ONE

DEC

PASS

CcMLO

[0R
LOW

S3
PNM

PASS
RJS

S4

S4
A

RJS

S4
TAB
PNM

RJS

TAB

PNM

PRM
I[RCM
S4

IRCM

o

S4

S4
IRCM
IRCM

BURSTIN

ODDBYTE

STCNTRL

°

INTRPT

WAIT1

01
S4
A

WRTE"

INTRPT

WAIT2

101
S4

54

P

A
WAIT1
DONE

S4

P
S3

B

101B
TAB
STCNTRL
WAIT2

201B

S3

303B

S4
376B
sS4

SAVE ENTRY POINTS

RETURN FROM INTERRUPT

AFTER ODD NUMBER BYTES
EXECUTE sTc,¢

SAVE P,

M =BUFFERADDRESS,

P = NEXT BUFFER ADDRESS,
HOLD OFF 1/0 INTERRUPTS.,
EMERGENCY INTERRUPTS?

NO, WAIT FOR DATA READY,

S4(11-4) = BYTE 1.
S4(15-8) = BYTE 1.
UPDATE BYTE COUNT
COUNT = 02 YES, WRTE BYTE.

EMERGENCY INTERRUPTS?
ALLOW STATUS UPDATE
NO, WAIT FOR DATA READY.

LC7-0) = BYTE 2.

S4¢15-8, 7-0) = BYTES 1, 2.
WRTE PACKED DATA, DO MPCK.
UPDATE BUFFER ADDRESS .
UPDATE BYTE COUNT.

COUNT = 02 NO, CONTINUE.
YES, EXIT,

WRTE BYTE 1, DO MPCK.
UPDATE BUFFER ADDRESS.

B = LAST BUFFER ADR. + 1.
FIX P, START FETCH FOR
NEXT INSTRUCTION IN MAIN
GET PARTIALLY PACKED WORD
FORM AND EXECUTE

CLE INSTRUCTION

EXECUTE STC,C
GET SECOND BYTE

SET E TO INDICATE
INTERRUPT ON ODDBYTE

B = CURRENT BUFFER ADDRESS
FIX P, EXIT TO HALT
OR INTERRUPT ROUTINE

5S4 = 001700 = STC 0,C.

L = SC (SELECT CODE).

S4 = STC SC,C.

IR(5-0) = 01, ALLOW STC.
EXECUTE STC SC,C.

Special

13-3. BLOCK I'O ADDRESS/DATA BURST INPUT MICROPROGRAM

Operation of a block I/O microprogram to input address and data is shown in EXAMPLE 2. Explana-
tion of the microprogram is provided in the comments included in the|listing. As explained for the
previous microprogram, the microprogram performs its own STC, as shown in lines BURSTIN through
REALSC, for the reasons explained in paragraph 13-2. Lines FAKESC and REALSC work together to
allow execution of a STC with Memory Protect enabled. Refer to the coding techniques discussion in
section 7 (performing microprogrammed I/O with Memory Protect and |[interrupts on) for a complete
explanation.

EXAMPLE 2: BLOCK /O ADDRESS/DATA BURST INPUT MICROPROGRAM

MICMXE,L SPECIFY 21MX E-SERIES.
$CODE=BI1002 SAVE MICRD-OBJECT ON DISC.
ORG 34000B 105600 MAPS TO 34000B
*
*» BLOCK 1/0 ADDRESS/DATA BURST INPUT MICRDPROGRAM !
. |
* THIS MICROPROGRAM:
* 1. INPUTS, INA "BURST" MANNER, AN ADDRESS FOLLOWED BY THE DAT/A TO BE WRITTEN INTO THAT
* ADDRESS IN MAIN MEMORY.
* 2. IS INTERRUPTIBLE BY EMERGENCY INTERRUPTS (I1.E., PARITYERROR, DMS, MEMORY PROTECT?;
* POWER FAIL AND 1/0 INTERRUPTS WILL NDT BE SERVICED DURING THE BURST TRANSFER.
*+ 3. ASSUMES THAT THE 1/0 CARD PASSING AN ADDRESS OR DATA TO THE CPU WILL INDICATE
* PRESENCE OF A SINGLE ADDRESS OR DATA ITEM BY SETTING THE 140 CARD’S FLAG
» AND THAT DATA 1S NOT LOST IN THE EVENT OF AN EMERGENCY INTERRUPT.
* 4. REQUIRES THE FOLLOWING CALL ING SEQUENCE ;
* LDA COUNT A = POSITIVE WORD COUNT
* LDB SC B = SELECT CODE
* CLE INITIAL ENTRY TO MICROCODE
* OCT 105600 MICROPROGRAM OP CODE.
* 5. HAS A MAXIMUM TRANSFER RATE OF ABOUT 500 KP/S (KILO-PAIRS/ISECOND, ONE PAIR = 1
* ADDRESS AND 1 DATA) IN A NON-DCPC ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT RATES
* UP TO 250 KP/S ARE ATTAINABLE.
*
JMP BRSTIN SAVE ENTRY POINTS.
ALGN
BRSTIN DEC 53 P STORE P
1 MM L4 CMLD S4 303B S4 = 001700 = STC 0,C
L B L = SC (BELECT CODE).
10R S4 S4 54 = STC SC,C.
FAKESC IMM IOFF LOW IRCM 376B IR(5-0) = 01, ALLOW STC.
REALSC 106 IRCM 54 EXECUTE 8TC SC,C.
»
JMP CNDX E BRSTDTA
BRSTADR JMP CNDX HOI INTADR EMERGENCY INTERRUPTS?
PASS INTERFACE FLAG SET?
JMP CNDX SKPF RJS BRSTADR ND, GO TO BRSTADR
M 101 M = BUFFER ADDRESS.
* ;
BRSTDTA JMP CNDX HOI INTDTA EMGERGENCY INTERRUPTS?
PASS INTERFACE FLAG SET?
JMP CNDX SKPF RJS BRSTDTA NO, GO TD BRSTDTA
BRSTEND WRTE MPCK TAB 101 WRITE DATA INTO MEMORY.
DEC A A UPDATE PAIR COUNT.
DONE JMp CNDX ALZ RJS FAKESC COUNT = 072 NO, CONTINUE.
INTADR 1Mt LOW IRCM 101B CLEAR EX+END REGISTER
JMP INTRPT
INTDTA 1MM LOW IRCM 301B SET EXTEND REGISTER
INTRPT ASG PASS P 53 EXECUTE CQLE OR CCE AND FIX P
JMP 6 EXIT TO HALT OR INTERRUPT

END MICROROUTINE

Change 1 13-5

13-4, BL
OCK 10 ‘ ORD BURST OouTPUT MICROPROGRAM

ck I/Cj) micropro

EXAMPLE 3. BLOC |
: K /O WORD BURs
| T
| OUTPUT MICROPROGRAM

MICMXE

$CODE=BI003
SPECIFY 21Mx E-SERIES

ORG j sAv
. | 340008 10520%ICR0-0BJECT ONDISC.
*BLOCK 1/0 BURST gyt "APS T0 34000,
. UT MICROPROGRAM
* THIS MICROPROGRAM:
*
£ 2] 15 TnTEemunn N A BURST manner
. POWER ’__AILPATNIIIJBLIE/(IJBYI ;MERGENCY INTERRUPTS (.. » PARITY ERR
* 3. ASSUMES THAT THE 1, EEEEURPETCSE?\I/LL NOT BE SERVICED DUR[NG %E%T}SR’S?TAUTR: TRANECTYs
* CONTAINS A DATA BUFF g DATA FROM THE ¢ TRANSF ER.
. ER LARGE ENOUG PU IS READY TO RECE 1Y
MR fEﬁ”éSES THE FOLLOWING CALLING SEQT}ESCT:U_LD THE ENTIRE BURST, £ DATA AND
. g BUIE‘JNT A = POSITIVE WORD cQUNT
\ AD B = BUFFER ADDRESS
LDX sC X = SELECT cODE
* . BCT 105600 MICROPROGRAM OP CODE.
* 5. HAS A MAXIMUM TRANSFER RATE OF ABOUT 1000 KW/S (K]
LO-WDORDS/SECONDY IN A NON-DCPC
: ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT, RATES UP T0 400 KW/S ARE ATTAINABLE.
JMP BURSTOUT sAv
e E ENTRY POINTS.
BURSTOUT e ~ DEC s3 P SAVE NEXT INSTRUCTION ADDRESS
er D INC PNM B READ DATA, INITIALIZE P,M
IR 10FF | IRCM X IR(5-0) = SC, IOFF HOLDS
R | OFF 1/0 INTERRUPTS.
BURST4 ‘ 100 TAB BURST DATA OUT OF MEMORY.
© INC PNM P UPDATE P,M
Jmp CNDX| HOI INTRPT EMERGENCY INTERRUPTS?
READ . DEC A A READ NEXT DATA, UPDATE COUNT.
END1 JMp CNDX. ALZ RJS BURSTY COUNT = 02 NO, CONTINUE.
. 1
DONE ION | B P B = LAST BUFFER ADDRESS + 1
READ RTN = INC PNM S3 START FETCH FOR NEXT INSTRUCTION
* , IN MAIN MEMORY.
INTRPT 10N DEC B P B = NEXT BUFFER ADDRESS
| P 53 FIX P, EXIT TO HALT-OR-
JMP : 6 INTERRUPT MICRORQUT INE

END
|
|
|

13-5. MICROPROG}RAMMABLE PROCESSOR PORT
|

The Microprogrammable Pricessor Port (MPP) permits external hardware to be directly connected to
the HP 21MX E-Series Computer and interfaced under direct microprogrammed control. Applications
possible with the MPP include computer-to-computer communications, adaptation of specialized per-
formance accelerating hardware, a fast or special I/O channel (similar in function to the DCPC), etc.
The MPP special facility is comprised of a hardware/microprogram combination. The hardware
interface is summarized below. A microprogram which may be used as a basis for your MPP design is
discussed in paragraph 13-7. Note that the MPP facility has nothing to do with the I/O section.

13-6 Change 1

Special

13-6. HARDWARE INTERFACE

As illustrated in figure 2-1 and in appendix H, the MPP physical interface consists of a connector on
the computer. This connector is located behind the Operator Panel (Refer to the I/O Interfacing Guide
for the location and designation.) The MPP signal lines are present at this connector and these signals
are ultimately under microprogram control. Table 13-1 summarizes some of the MPP physical inter-
face. The use of every one of these signals is ultimately to be determined [by the designer. Where use is
mentioned in the table it is only a suggestion. Micro-orders mentioned are defined in table 4-1 in this
manual. The actual design and use of the MPP must be determined by you (the user) and all
information in this section should be interpreted as guidelines for design. Details on signal levels,
connector pin number assignments, and other interface hardware design [information for MPP use will
be found in the HP 2IMX M-Series and E-Series Computers 1/O Interfacing Guide, part no.
02109-90006.

Table 13-1. MPP Signal Summary

SIGNALS DESCRIPTION
MPPIO 0O thru 15 Two-way MPPIO signal lines that provide the main data limk for the MPP to the computer
(CPU) S-bus. Under control of micro-orders affecting the S-bus.
PP5 Output timing line can be used to synchronize with thejcomputer for data transfers.
PLRO Output L-register signal line under control of L-register micro-orders. L-register bits 3

through 1 must be 0 to enable the MPP. Signal PLRO i$ used for an address fine.

STOV Input signal line. State can be tested by the word tybe Il Conditional field OVFL
micro-order. Possible use to designate overflow from aiset Overflow register.
PIRST Output signal line. Can be used to sense the IR (IRCM micro-order in Store field).
]
PP1SP Output signal line activated by a MPP1 micro-order in the word type | Special field.

Could be used to designate “first operand to follow.”

PP25SP Output signal line activated by a MPP2 micro-order in the word type | Special field.
Could be used to designate “"second operand to follow.”

MPBST Output signal line activated by a MPPB micro-order in the word type | Store field. Could
be used to generate a store (e.g., repeated four times 1o store in a 64-bit group of data,
where data is being output on the S-bus).

MPBEN Output signal line activated by a MPPB micro-order in the word type | S-bus field couid
be used 1o gate data into the computer on the S-bus (e.g., receive back computed data
repeatedly).

MPP Input signal line. State can be tested by the word type Il conditional field MPP

micro-order. Could be used to sense when device transfer is complete.

Change 1 13-7

13-7.

An example microprogram that can be used for the MPP is included below. The actual microprogram
used must be prepared by you, for your application, using the information in applicable sections of this
manual, and in particular, the micro-orders shown in table 13-1. The appropriate CM locations, UIG
instructions (main memory/control memory linkage) and microprogramming support software should

MPP MICROPROGRAM

be used in the same manner as for preparation and use of any other microprogram.

Note that with the MPP design, the key is to have a data buffer large enough to hold the entire burst.
The example microprogram operates in a no “hand shaking” manner to transfer data in 256 word
bursts. At label BURST data is written into memory using a three microinstruction loop (630

nanoseconds total time). Additional comments appear in the microprogram.

EXAMPLE 4: MPP MAXIMUM DATA RATE BURST INPUT MICROPROGRAM

MICMXE,L
$CODE=MPPOY
ORG

*

*

#+ THIS MICROPROGRAM:
+ 1,

¥

LDA COUNT

1

« LDB BUFAD
+ DCT 105600
*
#*
*

OF A
. HAS A MAXIMUM DATA RATE
© ENVIRONMENT . IN A TYPICAL DCPC E

JMP
ALGN
BURSTIN
#*
WAIT JMP
JMP
*
BURST WRTE
JMP
#*
NE
po READ
*
NTRPT
! JMP
END

13-8 Change 1

A = POSITIV

CNDX

CNDX:

MPCK

DCNT

CNDX'

RTN

DEC

HO1
PASS
MPP
INC

INC
CNTS

INC

INPUTS DATA IN A "BURST" MANNER.
* 2. 1S INTERRUPTIBLE BEFORE THE BURST STAR

* 3, ASSUMES THAT THE DEVI

BOUT 1500
NV IRONME

53
CNTR

RJS
PNM

TAB

PNM
RJS

PNM

34000B
+ MPP MAXIMUM DATA RATE BURST INPUT MICROPROGRAM

6 CALLING SEQUENCE

E WORD COUNT
B = BUFFER ADDRESS
M1CROPROGRAM OP CODE

SPECIFY 21MX E-SERIES
SAVE MICRD-0OBJECT ONDISC
105600 MAPS TO 34000

19, BUT ISNOT INTERRUPT 1BLE DURING THE BURST,
VICE UTILIZING THE MPP FACILITY CONTAINS A DATA BUFFER LARGE
ENOUGH T0O HOLD THE ENTIRE BURST,

+ 4, ASSUMES A BURST MAXIMUM OF 256 WORDS,

+ §, REQUIRES THE FOLLOWIN

KW/S (KILD-NDRDS/SECUND) IN A NON-DCPC

BURSTIN

p
A

INTRPT
WATT

B
MPPB
P
BURST
P

53
CNTR

S3
6

NT RATES UP TO 500 KW/S ARE ATTAINABLE.

SAVE ENTRY POINTS

SAVE NEXT INSTRUCTION ADDRESS

CNTR = + WORD COUNT

ANY INTERRUPTS?
UPDATE STATUS FLAGS y
ND, WAIT FOR DATASREAD
= BUFFER ADDRESS,
" p = NEXT BUFFER ADDRESS
WRITE DATA INTD EEMDRY
PDATE CNTR, P,
ltJ'JDUNT = 07? NO, CONT INUE

DRESS + 1
B = LAST BUFFER AD
FIXP,STARTNEXTFETCH

A = 0 = BURST COMPLETE

T-0R-
F1x P, EXIT TOHAL
INTERRUPT MICROROUTINE

13-8. SUMMARY

Special

Some typical transfer rates obtainable using the special facilities of the computer are summarized in

table 13-2. Actual figures will depend upon your design.

Table 13-2. Special Facilities Transfer Rate Summary

FUNCTION RATES

BLOCK 1/O DATA TRANSFERS

nput (256 words or less*): 1.59M words/second (maximum)

Output (256 words or less*): 1.36M words/second (maximum)

MICROPROGRAMMABLE PROCESSOR PORT

Burst (16 words or less™): 5.7M words/second (maximumy)

Continuous: 1.59M words/second (maximum)

*Transfer rates for larger numbers of words depend upon the size of the block to be
transferred. Note that DCPC and memory refresh factors have been incorporated in the
figures shown.

13-9/13-10

PART IV
Microprogramming Examples

MICROPROGRAMS

The microprogramming examples in this section are arranged in order of advancing complexity and
illustrate (among other things) concepts presented throughout the rest of this manual. Each micropro-
gram is complete in itself and may be used directly in the computer or may be used as an example for

creating your own microprograms. The following assumptions are made for the use of material in this
section.

® The microprogramming support software (the microassembler, Microdebug Editor, driver DVR36,
and WLOAD) must have been loaded into the RTE system. It is also assumed that the system
equipment configuration (HP 21MX E-Series Computer, HP 13197A WCS, etc. installation) is
compatible for microprogramming. (Refer to section 3 in this manual for more information on the
steps necessary for preparing to microprogram.)

® RTE system equipment table entries (SC-to-LU relationship) must have been made.

The first examples use the MDE features to prepare and execute the microprograms. If you use the
RTE Interactive Editor, then, the RTE Microassembler to prepare the larger examples, use the RTE
Interactive Editor Tab function for determining the starting columns for micro-order fields. (Refer to
section 8 for more information on preparation with the microassembler.

When you are ready to microassemble from the system LS tracks, the microassembler may be
scheduled and used following the procedures outlined in section 9 of this manual. Control commands,
error messages, etc., are described in section 9. Psuedo-microinstructions, etc., that you will need when
preparing your source are described in section 8. The microassembled object will be placed in an RTE
file you designate by the $CODE command and will be ready to be accessed and loaded into WCS.
Information on WCS support software use (for moving your microprogram into WCS or out of WCS)
may be found in section 11 in this manual.

In addition to the examples included in this section you may be interested in the microprogrammable
algorithms appearing in three other reference manuals:

¢ Computer Approximations.
¢ The ACM Manual (Association of Computer Manufacturers).

¢ Art of Computer Programming, Volume III

Change 1 14-1

WCS boards must be initialized (i.e., be assigned subchannel base addresses) for the transfer of
microprogram object code to the boards. WCS initialization is required whenever the RTE system is
booted up. Complete information required to write WCS initialization programs is given in the Driver

DVR36 manual.

The WCS boards can be initialized and controlled by the FMGR CN command as follows:

CN,lu,n [,bal

where:

lu = a WCS LU number;

n = 1 = assign base address to WCS LU;
n = 2 = enable WCS LU;

n = 3 = disable WCS LU;

n=4= down WCS LU;

bt = hage address o be assigned to WCS LU.

For example, to initialize and enable a 1K WCS board having LU number 11 and 12, the following

sequence of CN commands could be used:

CN,11,1,34000B
N, 112
(N 12,1,33000B

CN,12,2
it could be set up as a TR (transfer)

i sed frequently, _
ere going L0 be 1 nce Manual for information

If the above command sequence W .
file and saved for later execution. Refer to the Batch-Spool Monitor Refere

on TR files.

14-2 Change 1

Microprograms

This page is intentionally blank!

Change 1 14-3

14-2, MICROPROGRAMMING WITH MDE

that performs a logical “and”
and WRTE micro-orders. The
» REplace, SEt, RUn, SHow, PR, EXit, and Abort
MDE commands.) Note that the Abort (A) :

EXAMPLE 1. DECREMENT A REGISTER, CONSOLE RUN SHEET

*0N, FMGR
:RU, MDEP

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPE(1 OR 2)22
SLU, 13

LU# RANGE STATUS

13 2340800--034777 |

$RE, 340008

34080 LGS STFL NAND SI CNTR
$SREAD, RTN,DEC, A, A

34086 READ RTN DEC A A
$$/

$SE, A

A =28

(%)
123458
12345
A

$RU, 1856 00B
RETURN= P+@1l

$SSE, A
A = 12344

> > Pr D

A
A
SEX
$END MDEP
tEX
$END FMGR

12344
A

14-4 Change 1

EXAMPLE 2: READ/WRITE MEMORY, CONSOLE RUN SHEET (Sheet 1 of 2)

*QN, FMGR
tRU,MDEP

COMPUTER TYPE:
TYPEC1 OR 2)72
$LU, 13

LU¢ RANGE STATUS
13 0340060--0834777 1
$RE, 34000B, 3400838

34080 LGS XOR
$SREAD,NOP,PASS,L,A
34008 READ PASS
$$/

34801 STFL CMPS

$$SNOP,NOP,AND,S1,TAB

34001 AND
$$/
34002 STFL PASS

$SWRTE,MPCK, PASS, TAB, S1

34P02 WRTE MPCK PASS
$8/

34003 SRG! CMPS
$SREAD, RTN, INC, PNM, P
34003 READ RTN INC
$SA

$SH, 3400808, 34003B

34000 READ PASS
34001 AND
34082 WRTE MPCK PASS
34883 READ RTN INC
$SE,A

A =0

A =0

A = 377B

A = 377

A =aA

TAB

PNM

S1
TAB
PNM

1=21MX,2=221MX E-SERIES

CNTR

TAB

S1

Sl

MEU

TAB
Sl1

Microprograms

Change 1 14-5

Microprograms

EXAMPLE 2: READ/WRITE MEMORY, CONSOLE RUN SHEET (Sheet 2 of 2)

SPR
P+@1= RETURN
P+0@2= RETURN
P+83= RETURN
P+@24= RETURN
P+@25= RETURN
P+@6= RETURN
P+@7= RETURN
P+@8= RETURN
P+@9= RETURN
P+10= RETURN

P+81= RETURN
P+@1= 525258
P+@1l= 52525
P+@l= A

$RU, 185600B
RETURN= P+@2
$PR

P+Bl= 125
P+82= RETURN
P+33= RETURN
P+@4= RETURN
P+85= RETURN
P+0@6= RETURN
P+0@7= RETURN
P+@8= RETURN
P+@9= RETURN
P+108= RETURN

P+@1= 125
P+01= A
SEX

$END MDEP
:EX

$END FMGR

14-3. SHELL SORT EXAMPLE

This example illustrates a microprogrammed Shell sort technique which performs a sort of numeric
data (assumed to be in a disc file). The theory of the technique is described in the reference material
that is mentioned at the beginning of this section. The example illustrates the benefits of micropro-
gramming a typical program that may be used repeatedly in a particular application. Included here
are a FORTRAN program used to input the numbers to be sorted, list them (if so desired), and call a
sort program. An Assembly language program is called to interface to a microprogram which performs
the actual Shell sort.

Figure 14-1 is a flowchart that explains the microprogram. Annotated console run sheets are included
that can be used to perform this same example in a step-by-step manner. The fully commented
microprogram that performs the sort is included immediately after the console run sheets. Note that
the Microdebug Editor is used to examine the progress of the sort.

14-6 Change 1

Microprograms

When confidence in the ability of the microprogram to perform the sort is established, an application
FORTRAN program is run (SRTST; which times the difference between the Assembler sort and the
microprogrammed sort). The timing is accomplished in addition to the tasks already performed by the
previously run test program.

The Assembly language program that runs the Shell sort (in competition with the microprogrammed
version) is shown just before the console run sheet. Use the run sheet as an example to perform the
execution and timing of the sort.

EXAMPLE 3: SHELL SORT, FORTRAN TEST PROGRAM

PAGE 0001 FTN4 - RELEASE 24177C = JULY, 1972

0001 FTN&4,sL

0002 PROGRAM SRTST

0003 INTEGER P(5) 4sCONSsPRINTIDCRB(144) 4NAME (3)4IBUF (128)
0004 INTFGER TABLE(125)

0005 EQUIVALEMCE (CONS+P (1)) s (NMBRsP(2))+(PRINT,P(3))
0006 DATA NAME/2PHNS42H0042H0 /

0007 C

0008 C GET RUN PARAMETERS

0009 CALL RMPAR(P)

nolo C

0011 C READ UNSORTED ELEMENTS FROM FILE N5000
0012 CALL OPEN (IDCBsIERRyNAME)

0013 DO 10 J=1+NMBR/125

0014 CALL READF (IDCBsIERRsIBUF)

0015 DO 20 I=1+125

0016 20 TABLE((U=-1)#125 + 1) = IRUF(I)

0017 10 CONTINUE

0018 C

0019 C LIST UNSORTED ELEMENTS 7

0020 IF (PRINT) 30440430

0021 30 WRITE (CONS+100) (TABLE(I)sI=]14NMBR)
0022 100 FORMAT (/+(10R7))

0023 C

0024 C USE MDES TO INITIALIZE WCS

0025 40 CALL MDES (CONS)

0026 C

0027 C INDICATE START OF SORT

0028 WRITE (CONS,200)

0029 200 FORMAT (/" START OF SQRTw)

0030 C

0031 C EXECUTE SORT

0032 CALL SORT (NMBRR, TABLE)

0033 C

0034 C INDICATE END OF SORT

0035 WRITE (CONS+300)

0036 300 FORMAT (/4" END OF SORT")

0037 C

0038 C LIST SORTED ELEMENTS ?

0039 IF (PRINT) 50,60+50

0040 50 WRITE (CONS+100) (TABLE(I)+I=14NMRR)
0041 C

0042 C COMPLETE DEBUG OPERATIONS
0043 C I.E. CLEAR BREAKPOINTS, ETC,

0044 KO CALL MDES (CONS)

0045 CALL CLOSE (IDCR)

0046 END

NO ERRORS* PROGRAM = 00587 COMMON = 00000

14-7

Microprograms

EXAMPLE 3: SHELL SORT, TEST ASSEMBLER INTERFACE

PAGE

0001
0002
0003%
0004%
0005%
0006
0007
0008
0009
0010
0011
0012
0013#
0014
0015
00164
0017
0ol8#
0019
0020

#% NO ERRORS #TOTAL ##RTE ASMB 750420+##

14-8

0002 #01

00000

00000
00001
00002
00003
00004

00005
00006
00007
00010

00011

000000
noonoo
000000
016001X
000000R

162000R
066001R
000040
105600

126002R

ASMB WL
NAM

12.1¢7

SORT INTERFACE PROGRAM

ENT
EXT
NMBR RSS
TARLE RSS
SORT NOP
JSH
DEF

LDA
LDR
CLE
oCT

JMP
END

SORT
<ENTR
1

1

«ENTR
NMBR

NMBRo I
TABLE

105600

SORT. I

GET PARAMETERS

NUMBER OF ELEMENTS
ADDRESS OF FIRST ELEMENT
0 = INITIAL ENTRY

NVOKE SORT MICROPROGRAM

A
B
£
1

Microprograms

ISAVE M (NEXT INSTRUCTION ADDRESS) IN S1l}
Y
———RETURNING FROM INTERRUPT ? (E=17)]

N
Y Y

[NOMBER OF ELEME'NT?'?TT—!—A—Y—HT]___... (Y=4, V<0 e
N

[BET Y TO DISTANCE BETWEEN COMPARANDS (v=v/2)]

Y

[DISTANCE = 8 ? (Y=@02)} f{A)
N
A

h
LACE NUMBER OF COMPARES IN S3 (S3=zA-Y)
ORM ADDRESS OF 1 IN P (P=B)
ORM ADDRESS OF J IN S4 (S54=B#+Y)
INITIALIZE SWAP INDICATOR (0=@)

EAD I INTO L, UPDATE ADDRESS OF 1 (P=P+1)
SAVE_ADDRESS OF OLD I (S5=M)

\ 2N »
EAD J INTO Sé6
PDATE ADDRESS OF J (S4=M+1)

3 N
{COMPARANDS OUT OF SEQUENCE ? (I>J?)
Y

ET SWAP INDICATOR (0=1)

A

RITE OLD I INTO J IN MEMORY, CHECK FOR MEM. PROT.
S

RITE OLD J INTO I IN MEMGRY, CHECK FOR MEM. PROT.

N
[ANY INTERRUPTS 7}

Y

1
SAVE P (NEXT 1 ADDRESS) IN X (X=P)
SET INTERRUPT RETURN INDICATOR (E=1)
FIX P (P=S511)

JMP TO HORI (BASE SET INTERRUPT CODE)

ESTORE ADDRESS OF NEXT I IN P (P=X)
ESTORE ADDRESS OF NEXT J IN S4 (S4=P+Y)
ESTORE NUMBER OF COMPARES IN S3 (S3=(B+A)=~S4)

Y
PMORE COMPARES ? (S53=53-1, S3 NOT =g}
N
Y
|[aNY COMPARANDS SWAPPED DURING THIS PASS 2 (0=12) e
v

JSTART NEXT INSTRUCTION FETCH, Exnh—@

Figure 14-1. Example 3, Microprogrammed Shell Sort Flowchart
14-9

Microprograms

EXAMPLE 3: SHELL SORT; TEST, CONSOLE RUN SHEET (Sheet 1 of 2)

*0ON, FMGR
tRULEDITR =
SOURCE FILE?

—|CREATE M]CROPROGRAM SOURCE FILE]

/A
EOF
/T518,15,20, 25, 38, 48 SET TABS FOR M
ICROINSTR

/ MICMXE,L33333521MX E-SERIES LCTION FoRMAT
7% = M2, TE, ACES:: T TO DISC
BODY OF USER SELECTED MICR

O O cram ICROPROGRAM OBJECT FILENAME |

B /ELCaM2.1E <
LS FILE 2 4l
END OF EDIT

I *RU,MICR0,2 <———————]MICROASSEMBLE MICROPROGRAM]|

| |
~JUSER SELECTED MICROPROGRAM SOURCE FILENAME]

/MICRO: END
SRU;SRTST:IJSJI

[CONSOLE LU, NUMBER OF DATA, LIST FLAG (1=L1ST)]

016448 136875 816336 152742 823501 +—JUNSORTED DATA]

COMPUTER TYPE: 1=21MX,2=2IMX E-SERIES
TYPE(1 OR 2)72

B osu, i3
LU# RANGE STATUS
13 834000--834777 |
8LD, 'M2.|E <= —{USE FILENAME IN $CODE STATEMENT]
$L.C, 346 B@B, 344178
SBR, 34@852B, 34072B LOCATE MDE BREAKPOINT MICROPROGRAM, AND
BREAK | 34052 PROVIDE AN UNUSED ENTRY POINT FOR MDE USE,
BREAK 2 34872 BEFORE SETTING BREAKPOINTS
BREAK 3 @
B sEx SET BREAKPOINT IN SWAP MICROINSTRUCTIONS, AND
SET BREAKPOINT AT END OF ONE COMPLETE PASS

START OF SORT
BREAK 34852 <—mm—————dBREAKPOINT IN SWAP MICROINSTRUCTIONS|
$SE, L, 56
L~ = 16440 S6 = 16336

4 $ ___ IFLEMENTS BEING SWAPPED]

L = 16448
= A

BREAK 34872 _ AFTER BREAKING AT END OF PASS,
$CL,34872B REMOVE END OF PASS BREAKPOINT
BREAK 1 34052
BREAK 2 @
BREAK 3 @

14-10 Change 1

Microprograms

EXAMPLE 3: SHELL SORT; TEST, CONSOLE RUN SHEET (Sheet 2 of 2)

BREAK 34852 <—————BREAKPOINT IN SWAP MICROINSTRUCTIONS|
B ssE,L.s6

L = 16336 S6 = 136075
t [ELEMENTS BEING SWAPPED|
L = 16336
L =4
SRU

BREAK 34852 w————|BREAKPOINT IN SWAP MICROINSTRUCTIONS|

$SE, L, 56

L~ = 16440 S6 = 152742
t {ELEMENTS BEING SWAPPED]

L = 16440
L =a
$RU
BREAK 34052 <—————JBREAKPOINT IN SWAP MICROINSTRUCTIONS]
$SE, L, 56
L~ = 16336 S6 = 152742
% JELEMENTS BEING SWAPPED]
L = 16336
L =4
$SRU
END OF SORT NOTE: THESE ARE NEGATIVE NUMBERS|

1360875 152742 816336 81644¢ 823581 <—fCORRECTLY SORTED DATA]

H sc.
BREAK | @ ~——BE SURE TO REMOVE BREAKPOINTS 1]

BREAK 2 @
BREAK 3 @
1=
IEX
$END FMGR

Change 1 14-11

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 1 of 3)

PAGE 0002 RTE MICRO=-ASSEMBLER REV.A 760805

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013

0014
0015
0016
0017
0018
0019
0020
0021
0022

0023
0024

0025
0026
0027
0028
0029
0030
0031 34000
0032
0033
0034
0035
0036 34020
0037
0038
0039
0040 34021
0041
0042
0043
0044 34022
0045 34023

14-12

327 001007

010 033507

334 103042

010 007647
327 103602

MICMXE 4L

$CODE='M2-1E-REPLACE
ORG

LABR 2,1 MICROPROGRAM

THIS MICROPROGRAM SO
RTS AN
ASCENDING ORDER USING THE sz;

;EEHNIQUE (I.E, SHELL SORT),
! ART OF COMPUTER PROGRAMMING, vgL 3.

EGER ARRAY INTO
NISHING INCREMENT

CALLING SEQUENCE

LgA NMBR + NUMBER OF SORT ELEMENTS
t S TABLE ADDRESS OF FIRST ELEMENT
L E=(0=INITIAL ENTRY,
OCT 105600 INVOKE SORT MICROPROGRAM
AT END

CONTENTS OF TABLE SORTED
AsB UNALTERED E+0 MAY BE ALTERED X.v ALTERED
NOTE
IN THE FOLLOWING COMMENTSs I AND J ARE THE TWO
SORT ELEMENTS BEING COMPARED
(1.E. ARE THE COMPARANDS)

& & &6 & & & T &k & X & & X G oF o & * ¥ o g

@
@
&
®
&
)
@
)
#
®
@
I1=RETURN FROM INTERRUPT) :
®
®
®
-
#
-
-
#
®
-
®
@

LA AL X222 2R RRR 2 YRR RN NIRRT RE LR R R R Gy

HORT EQU 68
JMP
ALGN

(22 222222 X222 222222222 2222200 X 2 X 22 22 2 X 2 221 3

SAVE M (NEXT INSTRUCTION ADDRESS) IN S11 +#

(222322222 2222222222222 22 2 R 22 222222 2 2 % 22 2 4

SORT SAVE ENT POINTS

SORT S11 M S11 = NEXT
BEBRRBRRBRRERT ARV OB RDBRIRBRR B RRD OB INSTR ADDR
RETURNING FROM INTERRUPT ? (E=17) *=
Y Y I YTy Y Y Y T Y Y Y Y Ty

JMP CNDX E INTRTN YESs USE INTRTN
BEBRBBBBRBR BB SRR DO BB O BRI B BE BB DEDORGS
NUMBER OF ELEMENTS < 0 ? (Y=As Y<07?)
BHOHRGHER BB RRD R BB H BB BB R R BB DBD B DERES

Y A Y = A
JMP CNDX AL1S EXIT Y<0 ? YESs EXIT

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 2 of 3)

PAGE 0003 RTE MICRO-ASSEMBLER REV.A 760805

0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0073
0079
no8on
0081
oos2
0083
0084
00RS
0086
0087
0088
0089
0099
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

34024

34025
34026

34027
34030
34031
34032

34033
34034
34035

34036
34037
34040

34041
34042
34043
34044
34045
34046
34047

34050
34051
34052
34053

010

010
320

010
004
010
003

227
010
010

230
007
010

014
327
012
327
327
004
327

012
210
007
210

073664

072747
003602

072507
107107
011707
011153

174707
033207
000507

046647
133147
001247

152747
142302
136747
102602
002407
152747
142602

137307
054036
150654
052036

Y Y PRI TR R T R
SET Y TO DISTANCE BETWEEN COMPARANDS (Y=Y/2)
Y I YT Ry Y T TS R R Y
SETY R1 Y Y Y = Y/2

HRB BB RGE AR DO R DD RE NG TN

DISTANCE = 0 ? (Y=0?)

Yy Y Y YT T L

Y
JMP CNDX ALZ EXIT Y=0 ? YESs EXIT

222222 222222222222 222222 222 22 X2 2 222 2 2 2 X 2 2 8 4

% PLACE NUMBER OF COMPARES IN S3 (S3=A-Y) *

FORM ADDRESS OF I IN P (P=B) hod
FORM ADDRESS OF J IN S4 (S4=B+Y) #*
INITIALIZE SWAP INDICATOR (0=0)
I Ty Y T T R e I YT
STRTPASS L Y
su8 S3 A S3 = COMPARES
P B P = ADDR OF 1
Cov ADD S4 B S4 = ADDR OF J»

#* 0=0
Ry Y Y IR R Y YRR R

READ I INTO Ls» UPDATE ADDRESS OF I (P=P+1) =

SAVE ADDRESS OF OLD I (S5=M) A

O L Y Yy I T T YT R PR R Y Y 2

COMPARE READ INC PNM P READ I, UPDATE P
SS M SS = ADDR OF 1
L TAB L =1

L LY Ry T Y 2 T Y Y]

READ U INTO S6

UPDATE ADDRESS OF J (S4=M+1) +#

(222222 222222222 222222222222 22 % 2 4

READ M S4 READ J
INC Ss4 M S4 = NEXT J ADDR
S6 TAB S6 = J

(22222222 22222222222 222222222220 X 2 2 2 2

COMPARANDS OUT OF SEQUENCE ? (I>J?)

(A 2222 22222222 X222 222222222 2222002 2 0 2 2

XOR S6 J SIGN = 1 SIGN?
JMP CNDX AL1S RJUS SUBTRACT YESs SUBTRACT
PASL I SIGN = - ?
JMP CNDX AL1S INTCHK YESs NO SWAP
JMP SWAP NOs SWAP
SUBTRACT SuUB Sé J=1«<0?
JMP CNDX AL15 RJS INTCHK NOs NO SWAP

L Y Y Yy Yy e Y R R
WRITE OLD I INTO J IN MEMORYs CHECK FOR MEM, PROT,
SEY SwAP INDICATOR (0=1) *
* WRITE OLD J INTO I IN MEMORY, CHECK FOR MEM, PROT, #

3222222 2222222222222 2222222222222 202 2 X 222222 2 2 2283

SWAP PASL S7 S7 = 0LD I
WRTE MPCK TAB S7 J IN MEM = OLD 1
SOV INC M SS M=ADDR OF I, 0=}
WRTE MPCK TAB Sé6 I IN MEM = OLD U
0=1

14-13

EX :
AMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 3 of 3)

PAG
E 0004 RTE MICPO-ASSFMRLEP REV.A Th0R05

0loz
oloz ####b##bﬂ#####ub####
o ® ANY INTERRUPTS 7 &

#ﬂ####ﬂ#ﬂ###ﬂ#%##ﬂ##

0105 34054 323 14344p INTCHK

N106 JMP CNDX HO] R
0107 #a#a###a##a#a#a##¢¢¢§§§§§:E§§ENDCHK NOs CHK PASS
0108 # SAVE o) (NEXT I ADDQES b*ﬁﬁ#ﬂ:ﬁaug{,”““
0109 > SET INTERRUPT pETyRN ?LUIN TosX=p) #
0110 * FIx p (P=51]) NOICATOR (F=]) »

JMP
8%}; 340 romon) JPASE SET INTERRueT copg

o *3
0117 34 29 010 075607 INTEXTT *””#ﬁ#ﬁau#####ﬁ#&###ﬂ§§§¢§
34056 342 000607 MM X ° X = NEXT I ADOR

0114 34057 03] 13076 ., LOW IRCM 2004 IN(9=6)=1]10=
0115 34060 010 065707 SHG1 ONE CCE Tillo=eLa
0) P -
0;%; 3401 320 000307 Jmp Séér CCE.RSS, FIX p,
0114 . JHP TO BASE SET

#
0119 #”;Z””“*“”*#**#b#ag#u*ﬁu»ag»a»%%a»aﬁﬂaﬂﬁqifls5ZUPT CObE
0170 o ncoTORE ADDRESS 0F NEXT T [N p (poy, s
012 RESTORE ADDRESS OF NEXT oy [N <4 (o :

RESTOR : ; N 54 (Sé=pay)
01722 ¢¢¢§¢§;*E NUMBER OF COMPARES [n S3 (S3=R4A-S4)
0123 34062 010 07 ' %#ﬁ#§ﬁﬁ%%#*%#ﬁ#ﬁ#ﬂ##b%##%ﬁﬁﬁ#%ﬁ%Q%%%%%%Q

1707 INTRIN o X b = NExT

0124 34063 010 072507 L " = 1 ADDR
012% 34064 003 075147 ADD S4 P Sa = NEXT U ADDR
0126 34065 010 00AS507 L A
0127 34066 003 011107 ADD <3 W S3 = Hea
0128 3407 010 046507 L Sa
8}2: 34070 004 145107 SUR S3 S3 83 = (H+A)=S4 =
01: * COMPARES
0131 BB T e B S R R e R UL Rl et S dr B b b G B
0132 # MORE COMPARES ? (83=S3=1. S3 NOT =072) =
0133 LR R R R R R R LR R R R R X RN R TR A AT
0134 34071 0N0 045107 ENDCHK DEC S3 S3 MGRE COMPARES 7
0135 34072 320 041547 JMP CNDX ALZ RJS COMPARE YESs DO NEXT
0136 A T L L L R L LY LT T R P R 2 R R e R s
0137 # ANY COMPARANDS SwWAPPEND DURING THIS PASS ? (0=17) *#
D138 B L L T R R L L L L T g R A S G G g e o gy
0139 34073 335 101347 JMP CND X OVFL STRTPASKS YESe REDO PASS
nNian 34074 327 0017207 JMP SETY NO e NEXT PASS
njel T R L R R R Lk L L R g g R A
0la42 # START NEXT INSTRUCTION FETCHs EXIT #
0143 30 45 b 3 3 4o b b 30 20 3 45 e 4E B 4P 3 b 47 240 2 4R 5P R 4R SHSE P R4S AL 8 A
0144 34075 227 164700 EXIT READ RTN INC PNM S]] START NEXT
0165 END INSTR FETCH

END OF PASS 2: NO ERRORS

14-14

Microprograms

EXAMPLE 3: SHELL SORT, APPLICATION PROGRAM

PAGE 0001 FTN4 ~ RELEASE 24177C = JULY, 1972

0001 FTN4sL

0002 PROGRAM SRTST

0003 INTEGER P(5)9CONS+PRINTLIDCB(144) NAME(3)IBUF (128)
0004 INTFGER TABLE(125)

0005 EQUIVALENCE (CONSsP (1)) 4 (NMBRsP(2)) s (PRINTHP(3))
0006 DATA NAME/2HNS2H00492HO /

0007 C

0008 C GET RUN PARAMETERS

0009 CALL RMPAR(P)

nolo C

0011 C READ UNSORTED ELEMENTS FROM FILE N5000
0012 CALL OPEN (IDCBsIERRsNAME)

0013 DO 10 J=1sNMBR/125

0014 CALL READF (IDCBsIERRIBUF)

0015 DO 20 I=1,125

0016 20 TABLE((J=-1)#125 + 1) = IRUF(I)

0017 10 CONTINUE

0018 C

0019 C LIST UNSORTED ELEMENTS ?

0020 IF (PRINT) 30440430

0021 30 WRITE (CONS+100) (TABLE(I)sI=1+sNMBR)
0022 100 FORMAT (/+(10@7))

0023 C

0024 C USE MDES TO INITIALIZE wWCS

0025 40 CALL MDES (CONS)

0026 C

0027 C INDICATE START OF SORT

0028 WRITE (CONS+200)

0029 200 FORMAT (/¢" START OF SORTW)

0030 C

0031 C EXECUTE SORT

0032 CALL SORT (NMBR, TABLE)

0033 C

0034 C INDICATE END OF SORT

0035 WRITE (CONS+300)

0036 300 FORMAT (/" END OF SORT"™)

0037 C

0038 C LIST SORTED FLEMENTS ?

0039 IF (PRINT) 50460450

0040 50 WRITE (CONSs100) (TABLE(I)sI=1sNMRR)
0041 C

0042 C COMPLETE DEBUG OPERATIONS
0043 C I.E, CLEAR BREAKPOINTS, ETC,

0044 60 CALL MDES (CONS)

0045 CALL CLOSE (1IDCB)

0046 END

#% NO ERRORS* PROGRAM = 00587 COMMON = 00000

14-15

Microprograms

EXAMPLE 3: SHELL SORT, ASSEMBLER SORT (Sheet 1 of 2)

PAGE 0002 #01

0001 ASMAB,L
0002 00000 NAM ASORT.7

HODDEEX X222 2.0 2 222222220020 20 X022l l R R R

0004% #
0005% LAB 2.2 ASSEMBLER SORT ®
0006% ®
0007* THIS ASSEMBLER PROGRAM SORTS AN INTEGER ARRAY INTH #
00084 ASCENDING ORDER USING THE DIMINISHING INCREMENT #
0009# TECHNIQUE (1.E. SHELL SORT). #
0010® REF: ART OF COMPUTER PROGRAMMING, VOL 3. #
0n11e #
0012# CALLING SEGQUENCE »
0013# LDA NMBR + NUMBER OF SORT ELEMENTS #
0014% LDR TABLE ADDRESS OF FIRST ELEMENT »
0015# CLE NOT REQUIRED FOR THIS PROGRAM, #
0016% INCLUDED FOR COMPATIRILITY WITH
0017# THE MICROPROGRAM CALL #
0018+ JSB SORT INVOKE SORT ASSEMBLER PROGRAM #*
nNo19# #
0020% AT END a
0021# CONTENTS OF TABLE SORTED #
0022% O MAY BE ALTERED A+BoeXeYsE ALTERED #
0023« @
0024% NOTE "
0025% IN THE FOLLOWING COMMENTSs 1 AND J ARE THE Two
0026% SORT ELEMENTS BEING COMPARED #
0027 {1.E. ARE THE COMPARANDS) 2
0028% #
0OZg*##########G######D#b#b6#6b###bb&bbb##b#qb#b####Gb#bb#
0030 ENT SORT

0031 EXT JENTR

14-16

EXAMPLE 3: SHELL SORT, ASSEMBLER SORT (Sheet 2 of 2)

PAGE 0003 #01

0033
0034
0035
00356
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
00%9
0060
0061
0062
0063
0064
0065
0066
0067
0068
00k9
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
oos2
0083

0084
o

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
No014
00015
00016
00017
00020
00021
00022
00023
00024
00025
00026
00027
00030
00031
00032
00033
00034
00035
00036
00037
00040
00041
000427
00043
00044
00045
000456
00047
00050
00051
00052
00053
00054
00055
00056
00057
00060
00061
00062

000000
000000
nooonn
016001X
000000R
162000R
002020
126002R
001100
002003
126002R
072057R
103101
166000R
0n7Tnos
046057R
076060R
066001R
076061R
046057R
076062R
162061R
122062R
0020721
0260N35R
162061R
002020
026N4TR
N26042R
162061R
003004
142062FR
002021
026047R
102101
1620A1R
1A6062R
172062R
176061F
N36061R
03A067R
036060R
n26025R
102201
026014R
062057R
026010R
000000
0nonoo
000000
000000

NMBR
TARLE
SORT

SETY

STRTP

COMPR

SuB

SWAP

ENDCH

DSTNC
CNTR
IPTR
JPTR

BSS
BSS
NOP
JsSe
DEF
LDA
SSA
JMP
ARS

1
1

<ENTR
NMBR
NMBR o 1

SORT 1

SZA 4RSS

JMP
STA
cLo
LDR
CMB
ADB
STH
LDB
STR
ADB
STR
LDA
XOR
SSA
JMP
LDA
SSA
JMP
JMP
LDA
CMA
ADA
SSA
JMP
STO
LDA
LDR
STA
STB
152
1S7
152
JMP
soC
JMP
LDA
JMP
BSS
BSS
BSS
BSS
END

SORT 1
DSTNC

NMBRy I
s INB
DSTNC
CNTR
TABLE
IPTR
DSTNC
JPTR
IPTR 1!
JPTR I
'RSS
SUR
IPTRs 1

ENDCH
SWAP
IPTR I
s INA
JPTR1
s RSS
ENDCH

IPTRs1
JPTR I
JPTR 1
IPTR,I
IPTR
JPTR
CNTR
COMPR

STRTP
DSTNC
SETY
1

1
1
1

GET PA

YES»
DSTNC

RAMETERS

EXIT
nyn/2
0 ?

SORT

= uyuw =

DONE»

UMBER OF ELEMENTS
?

EXIT

DISTANCE BETWEEN

CLEAR SWAP INDICATOR

SET
CNTR
T0

IPTR

JPTR

A = III
SAME S
YES»

win ¢
YES,
NO,

A= ny
IIIII >
NO

NUMBER

OF COMPARES

ADDRESS OF
ADDRESS OF
" XOR

IGNS ?
SUBTRACT

IIJII

07

DON'T SWAP

SWAP

n oo onyn
nyn ?

DON'T SWAP

HIII

ngn

Microprograms

(SEE SORT MICROPROGRAM)

SET OVFL TO INDICATE A SWAP

SWAP
nin

AN

UPDATE

NO

YESo
NO

NO ERRORS #TOTAL ##RTE ASMB 750420#%

D
ngn

win ADDRESS

wgn
CNTR.

ADDRESS
CNTR = 0 ?

DO NEXT COMPARE
ANY SWAPS THIS PASS ?

REPEAT PASS

A = nyn,

START NEW PASS

AND

14-17

"I " & lld"

Microprograms

EXAMPLE 3: SHELL SORT, APPLICATION/TIMING CONSOLE RUN SHEET

*QN, FMGR
:RU,ASORT,1,5000 <————fRUN ASSEMBLY LANGUAGE SOET]

START OF SORT CONSOLE LU, NUMBEE OF SORT ELEMENTS]

END OF SORT

HOURS MINUTES SECONDS

STOP 1¢ 39 34.76
START : 10 39 22,92 &fRUN TIME = 11.84 SECONLS|
:RU;MDEP <t 4L0AD WCS WITH SORT MICROPROGRAM]

COMPUTER TYPE: 1=21MX,2=2IMX E-SERIES
TYPE(C1 OR 2)72
$LU,13

LU# RANGE STATUS
13 @34860--834777 |
SLD, 'M2.1E —JUSE FILENAME IN $CODE STATEMENT)
SEX

$SEND MDEP
:RU,MSORT, 1, 5600 <mmmmmmed RUN MICROPROGRAMMED SORT]

START OF SORT CONSOLE LU, NUMBER OF SOET ELEMENTS]

END OF SORT

HQUES MINUTES SECONES
STOP 10 41 15.87

START : 12 41 14.45¢=mf RUN TIME = 1.42 SECONDS!}
:EX
$SEND FMGR

14-18

Microprograms

14-4. MICROPROGRAMMED 1/O OPERATION EXAMPLE

This paragraph contains an example of properly microprogrammed I/O operation in the RTE system
environment. An Assembly language privileged section driver (DVAO07) is shown as it would appear
“normally”, then the microprogram enhanced driver (DVMO07) is shown. The FORTRAN IV program,
shown first is used for executing the privileged I/O operation. The console run sheet and microprogram
are included in the final part of this example.

PAGE 0001 FTN4 - RELEASE 24177C - JULY, 1972

gedl FTN,L

veg2 PROGRAM MPI10

00063 INTEGER IBUFR(5),P(5),CONS

0004 EQUIVALENCE (P(1),CONS), (P(2),LU)
0805 DATA IBUFL/S/

oeg6 C

@007 C GET CONSOLE LU, INPUT DEVICE LU

0008 CALL RMPAR (P)

eee9 C

@61¢ C PERFORM INPUT FROM DEVICE

egll CALL REIO (1,LU,IBUFR, IBUFL)

gelz ¢

@813 C DISPLAY INPUT DATA

gd14 WRITE (CONS,1080) IBUFR

0015 109 FORMAT (/,X,5A2,/)

ga16 END

**% NO ERRORSx* PROGRAM = 00848 COMMON = 20008

The FORTRAN program used is the same whether the “normal” driver or enhanced version is used.
The driver sections (initiation, privileged, completion) are prepared according to the guidelines in the
Real Time Executive 111 Software System Programming and Operating Manual, part no. 92060-90004.
Notice that the privileged section of the microprogram enhanced driver (the part that is micropro-
grammed) is much shorter than the complete Assembly language driver, thus, saving main memory
space. The entire “old” privileged section is not needed with the new version. Now, from location PM07
you proceed immediately to the microprogram. This modified part of the driver saves the environment,
inputs data, and is used when returning from control memory to restore the environment. Comments
on the operation of the driver are included right in the listings.

Figure 14-2 is the flowchart for the microprogram. The console run sheet for microprogram prepara-
tion and the microprogram called from PMO7 in the driver are shown last. Note that the microprogram
saves the DMS status. The microprogram must be sensitive to DMS to operate properly in an RTE III
system. SSM and JRS in the microprogram are DMS instructions. The EQU statements point branch
instructions to these microroutines outside this microprogram. Note that Memory Protect status is

checked and DMS status is properly restored on exit. This is an example of how to properly interface
with the RTE system.

14-19

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 1 of 3)

PAGE 0202 #01

PoD1

Poa2x
020 3%
Poo4ax
0005x
POB6 *
P00 7%
PoR8x
2ea9

oo1@

2811
0B12x%
P213x%
0014x%
0015x%
o016
gal17
vo18
2019
ge20

poei

ge22
PB23
ge24
BB2S
BB26
vo27
vo2s
0029
0030
0B31
0032
@@33
Po34
8835
P36
BB37
RO38
0639
Po40
ge4al
Be42
0043
go4a4
P84S
oa46
vB47
2048
ko449
BBSP
ges1
gos2
RE@s3
2054
BO55

14-20

ASMB, L

SAMPLE PRIVILEGED DRIVER

AN **™ IN COLUMN 19 INDICATES
REQUIRED FQR THE MICROPROGRAM
OF THIS SAMPLE PRIVILEGED DRIVER

poeee

INITIATION SECTION

0oR00
goool
BoBB2
BORB3
20004

p000VS

80206
00087
00010
o111
pBv12
RBB13
0014
BOG15
Bev16
BRO17
RoR20
gaaecl
gooa22
00023
0Ro24
BBB2S
0Re26
poo27
RBR3E
00831
BoB32
0RB33
20834
BRB35
2aa36
ReR317
BC040
Beo4l
BoB42
BBG43
Boo44
RBB45
poo46
gesar

0ooeo0
0672167R
161665
P12200R
@852201R

P26087TR

826@1SR
161665
Bl2282R
@52201R
B26017R
P52203R
P26017R
Bo2404
126 600R
062167R
@32178R
B721083R
P62167R
B32171R
072045R
B72113R
022204R
B72@7SR
161663
012205R
171663
061774
B72160R
061663
872161R
161667
po20621
003004
B72157R
161666
@72156R
183700
002400
126 000R

1AQ7

BF CHK

REJCT

RQOK

INSTC

NAM DVAB7,2

A S5TATEMENT THAT 1S NOT
ENHANCED VERSION (DUMB7)

ENT 1A@7,PAQ7,CAB7

SuUPp

NOP

STA SCODE
LDA EQTé6,!
AND =B77
CPA =Bl
JMP BFCHK
JMP REJCT
LDA EQT6,1
AND =B3771717
CPA =Bl
JMP RQOK
CPA =B3
JMP RQOK
CLA, INA
JMP 1A07,1
LDA SCODE
IOR CLC
STA PRCLC
LDA SCODE
I0OR STC
STA INSTC
STA PRSTC
XO0R =B1200
STA PRL1IA
LDA EQT4,1
AND =B167777
STA EQT4,1
LDA EQTIS
STA EQLS
LDA EQT4
STA EQ4
LDA EQTS8,1
SSA,RSS
CMA, INA
STA COUNT
LDA EQT7,1
STA BUFAD
STC ©,C
CLA

JMP 1AG7,1

SAVE SELECT CODE
GET CONWD
ISOLATE REQUEST CODE
READ REQUEST ?
YES, CONTINUE
NO, REJECT /0 REQUEST
GET CONWD
I1SOLATE BITS 15,14
BUFFERED 1/0 ?
YES, DO 1/0
CLASS I/0 ?
YES, DO, 1/0
NO, ERROR
TAKE REJECT RETURN
A = SELECT CODE ¢SC)
*CONFIGURE PRIVILEGED
* SECTION CLC
CONFIGURE STC'S
IN
INITIATION SECTION
* & PRIVILEGED SECTION
*CHANGE TO LIA SC
*CONFIGURE PRIVILEGED SECTION LIA
CLEAR EQT4
BIT 12 TO ALLOW
NORMAL TIMEOQUT
SAVE
EQTILS
& EQT4
ADDRESSES
GET DATA COUNT
NEGATIVE ?
NO, SET NEGATIVE

SAVE
BUFFER ADDRESS
START DEVICE
INDICATE OK INITIATION
RETURN

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 2 of 3)

PAGE 0003 #01

G057

PO058 %

P059% PRIVILEGED SECTION

Co60x

0061 000OSO 0POYVG PABT7 NOP

P62 00051 103100 CLF © TURN OFF INTERRUPTS
0263 0BB52 106706 CLC 6 TURN OFF

o064 ©OGO53 186707 CLC 7 DCPC INTERRUPTS
PO6S 0BPA54 B72164R STA ASV SAVE A,

0066 @OB55 B76165SR STB BSV B,

0067 0Q0OQ56 081520 ERA,ALS E,

90668 @057 1062201 sSocC

0069 PPo6Q 002004 INA

2070 Q@061 B72166R STA EQSV 0,

gB71 ©@Br62 185743 STX XSV X, &

2072 0©OR64 105753 STY YSV Y REGISTERS
2073x% SSM DMSTS SAVE DMS STATUS 1! OMIT FOR RTE 2 !
0074 Q0066 B61770 LDA MPTFL SAVE MEMI'RY PROTECT
PR75S ©@8067 B72171R STA MPTSV FLAG

0076 Q0A7Q Q02404 CLA, INA TURN OFF MEMORY

9077 0©@e71 071770 STA MPTFL FLAG

2078 Q0072 102100 STF @ TURN ON INTERRUPTS
0079 @@O073 1@250@ PRLIA LIA @ GET DATA FROM 1/0 CARD
o080 Q@274 172150R STA BUFAD, I STORE DATA IN BUFFER
@8t 0BR7S B36150R . 1SZ BUFAD UPDATE BUFFER ADDRESS
P82 ©@OR76 B36151R 1SZ COUNT LAST DATA ?

@083 ©O0B77 B26110R JMP CLF©@ NO, PREPARE FOR NEXT INPUT
Q084 00100 103100 CLF @ TURN OFF INTERRUPTS
o08S QO010t 18667006 PRCLC CLC @ TURN OFF DEVICE

0086 Q0102 RO3400 cCa SET TIMEOUT FOR

@87 ©PB1B3 172152R STA EQI1S,1 ONE TICK & SET

@088 Q@164 162153R LDA EQ4,1I BIT 12 IN EQT4 SO
PP89 @O105 ©B32200R IOR =B1000Q RTIOC WILL CALL
0096 00106 172153R STA EQ4,1 CAQ7 ON TIMEOUT
0091 00107 B26112R JMP EXIT

0092 ©@P110 103190 CLF@ CLF © TURN OFF INTERRUPTS
Q093 @0111 1063708 PRSTC STC @,C ACTIVATE DEVICE FOR NEXT INPUT
0094 o112 @62171R EXIT LDA MPTSV WAS MEMORY

P89S 00113 PR20R2 SZA PROTECT ON ?

0096 ©BO114 B26125R JMP EXITI NO, FORGET DCPC'S
BO97 ©B115 B65654 LDB INTBA TURN

0098 @0116 168001 LDA 1,1 DCPC'S

0099 00117 0202020 SSa BACK

Pl120 00120 182706 STC 6 ON

P10l 02@l12]1 PP6004 INB IF

glg2 gol122 160001 LDA 1,1 THEY

9183 00123 pR2020 S$SA WERE
0104 00124 182707 STC 7 ON
@105 ©P125 185755 EXIT]1 LDY YSV RESTORE Y,

o186 Q@127 185745 LDX XSV X,

Q1087 ©0131 183101 CLO 0,

0108 ©R132 GLPB36 SLA,ELA E, &

189 020133 182101 STO

0119 0Q134 B66165R LDB BSV B REGISTERS
@111 00135 @62171R LDA MPTSV RESTORE MEMORY

gl12 Q@136 671770 STA MPTFL PROTECT FLAG

14-21

Microprograms

EXAMPLE 4. UNMODIFIED PRIVILEGED DRIVER (Sheet 3 of 3)

PAGE 0004 #0)

2113
2114
211s
glle
2117
gl18
2119
glae
gl21

P8141
Bo142
Po143
D0144
ooy
go1sp
20151

gels2
00153

gla2x

2123
o124
2125
2126
o127

ko156
ko157
Bal6g
oolel
vBle2

0128%

B129x%

B130x%

P13l
2132x
2133x
2134
2135
0136

8137

vd20e02
P26151R
P62172R
185715
le21oe
126058R
B62172R
le21oe
185715

Poooee
boeooe
geeooe
0000o0o
0egeee

EX1

EXIT2

BUFAD
COUNT
EQlsS
EQ4

DMSTS

COMPLETION SECTION

go163
Pol64
o165

0atLes

P138%

@139
@140
gl4al
pLraz
@143
gl4a4
@145
Bl146
Q147

geler
20170
go171
vol172
Po173
Bo174
Bo175
Be176
pa177

Pl48 %
B149%

@150

B151%

g152
0153
p1S4
2155
g156
8157
0158
8159
B160
kK

14-

21650
81654
1663
01665
Ble66
Bl667
01774
81770

veoeoo
go2400
165667

126163R

0ooooY
166780
183720
200000
00oeB0o
vooveo
Pooeoe
002000
Po000o0

Cag7

SCODE
CLC
STC
ASV
BSV
EOSV
XSV
YSV
MPTSV

INTBA
EQT4
EQT6
EQT7
EQT8
EQTI1S
MPTFL

SzZa
JMP
LDA
JRS
STF
JMP
LDA
STF
JRS

BSS
BSS
BSS
BSS
BSS

END PRIVILEGED SECTION

NOP
CLA
LDB

JMP

NOP
CLC
STC
BSS
BSS
BSS
BSS
BSS
BSS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

WAS MEMORY PROTECT ON 2
EXIT2 NO, LEAVE OFF

ASV YES, RESTORE a REGIST
ER
gMSTS EX1 RESTORE DMS STATUS

TURN ON INTERRUPT SYSTEM
PABT,1 EXIT
ASV RESTORE a REGISTER
1% TURN ON INTERRUPT SYSTEM
DMSTS Pa@7,

I RESTORE DMS STATUS & RETURN

l
1
l
1
1

SET UP FOR NORMAL RETURN
EQTS8, 1 TRANSMISSION LOG TO B
Cag7,1 RETURN :

—— e e =) S
*

P

SYSTEM COMMUNICATION AREA

165@B
«+4B
.+13B
«+15B
«+16B
«+17B
«+124B
«+120B

NO ERRORS *TOTAL **RTE ASMB 750420%x

22

Microprograms

EXAMPLE 4: ENHANCED DRIVER (Sheet 1 of 2)

PAGE 00022 #01

0001
0og2x%
0003
P004ax
0005
2806
22017
PO08 *
0009 *
0010
0011
gol2
0o13
Po14
2015
2216
0017
0018
2019
0020
o221
po22
0023
0024
0025
Bo26
0027
0028
0029
2030
0031
0032
0033
ve34
2035
2236
2037
2038
0039
2040
2041
oo4a2
2043
2244
2245

ASMB,L

SAMPLE PRIVILEGED DRIVER WITH MICROPROGRAM ENHANCEMENTS

00000

INITIATION SECTION

gooeo
0ooo1
egos2
00003
6ooo4
000065
0o0R6
00007
ooo1e
Peo1)
veo12
02013
0ov14
goe1s
goo16
peo17
0020
peozl
prv22
Pee23
PBR24
PR@25
20826
o827
20030
22031
PeB32
Q0033
00034
@20835
BRB36
20837
0040
PoB4)

000000
272061R
161665
012863R
@52064R
026007R
02601SR
161665
@12065R
0520@64R
B26017R
052066R
026017R
002404
126000R
062061R
©@32062R
©072037R
161663
B12067R
171663
61774
B72852R
061663
@72@53R
161667
eo2e21
PO3004
@72046R
161666
@72B45SR
183700
002420
126000R

IM@7

BF CHK

REJCT

RQOK

INSTC

NAM
ENT
SUP

NOP
STA
LDA
AND
CPA
JMP
JMP
LDA
AND
CPA
JMP
CPA
JMP
CLA,
JWP
LDA
IOR
STA
LDA
AND
STA
LDA
STAa
LDA
STA
LDA
SSA,
cMA,
STA
LDA
STA
STC
CLAa
JMP

DVMO7,0

IMO7,PMO7,CMO7

SCODE
EQT6,1
=B77
=Bl
BFCHK
REJCT
EQT6,1
=B37777
=Bl
RAOK
=B3
RAOK
INA
IM@7,1
SCODE
STC
INSTC
EQT4, 1
=B167777
EQT4,1
EQT1S
EQ15
EQT4
EQ4
EQT8E, I
RSS
INA
COUNT
EQT7,1
BUFAD
@,C

IMB7,1

SAVE SELECT CODE
GET CONWD
ISOLATE REQUEST CODE
READ REQUEST ?
YES, CONTINUE
NO, REJECT I,/0 REQUEST
GET CONWD
ISOLATE BITS 15,14
BUFFERED I/0 ?
YES, DO 1/0
CLASS I1/0 7
YES, DO I/0
NO, ERROR
TAKE REJECT RETURN
A = SELECT CODE (SC)»
CONFIGURE STC IN
INITIATIO1: SECTION
CLEAR EQT4
BIT 12 TO ALLOV
NORMAL TIMEOUT
SAVE
EQTI1S
& EQT4
ADDRESSES
GET DATA COUNT
NEGATIVE ?
NO, SET NEGATIVE

SAVE
BUFFER ADDRESS
START DEVICE
INDICATE OK INITIATION
RETURN

14-23

Microprograms

EXAMPLE 4: ENHANCED DRIVER (Sheet 2 of 2)

PAGE 00@3 #01

Po4T*x
POLY *
o499 *x
PO50%
ges1
252
2853
8054
P@55
0056
2857
2058
2059
0260
0261
g6 2
206 3%
006 4%
PB65x%
0B66 %
006 7%
OR68 %
2069
08170
BB71
o172
0073 %
2074
@875
2276 %
2877
2078 %
BO79 %
0080
vo8 1
oo82
go83
0084
B85
go86
200817
0088

*% NO ERRORS *TOTAL *%RTE ASMB 750420x%x

14-24

PRIVILEGED SECTION

poo42

00043
000844
00345
00046
00047
BOB50
02851
goese
00053
0054

00000C0o

185600
POOO54R
000B060
Rooo0
001770
BOOBOS4R
100042R
oooeoe
00p000
020000

PMa7

BUFAD
COUNT

EQI5S
EG4
DMSTS

NOP
MIC
MIO
DEF
BSS
BSS
DEF
DEF
DEF
BSS
BSS
BSS

END PRIVILEGED SECTION

COMPLETION SECTION

00055
BBBS56
00057
pov60

Boe61
groe62

000000
002400
165667
12685SR

000000
183700

CMB7

SCODE
STC

NOP
CLA
LDB
JMP

NOP
STC

M10,1856060B,8 EQUATE MIO & MICROPROGRAM

DMSTS
1
1
MPTFL
DMSTS
PMB7, 1
1
1
1

EQTS8,1
CMB7,1

0,C

SYSTEM COMMUNICATION AREA

21650
P1654
81663
01665
01666
ole67
21774
1770

INTBA
EQT4
EQT6
EQT7
EQTS8
EQTI15
MPTFL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

1650B
«+4B
++13B
«+15B
"+ +16B
++17B
«+124B
++120B

INVOKE MICROPROGRAM

ADDRESS OF DMS STATUS SAVE VWORD
BUFFER ADDRESS

DATA COUNT

ADDRESS OF MEMORY PROTECT FLAG
THESE 2 DEF'S ARE HERE SO THAT
MI{ MAY INVOKE JRS EFFICIENTLY
ADDRESS OF EQTIS

ADDRESS OF EQT4

DMS STATUS WORD

SET UP FOR NORMAL RETURN
TRANSMISSION LOG TO B
RETURN

Microprograms

|

!t OMIT IF OPERATING SYSTEM IS RTE 2 !
SAVE DMS STATUS (JSB SSM)

y

IGET SELECT CODE (L=CIR)]
v

{INPUT DATA FROM 1/0 CARD (LIx SC)}
3

[GET, AND UPDATE, BUFFER ADDRESS|
y

[WRITE DATA 1NTO BUFFER]
—3

[cET, AND UPDATE, DATA COUNT|

4 N

[UPDATED COUNT = @ 7}
Y

v
[rurn oFF DEVICE ¢cLC SC)

[]
ISET EQTI; TO -1

——dTURN ON BIT 12 IN EQT4}

|[READY DEVICE FOR NEXT INPUT (STC SC, C)le——ud

—

y N
[wAS MEMORY PROTECT ON ? (MPTFL=@?)
LY

[TURN ON MEMORY PROTECT (STC 5)|

\ 4
1! OMIT IF OPERATING SYSTEM IS RTE 2 1!
RESTORE DMS STATUS, EXIT (JMP JRS)

A 4
11 DO ONLY FOR RTE 2 11}
PERFORM A JMP PMO7,1

Figure 14-2. Example 4, Microprogrammed Privileged Section Flowchart

14-25

Microprograms

EXAMPLE 4: MICROPROGRAMMED DRIVER, CONSOLE RUN SHEET

*ON, FMGR

tRU,EDITR < {CREATE MICROPROGRAM SOQURCE FILE]
SOURCE FILE?

/A

EQF

/T351@,15,2@,25,30,40 «——4SET TABS FOR MICROINSTRUCTION FORMAT]
/ MICMXE,L3;3533321MX E-SERIES
/ $CODE='M3.1E,REPLACE;;; 0BJECT TO DISC

BODY OF USER SELECTED MICROPROGRAM OBJECT FILENAME]
1 CROPROGRAM
/ELC&M3.1E = {GSER SELECTED MICROPROGRAM SQURCE FILENAMﬂ

LS FILE 2 33
END OF EDIT

:RU,MI1CR0,2 <——————M]1CROASSEMBLE MICROPROGRAM]
/MICRO: END
:RU,MDEP }Lo0AD MICROPROGRAM INTO WCS|

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPECI OR 23?2

$LU, 13
LU# RANGE STATUS
13 ©34680--834777 |
$LD,'M3.1E JF ILENAME SPECIFIED IN $CODE STATEMENT]
$EX
SEND MDEP < {iNPUT DEVICE LUJ|

:RU;MPIO; 1)5
et

CONSOLE LU

GAHDB e
tEX
$END FMGR

14-26 Change 1

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 1 of 3)

PAGE 0002 RTE MICRO-ASSEMBLER REV.A 760805

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
6020
0021
0022
0023
0024
0025
0026
0027
0023
6029
0030
0031
0032
0033
No34
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
00S1
0052
0053

34000

34020
34021
34022

34023

34024
34025
34026
34027
34030
34031

34032
34033
34034
34035
34036
34037

34040
34041

327

230
304
000

010

357
010
olo0
353
010
0lo

227
351
0lo
010
007
210

010
210

001007

036747
016347
075707

024507

175007
141007
040606
007023
141007
013047

174707
107123
145107
001147
147207
050007

046647
042007

MICMXE oL 21MX E=SERIES
$CODE=*MDRVR 4 REPLACE 0BJECT TO DISC
##############%####4###4*###########################
* +*+
SAMPLE PRIVILEGED SFATION MICROPROGRAM FOR DVMQ7 =
-] +*+
HABHH AU RO RN R AR B B R pppt R AR RS R ARG ARO RO RER NGRS
ORG 340008 105600 => 34000
HOR 1 EQU 6B
INDIRECT EQU 251w
SSM EQU 20347R
JRS EQU 20354R
JMP 340208 SAVE ENTRY
ALGN POINTS
ER-E2-2- AL R-2-E-R-ET-X-E-L X-T-X-X-FIWE- LT-F-1-2-F-F:X-E-L-X-R-R- R XoR X K30
11 OMIT IF OPERATING SYSTEM IS RTE 2 !!

% SAVE DMS STATUS (JUSR sSM T.E. 203478) #

LA R-2-2-2-2-2-2-2-F-2-ERE-L-2-F-XX- XW.¥E L-L-X-E-E-R-L- X R E-E-R-2-E-E-2-K-E

READ SSM EXPECTS 4
JSB SSM READ OF DMSTS
DEc P P SSM INCt*S P 1

L Y L T2 TN TR R e R Y Y
GET SC (SELECT CODE) (L=CIR) *
Y X N L LN e L Y L

L CIR L = SELECT CODt

LA A2 R-a2-2-2-2-X-2-2-%-2- 1 B-F- T X FURCL-3-R-2-2-2-F-2-R-R-F-B-R-J

FORM L]#® SC IN Sls EXFCUTE LI® SC *

TOO MANY FOR US

FORM STC SCoC IN Sl
INPUT DATA INTO S2
LA-2-2-X-X-X-L-5-X-2-X-F B-X-E-L-%-F-2 X .98 L F-X X-2-X-X-E-F-T-X-X]
IMM CMHT S1 3768 S1 = 400 = LI# 0
1o0e S1 Sl S1 = LI#* SC
106 IRCM S1 EXECUTE LI# SC
IMM L4 CM_n S1 303B S1=1700=STC 0,C
Ior S1 Sl SI = STC SCsC
s2 101 S2 = DATA
LX2-2-X 2R E-X-X 2 ZX-X-2-2-X-22- X2 FEye X2y 22X XXX YR Y XL RL L R-R-F-3-X-¥
READ BUFFER ADDRESS FROM BUFAD INTO S& ®
FORM CLC SC IN S3
PLACE UPDATED BUFFER ADDRESS IN S5 (S5=S4+1)
* WRITE UPDATED BUFFER ADDRESS INTO BUFAD &
X2 222X -2 2222221222 ey R XYYy 2RR YR YRR R 2222 % ¥
READ INC PNM P READ BUF ADDR
IMM L4 CMLO S3 143B $3=4700=CLC 0
IOR S3 S3 S3 = CLC SC
S4 TAB S4 = BUF ADDR
INC S5 S4 S5 = NEXT ADDR
WRTE TAB S5 UPDATE BUF ADDR

LA A XA AR 222222 YOS L 2

WRITE DATA INTO BUFFER *
FRRTRBBRDRERNORBRRNBE RN N R P

M S4 M = BUF ADDR
WRTE TAB S2 WRITE DATA

Change 1 14-27

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 2 of 3)

PAGE

0055
0056
0057
0058
0059
0060
0061
00672
0063
0064
00k5
0066
0067
0068
0069
0070
0071
o072
0073
0074
0075
0076
6077
0073
0079
NOHO
081
0082
0043
0084
0085
0086
0087
ooss
00R9
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

14-28 Change 1

0003 RTE MICRO-ASSEMBLER REV.A 760805

34042
34043
34044
34045
34046

34047

34050

34051
34052
34053
34054
34055
34056
34057

34060
34061
34062
34063
34064
34065

34066

227
350
007
007
210

320

010

343
004
230
300
007
343
210

230
300
347
011
210
327

010

174707
073062
143047
101147
046007

043302

N44606

172507
175007
040647
012477
141007
177107
044007

040647
012477
136507
001007
040007
003347

040606

######4%######%4##Gi###q#############G####Qﬁ#%ﬁ##

READ (& UPDATE) DATA COUNT FROM COUNT INTO S4

FORM STC 4 IN S2, ForMm STC 5 IN S?
WRITE UPDATED DATA CAUNT INTO COUNT
G#######G#Q####G###G#QQQQ#G#Q##############Q#####

READ INC PNM P READ DATA COUNT

I L) CMLo S2 35R Se2 = 704 = STC 4

INC S2 Se S?2 = 705 = STC S
INC S4 TaH S4 = NEW COUNT
WRTE TAB S4 WRITE NEW COUNT

T R T T XX T RN R
UPDATED COUNT = 0 ? =
BRESBHBHRSBEBEOR B BB S By
JMP CNDX AL7 RJS STC NOs STC SC»sC

LR AL AL DR 2R R R YRR

TURN OFF DEVICE (EXECUTE CLC SC)

LR A R0 AL 22 X222 20222 FEWS Y R L.E-EF ¥ FE.-¥Y

106G IRCM S3 EXEC CLC ScC
###QQ#%QQQ#Q##Q#QQQ##QQQ*##Q#%##*%*QQ#QQGQ%%Q%%Q##QQ#
PLACE ADDORESS OF EQ1s IN S
READ ADDRESS OF EQT)s5 USING S1 & INDIRECT ROUTINE =
FORM ADDRESS OF EQ4 TN S1 (S1=S1+1) #*
FORM -1 IN S3, WRITE -1 INTO EQT1S *
LA R R-E:E-X-E-2 2 X L-R-R'RR-L-2-X-F:R-FOWE.L.E.X-2-2-R.F-L-F. 205 .- - X F-X: XX 3. S QU PIRNESTNT
IMM LOw L 3758 L = 177775 = =3
suR S1 p S1 = EQ1S ADLDFE
READ M S1 GET EQT1S ADDR
JSB IOFF INDIRECT
ING S1 S1 S1 = ADDR OF EQ4
IMM LOw S3 3778 $S3 = 177777 = -1
WRTE TAR S3 S3 EQAT1S = =)

LR R S LAl L TR R LR R R XX R

READ ADORESS OF EQT4 SING S1 & INDIRECT ROUTINE =

TURN ON BIT 12 IN VaALUE READ FROM EQT4 *
WRITE UPDATED EQT4 VvALUE INTO EQT4
L e 2 T T T R Y 2 X2 2
READ M S1 READ EQT4
JSH IOFF INDIRECT
IMM HIGH L 3578 L = 167777
SONL S1 TAB TURN ON BIT 12
WRTE TAR Sl EQT4 RIT 12 = 1

JMP MPSTAT CHK MEM, PROT,

LR-2-2-X-2-2-K- F-R-E-X2-2-2-1-2-2-0-%-F-3-FE¥FEX-I-EE-T-2-E L1 R AL 24085 2-F 2 25 X 1

READY DEVICE FOR NEXT INPUT (EXECUTE STC SCesC) *=
TR e R e R R X R R R Y T T Y

STC 106G IRCM S1 EXEC STC SC»C

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 3 of 3)

PAGE 0004 RTE MICRO=ASSEMBLER REV.A T60R0S

27102
0103
0104
0105
0106
0yov7
0103
0109
0110
0111
0112
0113
0114
01lis
0116
0117
01143
0119
0120
0121
0lz2z
0123
0124
0125
0126
nla27v
128
0129

34067
34070
34071
34072

34073

34074
34075

227
300
010
320

010

227
324

END OF PASS 2:

174707
nle477
000743
043607

0472606

174707
N16607

NO ERROKS

A e A g g A SR A S A SR 4 3 g B 30 S

* WAS MEMORY PROTECT nN ? (MPTFL=Q7) *

LA R --X- 222 R A-R-2 2 R-T-R-FPY E-2-%-2-2-R-X-2-X-3-2-X-R-%04

MPSTAT READ INC PNM P READ MPTFL
JSB I10FF INDIRECT
10N TAR MPIFL = 0 ?
JMP CNDX AL7 RJS #+? NOs LEAVE
MEM, PROT. OFF

38 3 4 3% 3b 47 3% 3 3% 3F 3F 4F S b 3 38 47 38 25 3P 38 34 35 43 $F 37 3 33 37 3 35 3 4k 33 3P 2 iR L 2 B 3

TURN ON MEMORY PROTECT (EXECUTE STC %) =

LA-2-2-E:-R-2-E-E-2-0-X-E-L-X-L.2-X-X-2-F¥ YL L2 2 2-2-E-X-E-E-E-X-5-5-X- % 58

106 IRCM S2 EXEC STC 5
Y T T IR R R T e EE T T Y RN L R R T R T 3
' OMIT IF OPERATING SYSTEM IS RTE 2 !! #®

RESTORE DMS STATUSs FXIT (JMP JURS T.E. 203548)

24 38 3F 3F 38 3F 34 58 30 3 4b 33 38 3 2b 35 30 31 2F 38 23 29 3 30 3F 3F 3 34 3b 31 3F 3% 38 3b 3F 3 3E 3F 3R 3F 3 b 2 3F SE 4L 3 S iR

READ INC PNM P JRS EXPECTS A
JMP JRS READ OF DMSTS
L-2-R-X-2-R:X-R-R:E-R-R-X-2-RTX.X-E-F.F-¥.FFPE L-X-]
(1 DO ONLY FOR RTE 2 1!
PERFORM A JUMP PMNT7,1
X 2-X-X-2- K- L X-2-2-X-EXLX-E-EX-FX-X ¥R -L-X-
" INC p [o] P => DEF PMOT7,1
* READ INC P NM P READ PMO7 ADDR
JSB I0OFF INDIRECT
READ MPCK INC P M JMP PM0 7,1
* RTN TON
END

Change 1 14-29/14-30

APPENDIXES

Appendix A
ABBREVIATIONS AND DEFINITIONS N

ABBREVIATIONS AND DEFINITIONS

An alphabetically arranged listing of abbreviations and definitions used in the manual follows. The
listing does not contain definitions of terms such as X-register, S-register, etc., or definitions for
languages (FORTRAN, etc.) and other commonly used terms such as K, nS., etc. Pseudo-
microinstructions, abbreviations and definitions for micro-orders, and main memory (Assembly lan-
guage) instructions are not included either. Refer to the computer operating and reference manual or
to micro-order lists in this manual for explanations of these mnemonics.

ABBREVIATION DEFINITION

AAF A-Addressable Flip-flop

ACM Association of Computer Manufacturers

ALU Arithmetic/Logic Unit or ALU field (word type I microinstruction)
ASG Alter-Skip Group (machine instruction category)
BAF B-Addres‘sable Flip-flop

BKTBL Breakpoint table (MDE)

BRCH Branch micro-order field, word type III or IV microinstruction
BSM Batch Spool Monitor (RTE subsystem software module)
CIR Central Interrupt Register
CM Control memory

CMAR Control Memory Address Register

CNDX Condition field, word type II microinstruction

CNTL Control

CNTR Counter, either the lower eight bits of the Instruction Register or a

micro-order.

COND Condition field, word type III microinstruction
CPU Central Processor Unit
CRT Cathode ray tube (console device)

DCPC Dual Channel Port Controller (computer accessory)

DMS Dynamic Mapping System (13305A accessory)

DSPI Display indicator register or a micro-order

DSPL Display register or a micro-order

DVR36 Driver 36 for WCS board (12978A and 13197A)
EAG Extended Arithmetic Group (machine instruction category)
EAU Extended Arithmetic Unit (machine category)

A-l

Appendix A

ABBREVIATION DEFINITION

EDITR RTE System Interactive Editor software module

EIG Extended Instruction Group (machine Instruction category)
EOF End of file
EQT RTE system equipment table
ESP Engineering supplement package
EXEC RTE system call to operating system
FAB Firmware Accessory Board (13304A 3.5K CM storage accessory)
FF Flip-flop (single-bit storage element)
FFP Fast FORTRAN Processor (computer accessory)
FFT Fast Fourier Transform
FMGR File Manager (RTE system)
HP Hewlett-Packard
/0 Input/Output
IBL Initial Binary Loader
IC Integrated circuit
10G Input-Output Group (machine instruction category)
IR Instruction Register
KB/S Kilobytes per second
KP/S Kilopairs per second
KW/S Kilowords per second
LED Light-Emitting Diode (indicators on the computer)
LG Load and Go (tracks in RTE system)
LOADR RTE system loader (program name)
LS Logical Source (tracks in RTE system)
LU RTE system Logical Unit designator
M M-register
MDE Microdebug Editor (microprogramming support software)
MDEP Name for MDE user scheduled (stand-alone) program
MDES Name for MDE callable (subroutine) program
MEAR Memory Address Register (DMS)
MEM Memory Expansion Module (part of DMS)
MICRO Program name for RTE Microassembler (microprogramming support
software)
MIR Microinstruction Register
MJL Microjump Logic

A-2

ABBREVIATION

MOD
MP
MPP
MRG
MXREF

OP

pROM
PTGEN

R-S
RAM
ROM

RPL
RTE

RU

SC
SRG

STR

SYS
TTY
ucs
UIG
USR
WCS

WCSLT
WLOAD
XFER

Appendix A

DEFINITION

Modifier field, word type II microinstruction

Memory Protect

Multiprogrammable Processor Port

Memory Reference Group (machine instruction category)

Name for RTE Microassembler Cross-Reference Generator (micro-
programming support software)

Operation field, word type I and 1l microinstructions
P-register
Programmable Read-Only Memory (integrated circuits)

Program name for pROM Tape Generator (microprogramming support
software)

Rotate/shift (logic)

Random Access Memory

Read-Only Memory (used in control memory, map logic, etc.)
Remote Program Load Configuration switches

Real Time Executive (operating system)

RTE system command designation

Select code

Shift-Rotate Group (machine instruction category)

Store field, word type I and Il microinstructions

System

Teleprinter (console device)

User Control Store (13047A 2K CM storage accessory)

User Instruction Group (machine instruction category)

User

Writable Control Store (13197A 1K storage accessory)

WCS logical unit table

WCS I/0 Utility (library) routine (microprogramming support software)

Transfer

A-3/A-4

Appendix B
MICROINSTRUCTION FORMATS N

MICROINSTRUCTION FORMATS

APPENDIX

The four word type formats accepted by the microassembler appear below. The same type information
appears at the top of the microprogramming form contained in appendix D.

Word Type 1 LABEL or SPECIAL ALU STORE S-BUS COMMENTS
Word Type 2 LABEL “IMM* SPECIAL MODIFIER STORE OPERAND COMMENTS
“ i BRANCH
Word Type 3 LABEL BRANCH CNDX CONDITION SENSE ADDRESS COMMENTS
“JMP” MODIFIER/

Word T 4 LABE E

ord Type BEL OR “JSB" SPECIAL ADDRESS COMMENTS

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD 5 FIELD 6 FIELD 7
1 10 15 20 25 30 40 72

OBJECT MICROCODE

The HP 21MX E-Series object code microinstruction is represented by a nine digit octal number, as
follows:

XXX XXXXXX

The left three digits represent bits 23-16 of the microinstruction (the leftmost digit represents bits 23
and 22). Of the remaining six digits, the leftmost represents bit 15 and the other five represent bits
14-0.

Construct the octal representation of an object code microinstruction in the following way. Determine
the binary codes of the required micro-orders from appendix C. Form the codes, according to fields, into

a 24-bit string. Convert the string to octal by grouping bits.

Example:

Op Special ALU Store S-bus
ARS L1 PASS B B Micro-
orders
Op ALU S-bus Store Special
0001(10000/00100[00100|100 10| Binary
NN NN PLLL LT 111 T onject
23 19 14 9 4 Code
\ [/ \ \ /// Nine Digit
030 010222 Octal Number

B-1/B-2

Appendix C
MICRO-ORDER SUMMARY
AND SPECIALIZED MICROPROGRAMMING I

MICRO-ORDER SUMMARY AND
SPECIALIZED MICROPROGRAMMING

APPENDIX

C

BINARY FIELD MICRO-ORDER SUMMARY

OpP

MODIFIER/ JMP IMMEDIATE BRANCH
MICROASSEMBLER — BRANCH | SPECIAL ALU COND MODIFIER | STORE | SENSE | S-BUS
(SOURCE) COLUMN NO.——1¢ 15 20 20 20 25 25 30
BITS (ROM) ————=23 - 20 1.0 19-15 19-15 19-18 9.5 14 14-10
WORD TYPES 1-1v 1-1v I I I LI || I
Bit Pattern
00000 *NOP RTN DEC ALZ LOW TAB RIS TAB
00001 ARS $JTAB OP11 ONES HIGH CAB CAB
00010 CRS CNDX 0P10 couT CMLO tMPPA $MPPA
00011 LGS #%[ON DBLS ALO CMHI A A
00100 NRM | #*RJ30 oP8 Lo B B
00101 DIV ** J74 oP7 L15 100 % 101
00110 LWF | **10G ADD RUN DSPL DSPL
00111 NPY *NOP OP6 **HOIL DSPI DSPI
01000 WRTE SRUN oP5 CNT4 #MPPB #MPPB
01001 READ | #MPP2 SUB IR11 $MEU $MEU
01010 ENV £ MESP OP4 || RUNE L % CIR
01011 ENVE cov OP3 [NMLS CNTR CNTR
01100 JSB sov ZERO }MPP #* [RCM LDR
01101 JNIP PRST OP?2 CNT8 M M
01110 IMM CLFL OP1 | NSFP PNM ** DES
01111 RTN STFL INC AL15 *NOP *NOP
10000 £ SRG2 *PASS NLDR st s1
10001 #*SRG1 IOR NSTB s2 s2
10010 L1 SONL NINC s3 83
10011 L4 ONE NDEC sS4 sS4
10100 R1 AND NRT s5 s5
10101 DCNT PASL NLT s6 86
10110 ICNT XNOR NSTR s7 87
10111 RPT NSOL NMDE s8 s8
11000 I ASG SANL FLAG 89 s9
11001 Il TAK XOR E 810 810
11010 £ MPP1 CMPL NINT sit sl
11011 $FICH NAND OVFL SP SP
11100 7INCI OP13 NSNG X X
11101 SHLT NSAL **SKPF Y Y
11110 ¥ MPCK NOR IR8 P P
11111 #* QFF CMPS MRG] s

*Default micro-order.
FIfno RIS, bit 14 0.

iMeans not normaliy used by user microprogrammer unless a specific accessory is installed.

§Means included here for completness only: reserved for exclusive use of system microprogrammers.

INot normally used by user microprogrammer.
**Use with caution (i.c.. be completely familiar with the function.)

7115-31

Appendix C

SPECIAL USE MICRO-ORDERS

Two micro-orders (FTCH and JTAB) assigned to the word type I Special field are used only in the base
set. These two micro-orders are listed in table 4-1 and in the various micro-order summaries only for
completeness. They are not to be used in “normal” user microprogramming because of their complex
functions and effect on the Save Stack. However, if you are planning to do system emulation, you may
have need of the summary information presented below.

FTCH. The FTCH micro-order does the following:

a.

d.

Stores the present contents of the M-register into the Memory Protect Violation register if Memory

Protect is installed. This is usually the address of the next Assembly language instruction to be
executed.

Clears the Memory Protect Violation Flag flip-flop and Indirect Counter if Memory Protect is
installed.

Clears the L-register and the CPU flag.

Resets microsubroutine Save Stack address logic.

JTAB. The JTAB micro-order is used to complete the Fetch microroutine and begin the execution
operation. JTAB works as follows:

a.

d.

C-2

If INCI was not specified in the Special field of the previous microinstruction, JTAB calls for the
CMAR to be loaded with an execution microroutine address dependent upon the eight most
significant bits (15-8) of the IR. These eight bits functions as an address to the Jump Table, the
contents of which become the target branch address.

If INCI was specified in the previous microinstruction, the branch as described above is made only
if the condition mapped by bits 19-14 of the microinstruction is met. The condition will be coded
with ALU and S-bus field micro-orders, not Condition field (word type III} micro-orders. For
example, JTAB is used once in the base set at CM location 2. The Condition field is represented by
the ALU field (INC) which has the same bit pattern as AL15 in the Condition field. Bit 14 of the
microinstruction is one (P is in the S-bus field) so the RJS feature is enabled. Therefore the branch
through the Jump Table will only be made if the conditions of AL15 RJS are met.

If the Run flip-flop is reset or an I/O interrupt is pending and not held off by the Interrupt Enable
flip-flop (refer to IOFF in the Special field, table 4-1) and INCI was not specified in the previous
microinstruction, a branch to CM location 6 will occur instead of a branch to the address specified
by the Jump Table.

Inhibits the operation specified in the Store field if a Memory Reference Group instruction is in the
IR and bit 15 out of ALU was set during the previous word type I or II microinstruction or, if a

JMP, JSB, STA, STB, or ISZ Assembly language instruction is in the 1R. Logically:

Inhibit Store = JTAB[(IR14 + IR13 + IR12) AL15 + IR14+ IR12+ IR11 +]R14« IR13+ IR12 +
1R14 - 1R13 « IR11]

Turns on the Interrupt Enable flip-flop.

Appendix C

e. Initializes the microsubroutine Save Stack address logic.

Because of JTAB's complex functional structure, and intended use (it can be seen only at locations
00001, 00003 and 00305 in the base set), it should not be used in normal “user” microprogramming.

MAPPING DETAILS

Section 6 provides information on usable UIG instructions and related CM entry point addresses. An
understanding of that information is prerequisite to the material in this appendix. The base set
mapping procedure, UlG instruciton decoding (bits 15 through 8), module selection code indexing (bits
8 through 4), and secondary indexing (bits 3 through 0), are explained below. These explanations
primarily concern UIG mapping but, some information on the HP reserved areas is also included so
that if you plan system emulation the appropriate data can be extracted. It should be noted that it is
not intended that the HP 21MX E-Series Computer base set be changed. The base set mapping concept
is applicable to any instruction placed in the IR.

UIG DECODING

The base set FETCH microroutine will normally be used to store the UIG instruction in the IR. This
procedure occurs during execution of the microinstruction at CM location 00000. (See the base set
listing in appendix G for all references to CM base set locations included in this discussion.) Figure C-1
illustrates UIG instruction bit patterns. Note that bits 15 thorugh 9 must have a 101 or 105 (octal)
value to fall within this instruction group.

At location 00001 in the base set, a JTAB micro-order causes examination of bits 15 through 8 of the IR
and conditionally causes this upper byte to be taken as an index (address) to the ROM Jump Tables.
For the JTAB conditions, refer to the JTAB explanation in this appendix immediately preceding this
mapping discussion. As seen in figure C-1, the upper 8 bits of a UIG instruction (in the IR), when
examined by JTAB, will be decoded as a 203, 212 or 213 (octal) value if they fall within the UIG. The
applicable value is applied to the Jump Tables as the lower three (octal) digits of the Jump Table
address (first two digits, 02, masked off). (See the Jump Table listing at the end of appendix G). The
lower bits of the value unloaded from the Jump Tables are applied to the CMAR as the CM location to
be branched to in the first step in determining the desired final CM location.

UIG Jump Table addresses 02203 and 02213 (bit 8 of the IR equals 1 in each case) both cause value 000
000107 (octal) to be unloaded from the ROM Jump Tables. (See appendix G.) This, in turn, is used as
the CMAR location value 00107 to obtain the next microinstruction. Hence, it can be seen from the
Jump Table listing that for UIG instructions beginning 101xxx and 105xxx (xxx equals values as
shown in table 6-1), a branch to location MAC1 (00107) in the base set will be made. This means bit 11
(the bit causing the difference between 101 and 105) can be used (as described in paragraph 6-3) to pass
A- and B-register information from main memory to all CM locations mapped to by UIG instructions
beginning with either code. Note, from table 6-1, that bit 11 is not usable for this purpose when
mapping to modules that only have UIG instructions with bits 15 through 9 equal to 105 (octal)
available (e.g., user modules 60 and 62).

If UIG instructions 105400 through 105777 are used (02213 applied as an address to the Jump Tables),
it can be seen from the base set, Jump Table listings, and figure C-1 that all mapping will be through
MAC1 (CM location 00107 in the base set) for this first step. If UIG instructions 105000 through
105377 are used (02212 applied as an address to the Jump Tables) it can be seen that all mapping will
be through MACO (CM location 00103 in the base set) for this first step.

C-3

Appendix C

MODULE SELECTION

Step 2 in figure C-1 illustrates that module selection is made as the second step (primary map) toward
the desired final CM location. The UIG module selection code, composed of UIG instruction bits 8
through 4, is used in determining mapping to a particular CM module. A group of modules (as implied
in the preceding paragraph) to be mapped to is determined by examination of bit 8. Examination of
bits 7 through 4 of the UIG instruction determines the module to be mapped to within the selected
group.

Figure C-2 shows the bit patterns available for all UIG instructions. Note that with the five bits (8
through 4) of the module selection code, 32 combinations are possible. This means 32 module entry
points are available. Bit 8 (used to select CM location 00103 or 00107, at labels MACO or MAC1)
determines whether mapping will be through MACTABLO or MACTABLI1 in the base set Primary
Mapping Table. It can be seen (in figure C-2 and the base set listings) that if bit 8 equals 0,
MACTABLO will be used and if bit 8 equals 1, MACTABL1 will be used.

From base set locations 00103 (label MACO) or 00107 (label MAC1) in the Input-Output Group
microroutines, a word type IV branch is made to either MACTABLO or MACTABLI, respectively,
using a J74 micro-order. This micro-order examines bits 7 through 4 of the UIG instruction in the IR to
determine the module to be mapped to within the group selected by bit 8 (MACTABLO or MACT-
ABL1).

This discussion is best followed by referring to the base set listing (appendix G) in conjunction with
figure C-2. MACTABLI begins at CM location 00760 and extends through CM location 00777 (16
locations). MACTABLO begins at CM location 01000 and extends through CM location 01017 (16
locations). Both these (above) are in the base set Primary Mapping Table.

The J74 micro-order (at MACO or MAC1) replacement of bits 8 through 5 in the microinstruction
branch address field by bits 7 through 4 from the IR completes the second step in mapping (the primary
map). With completion of this step, the offset for entry into the Primary Mapping Tables is determined;
i.e., the specific control memory module is determined). See figure 4-5, Jump Address Decoding, and
the J74 micro-order explanation in table 4-1 for information on branch address field modifications
using the J74 micro-order for indexing.

Compare figure C-2 and the base set Primary Mapping Table and you will notice that HP reserved
modules 2, 3, 32, and 39 have 2, 6, 2, and 3 entry points (respectively) assigned. CM entry points
mapped to are so noted in figure C-2, and note in the base set Primary Mapping Table that modules 3
and 39 do not have branch address modification micro-orders (RJ30) in their microinstructions. Some
study of the situation is required if you are going to attempt changes to this system and as mentioned
in section 6, the description is beyond the scope of this manual. The discussion for the generally used
third step in mapping (secondary) index follows.

SECONDARY INDEX

By examining figure C-2 and the Primary Mapping Table, it can be seen that all modules of the User
Instruction Group (except 2, 3, 32 and 39 mentioned above) have a single module selection code
assigned. This means that the microinstruction appearing in the Primary Mapping Table for a
particular module represents the primary software entry point (step 3 figure C-1) for access to that
module. This entry point is expanded to 16 possible entry points per module by the secondary index.
That is, as noted in figures C-1 and C-2, (step 3 of mapping to the desired final CM location entry point)
examination of bits 3 through 0 of the UIG instruction takes place in MACTABLO or MACTABLI1.

C4

Appendix C

This is accomplished by using the RJ30 micro-order in the Special field for the branch microinstruc-
tions (shown in the Primary Mapping Table). RJ30 causes bits 8 through 5 of the word type IV
microinstruction branch address field to be replaced by bits 3 through 0 of the IR. RJ30 also begins a
read operation from main memory as the branch to the desired module begins (indexed into one of the
first 16 locations by bits 3 through 0 of the UIG instruction in the IR.

See the information in table 4-1 (RJ30), figure 4-5, and appendix B on branch address modification and
decoding. Also, see the information on microassembler pseudo-microinstructions (e.g., ALGN) in
section 8 and the information for the ION and IOG micro-orders (used in word type IV) for branch
address field modifications.

C-5

Appendix C

THREE POSSIBLE PRIMARY MAP DISPLACEMENT
(UPPER BYTE) {MODULE IN SELECTED
UIG CODES DETERMINATION) MODULE
IRBITSf15 114 (13 (12|11|10[9 (8|7 |6 |s5|a|3(2]|1]0
uiGcooe' 1 1ol ool o 0111l
%——+—L—|~}——|—1——l——1 | ,
ocTALCcODE! 1 | 0 | 1 | X | Y | Z
J—r——“r—-Lﬂ | |
ADDRESS IN | |
JUMP TABLE| 2 | 0 3 l
| [; T % T l"_{
UIGCODE|{ 1 o0, 0!l o0l 1ot 11y
Pluseielne ®
OCTAL CODE = 1 | 0 | | X | Y
1 5 l | ' 74 FIRST STEP.
- — — -+ — =14 | CMAR LOADING
ADDRESS IN =, | 1 | 2 | DETERMINED BY
Jump TABLEI | | IR BITS 15 THRU 8
L E S H B S (JTAB INDEXES TO
UIG CODE 1_|o|ol0|1|ol1l1 JUMP TABLES)
l- — S St =4 | |
octaLcooe ! 1 | o | 5 | X 1 Y z
’_J_ - —— L - — 4] | |
ADDRESS IN l | |
JUMP TABLE 2 | 1 | 3 | ‘
1 — - —
ol o ol o
—I— F{ —
0 © 1
Sy &
(16 CODES) SECOND STEP.
CM BRANCH
DETERMINED BY
= 1——— IR BITS 7 THRU 4.
1 1 1 0 (J74 AT MACO OR
—1—— —{ MAC1 DETERMINES
131,11 DIS PLACEMENT IN
L J_ — T T —T ——\ MACTABLOOR
0 0'o0 MACTABL1.)
e e |
0 0,0 1
e N6
{16 CODES) THIRD STEP.
CM BRANCH
DETERMINED BY
1 ——— | memssthruo.
1 1 1 o {RJ30 IN MACTABLO
—1— — MACTABL!
4 + (11,11 DETERMINES WHERE
£ {N A MODULE ENTRY
WILL BE MADE.
NORMANLLY ONE OF
NOTES: 1. X Y Z REPRESENT LAST THREE OCTAL DIGITS OF 16-BIT THE FIRST 16
UIG INSTRUCTION VALUES. SEE TABLE 6-1. LOCATIONS.)
2. THE FINAL CM BRANCH SHOULD BE DETERMINED FROM
YOUR MODULE ENTRY POINT MICROINSTRUCTION.
711519

Figure C-1. UIG Instruction Bit Decoding

C-6 Changel

Appendix C

USER INSTRUCTION CODE MAPS CONTROL
GROUP CODES TO MODULE MEMORY
STARTING
INSTRUCTION REGISTER BITS HP | USER ADDRESS COMMENTS
1514{13 12011]10° 9 8 7[6 5T4 3
"1/0 0o olt 0 1]olo ojoro T 3 01433 FAD"’
o i olojolol 3 01433 FSB *
000 0.1 0 1 3 01522 FMP *
,\(f;é)o \‘ | | lo o of1 1, o 3 01561 FDV *
L 0 0.1 0 0, 4 3 01405 FIX -
‘T 0,0 1|01 = 3 01400 FLT *
Yiv v v|ly vylo o110 @ 60 36000 USER'S AREA
1lofo ol1 0 1lo o, 111 1 g 62 37000 USER'S AREA
1,0 0 0N o 170 1 0,0 0 o 34 21000 FFP
] { lo 1 olo 1 = 35 21400 FFP
! 01 0,1 0 Q 36 22000 HP RES. (RTE)
‘ 0 1 of1 1 p= 37 22400 HP RES. (RTE)
| 0i1:1]0 o0 38 23000 HP RES.
| 001 1 0 1 40 24000 HP RES.
]] o1 1] 10 44 26000 HP RES.
| R N R R 45 26400 HP RES.
| 1.0 00 0 ! 39 | (Nole5) 23420 HP RES. "
| } ‘ 1 0.0 i 01 39 | (Note5) 23420 HP RES. "
@03 | 1 0 o0fl1 0 46 27000 USER'S AREA
or 1.0 0.1 1 39 | (Note5) 23400 HP RES. *
213 | | | | |1 0 1]o0 o i 47 27400 USER'S AREA
mact | | 1 0 1.0 1 e 48 30000 USER'S AREA
| 1 0111 0 = 49 30400 USER'S AREA
| ’ ’ 1.0 1 ‘ 11 = 50 31000 USER'S AREA
i 1.1 0olo o @ 56 34000 USER'S AREA
11 0,0 1 < 57 34400 USER'S AREA
: | ‘ | 11 o] 1.0 S 58 35000 USER'S AREA
‘ 171 0,1 1 g 59 35400 USER'S AREA
‘ 1 ’ 11 1 . 0o ol 32 | (Note4) 20000 DMS
b 11 110 1 32 | (Note 4) 20020 DMS
AR 2R 25 25 25 25 AT TR T IR B! 2 01020 EIG
‘ 1|0‘ 0 O’N 0‘1’1‘111’1‘ 1 2 01040 EIG
IN 1 OR Oy
OFFSET
JUMP TABLE MODULE IN
INDE X SELECTION CODE ~ MODULE
(32 POSSIBLE CODES) (NOTE 1)
NOTES 1 W X Y. Z ARE LOGIC ONES OR ZEROS MAKING UP A RANGE OF CODES.
2 CONTROL MEMORY STARTING ADDRESSES ARE IN OCTAL.
3 ABBREVIATION RES MEANS RESERVED. OTHER ABBREVIATIONS IN THE COMMENTS ARE
EXPLAINED IN TEXT
4 MODULE 32 HAS 32 ENTRY POINTS.
5 MODULE 39 HAS 48 ENTRY POINTS HOWEVER 32 ARE MAPPED DIRECTLY TO LOCATION
23420 FOR USE IN ONE OF THE MICROINSTRUCTIONS. THAT IS, ALL 16 COMBINATIONS OF
USER" INSTRUCTIONS MAP DIRECTLY TO THE ENTRY POINT DESIGNATED BY** (NON-
INDEXED)
6 'NO EXAMINATION OF BITS 3 THROUGH 0 IN THE PRIMARY MAPPING TABLE.
7115-20

Figure C-2. UIG Instruction Module Mapping

C-7/C-8

Appendix D
MICROPROGRAMMING FORM N

APPENDIX

MICROPROGRAMMING FORM

J0 39vd ﬁ

ZYHdlv =2 omL=2 0 VHd1V = 0
z916- 1566 | YHd Y =1 INO -1 0] ouiz-o
o8 or og 14 oz 51 oL |
| _ 1] ; RN | REERERRRRERN
ﬂ f i — ﬁ ,
4 — = T
{ ; '
! ! SIREEE 1T 2NN] R
i | | 1] L _ _
—t r » + — T
| L S
4 wl
i |, . ' L L
| R
| I
; T 7 1 A’v [+
i i
} ¢ — 4 e
| ; | | | ; |
HEREA L i | S L _ R Ll | |
T T T T 4,:; RN
i L T i b LS F T R S R Pl i . v H
J e P S S [g4 [t | P :) s [N el]
! , ! !
.. e e e bk e e e e e e e - . B T T U U
. JE O e e e e e e e . R e I e e e e o
' B i PN . ey e e . .. 4
e — e e . . . PPN P . e . + . . oo e e R tof P DR —
. . ; e . ; . Ce [P SO e
! !
! . I U SO P PN (U L s PPN bbb dad o b oo s i s e
08 a4 ov 901314 Ot g1 5¢| warms %) gqr3s 5 zgr1a o 'WREIE]
- T 10345 c.asr. T T i o T
¥ 8dAL piom o \m:»z‘w‘is_oo | mmumﬂ‘o\m‘ \VA,/. /H314I00W_| HO .JWr.. 138v
£ odAL PIOM SINIWWOD $$3HA0Y NOILIONOD | .XaND HONVHS 138V
Z edAL piom SLINIWWOD aNvH3d0 340LS H3I4IQOW | Tv103ds L. 1381
| edAL PIOM SINIWWOD sna-s 3H0LS n1v V10348 40 138v1
ERlalelely] WYHDOHJOHDIW Jiva HINWWV HO0OHd

WHO4 ONIWWYHOOHJOHIIN SI1H3S XWLZ dH

(..G'0L X ,,G°Z| :221s |enoy)

D1/D-2

Appendix E
OBJECT TAPE FORMATS I

OBJECT TAPE FORMATS

APPENDIX

Low bits of last
microinstruction
in record.

Record length of
next record;
same format

as previous.

WORD 0 WORD 1 WORD 2
Bit No. —— 15 8 7 0 1513 6 0 15 0
L] L] L] L] L] L] L] L] L] L
e— o— e, ot— —— N o -’
Leader Record length = Null Identifier 1 Checksum = sum of
total number of =011 contents of all words
16-bit words in in record excluding
record {including record length and
this word}. checksum itseif.
Minimum cecord
length = 5;
maximum = 59.
WORD 3 WORD 4 WORD 5 WORD 6
— P A - e
15 15 0 15 8 7 0 15 0
. tmp— S — e——— —— . —’
Microprogram Tape flag: 0 =""Punched Address relative High bits of first Low bits of first
ORG value by Microassembler’’; to base address microinstruction. microinstruction.
if Microdebug Editor of module.
punches an object tape,
this field = 1.
15 0 15 0 15 8 7 0
etc. . .. —— — — etc. ...

Format of Standard Object Tape (Sheet 1 of 2)

Appendix E

= L 8 7 0 151312 o 15

R

Low bits of last Record length of Nult ident Null End recorad
microinstruction. End record, =101 checksum =
always = 4, 120000.
15 0

.‘........

—

Trailer

Null

Format of Standard Object Tape (Sheet 2 of 2!

E-2

Appendix E

Bit No. — 15 8

15

N —— p— ——. p—

N e’ ittt it e i’ ettt o et et s’

Leader Number of Null Bits 23-16 Bits 7-0 Bits 15-8
16-bit words of first of first of second
inrecord, microinstruction microinstruction. microinstruction.
including this in first record.
word. Is always
64g 7 52, Bits 15-8 Bits-23-16 Bits 7-0
of first of second of second
microinstruction. microinstruction microinstruction.
in first record.
15 0 15 87 0 15 87 0 15 0 15 0
etc. . .. ‘,—/ ‘,—-/ ‘ﬁ —
Bits 23-16 Bits 7-0 Checksum: computed Null
of 32nd of 32nd in following way:
micromstruction. microinstruction. a. Sum of all bytes in
record excluding
this checksum.
. b. The sum is ones
B "
of|t§21r?d8 complemented and
microinstruction then rotated 8 bits.
15 0 15 8
N—— t— “— ——
NOTE: If the last record contains less than 32 .
N . h ;
Null 15_2?35&15 microinstructions, then remainder of Trailer
in record = microinstruction space on tape is filled
64 with all bits set {1°s).
]

NOTE: This tape format is used by the ROM Simulator

Format of Object Tape for the “S” Microassembler Option

E-3/E-4

Appendix F

HP 21MX-TO-HP 21MX E-SERIES
MICRO-ORDER COMPARISON SUMMARY 1N

HP 21MX-TO-HP 21MX E-SERIES
MICRO-ORDER COMPARISON SUMMARY|[F

This summary includes a comparison of all the HP 21MX Computer micro-orders and all HP 21MX
E-Series Computer micro-orders. If you already have microprograms prepared for HP 21MX Com-
puters the summary will be helpful for making a conversion to the E-Series. Note that some E-Series
micro-orders have identical mnemonics and bit patterns as those for the HP 21MX. In most instances,
however, the bit patterns vary. There is a percentage of the micro-orders that are completely new for
the E-Series and also, a percentage of micro-orders that have not propagated from the HP 21MX to the
HP 21MX E-Series. You should refer to the “dictionary” section of the micro-orders for each computer
document to determine the exact meaning and functions of micro-orders you plan to use.

F-1

AppendixF

Micro-Order Comparison Summary

COLFLIE-NDNQ OP/B?:NCH MOD/S;I;ECIAL A2|BU cg:o IMMZ/’OMOD ST"?SRE BRANC;;SENSE s-;::s

(ROM BITS) 23-20 4-0 19-15 19-15 19-18 9-5 14 14-10

COMPUTER [21MX | E-SER.| 21MX | E-SER. | 21Mx | E-SER. 21MX | E-SER. | 21MX | E-SER.| 21MX | E-SER.| 21Mx | E-SER. | 21Mx E-SER.

Corresponding

Bit Pattern
00000 NOP | NOP IOFF | RTN INC DEC 82 ALZ HIGH | oa Ad i TAB
00001 ARS ARS SRG2 | JTAB | OP1 OP11 | ONES [ONES |LOw HIGH | LAl S| CAB
00010 CRS CRS 1 CNDX | Op2 OP10 | COUT | COUT {CMm MLy MPDA
00011 LGS LGS L4 ION ZERO [DBLS |ALO ALO CML UM & A
00100 MPY NRM | RY RJ30 | OP3 OPs AL15 | LO G & B
00101 DIV DIV ION J74 OP4 OP7 NMLS | L15 (TR JRO[101
00110 LWF LWF SRG1 | 10G SuB ADD CNT8 | RUN 5P, PL | DSPL
00111 WRTE | MPY RES2 | NOP | OPs OP6 FPSP | HOI tiob <Pl DSPI
01000 ASG WRTE | STFL | SRUN | OPs OoPs FLAG | CNT4 r« i & MPPB
01001 READ | READ | CLFL | mpP2 | ADD SuB E IR11 MEU
01010 ENV ENV FTCH | MESP | OP7 OP4 OVFL | RUNE g CIR
01011 ENVE | ENVE | SOV cov Ops OP3 RUN NMLS CNTR
01100 JSB JSB Cov SOV OPg ZERO | NHOI MPP it = LDR
01101 JMP JMP RPT PRST | OPio | OP2 SKPF | CNT8 M
01110 IMM IMM SRGE | CLFL | OP11 | CP1 ASGN | NSFP " L DES
01111 RTN NOP | STFL | DEC INC IR2 AL15 Wb = NOP
10000 MESP | SRG2 | CMPS | PASS | NLDR | NLDR S1
10001 MPCK | SRGY | NOR | IOR NSNG | NSTB “ s2
10010 10G L1 NSAL | SONL | NINC | NINC < S3
10011 ICNT | L4 OP13 | ONE NDEC | NDEC 4 S4
10100 SHLT | R1 NAND | AND NRT NRT 5 S5
10101 INCI DCNT | CMPL | PASL | NLT NLT \, ! ' S6
10110 REST [ICNT | XOR XNOR | NSTR | NSTR S7
10111 SRUN | RPT SANL | NSOL | NRST | NMODE - S8
11000 UNCD | ASG NSOL | SANL | NSTB | FLAG S [- S9
11001 CNDX | 1AK XNOR | XOR NSFP | E 5 S10
11010 JIO MPP1 | PASL | CMPL | INT NINT AN St
1ot JTAB | FTCH | AND | NAND | SRGL | OVFL ; SP
11100 J74 INCI ONE OP13 | RUNE | NSNG . . X
11101 J30 SHLT | SONL | NSAL | NOP | SKPF Y
11110 RTN MPCK | IOR NOR CNT4 | IR8 [; P
111711 JEAU | IOFF | PASS | CMPS | NMEU | MRG S

Appendix G
HP 21MX E-SERIES COMPUTER
BASE SET MICROPROGRAM LISTING N

HP 21MX E-SERIES COMPUTER | Bidis
BASE SET MICROPROGRAM LISTING| 6

The entire HP 21MX E-Series Computer RTE Microassembler listing for the base set microprogram
appears in this appendix. Control memory modules 0 through 3 are used. Information for the ROM
Jump Tables is also included at the back of the base set listing. The microprogram listing for the
dynamic mapping instructions conclude this appendix.

PAGE 0006 KTE MICRU=-ASSHYBLFR REV.A 760818

0003 NKrG uB

0004 *

0005 + 214X E~SERTES BASE S® 1 MICRUCUDE

0006 * R b L L L T S PP R

0007 * 1976=09=-02-1530

0008 .

0009 NONOO 230 uoubldld FETCH KEAL PTCH PASS IRCM TAR IR 1= T/A/R; M := 0P ADK; READ
0010 00N0V1 007 174701 JTAB INC PNM P JMP ThEU LUT: ™ = P CWDL; P 1= P
0011 .

0012 N00u2 234 VUN0KI4 MRGIND READ INCT PASS M TAB M 1= U/A/B; READ

0013 00003 on7? 1747101 JTAB 1nC PRM P JMP LUT CNDL: M = P CHDL; P = P
0014 00004 3723 140107 JMP CNUX HUL RJS MKRGIND TeST vUK 4ALT NR IVIERRJPT

Q015 QQous 36 140107 JMP . CNDX NSNG RIS MKGIND TEST FOK INSTRUCTLUN STEP

0016 .

0017 00006 000 075707 HORIL ngc e P P 1= pP=i

0018 00007 323 053242 JMP CANDX RUN RJS daLT TESL £OR HALT

0019 00010 uld 030771 IAN LUAD Clgr; ACKWNOWLEDGE TuTERRUPT
0020 00011 230 U224kl READ LOFF PASS M CIR M = CIR; READ TRAP CELL

Q021 00n12 010 06331717 STFL PASS S1 “ Sl =M

0022 00013 23u 0YUKOT? PeAD PASS IRCY TAS TR = T/A/R; ™M := 0P ADR} READ
0023 00014 320 9noC4q? J4p FETCH+1

PAGE 0007 RTE MICRU=-ASSEMBLER REV.A 760848

0025 ¥

0026 * MEMORY REFERENCE GROUP

0027 ¥ ek L LT YL P

0028 *

0029 00015 230 000507 AND READ PASS L TAB L = T/A/B; READ

0030 00016 372 006147 RTN AND A A A = A AND T/A/B

0031 *

0032 00017 230 000507 AD#* READ PASS L TAR L := T/A/B; READ

0033 00020 263 002040 ENVE RTN ADD CAB CAB A/R 1= A/B + T/A/B
0034 *

0035 00021 230 000507 Cp# READ PASS L TAB L = T/A/B; READ

0036 00022 014 102747 XOR CAB COMPARE

0037 00023 360 000042 RTN CNDX ALZ TEST IF EQUAL

0038 00024 227 174707 READ InC PNM P M i= P; P 1= P+1; READ
0039 00025 370 036747 RTN

0040 *

0041 00026 230 ©N0507 I0OR REAL PASS L TAR V. ¢= T/A/B:; READ

0042 0Q0Q27 370 106147 Rin IOR A A A t= A IOR T/A/B

0043 *

0044 00030 007 101007 LSZ INC 51 ThS S1 1= T/A/B +

0045 00031 210 0400136 WRTE MPCK PASS I'AB S1 T/A/B = S1; WRITE
0046 00032 320 041602 JMP CADX ALZ RJS *+2 TEST IF ZeRu

0047 00033 007 175707 INC P P b o= Pet

U048 00034 227 174707 READ INC PNM D M IS P? P = P+l; READ
0049 00035 370 030747 RIN

0050 s

0051 00936 230 000UKTT JMP,1 READ L1NFF PASS ™ TAB M := T/A/B; READ

0052 00037 307 112442 JSB ChLX ALI1S INDIRECT TESI FOR MOKE INDIRECTS
0053 00040 367 133736 Jmp PTN MPCK INC P M P = M+l

0054 *

0055 00041 230 0006177 JSs,1 PEAD IOFF PASS TAB Mot [/A/Br READ

0056 00042 307 112447 J5R CHNDX ALtS INDIRECT TEST FUR MORE INDIRECTS
0057 00043 210 074030 JSB ARTE MPCK PASS TA8 P T/A/8 = : WARILE

0058 N0044 007 133716 CLET. INC P M P iz M+]

0059 00045 227 174707 KEAD INC PhNm P Motz Py P = P+1: READ
0060 00046 370 (36747 RN

0061 *

0062 00047 230 vouna? Lh* READ PASS CAB TAR A/R = T/A/H; READ
0063 00nN5n 370 030747 KN

0064 *

0065 np051 230 000507 ANKR FEAD PASS L TAR L := 1/A/bB; READ

0066 00052 374 106147 RTIH X0R A A A = A XOR T/a/8

PAGE 00ng RTE MICRU=ASSEMBLFR REV.A 760818

0068

0069

0070

0071

0072 00053
0073 00054
0074 00055
0075 00056
0076

0077 00ns57
0078 00060
0079 none1
0080 npng)
0081

0082 00063
0083 n0n64
0084 00unes
0085 00066
0986

0067 00067
0088 00070
0089 00071
0090 00072
0091

0092

0093

0094

0095 00073
0096 00074
0097 00075
0098 00076

PAGE 0009 RTE MICRU=ASSE

0100
0101
0102
0103
0104 00077
0105
0106 00100
0107 00101
0108 00102
0109 00103
01190
0111 00104
0112 00105
0113 00106
0114 00107
0115
0116 00110
0117 00111
0118 00112
0119 00113
0120
0121 00114
0122 00115
0123 00116
0124 00117

G-2

230 002047
267 102070
227 174707
370 030747

231 136047
267 102070
227 174797
370 036747

226 036047
267 102070
227 174707
370 036747

237 102047
267 102070
227 174707
370 036747

230 002061
V10 002060
227 174707
370 036747

320 004006

230 002507
010 112747
370 112047
320 040005

230 012747
010 012747
370 012047
320 037005

230 002747
010 002247
370 002247
320 012005

230 036777
336 103642
363 003642
320 000307

ASGCC*

*
ASGCL#*

*
ASGCHx

REAQ PASS Cag
FENVE ASG INC CaAb
REAL INC prm
RN

READ ONE CAg
ENVE ASG TAC Can
PEAL INC PaM
RIN

READ ZERQ CAs
ENVE ASG INC (Cag
REAp INC pwi
RIN

EEAU CMPS Can
ENVE ASG INC Cay
READ INC puy
RTH

READ SRG1

READ
RIN

HBLER REV,A 760818

PASS Cap
SKG2 PASS
INC

CAg
PAM

x
¥ INPUT=QUTPUT GROUP
x ceemeceecmencaamea
*
106 JMP 106
*
M1 ¥ READ PASS L
I0R
RTN IOR CAB
MACO JMP J74
¥
Li* READ PASS
PASS
RIM PASS CAB
MAC1 JMP J74
*
LT* READ PASS
PASS 100
RIN PASS 100
JTBL1000 JMP J74
*
CONTROL READ IOFF
JMP CNUX SKPF
RTN CNDX RUN
JMP

CAK
CAR

CAR
P

ChAR

CAR
Can

CAR
CAR

"M+

CAR
I0I
101
MACTABLO

Ut
101

ol
MACTABLY

CAR
CAR
CAB
EM1000
RET

HURI

PEAD

ﬁ/? P AT CHbL; RTN ChDL; E
=S Prop = P+l wEap

A/K = UNES;. wFAD

A/P_:: A/B ¢ 1 CNOL: KTw CHbL; &

MoIT Ry, sz P+l weap

/K sz LERIS: W

:/H_:f Als + | Cupy; ®Tw CHNDL; g
=P sz P+1; opap

A/K 22 Crp asp

ﬁ/T-:z A/ + 1 Crvtl; KTy CNDL; E

PERD P iz opay; REA))

FIRST SyIvT:
SECUND SHIF;

M

T2:
T3:

T5:

T3:
T4:
TS:

T3:
T4:
T5:

T3:
T4:
TS
To:

P v 2z

P+l

SIHCHROWTZ AlD
L t= A/b; READ
A/K = A/d 1NN
REAL

A/B 13 1/0
PEAL

I/N := A/B

1/0) 1= A/H
KEAD

CLEAK & Crol; READ
RT CNDY,
READ

JUrp

/0

TEST FOR SKIP FLAG

TEST FOR HALT INSTRUCTION

Appendix G

PAGE 0010 RTE MICRO-ASSEMBLER REV.A 760818

0126 *

0127 ¥ EXTENDED ARITHMETIC GROUP

0128 ¥ se-ereesrcsscmsmcss-esco=s

0129 *

0130 00120 230 036747 DLD READ READ

0131 00121 300 012447 JsB INDIRECT

0132 00122 007 133007 INC 81 M S1 1= M+l

0133 00123 010 000147 PASS A TAB A = T/A/B

0134 00124 230 V40647 READ PASS M s1 M 1= 51; READ

0135 00125 007 174707 INC PNM P M o= Py P otz P+l

0136 00126 230 un0207 READ PASS B TAR B := T/A/B; READ

0137 n0127 370 036747 RTN

0138 *

0139 00130 230 036747 DSY READ READ

0140 00131 300 012447 JsB TNDIRECT

0141 00132 210 006036 WRTE MPCK PASS TAB A T/A/B 3= A; WRITF

0142 00133 007 133007 INC S1 M S1 1= M + 1

0143 00134 010 040647 PASS M S1 M = 51

0144 00135 210 002036 ST* wRTE MPCK PASS TAB CAR T/A/B = A/B; WRITE; ENTRY FOR ST
0145 00136 227 174707 READ INC PNM P M = Py P 1= P+1; READ

0146 00137 370 036747 RIN

0147 *

0148 00140 006 036213 MPY COvV ZERU 8 CLFEAR B REGISTER

0149 00141 300 012447 JSH INDIRECT

0150 00142 257 107007 ENV CMPS S1 A SAVE MULTIPLICAND Iw 517 NSIGN IN
0151 00143 010 000527 RPT PASS L TAB LOAD L WITH MULTIPLIEK

0152 00144 163 010224 MPY R1 ADD B B REPEAT MULTIPLY STEP 16 TI™eS
0153 0014S 315 146442 JS5R CNDX OVFL RJS *+4 SUBTRACT IF MULTIPLICAND NEGATIVE
0154 00146 227 174713 REAu COV INC PNM P M t= P P = P+l7 READ

0155 00147 362 141702 RTY CNDX L1S5 RJS TEST FNOR POSITIVE MULTIPLIER
0156 00150 237 140usu? READ CMPS L S1 PLACE MULTIPLICAND IN L

0157 00151 364 110207 RIN SUB B H SUBTRACT FOR WEGAITVE MULITPRLIER
PAGE 0011 KTE MICRUO~-ASSHMBLKK REV,A T6URIR

0159 00152 237 119916 D1v READ CLFL CMPS L B L := NDIVIDENDHI; READ

0160 00153 300 012447 JSH INDIRECT

0161 00154 017 101007 CMPS S1 TAR S1 ¢= NDIVISOR

0162 00155 014 141047 XO0R 82 St CREATE EXPECTED OQUOTIENT SIGN IN
0163 00156 322 107142 JMP CNDX L1S DIVS TEST FOR NEGATIVE DLVIDEND

0164 00157 017 110217 STHI, CMPS B B

0165 00160 017 106147 CMPS A A MAKLE

0166 00161 007 106147 INC A A DIVIDEND

0167 00162 301 Q10302 J5R ChuX COUT RMDR+2 PUSITIVE

0168 00163 017 140507 DIVS CMPS L s1

0169 00164 327 147302 JAP CNUX AL1S RIS *+2 TEST FOR POSITIVE DIV1ISUR

0170 00165 007 140507 INC L S1 I, ¢= ABSOLUTF VALUE OF DIVISOR
0171 00166 u0D4 110754 SOv SUR R

0172 00167 327 143647 JMP CNDX AL1S RJS RET TEST FOR DIVISOR TNO SMALL

0173 00170 070 010222 LGS L1 PASS B R PRESHLFY THE DIVIDEND

0174 00171 0n7 174727 RPI INC PNM P M= P P 1= P4l

0175 00172 124 110222 NIv L1 SuR B) REPEAT DIVIDE STEP 16 TIMES

0176 N0O173 wVlu V1v224 K1 PASS B 1) REMATNDER = b/2

0177 00174 237 107013 PrAD COV CMPS 51 A S1 = NQUUTIKNT

0178 00175 320 110202 JMp - CNDX ONES RMDE TEST FOR ZERY QUDTTIENT

0179 00176 010 042507 PASS L Se

0180 00177 327 150042 JME CNDX AL1S RJIS *+2 TEST FOR EXPECTED OUOTIENT SIGN
0181 00200 007 140147 INC A S1 COMPLEMENT QUUTIFNT

0182 00201 234 100747 READ XOR A CUMPARE QUUTIENT WI{iH EXPECTHD SI1
0183 00202 327 150202 JMP CNDX ALIS RJS KMDR

0184 00203 230 036754 PEAD SOV

0185 00204 374 040742 KMPR PTY CHDX FLAG RJS TEST EXPECTED SIGn UF ReMAINDER
0186 00205 237 110207 READ CMPS b B BEGIN TwiiS CHMPLEMENT OF REMAINDE
0187 0020r 367 110207 RTN INC B B CUMPLETE TwWwyS CUOMPLEMENT

PAGE 012 g [I'IICRU‘ASSF MBLEK RFY TouBR
0 E A 1
.

0189 002¢7
0190 00219
0191 0021
0192 00217
0193
0194 00213
0195 00214
0196 00215
0197
0198 002156
0199 00217
0200
0201 0g220
0202 00221
0203
0204 00227
0205 00223

0004

0207 00234
0208 00225
0209

0

210 00226
0211

PAGE 0013 grrg MTICRO=-ASSK

0213 09777

010 036753
010 036767
U30 016229
230 036740

030 019224
230 036753
370 036747

070 019222
23y 036740

070 010224
230 036740

050 010227

<30 036741

05V 010224
230 U36740

320 0913005

N 007 110207
N4 00 33 100302
0215 06231 320 051342
0216 00232 230 u36740
0217

0218 00233 323 011502
0219 N0234 300 030707
0220 00235 300 032607
0221 00236 325 051602
0222 00237 320 013247
0223

0224

0225

0226

0227 00240 320 011557
022% 00241 320 010347
0229 00242 320 010727
0230 00243 320 011347
0231 00244 320 011127
0232 00245 230 036750
0233 00246 300 012447
0234 00247 320 015407
0235 00250 320 006004
0236

0237

0238

0239

0240 00251 230 000674
0241 00252 367 140002
0242 00253 230 036774
0243 00254 323 152442
0244 00255 336 052442
0245 00256 337 100302
0246 00257 0Ny 075707
0247

0248

0249

0250

0251 00260 320 000307
0252 00201 320 010567
0253 00262 320 011027
0254 00263 230 036740
0255 00264 320 011227

G-4

A

RRR

x
JTBL1010
x

ITMER

EXECUTE

'Y
*
*
*
1

NDIRECT

#* H H *

EM1010

coy

KP [
ARS 11
READ RTH
ARS K1
ReAD Coy
PTN

LGS 3
KEAD wTW

LGS ki
REAL RTw

CRS “!
READ KTy

CRS R1
READ RTw

JMP J74

MBLER RFEy,A 760818

JMP - CNDX
JHP - CNDX
PEAD BTN

JMP CNDX
Jsh

Jss

JMP CNDX
JMP

PASS &

PASS g

PASS g

PASS &

PASS

PASS B
INC B
4ol

ALZ RJS
RUN

RUNE KJS

EM1U10

B
HURY
LAY

T14kR+3
CPTEST
RIPP1Mw
¥=2
HAL1

FAU/HACTABLE 1 000 000 ¢

J4P STFL
JMP

JMP RPT
JMp

JMP KPIT
REAL SRUN
Js8

JMP

JMP . RJ30
UNIVERSAL
READ INCI
RTN CNDX
READ INCI
JMP CNDX
JMP CNDX
JMP CNDX

D1IAG
ASL
LSL
T14ER
RRIL,

INDIRECT
TNSTP+2
vPY

ARITNMF[IC

) LEFT ¢ :
FEAL Slrr
ARTIHAETTIC Supp
PEAL ©SHIET breng
LUGCICAL Lk ghpp-

R AL SHIFT

LuGIcar FIGHT .
’ S

e HIFT

RUTATE LEFT
ReAD

PUTATE RIGHT
REAL

LHCRFMENT R
TEST FOR HALT ny Lildkbkuby
TEST FOK LERND

TEST CHNTRAL PRUCESSNR
TEST PHYSICAI. MEMURY alTH RIPPLE
LUOP 1F Pu#ki? SwliH TS LUCKED

uo
vl
10
11
o
vl

0g
00
au
[qV}
[
01

1v 00

INDIRECT OPERANUD RNOUTINE

PASS ™
AL15 RJS

HOI RJS
NSNG RJS
MRG

DEC P

EAU/MACTABLE 1 000

JMP

JMP RPT
JMP RPT
READ RTN
JMP RPT

INDIRECT
INDIRECT
HURL

P

001 w
HORI
ASR
LSR

RRR

M
TEST

L/7A/B;
FNR MORF

REAU
INDIRECTS

FOR HALT OR I41ERRUPT
TEST FOR INSTRNHCTLNAN STEP
TES1 FUR JMP,1 UR JsB,1
DECRFMENT P

TEST

HALI UR INTERRUPT PENDING
00 01
00 10
00 11
01 00

Appendix G

PAGE 0014 RTE MICRO~ASSEMBLER REV.A 760818

0257 L]
0258 ¥ FRONT PANEL ROUTINES
0259 . csssamcscccncananena
0260 x
0261 00265 334 013342 HALT JMP CNDX FLAG ¥42
0262 00266 000 075007 DEC S1 P
0263 00267 010 040647 PASS M S1
0264 00270 305 172502 JSB CNDX NMLS RJS MEMLOST TEST FOR COLD POWER UP
0265 00271 017 135756 CLFL CMPS § DES S = DESCRIPTOR BLOCK
0266 00272 321 153642 JMP CNDX ALO RJS *+43 TEST FOR SWITCH 1
0267 00273 327 024542 JMP CNDX NSFP RPL TEST FOR NO FRONT PANEL
0268 00274 325 064542 JMP CNDX RUNE RJS RPL TEST FOR LOCK POSTION DF POWER SW
0269 00275 327 021742 JMP CNDX NSFP USER USER FRONT PANEL MODULE
0270 00276 010 015747 PASS S DSPL § := DISPLAY REGISTER
0271 00277 006 037107 ZERO S3 CLEAR DMS MAP POINTER
0272 00300 336 054102 JMP CNDX NSNG RJS WAIT TEST FOR INSTRUCTION STEP
gg;i 00301 343 156347 IMM LOW DSPI 367b PLACE T=POINTER IN DISPLAY INDICA
.
0275 00302 300 023707 WAILT JSB DSPICODE BINARY ENCODE OF DISPLAY INDICATO
0276 00303 300 022004 JSB RJ30 UPDATES UPDATE DISPLAY REGISTER
0277 00304 330 154202 JMP CNDX NSTB RJS * WAIT FOR BUTTON TO BE REUEASED
0278 00305 006 036774 INCI ZERO
0279 00306 001 136741 JTAB DBLS INITIALIZE SAVE STACK
0280 00307 323 015242 JMP CNDX RUN RUN
g;g; 00310 330 114342 JMP CNDX NSTB ¥=1 WAIT FOR BUTTON TO BE PRESSED
2 .
0283 00311 300 014547 JSBSCAN JSB SCAN GO TO SCAW SUBROUTINE
0284 00312 320 014107 JMP WAIT
PAGE 0015 RTE MICRO=-ASSFMBLER REV,.A 76081R
0286 00313 007 133047 SCAN INC S2 M S2 1= M+l
0287 00314 332 156102 JMP CNDX NLT RJS LEFT LEFT
0288 00315 332 056602 JMP CNDX NRT RJS RIGHT RIGHT
0289 00316 331 057442 JMP CNDX NINC RJS INCM INC M
0290 00317 331 157342 JHP (CNDX NDEC RJS DECM DEC M
0291 00320 330 064642 JMP CNDX NULDR RJS LOADER IBL/TEST
0292 00321 333 057642 JMP CNDX NSTR RJS STORFE STORE
0293 00322 333 155702 JMP CNDX NMDE RJS MODE MODE
0294 00323 336 055302 JMP CNDX NSNG RJS INSTP INSTRUCTION STEP
0295 00324 323 054202 JMP CNDX RUN RJS WAIT+2 PRESET
0296 *
0297 00325 343 070356 RUN IMM CLFL LOW DSP1 337B PLACE S=POINTER INTU DISPLAY INDI
0298 00326 314 015702 INSTP JsB CNDX FLAG MODE TEST FOR INVERSE VIDEU
0299 00327 227 174710 READ SRUN INC PNM P M 1= P; P t= P+1; READ
0300 00330 010 076307 PASS DSPL S PLACE S IN DISPLAY REGISTER
0301 00331t 010 001007 PASS St TAb S1 := T/A/R
0302 00332 230 040633 READ FTCH PASS IRCM 5sS1 IR ¢= S1; M t= (PERAND ADDRESS; R
0303 00333 336 000N42 JMP CNDX NSNG FETCH+1 TEST FOR NOT SINGLE INSIRUCIION
0304 00334 010 V40775 SHLT PASS S1
0305 00335 320 000047 JMP FETCH+1 COMPLETE FETCH
0306 *
0307 00336 017 117007 mUuF CMPS S1 nDsSP1 S1 := CUMPLEMENTFD LNDICATOR BITS
0308 00337 334 V16042 JMP CNDX FLAG x+2
0309 00340 370 040357 RTN STFL PASS DSPIT Si REVERSF INDPICATOR RITS; COMPLEMEN
0310 00341 370 040356 RTN (CLFL PASS DSPI Si REVERSF INDICATOR RITS:; COMPLEMEN

G-5

PAGE 00)
16 KTE MICRO-ASSEMRLER REV, 2 760818

0312

0313 001347
0314 00343
0315 00344
0316 00145
0317 00346
0318 00347
0319 00359
0320 001351
0321 00359
0322 001353
0323 0¢354
0324 00355
0325 00356
0326 00357
0327 00360

0328 00361

0329 00369
0330 00363
0331 no364q
0332 00365
0333 090366
0334

0335 00367
0336 00370
0337 00371
0338 00377
0339

0340 00373
0341 00374

0342
0343 00375
0344 00376
0345 00377
0346

010 017024
334 016347
321 156302
370 040347
343 076340
321 156442
340 100349
340 176507
012 041047
370 040347
334 017102

342 176517

150 0170292
010 140356
360 101007

343 174340

010 017022
352 176507
012 040347
360 001002
340 002340

334 017542
000 033047
334 017602
370 042647

360 045107
367 145107

300 023707
300 020004
320 v14107

*
LEFT

RIGHT

*
VECH

INCM

*

DECDMS
INCOMS
*
STURE

R1

PAGE 0017 RTE MICRO-ASSEMBLER REV.A 760818

0348
0349 00400
0350 00401
0351 00402
0352 00403
0353 00404
0354 00405
0355 00406
0356 00407
0357 00410
0358 00411
0359 00412
0360 00413
0361 00414
0362 00415
0363 00416
0364 00417
0365 00420
0366 00421
0367 00422
0368 00423
0369 0v424
0370 00425
0371 00426
0372 00427
0373 00430
0374 00431
0375 00432
0376 00433
0377 00434
0378 00435
0379 00436
0380
0381 00437

G-6

370 015747
370 015707
320 021607
370 014647
370 014207
370 014147
320 021007
320 020607
370 014452
370 015107
370 015647
370 015607
344 016507
012 015007
010 022447
370 040447
010 033153
010 015022
327 161202
010 036754
342 000607
V10 041021
352 177047
010 040747
327 121502
357 173047
010 042606
370 046647
210 014007
010 042647
320 014207

326 140007

STORES
STOREP

STUREM
STOREB
STOREA
STOREST
STOREF
STOREMM
STOREMN
STOREY
STOREX
STFENCE

STCPUS

STORET

USER

PASS s1

nspP]
SMP CNDX FLag *4q
Rmp CNDX ALO Rys «,,
1:: PASS DSPT s
p NTNLOW pspr 337
Tuy CNDX ALO ks x4y
IMM RTN Low pser yq.p
MM LOW L 077,
. AND st 5
g PASS DSPI s
MP CNDX FLag 146
;MM STFL Luw 277
"FL1 pass sy PSP
- CLFL TOR pspy 51
TN CNDX ngs
MM kTN Loy DSPT 3761
. L1 PASS 51 ngp
M CHLG L 277n
. AND DSPI §
RIN Cabx aLz 1
IMM RTN Tiuw DSPT 0u1p
" .
JMP CNDX FLAG DECLMS
e DEC S2
Jue CNDX FLAG TNCDMS
; PASS M 52
RIN DEC s3 S3
RIN INC 83 &3
Jss DSPICODE
JSh RU3D SINKES
Tnp 4AT1
ALGN
RIN PASS S DSPL
RIN PASS P DSPL
JMP STORET
RTN PASS M DSPL
RTN PASS B DSPL
RTN PASS A DSPL
IHp STCPUS
JMp STFENCE
RTN MESP PASS MEU DSPL
RTN PASS S3 DSPL
RTN PASS Y bSPL
RTN PASS X DSPL
IMM HIGH L 0078
AND S1 DSPL
PASS MEU MEU
RIN PASS MEU S
COV PASS S4 M
L1 PASS S1 DSPL
JMP CNDX AL15 RJS *+2
sov
MM LOW IRCM 200b
SRG1 PASS S1 S1
MM CMLO 2 2178
PASS S1
JMP CNDX AL15 *+2
L CMHI 82 3758
I0G PASS IRCM S2
RTN PASS M 54
WRTE PASS TAB DSPL
PASS M 52
JMP WATT+2
Jnp 330008

::é;TbhlsPLAY IND[FAFUP
A R REVERSE p o

TEST prik wPAP-A;ﬂui:LLA(Hor
PLACH S-PUINTtP IN o
TLST.PUK WRAP=AR JyNp
PLACH S=PUINTER 14
o= 77

VASK LIsrray

ISPLay INDICA

DISrpLay InDIC
INDICATK

TeLST FOR HFVPRSn
L = 177677

SHIFT DISPLAY IN“‘CATUR

PISPLAY mnpE

LEFT oy
TEST bk

MO WRAP =AU
PLACH MUiTD

A=PUINTER Ty DIsPLay INDICA

L 1= 1ny

"ASK DIsSPLay INDICATNK

TEST PNk N ARAP=AROU YD

PLACF X=POINIER Tu UISPLay INDICA

TEST FOK REVERSE Dre
Sk DI
DECREMENT & SPLAY wnpE

TEST F0OR RFEVERSE VISPLAY wipR
DECKEMENT DMS wap PUINTER
INCKFMENT NuMs 4ap PUINTER

RINAFY cdCODE 0OF OTSPLAY INDICATO

STORE DISPLAY PEGISTER
S = DISPLAY REGISTER
P :x DISPLAY REGISIER
M 1= DISPLAY REGISTER
R := DISPLAY REGISTER
A := DISPLAY RFGISTER

DMS MAP DATA := DISPLAY REGISTER
NDMS MAP NUMBER := D[SPLAY REGISTE
Y := DISPULAY REGISTER

X = DISPLAY REGISTER

L = 003777

MASK DISPLAY REGISTuR

STOKFE INTO DMS FENCE
SAVE M

TEST FOR DISPLAY 14

SET UP EIB INSTRUCTINN

STORE DiISPLAY 14 INTO EXTEND
S2 = STF O [NSTRUCTIUN

TEST FOR IN[ERRUPT SYSTEM

S2 = CLF 0 INSTRUCIIUM
RESTORF M
T = DISFLAY REGISTER

INCHEMENT M

DU MOT UPDATE DISPLAY

JUMP 10 ISER FRONT PANEL KOUTIWNE

Appendix G

PAGE 0018 KTE MICRU-ASSEMBLER KFv,A 760R1H

0383 00440 370 076307 UPDATES RIN PASS DSPL S D1SPLAY REGISTER @ S

0384 0044 370 U743u7 UPDATFP RN PASS DSPL P D1SPLAY REGISTER = P

0385 00442 370 un0307 JPDATET1T RIN PASS DSPL TAB DISPLAY PEGISTER : T

0386 00443 370 9032307 UPDATEM R[N PASS DSPL M DISPLAY REGISTER 3 M

0387 00444 370 010307 UPUATFB RTN PASS DSPL R DISPLAY REGILISTER 3 B

0388 00445 370 0003u7 UPVLATEA RTN PASS DSPL A DISPLAY REGISTEK (= A

0389 0G446 320 022707 UPDATEST JMP JPDCPUS

0390 N0447 320 022607 UPDATFEE JMP UPDFENCE

0391 00450 370 022312 UPDALIFMM KIN MFESP PASS DSPL MEH DISPLAY REGISTER := DAS MAP DATA
0392 00451 370 v44307 JPDLATEMN R[N PASS USPL S3 DISPLAY REGISTFR := DMS MAP NUMBE
0393 00452 370 072307 UPDAIFX RiN PASS USPL Y DISPLAY REGISTER = Y

0394 00453 370 070307 JPUATFEA RTN PASS DSPL X DISPLAY REGLSTER = X

0395 00454 U110 022447 UPLFENCE PASS MFU MEU

0396 00455 370 022307 RTN PASS DSPL MEU NISPLAY REGLSTFR := DMS STATUS/FE
0397 00456 355 170507 UPDCPUS IMM CMHI L 177B I, ¢= 100000

0398 00457 010 033047 PASS §2 4 SAVE M

0399 00460 350 177007 MM CMLO S1 0778 S1 := 000300 SFS 0

0400 00461 010 0406Ub 1NG PASS IRCM 31 IR := SFS 0

0401 00462 006 037007 ZERO S1 INITIALIZE CPU STATUS WORD

0402 00461 336 163242 JMP CNDX SKPF RJS *+2 TeST FOR INTERRUPT SYSTEM ON
0403 00404 003 v4lNZ4 Rr1 ADD St S1 S1 = 040000

0404 00465 334 1631342 JMP CNDX E RJS %42 TEST FOR EXTEND SET

0405 00466 003 L41007 ADD St S1

0406 00467 010 041024 k1 PASS S1 S1

0407 00470 335 163502 JMP CNDX OVFL RJS *+72 TEST FOR OVERFLOW SET

0408 00471 003 041007 ADD S1 S1

0409 00472 010 024507 PASS L CIR L := CIR

0410 00473 010 141007 I0R S1 S1 MERGE IN CIR

0411 00474 010 042647 PASS M 52 RESTORE M

0412 00475 370 040307 RTN PASS DSPL St DISPLAY := E,O,I, AND CIR

0413 .

0414 00476 343 164547 DSPICODF IMM LOW CNTR 3728 CNTR := 000372

0415 00477 017 117023 L4 CMPS S1 DSPI S1 := NDSPI SHIFTED LEFT FOUR
0416 00500 334 064202 JMP CNDX FLAG RJS *+4 TEST FOR NO REVERSE NDISPLAY MODE
0417 00501 340 000547 IMv LOW CNTR 000B CNTR := 000

0418 00502 344 000507 IMM HIGH L 000B L := 000377

0419 00503 013 017023 L4 XNOR S1 DSPI

0420 00504 001 141026 ICNT DBLS sS1 S1 LEFT SHIFT S1; INCREMENT COUNTER
0421 00505 327 164202 JMP CNDX AL1S RJS *=1 TEST FOR INDICATOR BIT

0422 00506 352 000507 MM CMLO L 200B L = 177

0423 00507 012 045107 AND S3 S3 MASK DMS MAP POINTER

0424 00510 357 076507 IMM CMHI L 3378 L := 020000

0425 00511 010 145007 I0OR §S1 s3 MERGE DMS CUNTROL BIT

0426 00512 230 040440 READ RTN PASS MEU Si LOAD DMS MAP ADDRESS REGISTER
0427]

0428 00513 300 024647 RPL Js8 LOADER GU TO LOADER SUBROUTINE

0429 00514 320 015247 JMP RUN REMOTE PRUGRAM LOAD

PAGE 0019 kKTL MICPU=ASSHFMBLER REV.A 760818

0431 .

0432 . INITIAL BINARY LOADER

0433 . mmmeeeeemcecceaaeoaa

0434 *

0435 00515 345 177014 LOADER Im™ SOV HIGH St 1778 Sl 3= 077777

0436 00516 010 07v6u7 PASS 1RCM S IR := § 1J SET UP LUADER SELECTIO

0437 00517 343 000507 AFMSIZE Tum LUW L 3008 L = 177700

0438 00520 012 04u7y7 AND PNM S1 M iz S1; P := S1 AND L

0439 00521 367 101002 HTN CHDX AL1S TEST FOR NO READ/WRITE CAPABILILY

0440 00522 210 u74007 WRTE PASS TAB P WRITE JNTO MEMORY

0441 00523 357 136507 [4v CMHL L 3578 L := 010000

0442 00524 224 141007 PEAU SUR St st READ BACK FROM MEMORY

0443 00525 U10 074507 PASS L P L := WRITTEN DATA

0444 00526 014 100747 XUPR TAB COMPAKE

0445 00527 320 064742 JMP o CNDX RLZ RJS MEMSIZF TEST FOR PRESENT MEMORY

0446 00530 010 075007 PASS S1 P S1 2=

0447 *

0448 00531 350 00/0o3 SFELCODE I L4 CMLG S2 NO3B $2 1= 007700

0449 00532 01U 042507 PASS L s2

0450 00533 340 014547 Iur LOW CNTR 006B COUNTER :=

0451 00534 012 077067 RPT AND $2 & MASK SELFCT CODE

0452 00535 010 043064 Kl PASS 52 S2 SHIFT SELECT CODE SIX PLACES RIGH

0453 00536 353 150507 Tat ¢ CHMLO L 3678 L := 00001v

0454 00537 004 143047 SUR 82 S2 52 := SELECT CNDF =10

g:gg 00540 367 101042 PTN CNDX AL15 TEST FOR SELECT CODE LESS THAN 10
¥

0457 00541 010 u40647 LNUP PASS M st

0458 00542 010 U310z} L4 PASS S1 LDR

0459 00543 0ty 040526 ICNT PASS L s1 THE FIRST PART OF THIS LOOP

0460 00544 012 U31023 L4 AND S1 LDR ROUTINE PACKS KACH FOUR BRIT

0461 00545 010 040576 ICNT PASS & s1 SEGMENT FROM [HE SPECIFIED

0462 00546 012 031023 L4 AND S1 LLR LURDER ROM INTO A 16=BI1 WORD

0463 00547 010 V40526 ICNT PASS L s1

0464 00550 015 131ul3 COV KAND S1 LDR

PAGE 0029

0466 00559
0467 00552
0468 00553
0469 N0554
0470 nos555
0471 00556
0472 00557
0473 00560
0474 0¢s5pq
0475 00562
0476 00563
0477 00564
0478 noses
0479 005646
0480 00567
0481 00579

P42 00371

0483 00579
0484 00573
0485 00574
0486 00575
0487 00576
0488 00577
0489 00600
0490 00601
0491 00602

RTE MICRO-ASSE

354 026526
012 041107
345 166507
013 044747
320 067347
350 077122
010 044597
012 040747
320 027347
353 016507
012 040747
320 027347
010 042597
003 041007

210 040097

007 133007

1 166049

017 175007
007 141007
210 040007
000 033007
230 040647
010 042507
003 001007
210 040007
300 030707

s

STWORD

IMM

MM
JMp
IMM

JmMp
IMm
Jmp

WRTE

Jup

WRTE

READ

WRTE
Jsg

MBLER REV,A T60R18

ICNT CMHI |,
AND 5
HIGH L

XNOK
CNDX ALZ Rug
CMLO $3

L1
PASS |,
AND

CNDX ALZ
CMLO L,

AND
CNDX ALz

PASS |,
ADD s1

PASS TAB

e st

CNDX CNT® RJs

CMPS s1
INC st

PASS TAB

DEC s1i
PASS M
PASS L
ADD 81

PASS TAB

PAGE 0021 RTE MICRO~ASSEMBLER REV.A 760818

0493

0494

0495

0496

0497 00603
0498 00604
0499 00605
0500 00606
0501 00607
0502 00610
0503 00611
0504 00612
0505 00613
0506 00614
0507 00615
0508

0509 00616
0510 00617
0511 00620
0512 00621
0513 00622
0514

0515 00623
0516 00624
0517 00625
0518 00626
0519 00627
0520 00630
0521 00631
0522 00632
0523 00633
0524 00634
0525 00635
0526 00636
0527 00637
0528 00640
0529 00641
0530 N0A42
0531 00643
0532 00644
0533 00645
0534 00646
0535 00647
0536 00650
0537 00651

G-8

220
360
017
210
230
017
014
320
210
010
320

033007
000642
101047
042007
042507
143047
100747
076542
042007
040647
030147

053022
124507
041016
031147
043017

343
346
012
300
010

017
010
150
150
017
157
150
010
017
010
010
014
320
013
320
014
320
013
320
003
il
320
320

141054
043107
045102
047224
151263
153322
0551364
057423
161447
063507
u50507
156756
076642
060747
176642
154747
176642
062747
076642
064747
036642
110602
036647

X
*
*
*
T

EST32K

*
CPTEST

*
REGTES I

013p

S1

S1

M

51

52

TAB

S1
CPTEST

FIRMWARE DIAGNOSTICS

READ
RTN

WRTE
READ
JHP
WRTE
JHP

IMM™
MM

JSB

LwF
LwF

LWF
LAF

JMP
JMP
JMP
JMP
Jmp

JMP
JMP

DEC s1
CNDX ALZ
CMPS S§2
PASS TAB
PASS L
CMPS S2
XOR
CNDX ALZ RJS
PASS TAB
PASS M
L1 LOW S1
HIGH L
CLFL AND S1
STFL PASS S1
S0V CMPS S2
PASS S3
L1 PASS S4
R1 PASS 85
L4 CMPS S6
L1 CMPS S§7
K1 PASS S8
L4 PASS S9
CMPS 810
PASS S11t
PASS L
CLFL XOUR
CNDX ALZ ®JS
XNOR
CNDX ONES RJS
XOR
CNDX NNES RJS
XNOK
CNDX ALZ RJS
ADD
CnpX COoUuT
ChNDX NNES

M

TAB

52

52

52

TAB
FAILYURF
S2

51
TEST32K

325B
2528

S1
REGTFST
Sz

Sl
S2
S3
54

59
FATLURE +2
s7
FALLURF +2
S1v
FAILURF+2
s11
FATLURE+?
ASR+1
FAILURE+?2

Lotz 174000
I 2= 075779

TEST voR 5/ I
S3 0uu7n0

TESE FNR yapT
I 2= 00vo7g

TEST Fok skLpct

PATCH 14 Cl

Wk

TEST POk LOADER
TW0S COMPLEMFNT
WORL OF PROGRAM
STORE INTO LAsT

WURD [nTA

LGB

HDTHUCTI()[\.

INSTRUCTIQY

CUPE LESS Than 19

§FLPCT Cane

MEMOR

CUMPLET[ON
LAST AVATLABLE
MEMORY AND
LUADER ADDRESS

PATCH SELECT COuF INTu
PORY CONTROLLER WQRD 1

STURE PURT CNWTROLLER
PERFNR» Quick PROCESSQR

WORD 1
TEST

READ MEMURY wORD

:= COMPLFMENTED DATA; WRITE

S1 := M - 1;

CHFECK FOR TEST COMPLETION
S2 := COMPLEMENTED DATA
T/A/B

L := COMPLEMENTED DATA

S2 1= DRIGINAL DATA
CUMPARE,

TEST FOR MEMORY
T/A/R

S1 = 177652
L := 145377
S1 1= 125252
S1 1= 052525
52 1= NSI
S3 HER]
S4 = WS3
Sy t= NS4
So 1= NSS
s7 = So
Sd 1= NS7T
89 1= 5%
S10 = NSY
S11 = 819
1. 3= UThFK

URIGINAL DATA:

FATLURE
RESIORE M

[118 RUOUTINE LOUA
IME 3CRAICH REGI
wTH ONF OF TWO

COIMPLFMENTARY DA
PATITERNS. REGIS
«lIH ONE RIT DIF
IN ADDRESS ARE F
nI[H UNLIKE PATT
IHE ROTATE/SHIFT
FLAG LUGIC IS CH

TEST PATTEKRN

XOR SAME PATTERN
FAILURE+2 TEST rOk ~NOw=ZFr S

XNOR SAME
TeST FNR

PATIERY
NON=UNES

YOUR DIFPFERFNT PATIFRN

TLSI

FUR NON=0%ES

XNAOK UIFFEPENT PALTERN

TEST ¢NR
ADL
TESI
TEST FNR

NON=ZERDS
INLIKE PATTERNS
FOR CAKRPRY JUT

aNN=UNES

Appendix G

PAGE 0022 RTE MICRU=ASSEMRLER REV,A 760818

0539 00652 3040 030707 MEMLOSI JSR CPTES TEST LLTTR:LTPES;Egigi
0540 00653 00o 037771 IAK ZERO $ CLEAR §; HAL ;
0541 M ' : EAR 56
0542 00654 00b 037253 KIPPlunw COv ZERU $6 CLEAR
0543 00655 010 077207 PASS S5 S SAYb S ¢ REGLSTEK
0544 0065k U106 052307 PASS DSPL So CLLAH NISPLA EG)
0545 00657 01y 075307 PASS ST P SAVE b
0546 00660 3310 100547 UMSLUAD IMv LUW CNTR 0408 CQUNTtRP.- 40
0547 00661 357 077047 Tax CMHI 52 337b §z :=10f0009, ro
0548 00662 345 004447 MM HIGH mEU 1028 FNABLE SYSTE4 MA® P
0549 00663 010 042447 PASS MEU S2 CLFEAP DMS ADDRFSS REG <
0550 00664 010 052452 MESP PASS MEU S6 LOAD MAP)
0551 00665 007 153265 DENT INC S& Sb INCREMENT MAP ADDRESS
0552 00666 320 173202 JMP CNDX CNTH RJS ¥=2 TEST FUOR ALL MAPS LUADEQ~ .
0553 00667 006 037747 ZERU S PASS LOADER An INVALID thEgT COoD
0554 00670 300 024647 JSR LUADER DETERMINE HUW MUCH MEMURY AvALLAB
0555 00671 010 033107 PASS 53 M S3 2= TUP OF ENABRLED MEMORY
0556 00672 322 134402 JMp CNDX 115 TESTDMS TEST FOR PRESENT MFY0ORY
0557 00673 343 177047 TMu LOWw $2 377B BACKGROUND PATTERN := 177777
0558 00674 353 176147 TMu CMLO A 3778 TEST PATTERH 2= 000000
0 315147 JSRHR RIPP32K
3223 282;2 §s§ ?77047 1M CMLU $2 3778 FACKGROUNY PAYTTERN $= N00J00
0561 00677 343 170147 MM LUW A 3778 TEST PATTERN = 1777177
0 0 147 JSB RIPP32K
gggg 0838? ;Sg T;20:7 TMM CMLO 52 376b BACKGROUNL PATTERN := 000001
007 n 035147 JSB R1IPP3I2K
gggg 68783 353 171047 MYy CMLO S2 374B BACKGRUOUND PATTERN :=’000003
0566 00704 343 174147 TMM LOW A 3768 TEST PATTERN := 177776
S no 35147 JSH R1PP3ZK
822; ggzgﬁ 310 3%1047 PASS S2 55 BRACKGRUOUND PATTERN := S5
0569 00707 300 u3s147 JSHR RIPF 32K
0570 00710 010 u2z447 TESTDMS PASS MEU ME() .
0571 00711t 010 122747 PASS ME ENABLE MEM STATUS REGISTER
0572 00712 3206 135002 JMP CNUX ONES ¥+6 TEST [F DMS 1S PRESENT
0573 00713 07 115747 INC S NSPL S t= DISPLAY REGTSTER
0574 00714 353 076507 L] CMLO L 3378 L := 40
0575 00715 ot4 176307 XOR DSPL S DISPLAY REGISTER := S
0576 00716 320 073002 JMP CNDX ALZ RJS DMSLOAD TEST FOR ALL MEMORY TESTED
0577 00717 345 uN0447 M HIGH MEU 100B DISARLF DMS MAPS
0578 00720 010 051747 PASS S S5 RESTNRE S
0579 00721 010 050307 PASS DSPL S5
0580 00722 360 055707 RTY PEC P s7 RESTORE P AND EXIT

PAGE 0023 KTE MICRJ=-ASSFMBLER REV.A 760818

0582 00723 000 044735 RIFP 32K SHLT DEC PNM S3

0583 00724 210 042007 WRTE PASS TAB 82 T/A/B := BACKGROUND PATTERN
0584 00725 000 074707/ DEC PNM P M = Py P 1= pP=-1

0585 00726 327 175202 JMP CNUX AL1S RJS *=2 TEST FOR COMPLETF 32K

0586 00727 352 177147 TMm CMLU S4 277B S4 := 000100

0587 00730 01u 046715 PFST PASS PNM S4 P = S4; M := 54

0588 00731 210 006007 KIPLUOP WRTE PASS TAB A T/A/B 1= TEST PATTERN; WRITE
0589 00732 352 174597 MM CMLO L 2768 L := Quot01

0590 00733 223 0757u7 READ ApD P P P =P + 101

0591 00734 010 00651 PRST PASS L A I 3= TEST PATTERN

0592 00735 014 100747 XUR TAB COMPARF.

0593 00736 320 070602 JMP CNDX ALZ RJS FAILURE+1 TESI FUR SUCCESSFUL CUMPARE
0594 00737 U10 V44545 PRST PASS L 53 I 1= 10P OF ENABLED MEMURY
0595 00740 210 042007 WRTE PASS TAB S2 T/A/R := BACKGRUIIND PATTERN REST
0596 00741 004 174647 SUR M e TEST rUR NON=EXISTENT MEMORY
0597 00742 321 075442 JMP CNDX CQUT RJS RIPLOOP TEST FOR RIPPLE PASS COMPLETE
0598 00743 000 047147 NEC sS4 54 DECREMENT 32K CUUNTER

0599 00744 327 175402 JMP CNDX AL15 RJS RIPLOOP=1 TEST FOR ENTIRE 32K TESTED
0600 00745 010 042507 PASS L 82 L := BACKGRUUND PATTERN

0601 00746 010 044707 PASS PNM 83 P := TNP OF ENABLED MEMORY
0602 00747 220 074707 BKGNDCK READ DEC PNM P M = P; P t= P=1; READ

0603 00750 367 101702 RIN CNDX AL1S TEST FOR ENTIRE 32K READ

0604 00751 014 100747 XOR TAB TEST AGAINST EXPECTED BACKGROUND
0605 00752 320 036342 JMP CNDX ALZ BKGNDCK TEST FOR EXPECTED BACKGROUND PATT
0606 x

0607 00753 010 042147 FAILURE PASS A 52 A = EXPFCTED DATA

0608 00754 010 000213 COV PASS B TAB B := ACTUAL DATA

0609 00755 343 176335 IMM SHLT LOW DSPL 3778 SET ALL DISPLAY REGISTER BITS
0610 00756 340 000347 IMM LOwW DSPI 000B SET ALL DISPLAY INDICATGR BITS
0611 00757 320 014207 JMP WAIT+2 SUSPEND TEST

0612 M

G-9

SaNh VVZe RTE HICRO-ASSEMBLER REV.A 760818

0614 ORG 7608
0615 *

0616 x PRIMARY MAPPING TABLE
0617 * e T T
0618 *

0619 00760 324 61007 MACTABL1 Jgmp
0620 0076} 324 161007

234208 2000 ACCESS S7sTky
JIMP 234208 2000 ACCESS systrm
0621 00762 355 140004 JMP RJ30 270008
0622 00763 334 160004 JMP RJ30 23400y 2000 ACCESS SysTry
0623 00764 335 160004 JMP RJ30 274008
0624 00765 374 000004 JIMP RJ30 30000y
9625 00766 326 020004 JMP RJ30 30400g
0626 00767 354 040004 JMP RJ30 310008
9627 00770 327 000094 JMP RJ3g 34000y
0628 00771 327 030004 JIMP RJ30 344008
0629 00772 379 040004 JMP RJ30 350008
963000773 327 460004 JMP RJ3q 35400“
0631 00774 354 000004 JMP -
9632 09775 0 B30 Y
004 000 DYNAMIC wappyyg SYSTFM
063] 00776 JHp RJ30 200208 DYNAMIC MAPPING Sysrin
320 041004 JMP RJ3g EIG FXTENDEL INSTRUCTION Ghijyp
0634 00777 320 042004 JMP RJ30 E1G+208 ExTENpE, INSTRUCTION GRryyp
0635 *
0636 01000 320 (65557 MACTABLO JWp sp4p FAD FLOATING POINT anp
0637 01001 320 961547 NP FSR FLOATING POINT Sugrracy
0638 01002 320 (65107 JMP FMP
0639 01003 339 067047

FLNATING POINP MULTIPLY
JmMp FDv
0640 01004 320 060257

FLUATING POINT DIVIDE
JMp STFL Flx FLOATING POINT o INTEGER
0641 01005 320 960009 Jup FLT INTEGER TU FLUATING pyrny
0642 01006 337 19g0gs JMP RJ3g 360008
0643 01007 327 149004 JMP RJ30 370004
0644 01010 324 040004 JMP RJ30 210001 FAST FORTHAN
0645 01011 334 060004 JHP RJ30 214008 FAST FORTRAN
0646 01012 324 100004 NP Ry30 nggga e KESERVED
0647 01013 324 120004 S R 230008 p SESEKIED
0648 01014 324 140004 Jup 2330 3000m " Rﬁéhkvig
000004 JMp 260008 Hp RP§ENV‘
0649 01015 325 JMP RJ30 6400k HP RESERVED
0650 oxoig ;gg iggggj JMP RJ30 2
0651 010
PAGE 0025 RTE MICRO-ASSEMBLER REV.A 760818
GROUP
0653 : EXTENDED 1NST§HEf}9§_§_9__
0654 * Sommwesm-mme- -
0655 ¥ S5%X Ski;gg;
0637 01020 320 pa3neT EIG RN PASS X Can s iox
003 '
0659 01022 370 043307 M o ExR/CBY
60 01023 320 043647 RTN PASS Che X | LUX
g:sl 01024 370 070047 b kgx g
0662 01025 320 044007 She Ao YK/ Kb
0663 010126 320 044147 JMP S*Y SAY/SbY
4 01027 320 044347 JMP A CAY/ConY
066 30 320 045007 N PASS Y Cha LAY/LRY
0665 2:831 370 003647 Sép L#Y Lay
9606 032 320 045307 MP STY CYA/CAR
0667 01033 320 045647 iru PASS CAB Y Lov
0668 01034 370 072047 b LoY e
oeyn 81035 320 046007 Jup oy XAY/XbY
0670 01036 320 046147 Jup X Tox
0671 1037 320 046347 JMP ISX bsx
°23§ 81040 320 044507 Jup 2i§ LY
; 74 01041 320 044647 JMP LoT LBT
o 01042 320 047007 Jup LDT SKRT
82;2 01043 320 054107 JuP ol "o T
0677 01044 320 054407 Jup CBT Cpt
8 01045 320 051597 JnP R Seh
967 01046 320 052147 T4 SEY 1Sy
0679 1047 320 053107 me Is oy
0680 01050 320 046507 Jup NSy ey
0681 01051 320 046647 IMP JP¥S 8BS
vess O1052 320 047207 Jap AL cBs
0683 O;osa 320 056707 JuP BITS TBS
0”32 21054 320 056707 JMP S;Ib "
o 6 01055 320 056707 JMP my MV
oes 01056 320 047447 JNP
ggg; 01057 320 050747

G-10

PAGE

0690
0691
06972
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732

0026 RTh MICRU~ASSEM4RLER REV.A 760818

01060
01061
01062
01063
01064
01065

01066
01067
01070
01071
01n72
01073
01074

01075
01076
01077

01100
01101
01102

ni103
01104
01105
01106

01107
01110
01111

01112
01113
01114

01115
01116
01117

300
010
003
010
210
320

300
010
[AeK]
230
010
22]
370

300
210
320

300
010
227

300
010
263
227

230
010
372

2217
360
227

220
360
227

012447
070507
FERDVIN)
040647
002036
043547

012447
07u507
033007
V40647
009047
174707
036747

012447
070036
043547

012447
0U1607
174700

012447
070507
001607
174700

V02507
V70047
137607

171607
V41602
174700

071607
04l6y2
174700

[7A N Y

L*X

RETURN

s
STX

LDx

ADX

Xxx

IsX

DSX

IaDEX REGISTER GROUP

JSA

WRTE
JMP

JSB

READ

REAVL
RTN

Jsn
wRTe
JMpP
JSB
READ
JSB

ENVE
REAL

READ
RTN
READ
RIN
READ
READ

RTN
READ

MPCK

MPCK

RTN

RTN

CNDX
RTN

CNDX
RTN

PASS L
ADD 81
PASS M
PASS TAB

PASS L
ADD S1
PASS M
PASS CAB
INC PNM

PASS TAB

PASS X
INC PANm

PASS
INC

PASS L
PASS CAB
PASL X

INC X
ALZ
INC

DEC X
ALZ RJS
INC PNM

INDIRECT
X

M

S1

CAR
RETURN

INDIRECT
X

]
51
TAB
P

INDIRECT
X
RETURN

INDIRECT
TAB
p

INDIRECT
X

TAR

p

CAB
X

L =X

M = X + I/A/B

T/A/B 1= A/B; WRITE

L = X

M := X + T/A/8; READ
A/B := T/A/B

M = Py P = P+1; READ
T/A/R = X; WRIIE

X

M READ
L

X

M READ
N

A

X

INCREMENT X; READ

TEST FOR ZERO

M := P; P t= P+1; READ
DECREMENT X; READ

TEST FOR ZERO

M = P; P := P+1; READ

Appendix G

G-11

Appendix G

PAGE

0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773

PAGE

0775
0776
07177
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788

G-12

0027 RTE MICRO~-ASSEMBLER REV.A 760818

01120
01121
01122
01123
01124
01125

01126
01127
01130
01131
01132
01133
01134

01135
01136
01137

01140
01141
01142

01143
01144
01145
01146

01147
01150
01151

01152
01153
01154

01155
01156
01157

300
010
003
010
210
320

300
010
003
230
010
227
370

300
210
320

300
010
2217

300
010
263
227

230
010
372

2217
360
227

220
360
227

012447
072507
033007
040647
002036
043547

012447
072507
033007
040647
000047
174707
036747

012447
072036
043547

012447
001647
174700

012447
072507
001647
174700

002507
072047
137647

173647
041642
174700

073647
041642
174700

S*Y

L*Y

STY

LDY

ADY

X*¥Y

ISY

DSY

JSB

WRTE
JmMp

JSB

READ
RTN

Jsp
WRTE
JMp
Jsn
READ
Jsh

ENVE
READ

READ
RTN
READ
RTN
READ
READ

RTIN
READ

MPCK

MPCK

RTN

RTN

CNDX
RTN

CNDX
RTN

0028 RTE MICRO-ASSEMBLER REV.A 760818

01160
01161
01162
01163

01164
01165
01166
01167
01170

230
344
300
3617

230
344
003
230
367

075647
120607
012447
133736

072507
120607
001707
074647
175736

[Sar 25 2R 2K

JPY

PASS
ADD

PASS
PASS

PASS

PASS
PASS
INC

PASS

PASS
INC

PASS

INC

PASS
PASS
PASL

INC
ALZ
INC

DEC
ALZ
INC

51

TAB

S1

CAB
PNM

TAB

JUMP INSTRUCTIONS

READ
IMM
Jsn
RTN

READ
IMM

READ
RTN

MPCK

MPCK

PASS
HIGH

INC

PASS
HIGH
ADD

PASS

INDIRECT
Y

M

51

CAB
RETURMN

INDIRECT
Y

]

S1

TAB

P

INDIRECT
Y
RETURN

INDIRECT
TAB
P

INDIRECT
Y

TAB

P

CAB
Y

p
0508
INDIRECT
]

Y
0508
TAB
P

|4

L =Y

M = Y + T/A/H
T/A/B := A/8; WRITE
L (= Y

T/A/8; READ

/
;7 P = P+1; READ

Y 1= T/A/B

M t= P; P = P+1; READ
L =Y

Y t= Y + T/A/B

M t= Py P 2= P+1; READ
L := A/B

A/B = X

Y = L

INCREMENT Y; READ
TEST FOR ZERD
M = P; P := P+l: READ

DECREMENT Y; READ
TEST FDR ZERD
M 1= P P = P+1; READ

Y := P; READ
PREPARE MP FDOR 0 AND 1 PROTECTION

P = M +1

L := Y

PREPARE MP FOR U AND 1 PRUTECTION
P =Y + T/a/8

M := P; READ

P = P+l

Appendix G

PAGE 0029 KRTE MICRO~ASSEMBLEKR REV.A 760818

0790 *

0791 * WORD MANIPULATTON INSTRUCTIONS

0792 * Se-ssrssscccsssen- eTemeSSsSe.-

0793 *

0794 01171 300 056007 CMW JSB INTTIAL

0795 01172 230 006647 LCMW READ PASS M A M = WORD ADDRESS NF ARRAY 1
0796 01173 010 010647 PASS M 2] M = WORD ADDRESS OF ARRAY 2
0797 01174 230 000507 READ PASS L TAB L = ARRAY 1 AURD

0798 01175 007 110207 INC B B BUMP ARRAY 2 ADDRESS

0799 01176 014 101007 X0R 81 TAB

0800 01177 327 110402 JMP CNDX ALI5S KOTEQ TEST FOK SIMILAR SIGN BITS
0R01 01200 014 141007 X0rR 81 51

0802 01201 004 140747 SUB 51

0803 01202 320 050442 JMP CNDX ALZ RJS NOTEQ+1 TESI FOR WORD CUMPARE

0804 01203 007 106147 INC A LY BUMP ARRAY 1 ADDRESS

0805 01204 000 045107 DEC 83 53 INCREMENT WORD COUNT

0R06 01205 320 003542 JMP CNDX ALZ RETURN TEST FOR COMPLETE CUMPARE
0807 01206 335 007502 JMP TNDX NINT LCMw TEST FOR INTERRUPT PENDING
0808 01207 320 056507 JMP INTPEND

0809 01210 322 110542 NOTEYQ Jup CNODX L15S *+3 TEST FOR WORD 1 NEGATIVE
0810 01211 321 010542 JMP CNDX COUT *+2 TEST FOR WORD 1 LESS THAN WORD 2
OB11 01212 007 175707 INC P 4 BUMP P

0812 01213 007 175707 INC P P BUMP P

0B13 01214 000 044507 DEC &L s3 L 2= RESIDUAL STRING CUUNT
0814 01215 003 010207 ADD B B UPDATE o PAST STRING

0815 01216 227 174700 READ RTN INC PNM P M = P; P = P+1; READ

0R16 ¥

0817 01217 300 056007 MVwA JSR INITIAL

0818 01220 230 006647 LMVW READ PASS M A M 1= SOURCE ADDRESS:; READ
0819 01221 007 106147 INC A A BUMP SUURCE ADDRESS COUNTER
0820 01222 010 010647 PASS M B M 3= DESTINATION ADDRESS
0R21 01223 010 001047 PASS 52 TAB 82 := SUURCE wWNRD

0822 01224 210 042036 WRTE MPCK PASS TAB S2 STORE SUURCE WNARD INTO DESTINATIO
0823 01225 007 110207 INC B B BUMP DESTINATION COUNTER
0824 01226 000 045107 DEC 83 s3 DECREMENT WORD COUNTER

0825 01227 320 003542 JMP CNDX ALZ RETURN TEST FOR COMPLETE MOVE

0826 01230 335 011002 JMP CNDX NIN1 LMVw TEST FOR PENDING INTERRUPT
0827 01231 320 056507 JAP INTPERND

G-13

Appendix G

PAGE

0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875

PAGE

0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0sen

G-14

0030 RTE MICRO=~ASSEMBLER REV.A 760818

01232
01233
01234
01235
01236
01237
01240
01241
01242

01243
01244
01245
01246
01247
01250
01251
01252
01253
01254
01255
01256
01257
01260
01261

01262
01263
01264
01265
01266
n1267
01270
01271
01272
01273
01274
01275
01276
01277
01300
01301

300
150
300
300
007
000
320
335
320

300
150
300
010
150
300
007
010
004
320
007
000
320
335
320

344
010
012
014
010
150
300
010
014
320
007
014
320
335
000
320

056007
007064
055507
054647
106147
045107
003542
011542
056507

056007
007064
055507
041207
011064
055507
110207
050507
140747
050442
106147
045107
003542
012202
056507

000507
033207
007107
007163
047163
011064
055507
040507
144747
014602
110207
146747
003542
013342
075707
000307

* o w

MBT
LMBT

CBT
LCBT

SFB

LSFB

BYTE MANIPULATION INSTRUCTIONS

JSB
LwaF
JSB
JSB

JMP
JMP
JMP
JSB
LaF
JSB

LWF
JSB

JMP

JAP
JmMP
JHP

MM

LwF

Jss

JMP

Jup

JMp

JMP

CNDX
CNDX

R1

CNDX

CNDX
CNDX

L4

R1

CHnDX

CNDX
CNDX

0031 RTE MICRO=-ASSEMBLER REV.A 760818

01302
01303
01304
01305
01306
01307

01310
01311
01312
01313
01314

150
010
300
230
007
370

344
010
012
300
230

011064
033107
055507
044647
110207
040147

000507
033207
007007
054647
050640

LBT

SBT

LwWF

JsB

READ

RTN

IMM

JS8B

R1

READ RTN

INC
DEC
ALZ
NINT

PASS

PASS
PASS

INC
PASS

ALZ

NINT

PASS
PASS

PASS
INC
PASS

HIGH
PASS
AND

PASS

kY

s3

52

S5
52

RJS

S3

85
53
54
S4
52

S2
Ss3

»ox

S5
S1

M

INITIAL
A
LDBYTE
STBYTE
A

s3
RETURN
LMBT
INTPEND

INITIAL
A
LDBYTE
51

R
LDRAYTE
B

55

s1
NUTEQ+1
A

s3
RETURN
LCRT
INTPEND

000B
4]

B

M
LDBYTE
S3

B

S1

0008
M

A
STBYTE
55

82 := FROM WORD ADDRESS

JUMP TO BYTE LOADING SUBROUTINE
JUMP TO BYTE STORING SUBROUTINE
BUMP FROM ADDRESS

DECREMFNT BYTE COUNT

TEST FOR COMPLETE MOVE

TEST FOR INTERRUPT PENDING

82 := WURD ADDRESS

JUMP TOD BYTE LOADING SUBROUTINE
S5 := BYTE 1

8§82 := WORD ADDRESS

JUMP 10 BYTE LOADING SUBRUOUTINE
BRUMP STRING 2 ADDRESS

L := BYTE 1

SUBTRACT: BYTE 2 = BYTE 1

TEST FOR BYTE COMPARE

BUMP STRING 1 ADDRESS

DECREMENT BYTE COUNT

TEST FOR COMPLETF COMPARE

TEST FOR INTERRUPT PENDING

L = 3778
SAVE M
S3 = TEST BYTE

:= TERAINATIUN BYTE
S2 := WORD ADDRESS
JUMP TO BYTE LOADING SUSRUUTINE
. := RIGHT JUSTIFIED HYTE
CUMPARE TU TEST BYTE
TEST FOR TEST BYTE MATCH
BUMP STRING ADDRESS
COMPARFE Tu IERMINATION BYTE
TEST FOR TERMINATION BYTE MATCH
TEST FOR [NTERRUPT PENDING
DECREMENT P
INTERPUPT PERNDING

82 i= WORD ADDRESS

SAVE M

JUMP TO RYTE LOADING SUBROUIINE
RESTORE M AND READ

BUMP BYTE ADDRESS

A = RIGHT JUSTIFIED BYTE

L 3= 000377
S1 := RIGHT JUSTIFIED BYTE; READ

JUMP TO BYTE STORING SUBROUTINE
RESTORE M AND READ

Appendix G

PAGE 0032 RTE MICRU~ASSEMBLEK KEV.A 760818

0890 *
0891 * CUMMIIN SUBROUTINES
0892 * T
0R93 *
0894 01315 150 011064 STBYTE LWF R} PASS §2 B S2 1= WURD ADDRESS
0895 01316 230 042647 READ PASS M s M I= WURD ADDRESS; READ
0896 01317 334 055202 JMP CNDX FLAG RJS #*+5 TEST FOR HIGH NRDER RYTE
0897 01320 014 000507 SANL L TAB L= BITE TO RE PRESERVFD
0898 01321 010 141007 IOR s1 Si 51 1= WORL WITH AERGED BYTES
0899 01322 210 040036 WRTE MPCK PASS TAB S1 STORE. WURD INTN MEMORY
0900 01323 367 110207 RTH INC B R RUMP B
0901 01324 012 000507 AND L TAR I = BYTE 10 BE PRESERVED
0902 01325 010 041023 L4 PASS §1 Si
0903 01326 010 041023 L4 PASS S1 s1
0904 01327 010 141007 IGR S1 S1 S1 := WURD wITH 4ERGED BYAES
0905 01330 210 040036 WRTE MPCK PASS TAB Si STORFE WORD IN MEMORY
0906 01331 367 110207 RTN INC B B HUMP B
0907 ¥
0908 01332 230 042647 LDBYTE READ PASS M 52 REAL
0909 01333 344 000507 IMM HIGH L 000B L 3= 000377
0910 01334 334 055702 JMP CNDX FLAG RJS *+42 TEST FOK HIGH NKDER BYTE
0911 01335 372 001007 RIN AND 51 TaR S1 := RIGHT JUSTIFIED BYTE
0912 01336 014 001023 La SANL S1 TAR
0913 01337 370 041023 RIN L4 PASS s1 s1 S1 := RIGHT JUSTIFIED HYTE
0914 *
0915 01340 230 036747 INITIAL READ READ
0916 01341 300 012447 JSR INDIRECT
0917 01342 007 174707 INC PhM P M 3= P} P = P+l
0918 01343 230 001107 REAL PASS S3 TAB S3 3= INITTAL CUUNT; READ
0919 01344 320 017502 JMP CNDX ALZ GUFETCH TEST FUR ZERD WORD CODUNT
0920 01345 010 000507 PASS L TARB
0921 01346 360 000002 RIN CNDX ALZ TESI FOR RESIDUAL COUNT
0922 01347 006 037047 ZERO S2
0923 01350 210 042036 WRTE MPCK PASS TAB S¢ CLEAK WOPFD 3
0924 01351 372 137107 RTN PASL S3 S3 := ACTUAL COUNT
0925 ¥
0926 01352 000 075707 INTPEND DEC P P DECKEMFNT P
0927 01353 000 074707 DEC PNM P DECREMENT P
0928 01354 210 044007 WRTE PASS TAB S3 STORE PRESENT WORL COUNT
0929 01355 320 000307 Jup HOR1 INTERRUPT PENDING
PAGE 0033 RTE MICRO-ASSEMBLER REV.A 760818
0931 *
0932 * RIT MANIPULATION INSTRUCTIDNS
0933 X eccaes cmemcsencaan- EEE L TP
0934 ¥
0935 01356 300 012447 BITS Jse INDIRECT
0936 01357 010 0005u7 PASS L TAR L := MASK
0937 01360 23y 074647 READ PASS M P READ WORD TU BE SELECTIVELY ™MODIF
0938 01361 300 012447 JSB INDIRECT
0939 01362 300 057603 JSB 10N CBS
0940 01363 210 040036 WRTE MPCK PASS TAB S1 STORE WURD BACK INTU MEMORY
0941 01364 007 1757v7 INC P P P =P + 1
0942 01365 227 174700 READ RTN INC PNM P
0943 *
0944 01366 007 175707 FTBS INC P P P =P + 1
0945 01367 007 174707 INC PNM P M = P; P 3= P + 1
0946 01370 234 140747 READ XOR s1
0947 01371 320 017542 JMP CNDX ALZ *42
0948 01372 227 174707 GOFETCH READ INC PNM P M := P; P 3= P+l; READ
0949 01373 320 000007 JMP FETCH
0950 ¥
0951 01374 374 001007 CHS RTN SANL S1 TAR S1 = WURD WITH RITS CLEARED
0952 01375 012 001007 TRS AND 81 TAB S1 := WORD WITH BITS CLEARED
0953 n1376 320 057307 JMP FTBS FINISH TBS
0954 01377 370 101007 SKS RTN I0R s1 TAB S1 := WORD WITH BITS SET

G-15

Appendix G

PAGE 0034 RTE MICRU~ASSEMBLER REV,A 760818

0956 ORG 14008

0957 RN RN RN RN RN R R R R RN RN RN R AR AR R R RN RN R RN R R KR KRR R R KRN RN R R R RN R R KR
0958 L

0959 x 21XE MICRO-CODE

0960 * MODULE 03: FLOATING POINT INSTRUCTIONS

0961 ¥

0962 ¥ REV 1976=-04-26=1800 EAS

0963 R R R RN RN RN R R R R R R RN RN KR AR R R R R RN RN R AR KR X RN R X R KR KRR KRR RNE
0964 ¥

0965 *)

0966 EERE RN RN R E R R R R R R RN RN R R R R R R R E KRR R R RN RN AR R R R R R X AR R R R KR AR KR X KKK
0967 FLOAT EQU *

0968 01400 010 006213 FLT COV PASs B A

0969 01401 006 036147 ZERO A CLEAR LSB'S TU SHIFT INTO B

0970 01402 353 141147 IMM CMLO sS4 %360 SET EXPONENT FOR MAX INTEGEK

0971 01403 000 075707 DEC P P BECAUSE PACK BUMPS IT

0972 01404 320 073007 JMP PACK

PAGE 0035 RTE MICRO-ASSEMBLER REV.A 760818

0974 *

0975 ¥ ON ENTRY== A,B = FLOATING POINT NUMBER

0976 * FLAG = 1

09717 *

0978 * ON EXIT A = INTEGER B = CHANGED(USUALLY = A,THOUGH)
0979 *

0980 * USES A,B,S1,S2

0981 *

0982 01405 340 000513 FIX IMM COV LOW L 000 I = 1 111 111 100 000 000
0983 01406 153 111024 LWF R1 NSOL S1 B S1 3= = EXP =~ 1

0984 01407 321 120442 JMP CNDX ALO FIX0K1 RETURN ZERO IF EXP < 0

0985 01410 226 036140 READ RTN ZERO A

0986 01411 007 141007 FIXOK1 INC S1 s1 S1 := =EXP

0987 *

0988 01412 012 011047 AND S2 B B := LSB’S

0989 01413 010 006207 PASS B A B 1= MSB’'S

0990 01414 010 042147 PASS A s2 A := LO BITS

0991 01415 353 140507 MM CMLO & £360 L := 15

0992 01416 003 041014 SOV ADD S1 st CALCULATE 17 = EXP

0993 01417 320 021242 JMP CNDX ALZ RTRNINTG NO SHIFTING IF EXP = 17

0994 01420 327 161142 JMP CNDX AL15 RJS FIXOK2 OVERFLOw 1F EXP > 17

0995 01421 011 136164 R1 DNE A SET A TO MAX INTEGER

0996 01422 230 036740 RETNFP READ RTN START INSTRUCTIUN READ; EXIT
0997 *

0998 01423 010 040567 FIX0OK2 RPT PASS CNTR S1 COUNTER := #SHIFTS; SET REPEAT FF
0999 01424 030 010224 ARS K1 PASS B) DU THE SHIFTS

1000 *

1001 RTRNINTG EQU *

1002 01425 010 006513 COV PASS L A L := LSB'S FRUM SHIFT

1003 01426 010 010147 PASS A R A := INTEGER

1004 01427 327 161102 JMP CNDX AL15 ®JS RETNFP WE ARE DONE IF A POSITIVE INTEGER
1005 01430 010 142747 10R 52 FLSE CHECK FDR ROUND NECESSARY
1006 01431 320 021102 JMP CNDX ALZ RETNFP RETURN IF NO BITS HANGING
1007 *

1008 01432 227 106140 READ RTN INC A A ELSE ROUND UP AND RETURN

G-16

PAGE

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1034
1039
1040
1041
1042
1043

PAGE

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

Appendix G

0036 RTE MICRO~ASSEMBLER KEV.A 760818

01433 230
01434 300
01435 300
01436 010
01437 320
01440 342
01441 010
01442 320
01443 342
01444 334
01445 017
01446 017
N1447 007
01450 321
01451 007
01452 327
01453 001
01454 320
01455 019
01456 007
0037 KTE M
01457 010
01460 004
01401 320
01462 327
01463 017
01464 007
01465 320
01466 010
01467 0Q1lu
01470 010
01471 010
01472 012
01473 010
01474 343
01475 003
01476 327
01477 010
01500 030
01501 326
01502 150
01503 243
01504 010
01505 003
01506 321
01507 345
01510 247
01511 335
01512 334
01513 345
01514 014
01515 320
01516 150
01517 150
01520 007
01521 320

036747

012447
071607
042747
062042
001147

010747
062202
001207

022742
143047
145107
145107
062742
143047
162742
142747
062742

043004
147147

x
X
x
x
x
X
x
x

*
FSB
raAD
*

FAD / F S B ~= FLOATING POINT ADD / SUBTRACT

ON ENTRY~=A,B = FIRS{ OPERAND
P = POINTER TO ADDRESS OF SECUND OPERAND
FLAG = 1 MFANS ADD =0 MKANS SUBTRACT

ON EXL1T=- A,B = (FIRST OPERAND) +(=) (SECUND UPERAND)

USES REGISTERS S$1,%2,83,54,55,S5¢

£QU * ITS IHE SAME AS FAD
READ
JSR INDIRECT GU CLEAR INDIKRECTS 1F NECESSARY
JSB (INPACK GO UNPACK THE NUMBERS
PASS 52 15 0P2 = 7
JMP CNDX ALZ RJOS 42 SKIP LF hOT
IMM LOYW sS4 %200 EXP(D) := =200
PASS R IS UP1 = 07
JMP CabX ALZ RIS ¥+2 SKIP 1F ™MOT
Tum LOW SS %5200 EXP(C) = =200
JMP CNDX FLAG DIFR SKIP AHEAD IF DJUING AN ADD
CMPS S2 S2 =~ELSE NEGATE 0P2

CMPS S3 S3
InC 383 S3

JMP CNDX COUT RJS DIFk It NO CARRY OUT, G0 PRNCEED
INC 82 S2 =BUMP MSR’S
JMP CNDX AL15 RJIS DIFR IF POSITIVE, GN PRDCEED
DBLS 52 ~wAS IT 100.,.07
JMP CNDX ALZ RJS OIFR
R1 PASS §2 S2 YES, MAKE IT 010,..0
INC 54 S4 AND ADJUST EXPONENT

ICRU=ASSEMBLER REV.A 760818

046507
151007
024102

163302

141007
141007
063607

042207
053047
006507
044147
137107
051147

116507
040547
172702
036767
010224
163742
042522
010207
044507
006147
064442
176507
110207
173002
064702
1765907
110747
133002

010224
006164
147147
073007

KVRS

%
¥
*

SWAMPC

ALLGN

ADD?2

NUCARY

OFLOw

FIND DIFFERENCE IN EXPUNENTS==SMALLFR EXPUNENT GETS RIGHI=SHIFTED.

PASS L sS4 L = EXP(D)
sup s1 55 51 := EXP(C) =~ EXP(D)
JMP CNDX ALZ ADD2 I¥ 0,G0 DU THE ADLITIUN (NO SHIFT

JMP CNDX AL15 RJS RVRS
WwFE NEED 10 SHIFT THE SECUND WNUMBER,
CMPS S1 S1
INC S1 S1 81 := POSITIVE DIFFERENCE
JMP SwAMPCHK GO CHECK IF ONF OF THEM >> THE OT

SWAP THE NUMBERS«==WwRONG UNE IS IN B,A

PASS B 52 R = 52

PASS S§2 Se

PASS L A

PASS A S3 A = 83

PASL 83

PASS 5S4 S5 S4 = LARGER EXPDNENT

CHECK FOKR ABS(EXP2 = EXP1) > 30 ==IF S0, ADDING WILL DU NOTHING

HK IMM LOw L %347
ADD CNTR S1 == TEST (81 = 3v(B3))
JMP CNDX AL15 rJS TUOBIG BUG UUT EARLY
RPT
AKRS R1 PASS B B ALIGN THE DPERAND FUR ADDING
JMP CNDX CNT8 RJS ALIGN It NOT DONE LUOP
LWF L1 PASS L S2 SET Up 10 ADD THE dI BITS
ENV ADD B B ADD THE HIGH BITS
PASS L S3 PREPARE FJR ADDING [HE LO BITS
ADD A A ALD TdE LO BITS
JHMP CNDX COUT RJS NUCARY TEST THE CARRY OUT ¥RUM THE LO BI
IMM HIGH L %177
ENV INC B B RUMP B (¥ CARRY OQUT OF LU BITS
JMP CNDX OVFL RJS PACK IF NO OQVERFLOwW G PACK IT Up
JMP CNDX FLAG RJS OFLUW IF S1GN POSITIVE HANDLE NDD CASE
TMM HIGH L %177 SET UP L FOR OVF TEST
X0OR B
JMP CNDX ONES PACK IF UNIQUE CASE GO PACK IT UP
Lwf R1 PASS B B FULL WQORD SHIFT USING FLAG FOR SI
LwF R1 PASS A A
INC S4 S4 BUMP THE EXPONENT
JMP PACK GU PACK IT UP

G-17

Appendix G

PAGE 0038 RTE MICRO=ASSEMBLER REV.A 760818

1095 * F M P == FLOATING POINT MULTIPLY

1096 * ————— ceeemses sms== scessc==

1097 ¥ ON ENITRY==A,B = C

1098 * P = POINTER TO ADDRESS OF D

1099 *

1100 * ON EX1T==A,8 = RESULT

1101 *

110§ * USES REGISTERS A,B,S1,52,53,54,85,56

110 *

1104 01522 230 036747 FMP READ

1105 01523 300 012447 Jse INDIRECT GO CLEAR INDIRECTS 1F NECESSARY

1106 01524 300 071607 JSB UNPACK GO UNPACK THE NUMBERS

1107 *

::gg * FURM EXP(C)+EXP(D)+1 IN S4; SAVE AS THE EXPUNENT UF THE RESULT
*

1110 01525 007 150507 INC L S5

1111 01526 003 047147 ADD S4 sS4 S4 = e£XP(C) + EXP(D) + 1

1112 *

1113 * CALCULATE MSB(D)*(LSB(C)/2)

1114 *

1115 01527 010 006164 R1 PASS A A A = LSB(C)/2

1116 01530 010 042507 PASS L s2 L = MSB(D)

1117 01531 300 077047 JSA MPYX MSB(N)*(LSR(C)/2)

1118 01532 010 007207 PASS S5 A S5 = LS4(TFMP)

1119 01533 010 044164 R1 PASS A S3 A = LSR(D)/2

1120 01534 010 011107 PASS S3 B $3 1= MSB(TEMY)

1121 *

1122 * CALCULATE MSB(C)*(LSB(D)/2)

1123 *

1124 01535 010 052507 PASS L S6 L = 158(C)

1125 01536 300 077047 Jss MPYX MSR(C)*(LSB(D)/2)

1126 *

1127 * AVD RESULTS TU [EMri

1128 *

1129 01537 010 006507 PASS L A I. = LSR(RESULT)

1130 01540 003 050747 ADD S5

1131 01541 321 066142 JMP CNUX CUUT RJIS *42 TEST FCR CARRY UUT Adu SKIP

1132 *

1133 01542 007 110207 InC 8 B AUD IN (HE CARKY BIT

1134 01543 010 010507 PASS L) I = MSR(RESULT)

1135 01544 003 045107 ALD 83 33 53 = MSY(RESULT)

1136 ¥

PAGE 0039 RTE MICRO-ASSEMBLER REV,A 760818

1138 * CALCULATE MSB(C)*MSB(D)

1139 *

1140 01545 010 052507 PASS L S6 L = MSB(C)

1141 01546 010 042147 PASS A s2 A = MSBR(D)

1142 01547 300 077047 JSB MPYX MSB(C)*MSB(D)

1143 01550 010 006164 FMPY? R1 PASS A A A := LSB(RESULT)/2

1144 01551 010 044513 COV PASS L s3

1145 01552 243 006162 ENV L1 ADD A A A 3= (LSB(RESULT)/2+TEMP1)*2

1146 01553 327 173002 JMP CNDX AL15 RJS PACK

1147 01554 335 126742 JMP CNDX OVFL FMPY8

1148 01555 000 010207 DEC B B BURROW FROM MSB’S

1149 01556 320 073007 JMP PACK GO PACK IT UP

1150 *

1151 01557 007 110207 FMPYB INC B B CARRY TU MSB'S

1152 01560 320 073007 JMP PACK GO PACK IT UP

G-18

PAGE

1154
1155
1156
1157
1158
1199
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1186t
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194

PAGE

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

0040 RTE MICRU=-ASSEMRLER RFV.A 76(R18

01501
11562
01563

01504
01565
N1566
01507
015179
01571
01572
n1s73
01574
01575
01576
015177
01640
0160t
N1602
01603
01604
01605
01606
N1607
01610

01611
01612

230
300
300

017
320
327
007
900
004
030
300
010
019
321
ungo
000
300
010
010
010
0do
300
017
007

010
300

36747
012447
071607

143253
135542
127402
153054
V46507
151147
010224
075707
001207
010747
170002
010207
030147
15707
001247
V44224
010224
036147
075707
100147
100147

050507
077047

x

*

¥

*

¥

.

*

¥

*

¥

¥ny

*

¥ GET
*
FnLVI1

ON ENTRY==-

FoVv

ON EXIT=-

Appendix G

== FLOATING POINT DIVIUF

A,k
P =

A,B

=C
P01

= R

NTER 10 ADOKESS UF D

ESULT

USES REGISTERS A,8,51,52,53,54,55,56

READ

Jss
JSA
SET

JMP
IMp

ARS
JSH

Jmp

JSB

JSR

cov
CNUX
ChNOX
SOV

K1

CHNDX

r1
R1

0041 RTE MICRU=~ASSEMBLEK RFEV.A 760818

01613
0le14
01615
01616
01617
01620
01621
01622
31623
01624
01625
01626
01627

01630
01631
01632
01633

01v
006
010
327
011
010
327
0no
001
910
003
i
007

070
210
003
320

J11047
036207
052747
171002
130207
V42747
171142
019207
143062
042507
052147
071402
110207

010222
050507
010207
013007

FDLVE]

JMP

JMP

JMP

LGS

JMP

CNDX

CHDX

L)

ChDX

L1

CMPS
OMES
AL1S
INC
DEC
Suh
PASS

PASS
PASS
AL
DEC
ZERO

PASS
PASS
PASS
ZERU

cMPS
INC

PASS

PASS
ZERU
PASS
ALLS

PASS
AL15
DEC
NDBLS
PASS
ADD
COuUT
INC

PASS
PASS
ADD

S6

52
L
54
8

S5

>

INDIRECT
UINPACK

TU FOKM ELARST QUNTIENT QF

S2
OVERFLOwN
“+2
S6
S4
S5

R
DIVX
A

H
x42

So
*+2

82
*+2

Sz

Gu CleEAR INDIRECTS (F NECESSARY
GU UNPACK THE NUMBERS

THE APPROXIMATION (Q0),

So = NOT(MS8(D))
CHECK FUR DIV1IDE oY ZEPRU!

$2 = ApS(MSK(D)); OVF := SIGN
L = EXPD) =)

54 1= EAP(C)=EXP(D); CHTR :
PRESHIFI TO AVOID OVERFLOW

1}
o
2]

S5 1= Qv

FIRST LEFT SHIFT FOR wEXT

B := LSB(U)/4

I 2= QU CUUNTER = ALL OPES

NEGATIVE,
R = ONES
I (=90%02)
NEGATIVE,
Btz 3 + (ALl NDNES)
REORIENT PRODUCT (¥4)

ADD 10 01
IF THERE ~AS A CARRY 0UT,
ADD IT TO THE HIGH BITS.

ADD Q0 TO MSB
GO PACK IT UuP

G-19

Appendix G

PAGF 0042 RTE MICRO~ASSEMBLEK REV,A 760818

1215

F'3
1216 x UNPACK THE NUMBERS: R $= MSR(C) 52 &= MSB(D)
1217 « N
1218 N S5 1= Ei?ﬁci §3 1z LSa(p)
: 55 1= o S4 1= EXP(D)
1219 ¥
:ggg 01634 010 001047 UNPACK PASS S2 TaR 82 := MSB(D)
*x
1222 01635 007 133107 ING S3 . »
1223 01636 230 044647 READ PASS M s3 géAﬂ-T:gn:Lbf OF LSBID) + EXP(D)
1224 01637 344 000507 IMM HIGH L %0 1= on
1225 e L :=0 000 000 011 111 111
01640 010 007247 _
1226 PASS S6 A S6 1= MSK(C)
01641 010 001107 PASS 83 TAB S3 = LSB(D) + EXP(D)
1227 01642 012 045153 :
122 COV AND S4 §3 54 := EXP(D)
28 01643 014 045107 SANL S3 S3 53 := LSB(D)
1229 01644 014 010147 SANL A 8 A 1= LSB(C)
1230 01645 012 011224 R1 AND S5 B $5 1= UNPACKED EXP(C)
1231 01646 321 172442 JMP CNDX ALO RJS *+3 TEST EXP SIGN AND SKIP IF PUSITIV
1232 01647 342 000507 TMM LO¥ L 2200 L 1= 3177600 ITI
1233 01650 003 051207 ADD S5 s§ 55 1z S5 + %177600
1234 01651 010 052207 PASS B S6 B = MSB(C)
1552 alizt S oo B D Es S el
1 141142 RTN CNDX ALO KRJS 'ES
1237 01654 342 000507 L tow o 4200 1h?: §f$7gégN AND EXIT IF POSITIV
:ggg 01655 003 047140 . RTN ADD sS4 sS4 S4 1= 54 + 3177600
PAGE 0043 RTE MICRO=-ASSEMBLER REV.A 760818
1241 * PACK THE NUMBER
1242 *
1243 x IT 1S ASSUMED THAT THE MANTISSA IS UNNORMALIZED AND
1244 * CONTAINED IN THE ACCUMULATORS AND THE EXPONENT IN S4
1245 3
1246 *
1247 01656 010 042207 TODOBIG PASS b 52 ENTER HERE IF SWAMP CHECK IN FAD
1248 01657 010 044147 PASS A s3 LOAD THE ACC WITH THE LARGER NUM
1249 01660 010 006513 pPACK COV PASS L A
1250 01661 010 110747 I0R B A/B = 07
1251 01662 320 035642 JMP CNDX ALZ RETNFP2 ~RETURN IF S0
1252 01663 343 176547 IMM LOW CNTR %377 INIT CNTR FOR 1°S COMP COUNTING
1253 01664 001 110507 NORMLIZ DBLS L R L := LEFT SHIFT B BY ONE BIT
1254 01665 014 110747 XOR R SET UP FOR NORMALIZED TEST
1255 01666 327 133502 JMP CNDX AL15 ADJEXP IF NORMALIZED THEN GO AJUST EXP
1256 01667 010 036767 RPT
1257 01670 106 036762 NRM L1 ZERO NORMALIZE A 32 BIT UPERAND
1258 01671 320 073207 JMP NORMLIZ GO LNOP) o .
1259 01672 007 126507 ADJEXP INC L CNTR L := «(NUMBER OF SHIFTS REQUIRED)
1260 01673 003 047147 ADD sS4 S4 S4 1= CORKECTED EXPUNENT
1261 01674 351 176507 ROUND IMM CMLO L %177 L $= +200
1262 01675 010 010747 PASS R]]
1263 01676 327 174002 JMP CNDX AL1S5 RJS *+2 CHECX S1GN OF B==ADJUST ROUND=0FF
1264 01677 003 036507 ADD L TO 177 (DECREMENT LAICH)
1265 01700 003 006153 COv ADD A A ADD 200 (UR 177 IF PO§I?I!E) ™ L
1266 01701 321 074602 JMP CNDX COUT RJS ADSBXPNT =ANY CAKRY OUT FROM LSB‘S?
1267 * NOTE =- BIT 15 OF THE LATCH MUST (!!) ?Lpﬁ5“¥ ATSgHéS PUINT.
ADD CA 0 MSB’S,
01702 247 110207 ENV INC B B c
:%gg 01703 335 174342 JMP CNDX OVFL RJS ADSBNUOV . CﬂkgTO§UR OVERFLOW
B = ces
1270 01704 010 010224 R1 PASS B v
1271 01705 007 147153 COV INC S4 S4 EXP := EXP + 1
1272 01706 320 074607 JMP) ADSBXPNT
1273 01707 001 110507 ADSBNOOV 2355 L :
1274 01710 014 110747 i
1275 01711 327 134602 JMP CNDX AL15S ADSBXPNT cqﬁcg ;u$ 2‘11...
1276 01712 070 010222 LGS Lt PASS B B RE~NOKMAL1ZE
1277 01713 000 047147 DEC s4 S4

G-20

PAGE

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
12990
1291
1292
1293
1294
1295
1296
1297
1298

PAGE

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

0044 RTE MICRO~ASSEMBLER REV.A 760818

01714 342 000514 ADSBXPNT IMM SOV

01715 004 146747

01716 327 135402 JMP CNDX

01717 003 046747

01720 327 175542 JMP CNuX

01721 150 046762 LWF L1

01722 154 047162 LwF L1

01723 340 000507 THM

01724 012 006507

01725 227 174707 READ

01726 010 010153 Cov

01727 010 146200 KTN
*

01730 006 036207 UNDERFLO

01731 006 036147 RZLRO

01732 227 174700 READ RTHN
*

01733 343 174214 OVERFLO% ImM™M SOV

01734 011 136164 UOVER32K R1

01735 227 174700 RETNKFP2 READ RTN

0045 KTE MICRU-ASSEMBLER REV.A 760818

* MULTIPLY AND
x
x
DIVX FQU
01736 150 010762 LWF L1
01737 327 176242 JMP CNDX
01740 017 110207
01741 017 106147
01742 007 106147
01743 321 076242 JMP CNDX
01744 007 110207
01745 010 042527 READY RPT
01746 124 110222 DIV L1
x
01747 010 010224 K1
01750 334 076542 JMP CNDX
01751 017 110207
01752 007 110207
01753 335 136742 JMP CNDX
01754 374 076742 RTN CNDX
01755 017 106147 COMPLEMT
01756 007 106140 RTN
01757 334 076642 OIVXFTST JMP CNDX
01760 370 036747 RTN
x
01761 010 007007 MPYX
01762 006 036227 RPT
01763 163 010224 MPY K1
01764 010 040747
01765 307 137407 JSB CNDX
01766 362 177402 REN CNDX
01767 010 040507
01770 364 110207 SUBB RTN
X
ORG
01777 320 073007 Jmp

Luw
suB
AL1S
ADD
AL1S
PASS
SANL
LOW
AND

PASS
IOR

ZERU
ZERO
INC

LOw
ONE
INC

L

%200

84
UNDERFLO
54
OVERFLOW
54

54

%370

Appendix G

GET OVF SET FOR FRRUR; L 3=
TEST (EXP + 200)

=1F NEGATIVE, UNDERFLOW
TEST (EXP = 200)

=1F POSITIVE, OVERFLOW

=200

FLAG := EXPONENT SIGN

L ot= %177400

L := LSB’S

START NEXT INSTRUCTINON FETCH

A = MSB'S

B = LSB'S OR EXPOWENT

UNDERFLUW; A,B3=0; OVF := 1

START READ ANDL EXIT

OVERFLOw; A,B := MOST PUSITIVE NU

START READ? EXTT

DIVIDE UTILITIES FOR FLOATING POINT USE ONLY

PASS
AL15
CMPS
CMPS
INC
cour
INC
PASS
SuR

PASS
FLAG
CMPS
INC

OVFL
FLAG
CMPS
INC

FLAG

PASS
ZEROD
ADD
PASS
AL15
L1sS
PASS
SUR

RJIS
L
B

DIVXFTST

A

a
COMPLEMT

S1
SuBB

S1

%1777
PACK

B < 0? FLAG := SIGN

NOUBLE=wORD NEGATE

ADD IN THE CARRY

GeT THE DIVISOR

DU THE DIVIDE STEP 16 TIMES.
=FORM PUSITIVE REMAINDER

ADD UNE

EXTERNAL ENTRY FOR PACK

G-21

Appendix G

PAGE 0046 KTE MICRU-ASSEMBLFR REV.A 760818

1337

1338

1339

1340

1341

1342 02000
1343 02001
1344 02002
1345 02003
1346 02004
1347 02005
1348 02006
1349 02007
1350 02010
1351 02011
1352 02012
1353 02013
1354 02014
1355 0zo015
1356 02016
1357 02017
1358 02020
1359 02021
1360 02022
1361 02023
1362 02024
1363 02025
1364 02026
1365 02027
1366 02030
1367 02031
1368 02032
1369 02033
1370 02034
1371 02035
1372 02036
1373 02037

000

000073
000073
000073
000073
000053
000063
000067
000057
000073
000073
000073
000073
000053
000063
000067
000057
000015
000015
000015
000015
000015
000015
000015
000015
000043
000043
000043
000043
000043
000043
000043
000043

E B R

ORG

ROM JUMP TABLE

DEF

PAGE 0047 RTE MICRO=-ASSEMBLER REV.A 760818

1375 02040
1376 02041
1377 02042
1378 02043
1379 02044
1380 02045
1381 02046
1382 02047
1383 02050
1384 02051
1385 02052
1386 02053
1387 02054
1388 02055
1389 02056
1390 02057
1391 02060
1392 02061
1393 02062
1394 02063
1395 02064
1396 02065
1397 02066
1398 02067
1399 02070
1400 02071
1401 02072
1402 02073
1403 02074
1404 02075
1405 02076
1406 02077
1407 02100
1408 02101
1409 02102
1410 02103
1411 02104
1412 02105
1413 02106
1414 02107

G-22

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0oo0
000
000
000
000
000
0006
000
oo
000
000
000
000
000
000
000
000
000

000051
000051
000051
000051
000051
000051
000051
000051
000040
000040
000040
000040
000040
000040
000040
000040
000026
000026
000026
000026
000026
000026
000026
000026
000030
000030
000030
000030
000030
000030
000030
000030
000017
000017
000017
000017
000017
000017
voo0n17
000017

DEF

20008

XOR

PAGE

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

PAGE

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1407
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

0048 RTE MICRO-ASSEMBLER REV.A 760818

02110
02111
02112
02113
02114
02115
02116
02117
02120
02121
02122
02123
02124
02125
02126
02127
02130
02131
02132
02133
02134
02135
02136
021137
02140
nz141
02142
02143
021414
02145
02146
02147
02150
02151
02152
02153
02154
02155
02156
02157

000
0no
000
000
000
000
000
000

000
000
000
0no
000
(]
000
000
009
000
000
000
000

000017
000017
000017
000017
0Nnon17
000017
000017
000017
V00021
v0yn2i1
000021
000021
uouozl
U00021
000021
000u2t
000021
000021
000021
000021
000021
000021
0N00021
000021
000047
000047
000047
000047
000047
000047
000047
000047
000047
000047
000047
000047
000047
000047
000047
00v047

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DeF
DEF
DEF
DEF
DEF
DEF
DEF
NER
DEF
DEF
DEF
DEF
DEF
DEF
DLF
DEF
DEF
DEF
DEF
DEF
DeF
DEF
DEF
DEF
DEF
DEF

0049 KTE MICRO=ASSKFMBLER REV.A

02160
02161

02162
02163
02164
02165
02166
02167
02170
02171
02172
n2173
n2174
02175
02176
02177
02200
02201
02202
02203
02204
02205
02206
02207
02210
02211
02212
02213
02214
02215
02216
02217
02220
02221
02222
02223
02224
02225
02226
02227

000
000
0no
000
000
000
000
009
000
000
000
000
000
000
000
000
000
000
000
00v
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000135
000135
000135
000135
000135
000135
000135
000135
000135
u00135
000135
000135
000135
000135
000135
000135
000113
000152
000226
000107
0n0077
000077
000077
000077
000120
000130
000103
000107
000077
000077
000077
000077
000002
000002
000002
000002
000002
000002
000002
000002

DEF
DEF
DEF
NEF
DEF
DEF
DEF
OEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

AD¥
AD¥
AD¥
AD¥
Ap¥
AD*
AD*
AD#*
Cp¥
cpx
Cex
Cpe
Cp¥*
Ck*
Cp¥
Cphx
cex
Cpx
Cpx
Cp¥
Cpx
(o 33
Cp*
Cp¥
Lu¥
Lb¥*
Lb¥
LD *
Lo¥*
LD¥
Lp*
Lo*
Lb¥*
LU*
LL¥*
LD*
Lo*
LD*
LD*
LD*

Su¥
ST*
ST*
ST*
ST*
SI*
S1%
ST*
5T
S1*
ST*
ST*
ST*
ST*
ST*
ST*
JTBL1000
DLV
JTRL1010
MAC1
UG
TUG
1UG
106
DLD
DST
MACO
MAC1
106
106
106
106
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND

110
111

112
113
114
115
116
117
120
121

122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151

152
153
154
155
156
157

160
te1
162
163
164
105
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227

ASL,LSL,RRL,MPY
ASR,LSR,RRR

HLT,STF,SFC,SFS
MIA,LIA,QOTA,STC
HLT,CL¥F

MIA,LIA,DTA,STC

HLT,STF,SFC,SFS
MIB,LIR,0TR,CLC
HLT,CLF

MIB,LIR,0TB,CLC

Apppendix G

G-23

Aappendix

PAGE 0050 RTE MICRO-ASSEMBLER REV.A 760818

1498 02230 o000 000041

DEF JSB, 1 230
1499 02231 000 000041 DEF JSB, 1 231
1500 02232 000 000041 PEF JSB, 1 232
1501 02233 000 000041 DEF JSB, 1 233
1502 02234 000 000041 DEF JSB, 1 234
1503 02235 000 000041 DEF JSB,I 235
1504 02236 000 000041 DEF JSB, I 236
1505 02237 000 000041 PEF JSR, I 237
1506 02240 000 000002 DEF MRGIND 240
1507 02241 000 000002 DEF MRGIND 241
1508 02242 000 000002 DEF MRGIND 242
1509 02243 000 000002 DEF MRGIND 243
1510 02244 000 000002 DEF MRGIND 244
1511 02245 000 000002 DEF MRGIND 245
1512 02246 000 009002 DEF MRGIND 246
1513 02247 000 00Mon 5 DEF MRGIND ggg
1514 02250 000 003936 - DEF norl 551
. ’

1515 02251 000 000036 DEF JMP .1 252
1516 02252 000 000036 DEF ’

! DEF JMP, I 253
1517 02253 000 000036 %P, 1 254
1518 02254 000 000036 DEF SQP'I 255
1519 02255 000 000036 DEF Jup 1 256
1520 02256 000 000036 DEF Jup,1 2%¢
1521 02257 000 000036 DEF ARG IND
1522 02260 000 000002 DEF MRGIND
1523 02261 000 000002 DEF MRGIND
1524 02262 000 000002 DEF MRGIND
1525 02263 000 000002 DEF MRGIND
1526 02264 000 000002 DEF MRGIND
1527 02265 000 000002 DEF MRGIND
1528 02266 000 000002 el MRGIND
1529 02267 000 000002 pEF MRGIND
1530 02270 000 000002 ga: MRGIND
1531 02271 000 000002 bgp MRGIND
1532 02272 00U 000002 pEF MKGIND
1533 02273 000 000002 EE MRGIND
1534 02274 000 000002 BEF ARG IND
1535 02275 000 000002 o MRGLND
1536 02276 000 000002 DEF MKGIND
1537 02277 000 000002

G-24

PAGE

1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

PAGE

1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604

0051 RTeE MICRU=-ASSEMBLEK REV.A 760818

02300
02301
02302
02303
02304
02305
02306
02307
02310
02311
02312
02313
02314
02315
02316
02317
02320
02321
02322
02323
02324
02325
02326
02327
02330
02331
02332
02333
02334
02335
02336
02337
02340
02341
02342
02343
02344
02345
02346
02347

0052 RTE MICRU=ASSEMBLER REV.A 760818

02350
02351
02352
02353
02354
02355
02356
02357
02360
02361
02362
02363
02364
02365
02366
02367
02370
02371
02372
02373
02374
02375
02376
02377

000
000
000
000
000
000
000
000
00v
000
000
000
000
000
000
voo
000

000

000
000
000
000
000
000
000
000
000
000
00u
000
000
000
000
000
000
000
000
000
000
000
000
000

END OF PASs 2:

000002
000002
000002
u00002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
u0000L?2
Q000402
000002
v000Y2
000002
000002
000002
000002
0000u2
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002

000002
000002
000002
000002
000002
000002
000002
0090002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002

NO ERRORS

LEF
DEF
NEF
NEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
NeF
DEF
PEF
DEF
DEF
DeF
DEF
DEF
DEF
DEF
DEF
DEF

MRGIND
HRGIND
MKGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGINV
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRG1IND
MRGIND

MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND

Appendix G

G-25

Appendix G

PAGE 0004 RTE MICRO~ASSEMBLER REV.A 760818

0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

PAGE

0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0001
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

G-26

ORG %20000

FEXRRXREEREERE KRR AR RN RX RN RERR R AR R R KRR RN ERR RRR KRR AR RN KR K KRR XX KRR KR XX XX
*
HEMORY EXPANSION UNIT MACRO INSTRUCTIONS ¥
memces mRcsmmces cese ceece accemmccsane *
1976=-09=01-1530
EEXEXRREXEXEXRX R XX XRARXEXRRRFRXREXRRER AR XERRXERKKEXX
x

LR IR BE 3R B R B BE B N J

INDIRECT EQU %251
HORI EQU %006
x

LRSS 22 22 RS 22 R 22 S R 222 R R 22 22 R 0222 R 2 R 2 2)
x

REGISTER ASSIGNMENTS

: P=REGISTER

: MEM CONTROL WORD; MFM ADDRESS REGISTER

: WORDS AND MAP DATA IN LOOP FXECUTION; MASKS AND CONSTANTS
: GENERAL PURPOSE SCRATCH

s
>
o es ee se

*
*
*
x
¥ 55
*
*
x

FEERXRERRERXEEEREARE R RRF KRR RRFRRR SRR R R R R RN R AR E R R R XK KRR KRN AN R KRR KKK

0005 RTE MICRO=-ASSEMBLER REV.,A 760818

20000
20001
20002
20003
20004
20005
20006
20007
20010
20011
20012
20013
20014
20015
20016
20017
20020
20021
20022
20023
20024
20025
20026
20027
20030
20031
20032
20033
20034
20035
20036
200137

324
010
324
324
324
324
324
324
324
324
324
324
324
324
010
010
324
324
324
010
324
324
324
324
010
230
324
324
324
324
324
324

002007
036740
010307
010247
011147
013007
012747
013647
014607
015147
014707
015047
016347
016607
036740
036740
002007
002017
004547
036740
005507
006007
006247
006607
022447
022040
007007
007507
007107
007607
007207
007707

x
x
x
*
x
EERREREERRRERR KRR R RN R RN KRR R R R KR KRR RN KRR K KRR RN KR KRR KRR KRR R A K
* ENTRY JUMP TABLE
KEEEEERRRRRRRR KR KR RRRRR KRR RK KRR R KR KRR R R KRR R RK R RN AR R KRR R R KRR KR RN R KRR KK
x
* MACRO JUMP POINT AND MNEMONIC BINARY COLE
x
JTABL JmMe XMM 1000X011110X0000
KTn 1000x01111000001
JMP MBI 1000X01111000010
JMP MBF 1000X01111000011
JMP MBW 1000X01111000100
JMP Miw [1000X01111000101
JMP MWF 1000X01111000110
JMP MWW 1000X01111000111
JMP SY* 1000X01111001000
JMP us* 1000Xx01111001001
JMP PA¥ 1000x01111001010
JMP PR* 1000Xu1111001011
JMP SSM 1000x01111001100
JMP JRS 1000Xx01111001101
RTN 1000X0u1111001110
KTn 1000%x01111001111¢
JMP XXMM 1000X011110X0000
JMP STFL XM 1000%X01111010001
JMP XM¥ 1000X01111010010
KTN 1000X01111010011
JMP XL¥ 1000X01111010100
JMP XS* 1000X%X01111010101
JmpP XCx* 1000X01111010110
JMP LF* 1000x01111010111
RS* PASS MEU Hri 1000X01111011000
RV¥ READ KTN PASS CAB MEU 1000X01111011901
JMP napP 1000X01111011010
JMP DJS 1000X01111011011
JMP SJP 1U00X¥u1111011100
JMp SJds 1000x01111011101
JMP uJp 1000¥011t1011110
JMP uJs 1000%01111011111

EEERE R R KRR KRR KRR R R AR KRR R R RN R KRR KRR KR KRR A K AR A KRR R R R RA AR AR

PAGE

0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107

PAGE

0109
o110
o111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136

0006 RTE MICRO=-ASSEMBLFR REV.A 760818

L R S 4

x

Appendix G

FEERERRRRER R KRR RN KR RN AR R KRR NN RN R R R R AR KRR KRR N R KRR RN KX R KRR AR R KX

20040 010 033107 XMM PASS 53 4

20041 010 070547 PASS CNTR X

20042 320 005442 JMP CHDX ALZ RINS
20043 342 000507 IuM LOW L %200
20044 234 007147 READ SANL S4 A

20045 347 076507 MM HIGH L 23137
20046 011 047147 SONL S4 s4
20047 016 046447 PASS MEU 54
20050 010 011707 PASS P B

20051 010 070747 PASS X

20052 334 003342 JMP CNLX FLAG Xhs
20053 327 104102 JUP CNDX AL1S READMAP
20054 227 174725 MELOOP1 READ DCNT INC PNM P

*

20055 230 001207 READ PASS S5 TAR
20056 007 106147 INC A A

20057 010 050452 MESP PASS MEU S5
20060 000 071607 DEC X X

20061 320 003242 JUP CNDX ALZ XMM L RIN
20062 324 042602 JMP CNDX CNT4 RJS MELOOP1
20063 335 002602 JMP CNDX NINT MELUOP1
20064 000 045107 XMM.EXIT DEC §3 s3

x
20065 010 074207 XMM.RTN PASS B p
20066 227 144700 P,.RTN READ KTN INC PNM S§3

*

0007 RTE MICRU~-ASSEMBLER REV,A 760818

* P %

'Y

83 := M7 SAVE M

CNTR 3= COUNT

TEST FOR ZERO COUNT

L := 1111111110000000
MASK LOW 7 BITS OF A-REG
1, := 1101111111111111
ADD CUNTRUL RIT (13)

MEM ADDR REG := 54

P := B(TABLE ADDRESS)
SET ALU FLAGS FROM X
TEST FOR XMS INSTRUCTION
TEST FOR NEGATIVE CQUNT

READ NEXT WORD; P = P+l

SS = MAP DATA = DIMMY READ
A = A+l

MAP REG := DATA

X 1= X=1

1f DONE THEW BUG OUT

LUOP FOR 16X

TEST FOR NO INTERRUPT
ELSE SERVICE INTERRUPT

RESET B=REG
P := NEXI INSTRUCTION; STAKRT REA

AR A KRR R R KRR KRR KRR KRR R KRR KRR R R R KRR KRR RN R R RN XK

20067 327 103302 XMS JMP CNDX AL15 P.RTN
20070 230 036747 MELOOP2 READ
20071 007 106147 INC A A
20072 010 010452 MESP PASS MEU B
20073 007 110225 DCNT INC B B
20074 000 071607 DEC X X
20075 320 003302 JMP CNDX ALZ P.RTN
20076 324 043402 JMP CNDX CNT4 RJS MELQOP2
20077 335 003402 JMP CNDX NINY MELOOP?2
20100 000 045107 DEC s3 S3
20101 227 144700 READ RTN INC PNM S3

x

READMAP FQU *
20102 227 174726 HELOOP3 READ ICNT INC PNM P
20103 007 106147 INC A A
20104 010 023212 MESP PASS S5 MEU
20105 210 050036 WRTE MPCK PASS TAB §5
20106 007 171607 INC X X
20107 320 003242 JMP CNDX ALZ XMM RTN
20110 324 044102 JMP CNDX CNT4 RJS MELOOP3
20111 335 004102 JMP CNDX NINT MELUOP3
20112 324 003207 JMP XMMEXTT

TEST FOR X<0 ... NOP

FOR DCPC

A 1= A+l

MAP REG := DATA

B (= B + 1; INC CNTR

X 1=z X=1

IF DONE THEN BUG OUT

LOOP FUR 16X

TEST FOR NO INTERRUPT

RESET P REGISTER FOR RESTART
SERVICE INTERRUPT

P := P+1 = DUMMY READ

A 1= A+l

85 := MAP REG

WRITE DATA INTO TABLE
X t= X=1

IF DONE THEN BUG 0UT
LOOP FDR 16X
TEST FOR NO INTERRUPT
ELSE SERVICE INTERRUPT

G-27

Appendix G

PAGE

0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159

PAGE

0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192

G-28

0008 RTE MICRO-ASSEMBLER REV.A 760818

20113
20114
20115
20116
20117
20120
20121
20122
20123
20124
20125
20126
20127
20130
20131

357
150
321
341
231
334
343
231
010
340
230
010
010
326
230

077147
002762
145002
176507
047147
045142
076507
047147
046447
100547
036765
036747
022452
145242
036740

*
*
*
*
*
LR L R e s el
AM* IMM CMHI S4 %3137 S4 := 0010000000000000
LWF L1 PASS CAB T=BUS := A/B; FLAG := A/B(15)
PA.PB JMP CNDX ALO RJS SY.US TEST FOR PORT.A MAP
IMM LOWw L %177 L = 1111111101111111
READ SONL 54 54 §4 := 0010000010000000
SY.US JMP CNDX FLAG RJS XFER TEST FOR SYSTEM MAP
IMM LOW L %3137 L = 1111111111011111
READ SONL 54 54 54 3= 00100000X0100000
XFER PASS MEU 54 MEM ADDR REG := S4(7-0)
IMM LOW CNTR %40 CNTR := 32
XFERLOUP READ DCNT DUMMY READ
PASS FOR MEB DELETE WITH DUMMY READ
MESP PASS MEU MpgU MEM PORT REG := MEM PROG REG
JMP CNDX CNT8 RJS XFERLUOP IF NOT DONFE THEN LOOP
RTN* READ RTN RETURN

EEE KRR RN R RN R R KRR KKK KKK KR KRR KKK R KRR R RN R R AR KRR K KR KK

0009 RTE MICRO~ASSEFMBLER REV,A 760818

20132
20132
20134
20135
20136
20137

20140
20141
20142
20143
20144

20145
20146
20147
20150
20151
20152
20153

20154
20155
20156
20157

300
010
2217
007
010
230

300
010
210
010
2217

300
010
227
007
234
360
227

344
232
010
010

012447
036752
132747
174707
022447
000040

012447
036752
002035
022447
174700

u12447
002512
132747
174712
100747
V00002
174700

016507
V03147
022447
040440

L IR B 2R 3

'
EEERRRRER RN KRR R R RN R R KRR R AR KR KRR KRR KRR R RN K KRR KRR KKK R KK KR

XL¥ JSH INDIRECT GET OPERAND ADDR FROM [NSTR + 1
MESP SWITCH MAP STATE
READ INC M START CRNSS LUAD START CRuUSS LUAD
INC PNM P FOR NEXI INST READ
PASS MEU MLEU RESET MAP STATE
READ KTn PASS CAp ThAB CATCH THE DATA = START NEXT 1INST
AR KRR KRR RN R R AR KRR R AR KRR KR KRR KRR KRR AR KK KR AR R KRR AR KRR R KR KA
XS¥ JSH INDIRECT GET OPERAND ADDR FRUM INSTR + 1
MESP SWITCH MAP STATE
WRTE MPCK PASS TAbw CASB
PASS MEU MED RESET MAP SIATE

READ RTn INC PNM P START NEXL INST READ = EXIT
L R s e L)

XC¥* JSB INNDIRECT GET OPERAND ADDR FROM INSIR + 1
MESP PASS L CAB L = A/B; SEI ALTERNATE MAP
READ INC l GET KEAL OPERAND
MESP TINC PNM P P = INSTR + 1; KKSET 4ApP
READ XOR TAB CUMPAKE A/B WITH MEMORY
FTN CNDX ALZ RTN=DUN'T SKIP [F EQUAL
READ RTN INRC ¢NM P P i= INSTR %+ 27 RETURN
IR R RS S S R R R S S R R S SR R R R RS S L)
LF* MM HIGH L %007 L := 0000011111111111
READ AND 5S4 CAB 54 := A/R(10=U) REWARE THE READ
PASS WMEU HME) SEND "FENCE"™ DIRFCTIVE
RTn PASS MEU 54 MEM FENCE = 54

IR R R R R R R R R RS RS RS S R R RS RS RS S R R R R R R S R S S S S S RS RS R R R E R R R 2 2

Appendix G

PAGE 0010 RTE MICRO=ASSEMBLEK REV,A 760818

0194 x

0195 x

Q196 *

Q197 *

Q198 *

0199 AR R RN AR R AR R R AR KRR AR KRR R R AR R A AR R KR KRR R KA KN R AR AR KRR KKK KRR AR R AR K
0200 20160 345 001147 0JP IMM H1GH S4 %100 $4 1= Q1000000112110111

0201 20161 324 007247 JmP Je¥

0202 ¥

0203 20162 345 v05147 SJpP 1Mm H1GH $4 %102 S4 := 0100001011111111

0204 20103 324 007247 Jmp JpP*

0205 ¥

0206 20164 345 007147 UJP IMm H1IGH S4 %103 $4 := 01u0001111111111

0207 20165 230 036747 JP* READ

0208 20166 300 012477 JSA 1OFF INDIRECT GET OPERAND ADDR FRUM INSTR + 1
0209 20167 010 046447 JUMFSTAT PASS HMEU S84 MEM STATUS IS SET HERE

0210 20170 227 133736 REALD MPCK INC P M CHFECK TARGET ; START INST READ
0211 20171 010 036740 RTHN KETURN

0212 R R R R R A KRR RN R AR AR KRR R R R AR KRR R R KK R KRR R KRR KR KRR KA KRR KRR A KR AR R A R KK
0213 20172 345 001147 JS IM™M HIGH S$4 %100 54 = ©v1000UNO1I1111111

0214 20173 324 007747 Jup JS*

0215 ¥

0216 20174 345 005147 SJS iMM HIGH S4 %102 5S4 := 0100001011111111

0217 20175 324 007747 JMP JS*

0218 ¥

0219 20176 345 007147 UJSs ImM HIGH 5S4 %103 S¢ = 0100001111111111

0220 20177 230 036747 JS* READ

0221 20200 300 012477 JSK 10FF INDIRECT GET CPERAND ADDR FRUM INSTR + 1
0222 20201 010 046447 PASS MEU sS4 MEM STATUS IS SET HERE

07223 26202 210 074036 WRTK MPCK PASS TAB P WRITE RETURN ADDR Al TARGET
V224 20203 007 133707 INC P i P = TARGET ADDRESS

0225 20204 227 174700 JS*EXIT READ RTwn INC PNM P P t= TARGET + 1

0226 EEEEE KRR R R R R R A KRR R KRR R R KRR R R KR KRR R R KRR AR AR K R KA R KRR AR KK R R A K £ X

G-29

Appendix G

PAGE 0011 KTE MICRU=ASSEMBLER REV.A 760818

0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279

G-30

20205
20206
20207
20210
20211
20212
20213
20214
20215
20216
20217
20220
20221
20222

20223
20224
20225
20226
20227
20230
20231
20232
20233

20234
20235
20236
20237
20240
20241
20242
20243
20244

20245
20246
20247
20250
20251

20252
20253
20254
20255
20256

344
304
304
010
320
334
230
010
321
344
230
010
014
324

344
304
304
010
320
334
230
010
014

230
010
012
010
210
007
010
007
227

150
010
227
010
370

010
010
010
150
370

000512
012507
013197
070747
052242
052302
036747
026752
110742
000512
006647
006162
001152
011607

000512
012507
013747
070752
052242
052302
006647
006162
001147

010647
010222
000507
147147
040036
106147
022447
110207
144700

071622
022447
144707
006162
010222

033116
006164
010224
071624
070747

L3R K 2% 3

x
AEREERR XA R RN RN AR R RN AR R AR KRR KR R KRR R KR KRR KRR KRR KK

MBEF IMM MESP HIGH L %000 L 3= 00000000111111t11;8ET ALT MA
MH L JSAR BYTEADJ ADJUST FOR FULL WORD PROCESSING
JSB X.LOOP=1 MUVE BYTES IN PAIRS
PASS X ALU FLAGS := X CONDITIONS

JMP CNDX ALZ RJS B.RESET TEST FOR INTERRUPTED MOVE
JMP CNDX FLAG RJS B.RESET+1 TEST FOR NO ODD BYTE

READ NDUMMY READ FOR DCPC
MESP PASS CNTK ALO := 1R(0):; SET ALTERNATE MAP
JMP CNDX ALO x+2 TEST FOR MBF INSTRUCTION
IMM MESP HIGH L %000 L = 0000000011111111;SEL ALT MA
READ PASS M A M := SUURCE ADDRESS
L1 PASS A A FURM BYTE ADDRESS IN A
MESP SANL 54 TAB S§4 := AAARAAAAAOQQ0Q0000
JMP MB ¥
EEERRERRXR RN R R AR E R R R R R KRR AR R R KRR RN R AR KRR R R R KRR E AR KR RR N KK
MBw IMM MESP HIGH L %000 SET THE OPPOSITE MAP L := BYTE MA
JSB BYTEADJ ADJUST FOR FULLWURD PROCFSSING
JSB W.,LO0OP~-1 MUVE BYTES IN PAIRS
MESP PASS X ALU = X? SELECT ALTEKNATE MAP

JMP CNDX ALZ RJS B.RESET TEST FDR INTERRUPTED MOVE
JMP CNDX FLAG RJS B.RESET+1 TEST FOR NO NDD BYTE

READ PASS M A M := SUURCE ADDRESS
L1 PASS A A FORM BYTF ADDRESS IN A
SANL S4 TAB S4 = AAAAAAAAQ0000000
*
MB X READ PASS M B M := DESTINATIUN ADDRESS
L1 PASS B B FORM BYTE ADNDRESS IN B
AND L TAB L := 00000000BBBBBBBB
IOR 354 54 S4 := AAAAAAAABBBBBBBB
WRTE MPCK PASS TAB S4 WRITE DATA INTO DESTINATION
INC A A A = A+ 1
PASS MEU MEU RESET SELECTED MAP
INC B B B =B +1

READ RTN INC PNM S3
EEERRER R RN E R R R AR KRR R R R AR R R R AR AR RN R R RN RN R ER RN R R AR

B.RESET LwF L1 PASS X X RESET X IN BYTES
PASS MEU MEU RESET SELECTED MAP
READ INC PNM S3 EXIT
L1 PASS A A RESET A FOR EVEN BYTE ADDRESS
RTN L1 PASS B B RESET B FOR EVEN BYTE ADDRESS

ERRKERRRERRRRRER KRR R R E R R R RE KRR R R ERRR R KRR AR RN KRR AR RN E RN KKK

BYTEADJ CLFL PASS 83 M SAVE M FOR NEXT INST FETCH
R1 PASS A A A = SOURCE WORD ADDRESS
R1 PASS B B B DESTINATION WORD ADDRESS
LWF Rl PASS X X X := WORD COUNT. FLAG := ODD BYTE
RTN PASS X SET ALU FLAGS FOR TESTING X

Appendix G

PAGE 0012 RTE MICROU=ASSEMBLER REV.A 760818

0281 *

0282 *

0283 *

0284 *

0285 *

0286 EREERRERRER R R R R R R R R R R RN R R R RN R R E KRR R RN RR R R R R R KRR KRR RN R KRR R KR KK
0287 20257 010 036752 MWF MESP FLIP THE MAP SO IT WILL COME O0OUT
0288 20260 010 033107 MWI PASS S3 M SAVE M FOR NEXT INST

0289 20261 010 070747 PASS X ALU FLAGS := X CONDITIONS

0290 20262 320 014502 JMP CNDX ALZ Mw ¥ TEST FOR X=0

0291 20263 230 006647 X.LOOP READ PASS ™ A READ SOURCE WORD

0292 20264 007 106147 INC A A INCR. SOURCE ADDR.; SWITCH MAPS
0293 20265 007 110652 MESP INC M R M.P. CHECK,M $= DEST ADDR

0294 20266 010 001147 PASS 5S4 TAB 5S4 := DATA

0295 20267 210 046036 WRTE MPCK PASS TAB 54 WRITFE DATA INTO DESTINATION

0296 20270 007 110207 INC B B INCREMENT DESTINATION ADDRESS
0297 20271 000 071612 MESP DEC X X DECREMENT COUNT; SWITCH MAPS
0298 20272 320 014502 JMP CNDX ALZ Min ¥ TEST LF MOVE COMPLETE

0299 20273 335 013142 JMP CNDX NINT X.LOOP TEST FOR NO INTERRUPT

0300 20274 324 014447 JMP MWINT

0301 EERERRRRRRRRRRRRRRRR RN RN RR AR RN KRR AR KRR RN R R RN R RN R RN R KRR KRR KRR RN RN K ¥
0302 20275 010 033107 MWW PASS S3 M SAVE M FOR NEXT INST FETCH

0303 20276 010 070752 MESP PASS X SET ALTERNATE MAP; T=BUS := X
0304 20277 320 014502 JMP CNDX ALZ MW ¥ TEST FOR X=0

0305 20300 230 006647 wW.LOOP READ PASS M A READ SOUPCE WORD

0306 20301 007 106147 INC A A INCREMFENT SOURCE ADDRESS

0307 20302 010 001147 PASS sS4 TAB S4 1= DATA

0308 20303 010 010647 PASS M B M,P.CHECK; M := DEST ADDRESS
0309 20304 210 046036 WRTE MPCK PASS TAB 54 WRITE NDATA INTQO DESIINATIUN
0310 20305 007 110207 INC B B INCRFMENT DESTINATION ADDRESS
0311 20306 000 071607 DEC X X DECREMENT COUNT

0312 20307 320 014502 JMP CNDX ALZ M X TEST 1F MOVE CNMPLETE

0313 20310 335 014002 JMP CNDX NINT w,LOoP TEST FOR NO INTERRUPT

0314 20311 000 045107 WWINT DEC S3 S3 SET P CUUNTER FOR INTLRUPT EXIT
0315 20312 010 022447 MW¥ PASS MEU MEU RESET SELECTED mAP; RETURN

0316 20313 227 144700 READ RTN INC PNM 83 START INST FETCH: EXIT

0317 EERERKRERRN KRR R RNE KRR E KRR R KRR R R KR KRR R KRR RN K F KRR R KRR R R AR R E RN AR KRR K
PAGE 0013 RTE MICRO=-ASSEMBLER REV,A 76081R

0319 *

0320 ¥

0321 ¥

0322 x

0323 *

0324 AFERERERRE RN R RN R RN RN R R R R KRR R R KRR R R R AR RN RN KRR AR KRR AR R AR RN KR XK
0325 20314 357 077147 SY* IMM CMH1 54 %337 S4 1= 00100092000000000

0326 20315 324 015307 JMP 4APMOVE

0327 EERRERRRRRRRRRRNERRR RN R R RN RN E R KRR R R RN KRR RN KRR RN R R KRR KRR R RN KRR RN KX
0328 20316 355 175164 PpPAx IMM R1 CMHI S4 %176 S4 := 0100000010000000

0329 20317 010 047164 R1 PASS S4 S4 S4 := 0010000001000000

0330 20320 324 015307 JMP MAPMOVE

0331 AEREREERRE R R R KRR R RN RN R AR R E R R AR R R RN R R R R KRR KRR RN R R R R RN R R KA KKK
0332 20321 342 077147 PB* IMM LOW S4 %237 S4 = 1111111110011111

0333 20322 324 015207 Jup US*+1 L o= 1101111111111111

0334 * S4 := 0010000001100000

0335 EEEERR R R RN R R KRR R RN R R R R R KRR R R AR R RN R RN RN RN R R R AR R R R RN KKK %
0336 20323 343 077147 UsS* MM LOW 5S4 %337 $4 = 11111111119011111

0337 20324 347 076507 MM HIGH L %317 L = 1101111111111111

0338 20325 014 147147 XOR 5S4 54 S4 := 0010000000100000

0339 20326 230 033107 HMAPMUVE READ PASS S3 M S$3 := M = DUMMY READ

0340 20327 010 046447 PASS MEU S4 MEM ADDR REG := 5S4

0341 20330 340 100547 IMM LOW CNTR 32 t= 32

0342 20331 010 003707 PASS P CAB P := A/B

0343 20332 327 116042 JMP CNDX AL1S MELUOPS AL15=1 => READ MAPS

0344 *

0345 20333 227 174725 MELOUP4 READ DCNT INC PNM P READ WEXT WORD:? P = P + 1

0346 20334 230 001207 READ PASS S5 TAB S5 = MAP DATA = DUMMY READ

0347 20335 010 074047 PASS CAB P AOR B 1= P

0348 20336 010 050452 MESP PASS MEU S5 MAP REG := DATFA

0349 20337 326 155542 JMP CNDX CNT8 RJS HMELOOP4 LUOP FOR 32X

0350 20340 227 144700 READ RTN INC PHM S3 P = INSTR + 1

0351 *

0352 20341 227 174725 HMELOOPS READ DCNT INC PNM P DEC CNTR P = P + 1 =DUMMY READ
0353 20342 010 074047 PASS CAH8 P AOrR B 1= P

0354 20343 010 023212 MESP PASS SH HeU S5 $= MAP DATA

0355 20344 210 050036 WRTE MPCK PASS TAB S5 WRITE DATA INTO TABLE

0356 20345 326 156042 JMP CNpX CNT8 RJS MELGOPS LOOP FOR 32X

0357 20346 227 144700 READ RTN INC PNM S3 P t= INSTR + 1

0358 EEEERERRERRERRR RN R KRR RN R R AR KRR KRR KRR R R R RN KRR KRR RN R R KRR KKK

G-31

Appendix G

PAGF.

0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391

0014 RTE MICRU~ASSEMBLFR REV,A 760818

20347
20350
20351
20352
20353

20354
20355
20356
20357
20360
20361
20362
20363
20364
20365
20366
20367
20370
20371
20372
20373
20374
20375

300
010
010
210
324

300
150
345
220
340
230
327
326
230
323
320
334
345
230
327
345
232
324

END OF PASS 2:

G-32

012447
022447
023007
040036
010207

012477
001222
007147
074707
006543
000665
157342
157042
036747
157002
000307
017442
003147
050747
1071342
004507
047147
007347

NQ ERRORS

L IR BB}

x

AR S RS RSS2 S 2 R R R S R R R R e R S R RS

GET OPERAND ADDR FRUM INSTR + 1
SEND "STATUS" DIRECTIVE
WRITF STATUS WORD INTO MEMORY

EXEXEXEER RN RN KRR RN R RN AR X RN RN RN R XK R R XXX KRN XK R XK KKK KRN KK

SSM JSB INDIRECT
PASS MFU MEU
PASS S1 MEU
WRTE MPCK PASS TAB S1
JMP JS*EXIT
JRS JSB 10FF INDIRECT
LWF L1 PASS S5 TAB
IMM HIGH 5S4 %103
READ DEC PNM P
OPGET IMM 10N LOW CNTR 003B
READ DCNT PASS M TAB
JMP CNDX AL15 RJS ON,OFF
JMP CNDX CNT8 RJS *=2
READ
JMP CNDX HOI RJS NPGET
JMpP HORI
UNJOFF JMP CNDX FLAG SY.USKR
IMM HIGH 54 %101
SY.USR READ PASS 85
JMP CNDX ALLS JMPSTAT
IMM HIGH u %102
READ AND S4 54
JMP JMPSTAT

GET OPERAND ADDR FROM INSTR + 1
FLAG := STAT(15): S5(1%) := STAT(
54 := 0100001111111111

SET M FOR SECOND OPERAND;SET P FO
SET COUNTER FOR ™MAXIMUM INDIRECTS
M = T/A/B; DECREMENT INDIRECT CN
TEST FOR MORE INDIRECT LEVELS
CONTINUE IF IND, LEVEL <= 3

TEST FOR HALT OR INTERRUPT

INTERRUPT IS PFENDING

TEST IF MEM WAS 0N

IF OFF, 54 := 0100000111111111

AL1S := STAT(14) =DUMMY READ

TEST STAT(14) FuUR USER SELECTED

IF 8YS, L := 0100001011111111
THEN 54 := 010000X011111111

SET STATUS UF MEM; ALSO SET P

LR R s R R e e R R e R R R e s R

END

Appendix H
FUNCTIONAL BLOCK DIAGRAM N

Appendix H

DASHED LINES

— -
16 S-BUS
Z @
8 (UPPER BITS) 8 (LOWER BITS) 8 A
R - COUNT
INSTRUCTION H
REGISTER T i
[: UP/DOWN |
{ | COUNTER [LOADER .
, ADDRESSES _
l COUNTER
—_—— e - —_— e FERO
4/”16
_LOWER 4 BITS
COUNTER
ALL 8 BITS ZERO
SEQUENTIAL
— ADDRESSING
ADDRESSING
MODIFICATION
ya MICROJUM? JUMP
LOGIC TABLES (ROM}
(ADDRESSING)] 8
CONTROL
3 0R RTN ADDRESS) MEMORY
ADDRESS
IFICATION (JUMPS)
IMMEDIATE DATA ,3 J)
WA
595 \1 BITS 14-10
|
S-BUS/SENSE 1
CONTROL
- - PROCESSOR
NOTES:
Y
ON ENABLE TO SEE TABLES OF 1. DENOTES PROGRAM FLAGS
S-BUS OR BRANCH OR FLIP-FLOPS
-ORDER
SENSE MICRO-OR S
2. ACCESSORIES SHOWN N LIGHT

HP 21MX E-Series Computer
Functional Block Diagram

(Sheet 1 of 2)
H-1/H-2

S-BUS

ND {/O TYPE

THRU 9 AND 11

BASIC
TIMING
CIRCUITS

VARIABLE
TIMING
CONTROL

TIMING CONDITION j

DETERMINATION

RUN
MODE

SHORT OR LONG

RUN
ENABLE

~———> MICROCYCLE TIMING

IRUPT
ION 00006
CONTROL -«
MEMORY
ADDRESS
REGISTER
CONTROL <":
MEMORY
ADDRESSES
I 7 =
| SAVE (JSB)
| F—————" ADDRESS
3y b——_ THREE LEVEL Jst
== l I rirMwaARE | CONTROL SAVESTACK [
- N | ACCESSORY | MEMORY
- L | BOARD (BASE SET)
| ! L
I I PLIN MICRO- ADDRESS MOD
N 24 MICRO- IE—
o L__\ N N/ _ _INSTRUCTIONS INSTRUCTION
- --— REGISTER
24
MICROINSTRUCTION WORD
FIELD DECODERS P,
ﬂans 23-20 {anm (BITS19-15 \BIT
ALU/MODIFIER/
OPERATION SPECIAL CONDITION STORE
1/0 SECTION e —— e ————— —— ——] _
LI} L] L =]
Y Y Y Y
OPERATION SPECIAL OR JUMP ALU FUNCTION DESTINATI
MODIFIED OR BRANCH
FROM DCPC CONDITION

D
IMORY PROTECT

7115-21

S-BUS 16

(7/
(7
16
/I/;e
1/0 SKIP
CONDITION i
CENTRAL
INTERRUPT 1/0 BUS
REGISTER (CONTROL
A INTERRUPT
FLAG ENABLE
A A
INTERRUPT
FLAG
ADDRESS BUS } ¢ SELECT CODES A
INSTRUCTION BITS 6
| ||
HALT OR INTE
L 6 FORCE TO LOCAT
| 1/0 CONTROL ’
| AND | INTERRUPT s
SELECT LOGIC | CONTROL |
- 3o 16| @ ——————
! 0
I ' | WRITABLE
I CONTROL
I [! STORE
»| (1K EACH CAR!
1/0 SIGNALS AND ' ! AR
DEVICE SELECT CODES | | L e—
TN | INTERRUPT ' -
1/0 | REQUESTS I | USER
SLOTS S~ = — —— ————— \ | AND I CONTROL
¢ i | | ACKNOWLEDGEMENTS | | STORE
S | | [| (2K EACH CAR
r - | | l , | L
I |< ’\\ ——————————————— - =
] \
I | | | 1 | \
1/0
I lINTERFACES | | I___|________|_____________|__\ |
| | (CARDS) | | | | i [v
I | 16 | I | I [
: [1/0 BUS
K 2N
7 1
| | : | . " I [
4\ l I /’\\ | I |
I | | | ¢ = I I
I | | I | [
| | | ! I | I
| | | | I I o
| | ' | : : | I
I [[
| A 4 | A
! oy ' VAR
Yy 1 _ -—Y _____yYy _ _ |
r . o L 10 0
1 ~——
: PERIPHERALS | _J 1/0 EXTENDER |__,/ '\ TC
| | I | ~ Al
Mi
e — — - - -

7115-21

Appendix H

S-BUS
]
/ \
Hi
|
|l
VIOLATION | |
CHECK | |
f
MEMORY PROTECTION CONTROL o |l
N I
I I
: I
| Ly
| I
M-BUS] [
I {1
~) i
| | I | I
I | 11
MEMORY | [[I
ADDRESS| | I Ll
___________________________ I [Il
N (1 I i
| 1 | bl
| Il Ol
| I [
—_—— || | Il
| I | I
| 1 [It
- | dh 1 db
|\ r v__Y__\N/ 1
| —— |
| READ/WRITE |
INHIBIT | MEMORY PROTECT |
paRITY | 22000 e ———
—>»{ GENERATION | |
AND CHECKING L N
MEMORY
READ/WRITE
CONTROLLER
ONS -
1
i
MAIN MEMORY SECTION
—-—
NOTES:
1. DENOTES PROGRAM FLAGS OR FLIP-FLOPS

2. ACCESSORIES SHOWN IN LIGHT DASHED LINES

HP 21MX E-Series Computer
Functional Block Diagram
(Sheet 2 of 2)

H-3/H-4

S-BUS

o £y T8 M
L1 16 I I paTA
} | TRANSFERS
db
RN V S —
r 1
PERATOR o . __ .~ 1 DuALcHANNEL |
ANEL SECTIONC —Z7”7 PORT N Y N I
CONTROL Y 7V | CONTROLLER |
WV L 1
| | MEMORY
ADDRESS
DISPLAY M-BUS
REGISTER :
/f 16
[15 H
I N M _ {z[_ _
{— 1
| MEMORY |,
DISPLAY | E)fnpé\ggll_%N l
INDICATORS K~ | MEMORY
AND SWITCHES L] DATA
_\ ,/’20
Y -
-ny» S
! \/ \/
l MEMORY
ADDRESS T-REGISTER |«
M-BUS REGISTER
1
| -
20-BIT INSTRUCT!
PHYSICAL AND
ADDRESS DATA
y MAIN
") {SEMICONDUCTOR MEMORY MODULES)
- e
s
—_—

MICROPROGRAMMABLE
PROCESSOR PORT

7115-22

ARITHMETIC/LOGIC SECTION
S-BUS

N
[}

S1 THRU S11
=SCRATCH
REGISTERS

SP = STACK
POINTER
REGISTER

X AND Y =INDEX
REGISTERS

P =PROGRAM
COUNTER
REGISTER
(P-REGISTER)

S = S-REGISTER

s10

$11

SP

S

]

S2

S3

S4

A-REGISTER - B-REGISTER S5
S6

P al 16 S7

S8

2 so

IO

RAM REGISTERS 16 BITS EACH

J 1[5 M-BUS

MEMORY ADDRESS SELECTION

$-BUS
’ ALU ALU CONDITIONAL ALy /\
BITO SET ZERO TEST
16 I
H > ST BIT 15 SET
ALU
ALU
CARRY ONES
ouTt
EXTEND
REGISTER CcPU
FLAG
A
= |
ROTATE/
ALU 6 ALY SHIFTER
OUTPUT, 16 T-BUS
) 7
L1 16
SECOND
OPERAND
\
OVERFLOW Lo SET
REGISTER
4/'15
(L156 SET v
/’16
_""] L-REGISTER K ": , M-REGISTER |}
N 4, BITSOTHRU3
7
L N

o

WORDS | WORDS
[

STANDARD
LOADERS

\ | OPTIONAL

|
|
|
|
|
1
I
I
|
1
|
|
o
| |
LOADERS |—i
-

REMOTE PROGRAM
LOAD

CONFIGURATION /

I SWITCHES

S-BU

MPP CONTROL
AND
RESPONSE

INDEX

This index provides an alphabetically arranged list of subjects for the entire manual. The subjects are referenced by
paragraph numbers.

A E
Abbreviations, Appendix A Environment, 3-1
Address Field, 8-17 END Pseudo-Microinstruction, 8-22
ALGN Psuedo-Microinstruction, 8-21 EQU Pseudo-Microinstruction, 8-23
Analysis Method, 1-2 Error Messages, 9-10, 10-17, 12-5
Arithmetic/Logic Operations, 5-9 Execution, 2-17
Arithmetic/Logic Section, 2-3 Examples, Section 14

Assembler Interface Program, 14-3, 14-4
Assembler Procedure, 6-8

F
B Fetching, 2-16
Fields, 8-4

Base Set Listing, Appendix G Freeze, 5-6]
Base Set, Operation, 2-14 FTCH Micro-Order, 7-14, Appendix C
Binary structures, 4-1, Appendix C
Block Diagram, Appendix H G
Block I/O Address/Data Burst Input, 13-3
Block I/O Byte Packing Burst Input, 13-2
Block I/O Data Transfers, 13-1 geperﬁl Ta};e F“;n.l;?t’ 1112'2(1 7.34
Block I/O Word Burst Output, 13-14 uidelines for Writing Loaders, 7-
Branches, Control Memory, 5-10

H

C HP 21MX E-Series Microinstructions, 8-14
Calling Microprograms from FORTRAN, 6-15
CM/Main Memory Linkage, 6-10 I
CNTR Micro-Order, 7-11
Comment Field, 8-18 IAK Considerations, 7-19
Computer Functions, 2-1, 2-10 INCI Considerations, 7-16
Conditional and Invalid Operations, 7-5 Indirect Reference Resolution, 6-9
Considerations, Section 7 Initialize Phase, 12-2
Control Memory, 2-3 Input/Output Section, 2-5
Map, 2-13 Interrupt Handling, 7-29
Mapping Method, 6-1 I/O Instructions, Microprogrammed, 7-30

Control Processor Block Diagram, 2-2 Control, 7-25
Control Processor, 2-2, 2-15 Input, 7-27

Controllable Functions, 2-1 Micro-Order Summary, 7-32

Operations, 5-11
Output, 7-26

D Signal Generation, 7-24
I/O Special Techniques, 7-31
Definitions and Timing Points, 2-11 IOFF Considerations, 7-20
DEF Pseudo-Microinstruction, 8-24 IOG Considerations, 7-18
DMS Considerations, 7-33 IRCM Considerations, 7-15

DMS Listing, Appendix G
Driver DVR36, 3-7

Dual Channel Port Controller, 2-9, 7-21 L
DVR36 and WLOAD Use Summary, 11-1
Dynamic Mapping System, 2-8 Label Field, 8-15

Index

M

Magnitude Tests, 7-12
Main Memory Operations, 5-12
Main Memory Procedures, 6-11
Main Memory Section, 2-4
Main Memory/Control Memory Linkage, 6-7
Manual/Software Reference, Preface, 3-2,
Mapping Details, 6-1, Appendix C
MDE Calling, 10-19

Commands, 10-2

Messages, 10-17

Operator Command Syntax, 10-1

Restrictions, 10-18

Scheduling, 10-1, 10-13

Sequence of Operations, 10-19
Memory Protect Considerations, 7-13
Memory Protect, 2-7
Memory Protection Relation to I/O, 7-28
Microinstruction, 4-1

Formats, Appendix B
Micro-Order Comparison Summary, Appendix F
Micro-Order Definitions, 4-7
Micro-Orders, 8-16
Microassembler, 8-1, 9-1

Cross-Reference Generator, 3-5

Formats, 4-2

$CODE Command, 8-10

$LIST and $NOLIST Commands, 8-12

$PAGE Command, 8-11

$PUNCH and $NOPUNCH, 8-13

Assembly Command MIC, 8-9

Binary Object Code, 9-4

Control Commands, 8-8

Description, 8-6

Error Messages, 9-10

Execution command, 9-2

Informative Messages, 9-9

Listing Output, 9-5

Messages, 9-8

Qutput, 9-3

Planning and Preparation, 8-1

Preliminary Information, 8-3

Rules, 8-7

Symbol Table Output, 9-6

Using Cross Reference Generator, 9-7
Microcycle Estimating Flowchart, 5-7
Microinstruction Binary Structures, 4-1
Microinstruction Formats, Appendix B
Microprogram Entry, 8-5
Microprogrammable Processor Port, 13-5
Microprogrammed I/O Operation, 14-10

1/0, 7-22

Solution, 14-16

Sort, 14-25
Microprogramming Accessories, 2-18

Concept, 1-1

Execution, 1-4

Form, Appendix D

Hardware, 3-2, 12-6

Overview, 1-1

Process, 1-3

1.2

Related Products, 1-5
Support Software, 3-3
Techniques, 7-6
MIC Pseudo-Instruction, 6-12
MIC Use Example, 6-14
Modified Privileged Driver, 14-4
Module Selection, Appendix C
MPCK Use, 7-4
MPP Hardware Interface, 13-6
MPP Microprogram, 13-7
MPP Signal Summary, 13-6

0]

Object Microcode, Appendix B

Object Tape Formats, Appendix E

ONES and ZERO Pseudo-Microinstructions, 8-25
Operational Overview, 2-15

Operator Panel, 2-6

ORG Psuedo-Microinstruction, 8-20

Overall Block Diagram, 2-3, Appendix H
Overall Timing, 5-7

Overflow, 7-9

P

Parameter Accessing, 6-9
Parameter Assignment Example, 6-13
Parameter Passing, 6-8

Pause, 5-5

P-Interval, 5-2, 5-5

Planning, 8-2

Preparatory Steps, 3-1, 3-10
pROM Hardware, 12-6

pROM Tape Generator, 3-9, 12-1
Pseudo-Microinstructions, 8-19
Punch Phase, 12-3

R

Read Operation Examples, 5-13, 7-2
Read and Write Considerations, 7-1
Reserved UIG Codes, 6-4

RTE Microassembler, 3-4, Sections 8, 9
RTE Microdebug Editor, 3-6, Section 10

S

Sample Privileged Driver, 14-4

Shell Sort Assembler Program, 14-3

Shell Sort Example, 14-3

Short/Long Microcycles, 5-4

Software Entry Point Assignments, 6-2
Special Use Micro-Orders, Appendix C
Specialized Microprogramming, Appendix C

Summary 1-6, 2-19, 4-8, 5-15, 6-16, 7-35, 8-26, 13-8

Synchronizing with /O, 7-23

T

Test Program, 14-3
Timing Calculations, 5-8
Timing Definitions, 5-2
Timing Variables, 5-3
Timing, 5-1

T-Period, 5-2, 5-6

U

UIG Codes, 6-3, 6-5

UIG Decoding, Appendix C

Use of PNM, 7-10

Use of SRG1 and SRG2, 7-7

User Area UIG Codes, 6-5

User Instruction Group, 6-3

User’s Area Mapping Example, 6-6
Using T1AK, 7-19

Using INCI, 7-16

Using IRCM, 7-15

Using MPCK, 7-17
Using the ASG Micro-Order, 7-8

v

Index

Variable Microcycles with Pause Conditions, 5-8

Vendor Default Formats, 12-1
Verify Phase, 12-4

w

WCS Hardware, 11-1

WCS Software, 11-2

WCS Support Software, 11-1
WLOAD, 3-8, Section 11

Word Type I, 4-3

Word Type II, 4-4

Word Type 111, 4-5

Word Type 1V, 4-6

Write Operation Examples, 5-14, 7-3

1-3/1-4

