e

HP 1000 E-Series and F-Series

Computer Microprogramming
Reference Manual

ll

HEWLETT ﬁ PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed: July 1978
Printed in U.S.A.

Library Index Number
2MICRO0.320.02109-90004

PART NO. 02109-90004

LIST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the outer margin of the page. Original pages do not include a change number and are indicated as change
number 0 on this page. Insert latest changed pages and destroy superseded pages.

Change 0 (Original) July 1978

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
TIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

PREFACE

Are you looking for a better way to accomplish your applications program tasks? Have you
used all the programming methods you can think of to make your library subroutines run as
efficiently as possible in your Real Time Executive (RTE) Operating System environment?
Maybe its time to look into microprogramming.

Primarily, microprogramming is the use of a discrete language to effect control of a specific
computer at the closest possible level without hardware redesign so that you may have the
advantage of executing selected main memory programs at the fastest possible rate available
in the computer. Some other purposes for microprogramming that may be of interest to you are
mentioned in section 1 of this manual.

This manual consists of four parts and eight appendixes that will provide you with the
information necessary to prepare and integrate your microprograms into HP 1000 E-Series or
F-Series Computers, then execute them when desired. You will find subjects organized as
follows:

Part I - Why Microprogramming?

® Program analysis.

® An overview of microprogramming.

® Microprogrammable functions of HP 1000 E-Series and F-Series Computers.

Part II - Microprogramming Methods.
® Microinstruction formats, definitions, and timing.
® Gaining access to your microprogramming area.

o How to prepare microprograms.

Part III Microprogramming Support Software and Hardware.
® How to microassemble and load object microprograms.
e Using microprogramming support software such as the:

— Microdebug Editor (MDE).

= Writable Control Store (WCS) I/O Utility Routine (WLOAD) and WCS Real Time
Executive (RTE) Driver DVR36.

— Programmable Read-Only-Memory (pROM) Tape Generator.
® Using pROM hardware facilities.

® Using extra features of the E-Series and F-Series Computers.

ii

Part IV Microprogramming Examples.

Appendixes
¢ Microprogramming reference material.
¢ The HP 1000 E-Series Computer base set microprogram listing and F-Series jump tables.

This manual is written for those individuals who have experience as Assembly language
programmers and are familiar with Hewlett-Packard RTE Operating Systems.

The documentation map that follows is a diagram of related manuals. Parts II and III of this
manual contain additional information about microprogramming support software.

This manual is written for those individuals who have experience as Assembly language
programmers and are familiar with Hewlett-Packard RTE Operating Systems.

Parts II and III of this manual contain additional information about microprogramming
support software and manuals.

iv

Section 1

Section 2

Section 3

Section 4
Section 5
Section 6

Section 7
Section 8

Section 9

Section 10

Section 11
Section 12
Section 13

Section 14

APPENDIXES

Appendix A
Appendix B
Appendix C

Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Index

PART | - Why Microprogramming?

Microprogramming Concept

Controllable Functions

PART Il - Microprogramming Methods

Microprogramming Preparation Steps

Microinstruction Formats
Timing Considerations
Mapping to the User's Microprogramming Area

Microprogramming Considerations
Preparation with the Microassembler

PART Il - Microprogramming Support Software and Hardware

Using the RTE Microassembler

Using the RTE Microdebug Editor

Writable Control Store (WCS) Support Software
Using pROM Generation Support Software and Hardware

Using Special Facilities of the Computer

PART IV - Microprogramming Examples

Microprograms

Abbreviations and Definitions

Microinstruction Formats

Micro-Order Summary and Specialized Microprogramming
Microprogramming Form

Object Tape Formats

HP M-Series-to-E-/F-Series Micro-Order Comparison Summary

HP 1000 E-Series Computer Base Set Microprogram Listing
and F-Series Jump Tables

Functional Block Diagram

v/vi

CONTENTS

Section Page

Preface.......ooo i e iii

PART I — WHY MICROPROGRAMMING?

Section 1 Page
MICROPROGRAMMING CONCEPT
Microprogramming Overview 1-2
Selecting an Analysis Method 1-3
The Microprogramming Process 1-3
Executing Your Microprogram 1-6
Some Microprogramming Related Products 1-7
Summary e e 1-8
Section 2 Page
CONTROLLABLE FUNCTIONS
Computer Functions that Can Be Controlled 2-1
Control Processorc.ccoooeiiiiiiiinnn. 2-2
Arithmetic/Logic Section 2-2
Main Memory Section 2-2
Input/Output Section 2-2
Operator Panel................................. 2-2
Memory Protectcooiiiiiiiiiiiii, 2-5
Dynamic Mapping System 2-5
Dual Channel Port Controller................... 2-5
A Closer Look at the Functions.................... 2-5
Some Definitions and Timing Points 2-10
How Do All These Functions Interrelate? 2-10
Control Memorycciiiiii... 2-11
Let’s Talk About The Base Set 2-14
An Operational Overview 2-15
Fetching i 2-16
Execution......................iiiiii... 2-17
Microprogrammed Accessories 2-18
Summary 2-18

PART II — MICROPROGRAMMING METHODS

Section 3 Page
MICROPROGRAMMING PREPARATION
STEPS

Environment 3-1

Microprogramming Hardware 3-1

Microprogramming Support Software 3-3
The RTE Microassembler 3-3
Microassembler Cross-Reference Generator 3-3
RTE Microdebug Editor 3-3
Driver DVR36 i, 3-4
WLOAD ... 3-4
Loading the Microprogramming Support
Software 3-4

pROM Tape Generator 3-5
Preparatory Steps...........coiiiiiiiiiiii., 3-5
Section 4 Page
MICROINSTRUCTION FORMATS
Microinstruction Binary Structures 4-1
Microassembler Formats 4-5

Word Type I, 4-6

Word Type IT i 4-6

Word Type IIt 4-6

Word Type IV ... 4-9
Micro-Order Definitions 4-10
Summary e 4-10
Section 5 Page
TIMING CONSIDERATIONS
Computer Sections Involved in Timing 5-1
Review and Expansion of Timing Definitions
and Terms i 5-2
Timing Variables 5-3

Short/Long Microcyclesoooivnin.. 5-3

Pause 5-4

Freeze ... 5-5
Overall Timingottt anan.. 5-7
Timing Calculations 5-8

Arithmetic/Logic Section Operations............ 5-10

Control Memory Branches 5-13

I/OOperationscooiieeiiiiiinnnnns 5-13

Main Memory Operations...................... 5-14

Reading from Memory 5-14
Writing to Memory 5-15
SUMMmMAryoiii e 5-17
Section 6 Page

MAPPING TO THE USER’S
MICROPROGRAMMING AREA

Control Memory Mapping Method 6-2
Software Entry Points 6-2
The User Instruction Group..................... 6-2

HP Reserved UIG Codes 6-3
User Area UIGCodes 6-4
User’s Area Mapping Example 6-5
Main Memory/Control Memory Linkage 6-5
Assembler Procedure.......................... 6-7
Parameter Passing........................... 6-8
Control Memory/Main Memory Linkage...... 6-11

Some Main Memory Program Procedures 6-11

The MIC Pseudo-Instruction 6-11
Parameter Assignment Example............. 6-12
Example MIC Pseudo-Instruction Use........ 6-12

Calling Microprograms from FORTRAN 6-13

SUmMIMArY .. .ottt e e 6-14

| CONTENTS (continued)

Section 7 Page
MICROPROGRAMMING
CONSIDERATIONS
Read and Write Considerations 7-1
Typical Read Operations e 7-1
Typical Write Operations 7-1
Useof MPCK i 7-7
Conditional and Invalid Operations 7-7
Some Microprogramming Techniques 7-8
The Use of SRG1 and SRG2 7-8
Using the ASG Micro-Order 7-10
Setting and Clearing Overflow 7-10
The Use of PNM ..., 7-12
The CNTR Micro-Order 7-12
Magnitude Tests 7-13
Memory Protect Considerations 7-14
The FTCH Micro-Order........................ 7-15
IRCM .. e 7-15
INCI .. e 7-15
MPCK e 7-16
The I0G Micro-Order 7-16
JAK . 7-16
The IOFF Micro-Order 7-16
Dual Channel Port Controller Considerations 7-17
Microprogrammed VO 7-17
Synchronizing With the I/O Section 7-17
I/O Section Signal Generation 7-18
IO Controliiiiiiii ., 7-20
OOutput......coovviiiii e 7-20
I/OInputcov i 7-21
Memory Protect in Relation to /O 7-21
Interrupt Handling 7-21
Forming and Executing Microprogrammed
VO Instructions 7-24
Special 1/0O Techniques 7-25
I/O Micro-order Summary 7-25
Dynamic Mapping System Considerations 7-27
Guidelines for Writing Loaders 7-30
Summary 7-30
Section 8 Page
PREPARATION WITH THE
MICROASSEMBLER
Planning and Preparation 8-1
Planning i 8-1
Preliminary Information 8-2
Field Templateccoiiinn... 8-2
Microprogram Entry 8-3
The Microassembler............................... 8-3
Microassembler Rules 8-3
Control Commandscooena.. 8-4
MIC Assembly Command 8-4
The $CODE Command 8-5
$PAGE Command 8-5
The $LIST and $NOLIST Commands 8-5

viii

$PUNCH and $NOPUNCH 8-5
HP 1000 E-Series
F-Series Microinstructions 8-6
The Label Field 8-7
Micro-Orderscooiiviiivninnn... 8-7
Address Fields....................cciuun.... 8-7
Comment Field 8-8
Pseudo-Microinstructions 8-8
The ORG Pseudo-Microinstruction 8-8
ALGN ., 8-10
The END Pseudo-Microinstruction 8-10
EQU ... 8-10
DEF ... 8-11
The ONES and ZERO Pseudo-
Microinstruction 8-11
Summary ... e 8-12

PART III — MICROPROGRAMMING SUPPORT
SOFTWARE AND HARDWARE

Section 9 Page
USING THE RTE MICROASSEMBLER
Using the Microassembler-......................... 9-1
Execution Command 9-1
The Microassembler Output..................... 9-3
Binary Object Code............................. 9-3
Microassembler Listing Output 9-4
Symbol Table Qutput........................... 94
Using the Cross-Reference Generator 9-5
MESSAZES v vi e e 9-7
Informative Messagesccooveen... 9-7
Error Messagesccovviiiinininnnnnnnn.. 9-8
Section 10 Page
USING THE RTE MICRODEBUG EDITOR
Scheduling MDE 10-2
MDE Commandsn. 10-3
2Command 10-4
EXit Command i, 10-4
DUmp Command.............................. 10-4
LoaD Command................. ...t 10-4
LUCommand............ccooiiiiniinnnnneenn. 10-5
DElete Commandcoovvvvvenn.. 10-5
REplace Command 10-6
SHow Commandccvuien.. 10-7
BReakpoint Command 10-7
CLear Commandccvvevinenn... 10-9
LoCate Commandcoovuunnnnn. 10-9
PaRameters Command 10-9
RUnCommandc.vien., 10-10
SEt Commandcooiiinn. 10-11
MESSAZES . vt e 10-13
Restrictions on Using the Microdebug Editor 10-15
Calling MDE e 10-15

CONTENTS (continued)

-Computer

Museum

Section 11 Page MPP Micro-Order Summary 13-19
WRITABLE CONTROL STORE (WCS) FPP Microprogramming Considerations 13-19
SUPPORT SOFTWARE FPP Operation Execution Times 13-19
WCS Hardwareoooiiiiiiniiiinin, 11-1 Execution in Progress........................... 13-20
WCS Softwarecoiiiiiiiiiiiiiienn.. 11-2 Interrupt Considerations 13-21
Microprogrammed FPP Operation Example 13-21
Section 12 Page Microprogramming the Floating
USING pROM GENERATION SUPPORT Point Processor i 13-21
SOFTWARE AND HARDWARE
Using the pROM Tape Generator 12-1
Initialize Phasecooiiiiiiii i, 12-2
Punch Phaset 12-5 PART IV — MICROPROGRAMMING
Verify Phase i, 12-6 EXAMPLES
pROM Tape Generator Error Messages 12-7
pROM Hardware R 12-9 Section 14 Page
MICROPROGRAMS
Section 13 Page WCS Initializationcoiiiiinnenn. 14-2
USING SPECIAL FACILITIES OF THE Microprogramming with MDE 14-3
COMPUTER Shell Sort Examplec.. oL 14-5
Block I/0O Data Transfers................c.cooou. 13-2 Microprogrammed /O Operation Example 14-18
Block I/0 Byte Packing Burst Input
MIiCToprogramo.vvvent et nerenn. 13-2 APPENDIX A Page
Block I/0O Address/Data Burst Input ABBREVIATIONS AND DEFINITIONS A-1
Microprogram i 13-5
Block I/O Word Burst Output Microprogram 13-6 APPENDIX B Page
Microprogrammable Processor Port 13-6 MICROINSTRUCTION FORMATS.............. B-1
Hardware Interface 13-7
MPP & MBI10 Considerations 13-8 APPENDIX C Page
MPP Microprogram (E-Series Only) 13-9 MICRO-ORDER SUMMARY AND
Summary of MPP Transfer Rates 13-10 SPECIALIZED MICROPROGRAMMING C-1
Hardware Floating Point Processor
(F-Series Only)c.cciiiiiiiiniiiann.n. 13-11 APPENDIX D Page
Controllable Functions 13-11 MICROPROGRAMMING FORM D-1
Data Formats oo, 13-12
FPP Instruction Word Format 13-12 APPENDIX E Page
Exponent Format 13-12 OBJECT TAPE FORMATS E-1
FPP Operationcouvviiiinnninnnn.. 13-14
Operand Sourceccovunun.. 13-14 APPENDIX F Page
Operand Length 13-14 HP 1000 M-SERIES-TO-HP 1000
Data Operationsccoiieein... 13-14 E/F-SERIES MICRO-ORDER COMPARISON
Fix and Float Operations 13-15 SUMMARY ... F-1
Accumulator Operations 13-15
MPP Micro-Ordersccovviinnnnn. 13-15 APPENDIX G Page
FPP Instruction Store 13-15 E-SERIES COMPUTER BASE SET
FPP Addressing...............cooveiinnn.... 13-17 MICROPROGRAM LISTING AND F-SERIES
Instruction Execution 13-17 JUMPTABLES ... it G-1
Operand to FPP 13-17
Result to CPU 13-18 APPENDIX H Page
MPP1 Micro-Order Considerations 13-18 FUNCTIONAL BLOCK DIAGRAM H-1
FPP Complete Testcccoivvnn... 13-18

Overflow Detection

ILLUSTRATIONS

Title Page Title Page
Microprogramming Implementation Process 1-5 Detailed Pause Time Calculation Flowchart
Some Microprogramming Products 1-7 (Using an HP 2102B Memory as an Example) .. 5-16
HP 21MX E-Series Computer Overall Block Overflow Register Control 7-11

Diagram ..., 2-3 Scheduling MDE (MDEP) 10-16
Simplified Control Processor Block Diagram........ 2-9 Calling MDE (MDES)..................coooes. 10-16
E-Series Control Memory Map.................... 2-12 Interactive Debugging Operations 10-17
F-Series Control Memory Map.................... 2-13 General Tape Format 12-2
Word Type/Binary Format Summary 4-1 FPP Overall Functional Block Diagram 13-11
Micro-Order Binary Formats 4-3 Floating Point Data Format 13-12
RTE Microassembler Word Format Summary....... 4-5 FPP Instruction Word Format 13-13
Microassembler Format Micro-Orders 4-7 Typical FPP Microprogramming
Jump Address Decodingc.coe. 4-9 Sequence Flowchart 13-16
Basic Timing Definitions 5-2 FPP Microprogramming Example Flowchart 13-23
Variable Microcycles with Pause Conditions 5-6 Example 3, Microprogrmmed Shell Sort
Overall Microcycle Timing Flowchart 5-7 Flowchart i, 14-8
Consolidated Microcycle Estimating Flowchart 59 Example 4, Microprogrammed Privileged Section
Detailed Microcycle Time Determination Flowchart oo i, 14-24

Flowchart iiiiiiiiienin.. 5-11

TABLES
Title Page Title Page
Computer Functions 2-6 DMS Micro-Order Control Signals 7-29
Program Partitioning Capabilities 3-5 Microassembler and Cross-Reference Generator
Preparatory Steps..........oviiiiiiiiiiiiiean... 3-6 Error Messagescovvvinerinienninannnn. 9-8
Manual/Software References 3-8 MDE Operator Command Syntax 10-1
Micro-Order Definitions 4-11 Summary of Microdebug Editor Commands 10-3
Summary of Timing Factors 5-18 Microdebug Editor Error Messages 10-13
Control Memory User Instruction Group Default Formats by Vendor 12-4

Software Entry Point Assignments 6-4 MPP Signal Summarycoeiii.... 13-7
Backplane I/O Signal Generation Determined by Special Facilities Transfer Rate Summary 13-10

IR Bits 11 through 6 7-19 Overflow and Underflow Ranges................. 13-13
/O Micro-Order Summaryccvven. 7-26 Summary of FPP Control Micro-orders........... 13-19
MEM Signals Invoked by Micro-Orders 7-28 FPP Operation Internal Execution Times 13-20

PART |
Why Microprogramming?

Section 1
MICROPROGRAMMING CONCEPT

MICROPROGRAMMING CONCEPT

Why microprogramming? Because microprograms and microprogramming techniques can be used to. .
® Reduce program execution time. By microprogramming often-used routines you can significantly
decrease the program execution time. Large reductions in execution time are enabled because:
— Many instruction fetches are eliminated.
— Microinstructions execute (typically) four to ten times faster than Assembler instructions.
— Multiple operations can occur during a single microinstruction.

— The microinstruction word width (24 bits) provides a larger instruction repertoire than avail-
able with the Assembler word width (16 bits).

— Many more registers and functions at the microinstruction level are available to you than to
the higher level language programmer.

® Implement customized computer instructions. Designing customized instructions (i.e., micropro-
grams) can provide facilities not otherwise readily available. Examples are:

— Postindexing and/or preindexing.
— Stack instructions.

— Special arithmetic instructions (double integer, decimal, etc.).

What types of applications can be microprogrammed?

® Sort routines (e.g., bubble, shell, radix-exchange, and quicksort).
® High-speed or specialized input/output (I/O) transfer operations.
® Table searches (e.g., sequential, binary, and link-list).

e Arithmetic Floating Point Calculations.

® Transcendental functions (e.g., sine, square root, and logarithms).

¢ Fast Fourier Transform (FFT).

Concept

You may also create microprograms to control your own customized hardware. References for micro-
programmable algorithms for many of the above applications are given in part IV.

Then why not microprogram everything?

® Microprogramming everything would be an unwieldly and unprofitable project. An analysis
should be made to determine those areas that need to be microprogrammed.

® Microprograms are not relocatable in control memory.

® Microprograms run separately from the operating system and, when invoked, are in complete
control of the computer. Therefore, if you don’t plan carefully, the operating system’s peripheral
devices, memory, and computer management can be defeated, or even aborted.

Although additional effort is required to become more familiar with the computer in order to write
microprograms, the results will be well worth the effort. The following paragraphs outline the
considerations involved when you decide to microprogram.

1-1. MICROPROGRAMMING OVERVIEW

What is the first thing to consider? Typically, an application program, or perhaps a library routine
running in an RTE environment, may need to have a faster execution speed. This may or may not be
obvious in external operation (i.e., waiting time is too long for a line printer output when a certain
calculation is performed, terminal response too slow, etc.). Whether the excessive time taken is
obvious or not, some method must be used to analyze the programming environment so that you can
identify these areas. Three basic methods can be considered to determine which areas of the program
(memory) are consuming the most computer time:

® Programming analysis devices may be attached to the computer; this is the most accurate but most
expensive method.

® A programmatical analysis method may be used as a middle-of-the-road approach.

¢ The computer can be checked manually at periodic intervals (i.e., every 10 or 15 seconds) by
halting and recording the program counter (P-register) contents. A profile can thus be obtained,
and a map of the “busy” areas generated; however, this is a tedious and time-consuming task, but a
minimum of material cost is involved.

In summary, it can be seen that the first step is to find out what you're going to microprogram. The

point is that if you spend your time microprogramming some seldom-used library routine, you cannot
expect to realize a significant gain in software efficiency.

1-2

Concept

1-2. SELECTING AN ANALYSIS METHOD

The analysis method we’ll consider in this manual is a middle-of-the-road approach. That is, an
activity profile generation type of program. For example, you can:

® Use an I/O device capable of generating interrupts and cause periodic interrupts to the operating
system.

® Reserve a “word block counter” for (as an example) every 500 words of main memory.

Each time the device interrupts, the P-register could be sampled and the count incremented for the
associated “word block counter”. That is, a record is generated for the program location counter at
periodic intervals. This can be done several hundred thousand times and, at the end of the sample
period, a percentage of time spent in each area of memory can be obtained. Then. . .

® The load map of the program being analyzed can be examined to determine which part(s) of the
program could possibly be microprogrammed to decrease the execution time.

¢ The resolution for your analysis program could be changed, as could other parameters in the
program, to obtain the desired profile.

This is the general idea of how an activity profile generation program could be used. Also, you may
want to refer to the Contributed Library Catalog, part no. 22999-90040, for programs you may be able
to use.

Once your activity profile generation program output is analyzed, it may be found that some specific
routines (perhaps library subroutines) are indeed consuming too much computer time. Once the
analysis is complete, you're ready to concentrate on a particular area. But remember that:

® The maximum benefit of microprogramming will not be realized by simply imitating the Assembly
language instructions in microroutines.

® In order to determine specifically what to microprogram, the computer functions and program
intent should be studied before you begin to write your microprogram. The final result will be a
microprogrammed solution that executes in much less time and is totally or at least partially

transparent.

Now, what steps are necessary to get your microprogram into operation? An overview of the process
follows.

1-3. THE MICROPROGRAMMING PROCESS

Figure 1-1 provides an overview of the steps involved in microprogramming and some explanation of
the illustration may be helpful:

® After a program analysis has been accomplished, the entry point (address) for the control memory
module that you’ll be using must be determined.

® The microprogram is then written using the information given in part II of this manual.

® The microprogram source file can be prepared and stored on disc.

1-3

Concept

The microassembler (program MICRO, which can be placed in the RTE system at generation time)
is loaded into main memory.

The microprogram source is then microassembled by MICRO and a listing and an object file can be
obtained.

At this point the Microdebug Editor (program MDEP, which can also placed in the RTE system at
generation time) can be loaded into main memory. (The Microdebug Editor may also be called from
your programs in the RTE environment by the name MDES.)

The object microprogram may then be loaded into Writable Control Store (WCS) using the MDE.
(Microprograms can also be loaded into WCS using other programs, such as WLOAD.)

The microprogram can be debugged, edited, and checked out interactively using the MDE and
WCS.

NOTE

The HP 13197A Writable Control Store Kit is an integral part of
microprogramming. Information on writing micro-
programs to be stored in WS is the primary purpose of this
manual; however, installation and additional reference informa-
tion on WCS will be found in the HP 13197A Writable Control
Store Reference Manual, part no. 13197-90005. Information on
the driver (necessary for operation of WCS in the RTE environ-
ment) and on the WCS I/O Utility routine WLOAD is included in
the RTE Driver DVR36 for HP 12978A/13197A Writable Control
Store Board Programming and Reference Manual, part no.
13197-90001.

The ready-to-run microprogram can be stored in one of two ways:

14

It can be left in WCS.

You can create a permanent microprogram through the use of the pROM Tape Generator micro-
programming support software. This software, in turn, can be used to generate several different
types of mask tapes that can be used to have Programmable Read Only Memory (pROM’s) fused
(burned). The pROM’s can then be installed on the HP 13304A Firmware Accessory Board (FAB)
(attached to the CPU) or on the HP 13047 A User Control Store (UCS) Kit (in the I/O card cage).

NOTE

Information on the pROM Tape Generator (as well as on the RTE
Microassembler and RTE Microdebug Editor microprogramming
support software) is included in this manual. Information you will
need for using pROM’s can be found in the HP 13304A Firmware
Accessory Board Installation and Service Manual, part no.
13304-90001 and the HP 13047A User Control Store Kit Installa-
tion and Service Manual, part no. 13047-90001.

Concept

ACTIVITY PROFILE
GENERATION
PROGRAM

USER
MICROPROGRAMMING
REQUIREMENT

RUN PROGRAM

ANALYSIS COMPUTER

STUDY RESULTS
AND/OR
PLAN MICROPROGRAM

>

CONTROL
MEMORY

ASSIGN ASSEMBLY
LANGUAGE
INSTRUCTION CODE
TO DETERMINE
ACCESS POINT

\.)

WRITE THE

PREPARE AND
MICROPROGRAM

dﬂ‘"’u‘r SOURCE
MI
CROASSEMBLE @ STORE
: ON DISC

MICROPROGRAM
’_\ LISTING
DI PROM TAPE
\ s¢ // GENERATOR
\

RTE
MICRO-
ASSEMBLER

OBJECT CODE ON =~
LOAD DISC FILE (OR TO = . —
OBJECT OUTPUT DEVICE) — —
PhE PREPARE SIX
MASK TAPES

RTE
MICRO-

OEBUG NEW (EDITED)
EDITOR INTERIM PERFORM
DISC FILE INTERACTIVE
EDITING AND
CHECKOUT BURN
USING WCS PROM’s

PROM’s ON 2K UCS
N OR FIRMWARE
WRITABLE ACCESSORY BOARD [—

CONTROL
STORE & 7 &2
WCS) e <

CALL MICROPROGRAM
MICRODEBUG EXECUTION
EDITOR

CALL

WRITE
MICROPROGRAM
TO WCS

WCS I/0
UTILITY
ROUTINE
(WLOAD)

USER PROGRAMS
IN MAIN MEMORY

711541
Figure 1-1. Microprogramming Implementation Process

1-5

Concept

The advantages of executing microprograms from WCS are:
¢ WCS may be reused for many microprograms.

¢ WCS may be used to dynamically swap microprograms in and out of the system to suit a variety of
users.

The disadvantages are:

¢ Microprograms in WCS can be destroyed by an errant user of the system.

® When computer power is removed, your microprogram is lost and must be reloaded.
¢ Each WCS board requires an I/O slot in the computer.

The advantage of fusing (burning) pROM’s is:

¢ The pROM’s are permanently fused and the computer will not lose the microprogram when power
is removed.

The disadvantage is:

¢ There is much more involved in changing the microprogram with pROM’s than there is with WCS.

1-4. EXECUTING YOUR MICROPROGRAM

If your microprogram is stored in pROM’s, it can be executed immediately through User Instruction
Group (UIG) instructions (105xxx or 101xxx) that link Assembly language routines to microprograms.
The hardware and firmware map each UIG instruction to a unique control memory destination.

If WCS is being used, your microprogram must initially be contained in WCS before execution.
Microprograms that reside in WCS execute at the same speed as pROM’s. Both WCS and pROM
resident microprograms can be used along with the base set in control memory. (The base set is defined
as the computer’s standard instruction set microprograms.)

Either the WCS I/O Utility routine WLOAD can be used to load WCS (through a call from FORTRAN,
ALGOL, or Assembly language) or the MDE can be used to load WCS. The microprogram can then be
called for execution from the main program in the same manner as described for a pROM stored
microprogram. To summarize, your microprograms (when loaded) can be executed in the following
ways:

¢ Under MDE control.
¢ By using an Assembly language UIG instruction.
¢ Through calls from FORTRAN or ALGOL.

Now that you have an overview of the microprogramming process, let’s look at some microprogram-
ming products.

1-5.

SOME MICROPROGRAMMING RELATED PRODUCTS

Concept

Several different products have been mentioned in the previous paragraphs that are directly as-
sociated with the microprogramming environment. Figure 1-2 illustrates products that can be used for
microprogramming your HP 1000 E- or F-Series Computer.

PARTIAL
COMPUTER

PHYSICAL LAYOUT

USER DESIGNED
EXTERNAL
HARDWARE
(E-SERIES ONLY)

J

MICROPROGRAMMABLE
PROCESSOR PORT

2
OPERATOR
PANEL

Wo 1/0 CARD

SECTION CAGE
r/%s\ﬁ

h;__’i
/ SC15

—
- SCM DT
/ SC13
.
/ sc12 |

%__J_
o SCI1 ,“6
/K

MEMORY
SECTION

SC10

|
|
}
|
1

~=___ INPUT/OUTPUT
BACKPLANE

i
l
/

wcm oO~—

N CTOOo~0Ccm <TOITMZT 5

|
|
|
|
|
l
1
|
|
l
|
|
|
|
l
[
|
|
|
!
12

I

Q

110

ENTRALP ESSIN
Cl ROCESSING UNIT EXTENDER

Q@@Q@Q

HARDWARE
FLOATING
POINT

PROCESSER
(F-SERIES ONLY}

p / S CONTROL
BASE SET MEMORY
MICROPROGRAMS BUS
?rn‘r\:\?vosse ~HP OR USER SUPPLIED FIRMWARE
FOR EXAMPLE, FAST FORTR
ecrants, XAMPLE, FAST FORTRAN PROCESSOR (FFP),

DYNAMIC MAPPING SYSTEM (DMS), OR USER

BOARD DEFINED pROM's

~

1/Q SLOTS FOR

HP 13197A

WRITABLE

CONTROL STORE
{OYNAMIC
MICROPROGRAMMING)

AND/OR

HP 13047A

USER CONTROL
STORE KiTS
(PERMANENT
MICROPROGRAMS)

7115-2A

Figure 1-2. Some Microprogramming Products

Concept

1-6. SUMMARY

To effectively create a microprogram, the programmer must be equipped with the following:

® An understanding of what to microprogram.

® An understanding of the computer operation and its architecture.

¢ Knowledge of the methods used to map to and access control memory.

o Knowledge of the microassembly language and microinstruction field effects.

® Knowledge of the appropriate microprogramming hardware and software products.

One way to obtain this information is to attend the Hewlett-Packard Computer Microprogramming
course. The above subjects are all expanded upon in the remaining portions of this manual but

remember that the most important step you must take first is to find out what you should
microprogram.

1-8

Section 2
CONTROLLABLE FUNCTIONS

CONTROLLABLE FUNCTIONS

Now that the “busy areas” of the program have been identified, you are ready to gain some detailed
knowledge of the computer that is needed before you read information about the microprogramming
language. The following paragraphs describe:

® The hardware functions controlled by microinstructions.

e Aspects of the base set microprogrammed operation that will be important for your
microprogramming.

® Enough about Hewlett-Packard products to enable you to take advantage of them (and interface
with them) in your own microprogramming.

To implement your own microprograms you will not need to know the computer design to the “gate”
level. The information in this book should be entirely sufficient for your needs. The base set discus-
sion will help you to become aware of the existing microprogram’s operation. Below is a look at the
overall computer followed by details on the registers and other functions.

2-1. COMPUTER FUNCTIONS THAT CAN BE CONTROLLED

Figure 2-1 illustrates the five major sections in the computer. In order of importance, they are the:

e (Control Processor.

e Arithmetic/Logic section.

® Main Memory section.

® Input/Output (I/O) section.

¢ Operator Panel.

Accessories shown in the overall block diagram that are directly associated with microprogramming
are the:

e HP 13197A Writable Control Store (WCS).

e HP 13304A Firmware Accessory Board (FAB).

e HP 13047A User Control Store (UCS) Kit.

The important points about these and other accessories will be covered after a look at the “basic”
computer.

Functions

2-2. CONTROL PROCESSOR

The Control Processor includes a special control memory (made of ROM, pROM, or WCS), registers,
logic, and timing signals required to control all of the other sections of the computer. Notice in figure
2-1 that the base set, FAB, WCS, and UCS are all shown associated with the Control Processor by
addressing and microinstruction (bus) lines. The base set (the standard instruction set microprogram)
is part of the “basic” computer. The 3.5K microword capacity FAB, 1K microword capacity WCS, and
2K microword capacity UCS are accessories that are extensions of control memory you can use for your
microprogramming. WCS also communicates with the I/O section to allow microprograms to be
written to and read from main memory. Although some signals for control and loading of WCS are
passed through the I/O section, both WCS and UCS are connected by cabling to the rest of control
memory in an “OR-tied” fashion so that when executing there is no difference in addressing and
microinstruction output. No matter how control memory is physically implemented, it all appears as
one large microprogram facility to the Control Processor.

2-3. ARITHMETIC/LOGIC SECTION

The Arithmetic/Logic section of the computer includes most of the hardware required to actually carry
out the commands of the microinstructions. It contains all working registers in the Central Processing
Unit (CPU) and provides the logic to perform arithmetic and logical operations on data.

NOTE

The CPU consists of not only the Arithmetic/Logic section but the
Control Processor and I/O section. These functions are all physi-
cally located on the board called the CPU.

2-4. MAIN MEMORY SECTION

All programs and data reside in the Main Memory section consisting of one controller and a set of
semiconductor memory modules with which it is designed to operate. The instructions from main
memory are all decoded by the Control Processor.

2-5. INPUT/OUTPUT SECTION

The Input/Output (I/O) section serves as an interface between the computer and external devices. The
I/O hardware responds either to Control Processor stimuli (for computer-initiated data or control
operations) or to device stimuli (for device-signaling attention requests), and hence becomes the active
communication link between the computer and peripheral devices.

2-6. OPERATOR PANEL

This is the basic interface between you and the computer. The panel has two registers, several
indicators, and many control switches (described in your Computer Operating and Reference Manual.
The Operator Panel is controlled by base set microroutines. The Operator Panel is also used to route
data and command signals through the Microprogrammable Processor Port (MPP) for user designed
‘hardware in E-Series Computers and for the Hardware Floating Point Processor in F-Series
Computers.

2-2

Functions

INSTRUCTIONS AND DATA

/N N @ é} ~)
- HJAL;;\HEL—-] LA
r PORT 1o MEMORY I
I 1 conTROLLER 1 ! PROTECT |
b o AT
—— — — . — — — — -
TIONS {\
SPLAY WV
ARIEggléTlC/ ADDRESSING
SECTION
h > < M-BUS {/
—_———-n
-~ |
r MEMORY | \
] | EXPANSION 4
| | MODULE |
| (DYNAMIC |
I MAPPING)
| | |
) | b-——-J
ke — _ | —
[=
(I MAIN
| | (SEMICONDUCTOR) |
\ MICROPROGRAM CONTROL MEMORY
4 | SECTION :
I |
| _________ "
- -
LZ -
— e o — —— —— a— —— — —

VARV

:RATOR PANEL

—

(F-SERIES ONLY)

FLOATING POINT
PROCESSOR

ADDRESSES MICROINSTRUCTIONS
MICROPROGRAM CONTROL

CROPROGRAMMABLE <
PROCESSOR PORT

Figure 2-1. HP 1000 E- and F-Series Computer Overall
Block Diagram

2-3/2-4

S-BUS

INSTRUCTIONS
AND
COUNTS
VAR
DATA
AND OPERA’
ADDRESSES AND DI
xd
\/ \/
:)NJTUJJT MlcggmgSEAM CONTROL MICROPROGRAM CONTROL
SECTION > > PROCESSOR <
M)
MICROPROGRAM
/} CONTROL
ADDRESSES MICROINSTRUCTIONS
READ/WRITE
FROM/ TO
WRITABLE T ——
CONTROL 7" | WRITABLE —}<,-L5 —— > | BASESET
- STORE [| CONTROL [|
N > STORE ~+—— —— ~——
P I e e
7~
CONTROL e e
AND
DATA ——— —
- - I FIRMWARE |
-1 7 Usen _I<_/ I ACCESSORY |
BOARD
“ | controL | RN >
I | STOREKIT oo T T
N —_—— —
[S
L -
— e — — #
OPE
NT (E-SERIES ONLY)

USER DESIGNED
EXTERNAL
HARDWARE

\

Ve
PERIPHERALS INTERFACE
A T T T T -0
7 — _ ~- —_———
P e == e
- - P
- 2%II\DITROL ,/)____/__’, \
DATA
lc/
AT 771
e
L”Z <

(MORE PERIPHERALS)

NOTE:
DASHED OUTLINES (__ _— _ _) INDICATE EQUIPME
NOT SUPPLIED WITH THE STANDARD COMPUTER.

7115-3A

Functions

2-7. MEMORY PROTECT

Memory Protect may interrupt, retain, and report the logical 15-bit address of any instruction that
attempts to enter or alter main memory below a programmable fence, execute certain I/O instructions,
or execute certain instructions flagged by the Dynamic Mapping System. This accessory will also
capture the location of any memory location that may have a parity error. Several circumstances that
affect microprogramming in relation to Memory Protect are discussed in part II of this manual.

2-8. DYNAMIC MAPPING SYSTEM

The Memory Expansion Module (MEM) shown in figure 2-1 is part of the HP 13305A Dynamic
Mapping System. If installed, the MEM resides (logically) in front of the memory controller and
expands the amount of addressable main memory beyond 32K words. The system “windows” a large
physical memory down to a logical address space of 32K words. The technique of relating a large
physical memory to a logical 32K memory is called “mapping”. Since the “maps” involved may be
dynamically reloaded, accessibility to the entire physical memory is accomplished. Microprogramming
techniques related to the Dynamic Mapping System are discussed in part II of this manual. Note that
when the MEM is absent, the M-bus lines are connected directly to main memory.

2-9. DUAL CHANNEL PORT CONTROLLER

The DCPC provides two data paths, software assignable, between main memory and a peripheral
device (or devices). High-speed transfers are accomplished in blocks of up to 32K words on an I/O
cycle-stealing basis programmatically transparent to the CPU. DCPC microprogramming considera-
tions are also covered in part II of this manual.

2-10. A CLOSER LOOK AT THE FUNCTIONS

In the following paragraphs the computer will be discussed at the level youll be using to microprog-
ram. Table 2-1 provides you with more detail on functions that can be controlled by microinstructions
(and other selected functions) and briefly describes the bus system. You should refer to the detailed
block diagram in appendix H when reviewing the table. Once you understand the computer architec-

ture and the effect of micro-orders, you will need only the detailed block diagram and micro-order
charts to write microprograms.

2-5

Functions

Table 2-1. Computer Functions

FUNCTION

DESCRIPTION

CONTROL PROCESSOR

Instruction Register (IR)

The Instruction Register (1R) is a 16-bit register that usually contains
the Assembly (machine) language instructions for execution. (The lower
8 bits of the IR form the counter.)

Control Memory (CM)

Control Memory (CM) receives a 14-bit address from the Control Mem-
ory Address Register (CMAR) and offers the corresponding 24-bit
microinstruction word to the Microinstruction Register (MIR).

Jump Tables

This ROM is used to map to a CM address from bits contained in the IR.

Microjump Logic (MJL)

The Microjump Logic (MJL) anticipates if and how the Control Memory
Address Register (CMAR) will be loaded for a branch.

Control Memory
Address Register (CMAR)

The Control Memory Address Register (CMAR) is a 14-bit register that
addresses CM. Addressing will progress sequentially (the CMAR is incre-
mented at the beginning of every microcycle) unless a branch or repeat is
to occur.

Save Stack

This is a three-level microsubroutine save register. The 14-bit CMAR
address is "pushed” onto the stack at the beginning of every micro-
subroutine branch (JSB). It is “popped” (with the contents loaded into the
CMAR) when a microsubroutine return (RTN) is executed.

NOTE

“Pushing” the Save Stack means placing the return address
(the address currently in the CMAR) into the Save Stack. "Pop-
ping” the stack means placing the return address into the
CMAR and removing it from the Save Stack.

Microinstruction
Register (MIR)

The Microinstruction Register (MIR) contains the “current” microinstruction
(received from CM).

Field Decoders

Timing and control lines are merged with the field decoders to direct the
rest of the computer to execute the microinstruction in the MIR.

ARITHMETIC/LOGIC SECTION

Arithmetic/Logic Unit (ALU)

The Arithmetic/Logic Unit (ALU) implements all arithmetic and logical
operations in the CPU under direction of the Control Processor.

L-Register

The L-register provides the second operand for the ALU.

Rotate/Shifter (R/S)

This function performs left and right shifts and rotates.

Overflow and
Extend Registers

These are one-bit registers that participate in ALU and shift/rotate
operations.

Conditional Flags

Testable conditional flags associated with the ALU and R/S functions
include:

ALU Bit 0 Set

ALU Bit 15 Set

ALU Carry Out

ALU Ones

ALU Zero

CPU Flag

2-6

Functions

Table 2-1. Computer Functions (Continued)

FUNCTION

DESCRIPTION

ARITHMETIC/LOGIC SECTION (Continued)

A- and B-Registers

These are the main 16-bit accumulators used for arithmetic, logic,
and /O operations.

RAM Registers

This block of sixteen 16-bit registers is a Random Access Memory
(RAM) used for data manipulation and temporary storage of inter-
mediate results. The RAM includes Scratch Registers (S1 through S11),
a Stack Pointer register (SP), Index registers (X and Y), the Program
Counter (P), and S-register (S).

Loaders

The CPU includes a standard paper tape loader ROM and a standard
disc loader ROM. Also included is space for two optional loader
ROM's. Each loader can contain up to sixty-four 16-bit instructions. The
Remote Program Load (RPL) configuration switches are associated with
the loader ROM'’s.

M-Register

The 15-bit M-register holds the logical address of any computer main
memory reference. This 15-bit register is loaded from the S-bus and
drives the M-bus. The A-Addressable Flip-Flop (AAF) and B-
Addressable Flip Flop (BAF) functions are also controlled by the M-register.

A-Addressable Flip-Flop
(AAF) and
B-Addressable Flip-Flop
(BAF)

These flags determine whether the A-, or B-, or T-register will be
used for storing data or directing data to the S-bus. They exist
because the A- and B-registers can be addressed as main memory
locations O and 1, respectively. AAF or BAF is set or cleared depending
upon the M-bus data.

MAIN MEMORY SECTION

Memory Address Register

This register receives the "“physical” main memory address from the M-bus
for a read or write operation. An address must be present here before the
read or write begins. Data is transferred from/to this address on the
selected memory module board from/to the T-register.

T-Register

The T-register is the 16-bit data link between the Main Memory section
and the CPU or DCPC. Data comes from or goes to the address specified
in the Memory Address Register.

INPUT/OUTPUT (I/O) SECTION

I/O Control and Select Logic

IO timing and signal generation take place from this function. The inter-
face control signals are generated as a result of the Control Processor
executing /O instructions.

Interrupt Control

Interrupts from devices requesting input or output transfers with the CPU
are sequenced for processing by priority logic in this function.

Central Interrupt Register
(CIR)

This 6-bit register is loaded with the select code (address) of the inter-
rupting device after an interrupt request is recognized. The CIR passes
this address to the S-bus under microprogram control.

Functions

Table 2-1. Computer Functions (Continued)

FUNCTION DESCRIPTION

OPERATOR PANEL

Display Register (DSPL) The Display Register is the 16-bit Operator Panel register associated with
the panel switches.

Display Indicator (DSPI) This Operator Panel register indicates which register is being displayed by
the DSPL register.

BUS SYSTEM

S-bus This is the main 16-bit data transfer bus in the computer. (See the block
diagram and note the functions that have two-way and one-way transfer
capability.)

T-bus This is the 16-bit resultant data bus in the Arithmetic/Logic section.

M-bus This is a 15-bit memory address bus used by both the CPU and the DCPC.

I/0O bus This is a 16-bit bus for data transfers, or for control and status exchanges

to and from external devices.

Select Code (SC) bus This 6-bit bus carries the select code of a device being referenced by the
I/0O section or DCPC.

Interrupt Address (I/A) bus This 6-bit bus carries the address (select code) of any /0O device
requesting CPU service.

Figure 2-2 is a simplified block diagram of the Control Processor. In a “conventional” computer control
section, specific hardware is dedicated to each function performed by the instruction set. The major
advantage of the “conventional” control section is speed for the instruction set. The major disadvan-
tage is the loss of flexibility for special applications or for enhancements. In the microprogrammed
computer, all distinct logical functions are separated from-the sequence in which those functions are
performed. That is, the logical functions are defined by microinstructions (composed of micro-orders)
held in control memory. Because functions can be individually defined by microinstructions, the
microprogrammed computer is much more flexible than the “conventional” type computer. At one time
this caused the microprogrammed computer to be slower in executing some portions of the instruction
set. However, the Computer Control Processor executes microinstructions at a rate that is fast enough
to keep main memory busy practically all the time so, the speed penalty for using the mi-
croprogrammed architecture is essentially not a factor, especially in the base set. Also, since the
Control Processor in the E-Series and F-Series Computers is completely microprogrammable, user
programs can be made to execute much faster with the application of user microprogramming. These
combined factors provide this computer with the final advantage over any conventional control section
(hardwired component) type of computer.

Functions

EXTRA CONTROL
MEMORY- 1K WCS,
3.5K FAB, AND

2K UCS BOARDS

I/O INTERRUPT

S T T A
~ ~ I
i G
| = ——
I

BRANCH
ADDRESS
MODIFICATION

.

INSTRUCTION
REGISTER

Jump

TABLES AND
MICROBRANCH
LOGIC

CONTROL
MEMORY

ADDRESS
REGISTER

TOP OF STACK
RTN (RETURN)

ADDRESS

TOP OF STACK

RTN (RETURN)
ADDRESS
—
— —_—t
3 LEVEL
SAVE
. STACK —
14-BIT ADDRESS

:

— —
. —
— :;
[~ CONTROL -
[— MEmory -
— (BASE SET) —{~
— —
| —
— —
L —t

MICROINSTRUCTIONS

— TN

24-BIT
MICROINSTRUCTIONS

MICROINSTRUCTION
REGISTER

—__E—_—v

FIVE FIELD
DECODERS

| :
j_l—{>
;“> PUNGTIONS
:'>

SAVE

JsB

CONTROL FOR

S-BUS

ALU

COMBINED
OPERATIONS

STORAGE

7115-4

Figure 2-2. Simplified Control Processor Block Diagram

29

Functions

2-11. SOME DEFINITIONS AND TIMING POINTS

Now to clarify some definitions about control and timing, and then discuss a little more about the
computer’s interrelated functions and operation.

¢ The Control Processor executes “microcoded” “microinstructions” during “microcycles”.

¢ One microcycle (also called a “T” period) is the time interval required to completely execute a
microinstruction.

® A microinstruction is a 24-bit coded word (code definition is called the microcode) that defines
specific hardware operations to be performed by the computer.

¢ Each microinstruction is composed of at least one, and up to five micro-orders. Each micro-order
defines a specific operation to be performed in the computer. Some micro-orders accomplish

multiple operations by themselves.

® Microinstructions physically reside in control memory and are the basic building blocks of
microprograms.

¢ Segments of microprograms may be called microroutines.
® A portion of microcode called from a microroutine will be referred to as a microsubroutine.
Part II of this manual provides specific information on timing that you will need for

microprogramming.

2-12. HOW DO ALL THESE FUNCTIONS INTERRELATE?

All the functions described in the preceding paragraphs are interrelated in an operational sense
through the microprogrammed operation of the computer. Here are a few points to remember:

¢ The computer is always under microprogram control and executing microinstructions at all times
when power is applied, (except when temporarily suspended by DCPC or main memory
contentions).

¢ A microroutine in the base set reads (“fetches”) Assembly language instructions stored in main
memory. The instructions are loaded into the IR and data is directed to the appropriate destina-
tions by the microprogram invoked.

¢ Each Assembly language instruction from main memory is interpreted as a “pointer” (address) to a
microroutine, resident in control memory, that implements the instruction by executing a
sequence of microinstructions.

A few other points should be considered before examining what control memory can accomplish:

e The Control Processor decodes each microinstruction into fields, then executes the indicated
micro-orders in the proper sequence.

e Each micro-order performs a distinct operation and the micro-orders are not necessarily related to
each other in each microinstruction.

2-10

Functions

Keep the above points in mind as you read through the following steps of how “generally” the Control
Processor might operate in a microroutine:

e The “standard” microinstruction (in the MIR) typically calls for the contents of a register to be
enabled onto the S-bus. Then certain ALU and/or rotate/shift operations take place during the
microcycle and, at the end of the microcycle, a specified destination register is “clocked” to receive
the prevailing data from its input lines.

e While a microinstruction presently in the MIR is being executed, the CMAR is incremented to
present the next sequential address to CM or the MJL determines another address to load the
CMAR.

e Ifamicrobranch to a microsubroutine is executed, the incremented address is loaded into the Save
Stack and the branch address is loaded into the CMAR.

e Several branch-on tests exist (e.g., conditions of carry, the sign, a zero result, presence of a
particular bit or Operator Panel setting, etc.) that provide branches to microroutines designed to
react to the condition.

¢ When a microprogram completes, it usually returns to control memory location 0 (addresses in
octal are five digits, i.e., 00000) to complete fetching (obtaining) the next Assembly language
instruction to be executed from main memory.

You should not be concerned if the details of Control Processor and microprogram operation are not
clear at present. You will gain more knowledge and understanding of the computer operation as you

learn the microprogramming language by progressing through the manual and writing micropro-
grams. Some further points:

e [f the microprogram execution time exceeds the interval between pending interrupts allowed by
your particular system application, the interrupts can be lost. Your microprogram must be written
to test for pending interrupts.

® When a pending interrupt is detected, the microprogram must yield control to the Halt-Or-
Interrupt (HORID) microroutine (CM location 6 in the base set).

Microprogrammed interrupt handling techniques will be fully described in section 7. Now, what about
control memory content?

2-13. CONTROL MEMORY

Roughly, you can look at control memory as being devoted to serving three areas:

® The standard base set.

¢ HP microprogrammed accessories.

® The user’s microprogramming area.

All 16,384 addressable (24-bit) words of control memory are logically partitioned into sixty-four
256-word modules numbered 0 through 63. Figures 2-3 and 2-4 show the control memory map
(represented in basic 1K separations) and identifies the “modules” mentioned above. Notice that

modules 0 through 3 are dedicated to the standard base set shipped with every computer. The other 60
modules are available for additional microprograms written by you or supplied by Hewlett-Packard.

2-11

Functions

ADDRESS
SOFTWARE [~
CONTROL MEMORY | MODULE ENTRY
MODULE ALLOCATION NO. DECIMAL OCTAL POINT
0 0-00255| | 00000-00377 YES
1 00256-00511 00400-00777 YES L1k
HP BASE SET 2 00512-00767 01000-01377 YES
3 00768-01023 01400-01777 YES
4 01024-01279 02000-02377 NO
5 01280-01535 02400-02777 NO L 2K
6 01536-01761 03000-03377 NO
7 01762-02047 03400-03777 NO
8 02048-02303 04000-04377 NO
9 02304-02559 04400-04777 NO - 3K
10 02560-02815 05000-05377 NO
11 02816-03071 05400-05777 NO
12 03072-03327 06000-06377 NO
13 03328-03583 06400-06777 NO L4k
14 03584-03849 07000-07377 NO
15 03850-04095 07400-07777 NO
AVAILABLE 16 04096-04351 10000-10377 NO
FOR USER 17 04352-04607 10400-10777 NO L 5K
MICROPROGRAMMING 18 04608-04863 11000-11377 NO
19 04864-05119 11400-11777 NO
20 05120-05375 12000-12377 NO
21 05376-05631 12400-12777 NO L 6K
22 05632-05887 13000-13377 NO
23 05888-06143 13400-13777 NO
24 06144-06399 14000-14377 NO
25 06400-06655 14400-14777 NO L 7K
26 06656-06911 15000-15377 NO
27 06912-07167 15400-15777 NO
28 07168-07423 16000-16377 NO
29 07424-07679 16400-16777 NO L 8K
HP DYNAMIC 30 07680-07935 17000-17377 NO
MAPPING SYSTEM 31 07936-08191 17400-17777 NO
32 08192-08447 20000-20377 YES
33 08448-08703 20400-20777 NO L gk
HP FAST FORTRAN 34 08704-08959 21000-21377 YES
PROCESSOR 35 08960-09215 21400-21777 YES
EXTENDED MEMORY { 36 09216-09571 22000-22377 YES
AREA 37 09572-09727 22400-22777 YES L 10K
DS/1000 { 38 09728-09983 23000-23377 YES
39 09984-10239 23400-23777 YES
40 10240-10495 24000-24377 YES
41 10496-10751 24400-24777 NO L 11K
42 10752-10917 25000-25377 NO
HP RESERVED 43 10918-11263 | 25400-25777 NO
44 11264-11519 26000-26377 YES
45 11520-11775 26400-26777 YES 12K
46 11776-12031 27000-27377 YES
47 12032-12287 27400-27777 YES
48 12288-12543 30000-30377 YES
49 |12544-12799 | 30400-30777 YES |43k
50 12800-13055 31000-31377 YES
51 13056-13311 31400-31777 NO
52 13312-13557 32000-32377 NO
RECOMMENDED 53 13558-13823 32400-32777 NO |- 14K
FOR USER 54 13824-14079 33000-33377 NO
MICROPROGRAMMING 55 14080-14335 33400-33777 NO
56 14336-14591 34000-34377 YES
57 14592-14847 34400-34777 YES 15K
58 14848-15103 35000-35377 YES
59 15104-15359 35400-35777 YES
60 15360-15615 36000-36377 YES
61 15616-15871 36400-36777 NO L 16K
62 15872-16127 37000-37377 YES
63 16128-16383 37400-37777 NO

7115-8A

2-12

Figure 2-3. E-Series Control Memory Map

Functions

ADDRESS
SOFTWARE |-
CONTROL MEMORY |MODULE ENTRY
MODULE ALLOCATION| NO. DECIMAL OCTAL POINT
0 0-002551 | 00000-00377 YES
1 00256-00511 | 00400-00777 YES
HP BASE SET 2 00512-00767 | 01000-01377 YES ~ 1K
3 00768-01023 | 01400-01777 YES
4 01024-01279 | 02000-02377 YES
5 01280-01535 | 02400-02777 NO P
6 01536-01761 | 03000-03377 YES
7 01762-02047 | 03400-03777 NO
8 02048-02303 | 04000-04377 YES -
9 02304-02559 | 04400-04777 NO | 3k
10 02560-02815 | 05000-05377 NO
" 02816-03071 | 05400-05777 NO
12 03072-03327 | 06000-06377 YES
13 03328-03583 | 06400-06777 NO |4k
14 03584-03849 | 07000-07377 NO
15 03850-04095 | 07400-07777 NO
RVED
HP RESE 16 04096-04351 | 10000-10377 YES
17 04352-04607 | 10400-10777 NO e
18 04608-04863 | 11000-11377 NO
19 04864-05119 | 11400-11777 NO
20 05120-05375 | 12000-12377 NO
21 05376-05631 | 12400-12777 NO L 6K
22 05632-05887 | 13000-13377 NO
23 05888-06143 | 13400-13777 NO
24 06144-06399 | 14000-14377 NO
25 06400-06655 | 14400-14777 NO ok
26 06656-06911 | 15000-15377 NO
27 06912-07167 | 15400-15777 NO
AVAILABLE 28 07168-07423 | 16000-16377 NO
FOR USER 29 07424-07679 | 16400-16777 NO L ax
MICROPROGRAMMING 30 07680-07935 };200-173;; :8
HPOTNAMIC e i Tamon0zss T VES
MAPPING SYSTEM 33 08448-08703 | 20400-20777 NO L ok
HP FAST FORTRAN 34 08704-08959 | 21000-21377 YES
PROCESSOR 35 08960-09215 | 21400-21777 YES
EXTENDED MEMORY { 36 09216-09571 | 22000-22377 YES
AREA 37 09572-09727 | 22400-22777 'NO L 1ok
DS/1000 { 38 09728-09983 | 23000-23377 YES
39 09984-10239 | 23400-23777 NO
40 10240-10495 | 24000-24377 YES
SCIENTIFIC 41 10496-10751 | 24400-24777 NO 11k
INSTRUCTION SET a2 10752-10917 | 25000-25377 YES
43 10918-11263 | 25400-25777 NO
HP RESERVED { 44 11264-11519 26000-26377 NO
45 11520-11775 | 26400-26777 NO L oK
46 11776-12031 | 27000-27377 YES
47 12032-12287 | 27400-27777 YES
48 12288-12543 | 30000-30377 YES
49 12544-12799 | 30400-30777 YES 13K
50 12800-13055 | 31000-31377 YES
51 13056-13311 | 31400-31777 NO
RECOMMENDED 52 13312-13557 32000-32377 NO
FOR USER 53 13558-13823 | 32400-32777 NO L 4k
54 13824-14079 | 33000-33377 NO
MICROPROGRAMMING 55 14080-14335 | 33400-33777 NO
56 14336-14591 | 34000-34377 YES
57 14592-14847 | 34400-34777 YES L 15K
58 14848-15103 | 35000-35377 YES
59 15104-15359 | 35400-35777 YES
60 15360-15615 | 36000-36377 YES
61 15616-15871 | 36400-36777 NO L 16K
62 15872-16127 | 37000-37377 YES
63 16128-16383 | 37400-37777 NO

7115-5B

Figure 2-4. F-Series Control Memory Map

2-13

Functions

Several modules have already been allocated to established Hewlett-Packard firmware packages
which are shown in figure 2-3 for E-Series Computers and figure 2-4 for F-Series Computers. In
addition, some modules have been reserved by Hewlett-Packard for potential future enhancements.

The rest of control memory is for user microprogramming and modules 46 through 63 are recom-
mended. Section 6 of this manual describes how you can enter CM (through the software entry points
shown in the map) by using Assembly language User Instruction Group (UIG) instructions.

NOTE

With the exception of modules 0 through 3 (base set instructions),
there is no restriction on which modules you may use (see figure
2-3) to implement your microprograms. However, Hewlett-
Packard may also use other modules (in addition to those already
reserved) for future firmware accessories.

2-14. LET’S TALK ABOUT THE BASE SET

The complete base set listing, including the Jump Tables, is shown in appendix G for E-Series
Computers. For F-Series Computers modules 0, 1, and 2 are the same except for the jump tables and
these differences are provided in appendix G. Module 3 in F-Series Computers is used by the Hardware
Floating Point Processor. There isn’t a great amount of detail about the base set here because:

® You're probably not yet familiar with all the micro-orders and word types.

® The overall microprogram sequence of operation actually depends upon the sequence of Assembly
language instructions fetched from main memory.

® It’s assumed that you're primarily interested in doing your own microprogramming.

You will, however, be referring occasionally to the base set for examples of microprogramming
techniques that you may want to use in your own microprograms. (You'll also find plenty of applica-
tions type examples in parts II through IV.) Also, you will want to have a basic understanding of how
certain microroutines of the base set can act as utility microroutines for your microprograms.

The base set microprogram provides the capability to execute all the basic Assembly language
instructions described in your Computer Operating and Reference Manual. In modules 0 and 1 of the
base set are:

® Microroutines to execute instructions in the

— Memory Reference Group.

— Alter-Skip Group.

— Shift-Rotate Group.

— Input/Output Group.

— Extended Arithmetic Group.
2-14

Functions

® Microroutines that

— Control the Operator Panel.

— Load the Initial Binary Loader (from the selected Loader ROM).
— Execute the built-in firmware diagnostics.

— Handle interrupts.

— Fetch indirect operands.
Also in the base set, modules 2 and 3 contain:
® Microroutines for all the instructions in the Extended Instruction Group (EIG).
® Microroutines to execute all the Floating Point instructions.
The Jump Tables (shown in the block diagram, appendix H) map the data in the IR to the appropriate
location in CM to initiate instruction execution.
Some “typical” operations performed by the base set microprogram include:
® A power-up sequence.
® A “short form” diagnostic check of the CPU and main memory.
® An initial binary loading sequence.

e Operator Panel sequences such as scanning the pushbuttons by making conditional tests and
updating the DSPI and DSPL registers.

® Performing a read (fetch) operation to execute an instruction (e.g., Memory Reference Group,
Floating Point, etc.), then fetching the data to perform an ALU operation, and finally storing in a
register.

® Performing a write operation (e.g., an ISZ instruction).

® Performing I/O operations (e.g., CPU-initiated transfers, or device-initiated transfers of data with
Halt-Or-Interrupt microroutine transitions).

¢ Reading UIG instructions from main memory that map to the “user” microprogramming area in
control memory.

The timing relationships involved in operations such as the above mentioned will be discussed in
sections 5 and 7. Now, a brief look at how two of these operations are carried out by the base set.

2-15. AN OPERATIONAL OVERVIEW

The base set microprogram (with computer timing) accomplishes the tasks that, in the past, were
performed by “hardwired” portions of the computer control section. The following discussion provides
an overview of how the Computer Control Processor performs several operations in parallel in the base
set. The microroutines for the Assembly language XOR and ADA instructions are used as examples in

2-15

Functions

this discussion to illustrate several techniques that you should be aware of to effectively execute your

own microprograms. You may find it helpful to look again at the detailed block diagram in
appendix H.

2-16. FETCHING. “Fetching” (as briefly defined in paragraph 2-12) means obtaining the “next”
instruction to be executed from main memory. In this computer, a “look-ahead” technique is used for
this process. That is, fetching is begun while simultaneously completing the execution of the “current”
instruction; fetching is completed while preparing for execution of this “next” instruction. Usually this
is accomplished by starting a read operation (of the main memory address contained in the M-register)
Just prior to termination of the “currently” executing instruction microroutine.

For illustrative purposes, suppose that the “currently” executing microroutine is for an XOR instruc-
tion (that had been obtained from main memory location 2000). The M-register has already been
incremented so that as the microroutine for XOR is completing its execution, the read that is initiated
is for main memory location 2001. (Assume that with the completion of the XOR execution, an augend
is left in the A-register and that at main memory location 2001 there is an Assembly language ADA
instruction.)

Upon termination of this “current” Assembly language instruction’s microroutine, control passes to a
Fetch microroutine at the beginning of the base set which completes the read operation by storing the
instruction read from main memory into the IR. In this manner of “look-ahead” reading, the overhead
required for instruction fetching is minimized. Your user microprograms must be designed to termi-
nate in a similar manner and you will see specifically how to do this from information you will read in
section 7.

To continue, in the Fetch microroutine, in addition to completing the read operation by storing the
main memory instruction in the IR, an operand address is always formed in the M-register and
another read operation is started immediately. This is in anticipation that the instruction stored in the
IR is of the Memory Reference Group. If later it is determined that the instruction is of a different type,
the information arriving in the T-register will not be used.

In the example being used, an ADA instruction from main memory location 2001 has been stored in
the IR and an operand address (assume the address is 300) has been formed in the M-register. So the
read operation initiated at the beginning of the Fetch microroutine is obtaining the operand (the
addend) for the ADA instruction from main memory location 300 but the information has not yet
arrived in the T-register.

Next (still in the base set Fetch microroutine), the P- and M-registers are adjusted. During normal
execution P and M are always two and one (respectively) ahead of the current instruction’s address
(the instruction that is executing). After the read operation is initiated (to obtain the operand), the
P-register content is stored in M and P is then incremented.

In the example being used, recall that before the operand address (300) was formed in the M-register it
contained address 2001 (the address of the ADA instruction) and the P-register (if the rules stated
above are followed) contained 2002. Now the content of P is put on the S-bus, stored in M and
incremented through the ALU and stored back in the P-register. Thus, M is now adjusted to 2002 and
P is adjusted to 2003 in preparation for the read operation that will be initiated as the microroutine for
the ADA instruction (from main memory location 2001) is being executed.

2-16

Functions

You can see from the above example that you are now prepared to read the next sequential instruction
from main memory with the P-register one ahead of M and two ahead of the instruction being executed
(preparation to execute the example ADA instruction is being made as will be explained in the next
paragraph). When you study the micro-orders and word types in part II you will see that,
for proper operation, the situation for P and M (just described) will also have to exist for your own
microprograms.

Finally in the Fetch microroutine, the Instruction Register (IR) bits are examined to determine the
instruction type. That is, the upper eight bits of the IR are examined to determine where in control
memory to branch to execute the “current” instruction. This branch can be in the base set (as it is in
the example being used), or within the User’s area, or within the Hewlett-Packard microprogrammed
accessories area. Decoding via the Jump Tables (CM mapping) forces Control Processor operation to
the appropriate CM address to implement the instruction contained in the IR.

In the ADA instruction example being used, the special purpose base set micro-orders used cause the
upper eight bits of the IR to be applied as an address to the Jump Tables (ROM’s) which store the ADA
instruction’s microroutine address into the MJL. The MJL stores this address into the CMAR which
reads the first microinstruction for the ADA microroutine into the MIR. Simultaneously, the special
purpose base set micro-orders enable the interrupt logic and initialize the Save Stack. This is all done
to facilitate branches to microsubroutines which can be made to three levels. This completes the fetch
process. When the appropriate CM address has been reached, “execute” begins.

2-17. EXECUTION. Execution of the Assembly language instruction is carried out by the
specific micro-orders contained in the individual microinstructions of the appropriate microroutines as
they are decoded from the MIR.

Again, using the ADA instruction as an example, the first of the two microinstructions for ADA
immediately begins a read operation from the main memory address (2002) in the M-register (in the
“look-ahead” manner previously described) to obtain the next Assembly language instruction. But,
how do you get the addend from main memory to add to the A-register? Recall that the Fetch
microroutine has already begun a read operation. This read operation gets the ADA operand (addend)
from main memory (via the T-register), places it on the S-bus, routes it “as is” through the ALU, and
stores it in the L-register. So, for Memory Reference Group instructions, the read operation started in
the Fetch microroutine will be used to obtain operands by storing the T-register data in the desired
register.

The last action in the execution of the example ADA instruction occurs as the CMAR increments to the
next CM location (in a branching type microinstruction, other actions can occur) and CM loads the
MIR with the next microinstruction. Through action of the field decoders, the A-register content is
gated onto the S-bus and routed through the ALU with an “add” function enabled. This causes the
S-bus content (the augend from the A-register) to be added to the content of the L-register (the
addend). The microinstruction simultaneously enables a test for an overflow or carry-out condition
then stores the resultant data back in the A-register. In addition, this second microinstruction forces a
return of Control Processor operation to control memory location 0 to complete another main memory
fetch and prepare for another execution operation. (Remember that the read operation had been
started in a similar manner for the ADA instruction. You can see that a considerable amount of work
can be done with a single microinstruction.

To summarize, the main points that you should remember from the above discussion are that:

® A read operation begins in a “look-ahead” manner while the execution of the previous instruction
is carried out. Once a branch to your microprogram is made (by decoding a UIG type instruction), it
is possible for you to stay in the user microprogramming area until it is desired to return to the
fetch microroutine. Before returning, however, you should terminate your microprogram properly.

2-17

Functions

® Some other considerations also exist for write operations and these will be discussed in section 7.

® In regard to staying in your microprogram as long as desired (as mentioned previously in this
section), there is a danger of lost interrupts if you stay too long. These considerations should be
taken into account when you design your microprogram.

® The base set fetch microroutine acts as a utility microroutine for the main memory instruction
fetch and execute preparation. It also takes care of the P- and M-register adjustments. You should
make use of this microroutine in designing your microprograms. Also, in regard to interrupts, the
base set Halt-Or-Interrupt microroutine can be used as another microprogramming aid to handle
interrupts in your microprograms.

Interrupt examples were not included in the operational overview just presented; interrupts are
covered in part II of this manual.

2-18. MICROPROGRAMMED ACCESSORIES

In paragraph 2-13 you found that a few modules have already been reserved for Hewlett-Packard
microprogrammed accessories. Remember that all accessories for the computer do not require addi-
tional microprograms but if they do, the microprograms will generally be supplied as pROM’s to be
mounted on the FAB or on another CM extension (e.g., 2K UCS). Some accessories requiring micro-
programs may be supplied in a form that will require writing the microprogram to WCS before the
instructions involved can be executed. DCPC and Memory Protect do not require additional micropro-
grams. The mapping facility for all Hewlett-Packard microprogrammed accessories is in the base set.
For further information on accessories, see the appropriate manuals. Other microprogramming fea-

tures such as, the Microprogrammable Processor Port (MPP), Hardware Floating Point Processor
(FPP), and the block I/O transfer feature of the Computer are described in section 13.

2-19. SUMMARY

Sections 1 and 2 of part I have provided you with the following:

® Reasons for microprogramming.

® An awareness of what to microprogram.

® An overall look at the microprogramming procedure.

® A complete look at the computer hardware controlled by microprograms.

® Introductory information on some Hewlett-Packard accessories directly and indirectly associated
with microprogramming.

® An overview of control memory identifying the user’s area.
® A brief look at some base set operations.

In part II you will learn the microprogramming language and methods for microprogramming up
through preparation with the microassembler.

2-18

PART I
Microprogramming Methods

Section 3
MICROPROGRAMMING PREPARATION STEPS N

MICROPROGRAMMING
PREPARATION STEPS|[3

Assuming that you have analyzed your programming environment (as suggested in section 1) and
have decided to microprogram a portion of your program(s), there are certain steps necessary to
prepare your RTE operating system to accept the microprogramming environment. These are not
precisely the same steps to preparation as shown in figure 1-1 (Microprogramming Implementation
Process), but deal with the “background” situation. That is, as you can surmise from a review of part I,
a certain hardware/software situation must be made to exist in the RTE system which includes:

® Installation of some additional control memory “hardware” for storage of the additional micro-
programs (above those used in the base set). Normally this extra control memory must also be in
addition to that which you may have for microprogrammed accessories (such as DMS).

® Installation of microprogramming support software for microprogram development. It must be
realized that, as outlined in part I, it is not necessary to have “extra” software for microprogram-
ming once your microprogram has been “installed” in control memory (CM). The “extra” software
is necessary for development and, when WCS is used for the added CM, a driver and utility routine
are needed for dynamic loading of CM before microprogram execution.

This section outlines the RTE environment and the necessary hardware and microprogramming
support software installation steps.

3-1. ENVIRONMENT

The RTE Microprogramming Support Software package (described in paragraph 3-3) operates in the
RTE II or IV system environment with a software revision date code of 1631 or later. Therefore, your
RTE operating system must basically exist as defined in the Real-Time Executive IV Software System
Programming and Operating Manual, part no. 92067-90001 or Real-T'ime Executive II Software System
Programming and Operating Manual, part no. 92001-93001.

Microprogramming hardware that is-to be added (outlined in paragraph 3-2) must conceptually be
installed before system generation. Some microprogramming support software must be installed
during system generation and some may be installed just before use. (Section 8 and part III in this
manual provide instructions as to when certain programs may be installed other than at system
generation time.) Paragraph 3-3 describes system requirements for individual microprogramming
support software items.

3-2. MICROPROGRAMMING HARDWARE

The HP 13197A Writable Control Store Kit is the acceptable hardware for microprogram development
and it can, of course, be used for “normal operation” of your microprograms. It must be installed before
system configuration. Two additional WCS (or UCS) boards may be installed. (The total number of
control memory boards that can be installed is dependent upon the computer used.) Control memory
boards in the I/O section should be installed starting at SC 10. The operational states, hardware

3-1

Steps

supplied, and installation guidelines for WCS boards are contained in the HP 13197A Writable Control
Store Reference Manual, part no. 13197-90005. Additional information on the installation of the driver
for WCS follows in paragraph 3-3.

If you are going to install pROM’s, the microprograms must be developed, tapes prepared, and the
pROM'’s fused before they can be installed. This means you will have to install WCS (as mentioned
above) first, and the required microprogramming software (mentioned in paragraph 3-3) before the
pROM’s are ready for installation. Then, depending upon whether you select UCS or the FAB, your
RTE system will have to be disassembled to a certain extent to install the pROM’s.

If you select the HP 13304 A Firmware Accessory Board for pROM installation, you will not have to use
an [/O slot and reconfigure the RTE system, but you will have to remove the FAB board, install the
pROM’s, configure jumpers, and reinstall the FAB in the computer under the CPU.

NOTE

With an RTE IV system, the HP 13305A Dynamic Mapping
System (DMS) will probably be installed, and control memory
module 32 (dynamic mapping instructions) is installed on the
FAB. You will therefore already have the FAB and its cable. You
may or may not have the FAB with an RTE II system.

NOTE

With an F-Series Computer with RTE IV and DS/1000 the space
on the FAB will probably be completely used up by the following
HP-supplied microcode:

Dynamic Mapping System
Fast Fortran Processor
Extended Memory area
DS/1000

Scientific Instruction Set

The FAB will then not be available for user microprogramming.

To install pROM’s and configure CM address jumpers on the FAB or UCS board, refer to the following
documents.

® Your Computer Series Installation and Service Manual.
® HP 13304A Firmware Accessory Board Installation and Service Manual, part no. 13304-90001.

If you select the HP 13047A User Control Store Kit for your microprogram installation, the pROM’s
must be prepared then installed on the board following the instructions in the HP 13047A User
Control Store Kit Installation and Service Manual, part no. 13047-90001. You must then devote an I/O
slot (SC 10) in the backplane to UCS and reconfigure the RTE operating system as necessary following
instructions in the RTE System Operating Manual. (Refer to paragraph 3-1).

Steps

3-3. MICROPROGRAMMING SUPPORT SOFTWARE

In order to develop and run microprograms in a dynamic manner in the RTE operating system
environment you will need some, and possibly all, of the HP 92061 RTE Microprogramming Support
Software Package. The total package is outlined below.

¢ RTE Microassembler Program

o RTE Microassembler Cross-Reference Generator Program
o RTE Microdebug Editor Program

® RTE Microdebug Editor Subroutine

e RTE Driver DVR36

e WCS I/O Utility Routine WLOAD

e pROM Tape Generator program.

These programs, the driver, and utility routines are described below the applicable part numbers,
installation guides, and appropriate references. Note that to receive the microprogramming support
software on a magnetic tape cartridge you should specify option 020 for the HP 92061 package.

3-4. THE RTE MICROASSEMBLER

This program converts a source microprogram into binary object code which may be directed to an
output device and/or recorded on a disc file. The source may be input from an input device or the
system LS area. The object code may be produced in either a standard format recognized by the
Microdebug Editor program and the WLOAD routine or a special format for the HP ROM Simulator.
The microassembler can also generate a symbol table and listing of source records with the respective
octal code. The RTE system name for the program is MICRO. The program object part number of
MICRO is 92061-16001. In the RTE system, the microassembler can run with or without the File
Manager (FMGR) and requires about 8K words of background. Actually, to use the microassembler
purely for microassembling, no additional microprogramming hardware (i.e., WCS) is needed. All
information on preparation with the microassembler and on microassembler output is contained in
sections 8 and 9 of this manual.

3-5. MICROASSEMBLER CROSS-REFERENCE GENERATOR

The cross-reference generator is used (usually with the microassembler) to generate a cross-reference
table of symbols-to-CM addresses. The program can be run using a microassembler parameter list
option or separately using its RTE system name MXREF. The program object part number is
92061-16002. More detail on the RTE Microassembler Cross-Reference Generator is contained in
section 9 of this manual.

3-6. RTE MICRODEBUG EDITOR

This program allows you to debug and execute microprogram object code. The object code may be input
from a paper tape reader or a disc file, or it may be resident in WCS. The Microdebug Editor (MDE)
allows you to delete or replace microinstructions, set breakpoints, change registers, and so on.
Information on the use of the Microdebug Editor is contained in section 10 of this manual. In the RTE
system, the MDE requires about 8K words of background. When the MDE is user scheduled it is

3-3

Steps

identified by the program name MDEP. When it is called as a utility in the RTE system environment it
is identified by the progrtam name MDES. The program object (part number) of the MDE is supplied in
two parts: Microdebug Editor Program MDEP, part no. 92061-16004, and subroutine MDES, part no.
92061-16005. The HP 13197A WCS board is used with the MDE, which uses driver DVR36 and WCS
I/O Utility subroutine WLOAD for operation.

3-7. DRIVER DVR36

Driver DVR36 must be configured into the RTE system during system generation to provide software
linking between the MDE, WLOAD, or Assembly (or FORTRAN) language programs and WCS.

NOTE

The other microprogramming support software can be included
either during system generation or loaded into the system when
required.

DVR36 drives the HP 13197A WCS board(s) for reads and writes (from and to main memory) and
allows control of WCS board functions. The driver implements some resource protection mechanisms
which include ensuring that no two WCS boards are enabled with the same CM address spaces. The
driver utilizes DCPC, if so configured, and transfers data at the fastest rate permitted by the DCPC.
Non-DCPC transfers will take longer; the driver periodically suspends itself to ensure that interrupts
are not held off for too long.

The object part number of the driver is 13197-16001. When configured in the RTE system, the select
code (SC) number of the first WCS should be SC 10 because of hardware constraints. (More details on
DVR36 appear in section 11 of this manual and the driver manual is referenced in table 3-3.) In the
system, the driver can be called directly with an EXEC call, or through the WLOAD routine.
Introductory information on WLOAD follows.

3-8. WLOAD

The WCS I/O Utility Routine WLOAD (object part no. 13197-16003) uses DVR36 and transfers
microprogram object code into WCS when called by the MDE or by the Assembly (or FORTRAN)
language program. Section 11 in this manual and table 3-3 contain more information on WLOAD.

3-9. LOADING THE MICROPROGRAMMING SUPPORT SOFTWARE

The microprogramming support software can be loaded during System Generation or on line, using the
RTE LOADR. The exception to this is the driver, DVR36, which must be loaded at System Generation
time. (Refer to RTE Driver DVR36 Programming and Operating Manual, part no. 13197-90001.) The
two subroutines WLOAD and MDES can be included at System Generation so that they will be
available when calling programs are loaded on line.

With RTE disc based systems it is possible to load programs into different partitions depending on the
program type. Table 3-1 lists the program partitioning capability.

3-4

Table 3-1. Program Partitioning Capability

Steps

RTE TYPE HOR IV] v
PROGRAM NAME PGM TYPE 1 2 3 4 4
MICRO NO YES YES NO NO
MXREF NO YES YES NO NO
MDEP NO YES YES NO YES
PTGEN NO YES YES NO NO
MDES (see note) NO YES YES NO YES
WLOAD (see note) NO YES YES NO YES

NOTE: MDES and WLOAD are subroutines. This table refers to the type of calling program.

3-10. pROM TAPE GENERATOR

The pROM Tape Generator program (object part no. 92061-16003) may be used to generate mask tapes
for fusing (“burning”) pROM’s from the object code produced by the microassembler. For additional

information on the pROM Tape Generator, refer to section 12 in this manual.

3-11. PREPARATORY STEPS

Condensed information on your preparatory steps for microprogramming appear in table 3-2 with
references to the sections of this manual (or to applicable documents) for details. The letters in the
reference column are keyed to entries in table 3-3. Numerals refer to sections in this manual. WCS
boards to be used for microprogramming must be initialized before use. Section 14 provides examples

of the procedure that you may use.

3-5

Steps

Table 3-2. Preparatory Steps

STEP

TASKS

REFERENCE
(Table 3-3 or
manual sections)

10

iR

12

Establish your microprogramming goal. (Develop your own microprogram
directly or try one of the supplied examples first. For example, run a short
microprogram from start to finish by referring to section 14.

Become familiar with the computer and steps to microprogramming
(hardware, timing, and CM mapping).

Establish desired CM module and mapping scheme.

Plan, develop, and write first-pass microprogram (or if desired simple
sample microprogram).

Plan, develop, and write main memory linking program (Assembly
language).

Place RTE system off-line and power down if not already in this state.

Install the desired number of HP 13197A WCS boards in the computer
starting at SC 10.

Generate and configure the RTE system including at feast DVR36. (It is
probably desireable to also include at least WLOAD during system
generation).

Load the necessary (desired) microprogramming support software (from
the following list) into the RTE system.

— WLOAD (if not already loaded)
— Microassembler

— Cross-Reference Generator

— Microdebug Editor (MDEP)

— Microdebug Editor (MDES)

Microassemble your source.

If necessary, correct errors either at the source and microassemble again
or debug your microprogram using MDE and WCS.

CAUTION

It is possible to execute your microprogram from the MDE.
Ensure that the RTE system you are using for microprogram-
ming development does not have critical programs or produc-
tion type programs running concurrently.

Load main memory program that links to microprogram.

U, 4,7 8 14

C, LU V6 7 14

C,DEF

3.C

« — I G m

9, 10, 1

3-6

Table 3-2. Preparatory Steps (Continued)

Steps

REFERENCE
STEP TASKS (Table 3-3 or
manual sections)
13 Execute microprogram from main memory program (or MDE). C, 10, 11
CAUTION
Before executing development microprograms, ensure that
your RTE system is not involved in running production
programs.
14 If necessary, correct any logical errors discovered during microprogram 9, 10, 11
execution. Fix source (by microassembling again) or use MDE.
15 If you are preparing to fuse pROM's you must do so from a corrected 8, 9
microassembled object program (can not be done from an MDE
corrected version). Correct source, microassemble and execute micro-
program again. Go to step 16.
— OR —
If you are going to use dynamic microprogramming and your micro- 10
program executes properly it can be used through WCS. Development
complete at this point unless this was an example program. To develop
your actual microprogram, go to step 1. If you have special applications
(not fusing pROM's) go to step 20, 21, or 22 as appropriate.
16 To prepare mask tapes for pROM generation, load the pROM Tape C, K 12
Generator program.
17 Prepare mask tapes and have pROM'’s prepared. 12
18 Select appropriate accessory for pROM's and mount them. M or N
19 Place RTE system off-line, power down, install pROM facilities, then start B,C, M, orN
up and/or reconfigure the system (as appropriate).
20 If you are going to use the special microprogramming facilities (MPP, FPP, B, P 24713
or block 1/0), begin your microprogram development at step 1 with refer-
ence to the appropriate material listed to the right.
21 If you are going to be microprogramming for system use, start at step 1 B, P Q2 47,
with special reference to the appropriate material listed to the right. appendix C
22 If you are going to be microprogramming using HP accessories such as R, ST 47

DCPC, Memory Protect, or DMS, start at step 1 with reference to the
appropriate material listed to the right.

3-7

Steps

Table 3-3. Manual/Software Reference

REFERENCE
(from table 3-2)

MANUAL/SOFTWARE

HP 13197A Writable Control Store Reference Manual, part no. 13197-90005.

Your Computer Series Installation and Service Manual.

Real-Time Executive IV Software System Programming and Operating Manual, part no.
92067-90001, or Real-Time Executive Il Software System Programming and Operating
Manual, part no. 92001-93001.

RTE Driver DVR36 for HP 12978A/13197A Writable Control Store Board Programming
and Reference Manual, part no. 13197-90001.

Driver DVR36, object part no. 13197-16001.

WCS /0 Utility Routine, object part no. 13197-160083.

RTE Microassembler, object part no. 92061-16001.

RTE Microassembler Cross-Reference Generator, object part no. 92061-16002

RTE Microdebug Editor (stand-alone program, MDEP), object part no. 92061-16004.
RTE Microdebug Editor (callable subroutine MDES), object part no. 92061-16005.
RTE pROM Tape Generator, object part no. 92061-16003.

Your Computer Series Operating and Reference Manual.

HP 13304A Firmware Accessory Board Installation and Service Manual, part no. 13304-
90001.

HP 13047 A User Control Store Kit Installation and Service Manual, part no. 13047-90001.
HP 21MX/21MX E-Series Computer 1/O Interfacing Guide, part no. 02109-90006.
Your Computer Series Engineering and Reference Documentation.

HP 128978 Dual-Channel Port Controller Installation Manual, part no. 12897-90005.
HP 128928 Memory Protect Installation Manual, part no. 12892-90007.

HP 13305A Dynamic Mapping System Installation Manual, part no. 13305-90001.
Your RTE Guide for New Users.

HP RTE Assembler Reference Manual, part no. 92067-90003.

3-8

Section 4
MICROINSTRUCTION FORMATS N

MICROINSTRUCTION FORMATS

SECTION

4

Before going further into microprogramming, you must learn the “language” in order for discussions
on microaddressing, timing, etc., to be meaningful. In this section you will find:

The microinstruction word types.

The 24-bit microinstruction field divisions for each word type.

The microassembler formats.

The definitions and uses for all micro-orders.

The binary format for each micro-order.

Additional information that you will need to use the microassembler is presented in sections 8 and 9.

4-1.

MICROINSTRUCTION BINARY STRUCTURES

Figure 4-1 shows basically how the four microinstruction word types are related. This is an overall
comparison that may help while studying figure 4-2.

BITS

23] 22

21

20

19

16

WORD
TYPE

WORD
TYPE

-
|
|
20-=>»3mMTO

|
|

ALU

|

S-BUS

|

I
OPERAND

|
|
|

|

|
mMuOo—®

|

|

|

WORD
TYPE

WORD
TYPE

L
|
\

IOZPpau®@

I
I

|
|
|

+-eer - — = -

CONDITION

ADDRESS
(512 WORDS)

]

mwnzZmon

OImMN

ADDRESS
(16K WORDS)

!

|
~r»-~-Omwown

\

|

|

MOD. MEANS MODIFIER

71156

Figure 4-1. Word Type/Binary Format Summary

4-1

Formats

Figure 4-2 shows the binary format of all the micro-orders in their assigned fields. Specific
_ microinstructions are constructed from the available micro-orders for the particular word type. For
example,

READ NOR P S1 L1
(1001 11110 11110 10000 10010)
is a word type I microinstruction as it would appear in the microinstruction register (MIR).

Note that for word type I in figure 4-2, the S-bus and Store field micro-order mnemonics are nearly the
same. Where there are differences between the two fields, spaces are intentionally included to keep the
similar micro-order mnemonics lined up to simplify the use of the chart.

All micro-order definitions are given in table 4-1. The table can be used in conjunction with figure 4-2,
the binary format, or with figure 4-4, the microassembler format. You’ll be using the microassembler
format most, but the bits have to be looked at if you want to find the address of a branch jump) using a
microassembler listing, want to check the value of a constant, or look at the bit pattern of a
microinstruction to calculate the micro-orders. Appendix C contains a listing of binary fields-to-
micro-orders that will aid you in these tasks.

Formats

BITS |23|22|21|20(19 ({18 |17|16 |15 |14 |13 (12|11 |10| 9 |8 | 7|6 ls5ta|3|l2]1]0
FIELDS OPE(RC’)‘J;ON ALU S-BUS STORE SPECIAL
ARS 0001 ADD 00110 A 00011 A 00011 ASG 11000
CRS 0010 AND 10100 B 00100 B 00100 CLFL 01110
DIV 0101 CMPL 11010 CAB 00001 CAB 00001 cov 01011
ENV 1010 CMPS 11111 CIR 01010 DCNT 10101
ENVE 1011 DBLS 00011 CNTR 01011 CNTR 01011 FTCH 11011
LGS 0011 DEC 00000 DES 01110 IAK 11001
LWF 0110 INC 01111 DSPI 00111 DSPI 00111 ICNT 10110
MPY 0111 I0R 10001 DSPL 00110 DSPL 00110 INCI 11100
NOP 0000 NAND 11011 101 00101 IOFF 11111
NRM 0100 NOR 11110 100 00101 10G 00110
READ 1001 NSAL 11101 IRCM 01100 ION 00011
RTN 1111 NSOL 10111 L 01010 JTAB 00001
WRTE 1000 ONE 10011 LDR 01100 L1 10010
WORD OP1 01110 | M 01101 M 01101 L4 10011
TYPE oP2 01101 MEU 01001 MEU 01001 MESP 01010
1 OP3 01011 MPPA 00010 MPPA 00010 MPCK 11110
OP4 01010 MPPB 01000 MPPB 01000 MPP1 11010
OP5 01000 NOP 01111 NOP 01111 MPP2 01001
oP6 00111 P 11110 P 11110 NOP 00111
OP7 00101 PNM 01110 PRST 01101
oPg 00100 s 11111 s 11111 RJ30 00100
OP10 00010 SP 11011 SP 11011 RPT 10111
OP11 00001 s1 10000 S1 10000 RTN 00000
oP13 11100 s2 10001 $2 10001 R1 10100
PASL 10101 s3 10010 s3 10010 SHLT 11101
PASS 10000 s4 10011 s4 10011 SOV 01100
SANL 11000 S5 10100 s5 10100 SRG1 10001
SONL 10010 S6 10101 S6 10101 SRG2 10000
suB 01001 s7 10110 s7 10110 SRUN 01000
XNOR 10110 S8 10111 s8 10111 STFL 01111
XOR 11001 s9 11000 S9 11000
ZERO 01100 S10 11001 $10 11001
S11 11010 S11 11010
TAB 00000 TAB 00000
X 11100 X 11100
Y 11101 Y 11101
FieLos | OPERATION | MODI- OPERAND STORE SPECIAL
(OP) FIER
{ ANY 8-BIT CONSTANT TO (SAME AS ABOVE) | (SAME AS ABOVE)
THE S-BUS MODIFIED BY
MM 1110 | cmA BITS 18 AND 19)
11
WORD CMLO
TYPE 10
o HIGH
o1
Low
0o

7115-7

Figure 4-2. Micro-Order Binary Formats (Sheet 1 of 2)

4-3

Formats

BITs |23|22121 20|19 }18 |17 |16 |15 |14 |13 |12{11 |10 9|8 7|6 |5|a|3]|2]|1]0
FIELDS BRANCH CONDITION B ADDRESS SPECIAL
R
ALZ 00000 | A (ANY ADDRESS IN
ALO 00011 N CURRENT 512 WORD
é;}i g:;;; c BLOCK. IF THE
MP 1101 | onte 01101 | M MICROINSTRUCTION CNDX 00010
JSB 1100 | COUT 00010 |g IS LOCATED IN THE
RIN 1111 | E 11001 | LAST LOCATION OF
FLAG 11000 |p A 51219 WORD
HOI 00111 |g BLOCK THE TARGET
IR8 11110 | ADDRESS IS DEFINED
IR11 01001 AS THE NEXT 51219
WORD Lo 00100 WORD BLOCK. SEE
TYPE L15 00101 |g TABLE 4-1.)
B} MPP 01100 |
MRG 11111 |8
NDEC 10011 |4
NINC 10010
NINT 11010
NLDR 10000
NLT 10101
NMDE 10111
NMLS 01011
NRT 10100
NSFP 01110
NSNG 11100
NSTB 10001
NSTR 10110
ONES 00001
OVFL 11011
RUN 00110
RUNE 01010
SKPF 11101
FIELDS BRANCH ADDRESS MODIFIER/
SPECIAL
{ ANY ADDRESS IN THE IOFF 11111
16K WORD CONTROL 106G 00110
MEMORY) ION 00011
2 J74 00101
worRD | JMP 1101 | E NOP 00111
T$:E Js8 1100 | B RJ30 00100
Mg RPT 10111
0 STFL 01111
7115.8

4-4

Figure 4-2. Micro-Order Binary Formats (Sheet 2 of 2)

Formats

4-2, MICROASSEMBLER FORMATS

Figure 4-3 is similar to figure 4-1, but is arranged by the microassembler format. (The base set listing,
appendix G, is an example of the microassembler format.) You will be encoding your microprograms
for the RTE Microassembler this way. Note that the microassembler accepts a 72 column format.

MICROASSEMBLER
?
FIELD
NUMBER 1 2 3 4 5 6 _
SESC)
COLUMN |1 10 15 20 25 30 40 . 72
WORD
TYPE ALU S-BUS
I S
T
————— IS -0 - — — 2 A
R
WORD 0 E
TYPE P N MOD. OPERAND c
i L E P o
A R E M
- — B — — [~ - A c — - M o 4
E T Alx 5
WORD L ! BRANCH
TYPE o] L COND. SENSE A g
m N D
D
_____ - — —_ = R""_——_ZE_"‘
E
WORD S
TYPE s
jrv4
 —
MOD. MEANS MODIFIER
COND. MEANS CONDITION
=< MEANS MAKE NO ENTRY
71159

Figure 4-3. RTE Microassembler Word Format Summary

Figure 4-4 shows all micro-orders in their respective fields. When you have a good idea what each
micro-order does, you can use this figure and the block diagram (appendix H) to microprogram
expeditiously. Some microinstructions have requirements for the field entries, but the primary consid-
erations in determining their effect are generally:

e Word type

® S-bus action

® Specials and OP codes

® Store field action

® Branch conditions, if word type III or IV
4-5

Formats

4-3. WORD TYPE 1

Word type I is used to execute data transfers and operations between main memory, the I/O section,
Operator Panel, Microprogrammable Processor Port (MPP), and the computer registers. The S-bus
field specifies a register to be enabled onto the S-bus, the ALU field specifies an operation to be
performed between this data and the L-register, and the Store field specifies what register will receive
data at the end of the microcycle. The Special and Operation (OP) fields specify additional operations
(e.g., the Special field can command the Rotate/Shift logic). ALU and condition flags are set or cleared
after each word type I or II execution (if used) and remain in this state until changed by another
microinstruction. Also for word type I and II, the Special field may contain any one of the special
micro-orders except CNDX and J74. Summarizing word type I, you can handle:

¢ Arithmetic and logic functions

e Shifts and rotates

¢ Register manipulations

® Reading from and writing into memory

¢ Input and output operations

¢ Interrupts

¢ Subroutine returns

¢ Loaders

¢ Memory Protect

¢ Dynamic Mapping System operations

® Microprogrammable Processor Port functions*
*The microprogrammable Processor Port (MPP) is used to pass command and data signals to and from

user designed hardware in E-Series Computers, F-Series Computers use the MPP functions to access
the Hardware Floating Point Processor.

4-4. WORD TYPE 11

Word type I1 is used for constant generation and storage. The data in the Operand (or Constant) field is
enabled to the S-bus as either the upper byte (bits 15 through 8) or lower byte (bits 7 through 0) while
the alternate byte becomes all logical ones. The IMM micro-order must appear in the OP field. The four
micro-orders that can appear in the Modifier field control formation of the constant. As shown in figure
4-2, bit 18 controls which byte is selected for the constant. (Logical 1 means upper byte.) The ALU can
either pass or complement the entire 16-bit word. Bit 19 (figure 4-2) controls the ALU action. (Logical
1 complements the word.) The Store and Special field entries are identical to those for word type L.

4-5. WORD TYPE III

Word type III is used for conditional microbranches. A microbranch is executed only if the state in the
Condition field is met. You must always have CNDX coded in the Special field for this word type. If
CNDX is not in the Special field, it becomes a word type IV (an unconditional microbranch). The
Branch Sense field may be set (bit 14 a logical 1) by encoding RJS in the field and this will switch the
sense of the condition for the microbranch. (See figure 4-2.) The target address that gets put in the
Control Memory Address Register (CMAR) is always within the current 512,, microword addressing
space (except for conditional branches executed in the last location of the current 512,, microword
block, which will cause a branch into the next higher 512, block (target address + 512).) The return

4-6

Formats

_— A
BT
] 5 6 7
) L
LS o
20 25 30 40 Sy 72
ALU STORE S-BUS
ADD NSOL OP11 A MPPA S5 A MEU s5
AND ONE OoP13 8 MPPB s6 8 MPPA S6
CMPL OP1 PASL CAB NOP s7 CAB MPPB s7
CMPS oP2 PASS CNTR P S8 CiR NOP S8
DBLS oP3 SANL DSPI PNM s9 CNTR P s9
DEC oP4 SONL DSPL s $10 DES s $10
INC oPs sus 100 SP st DSPI sP s11
IOR OP6 XNOR IRCM s1 TAB DSPL s1 TA8
NAND OP7 XOR L s2 X 101 s2 X
NOR OP8 ZERO M s3 Y LDR s3 Y
NSAL OP10 MEU s4 M s4
MODIFIER STORE OPERAND
CMHI HIGH { SAME AS ABOVE) { DECIMAL OR OCTAL CONSTANT)
CMLO Low ¢
0
M
M
: — E —
CONDITION BRANCH SENSE ADDRESS N
A e T
ALZ Lo NRT RJS {(ANY IN CURRENT 512 WORD §
ALO L15 NSFP {OR NO ENTRY | BLOCK. IF RTN IS ENTERED
AL1S MPP NSNG IN OP FIELD, THIS FIELD MUST
CNT4 MRG NSTB BE BLANK). *IF THE MICRO-
INSTRUCTION IS LOCATED (N
THE LAST LOCATION OF A
CNT8 NDEC NSTR
COUT NING ONES 612;, WORD BLOCK THE TARGET
€ NINT OVFL ADDRESS IS DEFINED AS THE
FLAG NLDR RUN NEXT 512,) WORD BLOCK
(SEE TABLE 4-1).
HOI NLT RUNE
IR NMDE SKPF
IR11 NMLS
_ADDRESS
{ ANY ADDRESS IN
CONTROL MEMORY)
*
- A
e
Figure 4-4. Microassembler Format
Micro-Orders
7115-10

4-7/4-8

FIELD

~N
~N

NUMBER 1 2 3
b)Y
BEGINNING b
COLUMN
NUMBER 1 iy 10 15
CC
FIELDS OPERATION SPECIAL
ARS NOP ASG JTAB RTN
CRS NRM CLFL L1 R1
DIV READ cov L4 SHLT
ENV RTN DCNT MESP sov
ENVE WRTE FTCH MPCK SRG1
V;eg': LGS IAK MPP1 SRG2
T LWF ICNT MPP2 SRUN
MPY INCI NOP STFL
I0FF PRST
10G RJ30
ION RPT
FIELDS OPERATION SPECIAL
WORD
M
ORI M { SAME AS ABOVE)
I L
A
B
- — -
FIELDS L BRANCH SPECIAL
S
IMP CNDX
JSB { MUST BE ENTERED)
RTN
WORD
TYPE
m
FIELDS BRANCH MODIFIER/SPECIAL
JMP IOFF NOP
JSB 10G RJ30
ORD
v1!YPE ION RPT
s 174 STFL
3 L
B3

NOTES: *SEE TABLE 4-1 FOR ALLOWABLE ADDRESS ENTRIES

711510

ONLY ONE ENTRY PER FIELD

>< MEANS NO ENTRY ALLOWED

ENTRIES LEFT JUSTIFIED TO BEGINNING COLUMN OF FIELD

Formats

address is saved for JSB’s. If a RTN micro-order is encoded in the OP field, the address field must be
empty. Table 4-1 outlines what kind of address entries can be made for the microassembler format.
Summarizing word type III, you can accomplish:

¢ J/O Interrupt sensing

¢ Data and Arithmetic/Logic section condition sensing

¢ Operator Panel pushbutton operation sensing

4-6. WORD TYPE 1V

Word type IV is used for unconditional microbranches. Unconditional microbranches are always
executed. As in word type III, a return address is not saved when JMP is encoded in the OP field. A
microbranch modifier may appear in the Modifier/Special field and only seven (IOFF, I0G, ION, J74,
RJ30, RPT, and STFL) are available. Only four of the micro-orders actually modify the address. Word
type IV can be identified by no CNDX code. Also, there will only be at most three fields. The
microbranch target address can be anywhere in the 16K control memory address space. Address field
entries are listed in table 4-1.

As mentioned in paragraph 4-1, you might want to be familiar with the microinstruction bit patterns
so that you can calculate a microbranch address. When you look at a line of microassembler listing and
examine, for example, the octal representation for a JMP microinstruction, you might see:

00311 320 014047 JMP WAIT
where:

00311 is the location of this microinstruction and

320 014047 is the coded content at location 00311
By converting the octal control memory content to the 24-bit word, you can determine the label WAIT
address to be at 00301 as shown in figure 4-5. Note that the separation point between the three left

octal digits and the six right octal digits is between bits 15 and 16. This procedure applies in a similar
manner for any octal content conversion. Also see appendix B.

OCTAL CONTROL
MEMORY CONTENT 3 2 0 0 1 4 0 4 7

(BITS) 23 22|21 20 19|18 17 1641514 13 12(11 10 9 (8 7 6{5 4 3|2 1 O

B!IT PATTERN 1 1{0 1 0oJlo O OojJO0|0 O 1 1 0 o|0O O O|1T O Of|1 1 1 |
—_— | —_ —_— e — —_1 —_—! — —
WORD :.— ! - T SPECIAL
TYPE IV oP | ADDRESS . FIELD
FORMAT - . 1 R S T :_ . i
' [| | i ;
i [}

o , o |, 3 , o0 ! 1
[. |

AND ADDRESS [|

ADDRESS OF WAIT

7115-11 Figure 4-5. Jump Address Decoding
4-9

Formats

4-7. MICRO-ORDER DEFINITIONS

Definitions for each of the micro-orders (binary and microassembler format) appear in table 4-1. Note
that the operation codes (OP field) do not necessarily always dictate the entries in the other fields.
Also, as previously discussed, some word types share the same micro-orders. These definitions are
arranged alphanumerically in the table according to the order of microassembler field occurrence for
word type I through word type IV.

Explanations and examples of the use of many of these micro-orders appear in the sections that follow;
in particular, section 7. You may not want to read all the micro-order definitions before you start
microprogramming. If you have not been involved in microprogramming before and just want to scan

the table and look ahead, refer to sections 6 and 7, and parts III and IV of this manual where you will
find some microprogramming examples.

4-8. SUMMARY

Now you have references for the:

® Binary formats of the four word types.

® Binary patterns of all micro-orders.

® Microassembler formats of the four word types.
® Definitions for all micro-orders.

® Octal to binary conversion technique that you can reverse to convert micro-orders to the binary
format.

Also refer to the binary arrangement summary in appendix C.

4-10.

Formats

Table 4-1. Micro-Order Definitions

MICRO-
ORDER DEFINITION
WORD TYPE | OP FIELD
ARS Meaning: Perform a single bit arithmetic shift of the A- and B-registers combined, with the

A-register forming the low-order 16 bits. The direction of the shift is specified in the Special
field: L1 for left, R1 for right.

Required micro-order (field) entries:

op SPECIAL ALU STORE S-BUS
ARS L1 or R1 PASS B B

If the Special field contains L1, a O is shifted into bit 0 of the A-register; bit 14 of the B-register
is lost, but the sign bit (bit 15) remains unchanged. The Overflow register bit is set if B-register
bits 14 and 15 differ before the shift operation. One left shift multiplies by two, i.e., doubles the
number.

ARITHMETIC LEFT SHIFT: SPECIAL = L1
B-register A-register

15(14| o o o o ¢ o ¢ s 0o o| 1] 0 |e 1514..000-0-010P—Zer0

LS L2 R _ % _J LA

Lost

If the Special field contains R1, the sign (bit 15) is copied into bit 14 of the B-register and bit 0
of the A-register is lost. B-register bit 15 remains the same.

ARITHMETIC RIGHT SHIFT: SPECIAL = R1
B-register A-register

15|14 |® o o o & 0o 0o o ¢ o | 1|0 Pp{ 15| 14 | ¢« o o o o o o o o | 1 0 Lost

(AN_A A \ANMA ANA A

4-11

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
CRS Meaning: Perform a single bit circular rotate/shift on the combined A- and B-registers with the

A-register forming the low order 16 bits. The direction of the rotate is specified in the Special
field: L1 for left, and R1 for right.

Required micro-order (field) entries:

oP SPECIAL ALU STORE S-BUS

CRS L1 or R1 PASS B B

If the Special field contains L1, bit 15 of the B-register is transferred to bit 0 of the A-register.

CIRCULAR LEFT SHIFT: SPECIAL = L1

B-register A-register
15(14(® o ® o o o o o o 1 I 0 |<_.I 15| 14| o o & o o o & 1 0
k_k_ k_k_ k_R_ kR

If the Special field contains R1, bit O of the A-register is transferred to bit 15 of the B-register.

CIRCULAR RIGHT SHIFT: SPECIAL = R1

B-register A-register

151400...000010H151400.00000[10
A A NE AN AA A\ A

4-12

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
DIV Meaning: Perform a divide step where the divisor is in the L-register and the 32-bit dividend is

in the A- and B-registers (least significant bits in the A-register). This microinstruction is
usually repeated (16 times for a full word divisor) by specifying the Special field micro-order
RPT in the preceding microinstruction. This performs the successive subtractions required in
a divide algorithm.

Required micro-order (field) entries:
oP SPECIAL ALU STORE S-BUS

Div L1 SUB B B

The divide step is executed as follows:
a. Subtract the L-register from the B-register (ALU = B-L)

b. If a borrow is required to complete the subtraction, the ALU Carry Out flag is clear (0).
This carry out result means that the divisor (L-register) is too large. The ALU result is not
stored. The A-register and B-register are left shifted one bit and the divide step is
complete.

c. If aborrow is not required to complete the subtraction, the ALU Carry Out flag is set (1).
This means that the divisor is small enough and the result of the subtraction is left shifted
one bit and stored back into the B-register. Bit 15 of the A-register shifts into bit 0 of the
B-register and bit O of the A-register is set to 1 (the carry out result). The divide step is
complete.

Usage: The base set divide operation is shown in appendix G under the Extended Arithmetic
Group instruction microroutines at label DIV. This can be used as an example in your
microprogramming. When performing 16 divide steps, the numbers in the A- and B-registers
should have a 32-bit left shift executed before the RPT and the first divide step. This is
accomplished for proper bit alignment before the division. Also, the counter should be set for
the desired number of repeat steps before the 32-bit left shift. Example:

INITIAL CONTENTS:

B-register A-register L-register
Dividend 16 Most Dividend 16 Least &‘g:;:ne
Significant bits Significant bits

Value)

(Left Shifted)

AFTER REPEAT 16
TIMES OF DIVIDE

STEP:
B-register A-register L-register
Remainder 16-Bit Quotient Divisor
Doubled of (B, A) /L {Unchanged)

4-13

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | - OP FIELD (CONT.)

ENV

Meaning: Enable the overflow logic for the current ALU operation. If ADD is coded in the ALU
field, the Overflow register does not set unless requested.

Usage: To detect an overflow (i.e., set the Overflow register bit), ENV or ENVE (see below)
must be specified in the OP field of the microinstruction in which the condition is to be tested.
The Overflow register is set if the S-bus and L-register bits 15 are the same and bit 15 output
from the ALU is different. Caution is advised in the use of DEC (decrement) or INC (increment)
in conjunction with ENV. The L-register is always compared with the S-bus. Section 7 provides
further information on programmatically setting and clearing the Overflow register.

ENVE

Meaning: Enable the overflow and extend logic tfor the current ALU operation.

Usage: To detect (test for) an overflow (i.e., set the Overflow register bit), ENV (see above) or
ENVE must be specified in the OP field of the microinstruction in which the condition is to be
tested. To set the Extend register as a result of the ALU operation, the ENVE micro-order must
be specified in OP field of the microinstruction. The Extend register bit is set if there is a carry
generated by the ALU (ALU Carry Out flag = 1).

Example:
op SPECIAL ALY STORE S-BUS
[ENV] ADD S3 S3
[ENVE]

See section 7 information on programmatically setting and clearing the Overflow register.

4-14

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
LGS Meaning: Perform a single bit logical shift of the A- and B-registers combined, with the

A-register forming the low order 16 bits. The direction of the shift is specified in the Special
field: L1 for left, R1 for right.

Required micro-order (field) entries:

oP SPECIAL ALU STORE S-BUS

LGS L1 or R1 PASS B B

If the Special field contains L1, a O is shifted into bit 0 of the A-register and bit 15 of the
B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL = L1

B-register A-register
Lost4—-{£i14|°-°°'-o'—o[1 0H15 14 """oolT{ﬂd—Zero
®_/R_ L2 ®_ R _ k_k_

If the Special field contains R1, a 0 is shifted into bit 15 of the B-register and bit 0 of the
A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL = R1

B-register A-register

Zero 1514°""-°°°1[0H1514oo...o..LT{0]-—>L05t
A A

A A AA A A

4-15

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)

LWF Meaning: Perform a one bit rotational shift of a 17-bit operand in the Rotate/Shifter where bit
17 is formed by the CPU flag (link with flag). The data rotates left one bit if L1 is in the Special
field, or right one bit if R1 is in the Special field. If neither L1 or R1 are specitied, LWF clears the
CPU flag and no rotate takes place.

ROTATIONAL RIGHT SHIFT: SPECIAL = R1 ROTATIONAL LEFT SHIFT: SPECIAL = L1
ALU Contents ALU Contents
1514‘]’-.---.--.]1170 15141.0.-oo..-E]0
AN A ANA ®_R ®_S®_J
.
CPU Flag CPU Flag
MPY Meaning: Perform a multiply step where the multiplier is in the L-register and the multiplicand

is in the A-register.
Required micro-order (field) entries:

oP SPECIAL ALU STORE S-BUS

MPY R1 ADD B B

The multiply step is executed as follows:

a. If bit 0 of the A-register is a one, the L-register is added to the S-bus (B-register value).
The result is shifted right one bit and stored into the B-register with the ALU Carry Out flag
forming bit 15.

b. If bit O of the A-register is a zero, the S-bus (B-register value) is shifted right one bit and
stored back into the B-register with the ALU Carry Out flag forming bit 15.

c. Ineithercase, the A-register is shifted right and ALU bit O fills vacated bit position 15. Bit 0
of the A-register is lost. The multiply step is complete.

Usage: This microinstruction is usually repeated 16 times by specifying the Special field
micro-order RPT in the preceding microinstruction.

Each step of the multiply algorithm effectively multiplies the L-register by the A-register bit that
corresponds to the step; i.e., step one multiplies the L-register by bit O of A-register, step two
multiplies the L-register by bit 1 of the A-register, etc. Thus to multiply the L-register by all 16
bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts and additions, the initial content of
the B-register is added to the final result of the multiply algorithm. If the B-register is not zero
before the multiply steps are begun, 16 multiply steps will yield the 32-bit result in the B- and
A-registers (where the least significant bits (LSB'’s) are in the A-register).

4-16

Table 4-1. Micro-Order Definitions (Continued)

Formats

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (Cont.)
MPY (B,A) = [(AxL) + B]
(Continued)

This may be useful in some computational procedures. For example: X(2) = X (1) + (YxZ).

Initial Contents:

INITIAL CONTENTS:

B-register A-register L-register
Value to be added - -
to the final result Multiplicand Multiplier
AFTER REPEATING THE
MULTIPLY STEP 16 TIMES:
B-register A-register L-register
(AxL) + 8 (AxL)+B .
16 Most 16 Least Multiplier
Significant bits Significant bits (Unchanged}

4-17

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
NOP Meaning: No operation is specified for the OP field.
Usage: This is the default micro-order when the OP field is left blank.
NRM

Meaning: Perform a one bit shift on the 48-bit combined value of the B-register, A- reglster
and S-bus data (normalize a 48-bit floating point number) as follows.

Left shift: The left normalizing shift requires that the following micro-orders be used:
orP SPECIAL ALU STORE S-BUS

NRM L1 PASS * *

*Desired Register

This will arithmetically shift the B-register, A-register, and S-bus data left one bit. If B-register
bits 15 and 13 are different before the shift, the Repeat flip-flop is cleared. (Refer to the

explanation of normal Repeat flip-flop operation under RPT in the Special field. This operation
is an exception.)

B-register A-register S-bus

[[Tob e [Tkl [e e

Right shift: The right normalizing shift requires that the foflowing micro-orders be used:

opP SPECIAL ALU STORE S-BUS

NRM R1 PASS " *

*Desired Register

This will arithmetically shift the B-register, A-register, and S-bus data right one bit with the sign

bit of the B-register preserved. No "special” conditions will clear the Repeat flip-flop (as
opposed to the left shift usage).

B-register A-register S-bus

[15L141;- . .11[0 l——>!15—[14|- . 'j1TO]_>{1il1{F. . 'F (0]

4-18

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (Cont.)
NRM A second application of the NRM micro-order is in "denormalization”, or aligning floating point
(Continued) numbers (with different exponents). In this case, one or the other of the numbers is operated

on to adjust the exponent and shift the floating point into the proper position. The number of
alignment shifts is passed into the counter and the microinstruction below is repeated the
appropriate number of times.

oP SPECIAL ALU STORE S-BUS
NRM R1 PASS S1 St
Usage: The use of NRM in the left shift application is not as obvious as right shift. For

example, assume a 48-bit two's complement number in the B-, A-, and S1-registers is to be
quickly normalized. The following demonstrates the process:

ALY/ S-BUS-
LABEL or SPECIAL COND. STORE ADDRESS
NRM48 IMM LOW CNTR 0
DBLS L B
XOR B
JMP CNDX AL15 “+4
RPT
NRM L1 PASS S1 S1
JMP NRM48+ 1

Upon exit, the number is normalized and the counter contains the two's complement of the
number of shifts performed.

NOTE

Floating point numbers are considered normalized when the mantissa sign
bit and adjacent bit are opposite in polarity and the mantissa falis in a range
of a set of numbers between zero and everything up to but not including
one.

4-19

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | OP FIELD (CONT.)

READ

Meaning: Read data from main memory at the address specified in the M-register and store
into the T-register. The CPU will pause if main memory is busy.

Usage: The M-register must be loaded prior to or during the microinstruction containing the
READ micro-order. The data from main memory must be removed from the T-register within
three microinstructions after the READ. Optimum performance is realized when the maximum
number of microinstructions allowable are used between READ and TAB. Refer to section 7
for READ micro-order use considerations.

RTN

Meaning: Jump to the return address, i.e., branch by “popping” the “top” address in the
Save Stack into the CMAR. Note that there can be three levels of microsubroutines (JSB's).

Usage: For word type |, CNDX is not allowed in the Special field so the “pop” operation and
branch are unconditionally made.

WRTE

Meaning: Write the data in the T-register into the main memory address specified in the
M-register. The CPU will pause if main memory is busy.

Usage: The T-register must be loaded during the microinstruction containing the WRTE
micro-orders. Refer to section 7 for WRTE micro-order use considerations

4-20

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE | AND Il - SPECIAL FIELD

ASG Meaning: Bits 6 and 7 of the Instruction Register (IR) determine which of the following
functions are to be performed:

IR bit Alter/Skip Group

7 6 Instruction

0 1 (CLE) Clear Extend register

1 0 {(CME) Complement Extend
register

{(CCE) Set Extend
register

Also, this micro-order loads the top of the Save Stack into the CMAR if the Alter/Skip Group
conditions are not satisfied. It does not “pop” the Save Stack (i.e., the address also remains in
the stack). The operation specified in the ALU field is forced to a PASS if IR bit 2 is a zero.

Usage: This micro-order is used in the base set microprogram to implement the Alter/Skip
Group instructions. It will not normally be used by the microprogrammer. Refer to section 7
use considerations.

CLFL Meaning: Clear the CPU flag.

Ccov Meaning: Clear the Overflow register. Refer to section 7 for information on programmatically
setting and clearing the Overflow register.

DCNT Meaning: Decrement the counter (the lower 8 bits of the IR) by one.

FTCH Meaning: This micro-order (for use only in the base set) adjusts the Save Stack and performs
other operations in relation to Memory Protect. If you are going to perform system emulation
you will find further details on this micro-order in appendix C. Otherwise, it is not to be used for
“normal” microprogramming.

tAK Meaning: Freeze the computer until time period T6 and then load the interrupt address into
the Central Interrupt register (CIR) and generate an IAK signal to the I/O section. Clears the
Indirect Counter in Memory Protect. Also places the dynamic mapping into the system map.
This microorder should not be used in a microinstruction with a READ or WRITE.

Usage: Not normally used by the user microprogrammer. Refer to section 7 for interrupt
handling techniques.

ICNT Meaning: Increment the counter (the lower 8 bits of the IR) by one. Must not be followed by a
word type Il with a CNT4 or CNT8.

INCI Meaning: Increment the Indirect Counter in Memory Protect (if installed) by one.

Usage: Used by microprograms that implement indirect addressing. If INC| is executed three
times before the next FTCH or IAK appears in the Special field, the Interrupt Enable flag is set
to allow the CPU to recognize interrupts. Used to prevent mulitiple indirect addressing levels
from holding off recognition of IO interrupt requests. If the following microinstruction includes
a JTAB in the Special field, the actual branch called by JTAB is made only if the condition
mapped by bits 19 through 14 of that microinstruction are met. Refer to section 7 for interrupt
handling techniques.

4-21

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | AND Ii - SPECIAL FIELD (CONT.)

IOFF

Meaning: Turn off the Interrupt Enable flag to disable recognition of power fail and I/O
interrupts (does not disable Memory Protect or parity interrupts).

Usage: After the occurrence of a JTAB or three occurrences of INCI (if Memory Protect is
installed) interrupts are again recognized.

IOFF should be used with caution since holding off interrupts could cause the loss of input and
output data. Refer to section 7 for interrupt handling techniques.

100G

Meaning: Freeze the CPU urtil time pericd T2. Then enabie the generaiion of /O timing
signals dependent upon the instruction in the IR.

Usage: Microprogrammed input and output require cooperation between the 1/O section and
microprogram control. Familiarity with the /O system is mandatory. Refer to section 7 for
information on forming and executing /O microinstructions.

ION

Meaning: Turn on the Interrupt Enable flag and allow the CPU to recognize power fail and /O
interrupts until the micro-order I0FF is executed.

Usage: An interrupt from any I/O device can be detected in two ways:

a. IfaJTAB micro-order is executed and an interrupt is pending or the Run flip-flop is clear,
execution is forced to control memory (CM) location 6 (the Halt-Or-Interrupt microroutine).

b. A test for interrupt pending or Run flip-flop clear can be performed by the executing
microprogram by having an HOI encoded in the Condition field of a word type IIi
microinstruction. Or, a test for a pending interrupt can be made by having NINT encoded
in a word type Il Condition field. The micro-order ION allows interrupts to be recognized.
However, interrupts are not generated by the interrupt system unless an STF 0 /O control
command has been executed. Refer to the discussion of the interrupt system in your
Computer Series Operating and Reference Manual. Refer to section 7 of this manual for
interrupt handling considerations.

JTAB

Meaning: This micro-order (for use only in the base set) maps instructions in the IR to the
proper location in CM. If you are going to perform system emulation, you will find further
details on this micro-order in appendix C. Otherwise, it is not to be used for “normal”
microprogramming.

L1

Meaning: Left shift one bit command to the Rotate/Shifter.

L ost 151 141 ° o o o o o o & & o) 1 0 |4— Zero

k_k_ k_k_

Usage: Refer to MPY, DIV, CRS, LGS, ARS, NRM, and LWF. Without one of the previous OP
field micro-orders, L1 performs a one bit logical left shift on data leaving the ALU.

4-22

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE | AND |l - SPECIAL FIELD (CONT.)

L4 Meaning: Four bit left rotate command to the Rotate/Shifter.

TO R/S 'll; 1411ﬂl2l11 1019[8FT6[?[4L3—[2 ‘I]O

[sTw a2 ro[s [a [+ Ts [s e a2 o]

TO T-bus

MESP Meaning: Dynamic Mapping System (DMS) signal generation micro-order used in conjunc-
tion with the MEU micro-order in the Store and S-bus fields. Eight different functions are
performed (designated QO through Q7 for reference) by combinations of MESP and MEU. The
combinations of these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MESP and MEU micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MESP and MEU micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand the
DMS before using these micro-orders.

MPCK Meaning: Request a Memory Protect check of the address in the M-register for a Memory
Protect fence or DMS violation.

Usage: This micro-order is used with any instruction that may cause a Memory Protect or
DMS violation by entering or modifying protected memory. It need not be used if Memory
Protect is not installed in the computer. It is subject to the following:

a. Micro-orders IRCM, M, or PNM can not be specified in the Store field.

b. The M-register must have the address to be checked when the microinstruction using
MPCK is executed. (MPCK is usually used with the WRTE micro-order in the OP field.)
Refer to section 7 for reading, writing and /O considerations using MPCK.

C. Ifthere is not a READ or WRTE micro-order in the OP field (of the same microinstruction),
the MPCK must follow the microinstruction containing a READ or WRTE by one or two
microinstructions. The MPCK must never be further than two microinstructions away if
Dual-Channel Port Controlier (DCPC) is installed in the computer. The microinstruction
below demonstrates a typical use of MPCK.

OoP SPECIAL ALU STORE S-BUS

WRTE MPCK PASS TAB S1

4-23

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | AND Il - SPECIAL FIELD (CONT.)

MPP1

Meaning: Generate a signal PP1SP to the Microprogrammable Processor Port (MPP).

Usage: Refer to the HP 21MX/21MX E-Series Computer 1O Interfacing Guide for further
information. Example microprogrammed use can be found in section 13 of this manual.

MPP2

Meaning: Generate a signal PP2SP to the MPP.

Usage: Refer to the HP 21MX/21MX E-Series Computer 1/O Interfacing Guide for further
information. Example microprogrammed use can be found in section 13 of this manual.

NOP

Meaning: No operation in the Special field.

Usage: This is the default operation if no other micro-order is specified in the Special field.

PRST

Meaning: This micro-order will clear the A- and B-Addressable flip-flops (AAF and BAF).

Usage: This may be used by the microprogrammer 1o gain access to main memory locations
0 and 1. Refer to section 7 for read and write operation considerations.

RJ30

Meaning: When used in aword type | or It microinstruction (available also in word type 1V), the
definition of RJ30 is identical to that of a READ micro-order in a word type | OP field (i.e., a
read operation takes place and no address modification action is defined).

RPT

Meaning: Repeat the next microinstruction for the number of times specified by the positive
number in the least significant four bits of the IR counter.

Usage: The next microinstruction must be a word type | and must not contain RTN in the OP
field or RTN or JTAB in the Special field. The Repeat flip-flop is set by this micro-order which
prevents the updating of the Microinstruction Register (MIR) and CMAR at the end of the next
microinstruction. The counter decrements after each execution of the next microinstruction
and, when the lower four bits are all zeros, the Repeat flip-flop is cleared. (Refer to the NRM,
OP field micro-order for exception.) If the four least significant bits of the counter are zeros, the
next microinstruction will be repeated 16,, (20;) times.

RTN

Meaning: Return from a microsubroutine; i.e., branch to the CM address in the Save Stack.
This address is loaded into the CMAR. If the Save Stack is empty (no microsubroutine
previously executed), a return is made to CM location O (zero).

Usage: Three levels of microsubroutines are the maximum allowable. RTN overrides the
effect of a JMP or JSB in the OP field which are not allowable with RTN encoded in the Special
field.

R1

Meaning: Right shift one bit command to the Rotate/Shifter.

Zero 15{14 e o ¢ ¢ ¢ o ¢ ¢ o o | 1| O |—p Lost

NE A ANA

Usage: Used in conjunction with the shift and rotate micro-orders. Refer to MPY, DIV, ARS,
NRM, CRS, LGS, and LWF. Without one of the previous micro-orders, a single bit logical right
shift is executed.

4-24

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND 1l SPECIAL FIELD (CONT.)
SHLT Meaning: Clear the Run flip-flop.
Usage: The Run flip-flop and RUN LED on the Operator Panel is actually cleared at the
completion of the word type | or Ii microinstruction following the one specifying SHLT. This
micro-order should be used with caution by the microprogrammer.
SOV Meaning: Set the Overflow register. Refer to section 7 for information on programmatically
clearing and setting the Overflow register.
SRG1 Meaning: Execute the shift/rotate function specified by bits 6 through 9 of the IR. (Refer to

your Computer Series Operating and Reference Manual.) The shift-rotate function is per-
formed on the data that leaves the ALU. If IR bit 5 is set, clear the E-register (Extend register)
after the shift. The function performed in the Rotate/Shifter is determined by IR bits 6 through 9
as follows:
BITS
9876 FUNCTION PERFORMED IN ROTATE/SHIFTER

1000 Arithmetic left shift one bit.
1001 Arithmetic right shift one bit.
1010 Rotational left shift one bit.
1011 Rotational right shift one bit.

1100 Arithmetic left shift one bit, clear sign (bit 15).

1101 Rotational right shift one bit with E-register forming bit 16
17th bit).

1110 Rotational left shift one bit with E-register forming bit 16 (the
17th bit).

1111 Rotational left shift four bits.

Oxxx No shift (bits 8, 7, and 6 can have any setting) except if bits 8, 7, and 6 are

101 or 110 and E-register could be undesirably updated. (Refer to your
Computer Series Operating and Reference Manual Shift/Rotate Group infor-
mation for instructions on how to avoid this situation.)

Usage: Refer to section 7 for considerations when using SRG1.

4-25

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND lISPECIAL FIELD (CONT.)

SRG2 Meaning: Execute the shift/rotate function specified by bits 0, 1, 2, and 4 of the IR. (Refer to
your Computer Series Operating and Reference Manual.) The shift/rotate function is per-
formed on the data that leaves the ALU. The top of the Save Stack is loaded into the CMAR
unless IR bit 3 was set (a logical 1) and bit 0 of the T-bus was zero during the last word type |
or |l microinstruction executed. The function performed in the Rotate/Shifter is determined by
IR bits 0, 1, 2, and 4 as follows:

BITS

4 210 FUNCTION PERFORMED IN ROTATE/SHIFTER

1 000 Arithmetic left shift one bit.

1 001 Arithmetic right shift one bit.

1010 Rotational left shift one bit.

1 011 Rotational right shift one bit.

1 100 Arithmetic left shift one bit, clear sign (bit 15).

1 101 Rotational right shift one bit with E-register forming bit 16 (the
17th bit).

1110 Rotational left shift one bit with E-register forming bit 16 (the
17th bit).

1 111 Rotational left shift four bits.

0 xxx No shift (bits 2, 1, and 0 can have any setting) except if bits 2, 1, and 0 are
101 or 110, the E-register could be undesirably updated. (Refer to your Com-
puter Series Operating and Reference Manual Shift/Rotate Group information
for instructions on how to avoid this situation.)

Usage: Refer to section 7 for considerations when using SRG2.

SRUN Meaning: Set the Run flip-flop.

Usage: The RUN condition is not actually set until the next word type ! or Il is executed.

STFL Meaning: Set the CPU flag.

4-26

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | ALU FIELD
NOTE
Symbols used in the following ALU field equations are defined here for
reference.
+ means arithmetic function +
- means arithmetic function —
means logical function “and”.
+ means logical function “or".
) means logical function “exclusive or".
SorL means the one's complement of the S-bus or the one’s comple-
ment of the L-register.
ADD Meaning: Add the data placed on the S-bus to the contents of the L-register.
AND Meaning: Logical "and” the L-register and S-bus: (L-S).
CMPL Meaning: Ones Complement the L-register.
CMPS Meaning: Ones complement data on the S-bus.
DBLS Meaning: Perform the following arithmetic function in the ALU with the S-bus: S plus S.
DEC Meaning: Decrement data on the S-bus by one.
INC Meaning: Increment data on the S-bus by one.
IOR Meaning: Logical “inclusive or" the L-register and S-bus: (L+S).
NAND Meaning: Logical “nand” the L-register and S-bus: (L+9).
NOR Meaning: Logical “nor” the L-register and S-bus: (L+3S).
NSAL Meaning: Logical “and” the complement of the S-bus and the L-register: (S« L).
NSOL Meaning: Logical “or” the complement of the S-bus and the L-register: (S+L).
ONE Meaning: Set all 16 bits (logical one's) input to the Rotate/Shift logic.
OP1 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus 1.
OP2 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus 1.
OP3 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
S plus (S+L) plus 1.
OP4 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:

(S+1L) plus (S-T) plus 1.

4-27

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - ALU FIELD (CONT.)

OP5 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L). This micro-order has the same effect as the SANL micro-order.

OP6 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
S plus (S-L).

OP7 Mea_rling: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus (S-L).

OP8 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) minus 1.

OP10 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus S,

OP11 Meaging: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus S.

OP13 Meaning: Pass all zeros to the Rotate/Shifter. This micro-order has the same effect as the
ZERO micro-order.

PASL Meaning: Pass the L-register’'s contents to the Rotate/Shifter.

PASS Meaning: Pass the S-bus data to the Rotate/Shifter. PASS is the default micro-order (NOP) in
the ALU field. If no micro-order is encoded in the ALU field in a word type | microinstruction, a
PASS will be inserted during microassembly. Data is not modified when a PASS appears in the
ALU field.

SANL Meaning: Logical “and” the S-bus and the complement of the L-register (S« [); pass the result
to the Rotate/Shifter. This micro-order has the same effect as the OP5 micro-order.

SONL Meaning: Logical “or” the S-bus and the complement of the L-register (S+ L); pass the result
to the Rotate/Shifter.

SUB Meaning: Subtract the L-register from the S-bus and pass the result to the Rotate/Shifter.

XNOR Meaning: Logical “exclusive nor” the L-register and S-bus (L&S); pass result to the Rotate/
Shifter.

XOR Meaning: Logical “exclusive or' the L-register and S-bus (L@S); pass the result to the
Rotate/Shifter.

ZERO Meaning: Pass all zeros to the Rotate/Shifter. This micro-order has the same effect as the
OP13 micro-order.

4-28

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND II- STORE FIELD
A Meaning: Store the data on the T-bus in the A-register.
B Meaning: Store the data on the T-bus in the B-register.
CAB Meaning: Store the data on the T-bus in the A- or B-register according to the value of IR bit 11:
IR bit 11 zero means A-register.
IR bit 11 one means B-register.
CNTR Meaning: Store the lower eight bits of the S-bus (bits 0-7) in the counter (lower 8 bits of the
IR).
Usage: Refer to section 7 use considerations.
DSPI Meaning: Store the one's complement of the lower eight bits of the S-bus in the Display

Indicator on the Operator Panel. (Note that only the least significant six bits are displayed.)
This display indicates which register (or function) information appears in the Operator Panel
Display Register. Refer to your Computer Series Operating and Reference Manual for details
on the Operator Panel and its operation in the normal and special modes. The six indicators
on the Operator Panel are associated with the S-bus as follows:

Display Indicator
(S- bus) bit

Register Displayed
in Norma! Mode

Function Displayed
in Special Mode

NOTE: Bits 7 and 6 not used.

Usage: The Operator Panel Display Indicator or Indicators can be Iit by bits 5 through 0 from
the S-bus as follows:

oP SPECIAL MOD. STORE OPERAND

IMM LOW DSPI 373B

Lights indicator pointing to M-register.

whereas:
g’ SPECIAL MOD. STORE OPERAND
IMM LOW DSPI 010B

.

Lights all indicators (Special mode) except the function “t" mode (i.e.,
indicates that DMS map content is displayed in the Display Register).

4-29

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | AND il - STORE FIELD (CONT.)

DSPL

Meaning: Store the data on the S-bus in the Operator Panel Display Register. This information
should be coordinated with the Display Indicator.

100

Meaning: Enable the S-bus onto the /O bus.

Usage: To be used properly, this micro-order must be issued at T4 and T5 after an I10G
(Special field) micro-order for I/O operation. The 100 micro-order is not the same as the 100
backplane signal. Refer to section 7 use considerations.

IRCM

Meaning: Store the S-bus in the IR. Record the type of Assembly language instruction stored
in the IR in Memory Protect hardware for use in determining any error conditions that occur
during execution of the instruction. Store the least significant ten bits of the S-bus into the least
significant ten bits of the M-register and clear the upper five bits of the M-register if S-bus bit
10 is zero.

Usage: Refer to section 7 for information on interfacing with Memory Protect.

Meaning: Store the data at the output of the ALU into the L-register.

Usage: The L-register is used as the second operand in arithmetic functions.

Meaning: Store the data on the S-bus in the M-register.

Usage: Do not store into the M-register between the READ micro-order and the subsequent
TAB if references to the A- or B-registers are possible. Refer to section 7 for TAB micro-order
use considerations.

MEU

Meaning: DMS signal generation micro-order used in conjunction with Special field micro-
order MESP and S-bus field micro-order MEU. Eight different functions are performed (desig-
nated QO through Q7 for reference) by combinations of MESP and MEU. The combinations of
these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MEU and MESP micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MEU and MESP micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand the
DMS before using these micro-orders.

MPPA
and
MPPB

Meaning: Generate the signals MPPAST and MPBST to the MPP.

Usage: Refer to the HP 21MX/21MX E-Series Computer /O Interfacing Guide for further
information. Example microprogram use can be found in section 13 of this manual.

NOP

Meaning: No store operation is performed; this is the default micro-order when the Store field
is left blank.

Meaning: Store the data on the T-bus in the P-register (Program Counter).

4-30

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND Il - STORE FIELD (CONT.)
PNM Meaning: Store the data on the T-bus in the P-register (Program Counter), and the data on the
S-bus in the M-register.
Usage: Useful in microprograms which perform multiword READ operations from main mem-
ory, where the P-register points to the address in main memory to be read. In a single
microinstruction, the microprogram can store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an application is as follows:
or SPECIAL ALU STORE S$-BUS
READ INC PNM P
Refer to section 7 for the use of PNM in microinstructions with READ and WRTE micro-orders.
If MPCK is used in the Special field, PNM cannot be used in the Store field.
S Meaning: Store the data on the T-bus in the S-register.
SP Meaning: Store the data on the T-bus in the SP-register.
S
thru Meaning: Store the data on the T-bus in the indicated Scratch Register (S1 through S11).
S11
TAB Meaning: Store the data on the T-bus in the A-register if the AAF (A-Addressable flip-flop) is
set; store the data on the T-bus in the B-register if the BAF (B-Addressable flip-flop) is set;
store the data on the S-bus in the T-register (Memory Data Register) if neither AAF nor BAF is
set. Data on the M-bus (as it loads the M-register) determines the setting of AAF or BAF as
follows:
M-bus address FF States Register referenced
when M-register by TAB in store
store is specified AAF | BAF {or S-bus) field.
0 1 0 A
1 0 1 B
Any other value 0 0 T
Note that the PRST micro-order clears the AAF and BAF flip-flops.
Usage: This micro-order must occur concurrently when a WRTE micro-order is used. The
T-register is internal to the Main Memory section. It must not be used as a working register.
TAB may not be in both the Store and S-bus fields. Refer to section 7 for microprogramming
considerations and the use of TAB.
X Meaning: Store the data on the T-bus in the X-register.
Y Meaning: Store the data on the T-bus in the Y-register.

4-31

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - S-BUS FIELD
A Meaning: Place the contents of the A-register on the S-bus.
B Meaning: Place the contents of the B-register on the S-bus.
CAB Meaning: Place the contents of the A- or B-register on the S-bus according to the value of IR
bit 11:
IR bit 11 zero means A-register.
IR bit 11 one means B-register.
CIR Meaning: Place the contents of the CIR on the S-bus (bits 5 through 0).
CNTR Meaning: Place the contents of the counter (lower 8 bits of the IR) on the lower 8 bits of the
S-bus; the upper 8 bits are ones. See “NOTE” under 10, below, and TAB “Usage’, page 4-34.
DES Meaning: Enable the Remote Program Load Configuration Switches onto the S-bus. These
are a set of eight programmable switches that place data on the S-bus as follows:
NOTE
An open switch represents a logical 1 on the S-bus.
Switch No. 8 7 6 5 4 3 2 1
S-Bus bit 15114 (10| 9 8 7 6 0
Undriven S-bus bits are logical ones.
Usage: Used in the base set microprogrammed bootstrap routine. Refer to your Computer
Series Operating and Reference Manual operating procedures for additional loader infor-
mation. Also refer to sectionn 7 of this manual. See “NOTE" under 10I, below, and TAB
“Usage”, page 4-34.
DSPI Meaning: Place the eight bits of the Operator Panel Display Indicator (complemented) on the
S-bus. The upper eight bits of the S-bus are set to ones.
Usage: Refer to the DSP! Store field definition for Display Indicator bit significance.
DSPL Meaning: Place the contents of the Operator Panel Display Register on the S-bus.
101 Meaning: Enable the I/O bus onto the S-bus.

Usage: This is used to transfer data from an /O device to the S-bus. See section 7 for
considerations in I/O microprogramming.

NOTE

When 1Ol is used in conjunction with select cade 01, 02, 03, 04, or 05,
the following microinstruction’s S-bus field must not have CNTR, DES,
or LDR if the unspecified (and assumed to be “1") S-bus bits must be
in a known state; similarly, the microinstruction must not be word type
I (IMM).

4-32

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - S-BUS FIELD (CONT.)
LDR Meaning: Place four bits from a Loader ROM on the S-bus. The address of these four bits in
the ROM is contained in the counter. Determination of which of the four available Loader
ROM's is specified by bits 15 and 14 in the Instruction Register. Example sequence:
INSTRUCTION REGISTER
15|14 13[12[11[10{9[3‘7{6[5[4]3[2[1[0
n n
I——b Select Loader ROM nn, where nn is between binary 00 and 11
COUNTER ROM nn
7]6]s[al3[2]1]0 ol1]2]3| Octal addresses range
from 0 to 377.
LOADED ROM ADDRESS a 4 15|86 | 7| Each addressed location
10011112]13 contains a 4-bit-byte
of data.
1 L
9 v
rrer was contents of
ROM nn, address a
$-BUS
15414 (13{12|11|10{ 9|8 | 7|6 |54
tlafrfrfafa ||yt
Usage: Refer to the base set microroutine (appendix G), Initial Binary Loader for an example
of the LDR micro-order use. Guidelines for writing loaders appear in section 7. See “NOTE”
under 101, page 4-32, and TAB “Usage”, page 4-34.
M Meaning: Place the 15-bit contents of the M-register on the S-bus. Bit 15 of the S-bus is zero.
MEU Meaning: DMS signal generation micro-order used in conjunction with Special field micro-

order MESP and Store field micro-order MEU. Eight different functions are performed (desig-
nated Q, through Q;, for reference) by combinations of MESP and MEU. The combinations of
these signals and their functions are described in section 7.

Usage: The DMS must be instafled for the MEU and MESP micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MEU and MESP micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand DMS
before using these micro-orders.

4-33

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - S-BUS FIELD (CONT.)

MPPA Meaning: Generate signals MPAEN and MPBEN. (MPAEN is not used.)

and

MPPB
Usage: Refer to the HP 21MX M-Series and E-Series Computers 1/O Interfacing Guide for
further information. Example microprogram use can be found in section 13 of this manual.

NOP Meaning: All ones are on the S-bus.
Usage: This is the default micro-order when the S-bus field is not specified in a
microinstruction.

P Meaning: Placé the content of the P-register on the S-bus.

S Meaning: Place the content of the S-register on the S-bus.

SP Meaning: Place the contents of the SP-register on the S-bus.

S1 Meaning: Place the contents of the indicated Scratch Register (S1 through S11) on

thru the S-bus.

S11

TAB Meaning: Place the contents of the T-register (Memory Data Register) on the S-bus if neither
AAF (A-Addressable flip-flop) nor the BAF (B-Addressable flip-flop) is set; place the contents
of the A-register on the S-bus if the AAF is set; place the contents of the B-register on the
S-bus if the BAF is set. Data on the M-bus (as it loads the M-register) determines the setting of
AAF or BAF. Refer to AAF, BAF flip-flop setting information under the Store field TAB micro-
order.
Usage: TAB may not be used in the S-bus and Store fields simultaneously. Data in the
T-register must be removed within three microinstructions after the READ micro-order is used.
A microinstruction with a TAB micro-order in the S-bus field must not be followed by a
microinstruction with a DES, CNTR, or LDR S-bus field micro-order where the unspecified
(and therefore, assumed to be “1") S-bus bits are required to be in a known state. The S-bus
field TAB also must not be followed by a word type Il microinstruction where the byte that is not
the Operand is required to be in a known “1” state, Refer to section 7 for considerations when
using TAB.

X Meaning: Place the contents of the X-register on the S-bus.

Y Meaning: Place the contents of the Y-register on the S-bus.

WORD TYPE Il - OP FIELD

IMM Meaning: Place 16 bits on the S-bus consisting of the 8-bit binary Operand and 8 bits of ones.
Determination of which 8 bits of the S-bus receive the Operand and which 8 bits receive all
ones is made by the Modifier field.
Usage: Refer to the word type Il Modifier field micro-orders for Operand examples.

WORD TYPE Il - SPECIAL FIELD

(All Special field micro-orders are the same as for word type |.)

4-34

Table 4-1. Micro-Order Definitions (Continued)

Formats

MICRO-
ORDER DEFINITION
WORD TYPE Il - MODIFIER FIELD
CMHI Meaning: The 16 bits received by the S-bus consist of the following:
Bits 15 through 8 = Operand. (Refer to the information on word type Il Operand.)
Bits 7 through 0 = all ones.
The S-bus data is then complemented as it passes through the ALU.
Usage: See below.
MICROINSTRUCTION:
oP SPECIAL MODIFIER STORE OPERAND
IMM CMHI L 3678
BIT NO. 1514|1312 |11 {10] 9 6|5(4|3|2]1]0
S-bus
CONTENT [1] 1|1 |1]0|1] S T T T O A O
OPERAND (3678)
Result BIT NO. 15[14[13 (12| 11{10]{ 9 6| 5|4|3|2{1}]0
Out of ALU CONTENT 0 0 0 0 1 0 0 0 0 0 0 0 0]
OPERAND Complemented
CMLO

Meaning: The 16 bits received by the S-bus consist of the following:

Bits 15 through 8 = all ones.

Bits 7 through 0 = Operand. (Refer to the information on word type Il Operand.)

The S-bus data is then

Usage: See below.

MICROINSTRUCTION:

complemented as it passes through the ALU.

oP SPECIAL MODIFIER STORE OPERAND
IMM CMLO 52 0208
1514 (13 ({1211 (10 9 6 5(4 (3|21

BIT NO.
S-bus

CONTENT

Result BIT NO.
Out of ALU

CONTENT

OPERAND Complemented

4-35

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - MODIFIER FIELD (CONT.)
HIGH Meaning: The 16 bits received by the S-bus consist of the following:
Bits 15 through 8 = Operand. (Refer to the information on word type I Operand.)
Bits 7 through 0 = all ones.
The S-bus data is then passed through the ALU without modification.
Usage: See below.
MICROINSTRUCTION:
oP SPECIAL MODIFIER STORE OPERAND
IMM HIGH S5 2328
S-bus and BIT NO. 15|1413]12|11|10|9|8|7]|6|5]4|3[2|[11]0
Result Out
of ALU CONTENT |1 JO]JO} 1 1ol r|ojr vt 1r]1]1]1
OPERAND
LOW Meaning: The 16 bits received by the S-bus consist of the following:

Bits 15 through 8 = all ones.
Bits 7 through 0 = Operand. (Refer to the information on the word type (I Operand.)

The S-bus data is then passed through the ALU without modification.

Usage: See below.

MICROINSTRUCTION:

OP SPECIAL MODIFIER STORE OPERAND
IMM LOW S11 111B
S-bus and BIT NO. 151413112 11[10] 9 | 8 7165 |43 2 1 0
Result Out
of ALU CONTENT 1 1 1 1 1 1 1 1 0 1 0|01} 1 0 0|1
OPERAND

4-36

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE Il - STORE FIELD

(All Store field micro-orders are the same as for word type |.)

WORD TYPE 1l - OPERAND FIELD

The Operand (eight bits) must be an integer (used as a constant). The integer can be an octal or decimal
number within the following constraints:

a. The decimal number must be in the range 0 to 255.

b. The octal number must be in the range 0 to 377, followed by "B”.

Examples:

1178, 117, 198, 5, 10B

WORD TYPE lil - BRANCH FIELD

JMP Meaning: Branch to the CM address specified in the Address field of word type Il if the
condition in the Condition (and Branch Sense) field is met. If the Branch Sense field is blank
(RJS not specified), make the microbranch if the condition specified in the Condition field is
true. If RJS is specified in the Branch Sense field, make the microbranch if the condition
specified in the Condition field is false.

Usage: Used in conjunction with Special field micro-order CNDX for word type il1to branchin

a microprogram if conditions are met as described in the Condition and Branch Sense fields.
For example:

BRANCH
BRANCH SPECIAL CONDITION SENSE ADDRESS

JMP CNDX AL15 *+2

A microbranch will occur if bit 15 of the ALU output was set during execution of the last word
type | or Il microinstruction.

BRANCH
BRANCH SPECIAL CONDITION SENSE ADDRESS

JMP CNDX AL15 RJS ADDRESS

Here, a microbranch will occur if bit 15 of the ALU output was not set. If bit 15 was set, the next
sequential microinstruction will be executed (no microbranch takes place).

JSB Meaning: Perform a branch to the CM address specified in the Address field of word type Il if
the condition in the Condition (and Branch Sense) field is met. If RJS is not specified in the
Branch Sense field, the microbranch will be made if the condition specified in the Condition
field is true. If RJS is specified, the microbranch will be made if the condition is false. If the
branch is made, the current microinstruction address plus one is pushed onto the Save Stack
to be used as the return address.

Usage: Three levels of microsubroutine branches can be made.

4-37

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Ili - BRANCH FIELD (CONT.)

RTN Meaning: Branch to a return address; i.e., branch by “popping” the Save Stack into the
CMAR using the address in the Save Stack. Note that there are three levels of microsubroutine
branches (JSB's) so there can be three levels of RTN.

Usage: For word type 1ll, CNDX is always specified in the Special field and the “pop”

operation is made only if the state in the Condition and Branch Sense fields is met. Otherwise,

the next microinstruction is executed.

Also of interest may be the discussions of JSB for word types | and lll and special considera-

tions about returns when the word type | Special field mnemonics ASG and SRG2 are used.
WORD TYPE Il - SPECIAL FIELD

CNDX Meaning: This Special field micro-order specifies word type Il - conditional branches and
returns.

Usage: Used in conjunction with JMP, JSB, or RTN in the Branch field.
WORD TYPE lil - CONDITION FIELD

ALZ Meaning: The ALU output was equal to zero as a result of the last word type | or |l
microinstruction execution.

ALO Meaning: Bit zero of the last output from the ALU was set by the last word type | or |l
microinstruction execution.

AL15 Meaning: Bit 15 of the last output from the ALU was set by the last word type | or I
microinstruction execution.

CNT4 Meaning: The last four bits of the counter are zeros. Previous instruction must not contain an
ICNT instruction.

Meaning: All eight bits of the counter (lower byte of the IR) are zeros. Previous instruction

CNTS8 . . .
must not contain an ICNT instruction.

couTt Meaning: The ALU Carry Out flag bit was set by the last ALU operation in the last word type |
or Il microinstruction execution.

E Meaning: The Extend (E) register bit is set.

FLAG Meaning: The CPU flag bit is set.

HOI Meaning: The Operator Panel RUN/HALT switch is not set to RUN or there is an interrupt
pending (i.e., halt-or-interrupt).

Usage: This micro-order is used to check for interrupts. Use is necessary because micro-
programs cannot be interrupted unless a check for interrupts is made. Refer to section 7 for
considerations in using HOI.

IR8 Meaning: Bit 8 of the IR is set.

IR11 Meaning: Bit 11 of the IR is set..

LO Meaning: Bit zero of the L-register is set.

L15 Meaning: Bit 15 of the L-register is set.

4-38

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - CONDITION FIELD (CONT.)
MPP Meaning: Test for a signal MPP received at the MPP. The L-register must not be changed in
the microinstruction immediately preceeding the microinstruction containing MPP.
Usage: Used in conjunction with the MPP1 and MPP2 Special field micro-orders and with
MPPA and MPPB Store and S-bus field micor-orders of word type | microinstructions. Refer to
the HP 21MX M-Series and E-Series Computers /O Interfacing Guide for further information.
Example microprogram use will be found in section 13 of this manual.
MRG Meaning: A Memory Reference Group instruction is in the IR; i.e., IR bits 14, 13, and 12 are
not all zero.
NDEC Meaning: The Operator Panel DEC M/m pushbutton is not actuated.
NINC Meaning: The Operator Panel INC M/m pushbutton is not actuated.
NINT Meaning: An interrupt is not pending.
NLDR Meaning: The Operator Panel IBL/TEST pushbutton is not actuated.
NLT Meaning: The Operator Panel Register Select (left) pushbutton is not actuated.
NMDE Meaning: The Operator Panel MODE pushbutton is not actuated.
NMLS Meaning: Memory was not lost as a result of the last power down or power failure.
NRT Meaning: The Operator Panel Register Select (right) pushbutton is not actuated.
NSFP Meaning: A standard Operator Panel is not installed on the computer.
NSNG Meaning: The Operator Panel INSTR STEP pushbutton is not actuated.
NSTB Meaning: None of the following Operator Panel pushbuttons are actuated:
INSTR STEP
Register Select right (—)
Register Select left (<)
MODE
IBUTEST
INC M/m
DEC M/m
STORE
RUN
PRESET
NSTR Meaning: The Operator Panel STORE pushbutton is not actuated.
ONES Meaning: All 16 bits of the last output from the ALU were set (tested before the Rotate/Shifter)
as a result of the last word type | or I} microinstruction execution.
OVFL Meaning: The Overflow register bit is set.
RUN Meaning: The computer's Run flip-flop is set.

4-39

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Ill - CONDITION FIELD (CONT.)
RUNE Meaning: The LOCK/OPERATE switch is in the OPERATE position.
NOTE
In LOCK position, the RUN and HALT switches are disabled.

SKPF Meaning: The I/O signal SFS is present (IO time is T3 to T5) and the addressed /O device
flag is set; or, the I/O signal SFC is present (/O time is T3to T5) and the addressed /O device
flag is clear.

Usage: Refer to section 7 for information on /O microprogramming considerations for use of
the SKPF micro-order.
WORD TYPE Il - BRANCH SENSE FIELD
RJS Meaning: Perform the branch or return specified in the Branch field if the condition specified

in the Condition field is not met. The Condition field micro-order specifies the condition under
which a branch or return can take place; the RJS micro-order in effect reverses the sense of
the condition. For example, if a conditional branch is specified if the Flag bit is set (jump if Flag
bit set), the RJS micro-order will reverse the condition so that the branch occurs if the Flag bit
is not set.

If the Branch Sense field is blank (NOP), the condition sense is not reversed (i.e., is the same
as described in each of the Condition field micro-orders).

4-40

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE IIl - ADDRESS FIELD

A branch may be made to any address in the current or next 512,, word control memory block for word type 1.
The entry for the microassembler format can be an octal, decimal, or a computed address.

A decimal address (d) must be in the range 0to 511. An octal address (kB) must be in the range 0B to 7778,
where the "B” signifies octal. If the word type Ill is located in the last address in a 512,, word block (i.e., address
is xx777y), the range is defined as the next 512,, word block. A computed address which is within the decimal or
octal range must be in one of the following forms:

*+d
*—d
LABEL +d
LABEL -d
*+ kB
*—~kB
LABEL +kB
LABEL —kB
LABEL
where:
* means “this address”.
d means a decimal number.
k means an octal number (followed by B).

LABEL means a microinstruction or pseudo-instruction label that is defined elsewhere in the microprogram.

Examples:
BRANCH

BRANCH SPECIAL CONDITION SENSE ADDRESS
JMP CNDX NSNG +2
JMP CNDX FLAG —4
JSB CNDX CNT4 RJS FETCH +1
JSB CNDX IR8 TIME —4
JMP CNDX IR11 RJS *+7B
JMP CNDX LO *—2B
JMP CNDX ALZ LOOP
RTN CNDX ALZ RJS

NOTE

When RTN is encoded in the Branch field, no address should be encoded.
The address in the Save Stack is used to load the CMAR.

Except as noted above, the target address of the branch must be within the current 1000 octal (512 decimal)
locations (two modules). The complete absolute address must be specified. For example, if a conditional branch

microinstruction is within CM addresses 03000 and 03777, no target address may be outside the range 03000 to
03777.

Refer to section 6 for additional information on CM addressing. Refer to section 8 for information on using the
RTE Microassembly language.

441

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE IV - BRANCH FIELD

JMP

Meaning: Branch unconditionally to the address (may be modified by a Modifier/Special field
micro-order) specified in the Address field. The address may be anywhere in the 16K word
CM.

Usage: Refer to the Modifier/Special field micro-orders and the Address field discussions.

JSB

Meaning: Branch unconditionally to the microsubroutine located at the CM address (may be
modified by a Modifier/Special field micro-order) specified in the Address field. The return
address is stored on top of the Save Stack and recalled by the RTN micro-order.

Usage: Refer to information in the word type Il Branch field JSB description. Also refer to the
RTN micro-order discussion for the word type | Special field for additional information.

WORD TYPE 1V - MODIFIER/SPECIAL FIELD

IOFF

Meaning: Turn off the Interrupt Enable flag to disable recognition of normal interrupts. (Does
not disable power fail, Memory Protect, or parity interrupts.)

Usage: No modification is made to the microbranch address when this micro-order is used in
a word type [V microinstruction. After the occurrence of a JTAB or three occurrences of INC! (if
Memory Protect is installed) interrupts are again recognized. IOFF should be used with
caution since holding off interrupts could cause the loss of input or output data. Refer to
section 7 for interrupt handling.

10G

Meaning: Freeze the CPU until time period T2. Then enable the generation of /O timing
signals dependent upon the instruction in the IR. Perform the JMP or JSB in the word type IV
Branch field while modifying the fourth and third bits (bits 8 and 7, figure 4-2) of the Address
field (according to the I/O instruction jump table) for the final address. Bits 8, 7, and 6 of the IR
determine the microbranch address modification as follows:

ASSEMBLY IR ADDRESS FIELD
LANGUAGE BITS BITS 8 AND 7
INSTRUCTION IN IR 876 M
MIA or MIB 100 00
LIA or LIB 101 01
OTA or OTB 110 10
HLT 000 11
CLO or CLF 001 11
STO or STF 001 11
SFC or SOC 010 11
SFS or SOS 011 11
STC or CLC 111 11

Usage: |0G can also be used in the Special field of word type |, but there is no microbranch
address modification since the JMP or JSB is not present. Familiarity with the I/O system is
mandatory to properly use this micro-order. Refer to section 7 for more information about
forming and executing /O microinstructions.

4-42

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE IV - MODIFIER/SPECIAL FIELD (CONT.)

ION Meaning: Turn the Interrupt Enable flag on and allow the CPU to recognize standard device
interrupts until the micro-order IOFF is executed. Modify the first and second bits (bits 6 and 5,
figure 4-2) of the Address field two least significant bits according to bits 1 and O of the R (i.e.,
IR bits 1 and 0 replace bits 6 and 5 in the Address field).

Usage: An interrupt from any I/O device can be detected in two ways:

a. IfaJTAB is executed and an interrupt is pending or the Run flip-flop is clear, execution is
forced to location 6 in CM.

b. A test for interrupt pending or Run flip-flop clear can be performed by the executing
microprogram by having an HOI encloded in the Condition field of a word type Il
microinstruction. Or, a test for interrupt pending can be made by having NINT encoded in
the Condition field. The micro-order ION allows interrupts to be recognized. However,
interrupts are not generated by the interrupt system unless a STF 0 I/O control command
has been executed. Refer to the discussion of the interrupt system in your Computer
Series Operating and Reference Manual. Refer to section 7 for considerations for
interrupt handling.

J74 Meaning: Modify the four least significant bits of the Address field (bits 8, 7, 6 and 5, figure
4-2) with bits 7 through 4 of the IR; i.e., IR bits 7 through 4 replace bits 8 through 5 in the
microbranch Address field to determine the actual JMP or JSB address.

NOP Meaning: No operation. This is the default operation if no other micro-order is specified in the
Special field for word type IV. No modification is made to the JMP or JSB address.

RJ30 Meaning: Modify the four least significant bits of the Address field (bits 8, 7, 6 and 5, figure
4-2) with bits 3 through 0 of the IR and begin a READ operation of main memory; i.e., IR bits 3
through O replace bits 8 through 5 in the branch Address field to determine the actual JMP or
JSB address. The READ operation is the same as described for the word type | OP field.

Usage: Refer to the word type | OP field READ micro-order definition for M-register
considerations.

RPT Meaning: Repeat the next microinstruction for the number of times specified by the positive

number in the least significant four bits of the (IR) counter. No modification to the microbranch
Address field is made.

Usage: Same as for the word type | and Il Special field RPT micro-order.

STFL Meaning: Set the CPU flag and then perform the JMP or JSB to the address specified in the
Address field. No modification is made to the address.

4-43

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE IV - ADDRESS FIELD

A branch may be made to any address in CM. The entry for the microassembler format can be an octal, decimal,
or computed address. Same as requirements for the Address field in word type Iil.

A decimal address (d) must be in the range 0 to 16383. An octal address (kB) must be in the range 0B to

37777B, where the “B" signifies octal. A computed address which is within the decimal or octal range must be in
one of the following forms:

*4d
*-d
LABEL +d
LABEL —d
*+kB
*—kB
LABEL +kB
LABEL —kB
LABEL
where:
> means “this address”.
d means a decimal number.
k means an octal number (followed by B).

LABEL means amicroinstruction or pseudo-instruction label that is defined elsewhere in the microprogram.

Examples:
MODIFIER/
BRANCH SPECIAL (NO ENTRY) {(NO ENTRY) ADDRESS
JSB IOFF + 11
JMP FETCH

(Refer to the word type Il Address field examples.)

Refer to section 6 for additional information on CM addressing. Refer to section 8 for information on using the
RTE Microassembly language.

4-44

Section 5
TIMING CONSIDERATIONS TN

TIMING CONSIDERATIONS

Certain details about computer timing must be considered for microprogramming applications so that
you can:

¢ Intelligently and effectively make the most use of computer time when you execute your
Imicroprograms.

e Synchronize microinstructions properly for the operations that you wish to perform with your
microprograms.

The information you need about the computer’s timing to effectively microprogram can be categorized
into four areas:

® Basic definitions of the time periods and an idea of the functions involved in timing.

¢ Conditions that can vary the speed of execution of your microprograms.

¢ How to estimate execution time for an individual microcycle and for an I/O cycle.

¢ How to determine the overall effect of combined timing factors on an executing microprogram.

This section will provide you with all the basic computer timing information that you will need for
microprogramming. Section 7 provides additional information on considerations involved in combin-
ing micro-orders and microinstructions for synchronizing various operations. The subject of timing
involves many aspects of computer operation but the discussions in this manual will be limited to
timing only as it relates to your user microprogramming.

5-1. COMPUTER SECTIONS INVOLVED IN TIMING

There are three parts or “functions” of the computer that must be considered when
microprogramming:

® The Control Processor and Arithmetic Logic section.)

¢ The Main Memory section.

e The I/O section.

Each of these “functions” essentially operates asynchronously until they are required to communicate
in order to perform a “unit” task such as a main memory read or write operation, or some 1/O
operation.

In normal operation, the Control Processor and Arithmetic Logic section can operate at the fastest rate
of any of the functions in the computer. Main memory is the next slowest and the I/O section
(understandably) requires the longest cycle time,

Timing

Some operations involving main memory take some additional time if certain accessories (DMS or
DCPC) are installed. The timing factor for DMS will be discussed in this section but, for the micro-
programming application, DCPC operation can only be estimated as taking a percentage of overall
microprogram execution time. Section 13 provides some guidelines on calculations when considering
DCPC. There is an internal main memory operation (refresh) that can be calculated by taking a
percentage of overall microprogram execution time; this is also discussed in section 13. In the timing
calculations in this section, these “unpredictable” factors (DCPC and memory refresh) will be consi-
dered transparent for user microprogramming applications.

5-2. ?EEQ!”ESW AND EXPANSION OF TIMING DEFINITIONS AND
M

Recall from the section 2 timing definitions that the Control Processor executes one microinstruction
during one microcycle. The microcycle (also designated a T-period) is the time required to completely
execute the microinstruction (which is composed of up to five micro-orders). In order to sequentially
execute the micro-orders in the various fields of any particular microinstruction, it can be seen that
another timing interval is needed. In figure 5-1 you will see that each microcycle is partitioned into a
number of intervals designated P1 through P5 and also, for reasons which will be discussed shortly,

ONE COMPLETE i/O CYCLE
[- Y
ONE T-PERIOD OR MICROCYCLE
______> ’_‘H
T3 T4 TS5 Te T2 T3 T4 T5 T6 T2 T3 ETC
[| | 1 | | | l] 1 | 1 ls
VA | | T T T | I
ANY ANY
T-PERIOD T-PERIOD
CAN BE CAN BE
COMPOSED OF OR COMPOSED OF
P-INTERVALS P-INTERVALS
AND E-INTERVALS
PI P2 P3 P4 PS5 Pt P2 P3 E1 E2
TR]] 1 1 1 1]] l] |
1T T T T 1 T RN B 1 T T L R
A P-INTERVAL]
AN E-INTERVAL
fe— 35NS EACH
35NS EACH |<—
175N ———|
105NS
\ ~ J
la——— 280NS
A SHORT MICROCYCLE
(USUALLY USED FOR
ARITHMETIC AND LOGIC N -— o
OPERATIONS)
A LONG MICROCYCLE
(ALWAYS USED IN 1/O
OPERATIONS FROM T3
THROUGH T5).
7115-13

Figure 5-1. Basic Timing Definitions

5-2

Timing

that intervals designated E1 through E3 also exist. Each E- or P-interval is always 35 nanoseconds
long. One exception, which will be discussed shortly, is when a pause condition exists. A crystal-
controlled (28.5 MHz) oscillator and timing circuits generate the 35-nanosecond intervals which are
the basic “building blocks” for making up the microcycles.

Figure 5-1 also shows that any Input/Output (I/O) timing cycle is composed of five microcycles
(T-periods T2 through T6). An I/O cycle is the time required to generate all the I/O signals necessary to
execute any particular I/O instruction. All I/O signals and their respective generation times are
described in the HP 21MX/21MX E-Series Computer 1/O Interfacing Guide, part no. 02109-90006.

T-periods are initiated at the start of a P1 interval. Note in figure 5-1 that the length of a microcycle
can vary. That is, a T-period can be either 175 nanoseconds long, or E-intervals can be inserted to
extend the T-period to 280 nanoseconds. These variations and some other variable timing factors are
discussed in the next paragraph.

5-3. TIMING VARIABLES

There are essentially three variable factors to consider in computer timing. They are the:

¢ Short or long microcycle.
o Pause.

¢ Timing freeze.

Each of these factors is discussed in the following paragraphs.

5-4. SHORT/LONG MICROCYCLES

As seen in figure 5-1, a short microcycle consists of five 35-nanosecond intervals that run in sequence
from P1 through P5. The long microcycle consists of eight 35-nanosecond intervals that always run in
the sequence P1, P2, P3, E1, E2, E3, P4, and P5. The Arithmetic/Logic section in the computer is
designed to operate with a 175-nanosecond microcycle. There are three reasons for the Control
Processor timing circuits to switch to long (eight 35-nanosecond intervals) microcycles:

¢ Certain I/O interfaces may not be able to accommodate a T-period of less than 196 nanoseconds
during execution of an I/O instruction. Therefore, if an I/O operation is indicated, long microcycles
are always generated from T3 through T5.

® The Memory Expansion Module (MEM), which is part of the DMS, is unable to gate data onto the
S-bus fast enough when a 175-nanosecond microcycle is used. Therefore, if an MEU micro-order is
in the S-bus field of a microinstruction, a long microcycle will be generated.

® The Microinstruction Register (MIR) is clocked at the beginning of each microcycle (P1) and the
Control Memory Address Register (CMAR) is conditionally loaded at P3 of each microcycle. If a
microbranch microinstruction is to be executed, only two P intervals, P4 and P5 (70 nanoseconds),
would be left in a short microcycle to access control memory (CM) and reload the CMAR with the
address of the new microinstruction then carry out the tasks normally associated with P4 and P5.

Timing

This would not be enough time to correctly reload the CMAR and access CM since CM has a
worst-case access time of approximately 140 nanoseconds.* Therefore, if a microbranch is to be
made, long microcycles are generated and the three extra 35-nanosecond times are added after P3
to allow enough time to complete the microbranch. A conditional microbranch microinstruction
with the branch condition not met, will leave the Control Processor in the short microcycle mode.

Most microcycles will be short but a change to long microcycle timing could occur, based on prevailing
conditions, during P3 of every microcycle. That is, the conditions that determine a switch to long
microcycles are monitored at every P3. So, as could be expected, a great deal of microprogrammed
condition testing, I/O, or DMS activity involving the S-bus will make the computer run slower.

5-5. PAUSE

As mentioned in a general way in paragraph 5-1, main memory and the Control Processor operate
asynchronously until they must communicate (in a “handshaking” manner) to accomplish read or
write operations. The “pause” in microcycle timing is used to interact with an asynchronous memory
interface. This feature permits greater performance with existing systems and compatibility with
various speed memories.

A pause operates in the following way. A read or write operation can be started with the appropriate
micro-order in any microcycle. Memory is then engaged in completing the operation under its own
timing (asynchronously). If the Control Processor, through another microinstruction, requests another
memory operation while memory is completing the first (or another) task, a conflict in timing occurs.
This possible conflict is monitored by the Control Processor at P3 of every microcycle before the
Control Processor actually makes the request for the use of main memory. If a conflict is detected (i.e.,
there is an attempt to use memory while it is busy), the Control Processor will go into the pause state
(suspend all timing clocks) until main memory is no longer busy.

A pause is accomplished by effectively having the timing circuits “latch-back” into P3 so that P3 is
repeated for the appropriate number of times until the pending request can be processed. Pause time,
therefore, will always be an integer multiple of 35 nanoseconds. At the end of the pause, the Control
Processor timing will progress to either P4 or E1 (the long microcycle) depending upon the short/long
microcycle conditions as discussed in paragraph 5-4.

When a memory operation has been started and memory is still busy, the conditions that can cause a
pause in a microcycle are:

® An attempt to begin another read or write operation; that is, having a READ or WRTE in the OP
field, or an RJ30 in the Special field of a microinstruction.

e An attempt to enable the T-register for storage from the S-bus (TAB in the Store field) or for
reading the contents of the T-register onto the S-bus (TAB in the S-bus field; e.g., to obtain the
results of a read operation).

e DCPC cycle in process or memory refresh operations but, as stated in paragraph 5-1, this will be
transparent for microprogramming.

*Base set CM access time is approximately 90 nanoseconds; Writeable Control Store (WCS) CM access
is about 132 nanoseconds; and Firmware Accessory Board (FAB) CM access takes the longest time
(approximately 140 nanoseconds).

5-4

Timing

Figure 5-2 shows four typical examples of microcycles with a pause. Figures 5-2A and 5-2B are both
short microcycles. Figures 5-2C and 5-2D are examples of long microcycles. Given specific state
information (memory cycle time, memory operation being performed, etc.), the length of the extended
P3interval can be determined. Figure 5-2 shows these typical length pauses under both read and write
conditions. Paragraph 5-8 specifically covers these calculations.

5-6. FREEZE

The Control Processor and I/O section operate asynchronously until an VO instruction begins execu-
tion and communication is needed. That is, although T-periods run sequentially from T2 through T6,
and each T-period is initiated by P1 of any microcycle, I/O microinstructions must begin at the
appropriate part of an I/O cycle. The freeze condition therefore suspends microinstruction execution
(but continues T-period generation) until the "appropriate” T-period starts.

As far as microprogramming is concerned, a freeze exists to synchronize microinstruction execution
with T2 or T6. Again it should be noted that DCPC activity and some memory operations may also
cause freeze conditions, but these will not be considered here. For microprogramming purposes, the
two factors causing a freeze condition are:

¢ AnT/O operation is to be performed (an IOG micro-order in the Special field of a microinstruction).
This will suspend all microinstruction execution until T2 starts. I/O type microinstructions can
then be executed properly in the appropriate T-periods (i.e., during T3 through the end of T5).

® Aninterrupt acknowledge operation is to be performed (an IAK micro-order in the Special field of
a microinstruction). This will suspend all microinstruction execution until T6 starts. During T6
the CIR is loaded and an IAK is generated.

The timing freeze can begin at the end of any microcycle. When I/O instructions are to be executed,
long microcycles will always exist from T3 through T5 (as mentioned in paragraph 5-4).

In summary, it should be noted that the two freeze conditions mentioned above are mutually exclusive.
Only one freeze can be initiated per microcycle, but a freeze condition may exist for several microcy-
cles. In other words, if the Control Processor is not at the beginning of a T2 when an IOG micro-order is
decoded, there will be a freeze until the start of the next T2; if the Control Processor is not at the

beginning of a T6 when an IAK micro-order is decoded, there will be a freeze until the start of the next
T6.

5-5

Timing

SOME OP OR SPECIAL FIELD OPERATION DATA
S-BUS / THAT WILL NOT CAUSE LONG MICROCYCLE STARTS. DESTINATION
ENABLED REGISTER CLOCKED.
— o ~
A X | P2 | P8 | P3| P3| | [1 | |] | P3|P4|PS
r T T [| [| [<] | [1 1
L. —
PAUSE TIME
Irf 560NS >

ATYPICAL SHORT MICROCYCLE WITH A PAUSE DUE TO A READ OPERATION UNDERWAY (E.G., READ ENCODED
IN PREVIOUS MICROINSTRUCTION WITH A TAB IN S-BUS FIELD OF THIS MICROINSTRUCTION).

— > .
I LA L L 0 W T S B Y T O T T
1 T T T 1 N R B B B
- —
PAUSE TIME
| 595NS >

I~

ATYPICAL SHORT MICROCYCLE WITH A PAUSE DUE TOAWRITE OPERATION UNDERWAY (E.G., WRTE ENCODED
IN PREVIOUS MICROINSTRUCTION WITH ANOTHER WRITE ATTEMPTED IMMEDIATELY IN THIS MICROINSTRUC-

TION).
AN OPERATION STARTS THAT
WILL CAUSE A LONG MICROCYCLE ——— 105NS ADDED
F_——_A_—\
Pl | P2 | P3 | P3) L} Sl L'1P31E1LE2JE3|P4‘P5
cr—r—+ T T 1T T ~“T 1T " T T T 7T 1
| 7
—
PAUSE TIME
- 665NS —>

ATYPICAL LONG MICROCYCLE WITH A PAUSE DUE TO A READ OPERATION UNDERWAY (E.G., READENCODED IN
PREVIOUS MICROINSTRUCTION WITH A TAB IN S-BUS FIELD AND RTN IN SPECIAL FIELD OF THIS MICRO-

INSTRUCTION).
DP1JF>QP3LP3| | [| { | P3,El |E2 E3 P4 PS5
rr1rr T 1T 1T R IR] 1
PAUSE TIME
700NS -

ATYPICAL LONG MICROCYCLE WITH A PAUSE DUE TO A WRITE OPERATION UNDERWAY (E.G., WRTE ENCODED
IN PREVIOUS MICROINSTRUCTION WITH READ, RTN ENCODED IN THIS MICROINSTRUCTION).

NOTE: MEMORY READ AND WRITE TIME EXAMPLES ARE FOR ONE TYPE
OF COMPUTER WITH A SPECIFIC MEMORY. FOR ACTUAL MEMORY
CYCLE TIMES REFER TO YOUR COMPUTER DOCUMENTATION.

7115-14
Figure 5-2. Variable Microcycles with Pause Conditions

5-6

Timing
5-7. OVERALL TIMING

Figure 5-3 shows the sequence of timing events occurring in any given microcycle, which always starts
at P1. The decision of whether or not to freeze is made at the end of the microcycle. The decision to
pause or not to pause and whether or not to go to long microcycles is made in P3. It can be seen that if
all three variable timing conditions are to be considered, the pause comes before the effect of long/short
microcycles and a freeze will occur after the effect of either a pause or long/short microcycle.

4
ADVANCE T- L
PERIOD: START
T2, T3, T4, TS5,
OR T6. A
START
INTERVAL.

YES NO

T2ORT6 YES /0

STARTING FREEZE
? ?
'y
X
GO THRU FREEZE
P2 FOR
INTERVAL. ONE
T-PERIOD.
T-PERIODS
GO ON BUT
NO OTHER
ACTIVITY.
START
P3
INTERVAL.
COMPLETE
P4 AND P5
INTERVALS.
4
SEE FIGURE
__1 4710
DETERMINE
PAUSE.

SEE FIGURE

54 TO LONG NO
DETERMINE [~ MICROCYCLE
SHORT/LONG. ?

COMPLETE
E1, E2 AND
E3 INTERVALS.

7115-15

Figure 5-3. Overall Microcycle Timing Flowchart

5-7

Timing

Freeze or pause conditions prevail whenever communication is required between the Control Pro-
cessor and the I/O section or the Main Memory section. That is, a freeze occurs to synchronize the
Control Processor with the /O section (an 10G or TAK Special field micro-order decoded). A pause
occurs to suspend Control Processor operations and wait for main memory if an attempt is made to use
main memory while it is still busy. If you do not attempt to use main memory while it is busy (i.e., use
a READ, WRTE, RJ30, or TAB micro-order in any microinstruction), you may continue Control
Processor operation. In other words, you can continue to execute microinstructions between memory
operations if the above-mentioned micro-orders are not executed.

Long microcycles prevail whenever additional time is required to complete a task in a microcycle,

such as for I/O operations. Also, long microcycles prevail whenever control memory branches are to be
made.

Figure 5-4 may be used in conjunction with figure 5-3 as a quick reference for estimating the time
taken to complete a microcycle. Detailed calculations for typical microinstruction and microprogram
execution times are discussed in paragraph 5-8.

When one or both DCPC channels are busy, the Control Processor is effectively in a freeze condition.
This is why DCPC operations are considered transparent to the microprogrammer. Careful analysis of
the processes you wish to accomplish with microprogramming, with the timing factors kept in mind,
will provide maximum performance gain.

5-8. TIMING CALCULATIONS

The flowchart illustrated in figure 5-5 can be used to calculate the execution time for individual
microcycles and also for estimating overall microprogram execution time. The flowchart is to be read
from left to right once for each microcycle. To estimate the execution time for a microroutine,
repetitive cycles through the flowchart must be made, noting times and remembering conditions
encountered during earlier microcycles.

All conditions that change timing (for user microprograms) during any microcycle are shown in figure
5-5 along with times (in nanoseconds) that should be summed while proceeding through the micro-
cycle. Specific micro-orders determine timing changes. Therefore, all calculations described in this
section are made by comparing micro-orders against the chart. The examples that follow consider
events as they occur through a microcycle with increasing complexity of timing calculations.

Timing

T =175 -
PAUSE = 0
SEE NOTE 1
DOES THIS
MICROINSTRUG-
TION CONTAIN A
READ OR WRTE
MICRO-ORDER?
DOES THIS
MICROINSTRUG-
IS THE SUM (R) OF TION CONTAIN A 1S THE SUM (S) OF
ALL MICROCYCLE TAB MICRO- ALL MICROCYCLE
TIMES BEFORE ORDER IN THE TIMES
_BUS FIELD?
THIS MICRO- _SBUSFIELD? | BEFORE THIS
CYCLE, BUT MICROCYCLE,
AFTER THE LAST BUT AFTER THE
MICROCYCLE LAST MICRO-
CONTAINING A CYCLE CONTAIN-
READ MICRO- ING A READ OR
ORDER, PLUS WRTE MICRO-
175NS, GREATER ORDER, PLUS
THAN THE MAIN 175NS GREATER
MEMORY READ THAN THE CYCLE
CYCLE-TIME? TIME OF THE
(R+T > M? SEE LAST INITIATED
NOTE 2.) MAIN MEMORY
CYCLE?
PAUSE EQUALS S+ T >M?SEE
MEMORY CYCLE NOTE 2.
TIME MINUS
SUM.
PREVIOUSLY EXE-
TIME MINUS
SUM. CUTED MICRO- Computet
) INSTRUCTIONS o - Museum
CONTAIN AN 10G P g
IN THE SPECIAL
FIELD?
DOES THIS
MICROINSTRUC-
TION HAVE AN
MEU IN THE
SPECIAL FIELD?
WILL THIS
MICROINSTRUC-
TION CAUSE A
BRANCH?
(RTN, JMP, JSB)
BRANGH
2
MAKE T = .
280
MICRO CYCLE
TIME IS NOTES:
PAUSE + T 1. TIMES ARE IN NANOSECONDS.
2. THIS EXAMPLE IS TYPICAL FOR ONE TYPE OF COMPUTER
WITH A SPECIFIC MEMORY, |.E., 2102B. FOR ACTUAL MEMORY
CYCLE TIMES REFER TO YOUR COMPUTER DOCUMENTATION.
TYPICAL MEMORY CYCLE TIMES USED {M, ABOVE) WITHOUT
DMS ARE:
READ = 560 NS
WRITE = 595 NS
WITH DMS: APPROX. 630 NS FOR READ OR WRITE.
7115-16

Figure 5-4. Consolidated Microcycle Estimating Flowchart
5-9

Timing
5-9. ARITHMETIC/LOGIC SECTION OPERATIONS

The fastest microcycle timing is found when microprogrammed operations deal with the Arithmetic/

Logic section registers. For example, suppose the timing for the following portion of a microroutine is
to be estimated:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
FIRST STFL CMPS B B
SECOND CMPS A A
THIRD INC A A
EETC)

Read figure 5-5 from left to right with the first microinstruction in mind. The total time for the first
two intervals (P1 + P2) is 70 nanoseconds. The Special field in the first microinstruction does not
contain an RJ30 and the OP field does not contain a READ or WRTE. Also, the S-bus field does not
contain TAB. Thus, in following the timing line into P3, note that no pause condition exists.

Continuing in P3, since an I/O operation is not being performed, you will not be concerned about the
T-period in existence. The answer here will follow the decision line labeled “unknown” and assume
here no I0G in the Special field within the last three microinstructions. Also, a long microcycle will
not occur since there is no MEU in the S-bus field of this microinstruction and no JSB, JMP, or RTN
micro-orders coded. With conditions as they are, the Control Processor timing circuits will not switch
to a long microcycle. Following the timing line in figure 5-5 through the end of P3, time in this
microcycle thus far is 105 nanoseconds. Intervals P4 through P5 are executed immediately making
the total time for execution of the microinstruction labeled FIRST = 175 nanoseconds. Recall that it
was assumed that no freeze conditions are in effect for this example, thus the timing line can be
followed back to the beginning of P1.

Microinstructions SECOND and THIRD are executed in a similar manner (check the microroutine
using the flowchart). The total time for this microroutine is 525 nanoseconds.

5-10

Timing

——
DCYCLE #i—* FREEZE DETERMINATION —P
t—=35NS ——pp———————— IF FREEZE, ADD 175N§ — — —————— —»
|
I0G IAK
B%?N | IN SPECIAL IN SPECIAL
INTERVAL. H%}D H%}D
| SEE NOTE 2. SEE NOTE 2.
|
SUMOF ALL AP-
. PROPRIATE TIMES
IS TIME FOR ONE
MICROCYCLE.

FREEZE ONE
MICROCYCLE
(ADD 175NS).
ADVANCE
T-COUNTER

FREEZE ONE
MICROCYCLE
(ADD 175NS).
ADVANCE
T-COUNTER.

JETERMINE. ASSUME A PERCENTAGE OF

AN |/O CYCLE TREAT THE ESTIMATE AS

|

Figure 5-5. Detailed Microcycle Time
Determination Flowchart

5-11/5-12

— LONG/SHORT DETERMINATION

—IF LONG MICROCYCLE, ADD 105NS -

> COMPLETE MICR(

——————— blr———SSNS———»t—

BEGIN

MICROBRANCH
?

> P4
4 INTERVAL.

DOES THIS
MICROINSTRUC-
TION CONTAIN AN
UNCONDITIONAL
ORSATISFIED
CONDITIONAL
JMP,JSB, OR

RTN MICRO-

——1 ORDER?SEE
NOTE 1.

LONG

®| MICROCYCLE —

INSERT THREE
35NS INTERVALS
DESIGNATED

E1, E2, E3.

NOTES:

1. CONDITIONAL MICROBRANCHES NOT MET MAY BE DIFFICULT TO C
BRANCHES MET BASED ON YOUR APPLICATION.

2. TO DETERMINE WHICH T-PERIOD IS PRESENT WHEN BEGINNING
RANDOM.

711517

N

LAST
MEMORY CYCLE
COMPLETE

?

NO

YES

NO

DMS

INSTALLED

AND ENABLED
?

ADD 35NS TO
WRITE PAUSE
TIME OR 70NS
TO READ.

RESUME
TIMING AND
MICROINSTRUC-
TION EXECUTION.

YES
OR
UNKNOWN

WAS 10G
IN SPECIAL

FIELD AT T2
?

I0G INSPECIAL
FIELD MUST HAVE
BEENWITHIN
LAST THREE
MICROINSTRUC-
TIONS. 10G
CAUSES SYN-
CHRONIZATION
WITHSTART OF
T2 PERIOD. AND
GENERATES LONG
MICROCYCLES
FROMSTARTOF
T3TOENDOF

T5.

' TIMING > PAUSE DETERMINATIO

-35NS - ——— ' }——————— - ———- IF NO PAUSE, 35NS ONLY. IF PAUSE, 35NS + PAI
|
BEGIN P2 | BEGIN P3
INTERVAL. y INTERVAL. ~
TAB IN S-BUS
l YES FIELD OF THIS
MICROINSTRUC-
TION?
READ, WRTE IN
OPFIELD, RJ30IN
SPECIAL FIELD OF
THISMICROIN- SEE FIGURE 5-6
STRUCTION. A TODETERMINE. |~
WRTE MUST HAVE
ATABINTHE
STORE FIELD.
ST PAUSE CONDITION
SEE FIGURE MEMORY STOP MICRO-
5-6 TO — — CYCLE INSTRUCTION
DETERMINE. COMPLETE EXECUTION AND
? T-PERIOD
0 GENERATION.

SEE FIGURE 56
TO CALCULATE

P PAUSELENGTH. [€

T WILL BE MULT-

PLES OF 35NS.

PAUSE

TERMINATED
?

NO

SEE FIGURE 5-6
TO DETERMINE.

—— START MICROCYCLE
| I

F——35NS - ——F——
|

BEGIN P1 [
[| INTERVAL

ADVANCE ——>

T-COUNTER.

ADVANCE TO
NEXT T-PERIOD.
STARTS T2, T3, T4,
T5,0RT6. TIMES
FORDCPC AND
MEMORY RE-
FRESH ACTIVITY
ARE IGNORED. {F
ACTIVE,CALCU-
LATEAS APER-
CENTAGE OF
OVERALLMICRO-
PROGRAM EXE-
CUTION TIME.

Timing
5-10. CONTROL MEMORY BRANCHES

The switch to long microcycles is made in P3 when any of the three conditions shown in figure 5-5 can
be answered affirmatively. For example, consider a control memory branch condition shown in the
following portion of a microroutine. In this example the microcycle times are included in the right-
hand column.)

ALU/
OoP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
. TIME (NS)
. CIF BRANCH MET) CIF NOT MET)
START ADD L 53 175 175
ONE JSB CNDX L1S CLEAR 280 175
TWD INC S3 L 175
THREE RTN CLFL A 53 280
CLEAR IMM RTN CMHI L 377B 280
735 NS 805 NS
CETC.)

By using figure 5-5 and checking the microroutine, it can be seen that the JSB and RTN micro-orders
in the microinstructions labeled ONE, THREE, and CLEAR can cause long microcycles.

5-11. 1/0 OPERATIONS

Suppose the T-period is T4 and the Control Processor has just placed the first microinstruction of your
microroutine in the MIR. Suppose further that part of the microroutine is as follows (note the time
column):

ALY/
oP/ MOD/ S-BUS/ ;
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
* TIME (NS)
XXX 106 IRCM S4 T4 175
. ' { ' TS 175
* (SUSPENDED EXECUTION UNTIL T2) T6 175
* (NDW EXECUTION CONTINUES) T2 175
NOP T3 280
NDP T4 280
S5 101 TS 280
INC s8 s3 T6 175
T2
CETC.)

5-13

Timing

The microinstruction at label XXX includes micro-orders in the S-bus and Store fields as well as the
IOG micro-order in the Special field. As P1 and P2 occur, the S-bus and Store field micro-orders will be
executed but the effect of the IOG in the Special field is not felt until the end of the microcycle. Also, (in
following the timing line in figure 5-5) note that the freeze condition is not in effect until the
microinstruction labeled XXX completes execution. At the end of the microcycle, the IOG micro-order
causes all microinstruction execution to be suspended until T2 completes. The total waiting time in the
freeze condition in this case is 525 nanoseconds. Note that with a freeze condition present, T-periods
will be short microcycles until synchronization occurs. Time T3 starts the I/O cycle and each mi-
croinstruction is executed in the appropriate long microcycle (T-period). If T6 is short (as shown in the
example), the total time for the I/O cycle will be 1.120 microseconds. If T6 had been long (e.g., a RTN
coded), the total time for the I/O cycle would be 1.225 microseconds. This example microroutine is used
only to illustrate the freeze until T2 starts. Section 7 provides appropriate microprogramming consid-
erations. An IAK micro-order in the Special field can cause a freeze until the start of T6. That is,
(follow the timing line in figure 5-5) at the end of the microcycle where an IAK Special field
micro-order has been included in the microinstruction just executed, a freeze will occur until the end of
T6. During the T6 period microcycle, the appropriate functions for the IAK micro-order will be
executed.

5-12. MAIN MEMORY OPERATIONS

Typical main memory cycle times for reading and writing differ. Therefore, calculations for read and
write operations are discussed separately. The example read and write times are for an HP 2102B
Memory.

5-13. READING FROM MEMORY. First consider a read from main memory with a TAB
micro-order in the S-bus field two microinstructions after the microinstruction containing the READ
micro-order. In the example microroutine below, assume no memory operation is in progress as the
microroutine begins at label START (assume you do not have the DMS installed). The letters shown in
the timing comments are keyed to the text explanation that follows this microroutine.

ALY/
OP/ MOD/ S-BUS/

LABEL BRCH SPCL COND STR ADDRESS COMMENTS
* TIME (NS)
START I;’ASS S1 P 175 A
FIRST READ PASS DSPL S11 175 ~
SECOND INC PNM P 1 75;
THIRD DEC X X 175 B 2560-—¢C
DATA PASS S2 TAB 210=-—D
END RTN IRCM S2 280 -—E

(ETC.)

5-14

Timing

Using figure 5-5 note that START executes in 175 nanoseconds. In FIRST (using figure 5-5), note that
although there is a READ in the OP field of this microinstruction (which begins a memory operation)
there is not a memory operation already in progress; thus, FIRST also executes in 175 nanoseconds.
Point A shows where the main memory read cycle timing starts (the request for memory is made at the
end of the microcycle). No delays occur for execution of the microinstructions labeled SECOND and
THIRD; they each execute in 175 nanoseconds as shown at point B, while main memory is still busy
executing the read request. (Note that these two microinstructions do not contain micro-orders that
would cause a freeze.)

Now the microinstruction labeled DATA begins to execute. Figure 5-5 shows that if there is a TAB in
the S-bus field while memory is busy, there will be a pause time added to the microcycle. Figure 5-6
can be used to calculate the time as follows. At the first decision point in the flowchart, no READ, or
WRTE, or RJ30 micro-order is encoded in this microinstruction. Entry is made at step I (figure 5-6
because there is a TAB micro-order encoded in the S-bus of the microinstruction under consideration.

In step I add the execution times for microinstructions labeled SECOND and THIRD which = 350
nanoseconds (point B). In step II the result = 525 nanoseconds. Since the last operation (in the
microinstruction labeled FIRST) was a READ, the flowchart in figure 5-6 directs you to step III which
when completed provides pause time = 35 nanoseconds in this case. Returning to figure 5-5, the result
through P3 = 4 x 35 nanoseconds = 140 nanoseconds. Since microinstruction DATA will be short, P4
and P5 are entered immediately with a resulting total time for this microinstruction = 210
nanoseconds (point D). Microinstruction END will be long (point E) because of the CM branch. You
may look at the partial microroutine just illustrated and consider that you can simply subtract the
time for all microinstructions executed (before the microinstruction labeled DATA but after the one
labeled FIRST) from the memory cycle time and in this case obtain 210 nanoseconds; however, this

procedure will not always yield correct results. The next microprogram example illustrates why this is
S0.

5-14. WRITING TO MEMORY. Consider a write operation to main memory using the follow-
ing microroutine. For this example, assume the DMS is installed. Also, consider conditions for the
microbranch (in microinstruction CHECK) not met and no memory operation in progress as entry is
made. Again note that the microroutine in these examples is used only to show timing relationships.
Consult section 7 for microprogramming considerations in write operations.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
. TIME (NS)
ENTER INC X X 175 <A B
WRITE WRTE MPCK PASS TAB X 1787 F/
CHECK JMP CNDX ALZ RJS #+2 175 <—C
G0 READ RTN INC PNM P 560~ O30 (SEETEXT)
(ETC.)

5-15

Timing

WRTE MICRO-
ORDER IN OP
FIELD MUST HAVE
TAB IN STORE
FIELD.

—————]

PAUSE TIME FROM

STEPIIORIV.ADD
THIS TIME TO
LONG OR SHORT
MICROCYCLE
TIME FOUND IN
FIGURE 5-5
FLOWCHART.

DECISION TO
PAUSE OR NOT
STARTS AT P3. AT

START

THIS POINT
ASSUME PAUSE
TIME = 0.
READ
YES OR WRITE
OPERATION
STARTED
?
STEP | y y
CALCULATE TIME
OF ALL MICRO-
CYCLES SINCE READ OR WRTE
THE END OF THE IN OP FIELD OR
LAST MICROIN- RJ30 IN SPECIAL
STRUCTION CON- FIELD OF THIS
TAINING A WRTE, MICROINSTRUC-
READ, OR RJ30 TION?
MICRO-ORDER. TAB
YES IN S-BUS
STEP 1) l T FIELD
ADD 175 NANO- |
SECONDS TO - NO
TIME FOUND IN TAB IN 5.8US N THIS MICRO:
STEP L FIELD IS TO OB- INSTRUCTION.
TAIN DATA FROM
A PREVIOUS
READ. (TAB MUST
NOT BE IN STORE
FIELD WITHOUT
WRTE IN
OP FIELD.
LAST
MEMORY N e YES
OPERATION * 26ONS T
READ 4
NO NO PAUSE
.

STEP vV

SUBTRACT TIME
FOUND IN STEP i
FROM 595NS. THIS

IS PAUSE TIME.

NO PAUSE

STEP Il &

SUBTRACT TIME
FOUND IN STEP I
FROM 560NS. THIS

1S PAUSE TIME.

PAUSE

NOTES:

O

NO PAUSE

1. ALL CALCULATIONS TO BE IN NANOSECONDS.
2. THIS EXAMPLE IS TYPICAL FOR ONE TYPE OF COMPUTER
WITH A SPECIFIC MEMORY. FOR ACTUAL MEMORY CYCLE
TIMES REFER TO YOUR COMPUTER DOCUMENTATION.
TYPICAL MEMORY CYCLE TIMES FOLLOW (COULD BE FASTER
OR SLOWER DEPENDING ON ACTIVITY):

WITHOUT DMS: READ OR RJ30 = 560 NS
RT

WITH DMS:

=595 NS

READ OR RJ30 = 630 NS
WRTE

=630 NS

3. DCPC AND MEMORY REFRESH ACTIVITY IGNORED HERE.
CALCULATE THEIR TIMES AS A PERCENT OF TOTAL
MICROPROGRAM EXECUTION TIME.

7115-18

5-16

Figure 5-6. Detailed Pause Time Calculation Flowchart
(Using an HP 2102B Memory as an Example)

Timing

Microinstructions labeled ENTER and WRITE (point A) both execute in 175 nanoseconds each and the
main memory write cycle timing begins at point B. Microinstruction CHECK executes in 175 ns (point
C) since branch conditions are not met, then a read from main memory is next attempted. Using the
flowcharts in figures 5-5 and 5-6 it can be seen that the calculation for the time shown at point E is

made for microinstruction GO as shown below. (The write time at point D is 630 nanoseconds because
of the DMS factor.)

105 nanoseconds time for P1,P2,P3 (from figure 5-5)

245 nanoseconds add pause time (calculated in figure 5-6)
35 nanoseconds add for DMS

105 nanoseconds add for E1,E2,E3 (RTN in SPCL field)
70 nanoseconds add for P4,P5

560 nanoseconds total time spent in microinstruction GO.

5-15. SUMMARY

Table 5-1 is a summary of some times used in this section that may be helpful if you are making
execution time estimates. With the information presented in this section you should now be able to
verify that the following microroutine executes in the noted time. Assume no memory cycle in progress
as the microroutine is entered and no DMS activity occurring:

ALY/
OP/ MODy S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
* TIME (NS)
START READ CLFL PASS M S1 175
PASS L s2 175
ENVE ADD S3 TAB 385
READ PASS M S3 175
IMM CMLOD L 374B 175
ADD L S3 175
ENVE ADD S3 TAB 210
RTN CNDX OVFL 280/175
RTN sov 280
(ETC.)

If no overflow, the total time is 1.750 microseconds. If an overflow, the total time is: 1.925 mic-
roseconds.

5-17

Timing

Table 5-1. Summary of Timing Factors

ITEM TIME
P period 35 nanoseconds
P4 plus P5 70 nanoseconds
E1 through E3 105 nanoseconds
Short microcycle 175 nanoseconds
Long microcycle 280 nanoseconds
Typical main memory read cycle 560 nanoseconds
Typical main memory write cycle 595 nanoseconds
DMS factor (WRTE) 35 nanoseconds
DMS factor (READ) 70 nanoseconds

5-18

Section 6

MAPPING TO THE USER’S
MICROPROGRAMMING AREA IR

MAPPING TO THE USER’S
MICROPROGRAMMING AREA || 6

In order to have operational flexibility using your Computer Series microprogramming facilities you
must have an understanding of the methods used to branch from main memory to control memory and
then back to your program in main memory when your microprogrammed operation is complete. This
section provides information that will enable you to:

® Understand the control memory mapping scheme.
¢ Link to the user’s microprogramming area from your Assembly language (or FORTRAN) program.
¢ Pass parameters to your microprogram.

¢ Understand control memory branch address modification (using some of the available micro-
orders).

® Return from control memory (making a “normal” exit).

® Pass parameters back to your main memory program.

For this discussion on mapping it will be assumed that your microprograms have already been
prepared (using the microassembler and probably the Microdebug Editor) and placed in some facility
of control memory (e.g., WCS, FAB, or UCS). Section 8 describes how to assign starting addresses to
your microprograms. Various microassembler pseudo-microinstructions, which also exist and are
capable of modifying control memory addresses while preparing microprograms, are described in
section 8. Section 7 provides information on how to check for and handle interrupts when you are in
your microprograms.

Part III in this manual describes methods used to get microprograms into control memory. The
methods include creating and installing permanent microprograms and using the “dynamic” micro-
programming method (the WCS facility). By using WCS and the WCS related microprogramming
support software (DVR36, WLOAD, and the Microdebug Editor), microprograms can be loaded into
control memory (WCS) and swapped (or overlayed) with other microprograms.

As is obvious from the above discussion, the information related to passing control in your program
from main memory to control memory and back is considerably interrelated. It is important that the
concepts of main memory/control memory links be firmly established first. Then, with an understand-
ing of the mapping, parameter passing, and branching techniques described in this section; the
interrupt handling and control memory address assignment methods described in sections 7 and 8; and

the microprogramming support software used to control WCS; you will have complete microprogram
address manipulation and transfer capability.

6-1

Mapping

6-1. CONTROL MEMORY MAPPING METHOD

As mentioned in section 2, the Control Processor is always in control of the computer and the base set
microroutines cause the read operations to occur for all instructions (and data) from main memory. In
this manner, all 16-bit instructions are placed in the Instruction Register (IR) and decoded. (Data can
be considered as “parameters” which can be loaded into the desired and appropriate registers by your
microprogram to later perform certain operations; parameter passing will be discussed later in this
section). For instructions, the process of decoding the Instruction Register bits determines which
control memory address (which microprogram) is called by the instruction received from main mem-
ory. The decoding process (mapping method) discussion in this paragraph is at the level you will need
for “normal” user microprogramming and the instruction codes you may use to map to particular
control memory entry points are defined. If you are planning an extensive microprogramming effort,
however, you may be interested in the details of the mapping process contained in appendix C.

6-2. SOFTWARE ENTRY POINTS

Recall that the control memory map in figures 2-3 and 2-4 shows all modules of control memory, their
module boundary addresses, and whether or not the module has available “software entry points”.
The software entry points are the bit patterns which, when placed in the Instruction Register (from
your main memory program), will cause the Control Memory Address Register to be finally loaded
(through mapping) with a desired control memory module entry address.

The hardware/firmware combination in the Control Processor is the facility that imposes restrictions
on control memory software entry points. By using the proper instruction codes you may (with
discretion) map to any obtainable location. However, as mentioned in section 2, certain areas of control
memory may be used for HP microprograms and/or microprogrammed computer enhancements. Thus,
the use of descretion in accessing control memory. It is recommended that you restrict your use of the
software entry point instruction codes to those set aside for entrance into the user’s microprogramming
area. The instruction codes for most software entry points (excluding modules 0 and 1 of the base set)
will be defined shortly and the instruction codes for entrance into the user’s area (the primary concern
of this section) will be identified.

Once in a control memory module, you may have microinstructions that branch to any control memory
location. Again, the use of discretion is implied since the areas shown in figure 2-3 reserved for HP
microprograms and/or microprogrammed accessories may be filled with microprograms. But you
could, for example, branch and use a microroutine of the base set then return to your own microprog-
ram if you prepare your microprogram correctly.

6-3. THE USER INSTRUCTION GROUP

For the purposes of mapping to the “user” areas, the Computer base set has a reserved block of binary
codes called the User Instruction Group (UIG). These codes (UIG instructions) permit you to link
Assembly language routines to your microprograms. The key to the UIG is the upper byte (most
significant bits) of the calling code which must have the format:

6-2

Mapping

105xxx (bit 11 of the IR = 1)
or:
101xxx (bit 11 of the IR = 0).
where:
xxx equals values to be defined in the following paragraphs.

Control memory module selection is determined by the value of bits 8 through 4 in the Instruction
Register (still part of the coded UIG instruction). In general, a secondary index (composed of bits 3
through 0) directly determines which address in the first 16 locations of the selected module will be
used for entry.

Bit 11 in the third octal digit (105xxx or 101xxx) of the UIG instruction in the IR can be used as an
indicator (for your microprograms) by micro-orders which test the Instruction Register data. For
example, the Store field and S-bus field micro-order CAB tests IR bit 11 to select either the A- or
B-register.

The value of bits 8 through 4 of the UIG instruction in the IR is not directly translatable into a control
memory module number but these bits help determine the address of branches in the control memory
base set Primary Mapping Table, which in turn direct a branch to the desired module.

6-4. HP RESERVED UIG CODES. As mentioned in paragraph 6-2, modules of control mem-
ory have software entry points assigned, but modules 0 and 1 of the base set must be disregarded in
this discussion since codes for access to those modules do not fall within the UIG. All modules of control
memory that are accessible through the UIG instructions are shown in table 6-1. This table is
arranged in UIG instruction (binary code) order. The modules these codes map to are shown along with
the control memory entry addresses.

As can be seen from table 6-1, all modules below module 46 accessible with UIG instructions have been
reserved for HP use and are not recommended for normal user microprogramming. Also, as noted in
the table, modules 2, 3, and 32 have a mapping situation that is slightly different than the one used for
modules with a single UIG module selection code (one combination of bits 8 through 4). This multiple
entry point mapping is used only for modules reserved for HP use (base set or HP accessories) and it
will not be discussed in this manual. The module selection codes (bits 8 through 4) briefly mentioned in
paragraph 6-3 are further discussed in appendix C. Refer to the appendix if you require more
information about the module selection codes or the HP reserved area.

To avoid access to the HP reserved area do not use the following UIG instruction (binary codes) for
main memory to control memory linking:
105000 through 105137
or
200 through 437
101 (or 105) 460 through 477
700 through 777

6-3

Mapping

Table 6-1. Control Memory User Instruction Group Software Entry Point Assignments

CONTROL MEMORY

RANGE OF UIG INSTRUCTION MODULE ENTRY POINTS
(MAIN MEMORY) VALUES MAPPED (RANGE OF ADDRESSES)
USED (OCTAL) T0 (OCTAL) (NOTE 2) USE
105000-105137 3 01xxx (NOTE 1) Floating Point
105140-105157 60 36000-36017 User area
105160-105177 62 37000-37017 User area
101 (or 105) 200-217 34 21000-21017 FFP
101 (or 105) 220-237 35 21400-21417 FFP
101 (or 105) 240-257 36 22000-22017 EMA
101 (or 105) 260-277 8 04000-04017 HP Reserved
101 (or 105) 300-317 38 23000-23017 DS/1000
101 (or 105) 320-337 40 24000-24017 SIS (NOTE 3)
101 (or 105) 340-357 16 10000-10017 HP Reserved
101 {or 105) 360-377 42 25000-25017 SIS (NOTE 3)
101 (or 105) 400-417 02000-02017 HP Reserved
101 (or 105) 420-437 03000-03017 HP Reserved
101 (or 105) 440-457 46 27000-27017 User area
101 (or 105) 460-477 12 06000-06017 HP Reserved
101 (or 105) 500-517 47 27400-27417 User area
101 (or 105) 520-537 48 30000-30017 User area
101 (or 105) 540-557 49 30400-30417 User area
101 (or 105) 560-577 50 31000-31017 User area
101 (or 105) 600-617 56 34000-34017 User area
101 (or 105) 620-637 57 34400-34417 User area
101 (or 105) 640-657 58 35000-35017 User area
101 (or 105) 660-677 59 35400-35417 User area
101 (or 105) 700-737 32 20xxx (NOTE 1) DMS
101 (or 105) 740-777 2 01xxx (NOTE 1) EIG

NOTES:

3. Available in F-Series only.

1. xxx signifies last three digits for the entry address. See appendix C for details.
2. All modules except 2, 3, and 32 have 16 entry points. See appendix C.

6-5. USER AREA UIG CODES. Modules 46 through 63 comprise the primary user’s mi-
croprogramming area. (Modules 4 through 31 for E-Series and 27 through 31 for F-Series are also
addressable once in control memory.) The modules in the user’s area that have UIG module selection
codes assigned are designated as user area modules in table 6-1. As apparent from the table, 11 of the
18 modules in the range 46 through 63 are directly accessible. Entry to other control memory modules

will require an extra branch after reaching control memory.

6-4

Mapping

As can also be seen in table 6-1, each module has 16 possible control memory software entry points
provided by the UIG instruction secondary index (UIG instruction bit 3 through 0 combination). The
secondary index directly determines which control memory address (of the first 16 locations in the
selected module) will be loaded into the Control Memory Address Register. The ranges of values for
UIG instructions you should use to access the respective control memory addresses are summarized
below. Since each module may be entered at 16 different locations, 176 direct entry points into the
recommended user’s microprogramming area are available.

Summary of UIG instructions (binary codes) you can use:

105140 through 105177
and

440 through 457 P-Computer

. _;Museum
101 or 105 500 through 677 |

6-6. USER’S AREA MAPPING EXAMPLE

A typical example of mapping to the user’s microprogramming area through the base set using a
recommended UIG instruction is discussed below. Information about the proper procedure to use in
main memory and for returning to main memory is also included. The depth of the discussion should
be sufficient for your normal microprogramming needs.

6-7. MAIN MEMORY/CONTROL MEMORY LINKAGE. Suppose that your main memory
program has a UIG instruction 105602 (octal) written into a particular location designated “I”. The
UIG instruction may or may not have address pointers and/or operands in main memory locations I +
1, I + 2, etc. For example:

MAIN MEMORY

Location Contents
| 105602
I+ 1 .
|+ 2 .

During execution, UIG instruction 105602 maps to control memory location 34002 as follows. The base
set Fetch microroutine completes the read and IR store operation (as described in paragraph 2-16) for
your 105602 UIG instruction and begins the mapping procedure by executing these microinstructions:

CONTROL MEMORY
(Fetch Microinstructions, start at CM location 00000)

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
FETCH READ FTCH I;ASS IRCM TAB IR=105S602, L =90
I+2

JTAB INC PNM P M=1+1,P-=

6-5

Mapping -

The JTAB micro-order indexes the upper eight bits of the 105602 UIG instruction (in the IR) through
the Control Processor Jump Tables to the following microinstruction in the base set’s microroutines:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
MAC1 JMP J74 . MACTABL1 BEGIN MAPPING TO USER AREA

As can be seen from this example, this microinstruction branches to the control memory address at
label “MACTABL1” (still in the base set) but the J74 Special field micro-order indexes the branch,
making a branch address modification, by replacing bits in this microinstruction branch address field
with bits from the Instruction Register (refer to table 4-1 for the explanation of J74). This index
actually serves as the UIG module selection code, described in paragraphs 6-3 and 6-4, and causes
enfry at a particular address in the base set’s Primary Mapping Table. At the indicated address in the
Primary Mapping Table, another control memory branch is directed. This branch is made to the
desired module (in this case CM address 34000) by the appropriate microinstruction as follows:

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
MACTABLA1 JMP - 23420B

JMP RJ30 34000B COMPLETE MAPPING TD USER AREA

Note that the branch to control memory address 34000 is modified by an RJ30 Special field micro-
order. The RJ30 implements the secondary index and causes the Control Memory Address Register to
be loaded with the final module entry point address (one of the first 16 locations). In this case, since the
UIG instruction is 105602, the microinstruction’s branch address field bits are replaced with the
Instruction Register bits that will cause entry to be made at control memory address 34002. (Refer to
table 4-1 for the explanation of RJ30). The RJ30 micro-order simultaneously starts a read operation
from main memory location I + 1. (See the Fetch microroutine previously described.)

Upon reaching the user microprogramming area (at address 34002) the following situation exists:

IR = 105602,

L = 0, (FTCH cleared the L-register)

P =1+ 2

M =1+ 1,and a READ of main memory location I + 1 is in progress.

6-6

Mapping

Microinstructions at your control memory entry points should usually have been previously prepared
to cause an additional branch to the control memory address where the desired microroutine begins.
Typically the first 16 locations in a user module are set up with unconditional branches (word type IV)
to the actual microroutines as follows (module 56 used in this example):

ALY/

OP/ MOD/ S-BUS/
LOCATION LABEL BRCH SPCL COND STR ADDRESS COMMENTS
34000 JMP . INSTOOMC ENTRY POINT 1
34001 JMP INSTO1MC ENTRY POINT 2
34002 JMP INSTO2MC ENTRY POINT 3
34003 JMP . INSTO3MC ENTRY POINT 4
34007 JMP ' INSTO7MC ENTRY POINT 8
34010 JMP INSTO8MC ENTRY POINT 9
34017 JMP - INST15MC ENTRY POINT 16
34020 INSTO2MC S3 TAB BEGIN MICROROUTINES

READ RTN INC PNM P EXIT

In this example the microinstruction at the entry address causes a branch to control memory location
34020 where the actual microroutine begins.

The TAB micro-order (location 34020) is used to obtain the results of the RJ30 initiated main memory
read operation that occurred while in the base set Primary Mapping Table. In this example the data is
stored in S3. This data could be a parameter address passed from your main memory program. The
data obtained by this RJ30 initiated read operation must be taken from the T-register while at the first
microinstruction in your microroutine, or at the latest, during execution of the next microinstruction
(refer to table 4-1 for the explanation of a READ micro-order). If desired, the results of the RJ30
initiated read operation may be ignored.

6-8. ASSEMBLER PROCEDURE. An Assembly language procedure for invoking a micro-
program and passing parameters is discussed below. Paragraph 6-11 provides some additional infor-
mation. The basic concepts of invoking microprograms and passing parameters should be evident from
the information presented here.

6-7

Mapping

Basically, the microprogram is invoked and parameters are passed using an Assembly language
procedure such as follows:

ASMB,L
NAM TEST,7
ENT TEST,MACRO
EXT ISC,NMBR,IBUF

TEST NOP
MACRO OCT 105603 MICROPROGRAM OP CODE
DEF *+4 RETURN ADDRESS, ALSO FTN COMPATIBILITY

DEF ISC(l) SELECT CODE
DEF NMBR() DATA COUNT
DEF IBUF(l) DATA BUFFER
JMP TEST,|

END

As can be seen from the above, a UIG instruction (as described in preceding paragraphs) appears in an
OCT statement. This is used at the point in the Assembly language source program where the branch
is to occur. The value to be inserted should be OCT 101xxx (or 105xxx) (where xxx is in the range
shown in table 6-1) to properly map to the desired control memory module address. If parameters are to
be passed, they are usually defined as constants (via DEF or OCT statements) immediately following
the OCT statement as seen in the example above. The microprogram procedures for accessing param-
eters are presented in the following paragraph.

6-9. PARAMETER PASSING. The following two examples of microprograms show how to
access parameters in main memory and resolve indirect main memory references. The initialization
portion of each microprogram (microassembler control commands and pseudo-instructions) will be
described in later sections. The primary thing you should observe in these examples is the method used
to handle parameters. Pay particular attention to the P- and M-register adjustments. Remarks and
explanatory notes are included in the microprograms. Note that any line beginning with an asterisk is
a comment. The interrupt handling methods shown in these microprograms will be described in
section 7.

Mapping

EXAMPLE 1: ACCESSING A PARAMETER LIST FROM A MICROPROGRAM

PAGE 0002 RTE MICRO-ASSEMRLER REV.,A 760805

nonl1 MICMXE oL 21MX E=SERIES
0002 $CODE=MPORJREPLACE 08JECT T0O DISC
0003 INDIRECT EQU 343558 USER WRITTEN
0004 #* INDIRECT

0005 # MICROPRQOGRAM
0006 # (SEE EXAMPLE 2)
0007 ORG 34003B 105603 => 34003
0008 34003 327 001407 JMP INSTO3MC SAVE ENTRY

0009 # POINTS

0010 # THIS MICROPROGRAM 1S AN EXAMPLE OF HOW TO

0011 # RETRIEVE MAIN MEMORY PARAMETERS AND ADDRESSES

0012 #*

0013 # A USER WRITTEN MICROSUBROUTINE (SEE EXAMPLE 2)

0Ccl14 # WILL BE USED TO RESOLVE INDIRECT ADDRESSES

0015 #

0016 # INITTALIZE THE CNTR

0017 # THE USER WRITTEN INNIRECT MICROPROGRAM (EXAMPLE 2).
N018 # IF INTERRUPTEDs USFS THE CNTR TO ADJUST P (I.E.
0019 # SET P TO MAIN MEMORY ADDRESS + 1 OF THE

noz2on & MICROPROGRAM QP CONF)

0021 ORG 340308B

0022 34030 343 176547 INSTO3MC IMM LOW CNTR 377R CNTR = =]

0023 “

0024 # GET PARAMETERS:

0025 # SELECT CODE+ DATA COUNT,s BUFFER ADDRESS

0026 34031 227 174725 READ DCNT INC PNM P GET SELECT CODE
0027 34032 307 016647 JSR INDIRECT RESOLVE ADDR
0028 34033 010 000507 L TAB L = SELECT CODE
0029 #

0030 34034 227 174725 READ DCNT INC PNM P GET DATA COUNT
0031 34035 307 016647 JSR INDIRPECT PRESOLVE ADDR
0032 34036 353 007123 IMM (4 CMLNO S3 3038 (SEE NOTE 1)
0033 34037 010 001147 S4 TAB S4 = DATA COUNT
0034 #

0035 34040 227 174725 READ DCNT INC PNM P GET RUFFER ADDR
0036 34041 010 145107 I0Pp S3 S3 (SEE NOTE 1)
0037 34042 307 016647 JSR INDIRECT RESOLVE ADDR
0038 34043 010 033207 S5 M S5 = BUFFER ADDR
0039 #

0040 # NOTE 1, ONE NON=FREF7ABLE MICROINSTRUCTION MAY

0041 #* PRECEDE AND/0RP FOLLOW THE JSB INDIRECT*S
0042 “

0043 34044 227 174700 READ RTN INC PNM P START FETCH FOR
0044 # NEXT MAIN MEMORY
0045 L INSTRUCTION
0046 END

END 0OF PASS 2: NO ERRORS

6-9

Mapping

EXAMPLE 2: RESOLVING INDIRECT MAIN MEMORY REFERENCES

PAGE 0002 RTE MICRO=-ASSEMBLER REV.A 760805

0001
noo2
0003
0004
0005
0006
0007
0008
0009
0010
0011
0ol2
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

END NF PASS

6-10

34355
34356

34357
34360

34361
34362
34363
34364

34365
34366

230
3h7

230
367

230
367
323
336

010
32n

2

000647
140002

000647
140002

000643
140002
157042
057047

026507
000307

NN ERRORS

M

$CODE=INDOBJ+REPLACE
HORI EQU 6K

*

]

N

ICMXE oL 21MX E-SERIES
OBJECT TO DISC
BASE SET HALT-
OR=INTERRUPT
MICROROUTINE
ORG 343558

THIS IS AN EXAMPLE NF A USER WRITTEN MICROSUKROUTINE
THAT RESOLVES INDIRECT MAIN MEMORY REFERENCES

EACH INDIRECT LEVEL RFQUIRES AN ADDITIONAL MEMORY

CYCLE

AT ENTRY,
THE CALLING PROGRAM MUST HAVE INITIALIZED THE CNTR
(SEE EXAMPLE 1) S0 THAT THIS MICROSUBROUTINE. IF
INTERRUPTEDs WILL CORRECTLY ARJUST P (I.E SET P TO
MAIN MEMORY ADDRESS + 1 OF THE MICROPROGRAM 0P
CODE) BEFORE JUMPING TO HORIe THE BASE SET
HALT=OR=INTERRUPT MTCROROQUTINE

AT EXIT,
THE FINAL (DIRECT) MAIN MEMORY ADDRESS wILL HAVE
BEEN DETERMINEN, AND A READ OF THE FINAL ADDRESS
wILL BE IN PROGRESS

FOR THE FIRST THREE INDIRECT LEVELSs INTERRUPTS
ARE NOT CHECKED

AFTER THE THIRDs OR ANY SUCCESSIVEs INDIRECT LEVEL
INTERRUPTS ARE CHECKFD FOR AND SERVICED

NDIRECT READ M TAB INDIRECT ?
RTN CNDX AL1S RJS NOWRTN
READ M TAR INDIRECT ?
RTN CNDx AL15 RJS NOs FTN
EXT READ ION M TAR ION. INDIRECT ?
RTN CNDX AL1S5 RJS NOs RTN
JMP CNDX HOT RJS NEXT INTERRUPT OR
JMP CNDX NSNG RJS NEXT INSTR STEP?
NOs NEXT ADDR
L CNTR YESs ADJUST P
JMP HOR I EXIT TO HORI
END

Mapping

Parameters may be passed back to your main memory programs by writing the values (loaded into the
T-register) into the desired locations (address loaded into the M-register) since you have direct control
of the registers while you are executing microinstructions in control memory.

6-10. CONTROL MEMORY/MAIN MEMORY LINKAGE. It is the microprogrammers re-
sponsibility to have stored and/or adjusted the values in the P, M, and other applicable registers (using
the appropriate micro-orders) when entering a microprogram so that the respective registers may be
restored with the desired values before returning control to main memory. When preparing to exit a
microprogram and return to the base set Fetch microroutine, the following must be accomplished to
properly interface with the next main memory instruction. Assume that a main memory location
designated “J” contains the next instruction. Upon microprogram completion you must ensure:

il

J+ 1

J, and a read operation of location J starts within three microinstructions before microp-
rogram exit.

P
M

Note that the last example in paragraph 6-7 and the last part of microprogram EXAMPLE 1, bqth end
in the manner stated above.

6-11. SOME MAIN MEMORY PROGRAM PROCEDURES

Information on another Assembly language instruction and a FORTRAN procedure that can be used
to invoke microprograms is included in the following paragraphs. Further information on Assembly
language procedures can be found in the RTE Assembler Reference Manual, part no. 92060-90005 or
the RTE IV Assembler Reference Manual, part no. 92067-90003. Examples of FORTRAN procedures
are included in parts III and IV of these manuals. Also refer to the RTE FORTRAN IV Reference
Manual, part no. 92060-90023. For information on other languages, refer to the appropriate manuals
listed in the Table 3-3 in the preface of this manual.

6-12. THE MIC PSEUDO-INSTRUCTION

An Assembly language program can also call a microprogram with a mnemonic code which has been
assigned earlier in the program. That is, with a MIC pseudo-instruction, you can define a source
language instruction which passes control and a series of parameter addresses to a microprogram. In
this use of the MIC instruction, a UIG instruction (binary code) is assigned to a mnemonic so that
whenever the mnemonic appears, the code is written into that location in the assembled program. The
number of parameters is also specified in the following format for the MIC pseudo-instruction:

MIC opcode, fcode, pnum comments
where:
opcode = any three-character alphabetic mnemonic

fcode = a UIG instruction (octal) from table 6-1

pnum the number of associated parameter addresses (zero to seven) (may be an expression

which generates an absolute result).

6-11

Mapping

NOTE

All three operands (opcode, fcode, and pnum) must be supplied in
the MIC pseudo-instruction in order for the specified instruction
to be defined. If pnum is zero, it must be expressly declared as
such (not omitted).

This Assembly language pseudo-instruction provides you with the ability to define your UIG instruc-
tions with mnemonics, but the MIC declaration must appear before the three-character alphabetic
mnemonic is used. When the “newly” assigned user-defined instruction is used later in your Assembly
language source program, the specified number of parameter addresses (pnum) are supplied in the
operand field separated from one another by spaces. These parameter addresses can be any address-
able values, relocatable and/or indirect. If it is desired to pass additional parameters to a micro-
program beyond those pointed to by the user-defined instruction, they must be defined as constants
(via OCT or DEF statements) immediately following each use of the user-defined instruction.

6-13. PARAMETER ASSIGNMENT EXAMPLE. Assume that a total of three parameters are
to be passed to a microprogram. Suppose the values of the first two parameters are in main memory
locations designated ISC and NMBR and that the value for the third parameter is in a memory
location pointed to by IBUF. A UIG instruction for your microprogram could be 105602. In this case the
Assembly language source language statement would be written:

MIC MIO,105602B,3

After this above statement in the source, you may use the MIO statement in your source program
whenever it is necessary to pass control to a particular microprogram with the entry point at control
memory address 34002 by using the following:

MIO ISC NMBR IBUF,I

An example of a short but complete Assembly language program illustrating some of the procedures
outlined thus far appears in the next paragraph.

6-14. EXAMPLE MIC PSEUDO-INSTRUCTION USE. The Assembly language use princi-
ples are summarized in the following example. Note that the two MIC instructions are declared first.
One has no parameter addresses to pass, the other has four. SRT could be a sort microroutine and MIO
a microprogrammed /O operation. In source statement sequence number 0014, designation *+5 is
used to limit the list and make the program FORTRAN callable. ISC is the select code, NMBR the
count, and IBUF a reserved data buffer (5 locations).

6-12

EXAMPLE 3: MIC PSEUDO-INSTRUCTION USE

PAGE 0002 # 01

0001
0002
0003+
0004
0005+
0006
0007+
0008
0009+
0010+
0011
0012+
0013+
0014

0015+
0016+
0017
0018
0019
0020
0021
0022+
0023
0024
0025
0026

00000

00000

00001

00002
00003
00004
00005
00006

00007
00010
00011
00012

00013
00014
00015

000000

105600

105602

000007R
000013R
000014R
000015R

016001 X
000012R
000012R
000006

000016
000005
000000

#+ NO ERRORS*

6-15. CALLING MICROPROGRAMS FROM FORTRAN

ASMB, L

START

SORT

MCIO

RC

1sC
NMBR
IBUF

NAM
MIicC
mMIC

NOP

SRT

mMIO

EXT
JSB
DEF
DEF
DEC

ocT
DEC
BSS
END

MIC PSEUDO INSTRUCTION USAGE
SRT,105600B,0

MID,105602B,4

#+5 1SC NMBR IBUF

EXEC
EXEC
*+2
RC

16

START

Mapping

Treating a microprogram as an external subroutine is a typical way to invoke a microprogram from
FORTRAN. The process (using the example MIO microprogram) is shown below followed by explana-

tions.

FTN4,L,M

SUBROUTINE FTNMP (ISC, NMBR, IBUF)
DIMENSION IBUF (1)

CALL MIO (ISC, NMBR, IBUF)

END
END$

6-13

Mapping

The M in the compiler control statement provides mixed mode operation and expansion to Assembly

language. The CALL MIO statement expands to a JSB MIO followed by a series of parameter
addresses as follows:

JSB MIO
DEF *+4
DEF 00000,
DEF 00001,
DEF 00002,

The load time JSB replace routine would appear as follows:

ASMB,L
NAM RPLCE
MIO RPL 105602
END

The MIO RPL 105602 statement above alerts the RTE relocating loader that all external references to
MIO are to be replaced with 105602 and, if loaded with the program shown first in this paragraph,
causes the RTE relocating loader to substitute the required microprogram UIG instruction (105602),
for the JSB MIO. In this way, the FORTRAN program accesses the microprogram directly at execution
time.

6-16. SUMMARY

Equipped with knowledge gained through information in this section, you should have no trouble
planning where you want your microprograms placed in control memory. You should have a good
understanding of linking between main memory and control memory. The concept of control memory
branching has been presented so that, if necessary, you may also use the J74 and RJ30 micro-orders for

CM branch address modification in your microroutines. The concepts of parameter passing should also
be clear.

6-14

Section 7
MICROPROGRAMMING CONSIDERATIONS I

)

MICROPROGRAMMING
CONSIDERATIONS |[7

Some key points that you will want to be aware of when writing microprograms are presented in this
section. The assumption is that you will refer to section 4 for complete descriptions of micro-orders, but
the additional considerations in this section include:

® The techniques to use for microprogrammed read, write, and arithmetic operations.

e Microprogramming with the Memory Protect or Dual Channel Port Controller (DCPC) installed.
® Microprogrammed Input/Output operations.

® Microprogramming with the Dynamic Mapping System installed.

Some guidelines for writing IBL loaders are also included.

7-1. READ AND WRITE CONSIDERATIONS

Microprogrammed main memory read and write operations are easily implemented and will be
successful when the guidelines outlined below are followed. Conditionally valid and invalid methods of
using the READ and WRTE micro-orders are also discussed in paragraph 7-5.

7-2. TYPICAL READ OPERATIONS

Load the M-register before or during microinstructions containing READ in the OP field. Do not
modify the M-register until at least two microinstructions after the READ (See the information in this
paragraph on reading the A- and B-registers with a TAB micro-order.). A simple READ with the M > 1
is performed as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ ' [y S3 175 NS

S4 TAB 560 NS

The T-register contents must be placed on the S-bus no later than two microinstructions after a READ
is specified, because the T-register is disabled by the Main Memory Section after the second micro-
instruction is executed. Microinstructions may be used between READ and TAB. When using one
microinstruction between READ and TAB, the microroutine may appear as follows:

7-1

Considerations

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ ' M s3 175 NS
INC 53 s3 175 NS

S4 TAB S60 - 175 = 385 NS

Note that if a DCPC is active, freezable microinstructions (e.g., I0OG) may not be used between READ
and TAB. Also, no more than two microinstructions may be executed between READ and TAB. If there
is no DCPC activity, neither restriction applies. When using two microinstructions, the microroutine
may appear as follows.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ M S3 175 NS
INC S3 S3 175 NS
IMMm LOW L 0 17S NS
AND S4 TAB §60 - (175 x2) = 210 NS

For utilizing main memory address 00 as the A-register, use the following microinstructions:

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
ZERD S3
READ M s3 175 NS,AAF=1, READ INHIBITED

S4 TAB 175 NS, S4 =A-REGISTER

7-2

Considerations

For utilizing main memory address 01 as the B-register, use the following microinstructions:

ALY/
OP/ MOD/
LABEL BRCH SPCL COND
IMM (.)MLD
READ

If reading main memory location 00:

ALU/
oP/ MOD/
LABEL BRCH SPCL COND
ZEROD
READ PRST

If reading main memory location 01:

ALY/
OP/ MOD/
LABEL BRCH SPCL COND
IMmM éMLD
READ PRST

STR

S3

S4

STR

S3

S4

STR

S3

S4

S-BUS/
ADDRESS

376B

TAB

S-BUS/
ADDRESS

S3
TAB

S-BUS/
ADDRESS

376B

TAB

COMMENTS

S3 = 1
175 NS, BAF = 1 ,READ INHIBITED
175 NS, S4 = B-REGISTER

COMMENTS

175 NS, PRST CLEARS AAF
560 NS, S4 = CONTENTS OF MAIN
MEMORY LOCATION 0

COMMENTS

S3 =1

175 NS, PRST CLEARS BAF

560 NS, S4 = CONTENTS OF MAIN
MEMORY LOCATION 1

Memory address 00 and 01 may be written into (refer to paragraph 7-3 by using the Special field
micro-order PRST one microinstruction before the TAB micro-order is used. In read or writes the main
rule is that PRST precede the TAB micro-order by one microinstruction. Note that (see the last two
microroutines) main memory locations 00 and 01 may be used for Hewlett-Packard generated
microroutines; therefore, the use of main memory locations 00 and 01 is not recommended.

Considerations

Microprogrammed successive READ’s may appear as follows but note that if two READ’s are coded
without an intervening TAB, the result of the first READ is lost.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

READ M S3 175 NS
READ M TAB 560 NS
M TAB 560 NS

If the M-register is modified between READ and TAB, the decision between the A-register, B-register,
and main memory may be made incorrectly. For example:

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM CMLO sS4 376B S4 =1
ZERO S3
READ M S3 READ A-REGISTER, AAF =1
M S4 M=1, BAF =1, AAF = 0
S5 TAB SS = B-REGISTER, NOT A-REGISTER

7-3. TYPICAL WRITE OPERATIONS

Load the T-register with data to be written to main memory in the same microinstruction that
contains the WRTE micro-order or the DCPC could alter the T-register before the WRTE is executed.
Do not alter the T-register unless initiating WRTE, since the T-register is internal to the Main
Memory section and is used by both the CPU and the Dual Channel Port Controller (DCPC). The
T-register is not intended to be used as a general purpose register, but to be used only in referencing
main memory. A simple write operation with M > 1 is accomplished as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3

WRTE MPCK TAB S4 175 NS

-4

Considerations

For interpreting main memory address 00 as the A-register, use the following microinstructions:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND
ZERD
WRTE MPCK

STR

S3

TAB

S-BUS/

ADDRESS COMMENTS

S3 M=0, AAF =1

S4 175 NS, A-REGISTER = 5S4, MAIN

MEMORY LOCATION 0 UNALTERED

For interpreting main memory address 01 as the B-register, use the following microinstructions:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND
IMm éMLD
WRTE MPCK

STR

S3

TAB

S-BUS/

ADDRESS COMMENTS

376B S3 =1

S3

S4 175 NS, B-REGISTER = 5S4, MAIN

MEMORY LOCATION 0 UNALTERED

Writing into main memory location 00 is accomplished as follows:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND
ZERD
PRST
WRTE MPCK

STR

S3

TAB

S-BUS/

ADDRESS COMMENTS

S3 PRST CLEARS AAF

sS4 175 NS, MEMORY LOCATION 0 = S4,

A-REGISTER UNALTERED

7-5

Considerations

Writing into main memory location 01 is accomplished as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM CMLO S3 376B S3=1
PRST M S3 PRST CLEARS BAF
WRTE MPCK TAB sS4 175 NS, MAIN MEMORY LOCATION 1
* = 5S4, B-REGISTER UNALTERED

Note that (see the last two microroutines) main memory locations 00 and 01 may be used for Hewlett-
Packard generated microroutines; therefore, using main memory locations zero and one is not
recommended.

Microprogrammed successive WRTE’s may appear as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3
WRTE MPCK TAB S4 175 NS
M S5 175 NS

WRTE MPCK TAB S4 595-175 = 420 NS

In all the WRTE examples above, MPCK checks the M-register, which must be loaded in a mic-
roinstruction preceding (not necessarily immediately) the MPCK. To write into protected main
memory, omit MPCK.

CAUTION

Writing into protected main memory must be done with caution
because of the possibility of crashing the system environment.

After the execution of a microinstruction containing a WRTE, the 595 nanoseconds needed to write

into main memory does not extend succeeding microinstructions unless they attempt to access main
memory before 595 nanoseconds has elapsed.

7-6

7-4. USE OF MPCK

Considerations

In an active DCPC environment, the use of the MPCK micro-order in a microinstruction containing a
WRTE micro-order ensures that the Memory Protect check will be made correctly. The Store field of a
microinstruction with READ and MPCK micro-orders must not contain M, PNM, or IRCM because
this will result in an erroneous Memory Protect check. A correct sequence of microinstructions might

appear as follows:

ALY/
OP/ MOD/
LABEL BRCH SPCL COND STR
M
WRTE MPCK TAB
READ M

MPCK

S-BUS/
ADDRESS

S3
sS4

SS

COMMENTS

M = ADDRESS 70 BE WRITTEN INTOD.

MPCK AS USED HERE WILL CORRECTLY
CHECK FOR A MEMORY PROTECT
VIOLATION.

MPCK AS USED HERE WILL CORRECTLY
CHECK FOR A MEMORY PROTECT
VIOLATION.

7-5. CONDITIONAL AND INVALID OPERATIONS

The READ/WRTE sequence shown below is conditionally valid. That is, if there is no DCPC activity

the sequence will work.

ALY/
OP/ MOD/
LABEL BRCH SPCL COND STR
READ . M

WRTE TAB

The following READ is conditionally valid:

ALY/
opP/ MOD/
LABEL BRCH SPCL COND STR
READ M
INC S3
IMM LOW L
ZERD S4

SS

S-BUS/
ADDRESS

S3
TAB

S-BUS/
ADDRESS

S3
S3

TAB

COMMENTS

175 NS
S95 NS

COMMENTS

175 NS
175 NS
175 NS
175 NS
175 NS

7-1

Considerations

Note that both examples will fail frequently in an environment in which there is DCPC activity.
Any number of microinstructions may separate a READ and TAB if there is no DCPC activity.

The microroutine sequences shown below are examples of invalid use of READ and WRTE:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ . M S3 READ WILL COMPLETE, BUT
WRTE THE WRTE IS INHIBITED
*
READ M S3

WRTE TAB 177777 WRITTEN INTO MEMORY .

When an I/0 cycle is in progress, a READ or WRTE must not be initiated before T6 in the cycle under
either of the following conditions:

e An input or output routine is in progress. (Refer to paragraph 7-22 for microprogrammed /O
considerations.)

e A gkip flag test of the I/O system is taking place.

7-6. SOME MICROPROGRAMMING TECHNIQUES

Techniques for using the alter-skip related micro-orders and for performing microprogrammed arith-
metic operations are included in the following paragraphs.

7-7. 'THE USE OF SRG1 AND SRG2

Micro-order SRG2 is sensitive to the contents of the Instruction Register (IR). In particular, bits 4, 2, 1,
and 0 control a variety of shift/rotate actions. However, SRG2 causes the top of the Save Stack to be
loaded into the CMAR unless an SRG2 skip condition is met. This pseudo-RTN is usually undesirable
in a user microprogram. The simplest way to prevent the undesired loading of the CMAR is to satisfy
an SRG2 skip condition by setting bit 3 of the IR and having bit 0 of the T-bus be clear. IR bit 3 = 11is
the equivalent of an Assembler SL*. By ensuring that T-bus bit 0 = 0 as execution of the SRG2 begins,
the SRG2 skip test is satisfied and the CMAR is not loaded from the Save Stack. The lines at labels
SRG2.1, and SRG2.2, and SRG2.3 in the following microroutine illustrate the above technique.

OP/
LABEL BRCH SPCL
SRG2.1 IMm
SRG2.2
SRG2.3 SRG2

ALY/

MOD/

COND STR
LUN CNTR
ZERDO

sS4

S-BUS/
ADDRESS

37B

S3

Considerations

COMMENTS

IRC4-0) = 11111 = SL», sLF.
T-BUS €0) = 0.
S4 = CONTENTS OF S3ROTATEDLEFT 4.

As shown in line SRG2.1, the CNTR micro-order may be used in place of IRCM if only IR bits 7 through
0 are significant. Storing into the counter does not alter IR bits 15 through 8. In regard to IRCM, note
that if IR bit 10 = 0, the upper five bits of the M-register will be automatically cleared (zeroed) as bits 9
through O of the IR are stored into the M-register. If IR bit 10 = 1, bits 14 through 10 of the IR are
stored into the M-register (in addition to IR bits 9 through 0) to form an operand address.

Micro-order SRG1 is also sensitive to the contents of the IR, but does not cause loading of the CMAR
from the Save Stack; therefore, the use of SRG1 is straightforward as shown in lines SRG1.1 and

SRG1.2 below.

OP/
LABEL BRCH SPCL
SRG1.1 IMm
SRG1.2 SRG1

ALY/
MOD/
COND STR

HIGH IRCM

S6

S-BUS/
ADDRESS

S5

COMMENTS

IR(9-5) = 11111 = «LF, CLE.

S6 = CONTENTS OF SSROTATED LEFT 4,
AND E-REGISTER = 0.

Considerations

7-8. USING THE ASG MICRO-ORDER

Micro-order ASG is sensitive to the contents of the IR. In particular, IR bits 7 and 6 may be used to
clear, complement, or set the E-register. However, ASG causes the top of the Save Stack to be loaded
into the CMAR unless an ASG skip condition is met. This pseudo-RTN is usually undesirable in a user
microprogram. The simplest way to prevent the undesired loading of the CMAR is to satisfy an ASG
skip condition by setting bit 0 of the IR. For an ASG, IR bit 0 = 1 is the equivalent of an Assembler
RSS, i.e., a satisfied ASG skip condition. ASG is also sensitive to IR bit 2, if IR bit 2 = 0 the micro-order
in the ALU field is ignored and a PASS is executed. To execute anything but a PASS in the ALU field,
set the IR bit 2 to a 1. With the use of the microinstructions shown below, the E-register will be set, S4
incremented and stored into S4, and the microinstruction following the ASG will be executed next:

ALU/
opP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM LOW IRCM 305B IR¢7,6,2,0) = 1,1,1,1, = CCE,RSS.

ASG INC S4 S4 CCE,S4 = S4+1

7-9. SETTING AND CLEARING OVERFLOW

Some guidelines for programmatically setting and clearing the Overflow register are shown below.
The use of the SOV, COV, ENVE micro-orders are involved.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

EXPLICITLYSETTING & CLEAR.ING OVERFLOW

*

sav EXPLICITLY SETS OVERFLOW
cav EXPLICITLY CLEARS OVERFLOW
»
» SETTINGOVERFLOWWITHSHIFT OPERATION
ARS L1 B B IF B15 NOT = B14 PRIOR TO L1,
» OVERFLOW WILL BE SET AFTER ARS
. EXECUTES
* SETTING OVERFLOWARITHMETICALLY
IMM cOV HIGH L 200B L = 040377 = LARGE + NUMBER
IMM HIGH S3 200B S3 = 040377 = LARGE + NUMBER
ENVE ADD S3 s3 OVERFLOW WILL BE SET
»
IMM CcOV HIGH L 0 L15 =0
IMM HIGH S3 177B S3 = 077777
ENVE INC S3 s3 OVERFLOW WILL BE SET
»
» THE FOLLOWING WILL NOT SET OVERFLOW CORRECTLY
IMM cOV HIGH L 200B L = 040377 = LARGE + NUMBER
IMM CMHI S3 200B S3 = 137000 = LARGE - NUMBER

ENVE SUB S3 S3 OVERFLOW WILL NOT BE SET

The rule for setting the Overflow register arithmetically is summarized in figure 7-1.

7-10

Considerations

START

OVERFLOW
REGISTER
SET

OVERFLOW
REGISTER
UNALTERED

END

7115-23

Figure 7-1. Overflow Register Control

7-11

Considerations

7-10. THE USE OF PNM

For time-critical loops, the PNM micro-order can be used as shown in the microroutine below to reduce
loop execution times. The microinstruction at label LOOP uses PNM to initialize M for the current
READ and to update P for the next READ. Since these functions usually require two micro-
instructions, loop execution time reduces by one microinstruction. Saving P and initializing P with the
buffer address (assumed to be in B) uses two control memory locations. Microprogram specifications
determine whether the control memory/execution time tradeoff is worth while. Note that the restora-
tion of P is “buried” in preparing to exit the microprogram, as in line MPEND:

ALY/
OP/ MOD/ S-BUS/

LABEL BRCH SPCL COND STR ADDRESS COMMENTS

S3 P SAVE P

P B P = BUFFER ADDRESS
LOOP READ INC PNM P READ BUFFER, UPDATE BUFFER
LOOPEND ADDRESS.
MPEND READ RTN INC PNM S3 FIX, P, START FETCH FOR NEXT
* INSTRUCTION.

7-11. THE CNTR MICRO-ORDER

If a loop requires 256 or fewer repetitions, and the IR contents are not required, the CNTR micro-order
can be used as shown in the microroutine below to reduce loop execution time. Incrementing or
decrementing the CNTR is “buried” in line LOOP. Since loop count updating using a scratch register,
(or general purpose register) would require a separate microinstruction, loop execution time is reduced
by one micro-instruction using this method. Initializing the CNTR with the loop count uses one control
memory location. Microprogram specifications determine whether the control memory/execution time
tradeoff is worth while. Note that, INCT or DCNT does not use the ALU; therefore, arithmetic
operations may be performed in the same microinstruction. Note that ICNT cannot immediately
precede a conditional jump which has a CNT4 or CNT8 as the condition.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
CNTR A CNTR = LOOP COUNT.
LOOP READ DCNT iNC PNM P READ BUFFER, UPDATE BUFFER
* ADDRESS AND LOOP COUNT.

LOOPEND JMP CNDX CNT8 RJS LOOP COUNT = 0? NO, CONTINUE.

7-12

Considerations

7-12. MAGNITUDE TESTS

If the magnitude of the difference between two operands is less than 32768, the limited test shown in
the microroutine that follows may be used to determine whether one of the elements to be compared is
arithmetically less than, equal to, or greater than the other element. To understand the limitation of
the test, consider integers of —1 (element 1) and + 32767 (element 2). Subtracting — 1 from + 32767
yields + 32768, which is a number that cannot be correctly represented by a 16-bit signed integer. The
result of the subtraction is ALU bit 15 set, and bits 14 through 0 clear. The AL15 conditional test
selects the C1.GT.C2 microinstruction. Clearly, element 2 (+ 32767) is greater than element 1 (—1),
and the test has failed.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

= LIMITEDLESS THAN, EQUAL TO, GREATER THANTEST.

. L s3 L = C1 CFIRST ELEMENT).
SUBTRACT SUB S4 ALU=C2 - C1.
JMP CNDX ALZ EQUAL ALU = 0? YES, C1 = C2.
JMP CNDX AL1S C1.G6T.C2 AL1S = 0? YES, C1 GREATER THAN C2,
C1.LT.C2 NO, C1 LESS THAN C2.
EQUAL :
C1.6T.C2

The test in the microroutine that follows holds for all 16-bit signed integers. Consider how integers of
—1 and + 32767 are now analyzed. Based on the XOR of the two elements, the ALZ test for equality
fails, the AL15 RJS test for equal signs fails, and the L15 test for element 1 less than element 2
succeeds which causes the C1.LT.C2 microinstruction to be selected correctly.

Note that when the signs of the elements being compared are opposite, subtraction is unnecessary
since the negatively signed element must be smaller. Note also that when the signs of the element
signs are the same, subtraction always yields a result which causes correct microinstruction selection.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

* GENERAL LESS THAN, EQUAL TO, GREATER THANTEST.

L S3 L = C1 (FIRST ELEMENT).
XOR S4 ALU = C2 XOR C1.
JMP CNDX ALZ EQUAL ALU = 0? YES, C1 = C2.
JMP CNDX AL1S RJS SUBTRACT SIGNS = ? YES, SUBTRACT.
JMP CNDX L15 C1.LT.C2 L15 =12 YES, C1 LT C2.
JMP C1.6T.C2 NO, C1 GT C2.
SUBTRACT SuB S4 ALU = C2 - C1.
JMP CNDX AL1S C1.6T.C2 AL15 = 1?2 YES, C1 GT C2.
C1.LT.C2 . NO,C1 LT C2.
EQUAL .
C1.6T.C2

713

Considerations

7-13. MEMORY PROTECT CONSIDERATIONS

If the HP 12892B Memory Protect (MP) accessory is used with the Computer, there is a relationship
between certain micro-orders and Memory Protect that should be understood.

The Main Memory section and I/O section are involved in the Memory Protect functions. You will also
want to refer to the read/write and microprogrammed I/O considerations in this section (in addition to
the discussion of MP related micro-orders presented in the following paragraphs) for a complete
understanding of the microprogramming/Memory Protect relationship.

Memory Protect can only be enabled or disabled through use of the I/O system; there are no micro-
orders that directly perform these operations. When an STC 05 instruction enables MP, main memory
access cannot occur below the value set in a Fence register and no /O operations (except those
referencing select code 01) can occur. The Memory Protect functions are disabled by any interrupt,
interrupting to a non-I/O type instruction in a trap cell. Refer to the discussion of the Memory Protect
accessory in your Computer Series Operating and Reference Manual and have an understanding of MP
details before microprogramming with this accessory installed. The key points to remember when
studying the following descriptions of MP related micro-orders (also refer to table 4-1) are that MP
effectively does not allow any I/O and that at the microprogramming level you are not necessarily
under the “protective umbrella” of MP when performing main memory operations. These factors
impose upon you the responsibility of being acutely aware of the effect of your microprogram.

Memory Protect must be turned off to generate some MEM signals and execute I/O instructions. The
following example demonstrates how to turn off Memory Protect. To turn off Memory Protect, execute
an I/O instruction to any select code other than 1. This will violate Memory Protect, disabling it and
cause assertion of FLG5, on the Memory-Protect PCA which is the interrupt signal to the CPU for
select code 5. An IAK following the I0OG will eliminate the interrupt request from select code 5.
However, the Memory Protect hardware will not allow execution of any 1/0 instructions until a FTCH
micro-order has been executed. FTCH performs special operations on the CM addressing logic,
therefore a RTN micro-order can not be used successfully. This implies that the routine that turns off
Memory Protect is in the zero level of subroutines, and the microinstruction JMP 0B must be used to
return to CM location 0. However if subsequent subroutine calls are required before returning to
FETCH then the CM addressing logic must be initialized, refer to example 2. This function is
performed by the JTAB micro-order in conjunction with the INCI and remaining micro-orders to
prevent the JTAB branch from occurring.

Example 1
LABEL OPER SPEC ALU STORE S-BUS COMMENTS
: VIOLATE MEMORY PROTECT
106 SELECT CODE # 1
18K CLEAR MEMORY PROTECT INTERRUPT
FTCH ALLOW I1/0 INSTRUCTIONS
wm 0B RETURN TO FETCH

7-14

Considerations

Example 2
LABEL OPER SPEC ALU STORE S-BUS COMMENTS
: VIOLATE MEMORY PROTECT
106 SELECT CODE # 1
1AK CLEAR MEMORY PROTECT INTERRUPT
FTCH ALLOW 1/0 INSTRUCTIONS
INCI ZERD PREVENT JTAB BRANCH
JTAB DBLS INITIALIZE CM LOGIC
P 0B RETURN TO FETCH

7-14. THE FTCH MICRO-ORDER

The FTCH micro-order stores the present contents of the M-register into the MP Violation register,
clears the MP Violation Flag flip-flop, and resets the MP Indirect Counter (indirect address levels).

The FTCH micro-order also performs operations on CM addressing logic and is therefore to be used
only in the base set. Refer to table 4-1.

7-15. IRCM

The IRCM micro-order causes MP hardware to record the type of instruction being stored in the IR and
whether or not IR bits 5 through 0 equal 01. When MP is enabled (by an STC 05 instruction):

¢ Only I/O instructions with a select code of 01 may be executed.

® The IR must be loaded prior to initiating an I/O cycle with the IOG to ensure that the signal
decoding logic is enabled.

When MP is not enabled:

® No restriction is placed on select codes that are otherwise valid.

7-16. INCI

The INCI micro-order should be used whenever another level of indirect addressing is to be im-
plemented by a microprogram. After three counts of the MP Indirect Counter, the MP hardware
effectively performs an ION micro-order (i.e., a pseudo ION), thus enabling recognition of I/O inter-
rupts by branch conditional type microinstructions. INCI has special considerations involved if used
just before a microinstruction containing the JTAB micro-order. Refer to table 4-1 and appendix C for
INCI and JTAB use. Also see interrupt handling techniques in this section.

7-15

Considerations

7-17. MPCK

The MPCK micro-order should be used (particularly in main memory write operations) to ensure that
a microprogram will not alter memory below the protective address “fence” set in MP. When this
micro-order is used and a MP violation is detected:

e All subsequent READ microinstructions end with invalid data in the T-register.
¢ No WRTE micro-order will be executed.

e All I/O signals from the computer are inhibited until after the next FTCH or IAK micro-order is
executed.

Refer to the read and write considerations outlined in paragraph 7-4 for using MPCK and to table 4-1
for restrictions when using MPCK.

7-18. THE 10G MICRO-ORDER

If Memory Protect is enabled, the use of the IOG micro-order causes a check of the select code and the
MP Violation Flag flip-flop is set if the select code (IR bits 5 through 0) is not equal to 01. If an MP
violation is detected, the actions described for the MPCK, micro-order (above) take place.

7-19. IAK

When an IAK micro-order is executed, the MP Indirect Counter is cleared. The IAK micro-order also
causes the computer to “freeze” (i.e., stop executing microinstructions) until I/O period T6 occurs and
then issue an IAK signal, acknowledging receipt of an interrupt request, to the requesting device. If
the interrupt device select code is 05, the PARITY indicator on the Operator Panel is cleared and the
MP Violation Flag flip-flop is cleared. Whenever IAK executes, logic in the MP hardware determines
whether or not the MP should be disabled (clear the control bit). This hardware determination is made
six microinstructions after the IAK. MP is disabled if no I/O instruction (IOG) micro-instruction is
executed or if a halt is executed. To re-enable Memory Protect, an STC 05 instruction is required. The
execution of IAK causes the MEM hardware to address the system map which will alter the memory
address.

7-20. THE 10FF MICRO-ORDER

The IQOFF micro-order turns off recognition of I/O interrupts but does not disable Memory Protect. The
Memory Parity function shares the same interrupt location as MP and the Operating and Reference
Manual provides information for determining the source of an interrupt. The DMS accessory also
works in conjunction with MP for certain functions which are also described in the Operating and
Reference Manual.

7-16

Considerations

7-21. DUAL CHANNEL PORT CONTROLLER CONSIDERATIONS

The HP 12897B Dual Channel Port Controller (DCPC) “steals” full I/O cycles to perform direct
transfers between peripheral devices and main memory. The DCPC functions are essentially transpa-
rent to microprogramming. When DCPC takes a sequence of consecutive I/O cycles for input transfers,
any attempted IOG, READ, or WRTE micro-orders will freeze the Control Processor until DCPC is
finished. When using DCPC with MBIO and MPP refer to Section 13 for special considerations.

Both DCPC channels may operate concurrently but Channel 1 has priority over Channel 2 when
simultaneous cycles are requested. A channel stealing consecutive I/O cycle may operate at up to
890,000 words per second during output data transfers,* and 1,000,000 words per second during input
data transfers. Under maximum bandwidth conditions the Control Processor is essentially locked out.
For further information on DCPC refer to the applicable manuals.

7-22. MICROPROGRAMMED 1/O

Microprogramming input and output (I/O) functions requires more care than any other type of
microprogramming because there are strict timing dependencies. To maintain the integrity of the I/O
system, each I/O device control signal is generated in a specific time period (T-period). Section 5 in this
manual defines and describes the timing for the computer. Summary information on timing is
presented in subsequent paragraphs but you should be familiar with the concepts presented in section
5 before attempting microprogrammed I/O.

Also provided in subsequent paragraphs are applicable information on signal generation by the I/O
section; I/O control, and data transfer guidelines for microprogramming; and interrupt handling rules.
In addition to the information in paragraph 7-13, Memory Protect in relation to I/O is discussed
briefly. Guidelines for forming and executing microprogrammed I/O instructions are included and
some special I/O techniques are covered. These special techniques are referenced from section 13.

7-23. SYNCHRONIZING WITH THE I/O SECTION

The I/O cycle consists of five T-periods designated T2 through T6. Specific /O activity is restricted to
certain T-periods in order to synchronize data flag setting, data latching, and resolving multiple
interrupt requests. (Section 14 provides an example of I/O microprogramming that you can reference
while studying the following information.) Microinstructions in T-periods generally execute in 280
nanoseconds for each T-period (see section 5 on timing variations).

A microprogram becomes synchronized with the I/0 system when the Control Processor detects an IOG
micro-order. When this occurs, the Control Processor “freezes” (i.e., stops executing microinstructions)
until period T2. Any other micro-orders in the microinstruction containing IOG are executed without
delay but the IOG is not executed until T2. The next microinstruction is executed during period T3, the
next during T4, and so on. IOG may be used in any microinstruction that does not require some other
Special or Modifier micro-order.

*Refer to your Computer Series Operating and Reference Manual specifications for DCPC latency.
7-17

Considerations

As can be realized, the relationship between microinstruction execution and the I/O T-periods places

certain restrictions on the use of some registers and micro-orders. In order for your microprograms to
execute properly, you must observe the following rules:

® Do not start an I/O cycle (using IOG) before data is transferred from the T-register following a
READ operation. The reason is that if the IOG causes a freeze, the data in the T-register will be
invalid. For example, a microinstruction sequence similar to the following must not be

programmed:
ALY/
opP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ iNC PNM P

106 PASS S4 TAB

e Load the Instruction Register before issuing an IOG unless there is no chance that Memory Protect
is enabled. (See paragraph 7-31 on special techniques.)

The following conditions will always cause the Control Processor to freeze in order to synchronize with
the I/O section:

e An IOG is in the Special field and either the cycle period is not T2 or the DCPC is operating.

® AnIAK micro-order is in the Special field and either the I/O cycle period is not T6 or the DCPC is
operating.

It should be noted that the Computer main memory read and write operations may cause mi-
croinstruction execution delays that are defined as “pauses”. This is not the same as “freezing” to
synchronize with the I/O section. Refer to section 5 for details.

7-24. 1/0 SECTION SIGNAL GENERATION

When the I0G micro-order is executed, the I/O system sends I/O backplane signals to the I/O.devices
starting at period T3 according to the contents of the Instruction Register (IR). These signals are
different and separate from micro-orders. For example, on a data output transfer, the IOG micro-order
causes the I/O section to generate the 100 signal during T3 and T4 (caused by IR bits 8,7, and 6 =
1,0,0). But the micro-order 100 (which only serves to connect the S-bus and I/O bus) must be
microprogrammed to be present during T4 and T5. If the proper microprogramming sequence is not
followed there will be (in this case) a race condition between the backplane IOO signal and the effect of
the 100 micro-order.

7-18

Considerations

Table 7-1. Backplane I/O Signal Generation Determined by IR Bits 11 through 6

BACKPLANE
IR* BACKPLANE /O SIGNAL

11109 8 7 6 /O SIGNAL TIME GENERAL USE

X xy 000 none T3 Clear the Run flip-glop on the CPU (HLT).

x x 00 0 1 STF T3 Set device flag (STF).

x x 1 x x 1 CLF T4 Clear device flag (CLF).

x xy 010 SFC T3-T5 SKPF condition is true if and only if the
device flag is ciear (SFC).

X x y 0 1 1 SFS T3-T5 SKPF condition is true if and only if the
device flag is set (SFS).

x x y 1 0 x 101 T4 If the corresponding select code is not
between 1 and 7 (during T4 only), transfer
the input data latch on the device onto the
1/0 bus (MIA/B, LIA/B).

5 Transfer the input data latch on the device
onto the 1/0-bus.

X x y 1 1 x 100 T3-T4 Store the VO bus into the input data latch
on the device (OTA/B).

0 x y 1 1 1 STC T4 Set device control flag (STC).

1 x y 1 11 CLC T4 Clear device control flag (CLC).

NOTE:

*Bit entries with x are not significant for the /O signal specified. If bit 9 is set the device flag is cleared; if bit 9 is
clear the device flag is not altered. Bit 9 entries with y indicate the option available to hold or clear the device
flag in these instructions. Bits 5 through 0 (not shown) indicate the select code for the device. (Assembler
instructions STO, CLO, SOC, and SOS all referring to the Overflow register always have bits 5 through 0 = 01
(octal).

In order for your microprogram to perform an 1/O operation, IR bits 5 through 0 must contain the select
code (SC) of the device that is to respond to the I/0 signals. As shown in table 7-1, IR bits 11 through 6
determine which I/O signals are sent. The IR must be loaded prior to or during occurrence of the IOG to
ensure that the correct signals are sent to the desired SC (refer to paragraph 7-23). If Memory Protect
is enabled, the IR must be loaded prior to issuing IOG (refer to paragraphs 7-13 and 7-28). With certain
exceptions, I/O can not be done with MP enabled (refer to paragraph 7-31).

Select codes 00,01,02,03,04, and 05 are usually used by the interrupt system, the Operator Panel, Dual
Channel Port Controller (DCPC), power fail, and Main Protect/parity interfaces and accessories. For a

description of the effect of I/O signals on these select codes, refer to your Computer Series Operating
and Reference Manual.

7-19

Considerations

7-25. 1/O CONTROL

A microprogram can generate I/O control signals for the select code of an I/O device without I/O data
transfer. As previously described, IR bits 5 through 0 must contain the SC of the device and bits 11
through 6 may specify any of the following control signals:

STF CLF SFC SFS STC CLC HLT

Note that CLF can be generated in conjunction with any other signal simply by setting IR bit 9to 1 as
shown in table 7-1. For example, the Assembly language instruction combination STC,C can be
simulated by setting IR bits 11 through 6 to 0x1111 (where x means “don’t care”). (Refer to table 7-1.)
An I/O control routine with the IR specifying STC and select code 05 can be used to re-enable Memory
Protect.

For SFS and SFC, the state of the device flag may be tested by a conditional branch microinstruction
(word type III) having micro-order SKPF in the Condition field. Micro-order SKPF is true only when
the SFS I/O signal is present and the flag is set, or when SFC is present and the flag is clear. The SKPF
test should be microprogrammed to occur during /O period T4 or T5 (i.e., two or three microinstruc-
tions after the IOG). Any operation desired may be performed as a result of this test; for example,
incrementing the contents of the P-register causes a skip in the main memory program. Refer to
paragraph 7-30 for examples of forming and executing I/O control microinstructions.

7-26. 1/O OUTPUT

An /O output routine must use both the IOG and I0O micro-orders. (Special exceptions are discussed
in section 13). The IR must contain the bits that specify the I0O signal and the SC of the IOO device.
The same bit pattern for STC.C also specifies the I0O signal. The I0O micro-order connects the S-bus
to the I/O bus. Do not confuse this with the I0O backplane I/O signal (refer to paragraph 7-24). The
microprogram must put the proper data on the S-bus, then direct it onto the I/O bus. The 100

backplane signal latches the I/O bus data into the I/O device interface card. Detailed timing require-
ments are:

e During I/O period T3, the S-bus must be driven by the register containing the output data to
prepare for the transfer to the I/0 bus.

® During T4 and T5, the S-bus must be driven by the same register and the I0O micro-order must be
in the Store field. This ensures valid data on the I/O bus.

For example, an OTA/B instruction can be simulated by the following sequence of microinstructions:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
GO 106 T2
CAB T3
100 CAB T4

RTN 100 CAB TS5

7-20

Considerations

7-27. 1/O INPUT

An T/O input routine must use both the IOG and IOI micro-orders, and the IR must contain the bits
that specify the IOl signal and the SC of the I/O device. Special exceptions are discussed in section 13.)
The IOI signal transfers data from the /O device interface card to the I/O bus and the I0I micro-order
connects the I/O bus to the S-bus to allow data to be present for latching into a register. The 101
micro-order is used in the I/O cycle during T5 to input data from the I/O bus onto the S-bus. Do not
confuse this with the IOI backplane I/O signal present during T4 and T5. (Refer to paragraph 7-24.)
For example, an LIA/B instruction can be simulated by the following microinstruction sequence:

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
INPUT 106 T2
NOP T3
NOP T4

RTN CAB 101 TS

You can see from the above that parts of some I/0O microroutines may have unused microinstruction
periods. Caution is required when using these periods. Until all I/O-related microinstructions have
been executed for an I/O cycle, do not use microinstructions that may cause the CPU to freeze. (Refer to
paragraph 7-23.) In the above I/O input example, if the T3 and T4 NOP's were replaced by READ and
TAB micro-orders (in T3 and T4 respectively), the CPU would pause in the middle of T4 and I0I would
not be executed until too late to correctly handle the data transfer. On the other hand, during an I/O

control routine that is not generating SFS or SFC signals, many kinds of microinstructions can be used
after the I0G.

7-28. MEMORY PROTECTION IN RELATION TO 1/O

When an instruction is loaded into the Instruction Register, Memory Protect (MP) records information
about the instruction. When an I0G micro-order is detected, MP checks the select code (IR bits 5
through 0). If the SC is not equal to 01, MP inhibits any I/O signals and prevents the Control Processor
from altering main memory or the P- or S- registers, and generates an interrupt request. (A micropro-
gram cannot prevent this if MP is enabled.) Thus, MP protects a portion of memory and maintains
compatibility with HP software operating systems for I/O operations even in the microprogramming
environment. Refer to your Computer Series Operating and Reference Manual and to paragraph 7-13 of
this manual for further details on Memory Protect.

7-29. INTERRUPT HANDLING

Once a microprogram starts executing, it has complete control over the computer until it terminates. It
can not be interrupted, suspended, or terminated unless the microprogram itself checks for interrupts.
It is not desirable to hold off interrupts for very long and you must decide how long your micropro-
grams can be allowed to execute before testing for an interrupt. In making this decision, consider the
impact that a long non-interruptible microprogram can have in the RTE environment.

7-21

Considerations

When a microprogram detects an interrupt, it should execute a JSB to a microroutine that saves
whatever 1s necessary to allow the microprogram to continue after the interrupt is serviced or to
provide for complete restart of the microprogram. (Refer to microprogram examples in section 14 for
an illustration.) The P-register must be set to point to an address one location beyond the main
memory instruction that invokes the microprogram (the instruction that was interrupted). The
M-register will be adjusted to point to the address of the main memory instruction that will handle the
interrupt. It will be readjusted later so no special conditions are placed on M. For example, suppose
your main memory instruction invoking a microprogram resides in the location designated I. Then, if
your microprogram tests for and detects an interrupt you must:

e EnsureP=1+ 1.

o Execute a RTN (or JMP to control memory location 6 if in a microsubroutine). This is described in
more detail below.

If parameters are saved, the microprogram must be written to begin with a test that determines the
starting point of the microprogram based on whether or not the microprogram was interrupted.

Generally, to initiate interrupt service, your microprograms must branch (JMP) or return (RTN) to
control memory location 6 where the base set microprogram takes the trap cell address from the
Central Interrupt Register and gives control to a main memory routine which services the interrupt.
When the main memory interrupt routine which services the interrupt terminates, the interrupted
microprogram is restarted (assuming the P-register was properly set upon interrupt detection). A
check must be made to see if the interrupt system is turned on.

The presence of a pending interrupt or halt request can be detected by a microprogram in two ways:

e Executing a conditional test microinstruction (JMP CNDX) having HOI or NINT in the Condition
field.

e Executing a JMP or RTN to CM location 0; a pending interrupt or halt will cause control memory
addrss 6 to be loaded into the CMAR to handle the interrupt.

Using a RTN to pass control to control memory location 6, as shown in the microroutine below, line
EXIT1, will not work if the microroutine being exited was entered with a JSB. Using a JMP to location
6, as in line JUMP (in the microroutine below) will always work. NINT may also be used to check for
interrupts. Note that NINT is not sensitive to halts.

7-22

Considerations

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
JMP CNDX l:llJI EXIT1 INTERRUPT? YES, EXIT
EXITH RTN l.)EC P P FIXP, RTN(??).
JMP CNDX l'-llJI EXIT2 INTERRUPT? YES, EXIT.
EXIT2 I')EC P P FIXP, EXIT TO HALT-0R-

JUmMP JMP 6 INTERRUPT MICROROUTINE.

When the Halt-Or-Interrupt microroutine is reached, the P-register is decremented and a test is made
to see if the Operator Panel was used to cause a halt. If not, an IAK micro-order freezes the Control
Processor until [/O period T6, then causes the I/O system to send an IAK signal to the interrupting
device. A CIR micro-order causes the interrupting device’s SC (trap cell address) to be placed on the
S-bus, then this is stored into the lower-order 6 bits of the M-register (high order bits = 0). A read from
the address in the M-register obtains the first instruction of the main memory interrupt handling
program,

Suppose a microprogram is to be interruptible, but only by emergency interrupts (i.e., halt, parity
error, DMS, Memory Protect). An HOI conditional test detects emergency interrupts, but also detects
I/O interrupts. However, issuing an IOFF prior to the HOI test prevents detection of /O interrupts.
Issuing an ION after the HOI test reenables detection of I/O interrupts. The microroutine below
illustrates this process. Note that IOFF and ION control only the detectability of power fail and /O
interrupts, and do not turn off or turn on the interrupt system. Note also that I/O interrupts held off by
an IOFF condition remain pending (i.e., are not lost), and are detectable when the ION condition is
re-established:

ALU/
opP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
I10FF ' PREVENT DETECTION OF I/0
* INTERRUPTS
JMP CNDX HOI INTRPT TEST FOR DETECTABLE INTERRUPTS,
* 1.E., HALT, PARITY ERROR,
* DMS, MEMORY PROTECT.
*
10N REENABLE DETECTION OF I/0

* INTERRUPTS.

7-23

Considerations

7-30. FORMING AND EXECUTING MICROPROGRAMMED 1/O

INSTRUCTIONS

The following continuous example microroutines show how to accomplish formation and execution of
some microprogrammed I/O instructions. These examples are offered as models for you to write
microprograms that perform I/O functions. Note that putting the select code (SC) in the L-register is
prerequisite to using the IOR in the STC line. MPP and block I/O transfers require somewhat different

1/0O instruction formats. MPP and block I/O transfers are discussed in section 13.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
*
* READ CIR CCENTRAL INTERRUPT REGISTER)
CIR L CIR L= SC (SELECT CODE).
*
* FORMANDEXECUTESTCSC, C.
sTC MM L4 cMLO S8 303B S8 = 001700 = STC 0,C.
IR S8 S8 FORM STC SC,C.
IRCM S8
106 T2 EXECUTE STC, SC,C.
*
+ FORMANDEXECUTELI=*SC.
LIs MM CMHI S4 376B S4 = 000400 = LI+ 0.
IR S4 S4 FORM LI* SC.
IRCM 54
106 T2 EXECUTES LI+ SC.
NOP T3 SEE NOTE 1.
NOP T4 SEE NOTE 1.
SS 101 TS5 SS = DATA.
*
+ FORMANDEXECUTE OT# SC,
oTs MM L9 cMLOD S9 77B S9 = 000600 = OT* 0.
IR S9 59 FORM OT» SC.
IRCM S9
106 T2 EXECUTE OT= SC.
SS T3 SEE NOTE 4.
100 S5 T4 DATA CLOCKED OUT AT,
100 S5 TS T4/TS INTERFACE.
*
+ FORM AND EXECUTE SFS SC.
SFS MM CMLO S10 77B S10 = 000300 = SFS 0,
IOR S10 S10 FORM SFS SC.
IRCM S10
WAIT 106 T2 EXECUTE SFS SC.
NOP T3 SEE NOTES 1, AND 2.
JMP CNDX SKPF RJS WAIT T4 SEE NOTE 3.
*
+ LOADCIR, ACKNOWLEDGE INTERRUPT
1AK 1AK Te
*
+NOTES:
* 1. ANY NON-FREEZABLE MICROINSTRUCT IONS MAY BE USED IN PLACE OF THE NOP.
+ 2. THE FLAG CAN BE SENSED NO EARLIER THAN T4.
+ 3. EACH ATTEMPT TO SENSE THE FLAG REQUIRES AN 10G: THEREFORE, THE JMP TARGET FOR
. UNSUCCESSFUL SENSING OF THE FLAG MUST BE WAIT NOT ‘s’ ¢,
» 4. SEE PARAGRAPH 7-24, SIGNAL GENERATION (1.E., THE 100 SIGNAL AND 100 MICRO-ORDER ARE NOT
. ONE IN THE SAME).

7-24

Considerations

7-31. SPECIAL IO TECHNIQUES

The following microroutine shows how to perform microprogrammed /O with both the interrupt
system and Memory Protect enabled. This is desirable when writing I/O data into main memory in a
DMS environment, and/or Memory Protect checks are required. The microroutine shown assumes that
S3 and S5 have previously been initialized with the device select code and current buffer address,
respectively. An input function, LI*, will be performed: “*” indicates that the microroutine selects the
input data register.

Lines FAKESC and REALSC work together to enable execution of an I/O instruction with Memory
Protect enabled. Micro-order I0G, in addition to initiating an I/O operation, checks the 1/O operation
select code (i.e., IR bits 5 through 0). If the select code is 01, the I/O operation proceeds. Attempting to
use any other select code inhibits the I/O operation and generates a Memory Protect interrupt.
However, the Memory Protect Hardware checks the select code when the store into the IR occurs in
line FAKESC. The store into the CNTR does not cause a check of the IR by the Memory Protect
Hardware; therefore, the I/O operation proceeds without a Memory Protect interrupt generated.

If the write to main memory generates a DMS or Memory Protect interrupt, the HOI conditional test
detects the interrupt and terminates the microprogram. The IOFF micro-order prevents detection of
I/O interrupts permitting “privileged” I/O as required for the MPP or block I/O transfer. Section 13
contains examples of MPP and block 1/O microprograms.

ALY/ :
OP/ MOD/ S-BUS/ /5N,
LABEL BRCH SPCL COND STR ADDRESS COMMENTS et
MM CMHI L 376B L=LI# 0
MM CMLOD S4 376B S4=1
IOFF IOR S4 S4 S4=L1s 1
FAKESC IRCM 54 IR=LIs+ 1
IR S4 S3 S4=L1s SC
REALSC CNTR S4 IR=LI+ SC
106 M S5 START 1/0 DPERATION
M=BUFFER ADDRESS
S6 101 S6=DATA
WRTE MPCK TAB S6 WRTE DATA, DO MPCK
*
JMP CNDX HOI INTRPT TEST FOR HALT,
. PARITY ERROR, DMS, OR
. MEMORY PROTECT INTERRUPTS

7-32. 1/0 MICRO-ORDER SUMMARY

All micro-orders that are generally used in /O microprogramming are summarized in table 7-2 for
your reference.

7-25

Considerations

Table 7-2. /0O Micro-Order Summary

MICRO- WORD
ORDER TYPE FIELD CONDENSED MEANING
IAK [, 11 Spec. At T8, load the CIR and issue the 1AK signal.

IOFF* [, 1l Spec. Disable normal interrupt recognition.

1I0G** Lol Spec. Freeze action until T2 then do what is in the IR.

ION™ I, 1l Spec. Re-enable normal interrupt recognition.

100 I, Store Connect the S-bus to the I/O bus (for output); used after an I0G
micro-order.

CIR f S-bus Put the CIR content on the S-bus.

0] | S-bus Connect the 1O bus to the S-bus.

HOI 1l Cond. If there is a halt or an interrupt pending, branch to the CM address
in this microinstruction address field.

NINT I Cond. If there is no interrupt pending, branch to the CM address in this
microinstruction address field.

SKPF I Cond. Check to see if /O signal SFS is present (T3 to T5) and the
addressed /O device's flag is set. If the above conditions are true,
branch to the CM address shown in this microinstructions address
field.

—OR—
Check to see if SFC signal is present (T3 to T5) and the {/O
device's flag is clear.
NOTES:
*This micro-order can also be used in the Special field of a word type IV (unconditional branch

microinstruction). v

**This can be used in the Special field of word type |1V microinstructions. The branch microaddress is modified
by bits in the IR. See table 4-1 explanations.

7-26

Considerations

7-33. DYNAMIC MAPPING SYSTEM CONSIDERATIONS

If you have the HP 13305A Dynamic Mapping System (DMS) installed there are a number of
Assembly language instructions that may be used to program the accessory. These Assembly language
instructions invoke HP written microroutines in the HP reserved area of CM to operate DMS
according to HP’s design specifications. The micro-orders used in HP’s microinstructions and micro-
routines for controlling DMS are also available for your microprogramming use.

It is beyond the scope of this manual to discuss HP’s method of operating DMS or describing operation
of the DMS hardware. However, a discussion of the three micro-orders (referenced from table 4-1) you
may use and the DMS signals generated is within the scope of user microprogramming. (For more
information on HP 13305A DMS operation and the applicable HP Assembler language instructions
refer to your Computer Series Operating and Reference Manual). A prerequisite to using the DMS
micro-orders described below is that you be thoroughly familiar with the DMS and its operation.

With DMS installed, the Memory Expansion Module (MEM), residing (logically) in front of the main
memory controller, forms a 20-bit address from the 15-bit main memory address received on the
M-bus. DMS always “looks at” the M-bus address and MEM creates the 20-bit address for DMS
according to control signals received from the Control Processor. The control signals, of course, are
generated because of the Control Processor’s decoding of microinstructions from CM. The three
micro-orders; MESP (in the Special field), MEU (in the Store field), and MEU (in the S-bus field) that
can be used in microinstructions involving DMS, must be used in tandem. That is, a signal sent to the
DMS is generated from the “decoding” of a specific combination of the three micro-orders.

There are three signals generated directly from control memory that are used to control the MEM. In
the Special field, “MESP” generates MESP. In the Store field, “MEU” generates the MEST signal. In
the S-bus field “MEU” generates MEEN.Other signals which directly affect the MEM are MPCK,
READ, TEN, IAK (CIREN). Table 7-3 indicates what ‘control line’ signal is generated by each
combination of the micro-orders. The three micro-orders are used in a one-of-eight command structure.
Because a combination of all three micro-orders must be used (Special field, Store field, S-bus field)
only word type I microinstructions are used for DMS. Table 7-4 lists all the functions performed by
each of the control signals referenced by table 7-3. The DMS functions are performed only in the
microcycle during which they are asserted (with the exception of Q,, port 1).

7-27

Considerations

Table 7-3. MEM Signals Invoked by Micro-Orders

MEM RULES
LABEL OP SPEC ALU STORE S-BUS SIGNAL (SEE NOTES)

@ @ MESP @ MEU MEU Qo 1,4

@ @ MESP @ MEU $ Q, 1, 4

@ @ MESP @ $ MEU Q, 1, 4

@ @ MESP @ $ $ Q, 2, 4

@ @ * @ MEU MEU Q. 4

@ @ * @ MEU $ Qs 3,4

@ @ - @ $ MEU Qs —

@ @ - @ $ $ Q, _

@ = Any legal code

* = Any legal code except MESP
$ = Any legal code except MEU
RULES GOVERNING MEM SIGNALS:

1. Must have a READ or RJ30 or WRTE exactly two microinstructions before use of the micro-order, and a
READ, RJ30 or WRITE instruction may not be repeated until execution is complete.

2. Must have a READ, RJ30 or WRTE either 1 or 2 microinstructions before use of the micro-order.

3. Must be a READ or RJ30 or WRTE either 1, 2 or 3 microinstructions before use of the micro-order.

4. Must not occur in the same microinstruction as READ or RJ30 or WRTE.

Q5 control information:

e When issuing a Q; command, further information is needed to indicate the utility register into
which you wish to store information. Since the information has been presented on the S-bus and
none of the registers require more than 11 bits of information themselves, several of the S-bus bits
are reserved for determination of which register is activated.

e Bit 14 indicates that the MEM State Registers are to be loaded (i.e., enable/disable MEM; select
system/user map). Bits 9 and 8 contain the status information.

e Bit 13 indicates that the Address Register is to be loaded. Bits 7 through 0 contain the address

information.

e [IfaQ,signal has preceded this step by exactly one microcycle (i.e., Q,, Qs in a row), then bit 14 will
indicate that the Fence Register will be loaded. Bits 10 through 0 contain the fence information.

Any modification of the fence register will also effect base page
addressing for DCPC, as DCPC uses logical to physical address
translation rules in the base page similar to those of the user
map.

NOTE

e Bit 15 is used to override the Protected Mode, thus allowing these registers (specifically the State
Registers) to be altered under microprogram control at any time.

7-28

Considerations

Table 7-4. DMS Micro-Order Control Signals

SIGNAL FUNCTION
Qo 1. Enable SYS/USR map to S-bus per MEAR bit 5.0 = SYS, 1 = USR.
2. Store S-bus into PORTA/PORTB map per MEAR bit 7:0 = PORTA, 1 = PORTB.
3. Relative map address specified by MEAR bits 4 through O.
4. Increment MEAR.
Q, 1. Store S-bus into maps per MEAR bits 6 and 5:00 = SYS, 01 = USR, 10 = PORTA, 11 =

PORTB.
2. Relative map address specified by MEAR bits 4 through 0.
3. Increment MEAR.,

Q, 1. Enable maps to S-bus per MEAR bits 6 and 5:00 = SYS, 01
PORTB.

2. S-bus bits 13 through 10 are always low.
3. Relative map address specified by MEAR bits 4 through 0.
4. Increment MEAR.

USR, 10 = PORTA, 11 =

Q,3 1. Select opposite program map (does not change currently selected map per Qs).
2. Can generate DMAFRZ to CPU.

Q, 1. Set "Status Command” flag through next Control Processor cycle (defines Q4 operation).
2. Reset to currently selected program map (nullifies Q).

3. Set "Enable Base Page Fence” Flag through next Control Processor cycle (partly defines
Q5 operation).

Qs 1. Store S-bus into MEM (other than maps)

a. MEM State Register (2 bits) = S-bus bits 9,8: If S-bus bit 9 = 0, disable MEM; = 1,
enable MEM. If S-bus bit 8 = 0, select SYS maps; = 1, select USR maps.

b. MEM Base Page Fence Register (11 bits) = S-bus bits 10 through 0.
c. MEM address Register (7 bits) = S-bus bits 6 through 0.

2. Register selected by S-bus bits 15 through 13: If S-bus bits 15 through 13 = 000 = Base
Page Fence Register if preceded by Q,; 001 = Address Register; 010 = State Register.

3. If S-bus bit 15 = 1 then Memory Protect is disabled for the current microinstruction.

Qe 1. Enable MEM data (other than maps) onto S-bus.
a. Normally enables MEM Violation Register.
b. If preceded by Q, signal microinstruction, Status Register enabled.

Q, 1. No MEM (DMS) microinstruction specified (NOP state for MEM).

Notes:

g~~~

MEAR is the MEM Address Register.

MAP bits 9-0 are transferred to/from S-bus bits 9-0.

MAP bits 11, 10 are transferred to/from S-bus bits 15, 14.
USR = User.

SYS = System.

7-29

Considerations

7-34. GUIDELINES FOR WRITING LOADERS

Table 4-1 describes the HP IBL loader microprogram techniques, bit patterns for the Operator Panel
registers, and information on the Remote Program Load Configuration Switches. Normally the HP
supplied IBL microprograms will suffice for all user needs. If, however, you desire to write your own
loader the guidelines outlined below may be of assistance. In addition, refer to the base set listing in
appendix G (the IBL and Operator Panel microroutines) for examples of a workable loader and
information on the use of the DES, LDR, DSPI, and DSPL micro-orders.

If you write your loader, it should be prepared exactly in the way you wish it to execute. The base set
will configure the select code according to the information entered into the Operator Panel. One
method that may work for you is to write the loader first in Assembly language then convert it to
“machine code,” then to a microprogram and finally, fuse the pROM’s. If you have a double select code
(i.e., magnetic tape or disc, SC10 and SC11, for example) the data channel select code should come
first, then the command channel. In addition, follow these guides:

e There should be 64 (main memory) words or less designed to start at x7700, where x = 0, 1,
2,....7.

e All select codes in the loader I/O instructions will be configured at IBL time as follows:

— S-register bits 11 through 6 will be taken as the configuring select code, 10 (octal) will be
subtracted from the configuring select code and the result added to the select code part of all
loader I/O instructions except: if the select code in a loader I/O instruction is less than 10 (octal),
the select code will not be modified.

— Note that loader constants having bit 15 on, bits 14 through 12 off, bit 10 on, and bits 8 through
6 anything but 000 (this prevents halts from being configured), will be interpreted as 'O
instructions and will be configured as per the information just presented above.

e At IBL time:

— Word 64 of the loader will be forced to the starting address of the loader in two’s complement
form.

— Word 63 of the loader will be unconditionally configured as described above (i.e., S-register bits
11 through 6 will be taken as the configuring select code, etc.). The standard HP loaders use
word 63 as DCPC Control Word 1.

7-35. SUMMARY

In using any of the guidelines and microroutine examples presented in this section you must make the
final judgement as to “usability” and “workability” of the microprograms you create because of the
wide range of applications for microprograms. The base set (appendix G) should be referred to as an
example of “correct” microprogramming. Also, section 14 provides examples of microprograms you
may be able to use.

With the completion of your study of this section you are prepared to write microprograms for use in

the HP 21MX E-Series Computers. The use of microprogramming support software is also necessary
and the following sections of the manual provide all the rest of the information you need.

7-30

Section 8
PREPRATION WITH THE MICROASSEMBLER I

PREPARATION WITH
THE MICROASSEMBLER|[8

With the information in this final section of part II you will be able to prepare your microprograms so
that they will be accepted by the RTE Microassembler. If properly prepared, your microprogram will
be processed (using information in section 9) to generate micro-object code which is ready to load into
WCS for execution in the computer. The section provides:

® A suggested method for preparing your microprograms.
® A description of the microassembler character set, fields, and other rules for preparation.
® Microassembler control methods.

® Methods of making microprogram starting address assignments and making other modifications
using the pseudo-microinstructions.

The information in this section requires as a prerequisite, a study of the preceding sections (particu-
larly sections 4 and 6).

8-1. PLANNING AND PREPARATION

Using the information on the microassembler (starting in paragraph 8-6) you can prepare your
microprogram for input to the microassembler on punched cards, paper tape, or magnetic tape
cartridges. It is suggested, however, that it may be easier to prepare the microprogram on a disc file.
To prepare a file containing a microprogram, use the RTE system Interactive Editor as outlined below.

8-2. PLANNING

Plan the microprogram essentially the same way as for an Assembly language program but base the
objective on the concepts discussed in section 1. Steps that must be taken to achieve the objective
should be clear and the logical sequence for the microprogram perhaps prepared in flowchart form.

To prepare a microprogram taking full advantage of your system’s RTE Interactive Editor program
(EDITR), all that is needed is pencil, paper, and the system console. The instructions given here are
intended for use at the system console in a single-user environment. If you are operating in a
Multi-Terminal Monitor (MTM) environment, it is assumed that you have taken the HP RTE training
course or have the assistance of a person familiar with the MTM.

The EDITR program provides the tool for generating the source code, and the RTE FMGR program
provides a means for storing microprogram sources as files. The files can be accessed later for editing
and microassembling. Complete instructions for using these RTE system programs are beyond the
scope of this manual which only provides guidelines for use to prepare and edit microprograms.
Complete information on the EDITR and FMGR is provided in other documentation supplied with
your RTE system.

8-1

Preparation

8-3. PRELIMINARY INFORMATION. When preparing your microprograms using the
EDITR, the first two lines of your microprogram should be the microassembler control instructions
MICMXE and $CODE; the last line should be the psuedo-microinstruction END. Paragraph 8-6
provides all the details on the microassembler you will need. You should read through these or refer to
them before actually going on-line. After the microprogram is written, press any key on the system
console to get an RTE prompt character (*). Then type RU,FMGR and press the RETURN key. The
system responds by outputting a FMGR prompt character (:). Type LS and press RETURN, the system
outputs another FMGR prompt. Type RU,EDITOR and press RETURN; the system outputs SOURCE
FILE? followed by the EDITR prompt character (/). Enter a space (blank) character and press
RETURN; the system outputs EOF. At this point the system console should show the following:

*RU,FMGR

:LS

:RU,EDITR
SOURCE FILE?
/A

EOF

/

where:
A means a space (blank) character.

Typing errors can be corrected by backspacing (or use a CONTROL H) then retyping the correct entry.

After completing the above, make subsequent corrections using the EDITR as described in the EDITR
documentation.

8-4. FIELD TEMPLATE

It should be noted at this point that if desired, you can prepare complete short microprograms using
the Microdebug Editor. The starting column for each field in microinstructions is taken care of for you
by the MDE in this case. Examples in section 14 use this method to illustrate and familiarize you with
the microprogramming support software. Details on the Microdebug Editor are included in section 10.

The method you can use to identify the starting columns for microinstruction fields when preparing
microprograms for input to the microassembler with the RTE Interactive Editor (as described in
paragraph 8-3) is to use the Editor Tab function. So, at this point, to create a “pseudo-coding form” that
will locate the starting point of each field (assuming you have followed the instructions in
paragraph 8-3); enter the following after the EDITR prompt showing on the console:

T;10,15,20,25,30,40

Press RETURN and the system will output another EDITR prompt. You may now enter your
microprogram as described in the next paragraph. Remember to enter a space after each prompt (/) to

reach column one of your “coding form”. Use the semicolon (;) key as a tab key to reach desired
microinstruction fields.

8-2

Preparation

8-5. MICROPROGRAM ENTRY

When you have a template (pseudo-coding form), enter your microprogram (prepared according to the
rules to follow). Enter a space after each prompt (/) to reach column one of your “pseudo-coding form”
(usually the EDITR “Tab” function) and terminate each line by pressing the RETURN key. You can
list any line in your microprogram by entering the number of the desired line. After entering your
complete microprogram, go back to line 1 and list the entire program by entering Lnn (where nn is the
number of lines in the program file) immediately following the EDITR prompt. Check the program for
errors and make any corrections as necessary. Now assign the file a new name by entering ECnew
(where new is a new file name) immediately after the prompt. For example:

/ECJOE1

The system outputs the message END OF EDIT followed by a FMGR prompt. At this point you will
have created a file that contains your first microprogram. If your system console is a teleprinter (TTY),
you have a hard copy of your microprogram, if your console is a CRT terminal, obtain a hard copy on
the system list device by using the FMGR LIst command (LI.JOE?). Check the copy and correct any
errors.

8-6. THE MICROASSEMBLER

The RTE Microassembler translates symbolic microprograms into binary object code. The object code
is produced in either a standard format recognized by the RTE Microdebug Editor and the WLOAD
subroutine or a special format to be used as input to the HP ROM Simulator. The source may be
entered from an input device or the RTE system LS tracks. (Microassembler execution will be
described in section 9.) Object code may be generated to an output device as well as to a disc file. The
microassembler can also produce a symbol table map, listing of source records and generated code, and
a cross-reference symbol table which will all be described in section 9. The rules for preparation with
the microassembler are described in this section. The hardware/software environment for the mi-
croassembler is described in section 3.

8-7. MICROASSEMBLER RULES

The RTE Microassembler accepts 72-character fixed-field source records (from the devices mentioned
in paragraph 8-6). The 72-column format allows sequencing of card decks if you choose to prepare your
source records on that type of medium. Each source record falls into one of the following categories:
¢ Comment

¢ Control command

¢ Microinstruction

® Psuedo-microinstruction

An asterisk in column one of a source record indicates that the entire microassembler source is a
comment. Control commands are described in paragraph 8-8. The microinstruction source records that
may be used are described in detail in section 4 (in particular see figures 4-3 and 4-4) but general
requirements for microassembler use are discussed in this section. The psuedo-microinstructions are
fully described in this section.

8-3

Preparation

Where there are deviations from specifications for a particular type of source record (or field as
described below) the difference will be so noted. Any ASCII character may appear in the comments
source record (i.e., asterisk in column one). Most characters are legal in labels except as noted in
paragraph 8-15. A space may only begin a field if no micro-order is specified in that field.

8-8. CONTROL COMMANDS

Control command source records affect external characteristics of the microassembly (e.g., listing and
object code formats). The control command must start in the first column. Blanks are permitted only
preceding and within comments following the control command. Control commands may be in-
tersperced with other source records to specify control over the microassembly process. Certain control
commands must be used (as mentioned in paragraph 8-3) in specific places in your microprograms. To
wit: the first source record of your microprogram must be a *“MIC” control command. There are options
that may be used with some of the control commands and they are so noted in the description of each
command that follows. There should be only one control command per source record. All control
commands except MIC begin with a “$” (Dollar character) in column 1. No intervening spaces are
allowed in any control statement other than as specified.

8-9. MIC ASSEMBLY COMMAND. For the E-Series or F-Series Computer, a MICMXE con-
trol command must be the first line in the source file. This command indicates whether the source is a
M-Series or E/F-Series Computer microprogram, respectively, and specifies certain microassembly
options. The form of the command for this computer is:

MICMXEpl,p2, . ..
where:
“p1, p2, . ..” indicates a list of parameters. The parameters are optional and may appear in any

order. The microassembly options are:

ll

Output object code to the punch device.

Produce standard format object code.
Produce special format object code for the HP ROM Simulator.
= List source and generated code on list device.

= List a symbol table map on the list device.

QO 3 &0 »n 9 W
I

Generate a cross-reference on the list device.

If “B” is not specified, no punched output is produced (this option does not affect the $CODE output).
The “R” and “S” optional parameters are mutually exclusive; if neither is specified, the micro-
assembler defaults to the format specified for the “R” parameter. The “R” and “S” parameters affect
both the punched and $CODE (control command) output. (Note that the “B, R,” and “S” parameters
operate in a manner similar to Assembler conventions.) The “S” option is a special 32-microinstruction
object code format. This special HP ROM Simulator format is reserved for system maintenance.
Appendix E describes the format.

If the “L” option is not specified, only error and pass-completion messages will be written on the list
device. $LIST commands will be ignored. The “T” option provides a listing of label names and the
corresponding octal address used in the microprogram. The “C” option, and all the options for
microassembler output are described in section 9.

8-4

Preparation

An example of the use of the MIC control command (starting in column 1) would appear as shown
below:

MICMXE,L,T

Here, note that the microassembler will default to the standard format object code.

8-10. THE $CODE COMMAND. The $CODE command directs object code to be written to the
specified file. The command has the following form:

$CODE=FNAME [:security [:crlabel]] [REPLACE]

The "FNAME” parameter specifies the name of the file to be created. For the “R” parameter, a type 5
file is created for the object code to permit a checksum of the records. A type 3 file is created for “S”
format object code (to prevent a checksum of the records, which would be invalid due to the different
format) blanks are not permitted between subparameters (as indicated in paragraph 8-8). The “%”
notation for octal values generally accepted in the microassembler is treated as an alphanumeric
character string here (to be consistent with RTE). If a file with the same name already exists and the
REPLACE option is specified, the existing file is purged. Otherwise, object code is generated only to
the punch device. The “security” and “crlabel” parameters indicate the file security code and disc
cartridge label respectively; these sub-parameters are optional.

Object code generated to the $CODE file depends on the “R” or “S” option specified in the MICMXE
command. For the suggested method of preparing your microprogram this control command should
appear immediately after the MIC command.

8-11. $PAGE COMMAND. The $PAGE command causes a page eject and, optionally, replaces
the heading during the listing of the microprogram. The forms of the command are:

$PAGE
$PAGE=title

The first form simply causes a page eject; the current heading is not altered. The second form,
additionally, replaces the heading with the character string following the equal sign. The heading
(title) is truncated after 60 characters. The $PAGE command is ignored when listing is disabled.

8-12. THE $LIST AND SNOLIST COMMANDS. The $LIST and $NOLIST commands have no
parameters. The two commands control the source listing in the second pass of the microassembly. The
$NOLIST command disables the listing of the source records and generated code until a subsequent
$LIST command is encountered. These ¢ommands are ignored if the “L” option is omitted in the MIC
assembly command.

8-13. $PUNCH AND $NOPUNCH. The $PUNCH and $NOPUNCH commands have no pa-
rameters. The effect that SNOPUNCH/$PUNCH have on the output depends on the object code format
and the device. For “R” MIC command parameter format, disjoint code groups always cause a new
(DBL) record to be written to the device of $CODE file. For “S”, if the “missing” portion of code
(between two disjoint code groups) does not extend beyond the buffer, the space is simply filled with
microwords containing all 1 bits. Otherwise, leader or an end-of-file separates disjoint code groups on a
punch device or $CODE file respectively (after padding the remainder of the buffer as before).

8-5

Preparation

8-14. HP 1000 E-SERIES AND F-SERIES MICROINSTRUCTIONS

The format of the four microinstruction word types and all the micro-orders that can be used in the
various fields are described in section 4 (in particular, figures 4-3 and 4-4). These source records can
contain up to 72 characters with the legal field entries. To summarize section 4 information, the
general uses for the four word types are defined below:

e Word type I executes:

— Data transfers between main memory, the I/O section, and the Arithmetic/Logic section.

— Logical and arithmetic functions on data.

® Word type II specifies data to be transferred to a specific register.

¢ Word type 11l executes a conditional branch based on flags or data values. When the OP field
micro-order is “RTN”, the address field (field 6) must be empty: comments must not appear before

column 31. Field numbers are reviewed next.

® Word type IV executes an unconditional branch or microsubroutine branch.

Microinstruction source records and psuedo-microinstruction source records (to be described in para-
graph 8-19) have similar fixed-field formats and are distinguished by the mnemonic in the OP field.
Each microinstruction source record contains seven fields with the starting column of each field as

follows:

FIELD COLUMN

10
15
20
25
30
40

3 O Ot k= W =

MEANING

Label

OP/Branch

Special, or Branch modifier

ALU, Branch Condition, or IMM modifier
Store, or Branch Sense

S-bus, Branch Address or, IMM operands

Comments (see allowable exception below)

A mnemonic in any field must begin in the first column of that field. The seventh, (Comment) field
must be separated from the last field by at least one blank column. For word type I microinstructions,
the Comment field must not appear before column 35.

8-6

Preparation

As shown in figure 4-4, the fields are fixed for microassembly language source records. A few things to
remember about the fields are:

® Field 1 can contain a label that is no longer than eight characters.

® Field 2 contains a micro-order no longer than four characters. This field can also contain a
psuedo-microinstruction (refer to paragraph 8-19 for the explanation of psuedo-microinstruction
mnemonics).

e Field 3 contains a micro-order no longer than four characters.
® Field 4 contains a micro-order no longer than four characters.
® Field 5 contains a micro-order no longer than four characters.

® Field 6 contains a micro-order no longer than four characters (word type I,) or an operand (word
type II,) or an address (word types III and IV).

® Field 7 contains comments only. Field 7 ends in column 72.

Some additional comments on the fields follow.

8-15. THE LABEL FIELD. As mentioned above, a label (field 1) may be comprised of up to
eight characters. The label may contain any ASCII character except a plus (+) or a minus (—). The
first character must not be numeric or an asterisk (*), dollar sign ($), or a percent sign (%). Each label
should be unique within the microprogram and cannot contain spaces within the label. Names which
appear in EQU psuedo-microinstructions (refer to paragraph 8-19) may not be used as source record
labels in the same microprogram.

8-16. MICRO-ORDERS. Fields two through six may contain any of the legal micro-orders used
in word types I through IV. Refer to figure 4-4 for a list of the legal micro-orders. Word type II contains
an operand in field 6 which must conform to the constrains listed in table 4-1.

8-17. ADDRESS FIELDS. Word types III and IV have address expressions in field 6. The
address expressions may have one of the following forms:

number

label

label+ number
label— number
E3

*+ number

*— number

The asterisk means “current address”. If “number” is preceded by a percent sign (%) or followed by a
“B”, the string represents an octal quantity. For EQU psuedo-microinstructions, any “label” must have

appeared previously in a Label field. Refer to the table 4-1 explanations of the Address fields for
further information.

Preparation

8-18. COMMENT FIELD. This optional field can be any string of characters up to the limit of

the source record (column 72). If you have comments that are long you may use an asterisk source
record in the next line.

8-19. PSEUDO-MICROINSTRUCTIONS

Psuedo-microinstructions have a direct affect on the object code generated; however, they are not
composed of micro-orders as defined by the Control Processor. The format of pseudo-microinstructions
differs slightly from that of the microinstructions. The fields are as follows:

FIELD COLUMN(S) MEANING
1 1-9 Label
2 10 opP
3 30-39 Operand

The Operand field may start in any column between 30 and 39 inclusive. A Comment field may start in
any column, separated by at least one blank column from the last field. The pseudo-microinstructions
that can be used include ORG, ALGN, END, EQU, DEF, ONES, and ZEROQO. The function and
constraints for the use of each pseudo-microinstruction are included below. Note the CM address
assignment and modification pseudo-microinstructions include ORG and ALGN. EQU and DEF are
also used in conjunction with CM addressing.

8-20. THE ORG PSEUDO-MICROINSTRUCTION. The starting address of each micropro-
gram must be assigned by an ORG pseudo-microinstruction. The form of the ORG pseudo-
microinstruction source record is:

LABEL oP OPERAND
— ORG expression

The ORG pseudo-microinstruction specifies the control memory address of the subsequent micro-
instructions. An ORG must precede the first generated microinstruction. Subsequent ORG pseudo-
microinstructions are permitted: however, the specified CM address must not be less than the address
of the next microinstruction. If the first ORG is not included the microassembler will default to set the
CM address of subsequent microinstructions to CM location 27000 (octal). The Operand field may be
any expression. Any label must have appeared previously in a Label field.

Section 6 on mapping and section 2 provide information on CM locations and CM software entry points
of which you should be aware before using the ORG in a microprogram. Since it is unlikely that any of
your microprograms will use an entire module, you should organize (or “map”) each of your modules to
accommodate several microprograms. This is done by placing branch microinstructions in some (or all)
of the module starting addresses that can be accessed by OCT main memory instructions. Each of these
branch microinstructions should point to a microprogram located within the module. For example:

8-8

Preparation

ALU/
OoP/ MOD/ MOD/ S-BUS/
LOCATION LABEL BRCH SPCL COND STR ADDRESS COMMENTS
ORG ' 270008
MICPRO1 EQU 27011B
MICPRO2 EQU 270658
MICPRO7 EQU) 272708
MICPRO10 EQU 27315B
27000 JMP RU30 MICPRO1 START ADDRESS 1
27001 JMP MICPR02 START ADDRESS 2
27002 UMP MICPR03 START ADDRESS 3
27007 JMP ' MICPRO7 START ADDRESS 7
27010 JMP MICPRO10 START ADDRESS 10

END

* THE BEGINNING OF THE MICROPROGRAM WITH ENTRY POINT
* LABEL MICPR01 SHOULD THEN ORG AT LOCATION 27011B.

Each label referenced by a JMP micro-order must be defined in a microprogram that maps the module.
In most cases, the number of required starting addresses will be unknown until the number of
prepared microprograms uses all (or almost all) 256 locations in a module. To allow for these cases,
module addresses can include the RJ30 micro-order to modify the target address by using bits 3
through 0 of the OCT main memory instruction. The microprogram pointed to by using the JMP,RJ30
microinstructions should be simply a table of starting addresses of other microprograms. Examples of
mapping techniques are discussed further in section 6.

Using the information provided and your present and anticipated microprogramming requirements,
you can determine whether or not your module should be mapped. You should also be able to
determine the starting addresses of some of your microprograms. The module mapping microprogram
should consist of a MICMXE control command, an ORG psuedo-microinstruction specifying the first
module location (e.g., 27000), a list of EQU pseudo-microinstructions associating values with labels, a
sequence of branch microinstructions, and an END pseudo-microinstruction. After preparing and
microassembling the mapping microprogram, load it into the desired Writable Control Store (WCS)
board by using the microdebug editor (MDE) or WLOAD subroutine. (Refer to sections 10 and 11 for
information on loading.) Once the module map is loaded into WCS, MDE or WLOAD can be used to
load each microprogram into WCS beginning at the microprogram’s starting address.

89

Preparation

8-21. ALGN. The form of the ALGN psuedo-microinstruction is:
LABEL opP OPERAND
— ALGN —
ALGN alters the control memory address so that subsequent microwords start on a 16-word boundary
(i.e., the next microword is located at the next address where the lower 4 bits of the address are zero).
This is useful for setting the origin of tables which are indexed by the lower four bits of a branch

microinstruction (i.e., using the RJ30, J74, etc., micro-orders). Examples of the use of ALGN (and some
of the other pseudo-microinstructions) appear in part 4.

8-22. THE END PSEUDO-MICROINSTRUCTION. The form of the END pseudo-
microinstruction is:

LABEL orP OPERAND
— END —

The END pseudo-microinstruction marks the end of a microprogram. This must be the last source
record in any microprogram.
8-23. EQU. The form of thee EQU pseudo-microinstruction is:

LABEL opP OPERAND

label EQU expression
The EQU pseudo-microinstruction associates the value of the expression with the label. This is useful

for symbolically referencing locations external to the microprogram (i.e., branch target addresses).
Examples of EQU might look like:

Character
column:
1 10 30
Fields: Field 1 Field 2 Field 6
HALT EQU 34000B
Content: RELO EQU 36000B
START EQU RELO

8-10

Preparation

8-24. DEF. The form of the DEF pseudo-microinstruction is:
LABEL opP OPERAND
label DEF expression
The DEF pseudo-microinstruction generates a 24-bit microword with the contents equal to the

absolute value of the expression address in control memory. The “label” field may be left blank.
Examples of the use of the DEF pseudo-microinstruction might look like:

Character
column:
1 10 30
Fields: Field 1 Field 2 Field 6
DEF SRF+150
Content: AD1 DEF ASGNOP
DEF 416B

DEF is not normally used for user microprogramming.

8-25. THE ONES AND ZERO PSEUDO-MICROINSTRUCTIONS. The form of the ONES
and ZERO pseudo-microinstructions are:

LABEL oP OPERAND
label ONES —
label ZERO —_—

The ONES and ZERO pseudo-microinstructions each generate a microword with the content equal to
either all ones or zeros, respectively. The “label” field may be blank. An example of the use of ONES is:

Character
column:
1 10
Fields: Field 1 Field 2
Content: NEG 1 ONES
An example of using ZERO would be:
Character
column:
1 10 40
— ¢
Fields: Field 1 Field 2 Field 7
j) C
Content: NULL ZERO NO BITS
S

ONES and ZERO are not normally used for user microprogramming.

811

Preparation

8-26. SUMMARY

The information presented thus far should bring you to the point where your microprogram is
complete and ready to microassemble then execute using the information in part III. The control

command and pseudo-microinstructions are summarized below.

e (Control commands (start in column one):

MICMXE,B,L,T,C,R(or S)
S$CODE=FNAME] :[security] [:[criabel]]] | REPLACE]

$PAGE=title
SLIST
$NOLIST
$PUNCH
$NOPUNCH

® Pseudo-microinstructions:

Columns 1-9

LABEL

label
label
label
label

10
op

ORG
ALGN
END
EQU
DEF
ONES
ZERO

30-39
OPERAND

expression

expression
expression

See figure 4-4 for a summary of all the micro-orders you have available for microinstructions.

8-12

PART Il
Microprogramming Support
Software and Hardware

Section 9
USING THE RTE MICROASSEMBLER N

=)

USING THE RTE MICROASSEMBLER

This section provides instructions for actually microassembling your microprograms. The assumption
here is that you have prepared your microprogram using the information from part II of this manual.
It is also assumed that the RTE Microassembler is present in the RTE operating system. Refer to
section 3 in this manual for guidelines on preparing for microprogramming. Some additional informa-
tion on using the RTE system is provided but, for complete coverage, it is expected that you will refer
to the RTE system manuals.

This section provides information on executing the microassembler and information on output such as:

¢ Binary object code
® Microassembled listings

¢ Symbol table output

In addition you will find information on the RTE Microassembler Cross-Reference Generator and
microassembler messages output to the list device and operator’s console.

9-1. USING THE MICROASSEMBLER

As described in section 8, the microassembler accepts fixed-field microprogram source records of up to
72 characters in length. Each source record contains either one microinstruction, one psuedo-
microinstruction, or one microassembler control command. The microassembler processes the input
source records and produces the binary object code of the microprogram. If specified by the initial
microassembler control command (MICMXE), the microassembler also produces a microprogram
listing in both symbolic and octal format, a symbol table, and error messages. Refer to sections 4 and 8
for descriptions of microinstructions acceptable by the microassembler. Section 8 also contains a
description of pseudomicroinstructions and microassembler control commands. The following para-
graphs provide a procedure for microassembling a microprogram. The procedure assumes that you are
using the RTE system console and that the microassembler program, MICRO, is disc resident. If
MICRQG is available only on paper tape, load it using the RTE LOADR as described in the RTE
Operating Manual. If the microprogram source is not in a disc file, MICRO can read it from some input
device in the system. Section 3 provides more information on preparing to use microprogramming
support software.

9-2. EXECUTION COMMAND

The microassembler may be scheduled in the RTE system with one of the following commands. All

parameters are optional. (The instructions that follow this definition explain one method of executing
the microassembler.)

RU,MICRO,input,list,output,lines,console
ON,MICROinput,list,output,lines,console

e The "input” parameter indicates from what logical unit (LU) the source is to be read; the default is
LU 5, an input device. If the “input” LU is 2, the system disc, the source is read from the system LS
tracks. You must move the source onto the LS tracks prior to entering the ON command.

9-1

Microassembling

NOTE

If MICRO is run from the File Manager :RU,MICRO), the input
default is LU 1, not LU 5.

e The"list” parameter indicates to what logical unit the listing is to be written. The default is LU 6,
the standard list device.

¢ The “output” parameter indicates to what logical unit the object code is to be directed. The default
is LU 4, possibly a paper tape punch, or magnetic tape (some output device).

® The “lines” parameter indicates the number of printable lines on the list device, exclusive of a
three-line header. The default is 56.

o The “console” parameter indicates the logical unit to which special messages are written. The
default is LU 1, the operator console.

If the microprogram was prepared and stored in a disc file using the method suggested in section 8,
perform the final edit and prepare to microassemble the program as follows:

¢ Press any key on the system console to get an RTE prompt (*). Then enter RU,FMGR to get a
FMGR prompt (:). Make the following FMGR entries one at a time:

LS
MS, name, MICRO

NOTE:
,MICRO required for RTE IV only.

where:

name is the name you assigned to the microprogram during program preparation. The system
outputs the following:

FMGR 015
LS LU [u TRACK ¢rk
where:

FMGR 015 is a “non-error” message, [u is the LU number of the disc, and ¢rk the disc track
number.

¢ Run the microassembler program by entering the following command after the FMGR prompt:
RU, MICRO, 2, list,output,lines,console
where:

2 is the logical unit (LU) number of the disc LS track. In this procedure, it is assumed that the
microprogram source was input to the disc as described above. If you are using some other
input device, insert that device’s LU number. If no input device is specified, this parameter
defaults to LU number 1 or 5 as explained at the beginning of paragraph 9-2. The other
parameters were explained previously.

9-2

Microassembling

e The program title, MICROASSEMBLER, is printed and pass 1 begins. If the “T” parameter is
included in the MICMXE microassembler control command (in the source microprogram), the
microassembler prints the symbol table at the conclusion of pass 1. Pass 2 begins immediately and
the microassembler outputs the listing (‘L” parameter) and if the “R” parameter was specified,
relocatable object tape; this completes the microassembly.

NOTE
If pass 2 fails to begin, check that the “output” device is turned on.
The microassembler will cycle in a loop until the punch is turned
on.
Paragraphs 9-3 through 9-7 describe the various outputs of the microassembler. Error messages and

information messages are described in paragraph 9-8.

9-3. THE MICROASSEMBLER OUTPUT

The following paragraphs describe all forms of output from the RTE Microassembler. The forms are:
® Binary object code.

® Source and octal microprogram listing.

e Symbol table.

® Messages.

The cross reference generator, which can be an output of the microassembler if the “C” option is
specified in the MICMXE control command, is described in paragraph 9-7.

9-4. BINARY OBJECT CODE

The standard object code output by the microassembler to a disc file or some other output device
consists of one or more microinstruction records. Appendix E shows the format as it appears on paper
tape. One microinstruction record holds up to 27 microinstructions and 5 16-bit words of header
information. Each source microinstruction requires 32 bits (two words) in the object format: an 8-bit
address and 24 bits for the microinstruction. Therefore, the length of the microinstruction record
comprises:

Five words of header plus 2n words for n microinstructions (two words for each microinstruction)
5 + 2n words for one microinstruction record.
The maximum number of microinstructions in one microinstruction record is 27. Consequently, the
maximum record length equals 5+ (2x 27): 59 words. The last object record is a four-word End Record.
When the microprogram consists of more than 27 microinstructions, a series of instruction records are

produced with the last one haveing 27 or less microinstructions. For example, if 57 microinstructions
are assembled, three microinstruction records and an End Record are produced as follows:

9-3

Microassembling

® Microinstruction record 1, consisting of 5 words of header and 54 words for 27 microinstructions:
59 words total.

® Microinstruction record 2, consisting of 5 words of header and 54 words for 27 microinstructions:
59 words total.

® Microinstruction record 3, consisting of 5 words of header and 6 words for 3 microinstructions: 11
words total.

¢ The End Record, consisting of 4 words.

¢ The total microassembler object code is 133 words for the microprogram.

The standard object format is accepted by all programs that accept standard relocatable format.
Therefore, the object code can be stored from an imput device into a disc file as a binary relocatable by
the FMGR STore command. If the microprogram includes a $CODE microassembler control command
as described in section 8, the microassembler automatically stores the object code into a disc file.

The microassembler outputs non-standard HP ROM Simulator object code to the device if the “B” and
“S” parameters are included in the MICMXE microassembler control command as described in section
8. Appendix E also shows the format of this type of abject tape.

9-5. MICROASSEMBLER LISTING OUTPUT

The microassembler prints the microprogram source and the generated octal code on the system list
device if the “L™ parameter is included in the MICMXE microassembler control command (Refer to
section 8 for details on MICMXE.) Appendix G (the base set) is an example of listing output. Section 14
pravides examples of user microprograms. Note that from left to right the listing output contains a line
number (decimal), the CM address (octal), the 24-bit microinstruction content at that address in octal
form, then the seven fields of microinstructions.

9-6. SYMBOL TABLE OUTPUT

The microassembler prints a symbol table on the list device if the“T” parameter is included in the
MICMXE microassembler control command (section 8). An example symbol table output is shown
here. The actual content will, of course, depend upon your microprogram. The left column of the
symbol table lists the symbols or labels used in the microprogram. Absolute octal addresses for the
symbols are also output. If addresses are terminated by the letter “X” it indicates a symbol defined by
an EQU pseudo-microinstruction in the microprogram.

SYMBOL TABLE

MOVE 032412X
GOTO 032421X
RET 032427X
LAST 032717X
OouT 032011
ERR1 032012

Microassembling

9-7. USING THE CROSS-REFERENCE GENERATOR

Assuming that the RTE Microassembler Cross-Reference Generator program is configured into the
RTE software system, it is run automatically by the microassembler if the microprogram includes the
“C” parameter in its MICMXE microassembler control command. However, you can run the generator
independently by using either an RTE or FMGR command as follows:

ON,MXREF,input,list,lines, console
RU,MXREF,input,list,lines,console

The parameters are optional and correspond to those defined for the microassembler execution
command described in paragraph 9-2. Informative messages and error messages output by the Cross-
Reference Generator (MXREF) are described in paragraphs 9-8 and 9-9. Additional points about the
Cross-Reference Generator follow:

e MXREF does not flag erroneous statements. In fact, MXREF looks at only the label and expression
fields, using field 2 and, in some cases, field 3 to determine the instruction format.

® Statements which contain invalid mnemonics in field 2 are treated as word type IV micro-
instructions, causing field 6 to be cross-referenced as an expression.

¢ MXREF will cross-reference characters in the label and expression fields of statements which do
not permit labels or expressions.

¢ Inthe cross-reference output, the first line number is the line on which the symbol was defined (ie.,
appears in the label field); subsequent line numbers are lines on which the symbol was referenced.
(If the symbol appears in the label field of more than one statement, subsequent “definitions” are
cross-referenced as references to the first occurrence.)

¢ MXREF flags undefined and unreferenced symbols with the messages:

NOT DEFINED
NOT REFERENCED

® The output does not exceed 72 characters per line.

¢ MXREF outputs some summary statistics which may be of general interest, viz.:

number of symbols (defined and undefined)
number of references (excluding definitions)
number of source lines (including control commands).

9-5

Microassembling

The first four mentioned above allow MXREF to cross-reference programs which may not be correct
micro-programs. The resulting cross-reference listing may be useful in determining the external

symbols which must be defined with an EQU statement, or in finding all references to a misspelled
symbol. An example MXREF output is shown below.

PAGE 0001 RTE MICRO CROSS~REFERENCE REV.A 760718

SYMBOLS=0012

COMPARE
ENDCHK
EXIT
HORI
INTCHK
INTEXIT
INTRTN
SETY
SORT
STRTPASS
SUBTRACT

SwaAP

9-6

0071
0133
0143
0030
0105
0112
0122
0050
0036
0062
0089

0096

REFERENCES=0013 SOURCE LINES=0144

0134
0105
0045 0055
0115
0087 0090

##NOT REFERENCED®##
0040
0139
0031
0138
0085

0088

Microassembling
9-8. MESSAGES

The microassembler and Cross-Reference Generator output two kinds of messages. Error messages are
output to the system list device; informative messages are output to either the system list device or to
the operator’s console (which is not necessarily logical unit 1). Informative messages and error
messages are described in paragraphs 9-9 and 9-10 respectively.

9-9. INFORMATIVE MESSAGES

The applicable one of these two messages are printed on the system list device:

END OF PASS n: NO ERRORS

This is the normal pass-completion message where n is the pass number.

END OF PASS n: e ERRORS

This message indicates the number of errors detected during the pass; n is the pass number and e
is the number of error messages.

The messages that can be output to the operator’s console follow:

/MICRO: RE-INPUT SOURCE AND *GO

This message means that the microassembler was unable to get necessary disc tracks when the
microprogram source was input from a device other than the disc. To recover, reposition the
source, and schedule the microassembler with the RTE GO command (GO,MICRO, etc.). This-

message can appear between the two microassembly passes and before the cross-reference
generation.

/MICRO: END

This is the normal conpletion message for the microassembler.

/MICRO: END WITH ERRORS

Error messages appear on the list device.

/MICRO: ABORT

This message means that the microassembler detected an irrecoverable error and aborted.
/MXREF: END

This is the normal completion message for the Cross-Reference Generator.

/MXREF: RE-INPUT SOURCE AND *GO

Same as for the microassembler RE-INPUT message except applicable to the Cross-Reference
Generator when the “C” option’s used with the “MIC” control command.

/MXREF: ABORT

This message indicates that a irrecoverable error was detected in the Cross-Reference Generator.

9-7

Microassembling

9-10. ERROR MESSAGES

The microassembler checks each microinstruction for errors during microassembly. If an error is
detected, an error message is written to the list device. Following all error messages for a source
record, the source record itself is printed. The form of the error message is:

**ERROR e IN Inl (See ln2) message:
where:

¢ is an error number defined in table 9-1;

[nl is the line number of the source line containing the error;

[n2 is the line number of the previous source line (if any) containing the same error.

message is the error message.

Table 9-1 gives the complete meaning of each error message recovery procedure, and/or the microas-
sembler action taken.

Table 9-1. Microassembler and Cross-Reference Generator Error Messages

ERROR
NUMBER MESSAGE/MEANING/RECOVERY
1 DUPLILCATE LABEL IN FIELD 1. The microinstruction label is the same as a
previously used label or EQU symbol. This occurrence of the symbol is ignored and
its first definition holds.
2 INVALID OP IN FIELD 2. A NOP micro-order is inserted in field 2.
3 INVALID SPECIAL IN FIELD 3. A NOP is inserted in field 3.
4 INVALID CONDITION IN FIELD 4. An ALZ is inserted in field 4.
5 INVALID ALY IN FIELD 4. A PASS micro-order is inserted in field 4.
6 INVALID MODIFIER IN FIELD 4. A HIGH micro-order is inserted in field 4.
7 INVALID STORE IN FIELD 5. A NOP is inserted in field 5.
8 INVALID S-BUS IN FIELD 6. A NOP is inserted in field 6.
9 INVALID SENSE IN FIELD 5. Micro-order in field 5 is not RJS and is ignored.

10 MISSING ORG. Origin is set to 27000B.

11 INVALID CONSTANT IN FIELD 6. The Operand of a word type Il microinstruction
is out of range. A value of O is inserted in field 6.

12 $CODE IGNORED: NO BUFFER SPACE. Insufficient memory for object code
buffer. Object code is only punched on tape (if B parameter included in MICMXE
microassembler control command).

“13 $CODE IGNORED: CANNOT BUILD FILE. Object code is punched only on tape (if
B parameter included in MICMXE microassembler control command. This
message is followed by the FMGR error code.

Table 9-1. Microassembler and Cross-Reference Generator Error Messages (Continued)

Microassembling

ERROR
NUMBER

MESSAGE/MEANING/RECOVERY

*14

15

16

17

*18

19

x*20

21

22

23

*24

*25

26

irir27

*28

*29

**30

*31

*32

INVALID FILE REFERENCE. Syntax error occurred in filename, security, or crlabel
specification. (Refer to the Batch and Spool Manual.) Object code is only punched
on tape (if B parameter included in MICMXE microassembler control command).

NOT TYPE-3 SPECIAL IN FIELD 3. A NOP is inserted in field 3.
NOT TYPE-1 or 2 SPECIAL IN FIELD 3. A NOP is inserted in field 3.
NOT TYPE-4 SPECIAL IN FIELD 3. A NOP is inserted in field 3.

INVALID CONTROL COMMAND. The microassembler assumes the parameter
defaults of the MICMXE control command. ’

INVALID EXPRESSION IN FIELD 6. Branch address is out of permitted range, or
target label address is undefined. A value of 0 is inserted into field 6.

NO SOURCE. Microprogram source input device is not ready or the micro-
assembler program (MICRO) was given incorrect input device LU number. Check
input device; and MICRO command. Make necessary correction and micro-
assemble again.

MISSING END. The microprogram has no END statement. Correct and
microassemble again.

SYMBOL TABLE OVERFLOW. The microprogram has too many labels; or
insufficient memory to build symbol table.

ADDRESS OUT OF RANGE IN FIELD 6. Branch address is out of permitted range.
A value of 0 is inserted into field 6.

LABEL NOT ALLOWED IN FIELD 1. The characters in field 1 are ignored.

FIELDS 4 & 5 MUST BE BLANK. These fields are ignored in word type 1V
instructions.

ADDRESS SPACE OVERFLOW. Branch address is greater than 37777B (16383).
A value of 0 is inserted into field 6.

INVALID OR MISSING MICRO COMMAND. The MICMXE microassembler control
command is incorrect or missing; microassembly aborts. Correct the line and
microassembie again.

DUPLICATE MICRO OPTION IGNORED. A parameter appears more than once in
the MICMXE control command. The first appearance is accepted; the others are
ignored.

FILE /O ERROR. This message is followed by a FMGR error code. Object code is
punched only on tape (if B parameter included in MICMXE microassembler control
command).

INVALID MICRO OPTIONS. A microassembler control command has incorrect
parameter(s). The parameter(s) is ignored.

INVALID LABEL IN FIELD 1. The label contains a plus (+) or minus (—) sign or
begins with a percent (%) character.

SECOND $CODE IGNORED. Only one $CODE control command is allowed;
subsequent ones are ignored.

Microassembling

Table 9-1. Microassembler and Cross-Reference Generator Error Messages (Continued)

ERROR
NUMBER MESSAGE/MEANING/RECOVERY
*33 EXPRESSION NOT ALLOWED IN FIELD 6. The characters in field 6 are ignored.
CROSS REFERENCE GENERATOR MESSAGES
1 SYMBOL TABLE OVERFLOW
2 NO SOURCE
NOTES:

1. Messages flagged with a single asterisk (*), have no effect on generated code. Non-recoverable errors
are flagged with a double asterisk (**).

2. Unless the microassembly process is aborted ({MICRO: ABORT message listed on system console),
you can correct any of the above errors by using the Microdebug Editor and execute the microprogram
from WCS. However, the resulting object code is not suitable for burning pROM's, To burn pROM's, you
must correct the microprogram source and reassemble to get an error-free object code direct from the
microassembler.

9-10

Section 10
USING THE RTE MICRODEBUG EDITOR N

USING THE RTE
MICRODEBUG EDITOR |10

The Microdebug Editor (MDE) allows you to load microprogram object code into WCS, debug the code,
and execute the microprbgram. Using the debugging features as illustrated in section 14, you may also
write short microprograms using the MDE. In order to use MDE, it is necessary that the WCS boards
be assigned subchannel base addresses or initialized for the transfer of the microcode. Complete
information required to write WCS initialization programs is given in the Driver DVR36 Manual.
Example WCS initialization procedures are included in section 14.

MDE provides its own prompt character ($) and responds to its own set of operator commands. When
you use MDE, you must observe the operator command syntax (described in table 10-1) and the
following conventions:

¢ A numeric parameter is assumed to be positive unless preceded by a minus sign (—).

® A numeric parameter with the letter “B” suffix indicates the parameter is octal. Otherwise the
numeric parameter is assumed to be decimal.

¢ Two adjacent commas (,,) or colons (::) mean a parameter assumes its default value.
¢ Leading blanks (spaces) and blanks preceding or following a comma or a colon are ignored.
e All inputs must be terminated by a carriage return (CR).

Table 10-1. MDE Operator Command Syntax

ITEM MEANING
UPPER CASE These characters are literals and must be specified as shown.
lower case These characters only indicate the type of information required.
REad This combination means that the RE is literal and must be used as shown; the

remaining characters are for information oniy and need not be used.

[.item] ltems within brackets are optional. You can default the item by omitting it or by
replacing it with a comma if other items follow it.

ftem1 This indicates that any one of the items listed may be used. You can default the
Jitem?2 selection by omitting it or by replacing it with a comma if other items follow it.
,item3

item1 This indicates that one of the items listed must be used.

item2

item3

namr This indicates one parameter with up to two subparameters separated by colons.

Subparameters are allowed on the first parameter only. Examples:

namr=filename [:security code [:crlabell]
-and-
namr=logical unit number

10-1

MDE

10-1. SCHEDULING MDE

You can schedule the Microdebug Editor program (MDEP) by using either an RTE ON command or an
FMGR RU command. (MDEP can also be called by another program as shown at the end of this
section.) To schedule MDEP use either of the following commands:

ON MDEPY, {1, lu2(,lu3],lud]]]]
RUMDEP[,{ul{,lu2],lu3(,lu4I]
where:

lul is the logical unit (LU) number of the console you are going to use to communicate with MDE;
lu2 is the LU number of the WCS board you will be using;

{u3 is the LU number of an additional WCS board (if required);

{u4 is the LU number of a third WCS board (if required).

Upon initial execution, MDE must determine the computer type you are using by making the
following request:

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPE(1 OR 2)?
NOTE: 2 is also the response for F-Series Computers

You must respond by entering the number “2”. This request will not appear with any subsequent use
of MDE unless the RTE system is re-booted or MDE is rescheduled.

MDE requires the driver DVR36 and WCS I/O Utility routine WLOAD for its operations. MDE locks
all WCS logical units in a WCS LU table (WCSLT); any LU’s added to the WCSLT are also locked. You
can load, read, modify, debug, and dump microprogram object code by using MDE operator commands.
MDE, when used as routine MDES, may also perform these operations in your applications environ-
ment. The MDE operations work with all the WCSLT LU’s and with control memory addresses issued
by the operator commands. Termination of MDEP (or the MDES calling program) unlocks all WCS
logical units.

10-2

MDE

10-2. MDE COMMANDS

Table 10-2 summarizes the commands for using the MDE; more detailed explanations of the com-
mands are given below. MDE will not allow operations in the base set area of control memory. The
valid range of control memory address parameters is 2000 through 37777 octal. MDE outputs a dollar
sign ($) character as a prompt.

Table 10-2. Summary of Microdebug Editor Commands

CONTROL
COMMANDS DESCRIPTION
77 Explains error code.
EX Terminates MDE.
/O
COMMANDS DESCRIPTION
DU Dumps specified binary object code of current WCS-resident microprogram{s)
to a LU or disc file.
LD Loads microprogram binary object code onto WCS (write verified).
LU Add or delete WCS logical units to or from a WCS LU table (WCSLT).
EDIT
COMMANDS DESCRIPTION
DE Delete microinstruction at specified control memory addresses by replacing
with NOP's,
RE Replace microinstruction at specified address.
SH Show microinstruction at specified address on the operator console.
DEBUG
COMMANDS DESCRIPTION
BR Set breakpoint into microprogram at specified control memory address.
CL Clear breakpoint in microprogram at specified control address.
LC Locate object code in control memory for use with breakpoint.
PR Set up additional parameters for use with next MDE RU command.
RU Execute microprogram by executing the appropriate main memory instruction.
SE Set registers to values desired for next execution of MDE RU command.

10-3

MDE
10-3. ?? COMMAND

This command expands an MDE error code. (MDE error codes are listed and defined in table 10-3.) The
command format is:

??,number]
where:
number is the error number. If number is omitted, the last error code issued is expanded. If

number is xx, error code xx is expanded. If number is 99, all error codes are expanded. (Refer to
table 10-3)

10-4. EXIT COMMAND

This command terminates the MDE. (If in MDES, returns to calling program.) The command format
is:

EXit

10-5. DUMP COMMAND

This command transfers the contents of WCS to a file or logical unit. The command format is:
DUmp,namri[,xxxxxl,yyyyyll

where:

namrl is the logical unit number or the name of a file to which the object code is to be transferred.
If namrl is a file, the file is created by this command.

xxxxx and yyyyy are the upper and lower control memory addresses of the object code to be
transferred. The range xxxxx to yyyyy inclusive are transferred for all LU’s in the WCS logical

unit table (WCSLT). If xxxxx and yyyyy are zeros (default values), all logical units in the WCSLT
are transferred.

10-6. LOAD COMMAND

This command loads the binary object code into WCS; the entire load is write verified. The command
format is:

LD,namrl

where:
namrl is the logical unit number or the name of a file from which binary object code is to be
transferred. If namrl is a file, it may have been created by the DU command or by microassembly

of a $CODE control statement.

Any microprograms residing in WCS that are overlayed by an LD command are lost.

10-4

MDE

10-7. LU COMMAND

This command adds or deletes WCS logical units to or from the WCSLT and enables or disables WCS
LU’s that are in the WCSLT. The command format is:

LUL 1l lu2],.. . lux]i)

where:
{ul, lu2, etc. are WCS LU’s for MDE use. A maximum of 12 LU entries are permitted. A negative
LU number causes the LU to be deleted from the WCSLT. An LU entry prefixed by the letter “E”
logically enables that LU and, prefixed by the letter “D” disables that LU. (The WCS board or
boards must already be physically enabled.) Valid LU numbers must be in the range 0 through
63.

MDE responds to the LU command by outputting a status table as follows:

LU# RANGE STATUS
lul XXXXX-YYYYY 2
u2 XXXXX-YYYYY
lux XXXXX-YYYYY z

where:

lul, lu2, etc., are the WCS LU’s currently used by MDE;
xxxxx-yyyyy is the range of control memory set for a particular LU;

z is “1” for an enabled LU, “0” for a disabled LU (disabled includes downed LU’s), or “P” for a
pseudo-disabled (physically-enabled) LU.

The LU command adds LU’s to the WCSLT in the order they are entered. If the LU parameters are

defaulted, the current WCSLT is displayed. All LU’s in the WCSLT are locked by MDE and released
when MDE or the calling program is terminated.

10-8. DELETE COMMAND

This command deletes a microinstruction or range of microinstructions from WCS. The deleted
microinstructions are replaced by NOP micro-orders (PASS in the ALU field). The command format is:

DElete xxxxx[,yyyyy]

where:

xxxxx and yyyyy are the lower and upper control memory addresses of the range of microinstruc-
tions to be deleted. If yyyyy=0 (default), only xxxxx is deleted.

10-5

MDE

10-9. REPLACE COMMAND

This command replaces a microinstruction or range of microinstructions in WCS. The command
format is:

REplacexxxxx(,yyyyy[,0]1]

where:

xxxxx and yyyyy are the lower and upper control memory addresses of the range of microinstruc-
tions to be replaced. If yyyyy= 0 (default), only xxxxx is considered. The optional letter “O” causes

the object code as well as the micro-orders of each microinstruction to be displayed as each replace
is made.

MDE responds to the REPLACE command as follows:

xxxxx field2 field3 field4 field5 field6 zzz zzzzzz
38

where:

field2 through field6 are the micro-orders of the microinstruction at control memory address
axxxxx and 222 zzzzzz is the object code of the microinstruction. $$ is a prompt for your response.

You may respond to the $$ prompt as follows:

nfield2,nfield3,nfield4,nfield5,nfield6
WWww wwwwww

/or nn or A

where:

nfield2 through nfield6 are the desired replacement micro-orders for each field of the new
microinstruction. The field micro-orders must be entered in the order shown. If any field is
defaulted by ,, or omitted, that field remains the same as in the original microinstruction.

www wwwwww is the new microinstruction (in octal) displayed by MDE if the REPLACE
command was used with the optional letter “O”. If www or wwwwww= 0 (default), the old value
remains.

leaves the current microinstruction unchanged and moves to the next one. If control memory
address yyyyy is exceeded, the REPLACE command is terminated.

nn is a positive integer from 1 through 99 and causes the REPLACE command to move its pointer
nn locations in control memory, displaying each microinstruction as it increments. If yyyyy is not
exceeded, the last microinstruction displayed is the one ready to be replaced. If yyyyy is exceeded,
the REPLACE command is terminated.

The letter “A” terminates the REPLACE command; all the remaining microinstructions are un-
changed.

10-6

MDE

Each time a microinstruction is replaced the new microinstruction is microassembled and the RE-
PLACE command pointer moves to the next microinstruction. If yyyyy is exceeded, the REPLACE
command is terminated.

10-10. SHOW COMMAND

This command displays a microinstruction or range of microinstructions residing in WCS. The
command format is:

SHow xxxxx[,yyyyy[,Oll

where:
xxxxx and yyyyy are, respectively, the lower and upper control memory addresses of the range of
microinstructions to be displayed. If yyyyy=0 (default), only xxxxx is displayed. The optional
letter “O” causes the object code as well as the microinstruction to be displayed.

MDE responds to the SHOW command as follows:

xxxxx field2 field3 field4 field5 field6 zzz zzzz22

yyyyy field2 field3 field4 field5 field 6 zzz zzzz2z
where:

field2 through field6 are the micro-orders of the microinstruction at a particular control memory
address and zzz zzzzzz is the object code of the microinstruction.

10-11. BREAKPOINT COMMAND

This command sets a breakpoint or breakpoints at a control memory address or addresses. This
command may also simply display the current set of breakpoints. The command format is:

BReakpoint[,break1[,break2[,break311]
where:
breakl, break2, and break3 are the control memory addresses of the breakpoints to be set. If

break1=0 (default), the current set of breakpoints is displayed. The maximum number of break-
points that can be set is three.

10-7

MDE

MDE responds to the BREAKPOINT command as follows:

BREAK1 xxxxx
BREAK2 xxxxx
BREAKS3 xxxxx

where:

BREAK]1, BREAK2,and BREAK3 designate the breakpoints and xxxxx is the control memory
address of a breakpoint.

Before setting a breakpoint, you must locate the desired control memory address by using a LOCATE
(LC) command. Also, observe the following rules when using breakpoints:

10-8

When a breakpoint executes, all registers (except the counter) that can be displayed by the SET
command (paragraph 10-16) are saved. Note that the IR and the M-register are two of the registers
that are not saved.

A breakpoint cannot be set on a microinstruction that uses any bits in the Instruction Register.

A breakpoint can be set within a microsubroutine but, if this is done, it cannot be reentered.

A breakpoint cannot be set at the control memory address of a microinstruction passing data from
the T-register within two microinstructions following a READ micro-order.

A breakpoint can be set on a conditional branch microinstruction but it cannot be reentered.

A breakpoint may be set on a microinstruction that uses a register which is lost when breaking;
however, the register will not be restored if execution continues.

A breakpoint may be set on a microinstruction that uses any one of a set of Special micro-orders
but continued execution will be unpredictable. This set of Special micro-orders is: INCI, IOFF,
I0G, 101, ION, and I0O.

Breakpoints cannot be set in the CM area occupied by the MDE breakpoint object code.

If there is no control memory entry point address available for MDE, debug operations using
breakpoints cannot be performed.

If you do not have enough room in control memory for your microprograms and the MDE object
code, either you must overlay some of your object code or debug operations using breakpoints are

not allowed.

The counter cannot be saved on the E-Series or F-Series Computer.

MDE

10-12. CLEAR COMMAND

This command clears breakpoints previously set by a BREAKPOINT command. The command format
is:

CLear|[,breakl[,break2[,break31i]
where:

breakl, break2, and break3 are the control memory addresses of breakpoints to be cleared. If
breakl=0 (default), then all breakpoints are cleared. The maximum number of breakpoints that
can be cleared is three.

10-13. LOCATE COMMAND

This command locates the breakpoint object code in control memory to enable breakpoints to be set.
Also, this command moves breakpoint object code from a buffer in memory to control memory. The
command format is:

LC xxxxx,yyyyy

where:

xxxxx is the starting control memory address of the sequence of breakpoint object code. The object
code is moved and will occupy up to 114 (162 octal) control memory locations beginning with
xxxxx. Location yyyyy is the breakpoint reentry point in control memory. Location yyyyy must be a
valid control memory entry point address but must not be used by any microprograms.

As an example of LOCATE command usage, suppose a microprogram occupies CM addresses 34020B
to 34153B and the breakpoint object code can be placed into “unused” addresses 34200B to 34362B.

Assuming that entry point 34002B is not used by a microprogram, the example LOCATE command
would be:

L.C,34200B,34002B

Every time the LOCATE command is used all breakpoints are cleared; they can be reset with the
BREAKPOINT command for use with the relocated object code. Breakpoint object code can be located
across two WCS LU’s provided that both LU’s are enabled.

10-14. PARAMETERS COMMAND

This command sets up parameters in memory for use with the main memory instruction that calls the
microprogram to be executed. These parameters are in addition to those that may be passed via
registers. The command format is:

!

PR

10-9

MDE

MDE responds as follows:

P+ 1=contentsl
P+ 2=contents2
P+ 3=contents3
P+ 4=contents4
P+ 5=contents5
P+ 6=contents6
P+ 7=contents7
P+ 8=contents8
P+ 9=contents9
P+ 10=contenis10

P+ x=

where:

P+1,P+2, etc., are the memory locations relative to the instruction that calls the microprogram;
contentsl, contents2, etc., are the octal contents of each location; x is an integer from 1 through 10;
and P+x= is a prompt for you to enter new contents or leave the old contents unchanged.

Each location in the range P+ 1 through P+ 10 is displayed one at a time (followed by the prompt

P+x=) to allow you to create the desired calling instruction parameters. You can respond to the
prompt with the following:

/ or R or xxxxx or DEF.yy or A

where:

The / character leaves the current location unchanged; the letter “R” designates the current
location as a valid return address for the microprogram; xxxxx is a decimal number from -32767
through 32767 or an octal number from -77777B through 77777B; DEF.yy creates a DEF to

address P+yy; the letter "A" terminates the PARAMETERS command and all remaining loca-
tions are left unchanged.

10-15. RUN COMMAND

This command executes a microprogram. If required, program parameters can be preset using the
PARAMETERS or SET commands.

CAUTION

It is strongly recommended that your RTE system be in a non-
critical or a single-user operating mode before you execute a
microprogram. Execution of an unproven microprogram can have
unpredictable and undesirable results, including the destruction
of the system.

10-10

MDE

The command format is:

RUn |,105yyyB
,1012zz B

where:

105yyyB and 101zzzB are OCT instruction values corresponding to control memory entry point
addresses;

yyy and zzz are octal values which you should predetermine by using the information given in
section 6.

If you default the optional RUN command parameters, the RUN command will do one of two things
depending on the last return from microprogram execution. If the last return was from a breakpoint,
the RUN command will resume execution at the most recent breakpoint. If the last return was a
normal return, the RUN command will reexecute the last main memory instruction used to link with
the microprogram. When a RUN command executes, one of the following messages should be output
upon return from microprogram execution:

RETURN P+xx

where;
xx is a decimal number from 1 through 10 and the message indicates a normal return, or

BREAK yyyyy

where:

yyyyy is the address of a breakpoint and the message indicates a return from a breakpoint.
Note that the RUN command cannot enable a disabled WCS LU.
10-16. SET COMMAND
This command sets the saveable registers for the next RUN command. This command also displays the

contents of the saveable registers at the last break in the execution or last return from a RUN
command. The command format is:

SEt[,p1[,p2...[p2511]

10-11

MDE

where:

pl, p2, etc., are any of the following:

A (A-register) S1
B (B-register) S2
X (X-register) S3
Y (Y-register) S4
O (O-register) S5
E (E-register) S6
S (S-register) S7
L (L-register) S8
P (P-register) S9
FLAG (CPU Flag) S10
DSPL (Display Register) S11
DSPI (Display Indicators) SP (Stack Pointer)

CNTR (Counter) Always=0

If the SET command is given without any parameters, all register values are shown.

MDE responds to the SET command by displaying any of the requested values as follows:

A=xxxxxx FLAG=x S5=xxxxxx
B=xxxxxx DSPL=xxxxxx S6=xxxxxx
X=xxxxxx DSPI=xx S6=xxxxxx
Y=1xxxxxx CNTR=0 S7=xxxxxX
O=x« Sl=xxxxxx S8=xxxxxx
E=x« S2=xxxxx% S9=xxxxxx
S=zxxxxxx S3=xxxxxx S10=1xxxxxx
L=2xxxxxx S4=xxxxxx S1l1=xxxxxx
P=xxxxx SP=xxxxxx

Register n=xxxxxx
Register n=
where:

X, xx, xxx, or xxxxxx are the contents or the condition of a particular register or flag in octal or
binary; Register n is the first register in your set of registers and Register n= is a prompt for you
to enter a new value in register n or leave the old unchanged.

The prompt is displayed after each requested register. You can respond to the prompt with the
following:

/ or xxxxx or A

10-12

MDE

where:

/ leaves the current register unchanged and moves to the next requested register; xxxxx is an octal
number from -77777B to 77777B or a decimal number from -32767 to 32767; and the letter ”A*
terminates the SET command and all remaining registers are left unchanged. Note that MDE
always outputs octal numbers,

All registers except A, B, X, Y, O, E, and DSPL are set to zero for a normal return from microprogram
execution, The counter cannot be used with breakpoints. All other registers not saved by MDE cannot
be assumed to remain in a given state during debug operations.

NOTE

All numbers output from the MDE are in octal. MDE does not
designate this however. If you are entering numbers and you
desire octal form, so designate by following the number with B.

10-17. MESSAGES

Table 10-3 lists all MDE error messages. '?FM“S?,U_IT]'

Computer

Table 10-3. Microdebug Editor Error Messages

ERROR

CODE MESSAGE/MEANING

MDEOOO MDE BREAK. Break set into program ID segment.

MDEOQO1 WCSLT FULL. WCS logical unit table is full. Use the LU command to display current
entries in table and to delete unwanted LU’s.

MDEQQ2 ILLEGAL PARAMETER. lllegal parameter or subparameter in input.

MDEO0O03 WCSLT LU LOCKED. One or more WCS LU's in the WCSLT are already locked by
another program.

MDEQ04 NO RN AVAILABLE. A resource number to lock WCS LU'S is not available.

MDEO005 INPUT ERROR. lllegal command or command syntax incorrect.

MDEO06 ILLEGAL LU. LU given to MDE is not driven by driver DVR36.

MDEOO7 ILLEGAL DEVICE. Attempted /O operation with a device having equipment type
(driver number) of 30 or higher.

MDEO008 ERROR # UNDEFINED. The error number specified does not exist.

MDEO09 LU # UNDEFINED. The LU number given to MDE to be removed from the WCSLT
is not in the WCSLT.

MDEO10 CHECKSUM OR REC. FORMAT ERROR. Invalid record format or checksum error.
MDEO11 NO LU'S. WCS can't be loaded or dumped because the WCSLT is empty or has no
LU's set up for the desired control memory address range.

MDEO12 VERIFY ERROR. A write verify error occurred during the last 1/O operation to WCS.
MDEO13 NO DCPC. The last requested I/O operation did not complete due to a non-

responding DCPC channel.

10-13

MDE

Table 10-3. Microdebug Editor Error Messages (Continued)

ERROR
CODE

MESSAGE/MEANING

MDEO14

MDEO15

MDEO16

MDEO17

MDEO18

MDEO19

MDE020

MDEO21

MDE022

MDEO023

MDE024

INVALID ADDRESS. Invalid WCS address specified; or last requested 1/O opera-
tion did not complete; or attempted to set a breakpoint in MDE microcode oron a
reentry address; or attempted to clear non-existent breakpoint; or attempted to set
reentry address in MDE microcode; or locate not completed.

ADDRESS CONFLICT. The address associated with and assign base address,
enable, or write request conflicts with another WCS subchannel. Last requested /O
operation did not complete.

DATA OVERRUN. The loading of data into WCS overran the available WCS.
Loading is partially complete.

LU DISABLED. A WCS LU requested for an /O operation is psuedo-disabled,
disabled, or down.

FMP ERROR -XXXXX. An FMP call resulted in the error condition described by the
listed error code (-XXXXX). Refer to FMP error codes in the Batch-Spool Monitor
manual.

I/O ERR EOF EQT XX. An end-of-file occurred on EQT entry number XX.
MICRO ERR XX. Microassembler error XX occurred during a REPLACE command.

ILLEGAL REGISTER. The register requested by a SET command is not valid for
MDE.

NO MACRO. The attempted RUN command had no prior main memory instruction
call to a microprogram; or attempted setting a breakpoint without MDE breakpoint
microcode located; or breakpoint reentry address not a valid control memory entry
point address or no WCS LU contains the reentry address.

USER MICRO ERR. User microprogram returned incorrectly.

BKTBL FULL. Breakpoint table is full. Use CL command to deiete some break-
points before trying to set new ones.

10-14

MDE

10-18. RESTRICTIONS ON USING THE MICRODEBUG EDITOR

Microprograms provide you with a very privileged mode of computer operation. In an RTE operating
system, a microprogram executes beyond the control of the RTE system and, if improperly designed,
can destroy the system. This means that it is imperative that you exercise an extra measure of caution
before executing a developmental microprogram.

Subroutine MDES locks all WCS LU’s that it uses, thereby preventing any I/O operations to WCS from
another user in a multi-user RTE environment. This ensures that the object code of your microprog-
ram will remain intact but does not prevent another user’s program from executing an instruction that
enters your object code.

The LoaD command uses WCS I/O Utility routine WLOAD to load into WCS using the LU array in
the WCSLT. Object code from two microprograms having the same control memory addresses cannot

be developed simultaneously (i.e., no two microprograms can occupy the same control memory loca-
tions at the same time).

10-19. CALLING MDE

As previously mentioned, you can prepare a program for the purpose of calling MDE as a subroutine
(MDES) or scheduling MDE as a program (MDEP). Remember that MDEP and MDES are separate
software modules.

Figure 10-1 and figure 10-2 show respectively, the Assembly language and FORTRAN calling sequ-
ences to schedule MDEP and to call MDES. MDES may also be called via a breakpoint in the
microprogram object code; if this is done, some additional rules for using MDES must be observed.

Subroutine MDES is functionally identical to MDEP. The main difference is that an MDES EX
command returns to the calling program rather than terminating the program. The software saveable
registers are set to their values when MDES is called instead of being set to 0 as in MDEP. Neither
MDEP nor MDES will clear breakpoints when exited; you must clear any breakpoints when you finish
debugging your object code. Figure 10-3 outlines a recommended sequence of interactive debugging
operations between you, MDES, and your MDES calling program.

10-15

MDE

Purpose: To programmatically schedule the program MDEP.
Format: EXT EXEC
SCHED JSB EXEC TRANSFER CONTROL TO RTE
DEF RTN RETURN POINT
DEF ICODE REQUEST CODE
DEF MDEP NAME OF PROGRAM TO SCHEDULE
DEF P1
DEF P2 OPTIONAL
DEF P3 PARAMETERS
DEF P4
RTN EQU =
ICODE DEC 23 OR 24 23=SCHEDULE W/WAIT,24=N0 WAIT
MDEP ASC 3,MDEP NAME OF PROGRAM
P1 DEC LU1 OPERATOR CONSOLE LUCDEFAULT=1)
P2 DEC LU2 WCS LU
P3 DEC LU3 WCS LU
P4 DEC LU4 WCS LU
DIMENSION MDE(3)
ICODE=23 OR 24
MDEC1)=2HMD
MDE(2)=2HEP
MDE(3)=2H
CALL EXECCICODE ,MDE,I1,12,13,14)
I1 thru I4 are identical to the Assembly language
schedule request parameters P1 thru P4.
7115.28 Figure 10-1. Scheduling MDE (MDEP)
Purpose: Tocall theutility subroutine MDES.
Format: JSB MDES JUMP SUBROUTINE
DEF RTN RETURN POINT
DEF P1
DEF Pz OPTIONAL
DEF P3 PARAMETERS
DEF P4
DEF PS
RTN EQU =
P1 Dl::C LU1 OPERATOR CONSOLECDEFULT=1)
P2 DEC LUu2 WCS LU
P3 DEC LU3 WCS LU
P4 DEC LU4 WCS LU
PS BSS 1 ERROR CODEC0=SUCCESSFUL
COMPLETION,-1=SUBROUTINE
ABORTED)

CALL MDESCI1,12,13,14,15)

I1 thru IS are identical to P14 thru PS5 in the
Assembly language call.

7116-29

10-16

Figure 10-2. Calling MDE (MDES)

MDE

User Program

START
JSB MDES

MACRO1
PARAMETER
NOP
RETURN

MACRO2
PARAMETER
RETURN1
RETURN2

JSB MDES

END

MDES Operation

Initialize debug operations. Set

Subroutine) desired breakpoints intomicrocode,

€———>) load WCS, etc. Exit MDES back to
Call calling program.

Microcode of registers, change registers,

€&————> { modify microcode, set new

Breakpoint | breakpoints, etc. Continue in

microprogram.
Microcode
—

Additional debug operations.
Breakpoint

Subroutine
—
Call

Completion of debug operations.
Clear breakpoints, dump microcode,
etc. Exit back to end of program.

{Debugoperations.Exam1ne5tate

7115-30

Figure 10-3. Interactive Debugging Operations

10-17/10-18

Section 11

WRITABLE CONTROL
STORE (WCS) SUPPORT SOFTWARE I

WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE || 11

Section 8 describes a method used to prepare a microprogram and then store it in a system file. The
microprogram source could also have been entered through the system input device. When you prepare
a microprogram and enter it into the system, essentially you have just another file of data; even after
microassembly, you still have just a file of micro-object code in a disc file. In order to make your
microprogram (file) effective (i.e., executable through use of main memory UIG instructions 105xxx
octal codes) the microprogram must be placed in control memory. As emphasized previously (in
sections 1 and 3), your facility for dynamic control memory (CM) is Writable Control Store (WCS),
which is where you want to place your micro-object code.

NOTE

Although you may of course execute microroutines when they
reside in any facility of CM (e.g., FAB and UCS as well as WCS),
WCS is essential for microprogram development and dynamic
microprogramming. (Dynamic microprogramming is defined as
the ability to swap microprograms in and out of WCS as desired.)
More information on this is in paragraph 11-2.

This section outlines the hardware and software necessary to transfer your microprogram {(from the
file you created in the RTE system) into WCS then, modify your microprogram as required for proper
execution.

11-1. WCS HARDWARE

Before anything can be done about moving microprograms from main memory to control memory you
have to have a WCS board or boards installed in the I/O section of the computer and properly
configured for CM and the RTE system. Some details on the WCS boards you can use follow but for
complete board configuration and installation information refer to the HP 13197A Writable Control
Store Reference Manual. You should also refer to section 3 to review the steps necessary to prepare for
microprogramming with the RTE system.

You may use the HP 13197A WCS board in the computer for dynamic microprogramming. The
HP 13197A WCS has a capacity of 1024 microwords (1K) which is four CM modules. No hardware
configuring is necessary to use the 13197A WCS. If one WCS board is used, it is advised (in the WCS
manual) that it be installed in SC 10 in the computer. The driver takes care of setting appropriate CM
addresses on the board from addresses assigned in your microprogram (the driver is described in
paragraph 11-2).

For normal use, a maximum of three WCS boards can be connected with the CM cables supplied.

Standard maximum WCS configurations (capacities) are 3K of WCS in the Computer for either an
RTE II or RTE IV system.

11-1

WCS

11-2. WCS SOFTWARE

Manipulating microwords between main memory and WCS via the I/O section is the task of the WCS
microprogramming support software. Driver DVR36 and the WCS I/O Utility (library) routine
WLOAD comprise this software.

DVR36 drives the WCS boards for data transfers (of micro-object code through the 1/O section while
conforming to constraints for the RTE system I/O. The driver ensures that no two enabled WCS boards
have the same CM addresses assigned. Control requests, write requests (writing microroutines to
WCS), and read requests (reading microroutines from WCS) are possible using DVR36. WLOAD
coordinates between the system and WCS. WLOAD uses DVR36 to perform its operations and move
large quantities of micro-object code to WCS. Also, if so configured, DVR36 utilizes DCPC for
transfers.

WCS boards must be initialized (i.e., assigned subchannel base addresses) for the transfer of
microprogram object code to the boards. WCS initialization is required whenever the RTE system is
booted up. Complete information required to write WCS initialization programs is given in the Driver
DVR36 manual. (Section 14 contains an example initialization procedure for the 1K WCS (HP
13197A).) The WCS initialization program can be included in the RTE system during system
generation or loaded on-line. (Refer to the RTE operating manual for information on system genera-
tion and program loading.)

To transfer microprograms between WCS and a main memory buffer or to make control requests to
WCS, you call the driver directly with an RTE system EXEC call. To load WCS with microprograms
from a file or LU, you use WLOAD. The procedures to use for calling the driver or WLOAD in
Assembly language or FORTRAN are detailed in the DVR36 and WLOAD manual (reference section 3
for the manual part number, object software part numbers, and procedures for including the software
(loading) in the RTE system.) Complete configuring information is also contained in the driver manual
where appropriate RTE system manual references are also made. Section 14 in this manual (exam-
ples) provides additional details on using FORTRAN to control WCS operations including initializing,
locking, unlocking, enabling, and disabling your WCS boards, and executing your microprogram in
the system. Note that, with the HP 13197A WCS board, your subchannels should have different LU’s
assigned at configuration time.

The Microdebug Editor also uses DVR36 and WLOAD to perform microprogram editing and execution
tasks with WCS. All the information you need to operate the driver and utility routine with the
Microdebug Editor is included in section 10. All the information required to operate with the WCS
microprogramming support software directly in the RTE system is included in the driver manual and
you will not have to get involved in operating details unless you so desire.

11-2

Section 12
USING pROM GENERATION
SUPPORT SOFTWARE AND HARDWARE IR

USING pROM GENERATION SUPPORT
SOFTWARE AND HARDWARE |[12

This section provides instructions for generating pROM mask tapes by using the pROM Tape
Generator program (PTGEN). The mask tapes enable a microprogram to be fused (“burned”) into
programmable read-only memory (pROM) semiconductor integrated circuits (IC’s.). Before generating
pROM tapes, the microprogram should be completely debugged and its source should be corrected and
microassembled again to provide the object code required by PTGEN. PTGEN can provide a variety of
pROM mask formats, including those of a variety of pPROM vendors. Note that the program must be in
the system prior to use and see section 3 for preparatory information.

12-1. USING THE pROM TAPE GENERATOR

Run program PTGEN by entering the following command:
RU,PTGEN userin,list,objectin,ptapein,ptapeout

The command parameters are defined as follows:

userin is the logical unit (L.U) that you will use to respond to PTGEN queries. The default is LU 1.

list is the LU on which all PTGEN queries and error messages are written. The default is LU 1.

objectin is the LU from which the microassembler object code is read. If this is LU 2, the disc file
name will be requested. The default is LU 5. Note that the object code must be produced by the
microassembler, not by the Microdebug Editor.

ptapein is the LU from which the punched pROM mask tapes are read for verification. This LU
must accept the output of the ptapeout LU. The default is LU 5.

ptapeout is the LU on which the pROM mask tapes are punched. This should be a paper tape
punch to be accepted by most pROM vendors. The default is LU 4.

pROM mask tape generation is divided into three phases: Initialize, Punch, and Verify. A temporary
disc file (named ??PTMP) will be created during the Initialize Phase if the objectin parameter specifies
a logical device other than the disc. This temporary file is purged before PTGEN terminates. Each
phase includes a series of queries to which you must respond. In most cases, you can default a response
by entering a “null line”; i.e., a blank (space) character. Also, in making responses, you need only enter
the first letter of the following words: YES, NO, COMMENTS, REPLACE, OCTAL, DECIMAL, and
ALL. PTGEN error messages are described at the end of this section.

Each PTGEN query shown in this section is preceded by a reference number; this number is not part of
the actual query.

12-1

Generating pROM Tapes

12-2. INITIALIZE PHASE

During the Initialize Phase, you must set up the desired format of the pROM mask tapes. (Figure 12-1

shows the general format for the mask tapes.) The Initialize Phase queries are listed and described
below.

1.0 NUMBER OF WORDS PER PROM?
Respond with the number of words (locations) to be contained in each pROM.

1.1 NUMBER OF BITS PER PROM WORD?
Respond with the number of bits per microinstruction contained in each pROM. This should be a

divisor of 24, the number of bits per microinstruction. The acceptable values are 1, 2, 3, 4, 6, 8, 12,
and 24.

1.2 UNUSED-LOCATION LEVEL (H/L)?

Respond with H or L to indicate the level used to initialize unused portions of the pROM (due to the
use of the ORG and ALGN psuedo-microinstructions). If you respond with a null line, the default is
H. If H is specified, all ones are generated; otherwise, the buffer is initialized to zeros.

e V4 /
LEADER GRAPHIC LEADER COMMENT COMMENT RUBOUTS
® o o o 0 o o o 6 s s s e 0 e o 8 ENG CETCe oN® * * o e o o 0 0 s s o . @
TAPE ID LINE 1 LINE N
7 7 P
/ /
START-TABLE CHECKSUM PROM START-WORD WQRD END-WORD
CHARACTER ADDRESS (*) CHARACTER CHARACTER

\
N\

yd
START-WORD WORD END- WORD END-TABLE RUBOUTS TRAILER
e o« ETCe o » e o o 8 o 4 8 o 6 o o 4 s e s s s e s e o s e s s o e e s e e e e o s
CHARACTER N CHARACTER CHARACTER
rd
NOTE

pROM ADDRESSES PRECEDE EACH LINE (SEQUENCE OF pROM WORDS
TERMINATED BY A CARRIAGE-RETURN/LINE-FEED) AND HAVE ONE OF THE
FOLLOWING FORMS:

frfff
fHff-1iN

WHERE:

“fffff” AND “IlllI” ARE THE OCTAL OR DECIMAL ADDRESSES OF THE FIRST AND
LAST pROM WORDS ON THE LINE RESPECTIVELY, DEPENDING ON THE FOR-
MAT SELECTED. EACH LINE CONTAINS UP TO 8 pROM WORDS BUT DOES NOT
EXCEED 72 CHARACTERS.

7115-32
Figure 12-1. General Tape Format

12-2

Generating pROM Tapes

1.3 PUNCH TAPE ID (Y/N)?
Respond with Y or N to punch or omit the mask tape ID (identification). The format of the punched
tape ID is :

aaaaa-aaaaa (bb-bbd)
where:

aaaaa-aaaaa represents the low and high control memory address and bb-bb represents the left
and right bit number represented in the truth table. Note that “a” is octal and “b” is decimal. The
graphic presentation of the tape ID is such that when you look at the punched tape, the hole
patterns form recognizable characters.

1.4 DEFAULT VENDOR FORMAT (NAME)?

If desired, respond with the name of a pPROM vendor and thereby default to that vendor’s format,
bypassing much of the Initialize Phase. The vendors recognized by PTGEN are: HP, INTEL, MM]I,
and SIGNETICS. (Refer to table 12-1 for vendor formats.) If you specify one of these vendors, the
dialogue continues at query 3.0; if you enter a null line, the dialogue continues at 2.0.

2.0 NUMBER OF COMMENT LINES?
Enter the number of comment lines. These usually identify the user and the contents of the tape and
are punched preceding the truth table.

2.1 PUNCH RUBOUTS (Y/N)?

If you enter Y, a series of rubout characters are punched on the mask tapes before and after the
truth table; if N, none.

2.2 PUNCH CHECKSUM (Y/N)?

Enter Y or N to punch or omit a checksum. The checksum is a numeric string of four decimal
characters that represents the number of high-level characters in the truth table. If startand
end-table characters delimit the table, the checksum is punched immediately after the start-table
character.

2.3 START-TABLE,END-TABLE CHARACTERS?
If startand end-table characters are required to delimit the truth table, enter the two characters,
separated by a comma (,); enter a null line if the characters are not required.

2.4 START-WORD,END-WORD CHARACTERS?
If startand end-word characters are required to delimit each word in the truth table, enter the two
characters, separated by a comma; enter a null line if the characters are not required.

2.5 HIGH-LEVEL,LOW-LEVEL CHARACTERS?
Enter the required highand low-level characters, separated by a comma. If you enter a null line, the
default characters are H and L for the high and low levels.

2.6 PROM ADDRESS FORMAT (0/D,1/2)?

If desired, the pPROM addresses (not the control memory address) can precede each “line” punched
from the truth table. (A “line” refers to a sequence of pROM words, terminated by a carriage return
and line feed.) The response consists of two parts, separated by a comma. The first part of the
response is either of the letters “O” or “D” and indicates whether the addresses are to be punched in
octal or decimal form. The second part of the response indicates whether one or two addresses are to
be punched for the pROM words in a line; a “1” provides only the first address; a “2” provides both
the first and last addresses. A null response suppresses the punching of any pROM addresses.

12-3

Generating pROM Tapes

Table 12-1. Default Formats by Vendor

ITEM HP INTEL MMI/SIGNETICS

Number of comment lines 3 5 9

Rubouts punched No Yes Yes
Checksum punched Yes No No
Start/end-table characters — — SE
Start/end-word characters — B.F B,F
High/low-level characters H L P.N H,L
pROM address format D,2 0,1 0,1

Note: The formats generated are as follows:

Intel BPNF format as defined in Intel's 1976 data catalog.

MMI TWX ASCIl BHLF format as defined in MMI's 1973 through 1976 pROM
(Monolithic device data sheets.

Memories,

Inc.)

Signetics Accepts both the Intel and MMI formats given above.

HP This format is recognized by the HP pROM Writer (part no. 12909-16005),

which is supported only in DOS and BCS environments.

Parts that HP has used with PTGEN tapes are:

pROM
PART 21MX 21MX E-SERIES
4K Signetics Signetics
828115 828141
1K MMI MMI
6301 6301
1K
(Using Harris Harris
HP pROM 1024 1024
Writer)

12-4

Generating pROM Tapes

The following queries depend on the type of logical unit specified by the objectin parameter in the
RU,PTGEN command; only one of the queries will be asked.

3.0 OBJECT CODE FILE NAME?

This query is asked if you specified LU 2 as the objectin parameter. Respond by entering the name of
the disc file in which the microassembler was directed to store the microprogram object code. The
file name has the following format:

filenamel:security[:crlabel]]

(Refer to the Batch and Spool Monitor Manual for details.) The documentation map in the preface
shows the part no.

3.1 TEMPORARY FILE NAME?

If you did not specify LU 2 as the odjectin parameter, PTGEN must store the object code in a
temporary disc file during the Punch Phase for use during the Verify Phase. PTGEN automatically
attempts to create this file (using ??PTMP as the file name); the query is given only if the attempt

fails. You may respond to the query by entering a file name, optionally followed by the word
“REPLACE”, as follows:

filenamel:security[:crlabel]l, REPLACE]

If a name conflict arises and REPLACE is specified, the existing file is purged and a new file is
created. If a name or access conflict arises and REPLACE is not specified or the existing file cannot
be purged, the query is repeated. You may respond with a null line to default the query. In that case,
you will have to re-input the source for the Verify Phase.

12-3. PUNCH PHASE

After the Initialize Phase, the pPROM mask tapes are punched. One mask tape is punched for each
pROM I.C. containing w locations of & bits each, as specified during the Initialize Phase. The number
of mask tapes punched for w locations of object code equals 24/b. The truth table for the most
significant bits is punched first. A complete truth table is always punched, using the unused-location
character to represent unused portions of the pROM.

The pROM mask tapes are punched according to the specifications you give to PTGEN during the
Initialize Phase. Carriage-return and line-feed sequences are appropriately punched in the truth table
to aid visual verification of mask tapes when listing them off-line. Before punching each mask tape,
PTGEN asks if you want to modify any comment lines; if you do not, it uses the comments from the
previous mask tape.

12-5

Generating pROM Tapes

The queries asked during the Punch Phase are listed and described in the following paragraphs.

4.0 NEXT PUNCH ADDRESS, BIT-NUMBER?
Respond by entering a null line to skip or terminate the Punch Phase and go to the Verify Phase.
Other acceptable responses are:

aaaaa,bb

aaaaa, ALL

ALL

ALL or aaaaa, ALL means that all object code or all bit fields within the specified address range is to
be punched. The aaaaa,bb means that object code for a specific pROM is to be punched. The “a” is an
octal address and the “b” is a decimal (or octal, if followed by B) bit number in the range to be punched.
These are normalized to the lowest address and the left-most bit number in the truth table. For
example, if the address specified for a 4x256 pROM is 2100,20 the truth table punched will include the
addresses 2000 through 2377 and bits 23 through 20.

4.1 REPLACE COMMENTS FOR TAPE aaaaa,bb?

The aaaaa,bb is similar to the specification described for 4.0, above. Respond with Y to modify
comments; with N to leave the comment lines unchanged from the previous mask tape. Comments
are initialized to one blank character each.

4.2 COMMENT LINE n:

Respond with a null line to leave the comment unchanged from the previous mask tape. Otherwise,
enter the new comment line. Comment lines may be up to 72 characters long. This query is repeated
for each comment line, where n is the comment line number.

After the pROM tapes are punched, query 4.0 is repeated (see above).

12-4. VERIFY PHASE

After all of the pPROM mask tapes have been punched, they may be verified by reading them via the
ptapein device. When loading a punched pROM tape, it must be positioned in the reader so that the
graphic ID (if there is one) will not be read. Also, the tape must be positioned before any comment
lines, regardless of whether or not you intend to verify comments. The queries and messages of the
Verify Phase are listed and described in the following paragraphs.

5.0 NEXT VERIFY ADDRESS,BIT-NUMBER?
Respond with a null line to terminate the Verify Phase. Other acceptable responses are:

aaaaa,bb
aaaaa,ALL[,COMMENTS]
ALL[,COMMENTS]

ALL or aaaaa,ALL means that all object code or all bit fields within the specified address range is to
be verified. Also, if either of these two responses is given, then the mask tapes must be loaded in the
same order in which they were punched. The aaaaa,bb means that object code for a specific pPROM is to
be verified. The “a” is an octal address and the "b” is a decimal (or octal, if followed by B) bit number in
the range to be verified. These are normalized to the lowest address and the left-most bit number in the
truth table. (Refer to 4.0 in the Punch Phase.) If COMMENTS is specified, the comment lines are
verified.

12-6

Generating pROM Tapes

5.1 RELOAD OBJECT TAPE AND *GO

This message is omitted if the object code can be read from a disc file. If this message is issued,
PTGEN suspends itself to allow you to load the object code tape in the objectin device. After you load
the object tape, enter the RTE GO command to resume the verification operation. Note that if the
object tape is incorrectly positioned in the tape reader, PTGEN is aborted after the GO command is
given.

5.2 LOAD PROM TAPE aaaaa,bb AND *GO
After this message is issued, PTGEN suspends itself to allow you to load a pROM mask tape in the
ptapein device. Load the mask tape and enter the GO command. If the verify operation is successful

and comments are not to be verified, the next pROM tape is verified or PTGEN resumes at query
5.0.

If a verify error is detected, the error is reported and the pROM mask tape is repunched. You may
change the comment lines on the new pROM tape to distinguish it from the erroneous mask tape.

If comments are to be verified (COMMENTS specified when specifying address range), the dialogue
continues with the following:

5.3 COMMENTS FOR TAPE aaaaa,bb
This line is followed by a display of all of the comment lines.

5.4 ERRORS IN COMMENTS (Y/N)?
Respond with N or a null line if the comments are valid. The Y response is treated as a verify error.

5.5 REPLACE COMMENTS FOR TAPE acaaa,bb?
Respond with Y to modify comments; respond with N or a null line to leave comments unchanged.

5.6 COMMENT LINE n:
Respond with a null line to leave the comment unchanged or enter a new comment line. The

comment line may include up to 72 characters. This query is repeated for each comment line; n is
the comment line number.

After the new mask tape has been punched, PTGEN resumes at query 5.0 (or 5.1 if you are verifying
all of the mask tapes). If ALL or aaaaa,ALL was specified, repunched mask tapes should not be verified
until after all of the tapes in the original range have been processed.

12-5. pROM TAPE GENERATOR ERROR MESSAGES

The error messages that might be issued by the pROM tape generator (PTGEN) are as follows:

1 INVALID FILE SPECIFICATION OR EXTRA INPUT.
The file designation was not in the proper format or REPLACE was misspelled.

2 INVALID VENDOR NAME.

The vendor name was misspelled or is not among those recognized by PTGEN. In the latter case,
enter a null line and proceed to specify the details of the pROM tape format.

12-7

Generating pROM Tapes

3 NO OBJECT CODE.

An END record was encountered as the first record, or a null line was entered in response to query
3.0

4 INVALID RESPONSE OR EXTRA INPUT.
The response was not in the proper format or was not a proper response (e.g., not Y or N).

5 INVALID NUMBER OR EXTRA INPUT.
The response was an improperly formed number or not in the required range.

6 'O ERROR READING OBJECT CODE.
Self explanatory.

7 CANNOT CREATE TEMPORARY FILE.
This message is followed by a File Manager error code.

8 CANNOT PURGE TEMPORARY FILE.
This message is followed by a File Manager error code.

9 CANNOT OPEN OBJECT CODE FILE.
This message is followed by a File Manager error code.

10 INVALID OBJECT CODE RECORD.

This could be due to a checksum error, or the record might not have been created by the microas-
sembler.

11 INVALID ADDRESS SPECIFICATION OF EXTRA INPUT.
The response was not in the proper format or COMMENTS was misspelled.

12 ADDRESS NOT FOUND IN OBJECT CODE.

The pROM address range specified is not included in the object code. This might be due to typing the
wrong address.

13 /O ERROR READING RESPONSE.
A transmission error occurred on the input device; PTGEN aborts.

14 INSUFFICIENT MEMORY.
There is insufficient memory for the pROM or comment buffer. In the case of the comment buffer, if
some space can be allocated it is indicated by the following message:

nnnn LINES AVAILABLE

15 VERIFY ERROR — pROM TAPE REPUNCHED.
An error occurred in verifying the punched pROM mask tape. This might be due to an affirmative

response to query 5.4, an I/O error, or a compare error. In these cases, the error message is followed
by one of the following messages, respectively:

TAPE aaaaa,bb
TAPE aaaaa,bb LINE nnnn
TAPE aaaaa,bb LINE nnnn COLUMN cc

If nnnn equals the number of comment lines, an I/O error occurred while reading one of the comments.

12-8

Generating pROM Tapes

12-6. pROM HARDWARE

When the mask tapes have been generated and pROM’s fused you may mount them on one of the
boards available for installation in the computer. The HP 13304 A Firmware Accessory Board can hold
3.5K microwords of control memory. Details on mounting pROM’s, configuring, and installing this
accessory are contained in the HP 13304A Firmware Accessory Board Installation and Service Manual.
The FAB board is installed in the computer under the CPU board. The 2K microword capacity HP
13047A User Control Store board may have pPROM’s mounted and be installed in the I/O section of the
computer. Details for pPROM mounting and installation are contained in the HP 13047A User Control
Store Kit Installation and Service Manual, part no. 13047-90001.

12-9/12-10

Section 13
USING SPECIAL FACILITIES OF THE coMPUTER N

USING SPECIAL FACILITIES OF
THE COMPUTER|[13

There are two functions of the HP 1000 E-Series and F-Series Computers that can be considered as
special facilities. These include the block I/O data transfer feature and the Microprogrammable
Processor Port (MPP), also available for data transfers. Either of these facilities is controlled by a
microprogram written by you, stored in control memory, and called into execution with a UIG
instruction in the manner described in preceding sections of this manual. In F-Series Computers the
MPP is used to interface the Hardware Floating Point processor (FPP) with the CPU. Therefore, the
MPP is not available for user designed hardware on F-Series Computers.

The block I/0 facility is, in essence, a microprogramming technique for executing high-speed data
transfers through the I/O section. It is made possible because of special signal lines on the I/O
backplane. Although the I/O section is used, the process is not a standard I/O transfer operation.
Paragraph 13-1 explains the block I/O data transfer facility.

The MPP may be used for interfacing special external hardware to the HP 21MX E-Series Computer
(e.g., computer-to-computer linking) under direct microprogram control. Very high data-transfer rates
are possible using the MPP which is, in essence, another microprogramming technique that controls
special signal lines. These signal lines are on a specifically designated connector which is not part of
the I/O section. Paragraph 13-5 explains the MPP facility.

The information on block I/0 and the MPP in this section relates specifically to the microprogramming
techniques involved in controlling these facilities. Example microprograms are provided simply to
illustrate the techniques involved. Your actual application design should be based on these examples
and the information contained in the other applicable sections of this manual. WCS and its micro-
programming support software can be used to control microprogram placement in control memory in
the same manner as any other microprogram (refer to section 11). A summary of typical transfer rates
obtainable appears under paragraph 13-8.

Either of these special facilities will require special interfacing hardware that will be controlled by the
applicable microprogram. Information that you will need for the hardware design is contained in the
HP 2IMX M-Series and E-Series Computers I/O Interfacing Guide, part no. 02109-90006. The I/O
Interfacing Guide also contains details you will need on the specific signals (pin numbers, etc.,)
controlled by the micro-orders shown in the microprograms in this section.

13-1

Special

13-1. BLOCK 1/O DATA TRANSFERS

Block I/O data transfers into or out of main memory through the I/O section are performed by using the
IOI and 10O S-bus and Store field micro-orders in microprograms without the I0G Special field
micro-order in any of the four previous microinstructions. When used in the manner shown in the
example microprograms (paragraphs 13-2 through 13-4), these two micro-orders cause backplane
signals BIOI and BIOO, respectively, to be generated which may be utilized by specially designed
hardware for non-standard 1/O data transfers. A strobe signal (BIOS) is generated at interval P4 (35
nanoseconds) to be used by the hardware/microprogram combination to obtain the high data-transfer
rates. If IOG is used in the microprogram to synchronize the Control Processor and I/O section to T2 for
“standard” I/O operations, the above-mentioned signals are not generated. Table 4-1 explains the
normal use of the IOG, 101, and I00O micro-orders and the other micro-orders shown in the following
example microprograms. (Specifically, IRCM and SKPF are applicable.)

Transfers for block I/O are made on a full 16-bit word basis with up to 32K words being transferred
(depending upon available memory). The main memory calling sequence for each of the example
microprograms is shown in the microprogram comments. The direction of transfer (in or out) is
designated by whether the I0I (S-bus field, “input”) or IOO (Store field, “output”) micro-order is used
and this depends upon the microprogram called. Input microprograms are described in paragraphs
13-2 and 13-3. An output microprogram is described in paragraph 13-4. When using these micropro-
grams, as well as any microprogram, it is the programmer’s responsibility to be aware of the total
system and times taken for bursts, word counts, etc. Interrupts should not be held off for so long that
data is lost.

The I/O Interfacing Guide provides some suggestions on variations of the transfer techniques shown
and guidelines on hardware data buffering. Also see the I/O Interfacing Guide for a comparison of
block I/O and DCPC transfer techniques.

13-2. BLOCK I'O BYTE PACKING BURST INPUT MICROPROGRAM

Operation of the block I/O microprogram shown in EXAMPLE 1 is explained by the comments
included in the listing. The microprogram performs its own STC, as shown in lines BURSTIN through
REALSC, for several reasons. (Lines, as mentioned here, refer to labels in the microprogram examples
that follow.) First, having the RTE operating system execute a STC at the Assembler level incurs

13-2

Special

considerable operating system overhead. Second, having the user program execute a STC at the
Assembler level requires turning off Memory Protect. If the microprogram detects a DMS or Memory
Protect violation, it is very complex and time-consuming to correctly indicate these conditions to the
operating system.

The data transfer takes place with the interrupt system on the Memory Protect enabled, so that DMS
and Memory Protect interrupts, as well as any other emergency interrupts, are detectable.

FAKESC and REALSC work together to allow execution of a STC with Memory Protect enabled. Refer
to the coding techniques discussion in section 7 (performing microprogrammed I/O with Memory
Protect and interrupts on), for a complete explanation.

The IOFF micro-order in line SETPM prevents the HOI conditional tests in lines WAIT1 and WAIT2
from detecting I/O interrupts. I/O interrupts so held off remain pending (i.e., are not lost) and may be
serviced at the termination of the microprogram. To operate correctly as block I/O micro-orders, the
SKPF RJS tests following lines SKPF1 and SKPF2; and, the IOI's in lines BURST1 and BURSTZ,
require that an IOG not be executed in any of the three preceeding microinstructions. However, this
does require a hardware modification (see the /O Interfacing Guide.)

EXAMPLE 1: BLOCK I/O BYTE PACKING BURST INPUT MICROPROGRAM

MICMXE,L SPECIFIES 1000 E-SERIES OR F-SERIES.
$CODE=BI1001 SAVE MICRO-0BJECT ON DISC.
ORG 34000B 105600 MAPS TQO 34000

BLOCK 1/0 BYTE PACKING BURST INPUT MICROPROGRAM

+ THIS MICROPROGRAM:

1. INPUTS DATA IN A "BURST* MANNER.

» 2. PACKS THE INPUT DATA AND STORES IT IN MAIN MEMORY .

+ 3. IS INTERRUPTIBLE BY EMERGENCY INTERRUPTS CI.E., PARITYERROR, DMS, MEMORY PROTECT);
. POWER FAIL AND I/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST DATA TRANSFER.
+ 4. ASSUMES THAT THE 1/0 CARD PASSING DATA TO THE CPU INDICATES PRESENCE OF A SINGLE

+ BYTE BY SETTING THE 1/0 CARD’S FLAG AND THAT IN THE EVENT OF AN EMERGENCY

» INTERRUPT INCOMING DATA IS NOT LOST.

* 5. REQUIRES THE FOLLOWING CALLING SEQUENCE;

» LDA COUNT A = NEGATIVE BYTE COUNT

+ LDB BUFAD B = BUFFER ADDRESS

» LDX SC X = SELECT CODE

» CLE INITIAL ENTRY TO MICROCODE

. OCT 105600 MICROPROGRAM OP CODE,

* 6. HAS A MAXIMUM TRANSFER RATE OF ABOUT 500 KB/S (KILOBYTES/SECOND) IN A NON-DCPC

* ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT , BURST RATES UP TO 250 KB/S ARE
* ATTAINABLE.

JMP BURSTIN SAVE ENTRY POINTS
ALGN
BURSTIN JmMP CNDX E ODDBYTE RETURN FROM INTERRUPT
. AFTER ODD NUMBER BYTES
JSB STCNTRL EXECUTE STC,C

13-3

Special

EXAMPLE 1: BLOCK I/O BYTE PACKING BURST INPUT MICROPROGRAM (Continued)

DEC S3 P SAVE P.
SETPM IOFF INC PNM B M = BUFFER ADDRESS,
» P = NEXT BUFFER ADDRESS,
. HOLD OFF 1/0 INTERRUPTS.
WAIT1 JMP CNDX HOI INTA EMERGENCY INTERRUPTS?
SKPF1 PASS
JMP CNDX SKPF RJS WAIT1 NO, WAIT FOR DATA READY.
*
BURSTY L4 S4 a1 S4¢11-4) = BYTE 1.
L4 S4 S4 S4(15-8) = BYTE 1.
INC A A UPDATE BYTE COUNT
END1 JMP CNDX ALZ WRTE1 COUNT = 07 YES, WRTE BYTE.
*
WAIT2 JMP CNDX HOI INT2 EMERGENCY INTERRUPTS?
SKPF2 PASS ALLOW STATUS UPDATE
JMP CNDX SKPF RJS WAIT2 NO, WAIT FOR DATA READY.
*
BURST2 L 101 LC€7-0) = BYTE 2.
IOR sS4 54 S4¢15-8, 7-0) = BYTES 1,2.
WRTE12 WRTE MPCK TAB 54 WRTE PACKED DATA, DO MPCK.
INC PNM P UPDATE BUFFER ADDRESS.
INC A A UPDATE BYTE COUNT.
END2 JMP CNDX ALZ RJS WAITH COUNT = 07 NO, CONT INUE.
JMp DONE YES, EXIT.
*
WRTE1 WRTE MPCK TAB 54 WRTE BYTE 1, DO MPCK.
INC P P UPDATE BUF FER ADDRESS .
*
DONE ION B P B = LAST BUFFER ADR. + 1.
READ RTN INC PNM S3 FIX P, START FETCH FOR
* NEXT INSTRUCTION IN MAIN
ODDBYTE READ INC PNM B GET PARTIALLY PACKED WORD
MM LOW IRCM 101B FORM AND EXECUTE
ASG 54 TAB CLE INSTRUCTION
JSB STCNTRL EXECUTE STC,C
JMP WAIT2 GET SECOND BYTE
*
INT1 MM LOW IRCM 10SB CLEAR EXTEND REG
JmP INTRPT
INT2 MM LOW IRCM 305B SET EXTEND REG
INTRPT ASG DEC B B EXECUTE CLE OR
. CCE AND SAVE
. BUFFER ADDRESS
ION PASS P s3 FIXP, EXIT TO
JMP 6B TO HORI ROUTINE
*
*
STCNTRL M L4 cMLO L 303B L=STC 0,C
MM CMLO 54 376B S4=1
IR sS4 54 S4=STC 1,C
FAKESC PASS IRCM S4 IRCM=STC 1,C
IR sS4 X S4=STC SC,C
REALSC PASS CNTR S4 IRCM=STC SC,C
RTN 106
END

13-4

Special

13-3. BLOCK I'0O ADDRESS/DATA BURST INPUT MICROPROGRAM

Operation of a block I/O microprogram to input an address and data is shown in EXAMPLE 2.
Explanation of the microprogram is provided in the comments included in the listing. As explained for
the previous microprogram, the microprogram performs its own STC, as shown in lines BURSTIN
through REALSC, for the reasons explained in paragraph 13-2. Lines FAKESC and REALSC work
together to allow execution of a STC with Memory Protect enabled. Refer to the coding techniques
discussion in section 7 (performing microprogrammed I/O with Memory Protect and interrupts on) for
a complete explanation.

EXAMPLE 2: BLOCK I/O ADDRESS/DATA BURST INPUT MICROPROGRAM

MICMXE , L SPECIFY 21MX E-SERIES.
$CODE=B1002 SAVE MICRO-OBJECT ON DISC.
ORG 34000B 105600 MAPS TO 34000B
+
* BLOCK 1/0 ADDRESS/DATA BURST INPUT MICROPROGRAM
+
» THIS MICROPROGRAM:
s 1. INPUTS, IN A "BURST" MANNER, AN ADDRESS FOLLOWED BY THE DATA TO BE WRITTEN INTO THAT
. ADDRESS IN MAIN MEMORY.
+ 2. 1S INTERRUPTIBLE BY EMERGENCY INTERRUPTS (1.E., PARITYERROR, DMS, MEMORY PROTECT);
. POWER FAIL AND 1/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST TRANSFER,
* 3. ASSUMES THAT THE 1/0 CARD PASSING AN ADDRESS OR DATA TO THE CPU WILL INDICATE
. PRESENCE OF A SINGLE ADDRESS OR DATA ITEM BY SETTING THE 1/0 CARD’S FLAG
N AND THAT DATA IS NOT LOST IN THE EVENT OF AN EMERGENCY INTERRUPT.
* 4. REQUIRES THE FOLLOWING CALLING SEQUENCE ;
. LDA COUNT A = POSITIVE WORD COUNT
. LDB SC B = SELECT CODE
. CLE INITIAL ENTRY TO MICROCODE
. OCT 105600 MICROPROGRAM OP CODE.
* 5. HAS A MAXIMUM TRANSFER RATE OF ABOUT 500 KP/S (KILO-PAIRS/SECOND, ONE PAIR = 1
. ADDRESS AND 1 DATA) IN A NON-DCPC ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT RATES
. UP TD 250 KP/S ARE ATTAINABLE.
+
JMP BRSTIN SAVE ENTRY POINTS.
ALGN
BRSTIN DEC 53 P STORE P
STCNTRL MM L4 cMLD L 303B L=STC 0,C
MM cMLD sS4 376B S4=1
10R 54 S4 $4=5TC 1,C
FAKESC PASS IRCM S4 IRCM=STC 1,C
I0R 54 B S4=STC SC,C
REALSC PASS CNTR 54 IRCM=STC SC,C
106
JMP CNDX E BRSTDTA
BRSTADR Jmp CNDX HOI INTADR EMERGENCY INTERRUPTS?
PASS INTERFACE FLAG SET?
JMP CNDX SKPF RJS BRSTADR NO, GO TO BRSTADR
M 101 M = BUFFER ADDRESS.
*
BRSTDTA JMP CNDX HOI INTDTA EMERGENCY INTERRUPTS?
PASS INTERFACE FLAG SET?
Jmp CNDX SKPF RJS BRSTDTA ND, GO TO BRSTDTA
54 101 54 = DATA
BRSTEND WRTE MPCK TAB 54 WRITE DATA INTO MEMORY.
DEC A A UPDATE PAIR COUNT.
DONE Jmp CNDX ALZ RJS BRSTADR COUNT = 02 NO, CONTINUE.
READ RTN INC PNM s3 =0, FIX P, START FETCH.
INTADR MM LOW IRCM 101B CLEAR EXTEND REGISTER
JMP INTRPT
INTDTA IMM LOW IRCM 301B SET EXTEND REGISTER
INTRPT ASG PASS P s3 EXECUTE CLE OR CCE AND FIX P
Jmp 6 EXIT TO HALT OR INTERRUPT
END MICROROUT INE

13-5

Special

13-4. BLOCK I'O WORD BURST OUTPUT MICROPROGRAM

Operation of the block I/O microprogram shown in EXAMPLE 3 is explained by the comments
included in the listing. Similar considerations for interrupts and IOG as explained for EXAMPLES 1
and 2 also apply for this microprogram.

EXAMPLE 3: BLOCK I'O WORD BURST OUTPUT MICROPROGRAM

MICMXE,L SPECIFIES E-SERIES OR F-SERIES
$CODE=BI003 SAVE MICRO-O0OBJECT ON DISC.
ORG 34000B 105600 MAPS T0O 34000.

*

*BLOCK 1/0 BURST DUTPUT MICRDPROGRAM

*

* THIS MICROPROGRAM:
1. OUTPUTS DATA IN A “BURST" MANNER.
2. ISINTERRUPTIBLE BY EMERGENCY INTERRUPTS (I.E., PARITY ERROR, DMS, MEMORY PROTECT);
* POWER FAIL AND 1/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST DATA TRANSFER.
*+ 3. ASSUMES THAT THE 1/0 CARD RECEIVING DATA FROM THE CPU IS READY TO RECEIVE DATA AND
* CONTAINS A DATA BUFFER LARGE ENOUGH TO HOLD THE ENTIRE BURST.
* 4. REQUIRES THE FOLLOWING CALLING SEQUENCE;
* LDA COUNT A = POSITIVE WORD COUNT
* LDB BUFAD B = BUFFER ADDRESS
* LDX SC X = SELECT CODE
* OCT 105600 MICROPROGRAM OP CODE.
*+ 5. HAS A MAXIMUM TRANSFER RATE OF ABOUT 1000 KW/S (KILO-WORDS/SECOND) IN A NON-DCPC
* ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT, RATES UP TO 400 KW/S ARE ATTAINABLE.
*

JMP BURSTOUT SAVE ENTRY POINTS.

ALGN
BURSTOUT DEC S3 P SAVE NEXT INSTRUCTION ADDRESS

READ INC PNM B READ DATA, INITIALIZE P,M
SETIR I10FF IRCM X IR(5-0) = SC, 1DFF HOLDS
* OFF 1/0 INTERRUPTS.
BURST1 100 TAB BURST DATA OUT OF MEMORY.

INC PNM P UPDATE P,M

JMP CNDX HOI INTRPT EMERGENCY INTERRUPTS?

READ DEC A A READ NEXT DATA, UPDATE COUNT.
END1 JMP CNDX ALZ RJS BURST1 COUNT = 0? NO, CONTINUE.
*
DONE ION B P B = LAST BUFFER ADDRESS + 1

READ RTN INC PNM S3 START FETCH FOR NEXT INSTRUCTION
* INMAIN MEMORY.
INTRPT 10N DEC B P B = NEXT BUFFER ADDRESS

P S3 FIXP, EXIT TO HALT-0OR-
JMP 6 INTERRUPT MICROROUTINE
END

13-5. MICROPROGRAMMABLE PROCESSOR PORT

The Microprogrammable Processor Port (MPP) permits external hardware to be directly connected to
the E-Series Computer and interfaced under direct microprogrammed control. Applications possible
with the MPP include computer-to-computer communications, adaptation of specialized performance
accelerating hardware, a fast or special I/O channel (similar in function to the DCPC), etc. The MPP
special facility is comprised of a hardware/microprogram combination. The hardware interface is
summarized below. A microprogram which may be used as a basis for your MPP design is discussed in
paragraph 13-8. Note that the MPP facility has nothing to do with the I/O section. The Mi-
croprogrammable Processor Port is used in the F-Series Computer to interconnect the Hardware
Floating Point Processor to the CPU, to enable directly microprogrammed arithmetic floating point
operations and chained calculations.

13-6

Special

13-6. HARDWARE INTERFACE

As illustrated in figure 2-1 and in appendix H, the MPP physical interface consists of a connector on
the computer. This connector is located behind the Operator Panel (Refer to the I/O Interfacing Guide
for the location and designation.) The MPP signal lines are present at this connector and these signals
are ultimately under microprogram control. Table 13-1 summarizes some of the MPP physical inter-
face. The use of every one of these signals is ultimately to be determined by the designer. Where use is
mentioned in the table it is only a suggestion. Micro-orders mentioned are defined in table 4-1 in this
manual. The actual design and use of the MPP must be determined by you (the user) and all
information in this section should be interpreted as guidelines for design. Details on signal levels,
connector pin number assignments, and other interface hardware design information for MPP use will
be found in the HP 21MX M-Series and E-Series Computers I/O Interfacing Guide, part no. 02109-
90006. The port is available for user designed hardware in the E-Series only. The F-Series Computer
Hardware Floating Point Processor occupies the port.

Table 13-1. MPP Signal Summary

SIGNALS DESCRIPTION
MPPIO 0 thru 15 Two-way MPPIO signal lines that provide the main data link for the MPP to the computer
(CPU) S-bus. Under control of micro-orders affecting the S-bus.
PP5 Qutput timing line can be used to synchronize with the computer for data transfers.
PLRO Output L-register signal line under control of L-register micro-orders. L-register bit O is

used for an address line to enable the device connected to the MPP.

STOV Input signal line. State can be tested by the word type Il Conditional field OVFL
micro-order. Possible use to designate overflow from a set Overflow register.

PIRST Output signal line. Can be used to sense the IR (IRCM micro-order in Store field).

PP1SP Output signal line activated by a MPP1 micro-order in the word type | Special field.

Could be used to designate “first operand to follow.”

PP2SP Output signal line activated by a MPP2 micro-order in the word type | Special field.
Could be used to designate “second operand to follow.”

MPBST Output signal line activated by a MPPB micro-order in the word type | Store field. Could
be used to generate a store (e.g., repeated four times to store in a 64-bit group of data,
where data is being output on the S-bus).

MPBEN Output signal line activated by a MPPB micro-order in the word type | S-bus field could
be used to gate data into the computer on the S-bus (e.g., receive back computed data
repeatedly).

MPP Input signal line. State can be tested by the word type Il conditional field MPP

micro-order. Could be used to sense when device transfer is complete.

13-7

Special
13-7. MPP & MBIO CONSIDERATIONS

MPP and MBIO microprograms are used to provide fast alternative I/O paths. Both require the design
of special purpose hardware to transfer data to and from the computer, and use of specific micro-orders
to provide sequencing and data transfer signals. The major consideration that arises during MPP or
MBIO transfers is a control processor freeze induced by either memory refresh or DCPC. Since MBIO
and DCPC share the I/O bus, MBIO can contaminate DCPC data if MBIO signals BIOI or BIOO
remain enabled during the DCPC transfer. This can be avoided by placing a READ, RJ30 or WRTE
micro-order 1 or 2 microinstructions before the IOI or IOO, causing the control processor to freeze.

When a freeze occurs on a WRTE microinstruction the S-Bus to Store operation is performed twice. For
instance, the TAB IOI transfer in the following line of microcode is performed twice, once before the
freeze, and at the end of the freeze.

WRTE PASS TAB 10ICOR MPPB)

If the user designed hardware utilizes the signal as an acknowledge or an “increment the buffer
pointer”, then erroneous information as illustrated below will be transferred. This can be avoided by
transferring the data into a scratchpad and the scratchpad into TAB.

PASS Sl I0ICOR MPPB)
WRTE PASS TAB Sl

The CPU CNTR represents the lower 8 bits of the IR, of which the lower 6 bits are commonly referred
to as the select code when an I/O instruction is executed. For MBIO transfers executing concurrently
with DCPC, the MBIO select code does not remain stable for the duration of the MBIO cycle because
DCPC takes control of the Select Code bus at P4 (BIOS) and causes unaddressing of the MBIO
interface and loss of MBIO data. A different addressing scheme, such as set control, should be
employed for the MBIO interface. This will free up the CPU CNTR to be used as a word count register
to be incremented or decremented in the special field for MBIO output transfers. The CPU CNTR can
not be used during a MBIO input transfer because the I/O bus is disabled from driving the S-bus
whenever the Select Code (lower 6 bits of the CNTR) is less than seven.

When using MPP and MBIO, the user designed hardware must account for CPU timing restrictions.
The SKF and MPP signals must be stable by P4 of the jump conditional microinstruction to prevent
state changes in the conditional logic on the CPU.

MPPB can be falsely decoded from a jump address of a word type IV microinstruction. Consequently

qualifying the MPPB micro-order with MPP/or MPP2 will enable the hardware to distinguish “real”
from “false” MPBEN signals.

13-8

Special

13-8. MPP MICROPROGRAM (E-SERIES ONLY)

An example microprogram that can be used for the MPP is included below. The actual microprogram
used must be prepared by you, for your application, using the information in applicable sections of this
manual, and in particular, the micro-orders shown in table 13-1. The appropriate CM locations, UIG
instructions (main memory/control memory linkage) and microprogramming support software should
be used in the same manner as for preparation and use of any other microprogram.

Note that with the MPP design, the key is to have a data buffer large enough to hold the entire burst.
The example microprogram operates in a no “hand shaking” manner to transfer data in 256 word

bursts. At label BURST data is written into memory using a four microinstruction loop. Additional
comments appear in the microprogram.

EXAMPLE 4: MPP MAXIMUM DATA RATE BURST INPUT MICROPROGRAM

MICMXE ,L SPECIFY 21MX E-SERIES
$CODE=MPP01 SAVE MICRO-0BJECT ON DISC

0RG 34000B 105600 MAPS TO 34000
*
* MPP MAXIMUM DATA RATE BURST INPUT MICROPROGRAM
*
+ THIS MICROPROGRAM:
* 1. INPUTS DATA IN A "BURST" MANNER.
» 2. 1S INTERRUPTIBLE BEFORE THE BURST STARTS, BUT 1S NOT INTERRUPT IBLE DURING THE BURST,
» 3. ASSUMES THAT THE DEVICE UTILIZING THE MPP FACILITY CONTAINS A DATA BUFFER LARGE
* ENOUGH TO HOLD THE ENTIRE BURST,
* 4. ASSUMES A BURST MAXIMUM OF 256 WORDS,
*» 5. REQUIRES THE FOLLOWING CALLING SEQUENCE
* LDA COUNT A = POSITIVE WORD COUNT
* LDB BUFAD B = BUFFER ADDRESS
. OCT 105600 MICROPROGRAM OP CODE
* 6. HAS A MAXIMUM DATA RATE OF ABOUT 1500 Ki/S (KILO-WORDS/SECOND) IN A NON-DCPC
. ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT RATES UP TO 500 KW/S ARE ATTAINABLE.
*

Jmp BURSTIN SAVE ENTRY POINTS

ALGN
BURSTIN DEC S3 P SAVE NEXT INSTRUCTION ADDRESS

CNTR A CNTR = + WORD COUNT
*
WAIT Jmp CNDX HOI INTRPT ANY INTERRUPTS?
PASS UPDATE STATUS FLAGS
JMP CNDX MPP RJS WAIT NO, WAIT FOR DATA READY
INC PNM B M = BUFFER ADDRESS,

* P = NEXT BUFFER ADDRESS
BURST S4 MPPB

WRTE MPCK TAB S4 WRITE DATA INTO MEMORY

DCNT INC PNM P UPDATE CNTR, P, M

JMP CNDX CNT8 RJS BURST COUNT = 07 ND, CONTINUE
*
DONE B P B = LAST BUFFER ADDRESS + 1

READ INC PNM 53 FIX P, START NEXT FETCH

RTN A CNTR A = 0 = BURST COMPLETE

*
INTRPT P S3 FIX P, EXIT TO HALT-0R-

JMP 6 INTERRUPT MICROROUT INE

END

139

Special
13-9. SUMMARY OF MPP TRANSFER RATES

Some typical transfer rates obtainable using the special facilities of the computer are summarized in
table 13-2. Actual figures will depend upon your design.

Table 13-2. Special Facilities Transfer Rate Summary

FUNCTION RATES

BLOCK /O DATA TRANSFERS

Input (256 words or less*): 2.28M bytes/second (maximum)

Output (256 words or less*): 3.17M bytes/second (maximum)

MICROPROGRAMMABLE PROCESSOR PORT

Burst {16 words or less*): 5.7M words/second (maximum)

Continuous: 1.59M words/second (maximum)

“Transfer rates for larger numbers of words depend upon the size of the block to be
transferred. Note that DCPC and memory refresh factors have been incorporated in the

figures shown.

13-10

Special

13-10. HARDWARE FLOATING POINT PROCESSOR (F-SERIES ONLY)

The following paragraphs provide information for the user who wishes to directly microprogram the
Floating Point Processor (FPP) to perform arithmetic floating-point operations and chained calcula-
tions. The FPP data formats and operations are described in addition to FPP microprogramming
techniques.

The FPP includes the Arithmetic section and the Control section.

The Arithmetic section includes the hardware required to carry out the FPP commands. It contains the
shift registers and arithmetic logic units necessary to perform arithmetic and logical operations on
data.

The Control section includes the hardware necessary to control the functions of the Arithmetic section.
In addition, the floating point processor’s internal registers may function as an accumulator register.

This allows intermediate results to be stored in the FPP for successive floating point operations which
eliminates the need to store the result in memory and immediately retrieve it.

13-11. CONTROLLABLE FUNCTIONS

Figure 13-1 illustrates a functional block diagram of the CPU, the Microprogrammable Processor Port
(MPP), and the floating point processor.

The MPP provides the link between the floating point processor and the computer.

OPERATOR
PANEL PCA MPP1O (00-15) 16
——— e — - ARITHMETIC

CENTRAL <
PROCESSING <,L

UNIT

MPP

|
|
l
S-BUS |
I
[
|

CONTROL SIGNALS MPPI0O(00-07)

CONTROL

CONTROL
SIGNALS

7700220
Figure 13-1. FPP Overall Functional Block Diagram

1311

Special
13-12. DATA FORMATS

The two floating-point data formats in figure 13-2 are available to the microprogrammer. Further-
more, the user may specify that the 8-bit exponent of the floating-point formats be “expanded” to
10-bits for internal use only, by the FPP.

13-13. FPP INSTRUCTION WORD FORMAT

The FPP instruction word is used to execute a floating-point operation. The exponent format, type of
operation, source of operands, and the operand format are determined by the instruction word.

The FPP instruction word is specified by bits 7-0 of the instruction opcode. The following paragraphs
and figure 13-3 describe the instruction word format.

13-14. EXPONENT FORMAT

Bit 7 of the FPP instruction word allows the user to increase the number of exponent bits used by the
FPP during operations from 8 bits to 10 bits. Thus during FPP accumulator operations, the inter-
mediate result in the FPP accumulator may exceed the standard 8-bit exponent length without losing
accuracy, but the result retrieved from the FPP must be within the underflow or overflow range listed
in table 13-3 for bit 7 clear (standard 8-bit exponent). Remember, this 10-bit exponent is internal to the
FPP only and is not available to the user as a final result.

- —=> INCREASING MEMORY - -~ ->
Mantissa sign Exponent sign
SINGLE PRECISION { I J [1 T 1]
FLOATING POINT 15 14 0 15 8 7 1 0
<~---Mantissa -~-> <-->
23 bits
Binary point Exponent
7 bits
Mantissa sign Exponent sign
EXTENDED PRECISION L 1 [C)| L T_ 11
FLOATING POINT 15 14 0 15 0 15 8 7 1 0
R Mantissa — = — — - — - > <—-=>
39 bits \
Binary point Exponent
7 bits

Figure 13-2. Floating Point Data Format
13-12

Special

Table 13-3. Overflow and Underflow Ranges

BIT7=0
OVERFLOW RANGE UNDERFLOW RANGE
WORD LENGTH (LARGEST NEGATIVE, (SMALLEST NEGATIVE,
LARGEST POSITIVE) SMALLEST POSITIVE)
Two-word —2727v _Dp-129 (1 + 2_22)'
(1 — 2—23) 2127 2_.129
Three-word —p127, —p-129 (1 4 D-%),
(1 — 2—39) 2127 2_129
BIT 7 = 1 (NOTE 3)
Two-word —251 —2-51 (1 4 2-2),
(1 — 2-B) pstt D-513
Three-word — o5t —2-513 (1 42 -38),
(1 — 2-%) st o-513
NOTE:

1. If a result lies outside the given overflow range, the maximum positive floating point number (all
ones) is returned and the CPU overflow flag is set.
2. If aresult lies inside the given underflow range, zero is returned as the result and the CPU overflow

flag is set.

3. These overfiow and underflow ranges pertain only to two- and three-word intermediate results

left in the FPP.

7 6 4 3 1 0
1 1 1 o |
EXPONENT
FORMAT OPERATION OPERAND SOURCE OPERAND LENGTH
0 Standard 000 Add 00 Both operands 00 Two words
1 Expanded 001 Subtract in CPU. 01 Three words
o1 Itiol 01 First operand
0 Multiply in CPU: second 10 Reserved
011 Divide in accumulator. 11 Reserved

110 Reserved
111 Reserved

10 First operand in
accumulator;
second in CPU.

11 Both operands
in accumulator.

100X0 Fix to single integer
100X1 Fix to double integer

101X0 Single integer to floating point
101X1 Double integer to floating point

X= 0, for operand from CPU;
1, for operand from accumulator

Figure 13-3. FPP Instruction Word Format

13-13

Special
13-15. FPP OPERATION

Bits 6-4 of the FPP instruction word specify the arithmetic operation (add, subtract, multiply, or
divide). Each of these arithmetic operations requires two operands, both of which must be the same
precision — 1i.e., both operands 32 bits or 48 bits.

Bits 6-2 of the instruction word specify a “fix” or “float” operation with bit 3 indicating whether the
single operand is in the FPP accumulator or will be transferred from the CPU.

13-16. OPERAND SOURCE

When executing an arithmetic operation, bits 3 and 2 of the FPP instruction word specify the “source”
of the first and second operand, respectively. A “1” indicates the operand is in the FPP accumulator; a
“0” indicates the operand will be transferred from the CPU.

For example, if bits 3 and 2 equal “1” and “0”, respectively, the first operand required for an arithmetic
operation is in the FPP accumulator and the second operand will be transferred from the CPU.

When executing a “fix” or “float” operation, only bit 3 of the FPP instruction word specifies the
operand source.

13-17. OPERAND LENGTH

Bits 1 and 0 of the FPP instruction word specify the operand length. Operands consisting of two or
three words may be specified. (Refer to figure 13-2 for the floating-point data format.)

For example, to perform extended precision floating-point operations bits 1 and 0 must be “0” and “1”,
respectively.

For “fix” and “float” operations, bit 2 of the FPP instruction word specifies the integer length. Bit 2
equal to “1” indicates a 32-bit integer, whereas bit 2 equal to “0” indicates a 16-bit integer.

13-18. DATA OPERATIONS

Listed below are the operations performed by the FPP and the operand sequence. Each operation,
except for “fix” and “float”, requires two normalized operands.

OPERATION FIRST OPERAND (A) SECOND OPERAND (B)
Addition (A+B) Augend Addend
Subtraction (A-B) Minuend Subtranhend
Multiplication (A) (B) Multiplicand Multiplier
Division (A/B) Dividend Divisor
Fix to Integer Floating Point Number —
Integer to Float Integer —

13-14

Special

13-19. FIX AND FLOAT OPERATIONS

The “fix” operations are used to convert a floating point number to either single or double integer
format and the “float” operation is used to convert a single or double integer to floating point format.

For “fix to single integer” operations, zero is returned as the result if the magnitude of the exponent of
the floating point number is <0. An overflow condition will result if the magnitude of the exponent of
the floating point number is >=16.

For “fix to double integer” operations, zero is returned as the result if the magnitude of the exponent of
the floating point number is <0. An overflow condition will result if the magnitude of the exponent of
the floating point number is >=32.

13-20. ACCUMULATOR OPERATIONS

The FPP accumulator capabilities allow the microprogrammer to perform chained floating point
operations. This feature eliminates the need to store a result in memory and then immediately fetch it
for the next operation, thus reducing memory overhead time. For example, the result of a floating
point operation may be left in the FPP to serve as either the divisor or dividend in a subsequent divide
operation.

13-21. MPP MICRO-ORDERS

The following paragraphs describe the MPP micro-orders required to microprogram the FPP. Figure
13-4 illustrates the microprogramming sequence used to execute a typical FPP operation.

13-22. FPP INSTRUCTION STORE

The IRCM micro-order causes the lower eight bits of the CPU S-bus to be loaded into the FPP
instruction register if the FPP is not currently executing an instruction. (The FPP instruction register
may be loaded without addressing the FPP.)

The following microinstruction will prepare the FPP to multiply a three-word operand transferred
from the CPU by the three-word operand in the FPP accumulator.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT

IMM LOW IRCM 045B LOAD FPP INSTRUCTION REGISTER.

13-15

Special

START

Address the FPP.
(L-register, bit 0}

'

Retrieve result.
(MPP1 and
MPPB)

Load FPP instruc-
tion register.
(IRCM)

. Initiate execution.

(MPP2)

FPP begins exe-
cution when last
data word is sent
(FPP busy flag set).

Send data.
(MPP1 and
MPPB)

CPU operations not YES
requiring the FPP 1
may be performed.

START

FPP
busy (MPP)
?

Resuit
to be used in
accumulator
operation

NO

Execute
another FPP
operation
?

YES

START

7700-221

Figure 13-4,
13-16

Typical FPP Microprogramming Sequence Flowchart

Special

13-23. FPP ADDRESSING

The FPP must be addressed before any operation may be initiated and before testing for the FPP ready
condition.

Bit 0 of the CPU L-register equal to “0” is used to address the FPP.

The FPP must be addressed at least one microinstruction before executing micro-orders MPP2, MPPB,
or MPP1, and two microinstructions before executing the MPP micro-order.

NOTE

A microinstruction may be saved since the CPU FETCH routine
clears the L-register and CPU flag.

13-24. INSTRUCTION EXECUTION

The MPP2 micro-order in the Special field causes the FPP to initiate execution of the instruction held
in the FPP instruction register. Execution begins when the last word of the operand(s) is transferred to
the FPP by the user. The FPP busy flag is set until execution is completed.

13-25. OPERAND TO FPP

The MPPB micro-order in the Store field and the MPP1 micro-order in the Special field are used to
transfer 16 bits (the most-significant word first) of an operand from the CPU to the FPP.

Sixteen bits, where bit 15 is the most-significant bit, are transferred each time the micro-orders are
executed. Therefore, MPPB and MPP1 must be executed twice for each two-word operand and three
times for each three-word operand.

The following example is one way to transfer a three-word operand to the FPP beginning at the
address in the P-register.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT
READ INC PNM P GET ADDRESS OF
FIRST WORD.

MPP1 PASS MPPB TAB SEND FIRST WORD.
READ INC PNM P

MPP1 PASS MPPB TAB SEND SECOND WORD.
READ INC PNM P

MPP1 PASS MPPB TAB SEND THIRD WORD.

13-17

Special
13-26. RESULT TO CPU

The MPPB micro-order in the S-bus field and the MPP1 micro-order in the Special field are used to
transfer 16 bits (the most-significant word first) of the result from the FPP to the CPU. Sixteen bits,
where bit 15 is the most-significant bit, are transferred each time the micro-orders are executed.

Note that the result transferred from the FPP must not be stored in the T-register in the same
microinstruction since a memory refresh or the Dual Channel Port Controller (DCPC) could alter the
T-register before the WRTE is executed. Instead, store the result in a temporary CPU register and in a
subsequent microinstruction, transfer the result to the T-register.

The user should also be aware that the result is rounded during operation execution and not when it is
retrieved. Thus, any result retrieved at a precision lower than that at which it was generated will
result in an answer that has been truncated.

A three-word result is transferred from the FPP to memory starting at the address in the P-register as
follows:

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT
INC PNM P GET RESULTANT DESTINATION ADDRESS.
MPP1 S4 MPPB GET FIRST WORD OF RESULT FROM FPP.
WRTE TAB S4 STORE FIRST WORD OF RESULT.
INC PNM P GET ADDRESS FOR SECOND WORD.
MPP1 S4 MPPB GET SECOND WORD.
WRTE TAB S4 STORE SECOND WORD.
INC PNM P
MPP1 S4 MPPB GET LAST WORD.
WRTE TAB S4

13-27. MPP1 MICRO-ORDER CONSIDERATIONS

The MPP1 micro-order resets the FPP control logic if data is not being transferred to and from FPP.
Also, MPP1 must be specified whenever data is sent to or from the FPP.

13-28. FPP COMPLETE TEST

The MPP micro-order is used to determine if the FPP has completed the requested operation. The FPP
must be addressed (using L-register bit 0) at least two microinstructions before MPP is tested.

NOTE

The FPP ready status cannot be made until at least two mi-
croinstructions after MPP2 Special has been specified.

1318

Special

13-29. OVERFLOW DETECTION

The FPP sets the CPU overflow bit at the trailing edge of the first MPBEN signal (MPPB micro-order).
Therefore, an overflow condition cannot be tested until after two microinstructions following the first
MPPB S-Bus micro-order. If an overflow condition occurs, the user must clear the overflow flag bit.

13-30. MPP MICRO-ORDER SUMMARY

Table 13-4 summarizes the micro-orders required to microprogram the FPP.

13-31. FPP MICROPROGRAMMING CONSIDERATIONS

The following paragraphs describe some key points that the user should be aware of when writing
microprograms which use the FPP.

13-32. FPP OPERATION EXECUTION TIMES

Table 13-5 lists the execution times for chained floating point calculations in which intermediate
results are not transferred to and from the computer.

Table 13-4. Summary of FPP Control Micro-orders

MICRO-
ORDER FIELD MEANING
IRCM STORE Load lower eight bits (FPP instruction) of CPU S-bus into FPP instruction
register.
The FPP busy flag must be clear (FPP ready) before executing this micro-order.
L STORE Bit O clear used to address FPP.
MPP2 SPECIAL Execute instruction held in FPP instruction register and set FPP busy flag.
Address FPP at least one microinstruction before executing MPP2.
MPPB STORE Store 16 bits of operand into FPP.
and
MPP1 SPECIAL Address FPP at least one microinstruction before executing MPPB and MPP1.
MPPB S-BUS Transfer 16 bits of result to CPU.
and
MPP1 SPECIAL Address FPP at least one microinstruction before executing MPPB and MPP1.
Do not store the result in the T-register in the same microinstruction.
MPP1 SPECIAL Reset FPP control logic.
MPP COND Test FPP ready status.
Address FPP at least two microinstructions before executing MPP.

1319

Special

Table 13-5. FPP Operation Internal Execution Times

COMPUTATION TIME (usec)
INSTRUCTION
MINIMUM TYPICAL MAXIMUM

Single-precision Floating Point

Add/Subtract 0.68 1.36 3.28
Multiply 1.96 2.21 2.46
Divide 212 3.01 3.90
Conversion to single integer 0.67 1.38 1.85
Conversion to double integer 0.67 2.45 3.27
Conversion from single integer 0.63 1.25 1.78
Conversion from double integer 0.63 2.33 2.93
Extended-precision Floating Point

Add/Subtract 0.68 1.36 416
Multipty 2.75 3.14 3.52
Divide 2.94 4.78 6.62
Conversion to single integer 0.67 1.38 1.85
Conversion to double integer 0.67 2.45 3.27
Conversion from single integer 0.63 1.25 1.78
Conversion from double integer 0.63 2.33 2.93

13-33. EXECUTION IN PROCESS

Once the FPP has begun execution of an operation, CPU operations not requiring use of the FPP, or a
timing routine which waits for the FPP to complete execution may be executed.

If non-FPP operations are performed, ensure that upon return the FPP is addressed (L bit 0) at least
two microinstructions prior to testing if the FPP is ready. In addition, the FPP instruction register
must be reloaded with the proper FPP instruction if an IRCM micro-order had been executed and the
result held in the FPP is to be transferred to the CPU.

If a timing routine is used, the time allowed for the FPP to complete an operation and the action
required in the event of an FPP failure must be determined. A simple timing routine is shown below:

ALV/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT
WAIT MM cov CMLD S3 337B SET WORD COUNT CONSTANT
AND CLEAR OVERFLOW.
WAIT1 RTN CNDX MPP IF FPP DONE, RETURN.
DEC S3 S3 DECREMENT COUNTER
JMP CNDX AL1S RJS WAIT1
JMP ERROUT JMP TO ERROR ROUTINE.

13-20

Special

13-34. INTERRUPT CONSIDERATIONS

If your microprogram is written such that interrupts are detected (which is recommended), it should
execute a JSB to a microroutine that saves whatever is necessary (including intermediate results in
the FPP) to allow the microprogram to continue after the interrupt is serviced, or to provide for
complete restart of the microprogram.

The microroutine should also ensure that the FPP is addressed and the proper FPP instruction is
stored in the FPP after servicing the interrupt.

13-35. MICROPROGRAMMED FPP OPERATION EXAMPLE

This paragraph contains an example on directly microprogramming the Hardware Floating Point
Processor. The microprogram sums the product of two, one-dimensional arrays and stores the floating
point result in the A and B registers. Figure 13-5 is the flowchart for the microprogram. Note that the
program is interruptable. The microprogram assumes the following calling sequence is used:

OCT 105600 INVOKE FPP PROGRAM

NOP USED FOR CURRENT ITERATION IF INTERRUPTED

DEF DIM DIMENSION OF ARRAYS

DEF ADDRA ADDRESS OF ARRAY A

DEF ADDRB ADDRESS OF ARRAY B Computer

L Musewmn

13-36. MICROPROGRAMMING THE FLOATING POINT PROCESSOR

The following is a summary of the rules for user microprograms.

1. The FPP must be addressed before asserting any control signals except IRST. Address the FPP by
setting the L-register bit 0 to the address of the FPP at least one microinstruction before asserting
MPP2, MPPB in the store or S-bus field or MPP1. The FPP must be addressed at least two
microinstructions before testing MPP. If an overflow occurs, the FPP does not set the CPU
Overflow Flip-Flop until the trailing edge of the first MPPB in the S-bus field. Therefore overflow
should not be tested until at least two microinstructions following the first S-bus field MPPB of an
operation.

2. Assert MPP1 in the special field when asserting MPPB in the store or S-bus field. The FPP does
not recognize MPPB unless it has been addressed and MPP1 is also asserted.

3. If a microinstruction S-bus field contains MPPB, the store field must not contain TAB. The result
may not be retrieved from the FPP and stored in the memory data register in the same mi-
croinstruction, since memory refresh or DMA freeze may destroy the memory data register
contents. Therefore, store the result in a temporary CPU register, and then transfer the result to
the memory data register in a subsequent microinstruction.

13.21

Special

4. Ensure that bits 1 and 0 of the FPP instruction register are set to the proper operand word length
as described in paragraph 13-15. Also, in the case of FIX, IR bits 6-4 must equal 100, before
retrieving the FIX result. If a result is retrieved from the process at a precision lower than the
operation just performed, the result is truncated, rather than rounded. If the result is retrieved at a
higher precision, the lower mantissa bits are zeros.

5. Floating point operands, except for zero, issued to the FPP must be normalized (sign bit is not the
same sense as the most significant mantissa bit). Note that the FPP normalizes all of its floating
point results, except for zero.

6. When executing chained operations, the FPP instruction register bits 1 and 0 may be changed in
order to retrieve a result of precision that differs from the operation performed. For example after
performing a 48 bit ADD, a 32 bit result may be retrieved from the FPP. However the precision of
the next operation must agree with that of the previous floating point (48 bit ADD) operation.

13-22

Special

READ CURRENT ITERATION 1) INTO S6 (MSB WILL
BE SET IF RETURNING FROM AN INTERRUPT)

Y
I RETURNING FROM INTERRUPT? ¢

-
N

INITIALIZE SUM IN A,B AND CURRENT
ITERATION IN S6

READ ARRAY DIMENSION INTO S5

CASE OF INTERRUPT

SAVE RETURN ADDRESS IN S11 IN D —

1Y
L DIMENSION <= 0? |

N
FORM ADDRESS OF A{l) (S2 =2*I + ADDR(A))
FORM ADDRESS OF B(l) (P =2*1+ ADDR(B))

FETCH A(l1} INTO S9,510
FETCH B(l) INTO §7,S8

I

FORM FPP MULTIPLY OPCODE
INCREMENT I (S6 = S6 +1) N

START FPP EXECUTION
SEND A{l) AND B(l) TO FPP

1Y
| LAsTiTERATION? I

In
FETCH NEXT A{l} INTO $9,510
FETCH NEXT B{l} INTO S7,58

l

| waIT FoR Frp |«

FORM FPP ADD OPCODE
START FPP OPERATION
SEND SUM TO FPP

Y
[INTERRUPT? |——->

1

WAIT FOR FPP
GET SUM FROM FPP AND STORE IN A,B-REG

|

N
| LAST ITERATION? }—

I Y

L RESTORE RETURN ADDRESS, EXIT }

(o)

SAVE CURRENT I
IN MEMORY

RETURN TO

PROCESS INTERRUPT

7700-222

Figure 13-5. FPP Microprogramming Example Flowchart

13-23

Special

EXAMPLE 5: FPP SUMS THE PRODUCT OF TWO ONE-DIMENSIONAL ARRAYS

0001

0002
0003
0004
000S
0006
0007
0008
0009
0010
0011

0012
0013
0014
001S
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
004S
0047
0048
0049
0050
0051

0052
0053
0054
00SS
0056
0057
00sS8
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075

34000

34001

34002
34003
34004

34005
34006
34007
34010

34011
34012

34013
34014
34015
34016
34017
34020
34021

34022
34023
34024
34025
34026
34027
34030
34031

34032
34033

13-24

017

327

006

006

227
000
307
010

327
320

227
001
307
003
227
307
003

227
007
230
010
007
230
010
007
230
010

101254

140242

036147
036207
037247

174707
075507
005047
001207

104002
004002

174713
152507
005047
033047
174707
005047
033707

174707
174707
001307
042647
143047
001347
042647
143047
001407
001447

MICMXE,L
$CODE= "SUMAB: : -48,REPLACE

ORG 340008
HORI EQU 00006B
FETCH EQU 00000B

.
.
RN BB PR RN RN B AR B AR R R AR E RN RN RN
* READ CURRENT ITERATION CI) INTO S6 «
(MSB WILL BE SET IF RETURNING FROM =«
AN INTERRUPT) .
I
.
SUMAB SOV CMPS S6 TAB S6 = CURRENT I
.
PR RN BN E RN B RN IR RN BRRR N
RETURNING FROM INTERRUPT? »
RN AR RN I RN RRRR BRI R RN
.

JMP CNDX AL1S RJS REENT JUMP IF RE-ENTERING
.
T T
INITIALIZE SUM IN A,B AND CURRENT ITERATION IN S6 =«
R AR R R R R RN RN RN F RN RPN RN R R RN RPN R RN RN RN RN IRR O
.

ZERD A INITIALIZE SUM
ZERD B
ZERO S6 INITIALIZE CURRENT I
.
I I I I T T R R Ty TR Y Y I
+ READ ARRAY DIMENSION INTO SS .
+ SAVE ADDRESS IN CASE OF INTERRUPT (S11) *

(A2 R22 22222 R R 2 X222 22222 dd 222222 222222]
L]

REENT READ INC PNM P START READ OF IMAX
DEC S11 P SAVE P IN S11
JSB INDIRECT RESOLVE INDIRECTS
PASS S§ TAB SS = IMAX

.

YT

« IMAX <= 07 «

TERRERRBIRRROS

.
JMP CNDX AL1S DONE FORGET IT IF IMAX<O
JMP CNDX ALZ DONE DITTO IF IMAX=0

T T ey Ly

+ FORM ADDRESS OF ARRAY A (S2 = 2«1 + ADDR(A)) «

+ FORM ADDRESS OF ARRAY B (P = 2#1 + ADDR(B)) =«

« NOTE THAT LO = 0 WHEN ADDRESS IS FORMED .

T

.

READ COV INC PNM P START READ ON ADDR(CA)

DBLS L S6 SET L = 2 « |

JSB INDIRECT RESOLVE INDIRECTS
ADD S2 M S2 = ADDRCACI))

READ INC PNM P START READ ON ADDR(B)

JSB INDIRECT RESOLVE INDIRECTS
ADD P M P = ADDR(B(I))

*
I ZZXT RIS RIRZIRR SRR Y X X 3
+ FETCH BCI) INTD §7,58 +
» FETCH ACI) INTO S9,510
(L ZXEXEXZEEZIRZIEZRRSRYE R R L R X 3
*

READ INC PNM P START READ ON B(D)
INC PNM P BUMP ADDR(B(1))

READ PASS S7 TAB SAVE B(I) IN (S7 S8)
PASS M S2
INC S2 s2 BUMP ADDRCACI))

READ PASS S8 TAB
PASS M s2 SET M = ADDRCACI))
INC 82 S2 BUMP ADDR(A(I))

READ PASS S9 TAB SAVE ACI) IN (S9 S10)

PASS S10 TAB

0076
0077
0078
0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089

0091

0092
0093
0094
0095
0096
0097
0088
0099
0100
0101

0102
0103
0104
01058
0106
0107
0108
0109
0110
0111

0112
0113
0114
0115
0116
0117
0118
0119
0120
0121

0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132
0133
0134
0135
0136

34034
34035
34036
34037
34040
34041

34042
34043
34044
34045

34046
34047
34050
34051

34052
34053
34054
34055
34056
34057

34060

34061
34062
34063
34064

340
007
010
010
010
010

007
144
006
334

227
007
230
010

230
007
010
230
007
010

306

340
010
010
010

100607
153251
054432
056432
060432
062432

152507
150762
036507
003002

174707
174707
001307
001347

042647
143047
042647
001407
143047
001447

044402

020607
036751
006432
010432

Special

« FORM FPP MULTIPLY OPCODE .

« INCREMENT I (S6 = S6 + 1) .

« INITIATE FPP EXECUTION .

= SEND ACI) AND B(I> TO FPP .

(XA EXEXEEEE SRS R RS R RS SRR X}

*

LooP IMM LOW IRCM 040B FPP MPY OPCODE
MPP2 INC S6 S6 START FPP, BUMP I
MPP1 PASS MPPB S7 SEND OP1 = B(I)
MPP1 PASS MPPB S8
MPP1 PASS MPPB S9 SEND 0P2 = ACI)
MPP1 PASS MPPB S10

#*
XXX XEXZ SRR Z 2

LAST ITERATION? «
FRRRRRRRRRRRBRBRR RS
.

INC L S6 SET L =1 +1

LWF L1 SUB SS SET FLAG = 1 IF DONE
ZERO L RESET L FOR FPP

JMP CNDX FLAG LOOP1 JUMP [F DONE

.
T
FETCH NEXT B(I) INTO S7,58 =«
BB RN RN R B RN RRRRIRNN RO RIS,
.

READ INC PNM P
INC PNM P BUMP ADDR(BC(I))
READ PASS S7 TAB GET NEXT BCI)

PASS S8 TAB

.
PR NI RN B R RN RN IR RN RN RERR S
« FETCH NEXT ACI) INTO S9,S10 +
Ty
»

READ PASS M s2 SET M = ADDRC(A)
INC Ss2 s2 INC ADDR(A)
PASS M s2

READ PASS S9 TAB

INC Ss2 s2
PASS S10 TAB

#*
[EXXXXXXEAXXX R R R R

* WAIT FOR FPP «
SEBBBIRBRRINERES
.

LOOP1 JSB CNDX MPP RJS WAIT WAIT FOR FPP

#*
LA REEX SRR SRR RS RS RS2 RS2 2 222 X2 XSS RS RS2 22222 %]

« FORM FPP ADD OPCODE (ACCUMULATOR HAS FIRST OPERAND) +

INITIATE FPP EXECUTION *
+ SEND SUM OPERAND TO FPP .
RN R R R R RN R RN R R RN R RN R RN RN RN R R RN AR RN R RN R RN RR NIRRT
.
ImMM LOW IRCM 010B FPP ADD OPCODE
MPP2 START FPP
MPP1 PASS MPPB A SEND OP1 = SUM

MPP1 PASS MPPB B

13-25

Special

0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180

0182
0183
0184
0185
0186
0187
0188
0189
0190
0191

0192
0193
0194
0195
0196
0197
0198
0199
0200
0201

0202
0203
0204
0205
0206
0207
0208
0209
0210

34065
34066
34067

34070

34071

34072

34073
34074
34075
34076

34077

34100
34101
34102
34103
34104
34105
34106
34107

34110
34111
34112
34113
34114
34115
34116
34117
34120

13-26

306
010
010

334

323

336

000
010
017
210

320

000
007

210
383
003
227
320

340
366
010
366
326
355
010
010
327

044402
020172
020232

004002

141602

041602

065707
074647
153247
052036

000307

065707
174707
037207
050036
170507
075707
174707
000007

100547
002002
036765
000742
144442
165047
042614
036746
004007

* WAIT FOR FPP

¢ GET SUM FROM FPP AND STORE IN A,B-REG

(AALA AR R X R R R R R R R R R RS EXRSRRSRRSRSRRR R X]

*

LOOP2 JSB CNDX MPP RJS
MPP1 PASS A
MPP1 PASS B

»
X R YRR YR YRR Y
*LAST ITERATION? =
ARRBRBRBRRBRBRINNNY
»
JMP CNDX FLAG
»
FRRBSBRRBRBRBBR BRI NN B NS
¢ TEST FOR INTERRUPT =
SEEININRIINIRRIIRIG NGRS
»
JMP CNDX HOI RJS
»
BRRRRBRRINIRRINC IR RRBR RS
« TEST FOR SINGLE STEP «
SEENLRNNRARRIRANRNB RIS
»
JMP CNDX NSNG RJS
»
FReBtNcRBORRERINORS
*+ SAVE CURRENT I =
« IN MEMORY *
FRRERBBEIRINIRRNNES
*
INT DEC P
PASS M
CMPS S6
WRTE MPCK PASS TAB
»
ARRIRBRCIRNIRIRRININRSS
+ SERVICE INTERRUPT e
FERBRBNBGRINBIBRISRRRNS
.

JMP

.
FRRRNBRBINNRONRRRIRRIBROIIRRS
+ RESET SAVE WORD *
* RESTORE RETURN ADDRESS +
+« RETURN TO MACRO CODE *
RN TRy YY)
»
DONE DEC P
INC PNM
ZEROD S5
WRTE MPCK PASS TAB
I MM CMLO L
ADD P
READ INC PNM
JMP

»
g
+« WAIT LOOP «
o
»
WAIT I MM LOW CNTR
WTLP RTN CNDX MPP
DCNT
RTN CNDX MPP
JMP CNDX CNT8 RJS
I'MM CMHI S2
SOV PASS IRCM
106
JMP

WAIT
MPPB
MPPB

DONE

LoopP

Loop

S11

S6
S6

HORI

S$11

S5
374B

FETCH

040B

WTLP
172B
s2

DONE

WAIT FOR FPP
SAVE SUM IN (A B)

JUMP IF ALL DONE

LOOP IF NO INT

LOOP IF SNGL STEP

SET P = SAVE ADDR
SET M = SAVE ADDR
SET S6 = -S6 - 1
SAVE IN MEMORY

HANDLE INTERRUPT

SET P = SAVE ADDRESS
SET M = SAVE ADDRESS
CREATE A ZERO TO
RESET SAVE WORD

SET L = 3

SET P = RETURN ADDR
START READ

RETURN

SET COUNTER = 32
RETURN IF DONE
DECREMENT COUNTER
RETURN IF DONE
ELSE LOOP 32 TIMES
SET IRCM = MIA 00

CAUSE MP INT
RETURN

0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225

END OF PASS 2: NO ERRORS

34121
34122
34123
34124
34125
34126
34127

230
367
323
230
336
000
320

000647
140002
145042
036747
045042
065707
000307

-
I EZEEREEEEEENERREREI SRS ERNRERE X J
« RESOLVE INDIRECT ADDRESSING «
I ZZZEZIEIAEEEEERESRERER RS RSN RS R R X J
-
INDIRECT READ PASS M TAB
RTN CNDX AL15 RJS
JMP CNDX HOI RJS INDIRECT
READ
JMP CNDX NSNG RJS INDIRECT
DEC P S11
JMP HORI

END

Special

SAVE ADDRESS IN M
RETURN IF RESOLVED
KEEP RESOLVING

BUT IF HOI AND

ND SINGLE STEP
RESTORE P AND
HANDLE INTERRUPT

13-27/13-28

PART IV
Microprogramming Examples

Section 14
MICROPROGRAMS N

14

MICROPROGRAMS

The microprogramming examples in this section are arranged in order of advancing complexity and
illustrate (among other things) concepts presented throughout the rest of this manual. Each micropro-
gram is complete in itself and may be used directly in the computer or may be used as an example for
creating your own microprograms. The following assumptions are made for the use of material in this
section.

® The microprogramming support software (the microassembler, Microdebug Editor, driver DVR386,
and WLOAD) must have been loaded into the RTE system. It is also assumed that the system
equipment configuration (HP 21MX E-Series Computer, HP 13197A WCS, etc. installation) is
compatible for microprogramming. (Refer to section 3 in this manual for more information on the
steps necessary for preparing to microprogram.)

® RTE system equipment table entries (SC-to-LU relationship) must have been made.

The first examples use the MDE features to prepare and execute the microprograms. If you use the
RTE Interactive Editor, then, the RTE Microassembler to prepare the larger examples, use the RTE
Interactive Editor Tab function for determining the starting columns for micro-order fields. (Refer to
section 8 for more information on preparation with the microassembler.

When you are ready to microassemble from the system LS tracks, the microassembler may be
scheduled and used following the procedures outlined in section 9 of this manual. Control commands,
error messages, etc., are described in section 9. Psuedo-microinstructions, etc., that you will need when
preparing your source are described in section 8. The microassembled object will be placed in an RTE
file you designate by the $CODE command and will be ready to be accessed and loaded into WCS.
Information on WCS support software use (for moving your microprogram into WCS or out of WCS)
may be found in section 11 in this manual.

In addition to the examples included in this section you may be interested in the microprogrammable
algorithms appearing in three other reference manuals:

¢ Computer Approximations.
e The ACM Manual (Association of Computer Manufacturers).

e Art of Computer Programming, Volume III.

14-1

Microprograms

14-1. WCS INITIALIZATION

WCS boards must be initialized (i.e., be assigned subchannel base addresses) for the transfer of
microprogram object code to the boards. WCS initialization is required whenever the RTE system is
booted up. Complete information required to write WCS initialization programs is given in the Driver
DVR36 manual.

The WCS boards can be initialized and controlled by the FMGR CN command as follows:
CN,lu,n [,bal

where:
lu = a WCS LU number;

1 = assign base address to WCS LU;

3
It

n = 2 = enable WCS LU;

n = 3 = disable WCS LU;

n = 4 = down WCS LU;
ba = base address to be assigned to WCS LU.

For example, to initialize and enable a 1K WCS board having LU number 11 and 12, the following
sequence of CN commands could be used:

CN,11,1,34000B
CN,11,2
CN,12,1,35000B
CN,12,2

If the above command sequence were going to be used frequently, it could be set up as a TR (transfer)
file and saved for later execution. Refer to the Batch-Spool Monitor Reference Manual for information
on TR files.

14-2

Microprograms

14-2. MICROPROGRAMMING WITH MDE

The following three console run sheets provide examples of interactive sessions that illustrate the
simplicity of using the Microdebug Editor program (MDEP). In the first console run sheet you use
MDEP to prepare and execute a single-statement “microprogram” that simply decrements the
A-register. Next, MDEP is used to prepare and execute a microprogram that performs a logical “and”
on two octal numbers. This example illustrates the use of the READ and WRTE micro-orders. The
MDE commands used in these examples are: LU, REplace, SEt, RUn, SHow, PR, EXit, and Abort.
(Refer to section 10 for details on the MDE commands.) Note that the Abort (A) command only
terminates another MDE command and does not terminate MDEP. Note also that these miniature
“microprograms” are executable by MDEP without apparent microassembly.

If you did not attend the HP RTE microprogramming course, you may find it helpful to use these
examples (following the run sheets step-by-step) as exercises for becoming familiar with MDEP. Make
sure to initialize your WCS board(s) and use LU numbers appropriate for your computer installation.
All operator entries are underlined in all examples.

EXAMPLE 1: DECREMENT A REGISTER, CONSOLE RUN SHEET

*0ON, FMGR
¢tRU,MDEP

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES

TYPECL OR 2)>?2 (NOTE: 2 IS THE RESPONSE FOR F-SERIES ALS0.)
SLU, 13

LU# RANGE STATUS

13 034000--034777 |

$RE, 34080B

34088 LGS STFL NAND Sl CNTR
SSREAD, RTN, DEC, A, A

34006 READ RIN DEC A A
$8/

$SE, A

A =20

(%]
12345B
12345
A
$RU, 1 @56008
RETURN= P+01

>P>P

ND MDEP

$SEND FMGR

14-3

Microprograms

EXAMPLE 2: READ/WRITE MEMORY, CONSOLE RUN SHEET (Sheet 1 of 2)

*ON, FMGR
$RU,MDEP

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPECI OR 2)72
$LU, 13

LU# RANGE STATUS
13 034000--034777 1
$RE, 34000B, 34003B

34080 LGS XOR S3 X
$SREAD, NOP, PASS,L, A

34008 READ PASS L A
£/

34001 STFL CMPS A CNTR
$SNOP, NOP, AND, S1, TAB

34001 AND SI TAB
$8/

34002 STFL PASS Si1 SI

$SWRTE,MPCK, PASS, TAB, S1

34002 WRTE MPCK PASS TAB S1
$%/

34003 SRG1 CMPS MEU
$$READ,RTN, INC, PNM, P

34003 READ RTN INC PNM P

$SA

$SH, 340008, 340038

34000 READ PASS L A
34201 AND SI TAB

34002 WRTE MPCK PASS TAB St
340203 READ RTN INC PNM P

$SE, A

A =0

A =0

A = 377B
A =377
A =A

14-4

Microprograms
EXAMPLE 2: READ/WRITE MEMORY, CONSOLE RUN SHEET (Sheet 2 of 2)

SPR
P+@1= RETURN
P+@2= RETURN
P+83= RETURN
P+@4= RETURN
P+05= RETURN
P+96= RETURN
P+27= RETURN
P+@8= RETURN
P+29= RETURN
P+10= RETURN

P+01= RETURN
P+01= 52525B
P+@1= 52525
P+8l= A

$RU, 18560068
RETURN= P+@2
$PR

P+@1= 125
P+022= RETURN
P+83= RETURN
P+B34= RETURN
P+@S= RETURN
P+06= RETURN
P+@7= RETURN
P+08= RETURN
P+@9= RETURN
P+10= RETURN

P+@1= 125
P+81= A
SEX

$END MDEP
$EX

$END FMGR

14-3. SHELL SORT EXAMPLE

This example illustrates a microprogrammed Shell sort technique which performs a sort of numeric
data (assumed to be in a disc file). The theory of the technique is described in the reference material
that is mentioned at the beginning of this section. The example illustrates the benefits of micropro-
gramming a typical program that may be used repeatedly in a particular application. Included here
are a FORTRAN program used to input the numbers to be sorted, list them (if so desired), and call a
sort program. An Assembly language program is called to interface to a microprogram which performs
the actual Shell sort.

Figure 14-1 is a flowchart that explains the microprogram. Annotated console run sheets are included
that can be used to perform this same example in a step-by-step manner. The fully commented
microprogram that performs the sort is included immediately after the console run sheets. Note that
the Microdebug Editor is used to examine the progress of the sort.

14-5

Microprograms

When confidence in the ability of the microprogram to perform the sort is established, an application
FORTRAN program is run (SRTST; which times the difference between the Assembler sort and the
microprogrammed sort). The timing is accomplished in addition to the tasks already performed by the
previously run test program.

The Assembly language program that runs the Shell sort (in competition with the microprogrammed

version) is shown just before the console run sheet. Use the run sheet as an example to perform the
execution and timing of the sort.

EXAMPLE 3: SHELL SORT, FORTRAN TEST PROGRAM

PAGE 0001 FTN4 - RELEASE 24177C - JULY, 1972

0001 FTN4sL

0002 PROGRAM SRTST

0003 INTEGER P (5) 9 CONSsPRINT,,IDCB(144)4NAME(3) 4 IBUF (128)
0004 INTFGER TABLE(125)

0005 EQUIVALEMCE (CONSsP (1)) s (NMBReP(2)) s (PRINT4P(3))
0006 DATA NAME/2HNS2H00+2H0 /

0007 C

0008 C GET RUN PARAMETERS

0009 CALL RMPAR(P)

nolo C

0011 C READ UNSORTED ELEMENTS FROM FILE N5000
0012 CALL OPEN (IDCB+IERRsNAME)

0013 DO 10 J=1+NMBR/125

0014 CALL READF (IDCBsIERR,IBUF)

0015 DO 20 I=1,125

0n16 20 TABLE((J=1)%#125 + I) = IBUF(])

0017 10 CONTINUE

o018 C

0019 C LIST UNSORTED ELEMENTS ?

0020 IF (PRINT) 30+40,30

0021 30 WRITE (CONS,100) (TABLE(I)sI=1,NMBR)}
0022 100 FORMAT (/+(1087))

0023 C

0024 C USE MDES TO INITIALIZE WCS

0025 40 CALL MDES (CONS)

0026 C

0027 C INDICATE START OF SORT

0028 WRITE (CONS»200)

0029 200 FORMAT (/+" START OF SORTW)

0030 C

0031 C EXECUTE SORT

0032 CALL SORT (NMBR, TABLE)

0033 C

0034 C INDICATE END OF SORT

0035 WRITE (CONS,300)

0036 300 FORMAT (/," END OF SORT")

0037 C

0038 C LIST SORTED ELEMENTS ?

0039 IF (PRINT) S0+60+50

0040 50 WRITE (CONS+100) (TABLE(I)sT=1sNMRR)
0041 C

0042 C COMPLETE DEBUG OPERATIONS
0043 C I.E. CLEAR BREAKPQOINTS, ETC,

0044 6O CALL MDES (CONS)

0045 CALL CLOSE (IDCB)

0046 END

#% NO ERRORS# PROGRAM = 00587 COMMON = 00000

14-6

Microprograms

EXAMPLE 3: SHELL SORT, TEST ASSEMBLER INTERFACE

PAGE 0002 #o01

0001
0002
0003#
0004%
0005%
0006
0007
0008
0009
0010
0011
0012
0013%
0014
0015
0016
0017
0018+
0019
0020

#% NO ERRORS #TOTAL #%#RTE ASMB 750420%%

00000

Qo000
00001
00002
00003
00004

00005
00006
00007
00010

00011

000000
000000
000000
016001X
000000R

162000R
066001R
n00040
105600

126002R

ASMB.L
NAM

I12.1+7

SORT INTERFACE PROGRAM

ENT
EXT
NMBR RSS
TABLE BSS
SORT NOP
JSH
DEF

LDA
LDB
CLE
oCT

JIMP
END

SORT
<ENTR
1

1

<ENTR
NMBR

NMBR I
TABLE

105600

SORTH 1

GET

H

A
8
E
I

PARAMETERS

NUMBER OF ELEMENTS
ADDRESS OF FIRST ELEMENT
0 = INITIAL ENTRY

NVOKE SORT MICROPROGRAM

14-7

Microprograms

14-8

4

[SAVE M (NEXT INSTRUCTION ADDRESS) IN S1]]

Y
—RETURNING FROM INTERRUPT ? (E=17)]
N

Y

[NUMBER OF ELEMENTS < & 7 (Y=&, Y<UTTI—-@
N

EEi Y T0 DISTANCE BETWEEN COMPARANDS (2=%72)]

A Y
IbrsTancE = @ ? (v=07)} ;@

_7 —
LACE NUMBER OF COMPARES IN S3 (S3=A-Y)
ORM ADDRESS OF 1 IN P (P=B)
ORM ADDRESS OF J IN S4 (S4=B+Y)
INITIALIZE SWAP INDICATOR (0=)

i
EAD I INTO L, UPDATE ADDRESS OF I (P=P+1)
SAVE ADDRESS OF OLD I (S5=M)
3

EAD J INTO S6
PDATE ADDRESS OF J (S4=M+1)

Y
[CoMPARANDS OUT OF SEQUENCE ? (I>J$)}
Y

N

ET SWAP INDICATOR (0=1)

A
EEITE OLD 1 INTO J IN MEMORY, CHECK FOR MEM. PROT.
S

RITE OLD J INTO I IN MEMORY, CHECK FOR MEM. PROT.

N
[ANY 1 NTERRUPTS 7}

Y

SAVE P (NEXT I ADDRESS) IN X (X=P) ¥
SET INTERRUPT RETURN INDICATOR (E=1) [s3-53-1}
FIX P (P=S1D)

JUMP TO HORI (BASE SET INTERRUPT CODE)

ESTORE ADDRESS OF NEXT I IN P (P=X)
ESTORE ADDRESS OF NEXT J IN S4 (S4sP+Y)
ESTORE NUMBER OF COMPARES IN S3 (S3=(B+A)-S4)

Y
PORE COMPARES ? (S3 NOT = 0?) | am
N
Y
|[aANY COMPARANDS SWAPPED DURING THIS PASS ? (0=1?) |r—m———
™

ISTART NEXT INSTRUCTION FETCH, Exx'rh—@

Figure 14-1. Example 3, Microprogrammed Shell Sort Flowchart

Microprograms

EXAMPLE 3: SHELL SORT; TEST, CONSOLE RUN SHEET (Sheet 1 of 2)

*ON, FMGR

tRU,EDITR < - CREATE MI1CROPROGRAM SOURCE FILE|

SOURCE FILE?

/A

EOF

/7:16,15,26,25,30,48 <—{SET TABS FOR MICROINSTRUCTION FORMAT

/ MICMXE,L;;3353321MX E-SE -

/ SCODE="MZ. IE, REPLACE} J JOBJECT T0 DISC

|:oov OF ‘-~‘-~“+USER SELECTED MICROPROGRAM OBJECT FILENAME |
1CROPROGRAM

/ELC&M2.lE < JUSER SELECTED MICROPROGRAM SOURCE FILENAME|

LS FILE 2 41
END OF EDIT

tRU,MICRO,2 <mmem————d{M]CROASSEMBLE MICROPROGRAM|
/MICRO: END

tRU, SRTST, 1,5, 1 [CONSOLE LU, NUMBER OF DATA, LIST FLAG (1=LI1ST)]

616440 136875 616336 152742 823501 «——JUNSORTED DATA]

COMPUTER TYPE: 1=2IMX,2=2]MX E~-SERIES
TYPECl OR 23?2

SLU, 13

LU# RANGE STATUS

13 ©340600--0834777 |

4LD, 'M2,IE < {USE FILENAME IN SCODE STATEMENT|

SLC, 34680B, 344178

SER, 340528, 34072B LOCATE MDE BREAKPOINT MICROPROGRAM, AND

BREAK | 34852 PROVIDE AN UNUSED ENTRY POINT FOR MDE USE,

BREAK 2 34872 BEFORE SETTING BREAKPOINTS

BREAK 3 0

SEX SET BREAKPOINT IN SWAP MICROINSTRUCTIONS, AND
SET BREAKPOINT AT END OF ONE COMPLETE PASS

START OF SORT

BREAK 348652 _—HBREMPOINT IN SWAP MICROINSTRUCTIONS]
$SE,L, S6

L = 16448 S6 = 16336
t 2 _JFLEMENTS BEING SWAPPED|

L = 16440

L = A

SRU

BREAK 34872 _ AFTER BREAKING AT END OF PASS,
$CL, 34072B REMOVE END OF PASS BREAKPOINT
BREAK | 34852

BREAK 2 @

BREAK 3 @

$RU

149

Microprograms

EXAMPLE 3: SHELL SORT; TEST, CONSOLE RUN SHEET (Sheet 2 of 2)

BREAK 34852 4———-’BREAKPOINT IN SWAP HICROINSTRUCTIONS]
$SE,L,S6

L~ = 16336 S6 = 136875
L —JELEMENTS BEING SWAPPED|

L = 16336
L =A
SRU

BREAK 34052 <4———— [BREAKPOINT IN SWAP MICROINSTRUCTIONS|
$SE, L, 56
L~ = 16448 S6 = 152742

L —{ELEMENTS BEING SWaPPED]

L = 16448
L =A
SRU

BREAK 34052 <————{BREAKPOINT IN SWAP MICROINSTRUCTIONS|
$SE,L,S6
L~ = 16336 S6 = 152742

t {ELEMENTS BEING SWAPPED]

L = 16336
L =a
SRU
END OF SORT NOTE: THESE ARE NEGATIVE NUMBERS
136875 152742 816336 816440 823581 <—{CORRECTLY SORTED DATA]
SCL <
BREAK 1 @ - ———JBE SURE T0 REMOVE BREAKPOINTS 1]
BREAK 2 @
BREAK 3 ©
$EX
1EX
SEND FMGR

1410

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 1 of 3)

PAGE 0002 RTE MICRO-ASSEMBLER REV.A 760805

0001
0002
0003
0004
0005
0006
0007
o008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
003S
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

34000

34020

34021

34022
34023

327

010

334

010
327

001007

033507

103042

007647
103602

MICMXE L
$CODE=*M2,1E+REPLACE
ORG 340008

222X YRR R YRR R R -2 220 L0 R 22 8 R 2 X 2.2 X X J

LAB 2.1 MICROPROGRAM

THIS MICROPROGRAM SORTS AN INTEGER ARRAY INTO
ASCENDING ORDER USING THE DIMINISHING INCREMENT
TECHNIQUE (I.E., SHELL SORT).

REF: ART OF COMPUTER PROGRAMMING, VOL 3,

CALLING SEQUENCE

LDA NMBR + NUMBER OF SORT ELEMENTS
LDB TABLE ADDRESS OF FIRST ELEMENT
CLE E=(0=INITIAL ENTRY,

1=RETURN FROM INTERRUPT)
OCT 105600 INVOKE SORT MICROPROGRAM

AT END
CONTENTS OF TABLE SORTED
AyB UNALTERED E+O0 MAY BE ALTERED XsY ALTERED

NOTE
IN THE FOLLOWING COMMENTSs I AND J ARE THE TWO
SORT ELEMENTS BEING COMPARED
(I.E. ARE THE COMPARANDS)

& & & & & & &k & & & & & & & & & & &k & & &x & &

&
% & % & & & % & & & & & & & X & & XXX

(ZEEIE XTI TR YRR R YRR IR R L LR 2R 2 2R R R
HORI EQU 6B

JMP SORT SAVE ENT POINTS

ALGN
L2 2RI LI IRLIR TR 2L R 2 22 Y
SAVE M (NEXT INSTRUCTION ADDRESS) IN S1]1
(22222222222 RS TR TLIZSLEER 2 2 2 R 2
SORT S11 M S11 = NEXT
(222222 ISR RS R 2 R L 22 8 Y INSTR ADDR
RETURNING FROM INTERRUPT ? (E=17)
(22 22T TR EYT TR L YRR)

JMP CNDX E INTRTN YESy USE INTRTN
2T YT YT YT YT T YT Y Yy Yy
* NUMBER OF ELEMENTS < 0 ? (Y=A, Y<0?) #
L2222 TS LT LTRSS Y)

Y A Y = A
JMP CNDX AL1S EXIT Y<0 ? YESs EXIT

14-11

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 2 of 3)

PAGE 0003 RTE MICRO=ASSEMBLER REV.A 76080%

0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
00A5S
0026
00R7
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

14-12

34024

34025
34026

34027
34030
34031
34032

34033
34034
34035

34036
34037
34040

34041
34042
34043
34044
34045
34046
34047

34050
34051
34052
34053

010

010
320

010
004
010
003

227
010
010

230
007
010

014
327
012
327
327
004
327

012
210
007
210

073664

072747
003602

072507
107107
011707
011153

174707
033207
000507

046647
133147
001247

152747
142302
136747
102602
002407
152747
142602

137307
054036
150654
052036

T Ry Y Y I 222 2T R TR T
SET Y TO DISTANCE BETWEEN COMPARANDS (Y=Y/2)
D Y Iy I T Ty e R R Ry Y Y Y Y
SETY R1 Y Y Y = Y/2

YTy T YT TNY Y VPP Ee)

DISTANCE = 0 ? (Y=07?)

Ly Y YY)

Y
JMP CNDX ALZ EXIT Y=0 ? YESs EXIT

(2222222222 2222222222222 2222 22 2 22 X X2 2 2 X 2 X

PLACE NUMBER OF COMPARES IN S3 (S3=A=-Y)

FORM ADDRESS OF I IN P (P=B) bl
FORM ADDRESS OF J IN S4 (S4=B+Y)]
INITIALIZE SWAP INDICATOR (0=0) -
L Y Y T YR TRT T T Y Y
STRTPASS L Y
suB S3 S3 = COMPARES

A
P B P = ADDR OF 1
cov ADD S4 B S4 = ADDR OF J»
* 0=0

L e T Y R T YT TR T

READ I INTO Les UPDATE ADDRESS OF I (P=P+]1)

SAVE ADDRESS OF OLD I (S5=M) i
BEGR B AR BB BB RS AR B GRS ARG R AR DRI R I AR DR AR AR D BB
COMPARE READ INC PNM P READ I» UPDATE P
S5 M SS = ADDR OF 1
L TAB L =1
Y Y Y Ty Yy e Y Y L
* READ J INTO S6 *

UPDATE ADDRESS OF J (S4=M+]1) *#

(22222222222 22222222 2 2R 2 22 g g

READ M S4 READ J
INC Sé M S4 = NEXT J ADDR
S6 TAB S6 = J

(2222222 X2 222 X222 22X X2 2 2 Xt s R s

COMPARANDS OUT OF SEQUENCE ? (I>y?)

(X222 22222 22 2222222222 dd Xyl

XOR S6 J SIGN = I SIGN?
JMP CNDX AL1S RJS SUBTRACT YESs SUBTRACT
PASL I SIGN = = ?
JMP CNDX AL1S INTCHK YESy NO SWAP
JMP SWAP NOs SWAP
SUBTRACT suR S6 J=-1<0?
JMP CNDX AL15 RJS INTCHK NOs NO SWAP

T I X Ty Yy T e R T I XY
WRITE OLD I INTO J IN MEMORYs CHECK FOR MEM, PROT,
SET SWAP INDICATOR (0=1) b
WRITE OLD J INTO I IN MEMORYs CHECK FOR MEM, PROT, *®

2222y ee ey R iR At Yyl YRRy

SWAP PASL S7 S7 = OLD 1
WRTE MPCK TAB S7 J IN MEM = OLD I
SOV INC M SS M=ADDR OF I, O=1
WRTE MPCK TAB S6 I IN MEM = OLD J
- o0=1

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 3 of 3)

PAGE

0102
U103
ulug
0lus
Glue
0lu7
ulus
016y
vllu
U111
011z
0113
0114
0115
ullé
0117
Ulls
011y
0120
0121
0122
0123
0124
0125
0lz6
0127
0128
0129
0130
0131
0132
0133
ul34
0135
0136
Uls7
0138
013y
Ul40
0l4sl
0142
0143
0144
0145

END OF PASS

U004 RTE MICRO-ASSEMSLER REV.A 76UB1Y

34054

34055
34056
34057
3406U
34061

34062
34063
34064
34065
34066
34067
34070
34071

34072
34073

34074
34075

34070

323

0lu
342
011
vld
320

010
014
003
01v
003
(VRRY]
004
327

voa
320

335
327

227

2:

143502

075607
000607
136701
065707
uu0307

071707
072507
V75147
006507
0111u7
046507
145107
003547

U45107
U41542

1ul342
u01207

164700

NO ERRORS

khkkkkkkhkhkhkhkkkkkkkkk

* ANY INTERRUPTS ? *
Khkkhkhkhkhkkhkkkkkkkkkkkk

INTCHK JMP CiDX HOI RJS ENDCEHK NO, CHK PASS
EEkkk Rk KRR KRR KRR KR KRR KRR AR AR Rk k kR Rk ARk Rk kK k&
* SAVE P (NEXT I ADDRESS) IN X (X=P) *
* SET INTERRUPT RETUKRN INDICATOR (E=1) *
* FIX P (P=S11) *
* J#P TO HORI (BASE SET INTERRUPT CODE) *
e I I Y Y
INTEXIT X P X = NEXT I ADDR
IMM LOw IRCM 20UUB IE(Y=-6)=111lu=ELA
SRG1 ONE I.8. SET E
P S11 FIx P,
Jmnp EORI JiP TO BASE SET
* INTERRUPT COCE
Kk kA kR R AR R AR R R R KRR KRR R KRR AR AR AR Rk kKRR RN R ARk Kk K
* RESTORE ADDRESS OF NEXT I IN P (P=X) *
* RESTORE ADDKESS OF NExTLT J 1N S4 (£d=P+Y) *
* RE5TORE WUMBER UF CCMPARES IN 53 (53=b+A-S4) *
I R R Y R R R R R RS RS S

INTRTN P X ¥ = HEXT I ALDE

L p

ADD 54 4 54 = LEXT u ADDF
L A

ADD 33 L 53 = B+A
L 54

sUB 53 53 53 = (BtA)-54 =

JMP *+2 COMPAKLES

kkkhhkhkkhkkhkhkhkkhkkkkdkkkhkhkhkrkkkhkkkkkhkdkdkXhkkikiki

* MCORE COMPAKES ? (53=83-1, S3 NQL =07) *

LEEE T R R FEEETEERRE LR L L BT LR PR PR R R TR R

ENDCHK uEC 53 53 GLRE ConmParbs 2
JipP CAdUX ALZ Rus (COMPARE YEs, 00 LExY

KKk kkdkkhkkhkkkdkhkkhkdkdkhhkkdkdkkhkdkdkhdkkkkkkdkkkkdkkkkkikkkkkkik

* ANY COMPARANDS SWAPPLD DURING ThHIs 2ASS 2 (0=1?2) *

LR R T s 2
JiiP CNDX UVFL STRITPASS YES, EELO PAES
Jaip SETY HO, WLX1 PASS

LR R R R L TR S R R R Y

* START NEXT INSTRUCTION FETCH, LXIT *

LR R I P R I P R R R R

EXIT READ RTN INC P&N S11 START MEXT
END INSTK FETCH

14-13

Microprograms

EXAMPLE 3: SHELL SORT, APPLICATION PROGRAM

PAGE 0001 FTN4 - RELEASE 24177C -~ JULY, 1972

0001 FTN&4oL

0002 PROGRAM SRTST

0003 INTEGER P(S5)sCONS+PRINT+IDCB(144)4NAME(3) 4 IBUF (128)
0004 INTEGER TABLE(125)

0005 EQUIVALENCE (CONSyP (1)) s (NMBR«P(2))s(PRINT,P(3))
0006 DATA NAME/2HNS ¢2H0042H0 /

06007 C

0008 C GET RUN PARAMETERS

0009 CALL RMPAR(P)

no10 C

0011 C READ UNSORTED ELEMENTS FROM FILE NS000
0012 CALL OPEN (IDCBJ+IERRsNAME)

0013 DO 10 J=1.NMBR/12S

0014 CALL READF (IDCB4sIERR,IBUF)

0015 DO 20 I=14125

0016 20 TABLE((U=1)#125 + I) = IBUFI(I)

0017 10 CONTINUE

0018 C

0019 C LIST UNSORTED ELEMENTS ?

0020 IF (PRINT) 30440+30

0021 30 WRITE (CONS,100) (TABLE(I)sI=1eNMBR)
0022 100 FORMAT (/+(1087))

0023 C

0024 C USE MDES TO INITIALIZE WCS

0025 40 CALL MDES (CONS)

0026 C

0027 C INDICATE START OF SORT

0028 WRITE (CONS,200)

0029 200 FORMAT (/e START OF SORT®)

0030 C

0031 C EXECUTE SORT

0032 CALL SORT (NMBRs TABRLE)

0033 C

0034 C INDICATE END OF SORT

0035 WRITE (CONS,300)

0036 300 FORMAT (/4% END OF SORT")

0037 C

0038 C LIST SORTED ELEMENTS ?

0039 IF (PRINT) S0+60+50

0040 50 WRITE (CONS+100) (TABLE(]I)9sI=]1e¢NMRR)
0041 C

0042 C COMPLETE DEBUG OPERATIONS
0043 C I1.E, CLEAR BREAKPOINTS, ETC,

0044 60 CALL MDES (CONS)

0045 CALL CLOSE (1DCB)

0046 END

NO ERRORS# PROGRAM = 00587 COMMON = 00000

14-14

EXAMPLE 3: SHELL SORT, ASSEMBLER SORT (Sheet 1 of 2)

PAGE 0002 #01

0001 ASMB, L

0002 00000 NAM ASORT«7

IEREES IS TS EE TR ST LT LT LT LT LT T TS 222 23
0004% #
0005+ LAB 2.2 ASSEMBLER SORT #
0006% #
0007% THIS ASSEMBLER PROGRAM SORTS AN INTEGER ARRAY INTO #
0008% ASCENDING ORDER USING THE DIMINISHING INCREMENT *
0009% TECHNIQUE (I.E. SHELL SORT), ol
0010% REF: ART OF COMPUTER PROGRAMMINGs VOL 3. #
0011# #*
0012% CALLING SEQUENCE ®
0013+ LDA NMBR + NUMBER OF SORT ELEMENTS *
0014+ LDR TABLE ADDRESS OF FIRST ELEMENT #
0015+% CLE NOT REQUIRED FOR THIS PROGRAM, #
0016% INCLUDED FOR COMPATIRILITY WITH #
001 7% THE MICROPROGRAM CALL d
0018+# JSB SORT INVOKE SORT ASSEMBLER PROGRAM &
No19+w #*
N020# AT END #*
0021# CONTENTS OF TABLE SORTED *
0022+ 0 MAY BE ALTERED AsBeXeYsE ALTERED #
0023# *
0024% NOTE i
0025+ IN THE FOLLOWING COMMENTSs I AND J ARE THE TWwO #
00276% SORT ELEMENTS BEING COMPARED ®
0027% (I.E. ARE THE COMPARANDS)]
0028% #
(OO EEE IR E R Ry e I e e e ST 2 R
0030 ENT SORT

0n31 EXT LENTR

Microprograms

14-15

Microprograms

EXAMPLE 3: SHELL SORT, ASSEMBLER SORT (Sheet 2 of 2)

PAGE

0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084

0003 #01

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025
00026
00027
00030
00031
00032
00033
00034
00035
00036
00037
00040
00041
00042
00043
00044
00045
000456
00047
00050
00051
00052
00053
00054
00055
00054
00057
0006K0
00061
00062

000000
n00000
000000
0l16001X
000000R
162000R
002020
126002R
001100
002003
126002R
072057R
103101
166000R
007004
046057R
07T6060R
066001R
076061R
046057R
076062R
162061R
122062R
002021
026035R
162061R
002020
026047R
026042k
162061R
003004
142062F
002021
026047R
102101
1620A1R
166062R
172062R
176061R
036061R
034062R
036060R
026025R
102201
026014R
062057R
026010R
000000
000000
000000
000000

NMBR
TARLE
SORT

SETY

STRTP

COMPR

SUR

SWAP

ENDCH

DSTNC
CNTR
IPTR
JPTR

BSS 1

BSS 1

NOP

JSB ENTR
DEF NMBR
LDOA NMBR, I
SSA

JMP SORT, 1
ARS
SZA+RSS
JMP SORT,.1
STA DSTNC
CcLO

LDB NMBRy1
CMBs INB
ADB DSTNC
STEB CNTR
LDB TABLE
STR [PTR
ADB DSTNC
STR JPTR
LDA IPTR,I
XOR JPTRs1
SSA 4RSS
JMP SUR
LDA IPTR,I
SSA

JMP ENDCH
JMP SWAP
LOA IPTR.I
CMA.INA
ADA UPTRs1
SSAWRSS
JMP ENDCH
STO

LDA IPTR.I
LOR JUPTR.I
STA JPTR,I
STB IPTR,1
I1SZ IPTR
1SZ JPTR
ISZ CNTR
JMP COMPR
SoC

JMP STRTP
LDA DSTNC
JMP SETY
8SS 1

BSS 1

8SS 1

BSS 1

END

GET PA

RAMETERS

o2
SORT DONE,

= uwyn = DISTANCE BETWEEN mnln §

(SEE SORT MICROPROGRAM)

EXIT

CLEAR SwAP INDICATOR

SET
CNTR
T0

IPTR

JPTR

A = III
SAME S
YES»

nin ¢
YES»
NO,

A =1y
nin >
NO

SET OVFL TO INDICATE A SwWAP

SWAP
wine

AN

UPDATE

NO»

YES.
NO»

#% NN ERRORS #TOTAL ##RTE ASMB T750420%#

14-16

NUMBER

OF COMPARES

ADDRESS QOF nIn

ADDRESS OF
" OXOR “ymn
IGNS ?

SUBTRACT

07

DON*'T SWAP

SWAP

" - NN
nwiyn ?

DON'T SwWAP

D
ngn

IIJII

win ADDRESS.

wyn ADDRESS.
CNTR. CNTR

DO NEXT COMPARE
ANY SWAPS THIS PASS ?

REPEAT PASS

A = nyn,

START NEW PASS

AND

=0 ?

llJll

Microprograms

EXAMPLE 3: SHELL SORT, APPLICATION/TIMING CONSOLE RUN SHEET

*ON, FMGR
:RU, ASORT, 1,508 +———4dRUN ASSEMBLY LANGUAGE SORT]

START OF SORT CONSOLE LU, NUMBEE OF SOET ELEMENTS]

END OF SORT

HOURS MINUTES SECONDS

STOP 12 39 34,76
START @ 18 39 22,92 <=mfRUN TIME = 11.84 SECONLCS)
:RU,MDEP = $L.0AD WCS WITH SORT MICROPROGRAM|

COMPUTER TYPE: 1=21MX,2=21MX E-SEEIES
TYPE(1 OR 2>?2
$LU,13

LU¢# RANGE STATUS
13 0934080e--234777 1

$LD, "M2. IE JUSE FILENAME IN $CODE STATEMENT]
$EX

$END MDEP
tRU,MSORT, }, 5000 <mmmmmmed RUN MICROPEOGRAMMED SORT]

START OF SORT CONSOLE LU, NUMBER OF SOET ELEMENTéI

END OF SORT

HOURS MINUTES SECONLDS

STOP 3 1 41 15.87

START : 12 41 14,45l RUN TIME = 1.42 SEGONDS!]
tEX

$END FMGR

14-17

Microprograms

14-4. MICROPROGRAMMED 1/0 OPERATION EXAMPLE

This paragraph contains an example of properly microprogrammed I/O operation in the RTE system
environment. An Assembly language privileged section driver (DVAxx) is shown as it would appear
“normally”, then the microprogram enhanced driver (DVMuxx) is shown. The FORTRAN IV program,
shown first is used for executing the privileged I/O operation. The console run sheet and microprogram
are included in the final part of this example.

PAGE 008! FTN4 - RELEASE 24177C - JULY, 1972

0801 FTN,L

poe2 PROGRAM MPI10

08083 INTEGER IBUFR(5),P(5),CONS

9004 EQUIVALENCE (P(1),CONS), (P(2),LU)
0005 DATA 1IBUFL/S/

8006 C

08087 C GET CONSOLE LU, INPUT DEVICE LU

oep8 CALL RMPAR (P)

eesy C

@016 C PERFORM INPUT FROM DEVICE

ge11 CALL REIO (1,LU,IBUFR,IBUFL)

egl2 C

#8613 C DISPLAY INPUT DATA

go14 WRITE (CONS,188) IBUFR

0215 100 FORMAT (/,X,5A2,/)

éeg16 END

** NO ERRORS* PROGRAM = §0048 COMMON = Q0000

The FORTRAN program used is the same whether the “normal” driver or enhanced version is used.
The driver sections (initiation, privileged, completion) are prepared according to the guidelines in the
Real Time Executive III Software System Programming and Operating Manual, part no. 92060-90004.,
Notice that the privileged section of the microprogram enhanced driver (the part that is micropro-
grammed) is much shorter than the complete Assembly language driver, thus, saving main memory
space. The entire “old” privileged section is not needed with the new version. Now, from location PMxx
you proceed immediately to the microprogram. This modified part of the driver saves the environment,
inputs data, and is used when returning from control memory to restore the environment. Comments
on the operation of the driver are included right in the listings.

Figure 14-2 is the flowchart for the microprogram. The console run sheet for microprogram prepara-
tion and the microprogram called from PMxx in the driver are shown last. Note that the microprogram
saves the DMS status. The microprogram must be sensitive to DMS to operate properly in an RTE 111
system. SSM and JRS in the microprogram are DMS instructions. The EQU statements point branch
instructions to these microroutines outside this microprogram. Note that Memory Protect status is
checked and DMS status is properly restored on exit. This is an example of how to properly interface
with the RTE system.

14-18

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 1 of 3)

PAGE

veo1
goo2x
2003
B2o4ax%x
(61714358 3
BB06 %
PROT*
0008 %
0009
o010
go11
Bo12%
201 3%
Polax
PB15%
Po16
0017
2018
2019
2020
ge21
222
8v23
8624
8025
Be26
827
0228
Be29
PR30
P31
8032
2833
B34
20835
2036
8037
PR38
2839
0040
PR41
vo42
8043
Be44
2045
246
oe47
2048
2049
10141577}
2051
eps52
veS3
Be54
vess

0o0o2 #01

ASMB, L
SAMPLE PRIVILEGED DRIVER
AN *"x" IN COLUMN 19 INDICATES A STATEMENT THAT IS NOT

REQUIRED FOR THE MICROPROGRAM ENHANCED VERSION (DVMXX)
OF THIS SAMPLE PRIVILEGED DRIVER

00000 NAM DVAXX,O0
ENT IAXX,PAXX,CAXX
Sup

INITIATION SECTION

00000 00RO 1AB7 NOP

00001 B72167R STA SCODE SAVE SELECT CODE

00002 161665 LDA EQT6,1 GET CONWD

00003 0O12200R AND =B77 ISOLATE REQUEST CODE
80084 ©52201R CPA =Bl READ REQUEST ?

000BS @26007R JMP BFCHK YES, CONTINUE

P00OV6 B26015R JMP REJCT NO, REJECT 1/0 REQUEST
00007 161665 BFCHK LDA EQT6,1 GET CONWD

00010 B122062R AND =B377717 ISOLATE BITS 15,14
00011 B52201R CPA =Bl BUFFERED 1/0 ?

00812 B26017R JMP RQOK YES, DO 1/0

008013 B522083R CPA =B3 CLASS I/0 ?

000214 B26017R JMP RQOK YES, DO, 1/0

POV1S ©B2404 REJCT CLA,INA NO, ERROR

00016 1260080R JMP IAXX,I TAKE REJECT RETURN
08017 P62167R RQOK LDA SCODE A = SELECT CODE (SC)
BPP28 ©32170R IOR CLC *CONFIGURE PRIVILEGED
00021 ©72103R STAa PRCLC * SECTION CLC

00022 B62167R LDA SCODE CONFIGURE STC'S

P0023 B32171R IOR STC IN

00024 P72045R STA INSTC INITIATION SECTION
00025 ©072113R STA PRSTC * & PRIVILEGED SECTION
PBR26 ©22204R XOR =B1200 *CHANGE TO LI1A SC

00027 B72075R STA PRLIA *CONFIGURE PRIVILEGED SECTION LIA
0PO308 161663 LDA EQT4,1 CLEAR EQT4

BBB31 B12208SR AND =B167777 BIT 12 TO ALLOV
PRR32 171663 STA EQTA4,1 NORMAL TIMEOUT
P0B33 861774 LDA EQTIS SAVE

00Q34 B72160R STA EQ15 EQT15

PPB35 B61663 LDA EQT4 & EQT4

PBB36 ©@72161R STA EQ4 ADDRESSES

BBB37 161667 LDA EQTS8,1I GET DATA COUNT

00040 BB2021 SSA,RSS NEGATIVE ?

R4l ©B3004 CMA, INA NO, SET NEGATIVE
BOP42 B72157R STA COUNT

ROR43 161666 LDA EQT7,1 SAVE

Pog44 B72156R STA BUFAD BUFFER ADDRESS

00045 183788 INSTC STC @,C START DEVICE

0BR46 002400 CLA INDICATE OK INITIATION
OBB47 126000R JMP IAXX,I RETURN

14-19

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 2 of 3)

PAGE 0003 #01

0O57*
P058x%
00B59 *
0260
0061
ve62
0063
0o64
0865
0066
08617
vo68
0869
0e7@
0071
w72
P073%
0274
0875
0o76
0277
0018
0679
0280
oos1
¢age
0e8 3
oe84
Re8SsS
og8e6
0e87
oo88
0e89
2090
2091
ge92
Pe93
2094
0095
0B96
B@97
2098
0e99
0100
Bl1o1
Ble2
B1023
2104
21825
B1o6
0107
Bgl1o8
o109
g11@
o111l
o112

14-20

PRIVILEGED SECTION

00050
0oesS1
00052
00053
20354
20055
00056
000517
02060
gaae6l
QoR62
00064

o000
163100
106706
186707
©72164R
076 16SR
201529
192201
002004
@72166R
185743
185753

SS5M DMSTS

000866
00667
00070
00071
QeaT2
000173
20074
RBB75
gee76
ooB77
00100
20101
go102
021083
00104
@el1es
02106
00107
oo110
2o111
goil2
02113
22114
eo115
28116
00117
02120
0g121
go122
pB123
go124
eg125
0B127
0@131
0B132
00133
00134
2@135
0B136

061778
@72171R
002404
071770
182108
102500
17215@R
@36150R
836151R
P26110R
103100
186706
003400
172152R
162153R
©32200R
172153R
B26112R
183100
183700
062171R
vo2002
@2612SR
065654
160001
002020
182706
Bo6004
160001
002020
1827087
185755
185745
183101
000036
182101
P66 165R
B62171R
071770

PAXX

NOP

CLF @
CLC 6
cLC 7
STA ASV
STB BSV
ERA,ALS
socC

INA

STA EOSV
STX X5V
STY YSV

SAVE DMS STATUS

PRLIA

PRCLC

CLF®@

PRSTC

EXIT

EXITI

LDA MPTFL
STA MPTSV
CLA, INA
STA MPTFL
STF @

LIA @

STA BUFAD,!
1SZ BUFAD
1SZ COUNT
JMP CLFO
CLF @

CLC @

cCa

STA EQI15,1
LDA EQ4,1
IOR =B100R6
STA E@4,1
JMP EXIT
CLF @

STC @é,C
LDA MPTSV
SZa

JMP EXITI
LDB INTBA
LbAa 1,1
ssa

STC 6

INB

LDA 1,1
SSA

STC 7

LDY YSV
LDX XSV
CLo
SLA,ELA
STO

LDB BSV
LDA MPTSV
STA MPTFL

TURN OFF INTERRUPTS
TURN OFF
DCPC INTERRUPTS
SAVE A,
B,
E,

0,

X, &

Y REGISTERS
! OMIT FOR RTE 2 (!
SAVE MEMSRY PROTECT

FLAG
TURN OFF MEMORY

FLAG
TURN ON INTERRUPTS
GET DATA FROM 1/0 CARD
STORE DATA IN BUFFER
UPDATE BUFFER ADDRESS
LAST DATA ?

NO, PREPARE FOR NEXT INPUT
TURN OFF INTERRUPTS
TURN OFF DEVICE
SET TIMEOUT FOR

ONE TICK & SET

BIT 12 IN EQT4 SO

RTIOC WILL CALL

CA27 ON TIMEOUT

TURN OFF INTERRUPTS
ACTIVATE DEVICE FOR NEXT INPUT
WAS MEMORY
PROTECT ON ?
NO, FORGET DCPC'S
TURN
DCPC'*'S
BACK
ON
IF
THEY
WERE
ON
RESTORE Y,
X,
0.,
E, &

B REGISTERS
RESTORE MEMORY
PROTECT FLAG

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 3 of 3)

PAGE 0004 #01

2113
114
B115
glleé
2117
2118
2119
glae
glzl
Bgl22*
p123
o124
g125
Bl126
o127
ol28x
2129 %
P130*
P131=*
P132*
P133%
2134
2135
2136
2137
0138x%
2139
0140
P14l
Bl4a2
2143
0144
P145
gl4a6
2147
D148 %
Q149%
P150%
gl151=
@152
2153
2154
@155
B156
2157
2158
2159
0160

Pol141
o142
00143
22144
20147
20150
Ppo1S1
pB152
PR153

PR 156
vB157
vo160
vo161
pale2

po20062
P261S1R
P62172R
185715
102100
1260@5S6R
P62172R
122100
185715

PO00o0D
PPRRRO
Voo
peeoen
VoeRRo

S5Za
JMP
LDA
JRS
EX1 STF
JMP
EXIT2 LDA
STF
JRS
BUFAD BSS
COUNT BSS
EQ15 BSS
EQ4 BSS
DMSTS BSS

END PRIVILEGED SECTION

COMPLETION SECTION

02163
gol164
PR165S
vo166

RB167
00170
vo171
vo172
0173
00174
POB175
Po176
00177

oeoRow
002400
165667
12616 3R

00000
166700
103700
P0P0O0
000000
000000
000000
00206060
PeR000Y

CAXX NOP

CLA

LDB

JMP
SCODE NOP
CLC CLC
STC STC
ASV BSS
BSV BSS
EOSV BSS
XSV BSS
YSV BSS
MPTSV BSS

WAS MEMORY PROTECT ON ?
EXIT2 NO, LEAVE OFF
ASV YES, RESTORE A REGISTER
DMSTS EX1 RESTORE DMS STATUS
%] TURN ON INTERRUPT SYSTEM
PAXX,1 EXIT
ASV RESTORE A REGISTER
0 TURN ON INTERRUPT SYSTEM
DMSTS PAXX,I RESTORE DMS STATUS & RETURN

L N

SET UP FOR NORMAL RETURN
EQT8, 1 TRANSMISSION LOG TO B
CAXX, 1 RETURN
2 *
g,C
1 *
1 *
1 *
1 *
1 *
1 *

SYSTEM COMMUNICATION AREA

01650
01654
1663
21665
21666
01667
1774
21770

. EQU
INTBA EQU
EQT4 EQU
EQT6 EQU
EQT7 EQU
EQT8 EQU
EQTIS EQU
MPTFL EQU

END

1658B
«+4B
«+13B
«+15B
«+16B
«+17B
«+124B
«+120B

*x NO ERRORS *TOTAL **RTE ASMB 750420x%%

14-21

Microprograms

EXAMPLE 4: ENHANCED DRIVER (Sheet 1 of 2)

PAGE

2001
0R02=
P003%
P004x%
8805
0006
2007
2008 x
0009 %
o010«
P011x%
BB12
8613
0014
BB15S
vR16
2017
2218
Bo19
0020
go21
0022
0023
0024
2025
0026
2827
2028
2029
8030
8@31
@032
2033
0234
P035
2036
2837
2238
2839
2240
g4l
Ba42
0043
2044
2045

14-22

voe2 #0901

ASMB,L

SAMPLE PRIVILEGED DRIVER WITH MICROPROGRAM ENHANCEMENTS

0o0Po0o NAM
ENT
SUP
INITIATION SECTION
V0200 0O0PPE@ IMO7 NOP
00081 ©B72061R STA
00802 161665 LDA
POPB3 B12B63R AND
00004 B52064R CPA
0Be0BS B26007TR JMP
PO2C6 B2601SR JMP
000B7 161665 BFCHK LDA
00010 B12065SR AND
PBO11 B52064R CPA
00012 B26817R JMP
PBO13 @52066R CPA
020214 026017R JMP
00015 0082404 REJCT CLA,
008016 126000R JMP
PO217 B62061R RQOK LDA
00028 B32062R IOR
20821 B72037R STAa
P0P22 161663 LDA
00023 ©B120867R AND
00024 171663 STA
00825 861774 LDA
00026 @72052R STA
02027 861663 LDA
0PY38 @72053R STA
PB231 161667 LDA
00032 @pB2e21 Ssa,
00033 803004 CMaA,
00034 @72@46R STA
POB35 161666 LDA
P0R36 O@72045R STA
98037 18378@ INSTC STC
000408 QL2400 CLA
00041 1260800R JMP

DVMXX, 0

IMXX ,PMXX , CMXX

SCODE SAVE SELECT CODE

EQT6, 1 GET CONWD

=B77 ISOLATE REQUEST CODE

=Bl READ REQUEST ?

BFCHK YES, CONTINUE

REJCT NO, REJECT 1/0 REQUEST

EQT6, 1 GET CONWD

=B37777 ISOLATE BITS 15,14

=Bl BUFFERED 1/0 ?

RQOK YES, DO 1/0

=B3 CLASS 1/0 ?

RQOK YES, DO 1/0

INA NO, ERROR

IMXx, I TAKE REJECT RETURN

SCODE A = SELECT CODE (SC)

STC CONFIGURE STC IN

INSTC INITIATIOfN SECTION

EQT4, 1 CLEAR EQT4

=B167777 BIT 12 TO ALLOW

EQT4, I NORMAL TIMEOUT

EQT1S SAVE

EQ1S5 EQTIS

EQT4 & EQT4

EQ4 ADDRESSES

EQTS, I GET DATA COUNT

RSS NEGATIVE ?

INA NO, SET NEGATIVE

COUNT

EQT7,1 SAVE

BUFAD BUFFER ADDRESS

@8,C START DEVICE
INDICATE OK INITIATION

IMXx, I RETURN

Microprograms

EXAMPLE 4: ENHANCED DRIVER (Sheet 2 of 2)

PAGE 0003 #01

P047T%x
0048 %
P049 %
2250%*
2051
gos5e
2053
Bo54
2055
2056
ves?
2058
2059
2060
2061
Q62
P06 3%
206 4%
P06 5%
0066 %
0086 7%
0068 x
2069
Be70
22171
272
P073%
274
20175
076 %
237 7%
o778 %
BB79 %
080
0081
oB82
2B83
2084
2085
0086
20817
og88

PRIVILEGED SECTION

Poo42

02243
00044
00045
20Q46
oo0o47
00050
20051
oBO52
PoP53
000854

000000 PMXX

105600
POROBS4R
000000
Pev0o00
001770
POOBS4R
100042R
000000
0ov0o0o0D
PooRe0

BUFAD
COUNT

EQILS
EQ4
DMSTS

NOP
MIC
MIO
DEF
BSS
BSS
DEF
DEF
DEF
BSS
BSS
BSS

END PRIVILEGED SECTION

COMPLETION SECTION

BRes5s
geeBs6
80057
PoR60

2og61
vov62

00RO
0024020
165667
126855R

oee0oon
103700

CcMO7

SCODE
STC

NOP
cLA
LDB
JMP

NOP
STC

MI0, 195600B,0 EQUATE MI0Q & MICROPROGRAM

INVOKE MICROPROGRAM
DMSTS ADDRESS OF DMS STATUS SAVE WORD
1 BUFFER ADDRESS
1 DATA COUNT
MPTFL ADDRESS OF MEMORY PROTECT FLAG
DMSTS THESE 2 DEF'S ARE HERE SO THAT
PMXX, I MId{ MAY INVOKE JRS EFFICIENTLY
1 ADDRESS OF EQTI1S
1 ADDRESS OF EQT4
1 DMS STATUS WORD

SET UP FOR NORMAL RETURN
EQTS8, I TRANSMISSION LOG TO B
cMxx, I RETURN
0,C

SYSTEM COMMUNICATION AREA

01658
B1654
01663
81665
01666
01667
21774
21770

INTBA
EQT4
EQT6
EQT7
EQT8
EQTI1S
MPTFL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

1650B
«+4B
«+13B
«+15B
«+16B
«+17B
«+124B
«+120B

** NO ERRORS *TOTAL *xx*xRTE ASMB 750420x*x%

14-23

Microprograms

11 OMIT IF OPERATING SYSTEM IS RTE 2 !!
SAVE DMS STATUS (JSB SSM 1.E. 20347B)
¥
[GET SC (SELECT CODE) (L=CIR)|
¥
FORM LI+ SC IN S1, EXECUTE LI+ SC
FORM STC SC,C IN S1
| INPUT DATA INTO S2
¥
READ BUFFER ADDRESS FROM BUFAD INTO S4
FORM CLC SC IN S3
PLACE UPDATED BUFFER ADDRESS IN S5 (S5=54+1)
WRITE UPDATED BUFFER ADDRESS INTO BUFAD

¥
IWRITE DATA INTO BUFFER]
v

READ (& UPDATE) DATA COUNT FROM COUNT INTO S4
FORM STC 4 IN S2, FORM STC S IN S2
WRITE UPDATED DATA COUNT INTO COUNT

2 N
[uPDATED couNT = 0 2}
Y

[TURN OFF DEVICE CEXECUTE cLC SC)J
¥

PLACE ADDRESS EQ15 IN S1
READ ADDRESS OF EQT1S USING S1 & INDIRECT ROUTINE
FORM ADDRESS OF EQ4 IN S1 (S1=S1+1)
FORM -1 IN S3, WRITE -1 INTO EQT1S

L]
READ ADDRESS OF EQT4 USING S1 & INDIRECT ROUTINE

TURN ON BIT 12 IN VALUE READ FROM EQT4
WRITE UPDATED EQT4 VALUE INTO EQT4

EEADY DEVICE FOR NEXT INPUT (EXECUTE STC SC,C)J*————-

[

14-24

[WAS MEMORY PROTECT ON ? (MPTFL=02) ——
Y

[TURN ON MEMORY PROTECT CEXECUTE STC S5)]

-

! OMIT IF OPERATING SYSTEM IS RTE 2 !!

RESTORE DMS STATUS, EXIT (JMP JRS I.E. 20354B)
]

1Y DO ONLY FOR RTE 2 1!

PERFORM A JMP PMXX, I

Figure 14-2. Example 4, Microprogrammed Privileged Section Flowchart

Microprograms
EXAMPLE 4: MICROPROGRAMMED DRIVER, CONSOLE RUN SHEET

*0ON,FMGR
tRU,EDITR < —JCREATE MICROPROGRAM SOURCE FILE]
SOURCE FILE?
/A

EOF
/T15108,15,28,25,308,40 ¢—iSET TABS FOR MICROINSTRUCTION FORMA”
/ MICMXE,L35:333521MX E-SERIES ORF-SERIES

/ $CODE='M3.1E,REPLACE;; ; OBJECT TO DISC

BODY OF USER SELECTED MICROPROGRAM OBJECT FILENAMEI
ICROPROGRAM
/ELC&M3.I1E = :USER SELECTED MICROPROGRAM SQURCE FILENAMEI

LS FILE 2 33
END OF EDIT

:RU,MICRO,2 < —iM 1 CROASSEMBLE MI CROPROGRAM]
/MICRO: END
:RU, MDEP JLOAD MICROPROGRAM INTO WCS|
COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPE(1 OR 25?2
$LU, 13
LU# RANGE STATUS
13 234080--834777 1
SLD, 'M3. 1E {FILENAME SPECIFIED IN $CODE STATEMENT]
$SEX
SEND MDEP < JINPUT DEVICE LU|

:RU,MPIO, 1,5
B Y S

!CONSOLE LUI
DATA

GAHDB

tEX
$END FMGR

14-25

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 1 of 3)

PAGE 0002 RTE MICRO~ASSEMBLER REV.A 760805

0001
0002
0003
0004
0005
0006
ooo07
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
D024
0025
0026
0027
0023
0029
0030
0031
00132
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

34000

34020
34021
34022

34023

34024
34025
34026
34027
34030
34031

34032
34033
34034
34035
34036
34037

34040
34041

14-26

327

230
304
000

010

357
010
010
353
010
010

227
351
010
010
007
210

010
210

001007

036747
016347
075707

024507

175007
141007
040606
007023
141007
013047

174707
107123
145107
601147
147207
050007

046647
042007

MICMXE oL 21MX E/F-SERIES
$CODE=*MDRVRyREPLACE OBJECT TO DISC
LT TR TR T TR TR R g Y R L TR T R LR RN gy
& #
SAMPLE PRIVILEGED SFcTION MICROPROGRAM FOR DVMXX «
o
LR R X L R g Y Y Y Y I TS T]
ORG 340008 105600 => 34000
HORI EQU 68
INDIRECT EQU 2518
SSM EQU 20347R
JRS EQU 20354R
JMP 340208 SAVE ENTRY
ALGN POINTS
LR TR R Pt -T2 R AT 2
1) OMIT IF OPERATING SYSTEM IS RTE 2 !!
SAVE DMS STATUS (JSR qSM I.E. 20347B)
BHBDD DR BB R BB U R DD DD DB R R R R RRDRBRBBD BB DS HD NN
READ SSM EXPECTS A
JSB SSM READ OF DMSTS
DEc P P SSM INCtS P 1
PEFTEE TR T LERL LT T gy ey TOO MANY FOR US
GET SC (SELECT CODE) (L=CIR)
PR T LT LR RN R e T T YTy X
L CIR L = SELECT CODt

L T e S T T ey
FORM L1# SC IN S1s EXECUTE LI®# SC

FORM STC SCsC IN SI &
INPUT DATA INTO S2 &
- X-2-2-2-X-2-2-X-2-%-X-2 %-X-F - X-F-X X WERLE-XL-E-X-E-E-X ¥ X X
IMM CMHT S1 3768 S1 = 400 = LI# 0
10e Sl Sl S1 = LI# SC
106 IRCM S1 EXECUTE LI# SC
IMM L4 CM{ 0 S1 3038 S1=1700=STC 0+C
I0R S1 Sl S1 = STC SC,C
s2 10l S2 = DATA
2 22222 X222 22 2-2-2 X222 YWE-R-R-R2R-R 22X YRR LR R R R-2 R XX
READ BUFFER ADDRESS FROM BUFAD INTO Sé& »
FORM CLC SC IN S3
PLACE UPDATED BUFFER ADDRESS IN S5 (S5=S4+1)
WRITE UPDATED BUFFER ADDRESS INTO BUFAD o
22 XXX 222X 222X 2R RY-FYYTY R YR -2 R-2-2 2 YRR 2 R R-2-X 0-X-2 2 % X
READ INC PNM P READ BUF ADDR
IMM L4 CMLO S3 1438 $3=4700=CLC 0
IOR S3 S3 $3 = CLC SC
S¢ TAB S4 = BUF ADDR
INC S5 Sé S5 = NEXT ADDR
WRTE TAB SS UPDATE BUF ADDR

Y Y Yy Yy YY YY)
WRITE DATA INTO BUFFER *
BORBORERRERERRRRRRR TRyt
M S4 M = BUF ADDR
WRTE TAB S2 WRITE DATA

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 2 of 3)

PAGE

0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
00k5
0066
0067
0068
0069
0070
0071
0072
0073
0074
0n075
0076
on77
06078
0079
NOKHO
081
oosz
0083
0084
0085
0086
00R7
(R 1]
0089
no9n
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

0003 RTE MICRO~ASSEMBLER REV.A 760805

34042
34043
34044
34045
34046

34047

34050

34051
34052
34053
34054
34055
34056
34057

34060
34061
34062
34063
34064
34065

34066

227
350
007
007
210

320

010

343
004
230
300
007
343
210

230
300
347
011
210
327

010

174707
073062
143047
101147
046007

043302

N44606

172507
175007
040647
012477
141007
177107
044007

040647
012477
136507
001007
040007
003347

040606

L2 E-L 5L 22X 202 R-2 R 8 - RTRL LR 00200 R-2-2-0 2 -2 0 2R3 R 2 2]

READ (& UPDATE) DATA COUNT FROM COUNT INTO S4

FORM STC 4 IN S2s FNORM STC 5 [N S?
WRITE UPDATED DATA cnuUNT INTO COUNT
L2 X2 222222222221 ey r-rRa L2202 22 28 2-X-2 222 8%
READ INC PNM P READ DATA CNUNT
ImM L1 CMLn S°? 358 S2 = 704 = STC 4
INC S2 se S2 = 705 = STC S
INc S4 TAH S4 = NEW COUNT
WRTE TAB S4 WRITE NEW COUNT

Y I TR LT L2 TR
UPDATED COUNT = 0 ? =

AR A2 2L -2 200 X-£-2 X X -2 ¥

JMP CNDX aL7 RJS STC NOy STC SC»C

L2 L-0 X222 02X 22200 % 22 P ¥ X225 2-E-F 2 -2 %]

TUKN OFF DEVICE (EXECUTE CLC SC)
I Y R e Y Y I T Y e

106 IRCM S3 EXEC CLC SC
L R ey I T T T A e T 2
PLACE ADDRESS OF EQls IN Sl *
% READ ADDRESS OF EQT15 USING S1 R INDIRECT ROUTINE =
#* FORM ADDRESS OF EQ4 TN S1 (S1=S1+1) *
FORM =1 IN S3. WRITE -1 INTO EQT1S
R R R R R R R R R S R R T R R R R L
IMM Low L 3758 L = 177775 = =3
suR S1 P S1 = EQ15 ADOLR
READ ™ Sl GET EQT15 ADDR
JSB I0FF INDIRECT
INC S1 Sl S1 = ADDR OF EQ4
IMM LOw S3 377B S3 = 177777 = -1
WRTE TAB S3 S3 EAT1IS = -1

3+ 40 2 3 32 48 35 3 37 30 40 3 4 3 38 40 32 3 3 35 4 g5 4p 33 30 38 3 32 2P 4P 3 30 3P 35 4p 20 30 $F 30 2 38 3F 30 28 3 3P 2 2 2630 3 3

READ ADDRESS OF EQT4 nJSING S1 & INDIRECT ROUTINE *#

TURN ON BIT 12 IM VALUE READ FROM EQT4
* WRITE UPDATED EQT4 VALUE INTO EQT4 d
I Y YT 2 s 2T T TR R R
READ M S1 READ EQT4
JSH IOFF INDIRECT
IMM HIGH L 3578 L = 167777
SONL S1 TAB TURN ON BIT 12
WRTE TAB S1 EQT4 RBRIT 12 = 1

JMP MPSTAT CHK MEM, PROT,
By IR Ty R ey Ly Y 2 XY

* READY DEVICE FOR NEXT INPUT (EXECUTE STC SCsC) #
L R TR e e 2R T AT RS TR L Y T

STC 106 IRCM S] EXEC STC SCsC

14-27

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 3 of 3)

PAGE 0004 RTE MICRO=-ASSEMBLER REV.A T60R0S

9102 LR T R T LT R

0103 # WAS MEMORY PROTECT ON ? (MPTFL=0?) #

0104 TS L T T ey

0105 34067 227 174707 MPSTAT READ INC PNM P READ MPTFL
0106 34070 300 012477 JSB IOFF INDIRECT

0107 34071 010 000743 TON TAR MPTFL = 0 7
0108 34072 320 043602 JMP CNDX AL7Z RJS #+2 NOs LEAVE
0109 # MEM, PROT, OFF
0110 Y L R R Y R AR R L T L R R R R gy

0111 # TURN ON MEMORY PROTECT (EXECUTE STC 5) +#

0112 Ry R e e e Y T Y]

0113 34073 010 0472606 106 IRCM S2 EXEC STC S
0114 T R R L T LR R R A AR R g R X X TR R R
0115 # 11 OMIT IF OPERATING SYSTEM IS RTE 2 !! #*
0116 ¥ RESTORE OMS STATUSs EXIT (JUMP JURS I.E. 20354R) #
0117 FE-X-2-X-X-X-ELSUR-R-R-E-X-2 R L-R-R-F-2- L EEREER-E-FR-LR-R-E-2- B 2-F-3 X E R 15 KRR EIRTE-X-]
0118 34074 227 174707 READ INC PNM P JRS EXPECTS A
0119 34075 324 016607 JMP JRS READ OF DMSTS
0120 B Y Y R Ry

01°1 # 11 DO ONLY FOR RTE 2 1! =

0122 #* PERFORM A UMP PMXX,I i

0123 P L T L R LTy o

0124 * INC P P P => DEF PMXX,I
0125 & READ INC PNM P READ PMXX ADDR
0126 #* JSB IOFF INDIRECT

0127 # READ MPCK INc P M JMP PMXX, I

Jlz28 # RTN ION

0129 END

END OF PASS 2: NO ERRORS

14-28

APPENDIXES

Appendix A
ABBREVIATIONS AND DEFINITIONS

ABBREVIATIONS AND DEFINITIONS

An alphabetically arranged listing of abbreviations and definitions used in the manual follows. The
listing does not contain definitions of terms such as X-register, S-register, etc., or definitions for
languages (FORTRAN, etc.) and other commonly used terms such as K, nS., etc. Pseudo-
microinstructions, abbreviations and definitions for micro-orders, and main memory (Assembly lan-
guage) instructions are not included either. Refer to the computer operating and reference manual or
to micro-order lists in this manual for explanations of these mnemonics.

ABBREVIATION DEFINITION

AAF A-Addressable Flip-flop

ACM Association of Computer Manufacturers

ALU Arithmetic/Logic Unit or ALU field (word type I microinstruction)
ASG Alter-Skip Group (machine instruction category)
BAF B-Addressable Flip-flop

BKTBL Breakpoint table (MDE)

BRCH Branch micro-order field, word type III or IV microinstruction
BSM Batch Spool Monitor (RTE subsystem software module)
CIR Central Interrupt Register
CM Control memory

CMAR Control Memory Address Register

CNDX Condition field, word type II microinstruction

CNTL Control

CNTR Counter, either the lower eight bits of the Instruction Register or a

micro-order.

COND Condition field, word type III microinstruction
CPU Central Processor Unit
CRT Cathode ray tube (console device)

DCPC Dual Channel Port Controller (computer accessory)

DMS Dynamic Mapping System (13305A accessory)

DSPI Display indicator register or a micro-order

DSPL Display register or a micro-order

DVR36 Driver 36 for WCS board (12978A and 13197A)

EAG Extended Arithmetic Group (machine instruction category)
EAU Extended Arithmetic Unit (machine category)

A-l

Appendix A

ABBREVIATION DEFINITION
EDITR RTE System Interactive Editor software module
EIG Extended Instruction Group (machine instruction category)
EOF End of file
EQT RTE system equipment table
ESP Engineering supplement package
EXEC RTE system call to operating system
FAB Firmware Accessory Board (13304A 3.5K CM storage accessory)
FF Flip-flop (single-bit storage element)
FFP Fast FORTRAN Processor (computer accessory)
FFT Fast Fourier Transform
FMGR File Manager (RTE system)
FPP Hardware Floating Point Processor
HP Hewlett-Packard
I/0 Input/Output
IBL Initial Binary Loader
IC Integrated circuit
I10G Input-Output Group (machine instruction category)
IR Instruction Register
KB/S Kilobytes per second
KP/S Kilopairs per second
KW/S Kilowords per second
LED Light-Emitting Diode (indicators on the computer)
LG Load and Go (tracks in RTE system)
LOADR RTE system loader (program name)
LS Logical Source (tracks in RTE system)
LU RTE system Logical Unit designator
M M-register
MDE Microdebug Editor (microprogramming support software)
MDEP Name for MDE user scheduled (stand-alone) program
MDES Name for MDE callable (subroutine) program
MEAR Memory Address Register (DMS)
MEM Memory Expansion Module (part of DMS)
MICRO Program name for RTE Microassembler (microprogramming support
software)
MIR Microinstruction Register

A-2

ABBREVIATION

MJL
MOD
MP
MPP
MRG
MXREF

OP

pROM
PTGEN

RAM
ROM
RPL
RTE
RU
SC
SRG
STR
SYS
TTY
ucs
UIG
USR
WCS
WCSLT
WLOAD
XFER

Appendix A

DEFINITION

Microjump Logic

Modifier field, word type II microinstruction

Memory Protect

Multiprogrammable Processor Port

Memory Reference Group (machine instruction category)

Name for RTE Microassembler Cross-Reference Generator (micro-
programming support software)

Operation field, word type I and II microinstructions
P-register
Programmable Read-Only Memory (integrated circuits)

Program name for pROM Tape Generator (microprogramming support
software)

Rotate/shift (logic)

Random Access Memory

Read-Only Memory (used in control memory, map logic, etc.)
Remote Program Load Configuration switches

Real Time Executive (operating system)

RTE system command designation

Select code

Shift-Rotate Group (machine instruction category)

Store field, word type I and II microinstructions

System

Teleprinter (console device)

User Control Store (13047A 2K CM storage accessory)

User Instruction Group (machine instruction category)

User

Writable Control Store (13197A 1K storage accessory)

WCS logical unit table

WCS I/0 Utility (library) routine (microprogramming support software)

Transfer

A-3/A-4

Appendix B
MICROINSTRUCTION FORMATS

MICROINSTRUCTION FORMATS

The four word type formats accepted by the microassembler appear below. The same type information
appears at the top of the microprogramming form contained in appendix D.

Word Type 1 LABEL oP SPECIAL ALU STORE s-BUS COMMENTS
Word Type 2 LABEL “IMM* SPECIAL | MODIFIER STORE OPERAND | COMMENTS
" . BRANCH

Word Type 3 LABEL BRANCH CNDX CONDITION SENSE ADDRESS | COMMENTS
Word 4 “JMP” | MODIFIER/

ord Type LaBeL | L oNeer | Vspeciar ADDRESS | COMMENTS

FIELD1 | FIELD?2 FIELD 3 FIELD 4 FIELD 5 FIELD 6 FIELD 7
1 10 15 20 25 30 40 72

OBJECT MICROCODE

The HP 1000 E-Series or F-Series object code microinstruction is represented by a nine digit octal
number, as follows:

XXX XXXXXX

The left three digits represent bits 23-16 of the microinstruction (the leftmost digit represents bits 23
and 22). Of the remaining six digits, the leftmost represents bit 15 and the other five represent bits
14-0.

Construct the octal representation of an object code microinstruction in the following way. Determine
the binary codes of the required micro-orders from appendix C. Form the codes, according to fields, into

a 24-bit string. Convert the string to octal by grouping bits.

Example:

Op Special ALU Store S-bus

ARS L1 PASS B B Micro-
orders
Op ALU S-bus Store Special
000110000[(00100[00100|100 10| ginary
NN RN NN NN oo
23 19 14 9 4 Code
\ / / \\ \ /// Nine Digit
030 010222 Octal Number

B-1/B-2

Appendix C
MICRO-ORDER SUMMARY
AND SPECIALIZED MICROPROGRAMMING N

MICRO-ORDER SUMMARY AND
SPECIALIZED MICROPROGRAMMING

APPENDIX

C

BINARY FIELD MICRO-ORDER SUMMARY

OP/ MODIFIER/ JMP IMMEDIATE BRANCH
MICROASSEMBLER ——=BRANCH | SPECIAL ALU COND MODIFIER | STORE | SENSE | S-BUS
(SOURCE) COLUMN NO.——»1¢ 15 20 20 20 25 25 30
BITS (ROM) ————+23 - 20 4.0 19-15 19-15 19-18 9.5 14 14-10
WORD TYPES 1-1v -1V I 1 I I, I i 1
Bit Pattern
00000 *NOP RTN DEC ALZ LOW TAB tRIS TAB
00001 ARS 8JTAB 0P11 ONES HIGH CAB CAB
00010 CRS CNDX OP10 CoUT CMLO IMPPA £MPPA
00011 LGS #%[ON DBLS ALO CMHI A A
00100 NRM | **RJ30 0P8 Lo B B
00101 DIV % J74 OP7 L15 #%100 % [0]
00110 LWF | **10G ADD RUN DSPL DSPL
00111 MPY *NOP OP6 **xHOI DSPI DSPI
01000 WRTE SRUN oP5 CNT4 £ MPPB £ MPPB
01001 READ | iMPP2 SUB IR11 $MEU $MEU
01010 ENV £ MESP OP4 I RUNE L #% CIR
01011 ENVE cov oP3 | NMLS CNTR CNTR
01100 JSB sov ZERO 1MPP **[RCM LDR
01101 JMP PRST 0P2 CNTS M M
01110 MM CLFL OP1 | NSFP PNM #* DES
01111 RTN STFL INC AL15 *NOP *NOP
10000 *%SRG2 *PASS NLDR s1 s1
10001 **SRG1 IOR NSTB 52 S2
10010 L1 SONL NINC s3 S3
10011 L4 ONE NDEC sS4 sS4
10100 R1 AND NRT S5 s5
10101 DCNT PASL NLT S6 S6
10110 ICNT XNOR NSTR 1 s7
10111 RPT NSOL NMDE S8 S8
11000 | ASG SANL FLAG 59 S9
11001 | TAK XOR E $10 510
11010 #MPP1 CMPL NINT s11 s11
11011 SFTCH NAND OVFL SP SP
11100 #INCI OP13 NSNG X X
11101 SHLT NSAL **SKPF Y Y
11110 $MPCK NOR IRS P P
11111 #*[OFF CMPS MRG S S

*Default micro-order.
FIf no RJS, bit 14 = 0.
}Means not normally used by user microprogrammer unless a specific accessory is installed.

§Means included here for completness only; reserved for exclusive use of system microprogrammers.
|INot normally used by user microprogrammer.
*%Use with caution (i.e., be completely familiar with the function.)

7115-31

C1

Appendix C

SPECIAL USE MICRO-ORDERS

Two micro-orders (FTCH and JTAB) assigned to the word type I Special field are used only in the base
set. These two micro-orders are listed in table 4-1 and in the various micro-order summaries only for
completeness. They are not to be used in “normal” user microprogramming because of their complex
functions and effect on the Save Stack. However, if you are planning to do system emulation, you may
have need of the summary information presented below.

FTCH. The FTCH micro-order does the following:

a.

d.

Stores the present contents of the M-register into the Memory Protect Violation register if Memory
Protect is installed. This is usually the address of the next Assembly language instruction to be
executed.

Clears the Memory Protect Violation Flag flip-flop and Indirect Counter if Memory Protect is
installed.

Clears the L-register and the CPU flag.

Resets microsubroutine Save Stack address logic.

JTAB. The JTAB micro-order is used to complete the Fetch microroutine and begin the execution
operation. JTAB works as follows:

a.

If INCI was not specified in the Special field of the previous microinstruction, JTAB calls for the
CMAR to be loaded with an execution microroutine address dependent upon the eight most
significant bits (15-8) of the IR. These eight bits functions as an address to the Jump Table, the
contents of which become the target branch address.

If INCI was specified in the previous microinstruction, the branch as described above is made only
if the condition mapped by bits 19-14 of the microinstruction is met. The condition will be coded
with ALU and S-bus field micro-orders, not Condition field (word type III) micro-orders. For
example, JTAB is used once in the base set at CM location 2. The Condition field is represented by
the ALU field (INC) which has the same bit pattern as AL15 in the Condition field. Bit 14 of the
microinstruction is one (P is in the S-bus field) so the RJS feature is enabled. Therefore the branch
through the Jump Table will only by made if the conditions of AL15 RJS are met. When the
specified conditions are met bit 15 of the IR is masked to Look-up table, then the branch through
the jump table address in IR bits 15-8 is executed.

If the Run flip-flop is reset or an I/O interrupt is pending and not held off by the Interrupt Enable
flip-flop (refer to IOFF in the Special field, table 4-1) and INCI was not specified in the previous
microinstruction, the operation in the store field is inhibited and a branch to CM location 6 will
occur instead of a branch to the address specified by the Jump Table.

Inhibits the operation specified in the Store field if a Memory Reference Group instruction is in the
IR and bit 15 out of ALU was set during the previous word type I or II microinstruction or, if a
JMP, JSB, STA, STB, or ISZ Assembly language instruction is in the IR. Logically:

Inhibit Store = JTAB[(IR14 + IR13 + IR12) AL15 + IR14+ IR12 IR11 + IR14+ IR13- IR12 +
IR14 - IR13 - IR11]

Turns on the Interrupt Enable flip-flop.

Appendix C

e. Initializes the microsubroutine Save Stack address logic.

Because of JTAB’s complex functional structure, and intended use (it can be seen only at locations
00001, 00003 and 00305 in the base set), it should not be used in normal “user” microprogramming.

MAPPING DETAILS

Section 6 provides information on usable UIG instructions and related CM entry point addresses. An
understanding of that information is prerequisite to the material in this appendix. The base set
mapping procedure, UIG instruciton decoding (bits 15 through 8), module selection code indexing (bits
8 through 4), and secondary indexing (bits 3 through 0), are explained below. These explanations
primarily concern UIG mapping but, some information on the HP reserved areas is also included so
that if you plan system emulation the appropriate data can be extracted. It should be noted that it is
not intended that the HP 21MX E-Series Computer base set be changed. The base set mapping concept
is applicable to any instruction placed in the IR.

UIG DECODING

The base set FETCH microroutine will normally be used to store the UIG instruction in the IR. This
procedure occurs during execution of the microinstruction at CM location 00000. (See the base set
listing in appendix G for all references to CM base set locations included in this discussion.) Figure C-1
illustrates UIG instruction bit patterns. Note that bits 15 thorugh 9 must have a 101 or 105 (octal)
value to fall within this instruction group.

At location 00001 in the base set, a JTAB micro-order causes examination of bits 15 through 8 of the IR
and conditionally causes this upper byte to be taken as an index (address) to the ROM Jump Tables.
For the JTAB conditions, refer to the JTAB explanation in this appendix immediately preceding this
mapping discussion. As seen in figure C-1, the upper 8 bits of a UIG instruction (in the IR), when
examined by JTAB, will be decoded as a 203, 212 or 213 (octal) value if they fall within the UIG. The
applicable value is applied to the Jump Tables as the lower three (octal) digits of the Jump Table
address (first two digits, 02, masked off). (See the Jump Table listing at the end of appendix G). The
lower bits of the value unloaded from the Jump Tables are applied to the CMAR as the CM location to
be branched to in the first step in determining the desired final CM location.

UIG Jump Table addresses 02203 and 02213 (bit 8 of the IR equals 1 in each case) both cause value 000
000107 (octal) to be unloaded from the ROM Jump Tables. (See appendix G.) This, in turn, is used as
the CMAR location value 00107 to obtain the next microinstruction. Hence, it can be seen from the
Jump Table listing that for UIG instructions beginning 101xxx and 105xxx (xxx equals values as
shown in table 6-1), a branch to location MAC1 (00107) in the base set will be made. This means bit 11
(the bit causing the difference between 101 and 105) can be used (as described in paragraph 6-3) to pass
A- and B-register information from main memory to all CM locations mapped to by UIG instructions
beginning with either code. Note, from table 6-1, that bit 11 is not usable for this purpose when
mapping to modules that only have UIG instructions with bits 15 through 9 equal to 105 (octal)
available (e.g., user modules 60 and 62).

If UIG instructions 105400 through 105777 are used (02213 applied as an address to the Jump Tables),
it can be seen from the base set, Jump Table listings, and figure C-1 that all mapping will be through
MAC1 (CM location 00107 in the base set) for this first step. If UIG instructions 105000 through
105377 are used (02212 applied as an address to the Jump Tables) it can be seen that all mapping will
be through MACO (CM location 00103 in the base set) for this first step.

C-3

Appendix C

MODULE SELECTION

Step 2 in figure C-1 illustrates that module selection is made as the second step (primary map) toward
the desired final CM location. The UIG module selection code, composed of UIG instruction bits 8
through 4, is used in determining mapping to a particular CM module. A group of modules (as implied
in the preceding paragraph) to be mapped to is determined by examination of bit 8. Examination of
bits 7 through 4 of the UIG instruction determines the module to be mapped to within the selected
group.

Figure C-2 shows the bit patterns available for all UIG instructions. Note that with the five bits (8
through 4) of the module selection code, 32 combinations are possible. This means 32 module entry
points are available. Bit 8 (used to select CM location 00103 or 00107, at labels MACO or MAC1)
determines whether mapping will be through MACTABLO or MACTABL1 in the base set Primary
Mapping Table. It can be seen (in figure C-2 and the base set listings) that if bit 8 equals 0,
MACTABLO will be used and if bit 8 equals 1, MACTABL1 will be used.

From base set locations 00103 (label MACO) or 00107 (label MAC1) in the Input-Output Group
microroutines, a word type IV branch is made to either MACTABLO or MACTABL1, respectively,
using a J74 micro-order. This micro-order examines bits 7 through 4 of the UIG instruction in the IR to
determine the module to be mapped to within the group selected by bit 8 (MACTABLO or MACT-
ABL1).

This discussion is best followed by referring to the base set listing (appendix G) in conjunction with
figure C-2. MACTABLI1 begins at CM location 00760 and extends through CM location 00777 (16
locations). MACTABLO begins at CM location 01000 and extends through CM location 01017 (16
locations). Both these (above) are in the base set Primary Mapping Table.

The J74 micro-order (at MACO or MAC1) replacement of bits 8 through 5 in the microinstruction
branch address field by bits 7 through 4 from the IR completes the second step in mapping (the primary
map). With completion of this step, the offset for entry into the Primary Mapping Tables is determined;
i.e., the specific control memory module is determined). See figure 4-5, Jump Address Decoding, and
the J74 micro-order explanation in table 4-1 for information on branch address field modifications
using the J74 micro-order for indexing.

Compare figure C-2 and the base set Primary Mapping Table and you will notice that HP reserved
modules 2, 3, 32, and 39 have 2, 6, 2, and 3 entry points (respectively) assigned. CM entry points
mapped to are so noted in figure C-2, and note in the base set Primary Mapping Table that modules 3
and 39 do not have branch address modification micro-orders (RJ30) in their microinstructions. Some
study of the situation is required if you are going to attempt changes to this system and as mentioned
in section 6, the description is beyond the scope of this manual. The discussion for the generally used
third step in mapping (secondary) index follows.

SECONDARY INDEX

By examining figure C-2 and the Primary Mapping Table, it can be seen that all modules of the User
Instruction Group (except 2, 3, 32 and 39 mentioned above) have a single module selection code
assigned. This means that the microinstruction appearing in the Primary Mapping Table for a
particular module represents the primary software entry point (step 3 figure C-1) for access to that
module. This entry point is expanded to 16 possible entry points per module by the secondary index.
That is, as noted in figures C-1 and C-2, (step 3 of mapping to the desired final CM location entry point)
examination of bits 3 through 0 of the UIG instruction takes place in MACTABLO or MACTABLI1.

C4

Appendix C

This is accomplished by using the RJ30 micro-order in the Special field for the branch microinstruc-
tions (shown in the Primary Mapping Table). RJ30 causes bits 8 through 5 of the word type IV
microinstruction branch address field to be replaced by bits 3 through 0 of the IR. RJ30 also begins a
read operation from main memory as the branch to the desired module begins (indexed into one of the
first 16 locations by bits 3 through O of the UIG instruction in the IR).

See the information in table 4-1 (RJ30), figure 4-5, and appendix B on branch address modification and
decoding. Also, see the information on microassembler pseudo-microinstructions (e.g., ALGN) in

section 8 and the information for the ION and IOG micro-orders (used in word type IV) for branch
address field modifications.

Appendix C

THREE POSSIBLE PRIMARY MAP DISPLACEMENT
(UPPER BYTE) (MODULE IN SELECTED
UIG CODES DETERMINATION) MODULE
IRBITS} 15|14 (13|12 |11|10] 9 {8 7] 6|5 ai3]|2]1]0
UIG CODE 1'oio|oI0|ol1l1|
— 4 +— A=+ - [[
ocTALcope! 1 | 0 | 1 | x | Y | z
B R P - L f [
ADDRESS IN I =T L
ss
JUMPTABLE| 2 : 0 : 3 |
| 1 T | AR I E— {
UIGCODE| 1 o 0lol 11 ol 11g
ST L l | @
OCTAL CODE |
1_[0 | 5 : x| Y | 74 LFIRSTSTEP.
— - — k7 — =" | | CMAR LOADING
ADDRESS 1N | | DETERMINED BY
JUMP TABLE| 2 | 1 2 IR BITS 15 THRU 8.
F ,L T ! T (JTAB INDEXES TO
UIG CODE, 1 I0,0I0|1I0I1|1 JUMP TABLES.)
L - Ly —— o — =4 | |
OCTAL CODE ' 1 | 0 | 5 | X | Y I z
ADDRESSIN-— _r__l—[—_i_: l |
JUMP TABLE 2 ! 1 { 3 |
T — - BN
0olo'olo
= =
o 0 0,1
—1——— @
(16 CODES) L SECOND STEP.
CM BRANCH
DETERMINED BY
— 1 —-— —] IR BITS 7 THRU 4.
11 1 o0 {474 AT MACO OR
—1—— —I MAC1 DETERMINES
131,11 DIS PLACEMENT IN
- — — #—————1—‘——'—1 —|——,—-—[— ——{ MACTABLO OR
0 0' 0 o0 MACTABL1.)
—l—]——
0 o | 0 1
=] g
{16 CODES) THIRD STEP,
CM BRANCH
DETERMINED BY
r—|—|-—|——1 IR BITS 3 THRU 0.
1.1 1 0 {RJ30 IN MACTABLO
—— — MACTABL1
* jrp1 10 DETERMINES WHERE
IN A MODULE ENTRY
WILL BE MADE.
NORMANLLY ONE OF
NOTES: 1. X Y Z REPRESENT LAST THREE OCTAL DIGITS OF 16-BIT THE FIRST 16
UIG INSTRUCT!ION VALUES. SEE TABLE 6-1. LOCATIONS.)
2. THE FINAL CM BRANCH SHOULD BE DETERMINED FROM
YOUR MODULE ENTRY POINT MICROINSTRUCTION.
711519

Figure C-1. UIG Instruction Bit Decoding
C-6

Appendix C

USER INSTRUCTION CODE MAPS CONTROL
GROUP CODES TO MODULE MEMORY
STARTING
INSTRUCTION REGISTER BITS HP | USER ADDRESS COMMENTS
15{14/13[12[11|10/ 9|8 |7 |6]5| 4|3 |2]|1 |0
1{o0 01,0 1|lo,0lojo]olw|x]|Y]z T 3 01433 FAD"
|) Fi ' fololofo] [3 01433 FSB -
3 01522 FMP °
212y | | 11 Lpry,olojo 1fo \ 1)
wacoy | {1 L[l Topopolt o H e > 01861 FDV.
| . 1,001 0,0, SRR 3 01405 FIX
| v ‘ 0,0 101, RERR 3 01400 FLT
' ‘ o'o'1f1'0 ‘ @ 60 36000 USER'S AREA
| 1 olojtl1p1] 1] g 62 37000 USER'S AREA
| L [0, 1,0,0 0, V2 34 21000 FFP
‘ | |o slolol at [1] 1! = 35 21400 FFP
‘ . ‘ 0'1'0,1! ol ot e 36 22000 HP RES. (RTE)
’ bl ! ol tlol] \\‘5 37 22400 HP RES. (RTE)
I [| oitl1{olol Pl 38 23000 HP RES.
\ | | | l 011]1,0)1] 1\ 1l 40 24000 HP RES.
\V.v v Hv v v[ommluo[l ‘~\ 44 26000 HP RES.
i1tolofoltjo(rto vyt 45 26400 HP RES.
| 110, 0,0 N o 110000, LTl 39 | (Note5) 23420"° HP RES. -
| P Pl 1007010, 1, I 39 | (Note 5) 23420 HP RES. "
@03 |, Cl oo o [46 27000 USER'S AREA
or | O Cl 1,0,0 1,1, | N 39 | (Note5) 23400 HP RES. *
213)) | l Vol (L [1,01 { 0.0, | S 47 27400 USER'S AREA
MACT | P .| 101 0 1 o a 48 30000 USER'S AREA
| N oo fprp s 49 30400 USER'S AREA
| . | Tiopt]1, 1) | = 50 31000 USER'S AREA
| BE | 1,1,0 o‘o“ w\i\\fﬁ 56 34000 USER'S AREA
; ‘ 100 1 57 34400 USER'S AREA
‘I | ol l L | 1 ol 1,0 ’ e 58 35000 USER'S AREA
\ P ‘ ‘ 1,1,0,1, 1 Lol s 59 35400 USER'S AREA
‘ ‘ e ‘ ‘ ’1.1y1‘o‘o 1 .l 32 | (Noled) 20000 DMS
| Py i LU IR L N B o 32 | (Note 4) 20020 bDMS
AR R AR IR 1L 2 ﬁll 2 01020 EIG
[1lojojofNjoj 111111 w/x v 2z ¥ _ 2 01040 EIG
{(N=1 OR 0)
OFFSET
JUMP TABLE MODULE (N
INDEX SELECTION CODE ~ MODULE
(32 POSSIBLE CODES) (NOTE 1)
NOTES: 1. W. X, Y. Z. ARE LOGIC ONES OR ZEROS MAKING UP A RANGE OF CODES.
2. CONTROL MEMORY STARTING ADDRESSES ARE IN OCTAL.
3. ABBREVIATION RES MEANS RESERVED. OTHER ABBREVIATIONS IN THE COMMENTS ARE
EXPLAINED IN TEXT.
4. MODULE 32 HAS 32 ENTRY POINTS,
5. MODULE 39 HAS 48 ENTRY POINTS HOWEVER 32 ARE MAPPED DIRECTLY TO LOCATION
23420 FOR USE IN ONE OF THE MICROINSTRUCTIONS. THAT IS, ALL 16 COMBINATIONS OF
“USER" INSTRUCTIONS MAP DIRECTLY TO THE ENTRY POINT DESIGNATED BY* (NON-
INDEXED).
6. *NO EXAMINATION OF BITS 3 THROUGH 0 (N THE PRIMARY MAPPING TABLE FORE-SERIES
BUT ARE USED FOR F-SERIES.
7115-20A

Figure C-2. UIG Instruction Module Mapping
C-7/C-8

Appendix D
MICROPROGRAMMING FORM R

APPENDIX

MICROPROGRAMMING FORM

ZVHd1VY = 2 oML =2 O YHdI¥ =0
Z916- LG6G I VHAV =1 INO =1 40| 0o43zZ=0
08 ov o¢ 14 0z sl oL 1
08 Q1314 or 3g13ig %l garas | va1313 %) cavrais S zgr2a 0 L a3 t
adA) pio IVI103dS L8ST.,
¥ AL piom SLINIWWOD ssadaav Jeaiieon | ud a. 138v1
€ edAL piom SLNIWWOD $5340QY xww_z,wm@ NOILIONOD | ..XaND., HONVHE REELA]
ZedA) piop SLINIWWOD ANVH3IdO 3IHOLS H3141A0W IV103dS SN, 138v
| sdAL prop SLNIWWOD sna-s 3HOLS nv V1034 40 138V
40 39vd 37NAOW WYHDOHIOHIIW aiva HIWWYHDOHd

WHOJ ONIWWYHODOHJOUDIW STIHIS XWIZ dH

(L,.g'0l x ,.G°ZL 3215 |leMOY)

D1/D-2

Appendix E
OBJECT TAPE FORMATS N

OBJECT TAPE FORMATS

APPENDIX

E

WORD 0 WORD 1 WORD 2
Bit No. — 15 8 7 0 1513 6 0 15 0
® & & s o ® & o o 9
— e, — — ot ot [R—— .. o
Leader Record length = Null Identifier 1 Checksum = sum of
total number of =011 contents of all words
16-bit words in in record excluding
record (including record length and
this word). checksum itself.
Minimum record
length = 5;
maximum = 53,
WORD 3 WORD 4 WORD 5 WORD 6
15 0 15 0 15 8 7 0 15 0
—— N, — — —— — w—
Microprogram Tape flag: O =""Punched Address retative High bits of first Low bits of first
ORG value by Microassembler’’; to base address microinstruction. microinstruction.
if Microdebug Editor of module.
punches an object tape,
this fietd = 1.
15 0 15 0 15 8 7 0
etc. ... — —

Low bits of last
microinstruction
in record.

g

Record length of
next record;
same format

as previous.

etc....

Format of Standard Object Tape (Sheet 1 of 2)

E-1

Appendix E

15 0 15 8 7 0 151312 0 15
" v —— e —p— - — - —
Low bits of last Record length of Null ident Null End record
microinstruction. End record, =101 checksum =
always = 4. 120000.
15 0

v

Null Trailer

Format of Standard Object Tape (Sheet 2 of 2)

E-2

Appendix E

Bit No. —— 156

8 7

15 8

N, —— ——— “————— “———————— ——

Leader Number of Null Bits 23-16 Bits 7-0 Bits 15-8
16-bit words of first of first of second
in record, microinstruction microinstruction. microinstruction.
including this in first record.
word. Is always
B4g =52, Bits 15-8 Bits 23-16 Bits 7-0
of first of second of second
microinstruction. microinstruction microinstruction.
in first record.
15 0 15 87 0 15 87 0 15 0 15 [0}
ete. . .. ——— “— — “~a—— p— — -
Bits 23-16 Bits 7-0 Checksum: computed Null
of. 32(\d of 32nd in following way:
microinstruction. microinstruction. a. Sum of all bytes in
record excluding
this checksum.
Bits 15-8 b. The sum is ones
of 32nd complemented and
microinstruction. then rotated 8 bits.
15 15
bt ‘_— “— p—
Null Number of NOTE: If the last record contains less than 32 Trail
16-bit words microinstructions, then remainder of ratler
in record = microinstruction space on tape is filled
64... with all bits set {1°s).

8

NOTE: This tape format is used by the ROM Simulator

Format of Object Tape for the “S” Microassembler Option

E-3/E4

Appendix F
HP 1000 M-SERIES-TO-HP 1000 E-/F-SERIES
MICRO-ORDER COMPARISON SUMMARY I

M-SERIES-TO-E-/F-SERIES
MICRO-ORDER COMPARISON SUMMARY|[F

This summary includes a comparison of all the HP 21MX Computer micro-orders and all E-Series and
F-Series Computer micro-orders. If you already have microprograms prepared for HP 21MX Com-
puters the summary will be helpful for making a conversion. Note that some micro-orders have
identical mnemonics and bit patterns. In most instances, however, the bit patterns vary. There is a
percentage of the micro-orders that are completely new and also, a percentage of micro-orders that
have not propagated from the HP 21MX to the newer Series. You should refer to the “dictionary”
section of the micro-orders for each computer document to determine the exact meaning and functions
of micro-orders you plan to use.

AppendixF

Micro-Order Comparison Summary

FIELD OP/BRANCH MOD/SPECIAL ALU COND IMM/MOD STORE BRANCHSENSE S-BUS

COLUMN NO. 10 15 20 20 20 25 25 30

(ROM BITS) 23-20 4-0 19-15 19-15 19-18 9-5 14 14-10

COMPUTER M- E-/F- M- E-/F- M- E-/F- M- E-/F- M- E-/F- M- E-/F- M- E-/F- M- E-/F-

Corresponding

Bit Pattern

00000 NOP NOP 10FF RTN INC DEC BZ ALZ HIGH LOW TAB TAB RJS TAB TAB
00001 ARS ARS SRG2 | JTAB | OP1 OP11 | ONES | ONES |LOW HIGH | CAB CAB RJS CAB CAB
00010 CRS CRS L1 CNDX | OP2 OP10 COUT | COUT |CMHI CMLO T MPPA T MPDA
00011 LGS LGS L4 ION ZERO [DBLS ALO ALO CMLO | CMHI L A CIR A
00100 MPY NRM R1 RJ30 OP3 OP8 AL15 LO 100 B 1O} B
00101 Div DIv ION J74 OP4 OoP7 NMLS [L15 CNTR 100 CNTR | IOl
00110 LWF LWF SRGY 10G suB ADD CNT8 RUN DSPL DSPL DSPL DSPL
00111 WRTE | MPY RES?2 NOP OPS OP6 FPSP HOI DSPy DSPI DSPI DSPI
01000 ASG WRTE | STFL SRUN | OP6 OPS FLAG CNT4 R MPPB ADR MPPB
01001 READ | READ | CLFL MPP2 | ADD SUB E IR11 M MEU MEU
01010 ENV ENV FTCH MESP | OP7 OP4 OVFL RUNE B L CIR
01011 ENVE ENVE SOV Cov OP8 OP3 RUN NMLS A CNTR A CNTR
01100 JsSB JSB Ccov SOV OP9 ZERO | NHOI MPP MEU IRCM LDR LDR
01101 JMP JMP RPT PRST OP10 OpP2 SKPF CNT8 CM M RES2 M
01110 IMM IMM SRGE | CLFL OP11 OP1 ASGN | NSFP PNM PNM MEU DES
01111 RTN NOP STFL DEC INC IR2 AL15 NOP NOP NOP NOP
10000 MESP | SRG2 | CMPS | PASS NLDR | NLDR S1 Si S1 S1
10001 MPCK | SRG1 | NOR 1OR NSNG | NSTB s2 S2 S2 s2
10010 I0G L1 NSAL SONL | NINC NINC S3 S3 S3 S3
10011 ICNT L4 OP13 ONE NDEC | NDEC S4 S4 S4 S4
10100 SHLT R1 NAND | AND NRT NRT S5 S5 S5 S5
10101 INCH DCNT { CMPL | PASL NLT NLT S6 S6 S6 S6
10110 RES1 ICNT XOR XNOR | NSTR NSTR S7 s7 s7 S7
10111 SRUN | RPT SANL NSOL | NRST NMDE S8 S8 S8 S8
11000 UNCD | ASG NSOL | SANL | NSTB | FLAG S9 S9 S9 sS9
11001 CNDX | IAK XNOR | XOR NSFP E S10 S10 S10 S10
11010 JIO MPP1 PASL CMPL | INT NINT S11 S11 S S11
11011 JTAB FTCH AND NAND | SRGL | OVFL s12 SP sS12 SP
11100 J74 INCI ONE OP13 RUNE | NSNG X X X X
11101 J30 SHLT | SONL | NSAL | NOP SKPF Y Y Y Y
11110 RTN MPCK | IOR NOR CNT4 IR8 P P P P
11111 JEAU IOFF PASS CMPS | NMEU | MRG S S S S

F-2

Appendix G

E-SERIES COMPUTER

BASE SET MICROPROGRAM LISTING
AND F-SERIES JUMP TABLES I

E-SERIES COMPUTER
BASE SET MICROPROGRAM LISTING || .
AND F-SERIES JUMP TABLES

The entire E-Series Computer RTE Microassembler listing for the base set microprogram and F-Series
jump tables appear in this appendix. Control memory modules 0 through 3 are used. Information for
the ROM Jump Tables is also included at the back of the base set listing. The microprogram listings for
the dynamic mapping instructions and the Scientific Instruction Set conclude this appendix.

PAGE 0005 RTE MICRO-ASSEMBLER REV.A 760818

0001 MICMXE,L,C,T
0002 $SCODE=%E04 04 ,REPLACE
0003 ORG 0B
0004 *
0005 * 21MX E-SERIES BASE SET MICROCODE
0006 e e
0007 * 1978-04-04 DATE CODE 1814
0008 *
0009 00000 230 000633 FETCH READ FTCH PASS IRCM TAE IR := T/A/B; M := OP ADR; READ
0010 00001 007 174701 JTAB INC PHM P JMP THRU LUT--M=P CNDL;P=P+1 CNDL
0011 *
0012 00002 230 000674 MRGIND READ INCI PASS M TAB M := T/A/B; READ
0013 00003 007 174701 JTAB INC PNM P JMP LUT CNDL--M=P CNDL;P=P+l1 CNDL
0014 00004 323 140102 JMP CNDX HOI RJS MRGIND TEST FOR HALT OR INTERRUPT
0015 00005 336 040102 JMP CNDX NSNG RJS MRGIND TEST FOR INSTRUETION STEP
0016 *
0017 00006 000 075707 HORI DEC P P P := P-1
0018 00007 323 053242 JMP CNDX RUN RJS HALT TEST FOR HALT
0019 00010 010 036771 IAK LOAD CIR; ACKNOWLEDGE INTERRUPT
0020 00011 230 024677 READ IOFF PASS M CIR M := CIR; READ TRAP CELL
0021 00012 010 033017 STFL PASS S1 M S1 := M
0022 00013 230 000607 READ PASS IRCM TAB IR := T/A/B; M := OP ADR; READ
0023 00014 320 000047 JMP FETCH+1
PAGE 0006 RTE MICRO-ASSEMBLER REV.A 760818
0025 *
0026 * MEMORY REFERENCE GROU
0027 * -~ -
0028 *
0029 00015 230 000507 AND READ PASS L TAB L s= T/A/B; READ
0030 00016 372 006147 RTN AND A A A := A AND T/A/B
0031 *
0032 00017 230 000507 AD* READ PASS L TAB L := T/A/B; READ
0033 00020 263 002040 ENVE RTN ADD CAB CAB A/B := A/B + T/A/B
0034 *
0035 00021 230 000507 Cp* READ PASS L TAB L := T/A/B; READ
0036 00022 014 102747 XOR CAB COMPARE
0037 00023 360 000042 RTN CNDX ALZ TEST IF EQUAL
0038 00024 227 174707 READ INC PNM P M := P; P := P+l; READ
0039 00025 370 036747 RTN
0040 *
0041 00026 230 000507 1IOR READ PASS L TAB L := T/A/B; READ
0042 00027 370 106147 RTN IOR A A A := A IOR T/A/B
0043 *
0044 00030 007 101007 ISz INC S1 TAB Sl := T/A/B + 1
0045 00031 210 040036 WRTE MPCK PASS TAB Sl T/A/B := Sl; WRITE
0046 00032 320 041602 JMP CNDX ALZ RIS *+2 TEST IF ZERO
0047 00033 007 175707 INC P P P := P+1
0048 00034 227 174707 READ INC PNM P M := P; P := P+l; READ
0049 00035 370 036747 RTN
0050 *
0051 00036 230 000677 JMpP,1 READ IOFF PASS M TAB M := T/A/B; READ
0052 00037 307 112442 JSB CNDX AL1S INDIRECT TEST FOR MORE INDIRECTS
gggi 00040 367 133736 JMP RTN MPCK INC P M P := M+1
*
0055 00041 230 000677 JSB,I READ IOFF PASS M TAB M := T/A/B; READ
0056 00042 307 112442 JSB CNDX AL1S INDIRECT TEST FOR MORE INDIRECTS
0057 00043 210 074036 JSB WRTE MPCK PASS TAB P T/A/B := P; WRITE
0058 00044 007 133716 CLFL INC P M P := M+1
0059 00045 227 174707 READ INC PNM P M := P; P := P+1; READ
0060 00046 370 036747 RTN
0061 ° *
0062 00047 230 000047 LD* READ PASS CAB TAB A/B := T/A/B; READ
0063 00050 370 036747 RTN
0064 *
0065 00051 230 000507 XOR READ PASS L TAB L := T/A/B; READ
0066 00052 374 106147 RTN XOR A A A := A XOR T/A/B

G-1

Appendix G

PAGE 0007 RTE MICRO-ASSEMBLER REV.A 760818

0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0oss
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098

PAGE
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124

G-2

00053
00054
00055
00056

00057
00060
00061
00062

00063
00064
00065
00066

. 00067
00070
00071
00072

00073
00074
00075
00076

230
267

227
370

231
267
227
370

226
267
227
370

237
267
227
370

230
010
227
370

002047
102070
174707
036747

136047
102070
174707
036747

036047
102070
174707
036747

102047
102070
174707
036747

002061
002060
174707
036747

*
*
*
*

ASGNO*

ASGCC*

ASGCL*

*
ASGCM*

* * * »

SRG

RET

ALTER-SKIP GROUP

READ PASS CAB
ENVE ASG INC CAB
READ INC PNM
RTN

READ ONE CaAB
ENVE ASG INC CAB
READ INC PNM
RTN

READ ZERO CAB
ENVE ASG INC CAB
READ INC PNM
RTN

READ CMPS CAB
ENVE ASG 1INC CAB
READ INC PNM
RTN

SHIFT-ROTATE GROUP

READ SRG1l PASS CAB

SRG2 PASS CAB
READ INC PNM
RTN

0008 RTE MICRO-ASSEMBLER REV.A 760818
*

00077

00100
00101
00102
00103

00104
00105
00106
00107

00110
00111
00112
00113

00114
00115
00116
00117

320

230
010
370
320

230
010
370
320

230
010
370
320

230
336
363
320

004006

002507
112747
112047
040005

012747
012747
012047
037005

002747
002247
002247
012005

036777
103642
003642
000307

*
*

*
I0G
*

MI*
MACO
*
LI*

MAC1
*

OT*

JTBL1000
*

CONTROL

INPUT-OUTPUT GROUP

JMP IOG

READ PASS L
IOR

RTN IOR CAB

JMP J74

READ PASS
PASS

RTN PASS CAB

JMP J74

READ PASS
PASS IO0O0

RTN PASS I0O

JMP J74

READ IOFF

JMP CNDX SKPF
RTN CNDX RUN
JMP

CAB
CAB

CAB

CAB

CAB
CAB

CAB
CAB

MI*

CAB
I0I
I0I
MACTABLO

I0I
I0I
I0I
MACTABL1

CAB
CAB
CAB
EM1000
RET

HORI

READ
A/B=A/B + 1 CNDL;RTN CNDL;E CNDL

M :=P; P := P+1; READ

A/B
A/B=A/B + 1 CNDL;RTN CNDL;E CNDL

:= ONES; READ

M := P; P := P+l; READ

A/B
A/B
M:=

A/B
A/B
M :=

FIRST SHIFT; CLEAR E CNDL; READ

s= ZE
=A/B +
P; P

=A/B
P;

ROS; READ

1

t= P+1; READ
CMP A/B

M
+ 1 CNDL; RTN CNDL;E CNDL
P := P+1; READ

SECOND SHIFT; RTN CNDL

M := P; P := P+1; READ
T2: SYNCHRONIZE AND JUMP
T3: L := A/B; READ

T4:

T5: A/B := A/B IOR 1/0
T3: READ

T4:

T5: A/B := I/0

T3: READ

T4: 1/0 := A/B

T5: I/0 := A/B

T3: READ

T4: TEST FOR SKIP FLAG
T5:

T6: TEST FOR HALT INSTRUCTION

CNDL; RTN CNDL;E CNDL

PAGE

2717
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158

PAGE

0160
0161
0162
0163
0164
0165
0166
0167
0lé68
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188

0009 RTE MICRO-ASSEMBLER REV.A 760818
*

* EXTENDED ARITHMETIC GROUP

* ———

*
00120 230 036747 DLD READ
00121 300 012447 JSB INDIRECT
00122 007 133007 INC Sl M
00123 010 000147 PASS A TAB
00124 230 040647 READ PASS M sl
00125 010 000207 PASS B TAB
00126 227 174707 READ INC PNM P
00127 370 036747 RTN

*
00130 230 036747 DST READ
00131 300 012447 JSB INDIRECT
00132 210 006036 WRTE MPCK PASS TAB A
00133 007 133007 INC Sl M
00134 010 040647 PASS M sl
00135 210 002036 ST* WRTE MPCK PASS TAB CAB
00136 227 174707 READ INC PNM P
00137 370 036747 RTN

%
00140 010 036753 MPY cov
00141 300 012447 JSB INDIRECT
00142 257 107007 ENV CMPS S1 A
00143 010 000507 PASS L TAB
00144 006 036227 RPT ZERO B
00145 163 010224 MPY Rl ADD B B
00146 315 146502 JSB CNDX OVFL RIS *+4
00147 227 174713 READ COV INC PNM P
00150 362 141702 RTN CNDX L15 RJS
00151 237 140507 READ CMPS L sl
00152 364 110207 RTN SUB B B
0010 RTE MICRO-ASSEMBLER REV.A 760818
00153 237 110516 DIV READ CLPL CMPS L B
00154 300 012447 JSB INDIRECT
00155 017 101007 CMPS S1 TAB
00156 014 141047 XOR S2 sl
00157 322 107202 JMP CNDX L15 DIVS
00160 017 110217 STFL CMPS B B
00161 017 106147 CMPS A A
00162 007 106147 INC A A
00163 301 010342 JSB CNDX COUT RMDR+2
00164 017 140507 DIVS CMPS L sl
00165 327 147342 JMP CNDX ALLS5 RJS *+2
00166 007 140507 INC L sl
00167 004 110754 SOV SUB B
00170 327 143642 JMP CNDX AL1S5 RJS RET
00171 070 010222 LGS Ll PASS B B
00172 007 174727 RPT INC PNM P
00173 124 110222 DIV L1 SUB B B
00174 010 010224 Rl PASS B B
00175 237 107013 READ COV CMPS Sl A
00176 320 110242 JMP CNDX ONES RMDR
00177 010 042507 PASS L s2
00200 327 150102 JMP CNDX AL1S5 RJS *+42
00201 007 140147 INC A sl
00202 234 106747 READ XOR A
00203 327 150242 JMP CNDX ALl15 RJS RMDR
00204 230 036754 READ SOV
00205 374 040742 RMDR RTN CNDX FLAG RJS
00206 237 110207 READ CMPS B B
00207 367 110207 RTN INC B B

Appendix G

P/ P := P+l READ

T/A/B := A; WRITE

M := Sl

T/A/B=A/B;WRITE; ENTRY FOR STA,STB
M := P; P := P+l; READ

S1=MULTIPLICAND; NSIGN IN OVFL
LOAD L WITH MULTIPLIER

CLEAR B. INITIATE REPEAT STEP
REPEAT MULTIPLY STEP 16 TIMES
SUBTRACT IF MULTIPLICAND NEGATIVE
M := P; P := P+1l; READ

TEST FOR POSITIVE MULTIPLIER
PLACE MULTIPLICAND IN L

SUBTRACT FOR NEGATIVE MULTIPLIER

L := NDIVIDENDHI; READ

Sl := NDIVISOR
EXPECTED QUOTIENT SIGN IN S2
TEST FOR NEGATIVE DIVIDEND

MAKE
DIVIDEND
POSITIVE

TEST FOR POSITIVE DIVISOR
L := ABSOLUTE VALUE OF DIVISOR

TEST FOR DIVISOR TOO SMALL
PRESHIFT THE DIVIDEND

M := P; P := P+l

REPEAT DIVIDE STEP 16 TIMES
REMAINDER := B/2

S1 := NQUOTIENT

TEST FOR ZERO QUOTIENT

TEST FOR EXPECTED QUOTIENT SIGN
COMPLEMENT QUOTIENT

COMPARE QUOTIENT

WITH EXPECTED SIGN

TEST EXPECTED SIGN OF REMAINDER

BEGIN 2°S COMPLEMENT OF REMAINDER
COMPLETE TWOS COMPLEMENT

G-3

Appendix G

PAGE 0011 RTE MICRO-ASSEMBLER REV.A 760818

0190 00210 010 036753 ASL cov
0191 00211 010 036767 RPT
0192 00212 030 010222 ARS L1 PASSB B ARITHMETIC LEFT SHIFT
giga 00213 230 036740 READ RTN READ
4
0195 00214 030 010224 ASR ARS Rl PASS B B ARITHMETIC SHIFT RIGHT
0196 00215 230 036753 READ COV READ
0197 00216 370 036747 RTN
0198 *
0199 00217 070 010222 LSL LGS L1 PASSB B LOGICAL LEFT SHIFT
0200 00220 230 036740 READ RTN READ
0201 *
0202 00221 070 010224 LSR LGS Rl PASSB B LOGICAL RIGHT SHIFT
0203 00222 230 036740 READ RTN READ
0204 *
0205 00223 050 010222 RRL CRS L1 PASSB B ROTATE LEFT
0206 00224 230 036740 READ RTN READ
0207 *
0208 00225 050 010224 RRR CRS Rl PASS B B ROTATE RIGHT
0209 00226 230 036740 READ RTN READ
0210 *
0211 00227 320 013005 JTBL1010 JMP J74 EM1010
0212 *
PAGE 0012 RTE MICRO-ASSEMBLER REV.A 760818
0214 00230 323 112742 TIMER JMP CNDX HOI INDIRECT+6 TEST FOR HALT OR INTERRUPT
0215 00231 007 110207 INC B B INCREMENT B
0216 00232 320 051402 JMP CNDX ALZ RIS *-2 TEST FOR ZERO
0217 00233 230 036740 READ RTN
0218 *
0219 00234 323 011542 DIAG JMP CNDX RUN TIMER+3 ABORT TEST IF IN RUN MCDE
0220 00235 300 032607 JSB MEMLOST+1 TEST CPU, 1 MEGAWORD MEMORY
0221 00236 325 051642 JMP CNDX RUNE RJS *-1 LOOP IF SWITCH IS (LOCK+RUNE)
0222 00237 320 013247 JMP HALT
0223 *
0224 * EAU/MACTABLE 1 000 000 0
0225 L
0226 *
0227 00240 320 011617 EM1000 JMP STFL DIAG 00 00
0228 00241 320 010407 JMp ASL 00 01
0229 00242 320 010767 JMP RPT LSL 00 10
0230 00243 320 011407 JMP TIMER 00 11
0231 00244 320 011167 JMP RPT RRL 01 00
0232 00245 300 061107 FPDIAG JSB RETNFP 01 01 MOD 3 TEST POINT
0233 00246 230 036740 READ RTN 01 10
0234 00247 230 036740 READ RTN 01 11
0235 00250 320 006004 JMP RJI30 MPY 10 00
0236 *
0237 * UNIVERSAL INDIRECT OPERAND ROUTINE
0238 e e e e -—--
0239 *
0240 00251 230 000674 INDIRECT READ INCI PASS M TAB M := T/A/B; READ
0241 00252 367 140002 RTN CNDX AL15 RIS TEST FOR MORE INDIRECTS
0242 00253 230 036774 READ INCI
0243 00254 323 152442 JMP CNDX HOI RJS INDIRECT TEST FOR HALT OR INTERRUPT
0244 00255 336 052442 JMP CNDX NSNG RJS INDIRECT TEST FOR INSTRUCTION STEP
0245 00256 337 100302 JMP CNDX MRG HORI TEST FOR JMP,I OR JSB,I
0246 00257 000 075707 DEC P P DECREMENT P
0247 *
0248 * EAU/MACTABLE 1 000 001 0
0249 * mmmmemeeeeee
0250 *
0251 00260 320 000307 EM1010 JMP HORI HALT OR INTERRUPT PENDING
0252 00261 320 010627 JMP RPT ASR 00 01
0253 00262 320 011067 JMP RPT LSR 00 10
0254 00263 230 036740 READ RTN 00 11
0255 00264 320 011267 JMP RPT RRR 01 00
G-4

PAGE
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284

PAGE
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310

0013 RTE MICRO-ASSEMBLER REV.A 760818
*

*
*

*
HALT

WAIT

IDLE
*

JSBSCAN

FRONT PANEL ROUTINES

JMP

JMP
IMM

JSB
JSB
JMP
JMP

JSB
JMP

CNDX

CNDX
CLFL
CNDX
CNDX
CNDX
CNDX
CNDX

CNDX

RJ30
CNDX
INCI
JTAB
CHDX

0014 RTE MICRO-ASSEMBLER REV.A 760818

00265 334 013342
00266 000 075007
00267 010 040647
00270 305 172542
00271 017 135756
00272 323 015242
00273 327 153702
00274 327 024542
00275 325 064542
00276 327 021742
00277 010 015747
00300 006 037107
00301 336 054142
00302 343 156347
00303 300 023707
00304 300 022004
00305 330 154242
00306 006 036774
00307 001 136741
00310 330 114402
00311 300 014547
00312 320 014147
00313 007 133047
00314 332 156102
00315 332 056602
00316 331 057442
00317 331 157342
00320 330 064702
00321 333 057642
00322 333 155702
00323 336 055302
00324 323 054242
00325 343 076356
00326 314 015702
00327 227 174710
00330 010 076307
00331 010 001007
00332 230 040633
00333 336 000042
00334 010 040775
00335 320 000047
00336 017 117007
00337 334 016042
00340 370 040357
00341 370 040356

SCAN

RUN
INSTP

MODE

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

IMM
JSB
READ

READ
JMP

JMP

JMP

RTN
RTN

CNDX
CNDX
CNDX
CNDX
CNDX
CNDX
CNDX
CNDX
CNDX

CLFL
CNDX
SRUN

FTCH
CNDX
SHLT

CNDX
STFL
CLFL

FLAG
DEC

PASS
NMLS
CMPS
RUN

AL1S
NSFP
RUNE
NSFP
PASS
ZERO
NSNG
LOW

NSTB
ZERO
DBLS
NSTB

INC
NLT
NRT
NINC
NDEC
NLDR
NSTR
NMDE
NSNG
RUN

LOW

FLAG
INC

PASS
PASS
PASS
NSNG
PASS

CMPS
FLAG
PASS
PASS

sl
M
RIS
S

RJS
RIS

S
S3
RIS
DSPI

RIS

s2

RJS
RJS
RJS
RIS
RJS
RIS
RJS
RJS
RIS

DSPI
PNM
DSPL

sl
IRCM

sl

DSPI
DSPI

*42
P

S1
MEMLOST
DES
RUN
*43
RPL
RPL
USER
DSPL

WAIT
367B

DSPICODE
UPDATES
*

SCAN
WAIT

M
LEFT
RIGHT
INCM
DECM
LOADER
STORE
MODE
INSTP
WAIT+2

337B
MODE

P

S

TAB

sl
FETCH+1
sl
FETCH+1

DSPI
*42
sl
sl

Appendix G

TEST FOR COLD POWER UP

S := DESCRIPTOR BLOCK

TEST FOR AUTO-RESTART

TEST FOR SWITCH 15

TEST FOR NO FRONT PANEL

TEST LOCK POSTION OF POWER SWITCH
USER FRONT PANEL MODULE

S := DSPL REGISTER

CLEAR DMS MAP POINTER

TEST FOR INSTRUCTION STEP

MAKE DSPL INDICATOR=T-REGISTER

BINARY ENCODE OF DSPL INDICATOR
UPDATE DSPL REGISTER
WAIT FOR BUTTON TO BE RELEASED

INITIALIZE SAVE STACK
WAIT FOR BUTTON TO BE PRESSED

GO TO SCAN SUBROUTINE

S2 := M+l

LEFT

RIGHT

INC M

DEC M

IBL/TEST

STORE

MODE

INSTRUCTION STEP
PRESET

MAKE DSPL INDICATOR=S-REGISTER
TEST FOR INVERSE VIDEO

M := P; P := P+1; READ

PLACE S IN DSPL REGISTER

sl := T/A/B

IR = S1;M = OPERAND ADDRESS; READ
TEST FOR NOT SINGLE INSTRUCTION

COMPLETE FETCH
S1 := COMPLEMENTED INDICATOR BITS

REVERSE INDICATOR BITS; COMP. FLAG
REVERSE INDICATOR BITS;COMP. FLAG

G-5

Appendix G

PAGE
0312
0313
0314

0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329

0330.
0331
0332
0333
0334

0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346

PAGE
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
€360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382

G-6

0015 RTE MICRO-ASSEMBLER REV.A 760818
*

00342
00343
00344
00345
00346
00347
00350
00351
00352
00353
00354
00355
00356
00357
00360
00361
00362
00363
00364
00365
00366

00367
00370
00371
00372

00373
00374

00375
00376
00377

010
334
321
370
343
321
340
340
012
370
334
342
150
010
360
343
010
352
012
360
340

334
000
334
370

360
367

300
300
320

017024
016342
156302
040347
076340
156442
100340
176507
041007
040347
017102
176517
017022
140356
101002
174340
017022
176507
040347
001002
002340

017542
033047
017602
042647

045107
145107

023707
020004
014147

LEFT

RIGHT

*
DECM

INCM

*

DECDMS

INCDMS
*

STORE

*

JMP
JMP
RTN
IMM
JMP
IMM
IMM

RTN
JMP
IMM
LWF

RTN
IMM

IMM

RTN
IMM

JMP

JMP
RTN

RTN
RTN

JSB
JSB
JMP

Rl
CNDX
CNDX

RTN

CNDX
RTN

CNDX
STFL

CLFL
CNDX

RTN
L1

CNDX
RTN
CNDX

CNDX

RJ30

0016 RTE MICRO-ASSEMBLER REV.A 760818

00400
00401
00402
00403
00404
00405
00406
00407
00410
00411
00412
00413
00414
00415
00416
00417
00420
00421
00422
00423
00424
00425
00426
00427
00430
00431
00432
00433
00434
00435
00436

00437

370
370
320
370
370
370
320
320
370
370
370
370
344
012
010
370
010
010
327
010
342
010
352
010
327
357
010
370
210
010
320

325

015747
015707
021607
014647
014207
014147
021007
020607
014452
015107
015647
015607
016507
015007
022447
040447
033153
015022
161202
036754
000607
041021
177047
040747
121502
173047
042606
046647
014007
042647
014247

040007

STORES
STOREP

STOREM
STOREB
STOREA
STOREST
STOREF
STOREMM
STOREMN
STOREY
STOREX
STFENCE

STCPUS

STORET

USER

ALGN
GRG
RTN
RTN
JMP
RTN
RTN
RTN
JMP
JMP
RTN
RTN
RTN
RTN
IMM

RTN

JMP

IMM

IMM

JMP
IMM

RTN
WRTE

JMP

JMP

MESP

cov
Ll
CNDX
sSov

SRG1

CNDX

I0G

PASS
FLAG
ALO
PASS
LOW
ALO
LOW
LOwW
AND
PASS
FLAG
LOW
PASS
IOR
ONES
LOW
PASS
CMLO
AND
ALZ
LOW

FLAG
DEC

FLAG
PASS

DEC
INC

PASS
PASS

PASS
PASS
PASS

PASS
PASS
PASS
PASS
RIGH
AND

PASS
PASS
PASS
PASS
AL15

LOwW

PASS
CMLO
PASS
AL1S5
CMHI
PASS
PASS
PASS
PASS

DSPI
Sl

DSPI

DSPI

s2

s3
s3

W YK

MEU
MEU
sS4
sl
RJS

IRCM

s2

s2

IRCM

TAB
M

DSPI
*4+4
*42
sl
3378
*42
040B
0778
sl
sl
*46
2778
DSPI
sl

376B
DSPI
2778
sl

001B

DECDMS
M
INCDMS
s2

s3
s3

DSPICODE
STORES
WAIT

400B
DSPL
DSPL
STORET
DSPL
DSPL
DSPL
STCPUS
STFENCE
DSPL
DSPL
DSPL
DSPL
007B
DSPL
MEU

sl

M

DSPL
*42

2008
sl
2778
sl
*42
3758
S2
S4
DSPL
S52
WAIT+2

250008

SHIFT DSPL INDICATOR
TEST FOR REVERSE DISPLAY MODE
TEST FOR WRAP-AROUND

PLACE S-POINTER IN DSPL INDICATOR
TEST FOR WRAP-AROUND

PLACE S-POINTER IN DSPL INDICATOR
L := 77

MASK DSPL INDICATOR

TEST FOR REVERSE DISPLAY MODE
L := 177677
SHIFT DSPL INDICATOR LEFT 1 PLACE

TEST FOR NO WRAP-AROUND
PLACE A-POINTER IN DSPL INDICATOR

L := 100

MASK DSPL INDICATOR

TEST FOR NO WRAP-AROUND

PLACE X-POINTER IN DSPL INDICATOR

TEST FOR REVERSE DISPLAY MODE
DECREMENT M
TEST FOR REVERSE DISPLAY MODE

DECREMENT DMS MAP PCINTER
INCREMENT DMS MAP POINTER

BINARY ENCODE OF DSPL INDICATOR
STORE DSPL REGISTER

DSPL REGISTER
:= DSPL REGISTER

DSPL REGISTEFR
DSPL REGISTER
DSPL REGISTER

. ee e
L T]

PWE Www

DMS MAP DATA := DSPL REGISTER
DMS MAP NUMBER := DSPL REGISTER

Y := DSPL REGISTER
X := DSPL REGISTER
L := 003777

MASK DSPL REGISTER

STORE INTO DMS FENCE
SAVE M

TEST FOR DSPL 14

SET UP ELB INSTRUCTION
STORE DSPL 14 INTO EXTEND
S2 := STF 0 INSTRUCTION

TEST FOR INTERRUPT SYSTEM
S2 := CLF 0 INSTRUCTION

RESTORE M

T := DSPL REGISTER
INCREMENT M

DO NOT UPDATE DSPL

JUMP TO USER FRONT PANEL ROUTINE

PAGE
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432

0017 RTE MICRO-ASSEMBLER REV.A 760818

00440
00441
00442
00443
00444
00445
00446
00447
00450
00451
00452
00453
00454
00455
00456
00457
00460
00461
00462
00463
00464
00465
00466
00467
00470
00471
00472
00473
00474
00475

00476
00477
00500
00501
00502
00503
00504
00505
00506
00507
00510
00511
00512

00513
00514
00515

370
370
370
370
370
370
320
320
370
370
370
370
010
370
355
010
350
010
006
336
003
334
003
010
335
003
010
010
010
370

343
017
334
340
344
013
001
327
352
012
357
230
370

347
300
320

076307
074307
000307
032307
010307
006307
022707
022607
022312
044307
072307
070307
022447
022307
176507
033047
177007
040606
037007
163242
041024
163342
041007
041024
163502
041007
024507
141007
042647
040307

164547
117023
064202
000547
000507
017023
141026
164202
000507
045107
076507
145007
040447

000447
024707
015247

UPDATES
UPDATEP
UPDATET
UPDATEM
UPDATEB
UPDATEA
UPDATEST
UPDATEF
UPDATEMM
UPDATEMN
UPDATEY
UPDATEX
UPDFENCE

UPDCPUS

*
DSPICODE

RPL

ORG
RTN
RTN
RTN
RTN
RTN
RTN
JMP
JMP
RTN
RTN
RTN
RTN

RTN
IMM

IMM

JMP

JMP

JMP

RTN

JMP
IMM
IMM

JMP
IMM

IMM
READ
RTN

IMM
JSB
JMP

MESP

I0G

CNDX

CNDX

Rl
CNDX

L4
CNDX

L4
ICNT

CNDX

PASS
PASS
PASS
PASS
PASS
PASS

PASS
PASS
PASS
PASS
PASS
PASS
CMHI
PASS
CMLO
PASS
ZERO
SKPF
ADD

ADD
PASS
OVFL
ADD
PASS
IOR
PASS
PASS

LOW
CMPS
FLAG
LOW
HIGH
XNOR
DBLS
AL1S5
CMLO
AND
CMHI
IOR
PASS

HIGH

CNTR
sl
RJS
CNTR

sl
sl
RJS
s3

sl
MEU

MEU

UPDCPUS
UPDFENCE
MEU

s3

Y

X

MEU

MEU
1778

M

077B

sl

*42
sl
*4+2
sl
sl
*42
sl
CIR
sl
s2
sl

3728
DSPI
*44
0008
000B
DSPI
s1
*-1
2008
s3
3378
s3
s1

300B
LOADER
RUN

Appendix G

DSPL REGISTER
DSPL REGISTER
DSPL REGISTER
DSPL REGISTER
DSPL REGISTER
DSPL REGISTER

OOV

DSPL REGISTER :
DSPL REGISTER :
DSPL REGISTER :
DSPL REGISTER :

DMS MAP DATA
DMS MAP NUMBER
Y

X

DSPL REG=DMS STATUS/FENCE REG
L := 100000

SAVE M

S1 := 000300 SFS 0

IR := SFS 0

INITIALIZE CPU STATUS WORD
TEST FOR INTERRUPT SYSTEM ON
S1 := 040000

TEST FOR EXTEND SET

TEST FOR OVERFLOW SET

L := CIR

MERGE IN CIR

RESTORE M

DSPL := E,O0,I, AND CIR

CNTR := 000372

S1 := NDSPI SHIFTED LEFT FOUR
TEST FOR NO REVERSE DISPLAY MODE
CNTR := 000

L := 000377

LEFT SHIFT S1l; INCREMENT COUNTER
TEST FOR INDICATOR BIT

L := 177

MASK DMS MAP POINTER

L := 020000

MERGE DMS CONTROL BIT

LOAD DMS MAP ADDRESS REGISTER

DISABLE DMS MAPS
GO TO LOADER SUBROUTINE
REMOTE PROGRAM LOAD

Appendix G

PAGE
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467

PAGE
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494

G-8

0018 RTE MICRO-ASSEMBLER REV.A 760818

*

. INITIAL BINARY LOADER

*
00516 345 177014 LOADER IMM SOV HIGH S1 1778
00517 010 076607 PASS IRCM S
00520 343 000507 MEMSIZE IMM LOW L 300B
00521 012 040707 AND PNM Sl
00522 367 101002 RTN CNDX AL15
00523 210 074007 WRTE PASS TAB P
00524 357 136507 TMM CMHI L 357B
00525 224 141007 READ sup sl sl
00526 010 074507 PASS L P
00527 014 100747 XOR TAB
00530 320 065002 JMP CNDX ALZ RJS MEMSIZE
00531 010 075007 PASS S1 P

*
00532 350 007063 SELCODE IMM L4 CMLO 52 003B
00533 010 042507 PASS L S2
00534 340 014547 IMM LOW CNTR 006B
00535 012 077067 RPT AND S2 S
00536 010 043064 Rl PASS S2 52
00537 353 156507 IMM CMLO L 367B
00540 004 143071 IAK SUB S2 S2
00541 367 101042 RTN CNDX AL15

*
00542 010 040647 LOOP PASS M Sl
00543 010 031023 L4 PASS S1 LDR
00544 010 040526 ICNT PASS L Sl
00545 012 031023 L4 AND Sl LDR
00546 010 040526 ICNT PASS L Sl
00547 012 031023 L4 AND S1 LDR
00550 010 040526 ICNT PASS L Sl
00551 015 131013 COV NAND S1 LDR
0019 RTE MICRO-ASSEMBLER REV.A 760818
00552 354 026526 IMM ICNT CMHI L 013p
00553 012 041107 AND S3 Sl
00554 345 166507 IMM HIGH L 1738
00555 013 044747 XNOR s3
00556 320 067402 JMP CNDX ALZ RJS STWORD
00557 350 077122 IMM L1 CMLO S3 0378
00560 010 044507 PASS L S3
00561 012 040747 AND sl
00562 320 027402 JMP CNDX ALZ STWORD
00563 353 016507 IMM CMLO L 307B
00564 012 040747 AND sl
00565 320 027402 JMP CNDX ALZ STWORD
00566 010 042507 PASS L S2
00567 003 041007 ADD S1 Sl
00570 210 040007 STWORD WRTE PASS TAB Sl
00571 007 133007 INC S1 M
00572 326 166102 JMP CNDX CNT8 RJS LOOP
00573 017 175007 CMPS S1 P
00574 007 141007 INC S1 Sl
00575 210 040007 WRTE PASS TAB S1
00576 000 033007 DEC S1 K
00577 230 040647 READ PASS M Sl
00600 010 042507 PASS L S2
00601 003 001007 ADD Sl TAB
00602 210 040007 WRTE PASS TAB Sl
00603 300 030747 JSB CPTEST

sl := 077777

IR = S TO SET UP LOADER SELECTION
L = 177700

M := Sl; P := S1AND L

TEST FOR NO READ/WRITE CAPABILITY
WRITE INTO MEMORY

L := 010000

READ BACK FROM MEMORY

L := WRITTEN DATA

COMPARE

TEST FOR PRESENT MEMORY

Sl := P

S2 := 007700

COUNTER := 6

MASK SELECT CODE

SHIFT SELECT CODE 6 PLACES RIGHT
L := 000010

§2 := SELECT CODE -10,SYNC TO T6
TEST FOR SELECT CODE LESS THAN 10

THE FIRST PART OF THIS LOOP
ROUTINE PACKS EACH FOUR BIT
SEGMENT FROM THE SPECIFIED
LOADER ROM INTO A 16-BIT WORD

T5 ON FIRST PASS.LDR ->> PRESET

L
L := 075777
T

EST FOR I/0 INSTRUCTION
S3 := 000700

TEST FOR HALT INSTRUCTION
L := 000070

TEST FOR SELECT CODE LESS THAN 10

PATCH IN CONFIGURING SELECT CODE
WRITE WORD INTO MEMORY

TEST FOR LOADER COMPLETION
TWOS COMPLEMENT LAST AVAILABLE
WORD OF PROGRAM MENMORY AND
STORE INTO LAST LOADER ADDRESS

PATCH SELECT CODE INTO

PORT CONTROLLEE WORD 1

STORE PCRT CONTROLLER WORD 1
PERFORM QUICK PROCESSOR TEST

Appendix G

PAGE 0020 RTE MICRO-ASSEMBLER REV.A 760818

0496 *

0497 * FIRMWARE DIAGNOSTICS

0498 * e

0499 *

0500 00604 220 033007 TEST32K READ DEC S1 N S1 := M - 1; READ MEMORY WORD
0501 00605 360 000642 RTN CNDX ALZ CHECK FOR TEST COMPLETION

0502 00606 017 101047 CMPS S2 TAB S2 := COMPLEMENTED LCATA

0503 00607 210 C42007 WRTE PASS TAB S2 T/A/B := COMPLEMENTED DATA; WRITE
0504 00610 230 042507 READ PASS L sz L := CONPLEMENTED DATA

0505 00611 017 143047 CMPS S2 S2 S2 := ORIGINAL DATA

0506 00612 014 100747 XOR TAB COMPARE

0507 00613 320 076502 JMP CNDX ALZ FRJS FAILURE TEST FOR MEMORY FAILURE

0508 60614 210 042007 WRTE PASS TAE S2 T/B/B=OPIG. CATA;RESTGRE MEMORY
0509 00615 010 040647 PASS M sl

0510 00616 320 030207 JMP TEST32K

0511 *

0512 00617 343 053022 CPTEST IMN L1 LOW S1 325B 51 := 177652

0513 00620 346 124507 IMM HIGH L 252B L := 125377

0514 00621 012 041016 CLFL AND S1 sl S§1 := 125252

0515 00622 300 031207 JSB REGTEST

0516 00623 010 043017 STFL PASS S1 S2 S1 := 052525

0517 *

0518 00624 017 141054 REGTEST SOV CMPS S2 Sl S§2 = KS1 TEIS ROUTINE LOADS
0519 00625 010 043107 PASS S3 S2 S3 = S2 THE SCRATCH REGISTERS
0520 V0626 150 045162 LWF L1 PASS S4 S3 S4 = NS3 WITH ONE OF TWO

0521 00627 150 047224 LWF Rl PASS S5 5S4 S5 = NS4 COMPLEMENTARY DATA
0522 00630 017 151263 L4 CMPS S6 S5 S6 = NS5 PATTERNS. REGISTERS
0523 00631 157 153322 LWF L1 CMPS S7 S6 §7 = S6 WITH 1 BIT DIFFER.
0524 00632 150 055364 LWF Rl PASS S8 S7 S8 = NS7 IN ADDRESS ARE FILLED
0525 00633 010 057423 L4 PASS S9 S8 S9 = S8 WITH UNLIKE PATTERNS.
0526 00634 017 161447 CMPS S10 S9 $10= NS9 THE ROTATE/SHIFT AND
0527 00635 010 063507 PASS S11 S10 S1l= S10 FLAG LOGIC IS CHECKED.
0528 00636 010 050507 PASS L S5 L := OTHER TEST PATTERN

0529 00637 014 156756 CLFL XOR S8 XOR SAME PATTERN

0530 00640 320 076602 JMP CNDX ALZ RJS FAILURE+2 TEST FOR NON-ZEROS

0531 00641 013 060747 XNOR S9 XNOR SAME PATTERN

0532 00642 320 176602 JMP CNDX ONES RJS FAILURE+2 TEST FOR NON-ONES

0533 00643 014 154747 XOR s7 XOR DIFFERENT PATTERN

0534 00644 320 176602 JMP CNDX ONES RJS FAILURE+2 TEST FOR NON-ONES

0535 00645 013 062747 XNOR S10 XNCR DIFFERENT PATTERN

0536 00646 320 076602 JMP CNDX ALZ PJS FAILURE+2 TEST FOR NON-ZEROS

0537 00647 003 064747 ADD s11 ADD UNLIKE PATTEPNS

0538 00650 321 036602 JMP CNDX COUT FAILURE+2 TEST FOR CARRY OUT

0539 00651 320 110642 JMP CNDX ONES ASR+1 TEST FOR NON-ONES

0540 00652 320 036607 JMP FAILURE+2

G-9

Appendix G

PAGE 0021 RTE MICRO-ASSEMBLER REV.A 760818

0542 00653 006 037747 MEMLOST ZERO § CLEAR DISPLAY ON POWER UP
8232 00654 300 030747 R JSB CPTEST TEST CENTRAL PROCESSOR

0545 00655 006 037253 RIPPIMW COV ZERO S6 CLEAR S6

0546 00656 010 077207 PASS S5 S SAVE S

0547 00657 010 052307 PASS DSPL S6 CLEAR DISPLAY REGISTER

0548 00660 010 075307 PASS §7 P SAVE P

0549 00661 340 100547 DMSLOAD IMM LOW CNTR 040B COUNTER := 40

0550 00662 357 077047 IMM CMHI S2 337B S2 := 020000

0551 00663 345 004447 IMM HIGH MEU 102B ENABLE SYSTEM MAP

0552 00664 010 042447 PASS MEU S2 CLEAR DMS ADDRESS REGISTER
0553 00665 010 052452 MESP PASS MEU S6 LOAD MAP

0554 00666 007 153265 DCNT INC Sé6 S6 INCREMENT MAP ADDRESS

0555 00667 326 173242 JMP CNDX CNT8 RJS *-2 TEST FOR ALL MAPS LOADED

0556 00670 353 077747 IMM CMLO S 337B PASS LOADER INVALID SC.,SET IR
0557 00671 300 ©24707 JSB LOADER FIND HOW MUCH MEMORY AVAILAELE
0558 00672 010 015761 SRG1 PASS § DSPL RESTORE S. CLEAF EXTEND

0559 00673 010 033107 PASS £3 M S3 := TOP OF ENABLED MEMORY
0560:00674 322 134402 JMP CNDX L15 TESTDMS TEST FOR PRESENT MEMORY

0561 00675 353 175047 IMM CMLO S2 376B BACKGROUND PATTERN := 000001
0562 00676 343 154147 IMM LOW A 366B TEST PATTERN := 177766

0563 00677 300 035107 JSB RIPP 32K TEST #1

0564 00700 355 177047 IMM CMHI S2 177B BACKGROUND PATTERN := 100000
0565 00701 353 154147 IMM CMLO A 366B TEST PATTERN := 000011

0566 00702 300 035107 JSB RIPP32K TEST #2

0567 00703 343 177047 IMM LOW S2 377B BACKGROUND PATTERN := 177777
0568 00704 355 176147 IMM CMHI A 177B TEST PATTERN := 100000

0569 00705 300 035107 JSB RIPP32K TEST #3

0570 00706 010 051047 PASS S2 S5 BACKGROUND PATTERN := S5 (DSPL)
0571 00707 300 035107 JSB RIPP32K TEST #4

0572 00710 010 022447 TESTDMS PASS MEU MEU

0573 00711 010 022747 PASS MEU ENABLE MEM STATUS REGISTER
0574 00712 320 135002 JMP CNDX CONES *+6 TEST IF DMS IS PRESENT

0575 00713 007 115747 INC S DSPL S := DISPLAY REGISTER

0576 00714 353 076507 IMM CMLO L 337B L := 40

0577 00715 014 176307 XOR DSPL S DISPLAY REGISTER := S

0578 00716 320 073042 JMP CNDX ALZ RJS DMSLOAD TEST FOR ALL MEMORY TESTED
0579 00717 345 000447 IMM HIGH MEU 100B DISABLE DMS MAPS

0580 00720 010 051775 SHLT PASS S S5 RESTORE S

0581 00721 360 055707 RTN DEC P s7 RESTORE P AND EXIT

PAGE 0022 RTE MICRO-ASSEMBLER REV.A 760818

0583 00722 000 044735 RIPP32K SHLT DEC PNM S3

0584 00723 210 042007 WRTE PASS TAE S2 T/A/B := EACKGROUND PATTERN
0585 00724 000 074707 DEC PNM P M :=P; P := P-1

0586 00725 327 175142 JMP CNDX ALLl5 RJS *-2 TEST FOR COMPLETE 32K

0587 00726 352 177147 IMM CMLO S4 2778 sS4 := 000100

0588 00727 010 046715 PRST PASS PNM S4 P := S4; M := 5S4

0589 00730 210 006007 RIPLOOP WRTE PASS TAE A T/A/B := TEST PATTERN; WRITE
0590 00731 352 174507 IMM CMLO L 2768 L := C00101

0591 00732 223 075707 READ ADD P P P :=P + 101

0592 00733 010 006515 PRST PASS L A L := TEST PATTERN

0593 00734 014 100747 XOR TAB COMPARE

0594 00735 320 076542 JMP CNDX ALZ RJS FAILURE+l TEST FOR SUCCESSFUL CONPARE
0595 00736 010 C44515 PRST PASS L S3 L := TOP OF ENABLED MEMORY
0596 60737 210 042007 WRTE PASS TAB S2 T/A/B= BACKGROUND PATTERN PESTCRE
0597 00740 004 174647 SUB M)2 TEST FOR NON-EXISTENT MEMORY
0598 00741 321 075402 JMP CNDX COUT RJS RIPLOOP TEST FOR FIPPLE PASS COMPLETE
0599 00742 000 047147 DEC S4 S4 DECREMENT 32K COUNTER

0600 V0743 327 175342 JMP CNDX AL1lS5 RJS RIPLCOP-1 TEST FOR ENTIRE 32K TESTED
0601 00744 010 042507 PASS L S2 L := BACKGEOUND PATTEEN

0602 00745 010 044707 PASS PNM S3 P := TOP OF ENABLED MEMORY
0603 00746 220 074707 BKGNDCK READ DEC PN P M := P; P := P-1; READ

0604 00747 367 101702 RTN CNDX AL1S TEST FOR ENTIRE 32K REAL

0605 00750 014 100747 XCR TAB TEST AGAINST EXPECTED BACKGROUND
0606 00751 320 036302 JMP CNDX ALZ BKGNDCK TEST FOR EXPECTED BACKGROUND
0607 *

0608 00752 010 042147 FAILURE PASS A s2 A := EXPECTED DATA

0609 00753 010 000213 COV PASS B TAB B := ACTUAL DATA

0610 00754 340 000375 IMM SHLT LOW DSPI 000B SET ALL DISPLAY INDICATCR BITS
0611 00755 343 176307 IMM LOW DSPL 377B SET ALL DISPLAY REGISTER BITS
0612 00756 327 054242 JMP CNDX NSFP RJS WAIT+2 SUSPEND TEST

0613 00757 320 021757 JMP STFL USER FLAG --> TEST REPORTED ERRCR
0614 *

G-10

PAGE

0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
Ce35
0636
0637
0638
063y
0640
0641
0ec4z
0643
U644
0645
0o46
0u47
(VI35
0649
0650
0651
0652
0653

PAGE
0655
0656
0657
0658
0659
0660
G661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
6672
0673
0674
0675
0676
0677
0678
0679
0650
0681
0682
0683
0684
0685
0686
o0eg7
(688
0689
0690

0023 RTE MICRO-ASSEMBLER REV.A 760818

00760
00761
00762
00763
00764
00765
00766
00767
00770
60771
00772
00773
00774
00775
00776
00777

v1000
01001
41002
U1003
01004
t1065
01006
41007
01010
01011
01012
J1013
vlcl4
01015
01016
Gl017

324
324
325
324
325
326
326
326
327
327
327
327
324
324
320
320

320
320
3260
32C
320
320
327
327
324
324
324
324
324
325
325
325

161007
161007
140004
160004
166004
000004
020004
040004
000004
U20004
040004
060004
000004
001004
641004
042004

061557
061547
065107
067047
060257
060007
100004
140004
040004
060G04
100004
120004
140004
000004
100004
120004

0024 RTE MICRO-ASSEMBLER REV.A 760813

01020
01021
61022
061023
01024
01025
01026
01027
61030
01031
01032
01033
01034
01035
0103¢
01637
01040
0lo41
01042
01043
01044
01045
01046
01047
01050
01051
01052
01053
01054
01055
01056
01657

320
370
320
320
370
320
320
320
320
370
320
320
370
320
320
320
320
320
320
320
32¢
320
320
320
320
320
320
320
320
320
320
320

043007
003607
043307
043647
070047
044007
044147
044347
045007
003647
645307
045607
072047
045747
046107
046307
044507
044647
046747
054107
£54407
051507
052147
053107
046447
046607
047147
056707
056707
056707
647407
050747

ORG 760B

*

* PRIMARY MAPPING TABLE

T e o o e o o -

*

MACTABL1 JMP 23420
JMP 2342UB
JMP RJI30 27000B
JMP RJ30 23400L
JMP FJ30 27400E
JMP RJ30 300008
JMP RJI30 304008
JMP RJ30 3100CE
JMP RJ3O0 340008
JNP :J30 34400k
JMP RJI30 35000B
JMPF RJ30 354608
JMP RJ30 2000¢0e
JMP RJ30 2C020L
JMP RJ30 LIG
Jip RJI3C EIG+20L

*

MACTABLO JMP STFL FAD
Jup FSE
Ju.p Frp
Jup FLV
JMP STFL FIX
JMP FLT
JMP PJ30 36000B
JMP FJ30 370008
JMP RJI30 210008
JMp RJI30 21400E
JMP FRJ30 2206008
JMP RJ30 22400F
JMP RJ30 230008
JMp RJ30 24Cc00B
JMP FRJ30 26000B
JMp RJI30 26400E

*

: EXTENDEL IKSTRUCTICN GROUF

*

EIG JMP S*X
RTN PASS X CAB
Jmp L*X
JMP STX
RTN PASS CAB X
JMP LDX
JMP ADX
JMp X*X
JMP S*y
FTHN PASS Y CAE
JLP L*Y
JMP STY
RTN PASS CAB Y
JMP LCY
JMP ADY
JMP X*y
JMP I1sX
JMP DEX
JrP JLY
arp LBT
JMP SBT
JMP BT
JMpP CBT
JMP SFB
JMP 1Y
JMP DsY
JMP JPY
JMp BITS
JMP BITS
JMP BITS
JMP CMW
JMP MVW

Appendix G

2000 ACCESS SYSTEM
200U ACCESS SYSTLEM

2000 ACCESS SYSTLHM

DYNAFIC MAFPING SYSTEM
CYNAMIC MAPPING SYSTEM

EXTEKCED
EXTENLEL

FLUGATINC
FLOATING
FLCATING
FLCATIMNC
FLOATING

INSTPUCTION
INSTRUCTION CROUEF

PCINT
POINT
POINT
PCINT
FOINT

ADD
SUETKACT
HULTIPLY
LIVIDL

1C INILEGER

IUTEGER TO FLCGATING PCINT

FAST FCRIRAN
FAST FCFTPRAN
HP FESERVLD
EF RESEFVED
P RESLEVED
HP RESEFVEL
EP KESEEVED
WP FESERVED

SAX/SBX
CAX/CBX
LAX/LBX
STX
CXA/CEX
LDX
ADX
XAX/XBX
SAY/SBY
CAY/CBY
LAY/LBY
STY
CYA/CYB
LDY
ADY
XAY/XLY
18X
DSX
JLY
LBT
SET
MBT
CET
SFB
sy
DSy
JPY
SBS
CES
TBS
CMW
MVE

CEOUP

G-11

Appendix G

PAGE
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734

G-12

0025 RTE MICRO-ASSEMBLER REV.A 760818
*

01060
01061
01062
01063
01064
01065

01066
01067
01070
01071
01072
01073
01074

01075
01076
01077

01100
01101
01102

01103
01104
01105
01106

01107
01110
01111

01112
01113
01114

01115
01116
01117

300
010
003
010
210
320

300
010
003
230
010
227
370

300
210
320

300
010
227

300
010
263
227

230
010
372

227
360
227

220
360
227

012447
070507
033007
040647
002036
043547

012447
070507
033007
040647
000047
174707
036747

012447
070036
043547

012447
001607
174700

012447
070507
001607
174700

002507
070047
137607

171607
041602
174700

071607
041602
174700

*
*

*
S*X

L*X

RETURN

*
STX

LDX

ADX

X*X

IsX

DSX

INDEX REGISTER
JSB
PASS
ADD
PASS
WRTE MPCK PASS
JMP
JSB
PASS
ADD
READ PASS
PASS
READ INC
RTN
JSB
WRTE MPCK PASS
JMP
JSB
PASS
READ RTN INC
JSB
PASS
ENVE ADD
READ RTN INC
READ PASS
PASS
RTN PASL
REALD INC
RTN CNDX ALZ
READ RTN INC
READ DEC
PTN CNDX ALZ
READ RTN INC

GROUP
INDIRECT

L X

Sl M

M sl

TAB CAB
RETURN
INDIRECT

L X

Sl M

M sl

CAB TAB

PNM P
INDIRECT

TAE X
RETURN
INDIRECT

X TAB

PNM P
INDIRECT

L X

X TAB

PNM P

L CAB

CAR X

X

X X

EJS

PNM P

X X

RIS

PNM P

L := X

M := X + T/A/B
T/A/B := A/B;

INCREMENT X;
TEST FOR ZERO
M := P; P := P+1;

READ

DECREMENT X;
TEST FCF ZERO
M :=P; P 1=

READ

P+1;

WRITE

READ

READ

READ

READ

READ

Appendix G

PAGE 0026 RTE MICRO-ASSEMELER REV.A 760818
*

0736

0737 01120 300 012447 S*Y JSB INCIRECT

0738 0l121 010 072507 PASS L Y L :=Y

0739 01122 003 033007 ADD S1 M

0740 01123 010 040647 PASS M Sl M := Y + T/A/B

0741 01124 210 002036 WRTE MPCK PASS TAB CAB T/A/B := A/B; WRITE

0742 01125 320 043547 JHP RETURN

0743 *

0744 01126 300 012447 L*Y JSB INDIRECT

0745 01127 010 072507 PASS L Y L :=Y

0746 01130 003 033007 ADD S1 M

0747 01131 230 040647 READ PASS M sl M :=Y + T/A/B; READ

0748 01132 010 000047 PASS CAB TAB A/B := T/A/P

0749 01133 227 174700 READ RTN INC PNM P M := P; P := P+l; READ

0750 *

0751 01134 300 012447 STY JSE INDIRECT

0752 01135 210 072036 WPTE MPCK PASS TAB Y T/A/B := Y; WRITE

0753 01136 320 043547 JMP RETURN

0754 *

0755 01137 300 012447 LDY JsB INDIRECT

0756 01140 010 001647 PASS Y TAB Y := T/A/B

0757 01141 227 174700 READ RTN INC PNM P M := P; P := P+l; FEAD

0758 *

0759 01142 300 012447 ADY JSB INDIRECT

0760 01143 010 072507 PASS L Y L :=Y

0761 01144 263 001647 ENVE ADD Y TAB Y := Y + T/A/B

0762 01145 227 174700 READ RTN INC PNM P M := P; P := P+l; PEAD

0763 *

0764 01146 230 002507 X*Y READ PASS L CAB L := A/B

0765 01147 010 072047 PASS CAB Y A/B 1= Y

0766 01150 372 137647 RTN PASL Y Y := L

0767 *

0768 01151 227 173647 ISY READ INC Y b INCREMENT Y; READ

0769 01152 360 041642 RTN CNDX ALZ RJS TEST FOR ZEFO

g;;o 01153 227 174700 READ RTN INC PNM P M := P; P := P+l; READ
1

0772 01154 220 073647 DSY READ DEC ¥ Y DECREMENT Y; READ

0773 01155 360 041642 RTN CNDX ALZ RIS TEST FOR ZERO

0774 01156 227 174700 READ RTN INC PNM P E := P; P := P+l; EEAD

PAGE 0027 RTE MICRO-ASSEMBLER REV.A 760818

0776 *

0777 * JUMP INSTRUCTIONS

0778 X e

0779 *

0780 01157 300 012447 JLY JSB INDIRECT

0781 01160 010 075647 PASS Y P Y := P

0782 01161 010 033707 PASS P M P:=M

0783 01162 320 047247 JNP JPY+2 DO KP CHECK, COMPLETE JLY

0784 *

0785 01163 010 072507 JPY PASS L b L:=yY

0786 01164 003 001707 ADD P TAB P :=Y + T/A/B

0787 01165 344 120607 MM HIGH IRCM 050B PREPARE MP FOR G,1 PROTECTION

0788 01166 227 174707 READ INC PNM P M 1= P; P := P+l, FEAD

0789 01167 370 036776 RTN MPCK CHECK JUMP TARGETS

G-13

Appendix G

PAGE
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829

G-14

0028 RTE MICRO-ASSEMBLER REV.A 760818

01170
01171
01172
01173
01174
01175
01176
01177
01200
01201
01202
01203
01204
01205
01206
01207
01210
01211
01212
01213
01214
01215
01216

01217
01220
01221
01222
01223
01224
01225
01226
01227
01230
01231

300
230
010
230
007
014
327
014
004
320
007
000
320
335
320
322
320
321
0607
007
000
003
227

300
230
007
010
010
210
007
000
320
335
320

056007
006647
010647
000507
110207
101007
110342
141007
140747
050442
106147
045107
003542
007442
056507
110542
050507
010542
175767
175707
044507
010207
174700

056007
006647
106147
010647
001047
042036
110207
045107
003542
011002
056507

NOTEQ

MVW
LMVW

WORD MANIPULATION INSTRUCTIONS

JSB
READ

READ

JMP

JMP

JMP
JMP
JMP
JMP
JMP
JMP

READ

JSB
READ

WRTE

JMP
JMP
JIMP

CNDX

CNDX

CNDX

CNDX

CNDX

CNDX

RTN

MPCK

CNDX
CNDX

PASS
PASS
PASS
INC
XCR
ALl5
XOR
SUB
ALZ
INC
DEC
ALZ
NINT

L15

CouT
INC
INC
DEC
ADD
INC

PASS
INC
PASS
PASS
PASS
INC
DEC
ALZ
NINT

oW o

INITIAL
A

B

TAB

B

TAB
NOTEQ
sl

Sl
NOTEQ+2
A

S3
RETURN
LCMW
INTPEND
*4+4

*42

*42

P

P

s3

B

P

INITIAL
A
A

B

TAB

s2

B

s§3
RETURN

LMVW
INTPEND

WORD ADDRESS OF ARRAY
WORD ADDFESS OF ARRAY
ARRAY 1 WORD

ARRAY 2 ADDRESS

1w
N

e~ salic Jc 4

(=)
T oer e e
d

TEST FOR SIMILAR SIGN BITS

TEST FOR WORD COMPARE

BUMP ARRAY 1 ADDRESS
INCREMENT WORD COUNT

TEST FOR COMPLETE COMPARE
TEST FOR INTERRUPT PENDING

TEST FOR WORD 1 NEGATIVE

AVOID CQUT CHECK FOR XOR

TEST FOR WORD 1 LESS THAN WORD 2
BUMP P

BUMP P

L := RESIDUAL STRING COUNT
UPDATE B PAST STRING

M := P; P := F+1l; READ

M := SQURCE ADDRESS; READ

BUMP SOURCE ADDRESS COUNTER

M := DESTINATION ADDRESS

§2 := SOURCE WORD

STORE SOURCE WORD TO DESTINATION
BUMP DESTINATION COUNTER
DECREMENT WORD COUNTER

TEST FOR COMPLETE MOVE

TEST FOR PENDING INTERRUPT

PAGE
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877

PAGE
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890

0029 RTE MICRO-ASSEMBLER REV.A 760818
*

01232
01233
01234
01235
01236
01237
01240
01241
01242

01243
01244
01245
01246
01247
01250
01251
01252
01253
01254
01255
01256
01257
01260
01261

01262
01263
01264
01265
01266
01267
01270
01271
01272

01273
01274
01275
01276
01277
01300
01301

300
150
300
300
007
000
320
335
320

300
150
300
010
150
300
007
010
004
320
007
000
320
335
320

344
010
012
014
010
150
300
010
014
320
007
014
320
335
000
320

056007
007064
055507
054647
106147
045107
003542
011542
056507

056007
007064
055507
041207
011064
055507
110207
050507
140747
050442
106147
045107
003542
012202
056507

000507
033207
007107
007163
047163
011064
055507
040507
144747
014602
110207
146747
003542
013342
075707
000307

*
*

*

MBT
LMBT

CBT
LCBT

SFB

LSFB

*

Appendix G

BYTE MANIPULATION INSTRUCTIONS

JSB
LWF Rl
JSB
JSB
JMP CNDX
JMP CNDX
JMP
JSB
LWF Rl
JSB
LWF Rl
JSB
JMP CNDX
JMP CNDX
JMP CNDX
JMP
IMM
L4
L4
LWF Rl
JSB
JMP CNDX
JMP CNDX
JMP CNDX
JMP

0030 RTE MICRO-ASSEMBLER REV.A 760818

01302
01303
01304
01305
01306
01307

01310
01311
01312
01313
01314

150
010
300
230
007
370

344
010
012
300
230

011064
033107
055507
044647
110207
040147

000507
033207
007007
054647
050640

LBT

SBT

LWF R1

JSB
READ

RTN

IMM

JSB
READ RTN

PASS

INC
DEC
ALZ
NINT

PASS

PASS
PASS

INC
PASS
SUB
ALZ
INC
DEC
ALZ
NINT

HIGH
PASS
AND

SANL
PASS
PASS

PASS
XOR
ALZ
INC
XOR
ALZ
NINT
DEC

PASS
PASS

PASS
INC
PASS

HIGH
PASS
AND

PASS

s2

A
s3

s2

S5
s2

RJS

S3

S5
s3
S4

s2

s2
s3

M

INITIAL
A
LDBYTE
STBYTE
A

s3
RETURN
LMBT
INTPEND

INITIAL
A
LDBYTE
sl

B
LDBYTE
B

S5

S1
NOTEQ+2
A

S3
RETURN
LCBT
INTPEND

000B
M

A

A

s4

B
LDBYTE
s1

s3
SBT+4

B

S4
RETURN
LSFB

P

HORI

B

M
LDBYTE
S3

B

sl

000B

M

A
STBYTE
S5

S2 := FROM WORD ADDRESS

JUMP TO BYTE LOADING SUBROUTINE
JUMP TO BYTE STORING SUBROUTINE
BUMP FROM ADDRESS

DECREMENT BYTE COUNT

TEST FOR COMPLETE MOVE

TEST FOR INTERRUPT PENDING

S2 := WORD ADDRESS

JUMP TO BYTE LOADING SUBROUTINE
S5 := BYTE 1

S2 := WORD ADDERESS

JUMP TO BYTE LOADING SUBROUTINE
BUMP STRING 2 ADDRESS

L := BYTE 1

SUBTRACT: BYTE 2 - BYTE 1

TEST FOR BYTE COMPARE

BUMP STRING 1 ADDRESS

DECREMENT BYTE COUNT

TEST FOR COMPLETE COMPARE

TEST FOR INTERRUPT PENDING

L := 377B
SAVE M
53 := TEST BYTE

S4 := TERMINATION BYTE

S2 := WORD ADDRESS

JUMP TO BYTE LOADING SUBROUTINE
L := RIGHT JUSTIFIED BYTE
COMPARE TO TEST BYTE

TEST FOR TEST BYTE MATCH

BUMP STRING ADDEESS

COMPARE TO TERMINATION BYTE
TEST FOR TERMINATION BYTE MATCH
TEST FOR INTERRUPT PENDING
DECPEMENT P

INTERRUPT PENDING

S2. := WORD ADDRESS

SAVE M

JUMP TO BYTE LOADING SUEROUTINE
RESTORE M AND PEAD

BUMP BYTE ADDRESS

A := RIGHT JUSTIFIED BYTE

L := 000377
Sl := RIGHT JUSTIFIEC BYTE; READ

JUMP TO BYTE STORING SUBROUTINE
RESTORE M AND READ

- Computer

. Museum

G-15

Appendix G

PAGE
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0525
0926
0927
0928
0929
0930
0931

PAGE
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956

G-16

0031 RTE MICRO-ASSEMBLER REV.A 760818
*

01315
01316
01317
01320
01321
01322
01323
01324
01325
01326
01327
01330
01331

01332
(1333
01334
01335
01336
01337

01340
01341
01342
01343
01344
01345
01346
01347
01350
01351

01352
01353
01354
01355

150
230
334
014
010
210
367
012
010
010
010
210
367

230
344
334
372
014
370

230
300
007
230
320
010
360
006
210
372

000
000
210
320

011064
042647
055202
000507
141007
040036
110207
000507
041023
041023
141007
040036
110207

042647
000507
055702
001007
001023
041023

036747
012447
174707
001107
017502
000507
000002
037047
042036
137107

075707
074707
044007

000307

*
*

*
STBYTE

*
LDBYTE

*
INITIAL

*
INTPEND

COMMON SUBROUTINES

LWF
READ
JMP

WRTE
RTN

WRTE
RTN

READ
IMM
JMP
RTN
RTN

FEAD
JSB

READ
JMP

RTN

WRTE
RTN

WRTE
JMP

R1

CNDX

MPCK

L4
L4

MPCK

CNDX

L4
L4

CNDX
CNDX

MPCK

0032 RTE MICRO-ASSEMBLER REV.A 760818

01356
01357
01360
01361
01362
01363
01364
01365

01366
01367
01370
01371
01372
01373

01374
01375
01376
01377

300
010
230
300
300
210
007
227

007
007
234
320
227
320

374
012
320
370

012447
000507
074647
012447
057603
040036
175707
174700

175707
174707
140747
017542
174707
000007

001007
001007
057307
101007

*

FTBS

GOFETCH

*

CBS
TBS

SBS

BIT MANIPULATION INSTRUCTIONS

JSB

READ

JSB
JSB

WRTE MPCK

ION

READ RTN

READ

JMP

READ

JMP

RTN

JMP
RTN

CNDX

PASS
PASS
FLAG
SANL
IOR
PASS
INC
AND
PASS
PASS
IOR
PASS
INC

PASS
HIGH
FLAG
AND

SANL
PASS

INC
PASS
ALZ
PASS
ALZ
ZERO
PASS
PASL

DEC
DEC
PASS

PASS
PASS

PASS
INC
INC

INC
INC
XOR
ALZ
INC

SANL
AND

IOR

TAB

RJS
sl
sl
sl

PNM
S3

s2
TAB
s3

PNM
TAB

L
M

TAB

PNM

PNM

PNM

Sl

s1
sl

s2
000B
*4+2
TAB
TAB
sl

INDIRECT
P

TAB
GOFETCH
TAB

s2

s3
HORI

INDIRECT
TAB

P
INDIRECT
CBS

s1

P

P

P

P

S1
*42

P
FETCH

TAB
TAB
FTBS
TAB

= WORD ADDRESS

M = WORD ADDRESS; READ
TEST FOR EIGH CPDER BYTE

L := BYTE TO BE PFESERVED
S1 := WORD KITH MERGED BYTES
STORE WORD INTO MEMORY

BUMP B

L := BYTE TO BE PRESERVED

S1 := WORD WITH MERGELC LEYAES
STORE WOED IN MEMOFRY

BUMP B

READ

L := 000377

TEST FOR HIGH CRDEE BYTE
S1 := RIGHT JUSTIFIED BYTE
S1 := RIGHT JUSTIFIED BYTE
READ

M := F; P := P+l

S§3 := INITIAL COUN1; EKREAD

TEST FOR ZERO WORD COUNT
TEST FOR RESIDUAL COUNT

CLEAR WORD 3
S3 := ACTUAL COUNT

DECREMENT P
DECREMENT P
STORE PRESENT WORD COUNT

INTERRUPT PENDING

L := MASK
READ WORD TO BE MODIFIED

STORE WORD BACK INTO MEMORY
P :=P +1

Sl := WORD WITH BITS CLEARED
S1 := WORD WITH BITS CLEARED
FINISH TBS

S1. := WORD WITB BITS SET

PAGE

0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974

PAGE

0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1602
1003
1004
1005
1006
1007
100%
lu09
lul0

0033 RTE MICRO-ASSEMBLER REV.A 760818

01400
01401
ul402
01403
01404

010
606
353
000
320

006213
036147
141147
075707
073007

CRG

14008

Appendix G

dkkdkhkhkdkhdkdkhkkkhkhhdkkk ko kkkkkkkkdkkkhkhkhhkkkkrkkkhkkkkkkhkhkkkkhhkhkhkhhkkhkkk

MOLCULE 03:

* % % % *

21XE MICRO-CODE

FLOATINC POIKT INSTRUCTIONS

REV 1976-04-26-1800

EAS

kdkkdkkkdkdkhkkhkkkkkhhhkhkkkkkkkhhhkhkhkhkhkkkkhhdkhkhkkdkhhdhkhhhkkhhhkhhkhkhhkkkkx

*
*

hkkhkkkkhkhkkhkhkhkhkhkkkkdkhkdkdkdkhdkkkkhkkhkhkdhdkdh ko k koo kdkok koo odkdk sk ok dk & s koo o sk k& ke k &k ok ok

FLOAT EQU

FLT cov
IMM
JMP

0034 RTE MICRU-ASSEMBLER REV.A 760818

01405
01406
01407
01410
01411

01412
01413
01414
01415
01416
01417
01420
01421
Gla22

01423
01424

01425
01426
01427
01430
01431

01432

340
153
321
226
007

012
010
010
353
003
320
327
011
230

010
0630

0lo
010
327
010
320

227

000513
111024
120442
036140
141007

011047
006207
042147
140507
041014
021242
161142
136164
036740

040567
010224

0606513
010147
161102
142747
0211062

106140

*

*
* FLAG
*
* ON EXIT A =
*
* USES A,B,S1,52
*
FIX IMM COV LOW
LWF Rl NSOL
JMP CNDX ALO
. READ RTN ZERO
FIXOK1 INC
AND
PASS
PASS
IMM CMLO
SOV ADD
JMP CNDX ALZ
JMP CNDX ALL5
Rl ONE
RETNFP READ KTR
FIXOK2 RPT PASS
. ARS Rl PASS
RTRNINTG EQU
COV PASS
PASS
JMP CNDX AL1S
IOR
JMP CNDX ALZ
*
READ FTN INC

PASS
ZERO
CMLO
DEC

INTEGER B

L
sl

A
sl

S2
B
A
L
sl

RJS

CNTR
B

RJS

A

£000
FIXOK1
sl

B

A

S2

2360

Sl
RTRNINTG
FIXOK2

RETNFP
S2
RETNFP

A

CLEAF LSL 'S 10 SHIFT INTO E
SCT ELXPONENT FOR MAX INTEGER
BECAUSE PACK LUMPS IT

ON ENTRY~- A,BE = FLOATING POINT NUMBER
1

CHANGED (USUALLY = A,THOUGH)

L :=1 111 111 100 000 000
S1 := - EXP -
RETURN ZERO IF EXP < 0

Sl := -EXP

B := LSB’S

B := MSB'S

A := LO BITS
L := 15

CALCULATE 17 - EXP

NO SHIFTING IF EXP = 17
CVERFLOW IF EXP > 17

SET A TO MAX INTEGEE

START INSTRUCTION FLAD; LXIT

CCUNTEF := #SHIFTS; SCT REPEAT FF
CO THE SHIFTS

L := LSE’'S FROM SHIFT
A 1= INTECER

WE ARE CONE IF A POSITIVE INTLGLF
ELSE CHLCK FCR ROUND KECE3SARY
RETURN IF NO CITS LANCING

ELSE ROUND UP AND RETUEN

G-17

Appendix G

PAGE 0035 RTE MICRO~ASSEMBLER REV.A 760818
FAD / F SB -- FLOATING POINT ADD / SUETRACT

1012
1013
1014
1015
101e
1017
1018
1019
1020
1621
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

G-18

01433

01434
01435
01436
01437
01440

01441
01442
01443

01444
01445
01446
01447
01450
01451
01452
01453
01454

01455
01456

230

300
300
010
320
342

010
320
342

334
017
017
007
321
067
327
001
320

010
007

036747

012447
071607
042747
062042
001147

010747
062202
001207

022742
143047
145107
145107
062742
143047
162742
142747
062742

043064
147147

*

* % * * ¥ ¥ ¥ %

* T
> 0
oo

CN ENTRY--A,B

P =
FLAG

ON EXIT-- A,B

USES KREGISTERS

EQU
READ

JSB
J5B

JMP
IMM
JMP
IMM

JMP

JMP

JMP

CNEX

CNDX

CNDX

CNDX

CNDX

CNDX

Rl

PASS
ALZ
LOW

PASS
ALZ
LOW

FLAG
CMPS
CMPS

cour
INC
AL1S5S
DBLS
ALZ

PASS
INC

FIRST CPERANL

FOINTER TO ALDFESS OF SECOKD CPEFANC

= 1 MEANS ADD =0 MEANS SUBTFACT
(FIRST OPERAND) +(-) (SECOND CFEFAND)

s1,$2,53,54,55,586
* ITS THE SAME AS FAD

INDIRECT GO CLEAR INDIFECTS IF NECESSARY
UNPACK GO UNPACK THE NUMEBERS

s2 IS OP2 = (?
RIS *+2 SKIP IF NOT
S4 2200 EXP{(D) := =200
B IS OP1 = C?
RIS *42 SKIP IF NGT
S5 2200 EXP(C) := =200
DIFR SKIP AHEAD IF DOING AN ADD
s2 s2 -ELSE NEGATE GP2
S3 s3
Ss3 S3
RJS DIFR IF NO CARRY GUT, GG PROCEED
2 s2 -BUMP MSB’S
RJS DIFR IF POSITIVE, GO PROCEED
s2 -WAS IT 100...0?
RJS DIFR
§2 82 YES, MAKE IT 010...0
sS4 sS4 AND ADJUST EXPONENT

PAGE
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1u92
1063
1094
1095

0036 RTE MICRO-ASSEMBLER REV.A 760818

01457
01460
01461

01462

01463
01464
01465

01466
01467
01470
01471
01472
01473

01474
01475
01476
01477
01500
01501
01502
01503
01504
01505
01506
01507
01510
01511
01512
01513
01514
01515

01516
u1517
G1520
01521

0lo0
004
320

327

017
007
320

010
010
010
010
012
010

343
003
327
010
030
326
150
243
010
003
321
345
247
335
334
345
014
320

150
150
007
320

046507
151007
024102

163302

141007
141007
063607

042207
053047
006507
044147
137107
051147

116507
040547
172702
036767
010224
163742
042522
010267
044507
006147
064442
176507
110207
173002
064702
176507
110747
133002

010224
006164
147147
073007

RVRS

*
*
*
5

WAMPC
ALIGN

ADD2

NOCARY

OFLOW

Appendix G

FIND DIFFERENCE IN EXPONENTS--SMALLER EXPONENT GETS RIGHT-SHIFTED.

JNMP

JMP

WE NEED TO SFIFT THE

JIMP

CNDX

PASS
SUB
ALZ

L
S1

CNDX AL1S5 PJS

CMPS
INC

sl
sl

sS4
S5
ADD2

RVRS

Sl
Sl

L := EXP(D)
S1 := EXP(C) —- EXP(D)

IF 0,DO THE ADDITION (NO SHIFTS)

SECOND NUMBER.

Sl := POSITIVE DIFFERENCEC

SWAMPCHK GO CHECK IF ONE OF THENM>THE OTHER

SWAP THE NUMEERS--~WRONG ONE IS IN E,A

PASS B 52
PASS S2 S6
PASS L A
PASS A S3
PASL S3
PASS S4 S5
CHECK FOR ABS(EXP2 - EXP1)
HE THMM LOW L 347
ADD CNTR S1
JMP CNDX AL15 RJS TOOBIG
RPT
ARS Rl PASS B B
JMP CNDX CNT8 RJS ALIGN
LWF Ll PASS L S2
ENV ADD B B
PASS L 53
ADD A A
JMP CNDX COUT RJS NOCARY
IMM HIGH L 177
ERV INC B B
JMP CNDX OVFL RJS PACK
JMP CNDX FLAG RJS OFLOW
IMM HIGH L £177
XOR B
JMP CNDX ONES PACK
LWF R1 PASS B B
LWF R1 PASS A A
INC S4 S4
JMP PACK

> 30

B := 52
A := S3
S4 := LAPCER EXPONENT

--IF SO, ADDING WILL DO NOTHING

-- TEST (S1 - 30(B8))
BUG OUT EAPRLY

ALIGN THE OPLCRAND FOR ADDING
IF NOT DONE LOOP

SET UP TO ADD THE HI BITS

ADD THE HIGH BITS

PREPARE FOR ADDING THE LO BITS
ADC THE LO BITS

TEST CARRY OUT FROM LO BITS

BUMP B IF CARRY OUT OF LO BITS
IF NO OVERFLOW GO PACK IT UP

IF SIGN POSITIVE HANDLE ODD CASE
SET UP L FOR OVF TEST

IF UNICUE CASE GO PACK IT UP
FULL WORD SHIFT;USE FLAG FOR SICN

BUMP THE EXPONENT
CO PACK IT UP

G-19

Appendix G

PAGE 0037 RTE MICRO-ASSEMELER REV.A 760818

1097 * F M P -- FLOATING POINT MULTIPLY

1098 o mmmme emmemes e e

1049 * ON ENTRY--A,E = C

1100 * P = POINTER TO ADDRESS OF T

1101 *

1102 * ON EXIT--A,E = RESULT

1103 *

1104 * USES REGISTERS A,£,51,52,53,54,55,56

1105 *

1106 01522 230 036747 FMP READ

1107 01523 300 012447 JSBE INDIRECT GO CLEAFE INDIRECTS IF NECLSSARY
11y8 01524 300 071607 JSB UKPACK GO UNPACK THE NUMBERS
1109 *

1110 * FORM EXP(C)+EXP{(D)+1 IN S4; SAVE AS TLE EXPCNENT OF TEE RESULT
1111 *

1112 01525 007 150507 INC L S5

1113 01526 003 047147 ADD 5S4 S4 S4 = EXP(C) + EXP(D) + 1
1114 *

1115 * CALCULATE MSB (D) * (LSB (C) /2)

1116 *

1117 01527 €l0 006164 FEl PASS A a A = LSB(C)/2

1118 01530 010 042507 PASS L s2 L = MSB(D)

1119 01531 300 077047 JSB MPYX MSB (D) * (LSB (C) /2)
1120 01532 016 007207 PASS S5 A S5 = LSB(TEMP)

1121 ©1533 010 044le4 Rl PASS A S3 A = LSB(D)/2

1122 11534 010 011107 PASS S3 B S3 := MSB(TENMP)

1123 *

1124 * CALCULATE MSB(C)*(LSB(D)/2)

1125 *

1126 01535 010 (52507 PASS L S6 L = MSB(C)

1127 01536 300 077047 JSB MPYX MSB (C) * (LSB (D) /2)
1128 *

1129 * ADD RESULTS TO TEMP1

1130 *

1131 01537 010 006507 PASS L A L = LSB{(RESULT)

1132 01540 003 050747 ADD S5

1133 ul541 321 066142 JMP CNDX COUT RJS *+2 TEST FOR CARRY OUT AND SKIP
1134 *

1135 01542 007 110207 INC B B ADD IN THE CARRY BIT
1136 01543 010 010507 PASS L B L = MSB (RESULT)

1137 01544 003 045107 ADD S3 S3 S3 = MSB(RESULT)

1138 *

PAGE €038 RTE MICRO-ASSEMBLER REV.A 760818

1140 * CALCULATE MSB (C) *MSB (D)

1141 *

1142 01545 010 052507 PASS L S6 L = MSB(C)

1143 01546 010 042147 PASS A s2 A = NMSB(D)

1144 01547 300 077047 JSB MPYX MSB (C) *MSB (D)

1145 01550 Gl0 006164 FMPY? Rl PASS A A A := LSB(RESULT)/2
1146 01551 010 044513 COV PASS L s3

1147 01552 243 006162 ENV L1 aDD & a A := (LSB(RESULT)/2+TEMP1)*2
1148 01553 327 173002 JMP CNDX AL15 RJS PACK

1149 01554 335 126742 JMP CNDX OVFL FMPY8

1150 61555 000 010207 DEC B B BORROW FROM MSB’'S
1151 01556 320 073007 JMP PACK GO PACK IT UP

1152 *

1153 01557 007 110207 FMPY8 INC B B CARRY TO MSB’S

1154 01560 320 073007 JMP PACK GO PACK IT UP

G-20

PAGE
1156
1157
1158
1159
1160
llel
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1185
1196

PAGE
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

Appendix G

0039 RTE MICRO-ASSEMBLER REV.A*760818

01561
01562
01563

01564
01565
01566
01567
01570
01571
01572
01573
01574
01575
01576
01577
01600
01601
01602
01603
01604
01605
01606
01607
01610

01611
01612

230
300
300

017
320
327
007
000
004
030
300
010
010
321
000
006
300
010
010
010
006
300
017
007

010
300

036747
012447
071607

143253
135542
127402
153054
046507
151147
010224
075707
007207
010747
170002
010207
036147
075707
007247
044224
010224
036147
075707
106147
106147

050507
077047

* % * % * % ¥ ¥ ¥ ¥

FDV

* *

GET

FDIV71

*

F D V == FLOATING POINT DIVIDE

ON ENTRY-- A,B = C
P = POINTER TO ADDRESS OF D

ON EXIT-- A,B = RESULT

USES REGISTERS A,B,S1,52,53,54,S5,56

READ
JSB INDIRECT GO CLEAR INDIRECTS IF NECESSARY
JSB UNPACK GO UNPACK THE NUMBERS

SET TO FORM FIRST QUOTIENT OF THE APPROXIMATION (QOC).

COvV CMPS sé6 s2 S6 := NOT(MSB (D))
JMP CNDX ONES OVERFLOW CHECK FOR DIVIDE BY ZERO!
JMP CNDX AL1S *+2
SOV INC Ss2 S6 S2 := ABS(MSB(D)); OVF := SIGN
DEC L S4 L := EXP(D) ~ 1
SUB 5S4 S5 S4 := EXP(C)-EXP(D); CNTR := 1°S
ARS Rl PASS B B PRESHIFT TO AVOID OVEFRFLOW
JSB DIVX
PASS S5 A S5 := QO
PASS B
JMP CNDX ALO RJS *+2
DEC B B FIRST LEFT SHIFT FOR NEXT
ZERO A
JSB DIVX
PASS S6 A
R1 PASS B S3 B := LSB(D)/4
Rl PASS B B
ZERO A
JSB DIVX
CMPS A A
INC A A
PASS L S5 L := Q0; COUNTER := ALL ONES
JSB MPYX

0040 RTE MICRO-ASSEMBLER REV.A 760818

01613
01614
01615
0l6lé6
01617
01620
01621
01622
01623
01624
01625
01626
01627

01630
01631
01632
016233

010
006
010
327
011
010
327
000
001
010
003
321
007

070
010
003
320

011047
036207
052747
171002
136207
042747
171142
010207
143062
042507
052147
071402
110207

010222
050507
010207
073007

FDIV81l

PASS 52 B S2 := MSB (-Q0*C2)
ZEROC B B :=0
PASS Sé IF Q1
JMP CNDX ALl5 RJS *+2 NEGATIVE,
ONE B B := ONES
PASS s2 IF (-Q0%*Q2)
JMP CNDX AL15 RJS *+2 NEGATIVE,
DEC B B B := B + (ALL ONES)
Ll DBLS S2 s2 REORIENT ERODUCT (*4)
PASS L s2
ADD A S6 ADD TO Q1
JMP CNDX COUT RJS *+2 IF THERE WAS A CARRY OUT,
INC B B ADD IT TO THE HIGH BITS.
LGS L1 PASS B B
PASS L S5
ADD B B ADD QO TO MSB
JMP PACK GC PACK IT UP

G-21

Appendix G

PACE 0041 RTE MICRO-ASSEMBLER REV.A 760818

1217 *

1218 * UNPACK THE NUMBERS: B 1= MSB(C) S2 := MSB (D)

1219 * A := LSB(C) §3 := LSEB (D)

1220 * §5 := EXP(C) €4 := EXP (L)

1221 *

1222 01634 010 001047 UNPACK PASS S2 TAB S2 := MSB(D)

1223 *

1224 01635 007 133107 INC S3 M $3 := ADDRESS OF LSE (D) + EXP (D)
1225 01636 230 044647 READ PASS M s3 READ THE WORD

1226 01637 344 000507 IMM BIGH L 20 L := 0 000 00C 011 111 111

1227 01640 010 007247 PASS S6 A S6 := MSE(C)

1228 01641 010 001107 PASS S3 TAB $3 := LSB(D) + EXP(D)

1229 01642 012 045153 COV AND S4 S3 S4 := EXP(D)

1230 01643 014 045107 SANL S3 83 §3 := LSB(D)

1231 01644 014 010147 SANL A B A := LSB(C)

1232 01645 012 011224 Rl AND S5 B §5 := UNPACKED EXP (C)

1233 01646 321 172442 JMP CNDX ALO RJS *+43 TEST EXP SIGN AND SKIP IF +
1234 01647 342 000507 MM LOW L $200 L := 3177600

1235 01650 003 051207 ADD S5 S5 §5 := 55 + 3177600

1236 01651 010 052207 PASS B 86 B := MSE(C)

1237 01652 010 047164 Rl PASS 54 S4 UNPACK EXP (D)

1238 01653 361 141142 RTN CNDX ALO RJS TEST EXP SIGN AND EXIT IF +
1239 01654 342 000507 IMM Low L $200 L := $177600

1240 01655 003 047140 RTN ADD S4 54 S4 := S4 + £177600

1241 *

PAGE 0042 RTE MICRO-ASSEMBLER REV.A 760818

1243 * PACK THE NUMBER

1244 *

1245 * IT IS ASSUMED THAT THE MANTISSA IS UNNORMALIZED AND

1246 * CONTAINED IN THE ACCUMULATORS AND THE EXPONENT IN S4

1247 *

1248 *

1249 01656 010 042207 TOOBIG PASS B 52 ENTER HERE IF SWAMP CHECK IN FAD
1250 01657 010 044147 PASS A 83 LOAD THE ACC WITH THE LARGER NUM
1251 01660 010 006513 PACK CoV PASS L A

1252 01661 010 110747 I0R B A/B = 0?

1253 01662 320 035642 JMP CNDX ALZ RETNFP2 -RETURN IF SO

1254 01663 343 176547 IMM LOW CNTR %377 INIT CNTR FOR 1°S COMP COUNTING
1255 01664 001 110507 NORMLIZ DBLS L B L := LEFT SHIFT B BY ONE BIT
1256 01665 014 110747 XOR B SET UP FOR NORMALIZED TEST

1257 01666 327 133502 JMP CNDX ALL5 ADJEXP IF NORMALIZED THEN GO AJUST EXP
1258 01667 010 036767 RPT

1259 01670 106 036762 NRM L1 ZERO NORMALIZE A 32 BIT OPERAND

1260 01671 320 073207 JMP NORMLIZ GO LOOP

1261 01672 007 126507 ADJEXP INC L CNTR L := - (NUMBER OF SHIFTS REQUIRED)
1262 01673 003 047147 ADD S4 54 S4 := CORRECTED EXPONENT

1263 01674 351 176507 ROUND MM CMLO L 3177 L := +200

1264 01675 010 010747 PASS B

1265 01676 327 174002 JMP CNDX AL15 RIS *+2 CHECK SIGN OF B~-ADJUST ROUND-OFF
1266 01677 003 036507 ADD L TO 177 (DECREMENT LATCH)
1267 01700 003 006153 COV ADD A A ADD 200 (OR 177 IF +) TO LSB’S
1268 01701 321 074602 JMP CNDX COUT RJS ADSBXPNT -ANY CARRY OUT FROM LSB ‘S?

1269 *. NOTE -- BIT 15 OF THE LATCH MUST (!!) BE ZERO AT THIS POINT.

1270 01702 247 110207 ENV INC B B ADD CARRY TO MSB'S,

1271 01703 335 174342 JMP CNDX OVFL RJS ADSBNOOV CHECK FOR OVERFLOW

1272 01704 010 010224 Rl PASS B B B := 0100,.,.

1273 01705 007 147153 CoOV INC 5S4 5S4 EXP := EXP + 1

1274 01706 320 074607 IMP ADSBXPNT

1275 01707 001 110507 ADSBNOOV DBLS L B

1276 01710 014 110747 XOR B

1277 01711 327 134602 JMP CNDX ALLS ADSBXPNT CHECK FOR B=1l...

1278 01712 070 010222 LGS L1 PASS B B RE-NORMALIZE

1279 01713 000 047147 DEC 54 S4

G-22

PAGE

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

PAGE

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

0043 RTE MICRO-ASSEMBLER REV.A 760818

sov
CNDX
CNDX

Ll
Ll

cov
RTN

RTN

sov
Rl
RTN

Ll
CNDX

CNDX

RPT
L1l

R1
CNDX

CNDX
CNDX

RTN
CNDX

RPT
R1

CNDX
CNDX

01714 342 000514 ADSBXPNT IMM
01715 004 146747
01716 327 135402 JMP
01717 003 046747
01720 327 175542 JMP
01721 150 046762 LWF
01722 154 047162 LWF
01723 340 000507 IMM
01724 012 006507
01725 227 174707 READ
01726 010 010153
01727 010 146200
*
01730 006 036207 UNDERFLO
01731 006 036147 RZERO
01732 227 174700 READ
01733 343 174214 OVERFLOW IMM
01734 011 136164 OVER32K
01735 227 174700 RETNFP2 READ
0044 RTE MICRO-ASSEMBLER REV.A 760818
* MULTIPLY AND
*
*
DIVX EQU
01736 150 010762 LWF
01737 327 176242 JMP
01740 017 110207
01741 017 106147
01742 007 106147
01743 321 076242 JMP
01744 007 110207
01745 010 042527 READY
01746 124 110222 DIV
*
01747 010 010224
01750 334 076542 JMP
01751 017 110207
01752 007 110207
01753 335 136742 Jnp
01754 .374 076742 RTN
01755 017 106147 COMPLEMNT
01756 007 106140
01757 334 076642 DIVXFTST JMP
01760 370 036747 RTN
*
01761 010 007007 MPYX
01762 006 636227
01763 163 010224 MPY
01764 010 040747
01765 307 137402 JSB
01766 362 177402 RTN
01767 010 040507
01770 364 110207 SUBB RTN
*
ORG
01777 320 073007 JMP

LOW
SUB
AL15
ADD
ALlS
PASS
SANL
LOW
AND
INC
PASS
IOR

ZERO
ZERO
INC

LOW
ONE
INC

L

RJS

PNM

3200

sS4
UNDERFLO
sS4
OVERFLOW
S4
S4

2376

Appendix G

GET OVF SET FOR ERROR; L := =200
TEST (EXP + 200)

-IF NEGATIVE, UNDERFLOW

TEST (EXP - 200)

-IF POSITIVE, OVERFLOW

FLAG := EXPONENT SIGN

INSTRUCTION FETCH
OR EXPONENT

UNDERFLOW; A,B:=0; OVF := 1
START READ AND EXIT

OVERFLOW; A,B MOST + NUMBER

START READ; EXIT

DIVIDE UTILITIES FOR FLOATING POINT USE ONLY

PASS
AL15
CMPS
CMPS
INC
couT
INC
PASS
SUB

PASS
FLAG
CMPS
INC

OVFL
FLAG
CMPS
INC

FLAG

PASS
ZERO
ADD
PASS
AL15
L15
PASS
SUB

RJS

prro
wmw

Do w e
(]
0

RJS
L
B

*43

B

B
DIVXFTST

A
A
COMPLEMT

£1777
PACK

B < 0? FLAG := SIGN

DOUBLE~-WORD NEGATE

ADD IN THE CARRY
GET THBE DIVISOR
DO THE DIVIDE STEP 16 TIMES.

-FORN POSITIVE REMAINDER

ADD ONE

EXTERNAL ENTRY FOR PACK

G-23

Appendix G

PAGE
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
PAGE
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

G-24

0045 RTE MICRO-ASSEMBLER REV.A 760818

ORG

*

* ROM JUMP TABLE

X e ——————

*
02000 000 000073 DEF
02001 000 000073 DEF
02002 000 000073 DEF
02003 000 000073 DEF
02004 000 000053 DEF
02005 000 000063 DEF
02006 000 000067 DEF
02007 000 000057 DEF
02010 000 000073 DEF
02011 000 000073 DEF
02012 000 000073 DEF
02013 000 000073 DEF
02014 000 000053 DEF
02015 000 000063 DEF
02016 000 000067 DEF
02017 000 000057 DEF
02020 000 000015 DEF
02021 000 000015 DEF
02022 000 000015 DEF
02023 000 000015 DEF
02024 000 000015 DEF
02025 000 000015 DEF
02026 000 000015 DEF
02027 000 000015 DEF
02030 000 000043 DEF
02031 000 000043 DEF
02032 000 000043 DEF
02033 000 000043 DEF
02034 000 000043 DEF
02035 000 000043 DEF
02036 000 000043 DEF
02037 000 000043 DEF
0046 RTE MICRO-ASSEMBELER REV.A 760818
02040 000 000051 DEF
02041 000 000051 DEF
02042 000 000051 DEF
02043 000 000051 DEF
02044 000 000051 DEF
02045 000 000051 DEF
02046 000 000051 DEF
02047 000 000051 DEF
02050 000 000040 DEF
02051 000 000040 DEF
02052 000 000040 DEF
02053 000 000040 DEF
02054 000 000040 DEF
02055 000 000040 DEF
02056 000 000040 DEF
02057 000 000040 DEF
02060 000 000026 DEF
02061 000 000026 DEF
02062 000 000026 DEF
02063 000 000026 DEF
02064 000 000026 DEF
02065 000 000026 DEF
02066 000 000026 DEF
02067 000 000026 DEF
02070 000 000030 DEF
02071 000 000030 DEF
02072 000 000030 DEF
02073 000 000030 DEF
02074 000 000030 DEF
02075 000 000030 DEF
02076 000 000030 DEF
02077 000 000030 DEF
02100 000 000017 DEF
02101 000 000017 DEF
02102 000 000017 DEF
02103 000 000017 DEF
02104 000 000017 DEF
02105 000 000017 DEF
02106 000 000017 DEF
02107 000 000017 DEF

2000B

SRG
SRG
SRG
SRG
ASGNO*
ASGCL*
ASGCM*
ASGCC*
SRG
SRG
SRG
SRG
ASGNO*
ASGCL*
ASGCM*
ASGCC*
AND
AND
AND
AND
AND
AND
AND
AND
JSB
JSB
JSB
JSB
JSB
JSB
JSB
JSB

XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
JMP
JMP

JMP
JMP
JMP
JMP
JMP
IOR
IOR
IOR
IOR
IOR
IOR
IOR
IOR
Isz
ISz
ISz
ISZ
ISZ
ISZ
152
ISZ
AD*
AD*
AD*
AD*
AD*
AD*
AD*
AD*

107

PAGE

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

PAGE
1459
1460
1461
1462
1463
1464
1465
l466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

0047 RTE MICRO-ASSEMBLER REV.A 760818

02110 000 000017 DEP
02111 000 000017 DEF
02112 000 000017 DEF
02113 000 000017 DEF
02114 000 000017 DEF
02115 000 000017 DEF
02116 000 000017 DEF
02117 000 000017 DEF
02120 000 000021 DEF
02121 000 000021 DEF
02122 000 000021 DEF
02123 000 000021 DEF
02124 000 000021 DEF
02125 000 000021 DEF
02126 000 000021 DEF
02127 000 000021 DEF
02130 000 000021 DEF
02131 000 000021 DEF
02132 000 000021 DEF
02133 000 000021 DEF
02134 000 000021 DEF
02135 000 000021 DEF
02136 000 000021 DEF
02137 000 000021 DEF
02140 000 000047 DEF
02141 000 000047 DEF
02142 000 000047 DEF
02143 000 000047 DEF
02144 000 000047 DEF
02145 000 000047 DEF
02146 000 000047 DEF
02147 000 000047 DEF
02150 000 000047 DEF
02151 000 000047 CEF
02152 000 000047 DEF
02153 000 000047 DEF
02154 000 000047 DEF
02155 000 000047 DEF
02156 000 000047 DEF
02157 000 000047 DEF
0048 RTE MICRO-ASSEMBLER REV.A 760818
02160 000 000135 DEF
02161 000 000135 DEF
02162 000 000135 DEF
02163 000 000135 DEF
02164 000 000135 DEF
02165 000 000135 DEF
02166 000 000135 CEF
02167 000 000135 DEF
02170 600 000135 DEF
02171 000 000135 DEF
02172 000 000135 CEF
02173 000 000135 DEF
02174 000 000135 DEF
02175 000 000135 DEF
02176 000 000135 CEF
02177 000 000135 CEF
02200 000 000113 DEF
02201 000 000153 DEF
02202 000 000227 DEF
02203 000 000107 DEF
02204 000 000077 DEF
02205 000 000077 DEF
02206 000 000077 DEF
02207 000 000077 DEF
02210 000 000120 DEF
02211 000 000130 DEF
02212 000 000103 DEF
02213 000 000107 DEF
02214 000 000077 DEF
02215 000 000077 DEF
02216 000 000077 DEF
02217 000 000077 DEF
02220 000 000002 CEF
02221 000 000002 DEF
02222 000 000002 DEF
02223 000 000002 DEF
02224 000 000002 DEF
02225 000 000002 DEF
02226 000 000002 DEF
02227 000 000002 DEF

AD*
AD*
AD*
AD*
AD*
AD*
AD¥*
AD*
Cp*
CpP*
Cp*
Cp*
Cp*
CP*
CP*
CP*
CP*
CP*
CP*
CP*
CP*
CP*
CpP*
Cp*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*
LD*

ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
ST*
JTBL100O
DIV
JTBL1010
MACL
I0G
I0G
I0G
I0G
DLD
DST
MACO
MAC1
I0G
I10G
I0G
I0G
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND

110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157

160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227

ASL,LSL,RRL,NPY
ASR,LSR,RER

nLT,sTF,SFC,SF5
MIA,LIA,OTA,STC
HLT,CLF

MIA,LIA,OTA,STC

HLT,STF,SFC,SFS
MIB,LIB,0TB,CLC
HLT,CLF

MIB, LIB,0TB,CLC

Appendix G

G-25

Appendix G

PAGE 0049 RTE MICRO-ASSEMBLER REV.A 760818

1500 02230 000 000041 DEF Jss,1I 230
1501 02231 000 000041 DEF JSB,I 231
1502 02232 000 000041 DEF JSB, I 232
1503 02233 000 000041 DEF JSB,1 233
1504 02234 000 000041 DEF JSB,I 234
1505 02235 000 000041 DEF JSB,1 235
1506 02236 000 000041 DEF JSB,1 236
1507 02237 000 000041 DEF JSB, 1 237
1508 02240 000 000002 DEF MRGIND 240
1509 02241 000 000002 DEF MRGIND 241
1510 02242 000 000002 DEF MRGIND 242
1511 02243 000 000002 DEF MRGIND 243
1512 02244 000 000002 DEF MRGIND 244
1513 02245 000 000002 DEF MRGIND 245
1514 02246 000 000002 DEF MRGIND 246
1515 02247 000 000002 DEF MRGIND 247
1516 02250 000 000036 DEF JMP,1I 250
1517 02251 000 000036 DEF JMP, 1 251
1518 02252 000 000036 DEF JMP, I 252
1519 02253 000 000036 DEF JMP, I 253
1520 02254 000 000036 DEF JMP, 1 254
1521 02255 000 000036 DEF JMP,1 255
1522 02256 000 000036 DEF JMP, I 256
1523 02257 000 000036 DEF JMP, 1 257
1524 02260 000 000002 DEF MRGIND

1525 02261 000 000002 DEF MRGIND

1526 02262 000 000002 DEF MRGIND

1527 02263 000 000002 DEF MRGIND

1528 02264 000 000002 DEF MRGIND

1529 02265 000 000002 DEF MRGIND

1530 02266 000 000002 DEF MRGIND

1531 02267 000 000002 DEF MRGIND

1532 02270 000 000002 DEF MRGIND

1533 02271 000 000002 DEF MRGIND

1534 02272 000 000002 DEF MRGIND

1535 02273 000 000002 DEF MRGIND

1536 02274 000 000002 DEF MRGIND

1537 02275 000 000002 DEF MRGIND

1538 02276 000 000002 DEF MRGIND

1539 02277 000 000002 DEF MRGIND

PAGE 0050 RTE MICRO-ASSEMBLER REV.A 760818

1541 02300 000 000002 DEF MRCIND

1542 02301 000 000002 DEF MRGIND

1543 02302 000 000002 DEF MRGIND

1544 02303 000 000002 DEF MRGIND

1545 02304 000 000002 DEF MRCIND

1546 02305 000 000002 DEF MRGIND

1547 (62306 000 000002 DEF MRGIND

1548 €2307 000 000002 DEF MRGIND

1549 02310 000 000002 DEF MLRGIND

1550 02311 GO00 000002 CEF MRCGIND

1551 02312 000 000002 DEF MPGIND

1552 02313 000 000002 CEF MRGIND

1553 02314 000 000002 CCF MEGIND

1554 2315 000 0000C2 DEF MRCIND

1555 (2316 000 000002 DEF MRGIND

1556 02317 (000 000002 DEF MRCIND

1557 02320 000 000002 DEF MRGIND

1558 02321 000 000002 DEF MEGINL

1559 2322 000 000002 CEF tiRGIND

1560 02323 000 000002 DEF MRCIND

1561 12324 000 000002 CEF FRCIND

1562 (02325 (000 000002 CEF MRCINC

1563 02326 000 000002 CEF MRGIND

1564 02327 (00 000002 DEF MRCGIND

1565 02330 000 000002 CEF MRCIND

1566 02331 00 000002 DEE MRCINC

1567 02332 000 000002 DEF LRCIMND

1568 02333 000 000002 DEF MRGIND

1569 U2334 000 000002 DEF MRCGIND

157¢ 02335 000 000002 DEF MRGIND

1571 u2336 000 000002 DLCF MRCIMND

1572 02337 000 000002 LLF 1RCILD

1573 02340 000 000002 DEF MRCINC

1574 62341 000 000002 DEF MRGIED

1575 02342 000 000002 DL MRGIND

1576 02343 000 000002 DEF NRG1ED

1577 02344 €00 €00002 DEF BLGIND

1578 (62345 000 000002 DEF ERGIND

1574 02346 GO0 000002 DEF "RGIKD

1580 U2347 000 000002 CLF MEGIND

G-26

PAGE 0051 RTE MICRO-ASSEMBLER REV.A 760818

1582 02350
1583 02351
1584 02352
1585 02353
1586 02354
1587 02355
1588 02356
1589 02357
1590 02360
1591 02361
1592 02362
1593 02363
1594 02364
1595 02365
1596 02366
1597 02367
1598 02370
1599 02371
1600 02372
1601 02373
1602 02374
1603 02375
1604 02376
1605 02377
1606

END OF PAS

PAGE 0052 RTE MICRO CROSS-REFERENCE REV.1813 771212

SYMEOLS=01
AD*

ADD2
ADJEXP
ADS BNOOV
ADSBXPNT
ADX

ADY
ALIGN
AND
ASGCC*
ASGCL *
ASGCM*
ASGNO*
ASL

ASR

BITS
BKGNDCK
CBS

CBT

CMW
COMPLEMT
CONTROL
Cp*

CPTEST
DECDMS
DECM

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

s 2:

000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
000002
600002
000002
000002
000002
000002
000002
000002

NO ERRORS

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
CEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
END

96 REFERENCES=0505 SOURCE LINES=1606

6032
1419
1079
1261
1275
1281
0719
0759
1076
0029
0077
0082
0087
0072
0190
0195
0937
0603
0953
0845
0795
1322
0121
0035
1435
0512
0340
0335

1409
1420
1052
1257
1271
1268
0665
0673
1078
1360
1351
1349
1350
1348
0228
0252
0686
0606
0941
0681
06 89
1324
* *NOT
1426
1436
0494
0335
0290

1410 1411 1412
1421 1422 1423
1274 1277

1361 1362 1363
1359

1357

1358

1356

0539

0687 0688
REFERENCED**
1427 1428 1429
1437 1438 1439
0543

1413
1424

1364

1430
1440

1414
1425

1365

1431

1441

MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGI ND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND
MRGIND

1415 1416

1366 1367

1432 1433

1418

1434

Appendix G

G-27

Appendix G

PAGE 0053

DIAG
DIFR
DIV
DIVS
DIVX
DIVXFTST
DLD
DMSLOAD
DSPICODE
DST

DSX

DSY

EIG
EM1000
EM1010
FAD
FAILURE
FDIV71
FDIV81
FDV
FETCH
FIX
FIXOK1
FIXOK2
FLOAT
FLT

FMP
FMPY7

PAGE 0054

FMPY8
FPDIAG
FSB
FTES
GOFETCH
HALT
HORI
IDLE
INCDMS
INCM
INDIRECT

INITIAL
INSTP
INTPEND
10G
I0R
1sX
I1SY
1S2
JLY

JMP
JMP, 1

JPY
JSB
JSB, 1
JSBSCAN
JTBL1000

G-28

RTE MICRO CROSS-REFERENCE REV.1813 771212

0219
1050
0160
0169
1305
1324
0130
0549
0416
0139
0732
0772
0659
0227
0251
1022
0608
1187
1198
1166
0009
0984
0988
1000
0969
0970
1106
1145

0227

1034 1038 1040 1042
1476

0164

1179 1185 1190

1320

1483

0578

0276 0343

1484

0676

0684

0635 0636

0119

0211

0638

0507 0530 0532 0534
NOT REFERENCED
NOT REFERENCED
0641

0023 0303 0305 0951
0642

0986

0996

NOT REFERENCED
0643

0640

NOT REFERENCED

0536

RTE MICRO CROSS-REFERENCE REV.1813

1153

0232
1021

0946
0950
0261
0017
0281
0341
0337
0240
0696
0780
0917
0298
0928
0104
0041
0728
0768
0044
0780
0053
0051
0785
0057
0055
0283
0119

1149

NOT REFERENCED
0639

0955

0921

0018 0222

0124 0245 0251 0876
NOT REFERENCED
0337

0289

0052 0056 0131 0140
0703 0711 0715 0719
0918 0937 0940 1024
0795 0819 0835 0845
0294

0809 0829 0843 0859
1479 1480 1481 1482
1393 1394 1395 1396
0675

0683

1401 1402 1403 1404
0677

1385 1386 1387 1388
1516 1517 1518 1519
0685 0783

1368 1369 1370 1371
1500 1501 1502 1503
NOT REFERENCED
1475

0931

0149
0737
1107

1487
1397

1405

1389
1520

1372
1504

0538

771212

0161
0744
1167

1488
1398

1406

1390
1521

1373
1505

0540

0214
0751

1489
1399

1407

1391
1522

1374
1506

0594

0243
0755

1490
1400

1408

1392
1523

1375
1507

0244
0759

PAGE 0055 RTE MICRO CROSS-REFERENCE REV. 1813

JTBL1010
L*X

L*y

LBT

LCBT
LCMW

LD*

LDBYTE
LDX

LDY
LEFT
LI*
LMBT
LMVW
LOADER
LOOP
LSFB
LSL

LSR
MACO
MAC1
MACTABLO
MACTABL1
MBT
MEMLOST
MEMSIZE
MI*
MODE

PAGE 0056
MPY

MPYX
MRGIND

MVW
NOCARY
NORMLIZ
NOTEQ
OFLOW
OoT*
OVER32K
OVERFLOW
PACK
READY
REGTEST
RET
RETNFP
RE TNFP 2
RETURN
RIGHT
RIPLOOP
RIPP 1MW
RIPP32K
RMDR
ROUND

1444
1454
0850

1445
1455
0867

NOT REFERENCED

0557

1446
1456
0881

RTE MICRO CROSS-REFERENCE REV.1813

NOT REFERENCED
NOT REFERENCED

NOT REFERENCED

0211 1477

0703 0661

0744 0669

0879 0678

0846 0858

0796 0808

0062 1442 1443
1451 1452 1453
0910 0837 0847
0715 0664

0755 0672

0313 0287

0111

0836 0842

0820 0828

0438 0291 0431
0460 0485

0866 0874

0199 0229

0202 0253

0109 1485

0114 1478 1486
0638 0109

0621 0114

0835 0680

0542 0220 0264
0440 0448

0106 0104

0307 0293 0298
0148 0235

1327 1119 1127
0012 0014 0015
1498 1508 1509
1525 1526 1527
1535 1536 1537
1546 1547 1548
1556 1557 1558
1566 1567 1568
1576 1577 1578
1587 1588 1589
1597 1598 1599
0819 0690

1086 1083

1255 1260

0810 0801 0804
1092 1087

011le

1299

1298 1173 1285
1251 0974 1086
1313 1307 1311
0518 0515

0097 0122 0173
0998 0232 1006
1300 1253

0708 0701 0713
0323 0288

0589 0598 0600
0545

0583 0563 0566
0186 0168 0179
1263

NOT REFERENCED

1144
1491
1510
1528
1538
1549
1559
1569
1579
1590
1600

0854

1090

1008
0742

0569
0184

1195
1492
1511
1529
1539
1550
1560
1570
1580
1591
1601

1095

0753

0571

1493
1512
1530
1541
1551
1561
1571
1582
1592
1602

1148

0807

771212

1447
1457

771212

1494
1513
1531
1542
1552
1562
1572
1583
1593
1603

1151

0827

1448

1495
1514
1532
1543
1553
1563
1573
1584
1594
1604

1154

0841

1449

1496
1515
1533
1544
1554
1564
1574
1585
1595
1605

1215

0857

1450

1497
1524
1534
1545
1555
1565
1575
1586
1596

1337

0873

Appendix G

G-29

Appendix G

PAGE 0057 RTE MICRO CROSS-REFERENCE REV.1813 771212

RPL 0430 0268 0269

RRL 0205 0231

RRR 0208 0255

RTRNINTG 1003 0995

RUN 0297 0266 0432

RVRS 1064 1054

RZERO 1295 **NOT REFERENCED**

S*X 0696 0659

S*Y 0737 0667

SBS 0956 **NOT REFERENCED**

SBT 0886 0679 0870

SCAN 0286 0283

SELCODE 0451 **NOT REFERENCED**

SFB 0861 0682

SRG 0095 1344 1345 1346 1347 1352 1353

ST* 0144 1459 1460 1461 1462 1463 1464
1468 1469 1470 1471 1472 1473 1474

STBYTE 0896 0838 0889

STCPUS 0366 0356

STFENCE 0362 0357

STORE 0343 0292

STOREA 0355 **NOT REFERENCED**

STOREB 0354 **NOT REFERENCED**

STOREF 0357 **NOT REFERENCED**

STOREM 0353 **NOT REFERENCED**

STOREMM 0358 **NOT REFERENCED**

STOREMN 0359 **NOT REFERENCED**

STOREP 0351 **NOT REFERENCED**

STORES 0350 0344

PAGE 0058 RTE MICRO CROSS-REFERENCE REV.1813 771212

STOREST 0356 **NOT REFERENCED**

STORET 0378 0352

STOREX 0361 **NOT REFERENCED**

STOREY 0360 **NOT REFERENCED**

STWORD 0483 0473 0477 0480

STX 0711 0662

STY 0751 0670

SUBB 1334 1331

SWAMPCHK 1073 1060

TBS 0954 **NOT REFERENCED**

TEST32K 0500 0510

TESTDMS 0572 0560

TIMER 0214 0219 0230

TOOBIG 1249 1075

UNDERFLO 1294 1283

UNPACK 1222 1025 1108 1168

UPDATEA 0390 **NOT REFERENCED**

UPDATEB 0389 **NOT REFERENCED**

UPDATEF 0392 **NOT REFERENCED**

UPDATEM 0388 **NOT REFERENCED**

UPDATEMM 0393 **NOT REFERENCED**

UPDATEMN 0394 **NOT REFERENCED**

UPDATEP 0386 **NOT REFERENCED**

UPDATES 0385 0277

UPDATEST 0391 **NOT REFERENCED**

UPDATET 0387 **NOT REFERENCED**

UPDATEX 0396 **NOT REFERENCED**

UPDATEY 0395 **NOT REFERENCED**

PAGE 0059 RTE MICRO CROSS-REFERENCE REV.1813 771212

UPDCPUS 0399 0391

UPDFENCE 0397 0392

USER 0382 (0270 0613

WAIT 0276 0273 0284 0295 0345 0380 0612

X*x 0724 0666

X*y 0764 0674

XOR 0065 1377 1378 1379 1380 1381 1382

G-30

1354
1465

1383

1355
1466

1384

1467

PAGE
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729

PAGE

0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748

PAGE

0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769

0024 RTE MICRO-ASSEMBLER REV.A 760818

00760
00761
00762
00763
00764
00765
00766
00767
00770
00771
00772
00773
00774
00775
00776
00777

320
320
325
321
325
326
326
326
327
327
327
327
324
324
320
320

100004
140004
140004
100004
160004
000004
020004
040004
000004
020004
040004
060004
000004
001004
041004
042004

ORG

* ok %

MACTABL1 JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

* o ko * *

RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ30
RJ 30
RJ30
RJ 30

0025 RTE MICRO-ASSEMBLER REV.A 760818

* % ok ko * O %k o o o ¥ o H % ¥ ¥ ¥

0026 RTE MICRO-ASSEMBLER REV.A 760818

01000
01001
01002
01003
01004
01005

01006
01007
01010
01011
01012
01013
01014
01015
01016
01017

320
320
320
320
343
320

327
327
324
324
324
321
324
325
322
325

060004
060004
060004
060004
130507
061004

100004
140004
040004
060004
100004
000004
140004
000004
000004
040004

*

ORG

*

MACTABLO JMP
JMP
JMP
JMP
MM
JMP

JMP
JMP
JMP
JMP
JMP
JMP
JMp
JMP
JMP
JMP

RJ 30
RJ30
RJ 30
RJ30

RJ30

RJ30
RJ 30
RJ30
RJ30
RJ30
RJ 30
RJ30
RJ30
RJ 30
RJ30

LOW L

760B

PRIMARY MAPPING TABLE

20008
3000B
27000B
6000B
27400B
300008
304008
31000B
34000B
344008
35000B
35400B
20000B
20020B
EIG
EIG+20B

10008

ASMD 2345
ASMD 2345
ASMD 2345
ASMD2345
354B

XTSD2345

36000B
37000B
21000B
21400B
22000B
4000B

23000B
24000B
10000B
25000B

Appendix G

105400B, HP RESERVED
105420B, HP RESERVED
105440B, USER RESERVED
105460B, BP RESERVED
105500B, USER RESERVED
105520B, USER RESERVED
105540B, USER RESERVED
105560B, USEF RESERVED
105600B, USER RESERVED
105620B, USER RESERVED
105640B, USER RESERVED
105660B, USER RESERVED
DYNAMIC MAPPING SYSTEM
DYNAMIC MAPPING SYSTEM
EXTENDED INSTRUCTION GROUP
EXTENDED INSTRUCTION GROUP

21MX F-SERIES BASE SET MICROCODE
MODULES 2,3

BEGINNING OF MODULE 2

FLOATING POINT ADD
FLOATING POINT SUBTRACT
FLOATING POINT MULTIPLY
FLOATING POINT DIVIDE

L= COMPL OF 24B

FLOATING POINT TO INTEGER

105140B, USER RESERVED
105160B, USER RESERVED

FAST FORTRAN

FAST FORTRAN

105240B, HP RESERVED

105260B, HP RESERVED

105300B, HP RESERVED

105320B, SCI. INSTRUCTION SET
105340B, HP RESERVED

105360B, SCI. INSTRUCTION SET

G-31

Appendix G

PAGE 0004 RTE MICRO-ASSEMBLEK REV.A 760818

0004 ORG $20000

0005 *

0006 *

0007 *

0008 *

0009 *

0010 *

0011 Hokkkk Rk Rk ko kR ok kkkkkkkkk kAR ARk kkh ke k kA Ak kkkhkkkkk kA kkkkkhkhkkhkkkkkkk k&
0012 * *
0013 * MEMORY EXPANSION UNIT MACRO INSTRUCTIONS *
0014 ¥ s e e e e *
0015 * 1977-12-20-1430

0016 Kkkkkhhkhhk kkkhkhkhkhkkkkkhk kA Rk kkkkkhkkkhkkkkkkhkkkkhk ke p ok
0017 *

0018 INDIRECT EQU %251

0019 HORI EQU %006

0020 *

0021 Kok kkkkkhkhkhkkkhkkkkhkhkkkhkkk kR kh kkkkkkkkkkkkkkkkkkkkk k&
0022 *

0023 * REGISTER ASSIGNMENTS

0024 *

0025 * S$3 :: P-REGISTER

0026 * S4 :: MEM CONTROL WORD; MEM ADDRESS REGISTER

0027 * S5 :: WORDS AND MAP DATA IN LGOP EXECUTION; MASKS AND CONSTANTS
0028 * S6 :: GENERAL PURPO3E SCRATCH

0029 *

00395 Kk Rk ok hh kkkhhkkhkkhhhkhkkhhkhkhkhkhhkhkkhkkhhhkhkhhkkhkhkhhkh ok kkh kkkkk ke k
gg§5 00G5 RTE MICRO—ASSE%BLER REV.A 76018

0033 *

0034 *

0035 *

0036 *

0037 Hokkkkhkhhk kh ko ko kkk kkkkkkhkkkk Kk kkhkhkkkhkkh kR k ke k kA Ak khkhkhkkh kR kkk ke k
0038 * ENTRY JUMP TAELE

0039 Kok dkkkk ok hkkkk ok kkkkkk kA khkkkkhkkhkhkhkhkhkkkk Ak kk kA kkkh kA khkkk Ak kh kk kk &
0040 *

0041 * MACRO JUMP POINT AND MNEMONIC BINARY CGDE
0042 *

0043 20000 324 002047 JTABL JMP XMM 1000X011110%00G0
0044 20001 377 162047 RTN CMPS CAB <CaAB QUICK SELF TEST
0045 20002 324 010207 JMP MBI 1000x01111600010
0046 20003 324 010147 IMP MBF 1000xX01111000011
0047 20004 324 011047 JMP MBW 1000%01111000100
0048 20005 324 012707 JMP MWI 1000xX01111000101
0049 20006 324 012647 JMP MWF 1000X01111000110
0050 20007 324 013547 JMP MWW 1000xX01111000111
0051 20010 324 014507 JMP SY* 1000X01111001000
0052 20011 324 015047 JMP Us* 1000%X01111001001
0053 20012 324 014607 JMP PA* 1000%X01111001010
0054 20013 324 014747 IMP PB* 1000X01111001011
0055 20014 324 016247 JMP SSM 1000X01111001100
0056 20015 324 016507 JMP JRS 1000X01111001101
0057 20016 370 036747 RTH 1000X01111001110
0058 20017 370 036747 RTN 1000X01111001111
0059 20020 324 002047 JMP XMM 1000X011110X%0000
0060 20021 324 002057 JMP STFL XMM 1000X01111010001
0061 20022 324 004607 JMP XM* 1000X01111010010
0062 20023 370 036747 RTN 1000x01111010011
0063 20024 324 005547 JMP XL* 1000X01111010100
0064 20025 324 006007 JMP Xs* 1000x01111010101
0065 20026 324 006247 JMP XC* 1000X01111010110
0066 20027 324 006647 JMP LF* 1000X01111010111
0067 20030 010 022447 RsS* PASS MEU MEU 1000X01111011040
0068 20031 230 022040 RV* READ RTN PASS CAB MEU 1000x011110110601
0069 20032 324 007047 JMP DJp 1000X01111011010
0070 20033 324 007647 JMP DJS 1000X01111011011
0071 20034 324 007147 JMP SJP 1000X01111011100
0072 20035 324 007547 JMP sJs 1000xX01111011101
0073 20036 324 007247 JMP uJp 1000X01111611110
0074 *

0075 20037 345 007165 UJS IMM DCNT HIGH S4 $£103 S4:=USER, CNTR:=16B
0076 20040 324 007704 JMP RJ30 JSs* START READ ON DEF.

G-32

0077

0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0l01
0102
0103
0104
0105
0106
0107
0108
0109
0110
PAGE
0112
0113
0114
0115
0116
0117
0118

0119
0120

0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139

20041
20042
20043
20044
20045
20046
20047
20050
20051
20052
20053
20054
20055

20056
20057
20060
20061
20062
20063
20064
20065

20066
20067

010
230
360
342
234
347
011
010
010
010
334
327
227

230
007
010
000
320
324
335
000

010
227

033107
070547
001602
000507
007147
076507
047147
046447
011707
070747
003402
104142
174725

001207
106147
050452
071607
003302
042642
002642
045107

074207
144700

Appendix G

F ko ke Kok Kk Kk ko ko ko k ok ke ok ke ko ko ok ok ok ko ko ko ko k ko k ko ko ko ko ko kK
PAGE 0006 RTE MICRO-ASSEMBLER REV.A 760818

*

Jdk Kk gk ok gk ko gk ok ok ok gk gk ok kK K K gk gk gk ok gk ok ok ok ko ok ok ok ok kg gk ok ok ik ok ok ok ko ok ok ok ok ok ok ke ke ok ok

*

*

*

*

XMM
READ
RTN
IMM
READ
IMM
JMP
JMP

MELOOP1 READ

*
READ
JMP
JMP
JMP

XMM.EXIT

*

XMM.RTN

P .RTN READ

*

CNDX

CNDX
CNDX
DCNT

MESP
CNDX

CNDX
CNDX

RTN

0007 RTE MICRO-ASSEMBLER REV.A 760818
*

20070
20071
20072
20073
20074
20075
20076
20077
20100
20101
20102

20103
20104
20105
20106
20107
20110
20111
20112
20113

327
230
007
010
007
000
320
324
335
000
2217

227
007
010
210
007
320
324
335
324

103342
036747
106147

010452
110225
071607
003342
043442
003442
045107
144700

174726
106147
023212
050036
171607
003302
044142
004142
003247

*
*
*

*

PASS
PASS
ALZ

LOwW

SANL
HIGH
SONL
PASS
PASS
PASS
FLAG
AL15
INC

PASS
INC
PASS
DEC
ALZ
CNT4
NINT
DEC

PASS
INC

S3 M

CNTR X

L %200

sS4 A

L $337

sS4 sS4

MEU 5S4

P B
X
XMs
READMAP

PNM P

S5 TAB

A A

MEU S5

X X
XMM.RTN

RJS MELOOP1
MELOOP1

S3 s3

B P

PNM S3

S3 := M; SAVE M

CNTR := COUNT

TEST FOR ZERO COUNT

L :=1111111110000000
MASK LOW 7 BITS OF A-REG
L :=1101111111111111
ADD CONTROL BIT (13)

MEM ADDR REG := S4

P := B(TABLE ADDRESS)

SET ALU FLAGS FROM X

TEST FOR XMS INSTRUCTION
TEST FOR NEGATIVE COUNT
READ NEXT WORD; P := P+l

S5 := MAP DATA - DUMMY READ
A := A+l

MAP REG := DATA

X := X-1

IF DONE THEN BUG OUT

LOOP FOPR. 16X

TEST FOR NO INTERRUPT
ELSE SERVICE INTERRUPT

RESET B-REG
P := NEXT INSTRUCTION; START REA

- Computes

Musewn

Fhkkkhhhhkhhkhkkhkhkhhkkkkkhkhkkhhhkhkhkhkkkkkkkhkhkkkkkkhkkhkkhkkkhkkkkkkkkk*

XMs JMP
MELOOP2 READ

JMP
JMP
JMP

READ
*

READMAP EQU
MELOOP3 READ

WRTE

JMP
JMP
JMP
JMP

CNDX
MESP
DCNT
CNDX
CNDX
CNDX

RTN

ICNT

MESP
MPCK

CNDX
CNDX
CNDX

AL15

INC
PASS
INC
DEC
ALZ
CNT4
NINT
DEC
INC

INC
INC
PASS
PASS
INC
ALZ
CNT4
NINT

A
MEU
B

X
RJS
S3
PNM
PNM
S5
TAB

RIS

P.RTN

A

B

B

X

P .RTN
MELOOP 2
MELOOP 2
S3

s3

*

P

A

MEU

S5

X

XMM. RTN

MELOOP3

MELOOP3

XMM. EXIT

TEST FOR X<0 ... NOP
FOR DCPC

A := A+l

MAP REG := DATA

B := B + 1; INC CNTR
X 1= X-1

IF DONE THEN BUG OUT

LOOP FOR 16X

TEST FOR NO INTERRUPT

RESET P REGISTER FOR RESTART
SERVICE INTERRUPT

P := P+l - DUMMY READ

A := A+l

S5 := MAP REG

WRITE DATA INTO TABLE
X := X-1

IF DONE THEN BUG OUT
LOOP FOR 16X
TEST FOR NO INTERRUPT
ELSE SERVICE INTERRUPT

G-33

Appendix G

PAGE
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
PAGE
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194

0008 RTE MICRO-ASSEMBLER REV.A 760818

20114
20115
20116
20117
20120
20121
20122
20123
20124
20125
20126
20127
20130
20131
20132

357
150
321
341
231
334
343
231
010
340
230
010
010
326
230

077147
002762
145042
176507
047147
045202
076507
047147
046447
100547
036765
036747
022452
145302
036740

*
*
*
*
*
Fkkkkkkkkkkkkkkkkkk kA kkkkkkkhhhkkhhhhhkhhhhhhhdhkhhhhhhdohdhhhhhdodhkhdhhd
XM* IMM CMHI s4 $337 S4 := 0010000000000000
LWF L1 PASS CAB T-BUS := A/B; FLAG := A/B(15)
PA.PB JMP CNDX ALO RJS SY.US TEST FOR PORT.A MAP
IMM LOW L $£177 L := 1111111101111111
READ SONL 54 S4 sS4 := 0010000010000000
SY.US JMP CNDX FLAG RJS XFER TEST FOR SYSTEM MAP
IMM LOW L £337 L :=1111111111011111
READ SONL S4 sS4 S4 := 00100000x0100000
XFER PASS MEU 54 MEM ADDR REG := S4(7-0)
IMM LOW CNTR %40 CNTR := 32
XFERLOOP READ DCNT DUMMY READ
PASS FOR MEB DELETE WITH DUMMY READ
MESP PASS MEU MEU MEM PORT REG := MEM PROG REG
JMP CNDX CNT8 RJS XFERLOOP IF NOT DONE THEN LOOP
RTN* READ RTN RETURN

hkkkkkkkhhkkhkhkkhkhkhhkhkhkhhhkhhhkhkhhhhhhhkkhkkkkhhkkhkhkhhhhhkhhhhkhkrkhkhkhkk

0009 RTE MICRO-ASSEMBLER REV.A 760818
*

20133
20134
20135
20136
20137

20140
20141
20142
20143
20144

20145
20146
20147
20150
20151
20152
20153
20154

20155
20156
20157
20160

G-34

300
010
230
010
2217

300
010
210
010
2217

300
010
230
010
227
014
360
227

344
232
010
370

012447
036752
036747
000052
174700

012447
036752
002036
022447
174700

012447
002512
036747
001012
174707
140747
001002
174700

016507
003147
022447
046447

*
*
*
*
LRI R R R E TR L
XL* JSB INDIRECT GET OPERAND ADDR FROM INSTR + 1
MESP SWITCH MAP STATE
READ START CROSS LOAD START CROSS LOAD
MESP PASS CAB TAB CAB := DATA, RESET MAPS
READ RTN INC PNM P RETURN TO FETCH
kKRR IR K kR kAR AR R AR AR A KRRk Rk kR kR ARk kR kR kR Rk kAR Rk kkkkkkkkkkkkkkk ok hkx
XS* JSB INDIRECT GET OPERAND ADDR FROM INSTR + 1
MESP SWITCH MAP STATE
WRTE MPCK PASS TAB CAB
PASS MEU MEU RESET MAP STATE
READ RTN INC PNM P START NEXT INST READ - EXIT

khkkhkkhkhkhkhkhhhkhhhhhkhkhkkkkkkkhkhhhkkkkhk kb kkkkkhkhkhkhkhhkhhhkkhhhkhhhkkkkkkkk

XCc* JSB INDIRECT GET OPERAND ADDR FROM INSTR + 1
MESP PASS L CAB L := A/B; SET ALTERNATE MAP
READ READ REAL OPERAND
MESP PASS S1 TAB S1 := DATA, RESET MAPS
READ INC PNM P START READ FOR NEXT INST.
XOR s1 COMPARE DATA
RTN CNDX ALZ PTN-DON'T SKIP IF EQUAL
READ RTN INC PNM P P := INSTR + 2; RETURN
Ak kR Rk kR kk kR kR kh Rk kh ke hkhhkkhhkkhhkhhkhkhkkkhhhkkhhkkkkkkhhkhhkkkhkkh k&
LE* IMM HIGH L £007 L :=0000011111111111
READ AND S4 CAB S4 := A/B(10-0) BEWARE THE READ
PASS MEU MEU SEND "FENCE" DIRECTIVE
RTN PASS MEU 54 MEM FENCE := S4

0195
PAGE
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226

20161
20162

20163
20164

20165
20166
20167
20170
20171
20172

20173
20174

20175

20176
20177
20200
20201
20202

345
324

345
324

345
230
304
010
227
370

345
324

345

304
010
210
007
227

001147
007307

005147
007307

007147
036747
017377
046447
133736
036747

005166
007704

001144

017377
046447
074036
133707
174700

Appendix G

Khkhdkhdkkhkkhkhhhkhhhhhkkkkkkkhkhkhhhhkhkhkhhkkkkhkhkhhkhhhkhkhhkhkhhkkk khkk &
0010 RTE MICRO-ASSEMBLER REV.A 760818
*

*
*
*
*

khkkkkkhhkhkhkhhhkhhkhhdhhhkhhkhhhhhhhhkhhkhhkhkhhkhhkhhkkhhkhhhhhhhhhhhkhhhhkhhhkhhkhhhhhkk

DJP

*
SJP

*

uJp
Jp*

JMPSTAT

IMM HIGH S4 $100

JMP JP*

IMM HIGH S4 $102

JMP Jp*

IMM HIGH S4 $103

READ

JSE IOFF OPGET
PASS MEU S4

READ MPCK INC P M

RTN

S4 := (0100000011111111

S4 := 0100001011111111

S4 := 0100001111111111

GET OPERAND ADDR FROM INSTR + 1
MEM STATUS IS SET HERE
CHECK TARGET ; START INST READ

RETURN

hhddohddekhkhhhhkhkhkhkkhkhk kR hkhk Ak A AR A Ak kA Ak Ak Ak hhkhkhkhhhkhkhkkkhhhkdk

sJs
*

DJS
*

Js*

JS*EXIT

IMM ICNT HIGH S4 $102
JMP RJ30 JS*

IMM RJ30 HIGH S4 $100

ORG 20176B
JSB IOFF OPGET
PASS MEU S4
WRTE MPCK PASS TAB P
INC P M
READ RTN INC PNM P

$4 := 0100001011111111
START READ ON DEF.

$4 := 0100000011111111

t11DO NOT MOVE--INDEXED ENTRY FRO
GET OPERAND ADDR FROM INSTR + 1
MEM STATUS IS SET HERE

WRITE RETURN ADDR AT TARGET

P := TARGET ADDRESS

P := TARGET + 1

G-35

Appendix G

0227 A AR AR A A AR A AR AR AR AR A AR R AR AR A A AR A A AR A AR AR ARk ke k ok ki k ko k sk ok hk ke k ok
PAGE 0011 RTE MICRO-ASSEMBLER REV.A 760818

0229 *

0230 *

0231 *

0232 *

0233 *

0234 A A A AR A A IR A A A IR N AR I AR A AR AR AR AR AN A AR AR AR A AR AR A AR AR AR A AR AR AR AR A AR A A A k&
0235 20203 010 036752 MBF MESP SET ALTERNATE MAP

0236 20204 304 012407 MBI JSB BYTEADJ ADJUST FOR FULL WORD PROCESSING
0237 20205 304 013007 JSB X.LOOP-1 MOVE BYTES IN PAIRS

0238 20206 010 070747 PASS X ALU FLAGS := X CONDITIONS

0239 20207 320 052142 JMP CNDX ALZ RIS B.RESET TEST FOR INTERRUPTED MOVE

0240 20210 334 052202 JMP CNDX FLAG RJS B.RESET+1 TEST FOR NO ODD BYTE

0241 20211 344 000507 IMM HIGH L $000 L := 0000000011111111

0242 20212 230 026747 READ PASS CNTR ALO := IR(0); START DCPC READ
0243 20213 321 150642 JMP CNDX ALO RJS *+2 TEST FOR MBI INSTRUCTION

0244 20214 010 036752 MESP SET ALTERNATE MAP

0245 20215 230 006647 READ PASS M A M := SOURCE ADDRESS, RESET MAPS
0246 20216 010 006162 Ll PASS A A FORM BYTE ADDRESS IN A

0247 20217 014 001152 MESP SANL S4 TAB S4 := AAAAAAAA0000G000

0248 20220 324 011507 JMP MB*

0249 LR R T N IS SRS AR R T R T L LS L2
0250 20221 344 000512 MBW IMM MESP HIGH L 3000 SET THE OPPOSITE MAP L := BYTE MA
0251 20222 304 012407 JSB BY TEADJ ADJUST FOR FULLWORD PROCESSING
0252 20223 304 013647 JSB W.LOOP-1 MOVE BYTES IN PAIPS

0253 20224 010 070752 MESP PASS X ALU := X; SELECT ALTERNATE MAP
0254 20225 320 052142 JMP CNDX ALZ RJS B.RESET TEST FOR INTERRUPTED MOVE

0255 20226 334 052202 JMP CNDX FLAG RJS B.RESET+1 TEST FOR NO ODD BYTE

0256 20227 230 006647 READ PASS M A M := SOURCE ADDRESS

0257 20230 010 006162 Ll PASS A A FORM BYTE ADDRESS IN A

0258 20231 014 001147 SANL S4 TAB S4 := AAAAAAAA00000000

0259 *

0260 20232 230 010647 MB* READ PASS M B M := DESTINATION ADDRESS

0261 20233 010 010222 Ll PASS B B FORM BYTE ADDRESS IN B

0262 20234 012 000507 AND L TAB L := 00000000BBBBBBBB

0263 20235 010 147147 IOR S4 S4 S4 := AAAAAAAABEBBBBBB

0264 20236 210 046036 WRTE MPCK PASS TAB 54 WRITE DATA INTO DESTINATION

0265 20237 007 106147 INC 2 A A :=2+1

0266 20240 010 022447 PASsS MEU MEU RESET SELECTED MAP

0267 20241 007 110207 INC B B B :=B + 1

0268 20242 227 144700 READ RTN INC PNM S3

0269 R L e R s s L]
0270 20243 150 071622 B.RESET LWF Ll PASS X X RESET X IN BYTES

0271 20244 010 022447 PASS MEU MEU RESET SELECTED MAP

0272 20245 227 144707 READ INC PNM S3 EXIT

0273 20246 010 006162 Ll PASS A A RESET A FOR EVEN BYTE ADDRESS
0274 20247 370 010222 RTN L1 PASS B B RESET B FOR EVEN BYTE ADDRESS
0275 KA AR AR AR AR AR AR R AR R A AR AR AR A AR AR AR A AR A R AR A AR AR AR A AR AR AR AR AR AR AR AR A A k&
0276 20250 010 033116 BYTEADJ CLFL PASS S3 M SAVE M FOR NEXT INST FETCH

0277 20251 010 006164 R1 PASS A A A := SOURCE WCRD ADDRESS

0278 20252 010 010224 Rl PASS B B B := DESTINATION WORD ADDRESS
0279 20253 150 071624 LWF Rl PASS X X X := WORD COUNT. FLAG := ODD BYTE
0280 20254 370 070747 RTN PASS X SET ALU FLAGS FOR TESTING X

G-36

PAGE
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
PAGE
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358

Appendix G

0012 RTE MICRO-ASSEMBLER REV.A 760818
*

20255
20256
20257
20260
20261
20262
20263
20264
20265
20266
20267
20270
20271
20272

20273
20274
20275
20276
20277
20300
20301
20302
20303
20304
20305
20306
20307
20310
20311

010
010
010
320
230
007
010
010
210
007
000
320
335
324

010
010
320
230
007
010
010
210
007
000
320
335
000
010
227

036752
033107
070747
014402
006647
106147
010652
001147
046036
110207
071612
014402
013042
014347

033112
070747
014402
006647
106147
001147
010647
046036
110207
071607
014402
013702
045107
022447
144700

*
*
*
*
Fhkkhkkkhkkkhkhkhhkk ko ko kdkkkhkokkdkdkddkkdkohkhokdhdddh kokdk kokkk ko Akokd ko ddkokdkdddk kdkdkkkkk

MWF MESP FLIP THE MAP SO IT WILL COME OUT
MWI PASS S3 M SAVE M FOR NEXT INST
PASS X ALU FLAGS := X CONDITIONS
JMP CNDX ALZ MW* TEST FOR X=0
X.LOOP READ PASS M A READ SOURCE WORD
INC A A INCR. SOURCE ADDPR.; SWITCH MAPS
MESP PASS M B M.P. CHECK,M := DEST ADDR
PASS S4 TAB 5S4 := DATA
WRTE MPCK PASS TAB 5S4 WRITE DATA INTO DESTINATION
INC B B INCREMENT DESTINATION ADDRESS
MESP DEC X X DECREMENT COUNT; SWITCH MAPS
JMP CNDX ALZ MW* TEST IF MOVE COMPLETE
JMP CNDX NINT X.LOOP TEST FOR NO INTERRUPT
JMP MWINT
Fkk ok kkk kR Kk kkkkkkk kK kkkkkkk ko hkkkkkkkkkkkkk ko k ok kA A Ak k ko kk ko kkkxk ko kd ok
MWW MESP PASS S3 M SAVE M FOR NEXT INST FETCH
PASS X T-BUS := X
JMP CNDX ALZ MW * TEST FOR X=0
W.LOOP READ PASS M A READ SOURCE WORD
INC A A INCREMENT SOURCE ADDRESS
PASS 5S4 TAB 54 := DATA
PASS M B M.P.CHECK; M := DEST ADDRESS
WRTE MPCK PASS TAB S4 WRITE DATA INTO DESTINATION
INC B B INCREMENT DESTINATION ADDRESS
DEC X X DECREMENT COUNT
JMP CNDX ALZ MW* TEST IF MOVE COMPLETE
JMP CNDX MNINT W.LOOP TEST FOR NO INTERRUPT
MWINT DEC S3 53 SET P COUNTER FOR INTERUPT EXIT
MW * PASS MEU MEU RESET SELECTED MAP; RETURN
READ RTN INC PNM S3 START INST FETCH; EXIT

ek d A gk Ak ok ke sk ke ok bk ke ok ok sk ke e Kk ok sk ok ok ok ok ok ok ok ok ok ok ok ke ke ke Stk ek ek ek ke ok ok ek ke ke ok

0013 RTE MICRO-ASSEMBLER REV.A 760818
*

20312
20313

20314
20315
20316

20317
20320

20321
20322
20323
20324
20325
20326
20327
20330

20331
20332
20333
20334
20335
20336

20337
20340
20341
20342
20343
20344

357
324

355
010
324

342
324

343
347
014
230
010
340
010
327

227
230

010

010
326
227

227
010
010
210
326
227

077147
015207

175164
047164
015207

077147
015107

077147
076507
147147
033107
046447
100547
003707
115742

174725
001207
074047
050452
155442
144700

174725
074047
023212
050036
155742
144700

*
*
*
*

Tkddkkdkkhkkkkkhkhhhkkhhhkdkdkkhkkkhdkkhhhkhhkhhhkhkhkkhhkkkkkkhkkhrkkrdhdrkkhkkkk

SY* IMM CMHI sS4 %337 sS4 := 0010000000000000
JMP MAPMOVE
Jed e dedede de kg ke k ko kK Kk sk ko ke ke gk ok ok kK ek ok ok ok sk ok ok Kk b ok ok ok Kk ok ok ok ok kR ok ok ok ko ok ok ok ok ke ok
PA* IMM RI1 CMHI S4 %176 S4 := 0100000010000000
Rl PASS S4 S4 S4 := 0010000001000000
JMP MAPMOVE
khkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkkhkhhkdkhkhkhkhhkkkkkhdkhhkhhkkhdkhdhhkhdhhhhkkhkhkkhhkhkhkhrkkkhkkk
PB* IMM LOW S4 %237 S§4 := 1111111110011111
JIMP US*+1 L := 1101111111111111
* S4 := 0010000001100000
kkdkkkkkkkkhkhkhkdkhkkkkhhhkkhkhkhkhkhhkhkhhkhkhhkhkhkhhkthkthkkhkhkhkhrrkkhhkkkkhkkkhkkkkkhkkk
Us* IMM LOW S4 %337 §4 := 1111111111011111
IMM HIGH L £337 L :=1101111111111111
XOR S4 sS4 S4 := 0010000000100000
MAPMOVE READ PASS S3 M §3 := M - DUMMY READ
PASS MEU S4 MEM ADDR REG := S4
IMM LOW CNTR 32 i= 32
PASS P CAB P := A/B
JMP CNDX AL15 MELOOP5 AL15=1 => READ MAPS
*
MELOOP4 READ DCNT INC PNM P READ NEXT WORD; P :=P + 1
READ PASS S5 TAB S5 := MAP DATA - DUMMY READ
PASS CAB P AORB :=P
MESP PASS MEU S5 MAP REG := DATA
JMP CNDX CNT8 RJS MELOOP4 LOOP FOR 32X
READ RTN INC PNM S3 P := INSTR + 1
*
MELOOP5 READ DCNT INC PNM P DEC CNTR P := P + 1 -DUMMY READ
PASS CAB P AORB :=P
MESP PASS S5 MEU S5 := MAP DATA
WRTE MPCK PASS TAB S5 WRITE DATA INTO TABLE
JMP CNDX CNT8 RJS MELOOP5 LOOP FOR 32X
READ RTN INC PNM 53 P := INSTR + 1

G-37

Appendix G

0359 FAA ko hhhhh ok h ok d Ak ko k kA ok hh ko ke k ke hkkk ke k ok ke ko kkokok bbb sk bk ok bk ok bk ok &
E?GE 0014 RTE MICRO—ASSE%BLER REV.A 760818
6

6362 *

0363 *

0364 *

365 *

0366 KKk ko k Kk kk ok ko hkk ko kkkkkkk ko k Rk ok kk ok kkk kK khkhkkkkhkkk Kk kkx ko k &
0367 20345 300 012447 SSM J5B INDIRECT GET OPERAND ADDR FRCM INSTR + 1
0368 20346 010 022447 PASS MEU MEU SENDL "STATUS" DIRECTIVE

0369 20347 015 023007 PASS 31 MEU WKITE STATUS WCOFD INTGC MEMORY
0370 20350 210 046C36 WKTE MPCK PASS TAE S1

0371 Z0351 324 G10107 JIMP JS*EXIT

0372 Fok ok kkkkk ok ok ok k ko ko k ko k kR Rk ok ke hh ok Ak AR Ak kR kR kkk khkkkk kA kkkkkhkk kk k&
0373 20352 230 036747 JRS READ

0374 20353 304 017377 Jss ITGFF OPGET GEl STATUS WORD FERCM ~.INSTR+1
0375 20354 150 001222 LWF L1 PASS S5 TAB FLAG := STAT(15); 35(15) := S5TAL(
0376 20355 345 007147 IMM HIGH S4 $103 S4 := 0100001111111111

0377 20356 230 074647 READ PASS M P SET M FCR SECOND CPERAND

0378 20357 304 017377 JsSB IOFF OPGET GET TARGET ADDR FROM INSTR+Z
0379 20360 334 0171C2 ON.QFF JMP CNDX FLAG SY.USR TEST IF Mkm WAS ON

0380 20361 345 003147 IMM BIGE S4 $101 IF OFF, €4 := 010CCCO0L111111111
0381 20362 230 050747 SY.USE READ PASS S5 AL1lS := STAT(14) -DUMMY READ
0382 20363 327 1067402 JMP CNDX AL1S JMPSTAY TEST STAT(14) FCR USEE SELECTED
0383 20364 245 004507 IMM HIGF L $302 IF SYS, L = 010CGC1G11111111
0384 20365 232 047147 READ AND 54 sS4 THEN S4 := (1000Cx011111111
038% 20366 324 007407 JMP JMPSTAT SET STATUS OF MEM; AL30 SET P
0386 KR I ARk Rk ok ok kR kKRR kAR KRk kR Rk kA k Rk kkkk kA kR kKA Kk ko hk kxR kKA AR kK h k&
0387 20367 340 006547 OPGET MM LOW CNTR 003B SET COUNTER FOR MAX{MUM INDIRECTS
u3gg 20370 230 000665 READ DCNT PASS M TAB " := 1/A/3 DEC INDIRECT CNTE
0389 20371 367 140002 RTN CNDX AL1l5 RJS RETURN IF INDIRECT RESOCLVED
03906 20372 326 157402 JMP CNDX CNI§ RIS *-2 CONTINUE IF IND., LEVEL <= 3
0391 20373 230 026743 READ IONM RE-ENABIE INTERRUFT RECCGNITIJION
0392 20374 323 157342 JMP (CNDX BOI PRJS OPGET TEST FOF RALT OR INTERRUPT
0393 20375 320 012747 JMP INDIRECT+6 PROQCESS PENDING INTEFRRUPT
0394 KK I KRR IR AR IR IR Rk Rk Rk kR Rk ko kkhk kR Rk kk Rk kk Kk khhkhkkkk kX kk kkk k& %
0395 END

END OF PASS 2: NO ERRORS

PAGE 0015 RTE MICRO CROSS-REFERENCE REV.1813 771212
SYMBOLS3=0055 REFERENCES=00E1 SOURCE LINES=0395
B.RESET 0270 0239 0240 0254 0255

BYTEADJ 0276 0236 0251

DJp 0203 0069
DJs 0219 0070
HORI 0019 **NOT REFERENCED**

INDIRECT 0018 0170 0176 018z (367 0393
JMPSTAT 0212 0382 (385

Jp* 0210 0204 0207
JRS G373 0056

Js* 0222 0076 0217
JS*EXIT 6226 0371

JTABL 0043 **NOT REFERENCED**
LF* G191 (CO0de
MAPMCVE 0340 0327 0331
MB * 0260 024¢

MBF 0235 0046

MBI 6236 0045

MBW 6250 0047

MELOOP 1 G0S¢7 0104 0105
MELOOP?2 0119 0125 0126
MELOOP3 0131 0137 0138
MFELOGEF 4 0346 0350

MELOOES 0353 0344 0357

M * 0316 0291 0299 G205 0313
MWF 0288 0049
MWI 0289 G048
MWINT 0315 0301

G-38

Appendix G

PAGE 0016 RTE MICRC CRCSS-REFERENCE REV, 1813 771212

MWW 0303 0050

ON, OFF 0379 **NOT REFERENCED**
OFGET 0387 0211 0222 0374 0378 0392
P.RTN 0109 0118 0124

PAX 0329 (0053

PA.PB 0149 **NOT REFERENCED**
PB* 0333 0054

READMAP 0130 0096

RS* 0067 **NOT REFERENCED**
RTN* 0161 **NOT REFERENCED**
RV * 0068 **NCT REFERENCED**
SJP 0206 0¢C71

SJS 06216 0072

SSM 0367 0055

Sy* 0326 0051

SY.US 0152 0149

SY.USR 0381 0379

JJup 0209 0073

uJs 0075 **NOT REFERENCEL**
Us* 0337 0052 0334

W .LOOP 0306 0z52z 0314
X .LCOP 0292 0237 0300

XC* 0182 0065
XFER 0155 0152
XFERLOCP 0157 0160
XL* 0170 0063
Xi* 0147 0061
XMM 0085 0043 0059 006C

PAGE 0017 RTE MICRO CROSS-REFERENCFE REV.1813 771212
XMM.EXIT 0106 0139

XiMM.RTN 0108 0103 0136

XMs 011 0095

XS* Gl76 0064

G-39

Appendix G

PAGE 0001 RTE MICRO-ASSEMBLER REV.A 760818
0001 MICMXE,L,C

END OF PASS 1: NO ERRORS

PAGE 0002 RTE MICRO-ASSEMBLER REV.A 760818

0001 MICMXE,L,C

0002 *CODE="SIS::32,REPLACE

0003 LR A R R R R R R R R E R R R R R R R R SRR XS R R RS SRR RRREREEEERREEREERERERER X]
0004 *

0005 *

0006 * SCIENTIFIC INSTRUCTION SET MICROCODE
0007 * FOR 21MX - E AND F SERIES COMPUTERS
0008 *

0009 * JAN. 24, 1978

0010 *

0011 *

0012 LR R R R R R R R R R R T R R R R R R R R R TR TR R RS R TR R R S TR R
0013 FETCH EQU 000008
0014 HORI EQU 000068
0015 ORG 24000B
0016 24000 325 012047 JIMP TAN

0017 24001 325 041007 JMP 3QRT

0018 24002 325 023047 JMp ALOG

0019 24003 325 027647 JIMP ATAN

0020 24004 325 015647 JNP cos

0021 24005 325 015747 JMP SIN

0022 24006 325 044447 IMP EXP

0023 24007 325 027207 JMP ALOGT
0024 24010 325 050147 JMP TANH

0025 24011 230 036740 READ RTN

0026 24012 230 036740 READ RTN

0027 24013 230 036740 READ RTN

0028 24014 230 036740 READ RTN

0029 24015 230 036740 READ RTN

0030 24016 230 036740 READ RTN

0031 24017 325 035347 JMP SELFTEST

G-40

PAGE
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
U053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
G064
0065
0066
0067
0068
0069
0070
U071
0072
uo73
U074
0075
U076
0077
00738
0079
vo8u
0081
0082
0083
0084
0085
0use

0003 RTE MICRO-ASSEMBLER REV.A 760818

LR R Y Y Y R R AR R R s

24020
24021
24022
24023
24024
24025

24026
24027
24030
24U31
24032
24033
24034
24035
24036
24037
24040
24041
24042

24043
24944
24045
24046
24047

24050
24051
24052
24053
24054

24055
24056
24057

340
154
012
374
342
370

3u6
010
320
010
340
154
334
342
010
010
143
143
340

012
320
011
320
374

014
012
010
227
370

019
227
370

000516
010164
010207
040202
000507
106147

V43242
020172
002642
u20232
000516
011024
u41742
000507
141007
U4u507
064762
065022
000507

040753
002442
040747
102402
036754

041u07
01u507
140207
174707
036747

020232
174707
036747

*

* SUBROUTINE

*

* ENTER: B

* RETURN: A

FLUN IMM
LwF
RTN
IMM
RTN

*

Appendix G

PART OF FLOATING POINT NUMEER

L = 1774008

GET EXPONENT IN A

PUT MANTISSA IN 3
RETURN IF EXP POSITIVE
L = 177600B

FLUN
= LOw
= EXPONENT B = LOW MANTISSA
CLFL LOW L 0008
R1 SANL A B
AND B B
CNDX FLAG RJS
LOW L 200B
IOR A A

RETURN, EXTEND SIGN BIT

LR Ry R T R R s L 2

*

* SUBROUTINE PWR2
*
* ENTER: FLOATING POINT NUMBER IN
* INTEGER IN S11
* RETURN: (A B) = X*2**s1l, F = P + 1
*
PWR2 JSB CHDX MPP RJS WAITL
MPPl PASS A MPP3
JMP CNDX ALZ PDONE
MPPl PASS 3 MPP2
IMM CLFL LOW L 0008
LWF RL S3ANL S1 B
JMP CNDX FLAG RJS PNEXT1
IMM LOW L 2008
IOR s1 sl
PNEXTL PASS L sl
LWF L1 ACD S11
L#f L1 ADD S1 sll
MM LO% L UuOoB
* CHECK FOR UNDER/OVERFLOW
*
CUV AND sl
JMP CWDX ALZ PNEXT2
SONL 51
JMP CNDX ONES PNEXT2
RTN SOV
*
PNEXTZ SANL S1 51
AND L B
IOR B s1
READ INC PNl B
KIN
*
PDUNE MPPl PASS 3 MPP3
READ INC Pim P
KTWN

WAIT FOR BOX

GET A FRO: BOX

ExIT IF X = 0

GET 2 FROM 80X

L = 1774003

31 = EXPONENT

JUMP IF EXP POSTIVE
L = 1776008

EXTEND EXP SIGN 3IT
PUT EXPONENT IN L
SET NEW EXP SIGN BIT
Sl = NEW EXP

L = 1774000

o

JuMp IF NO OVERFLOw

JUMP IF NO UNDEFFLOW
OVER/JNDERFLOw RETURN
1 VOUEXP
MANOOU
MANEXP
START KEAD
RETUKN

W w

Boston

GET o
START READ
RETUERN

G-41

Appendix G

0087 ***********************t****t*t***t***********t*t***ttt*i*\t*
PAGE 0004 RTE MICRO-ASSEMBLER REV.A 760818

0089 ****tt*tttt*tt**tt***t*****t***************tt**t******t***t*
0090 *

0091 * SUBROUTINE FiiPY

00y2 *

0093 * STARTS BOX MULTIPLY ON ACCUNULATOR

0094 * AND REGISTERS (S2 S3)

0095 *

0096 *

0097 24060 306 043242 FMPY J38 CNDX MPP RJS WAITL wAIT FOR BUX

0098 24061 340 110607 IMM LG IRCM 0443 BOX MPY OPCODE
0099 24062 010 036751 #PP2 START BOX

0100 24063 010 042432 MPP1 P2SS MPP3 S2 SEND OPl = (S2 S3)
0101 24064 370 044432 RTN MPPl PASS MPPB S3 RETURN

0102 *

0103 *

0104 *t***t*tttttttt*tt***tt*tttttt**tttttttttttttttt****t**t***t
0105 *

0106 *

0107 * SUBROUTINE WAITI1

0108 *

0109 * WAITS FOR BOX TO COMPLETE EXECUTION

0110 * LOOPS FOR COUNT OF 32, THEN ABORTS

0111 * ON ABORT: A SET TO ALL ONES

0112 * B RESTORED

0113 * GENERATE MP INT

0114 *

0115 *

0116 24065 340 100547 WAIT1 IMM LCW CNTR 040B CNTR=32

0117 24066 323 104102 JMP CNDX HOI INTRT1 CHECK FOR INTERRUPTS
0118 24067 366 004102 LOOP1 RTN CNDX MPP RETURN WHEN DONE
0119 24070 010 036765 DCNT DECREMENT CNTR

0120 24071 366 000742 RTN CNDX MPP RETURN WHEN DONE
U121 24072 326 143342 JMP CNDX CNT8 RJS LOOP1 ELSE LOOPl 32 TIMES
0122 24073 011 136154 SOV ONE A SET A = 1777773
0123 24074 355 165047 IMM CMHI S2 1728 SET IRCM = MIA 00
0124 24075 010 42607 PASS IRCM S2

0125 24076 010 052206 I10G PASS B S6 RESTORE B, M¢ INT
0126 24077 000 075707 DEC P p SET P = ERROR ADDR
0127 24100 227 174707 READ INC PNM P START READ

0128 24101 320 000007 JMP FETCH RETURN

0129 *

0130 22 2 SRR S R R R R R SRS R RR SRR R 22822 R 282222 XR XS RRRE
0131 *

0132 * INTERRUPT ROUTINE

0133 *

0134 * RESTORES A,B,P AND RETURNS

0135 *

0136 *

0137 24102 336 043342 INTRT1 JMP CNDX NSNG RJS LOOP1l RTN IF SINGLE STEP
0138 24103 000 075732 MPP1 DEC P P RESET BOX, SET ADDFE
0139 24104 010 050147 PASS A S5 RESTORE A

0140 24105 010 (52207 PASS B S6 | RESTORE B

U141 24106 320 000307 JMP HORI

0142 *

G-42

0143
PAGE
0145
0146
0147
01438
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
016l
0162
0163
0l64
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
01yl
0182
0183
0184
0185
0l8e6
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196

24107
24110
24111
24112
24113

24114
24115
24116
24117
24120

24121
24122
24123
24124
24125

24126
24127
24130
24131
24132
24133
24134
24135
24136

306
340
010
010
370

306
340
010
010
370

306
340
010
010
370

306
340
010
010
010
010
010
010
376

U43242
060607
036751
042432
044432

043242
020607
036751
042432
044432

043242
150607
V36751
054432
056432

043242
100607
021332
021372
036751
054432
056432
u54432
056432

Appendix G

AR AR AR AR RN kR R AR AR AR AR AR R AR R AR AN KRR AR R AR AR AR R R AR AR AR R R Ak
0005 RTE MICRO-ASSEMBLER REV.A 760818

KAARKARA A AR AR R R AR R R AR A AR A AR R kR kA AR AN R AR AN Ak khk ko k k&

*

*
*
*

FSU

*

SUBROUTINE

STARTS BOX

B2 JSB

IMM

RTN

FSUB2
SUB ON ACC AND (S2 53)

CNDX MPP RJS

LOwW

WAIT1
IRCM 0308
MPP2
MPP1
MPP1

PASS MPPB S2
PASS MFPB S3

WAIT FOR BOX
30X SUB OPCOLE
START BOX
SEND OP1 =
RETURN

(S2 s3)

KRR AR R R AR R R AR A AR AR AN R AR RN R R AR AR R AR R AR KRR A AR AR AR R AR NN RN AN

*
*
*
*
*
F

aD

*

SUBROUTINE

STARTS BOX

D JSB
IMM

RTN

FaDD

ADD ON ACC AND (S2 S3)

CNDX MPP

LOw

RJS WAIT1
IRCM 0108

MPP2
MPP1
MPP1

PASS MPPB S2
PASS MPPB S3

WAIT FOR EOX
BOX ADD OPCODE
START BOX
SEND OP1 =
RETURN

(S2 S3)

LR Y R R R s SRR L]

SUBROUTINE

STARTS BOX

JsB
IMM

RTN

FDIV7

DIV ON (S7 S8) AND ACC
CNDX MPP

LOW

WAIT1
U648

RJS
IRCH
MPP2

MPP1 PASS MPPB
MPP1 PASS MPPB

57
S8

WAIT FOR BOX
BOX DIV OPCODE
START BOX
SEND OP1 =
RETURN

(57 s58)

LA R R R R R R R RS2 LS

*

*
*
*
*

XSQ

SUBROUTINE

SAVES ACC

JsB
IMM

RTHN

XSQ

IN (S7 S8) AND STARTS ACC*ACC

CNDX MPP
LOW
P2SS

PASS

RJS
IRCM
s7
S8

WAIT1
040B
MPPB
MPPB

MPP1
MPP1
MPP2
MPP1
MPP1l
MPP1
MPP1

PASS
PASS
PASS
PASS

MP PB
MPPB
MPPB
MPPB

57
58
s7
S8

WAIT FOR BOX
BOX MPY OPCOLE
SAVE IN (57 S8)

START BOX

SEND OP1 = (S7 S8)
SEND OP2 = (S7 S8)
RETURN

G-43

Appendix G

0197
PAGE
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
023y
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251

0252

G-44

24137
24140
24141
24142
24143
24144
24145

24146
24147
24150
24151
24152

24153
24154
24155
24156
24157

24160
24161

24162
24163
24164
24165
24166

306
340
010
010
010
0lo0
370

306
340
010
010
370

306
340
010
010
370

043242
000607
036751
006432
010432
042432
044432

043242
150607
036751
042432
044432

043242
110607
036751
060432
062432

037047
037107

043242
050607
036751
042432
044432

*****************t**tttt*********tt*************t**t**ttttt*

0006 RTE MICRO-ASSEMBLER REV.A 760818

h AR Rk R Ak AR AR AR R R AR AR R R R RN AR AR R R AR A AR AR AR AR R A ARRR A AR R AR A IR

SUBROUTINE FADA2

ADA 2 JSB

IMM

CNDX
BAB23 MPP 2
MPP1
MPP1
MPP1

RTN MPP1

*

*
*
*
* STARTS BOX ADD ON
*
F

(A

MPP
LOW

PASS
PASS
PASS
PASS

B) AND (S2 S3)

RJS WAIT1
IRCM 000B

MPPB A
MPPB B
MPPB S2
MPPB S3

WAIT FOR EOX
BOX ADD OPCOLDE

START BOX

SEND OP1 = (A B)
SEND OP2 = (S2 S3)
RETURN

LR R 22 R R X R R R R R R R SRR EE X

*

DIV ON ACC AND (S2 S3)

RJS WAIT1
IRCM 064B

MPP1 PASS MPPB S2

* SUBROUTINE FDAVC2

*

* STARTS BOX

*

FDVAC2 JSB CNDX MPP
IMM LOW

MPP2

RTN

*

MPP1 PASS MPPB S3

WAIT FOR BOX
BEOX DIV OPCODE
START BOX
SEND OPl =
RETURN

(S2 53)

LEAE AR R R R XSRS SERS SRR R R2 RS2 RRSR2 2222222 X2 RERER SRS

*

* SUBROUTINE VMPY
*
* STARTS BOX
VMPY JSB CNDX
MM
MPP 2
MPP1
RTN MPP1

*

MPP
LOW

PASS
PASS

MPY ON ACC AND (S9 S10)

RJS WAIT1
IRCM 044B

MPPB S9
MPPB S 10

WAIT FOR BOX
BOX MPY OPCODE
START BOX
SEND OPl =
RETURN

(S9 S10)

KA A AR AR AR A AR AR RN R R R AR A AR AR A A kA A hhhh bk Ak hkkahhhhhd

*

* SUBROUTINE FSUB
*
* STARTS SUB ON (S2 S3)
*
NEGATE ZERC
ZERO
*
*
FSUB JSB CNDX MPP
IMM LOW
MPP2
MPP1l PASS
RTN MPP1 PASS

AND ACC

S2
S3

RIS
IRCM

WAITL
0248

MPPB
MPPB S

w

w N

SET (S2 83) =0

WAIT FOR BOX
BOX 5UB OPCODE
START BOX

SEND OP1 = (S2 S3)

Appendix G

0253 ************i****i*iii*i*ii**i****i***i**i**i*********ii*****

PAGE 0007 RTE MICRO-ASSEMBLER REV.A 760818

0255 Khkkhkhkhkkhkhrkhkhhhkhhhhhhhhhkhhkrrhhhhhhhhhhkhhhhkhhhhhhkkhkkkhkkhhkkk
0256 *

0257 * SUBROUTINE REDUCE

0258 *

0259 24167 345 043047 FOPI IMM HIGH S2 1218 SET (S2 S3 S4) TO 4/PI
0260 24170 341 170507 IMM LOW L 174B

0261 24171 012 043047 AND S2 S2

0262 24172 347 003107 IMM HIGH S3 301B

0263 24173 342 156507 IMM LOW L 2678

0264 24174 012 045107 AND S3 S3

0265 24175 344 117147 IMM HIGH S4 047B

0266 24176 340 004507 IMM LOW L 0028

0267 24177 012 047147 AND S4 sS4

0268 *

0269 *

0270 24200 340 102607 REDUCE IMM LOW IRCM 041B BOX MPY OPCODE

0271 24201 340 000511 IMM MPP2 LOW L 000B SET L = 177400B
0272 24202 010 042432 MPP1l PASS MPPB S2 SEND OP1 = (52 S3 S4)
0273 24203 010 044432 MPP1l PASS MPPB S3

0274 24204 010 046432 MPP1 PASS MPPB S4

0275 24205 010 006432 MPP1 PASS MPPB A SEND OP2 = (A B)
0276 24206 012 011307 AND S7 B SET S7 = MAN(B)
0277 24207 010 054432 MPP1 PASS MPPB S7

0278 24210 014 011347 SANL S8 B SET S8 = EXPO(B)
0279 24211 010 056432 MPP1 PASS MPPB S8

0280 24212 305 003247 JSB WAITL WAIT FOR BOX

0281 24213 010 021332 MPP1 PASS S7 MPPB SAVE IN (S7 S8 S9)
0282 24214 010 021372 MPP1 PASS S8 MPPB

0283 24215 010 021432 MPP1 PASS S9 MPPB

0284 24216 341 022607 MM LOW IRCM 111B BOX FIX OPCODE

0285 24217 353 172511 IMM MPP2 CMLO L 375B SET L = 000002B
0286 24220 305 003247 JSB WAIT1 WAIT FOR BOX

0287 24221 010 020172 MPP1 PASS A MPPB SAVE INTEGER IN A
0288 24222 150 006164 LWF R1 PASS A A SET FLAG = BITO
0289 24223 010 006162 L1 PASS A A SET BITO = 0

0290 24224 334 051402 JMP CNDX FLAG RJS RNXT

0291 24225 010 006747 PASS A TEST A

0292 24226 327 111402 JMP CNDX AL15 RNXT JUMP IF A < O

0293 24227 243 006147 ENV ADD A A SET A = A+2

0294 24230 341 042607 RNXT IMM LOW IRCM 121B BOX FLOAT OPCODE
0295 24231 010 036751 MPP2 START BOX

0296 24232 010 006432 MPPl PASS MPPB A SEND OPA = A

0297 24233 305 003247 JSB WAITL WAIT FOR BOX

0298 24234 340 052607 IMM LOW IRCM (25B BOX SUBTRACT OPCODE
0299 24235 010 036751 MPP2 START BOX

0300 24236 010 054432 MPP1 PASS MPPB §57 SEND OP1l = (S7 S8 S$9)
0301 24237 010 056432 MPP1 PASS MPPB S8

0302 24240 370 060432 RTN MPP1 PASS MPPB S9

0303 *

0304 *

G-45

Appendix G

0305 **tttitittttttttii***tiiittiiiitttiii*ttitttttiitttit*tttttt
PAGE 0008 RTE MICRO-ASSEMBLER REV.A 760818

0307 ***t*tttittttittttiitttiiittiititttii*ttttttttt**i*ti**t****
0308 *

0309 * TANGENT ROUTINE

0310 *

0311 *

0312 24241 010 007213 TAN COV PASS 55 A SAVE A,B FOR

0313 24242 010 011247 PASS S6 B INTRT ROUTINE
0314 24243 305 007347 JSB FOPI X = 4X/PI, REDUCE
0315 24244 335 115242 JMP CNDX OVFL TANERR REDUCE ERROR

0316 24245 010 006164 R1 PASS A A SET FLAG = BITI1(N)
0317 24246 150 006764 LWF Rl PASS A

0318 24247 305 005307 JSB XSQ GET X, SQUARE

0319 24250 346 177047 IMM HIGH §2 277B SET (S2 S3) = C4 =
0320 24251 343 146507 IMM LOW L 3638 -4.0030956

0321 24252 012 043047 AND S2 S2

0322 24253 345 045107 IMM HIGH S3 1228

0323 24254 340 014507 MM LOW L 0068

0324 24255 012 045107 AND S3 83

0325 24256 306 043242 JSB CNDX MPP RJS WAITL WAIT FOR BOX

0326 24257 0L0 021432 MPPl PASS S9 MPPB SAVE IN XSQ (S9 $10)
0327 24260 010 021472 MPPl PASS S10 MPPB

0328 24261 305 004647 JSB FADD +1 2 =32 + Cd

0329 24262 346 141047 IMM HIGH S2 260B SET (82 83) = C3 =
0330 24263 340 016507 MM LOW L 0078 -1279.5424

0331 24264 012 043047 AND S2 S2

0332 24265 345 045107 IMM HIGH S§3 1228

0333 24266 340 054507 IMM LOW L 026B

0334 24267 012 045107 AND S3 83

0335 24270 305 006307 JSB FDVAC2 7 =C3/32

0336 24271 010 061047 PASS 52 S9 SET (S2 S3) = XsQ
0337 24272 010 063107 PASS S3 S10

0338 24273 305 004607 JSB F ADD 2 =2 + XSQ

0339 24274 345 003047 IMM HIGH S2 101B SET (S2 S3) = C2 =
0340 24275 341 150507 IMM LOW L 164B .0019974806
0341 24276 012 043047 AND S2 S2

0342 24277 354 053107 IMM CMHI S3 025B

0343 24300 353 142507 IMM CMLO L 361B

0344 24301 017 045107 NOR S3 §3

0345 24302 305 003007 JSB FMPY 2 =C2 * 3

0346 24303 345 027047 IMM HIGH S2 113B SET (S2 83) = Cl =
0347 24304 340 164507 IMM LOW L 0728 .146926953

0348 24305 012 043047 AND S2 S2

0349 24306 354 005107 IMM CMHI S3 0028

0350 24307 353 172507 IMM CMLO L 3758

0351 24310 017 045107 NOR S3 S3

0352 24311 305 004607 JsB FADD 2 =3 +Cl

0353 24312 010 055047 PASS 52 S7 SET (S2 S3) = X
0354 24313 010 057107 PASS S3 S8

0355 24314 305 003007 JSB FMPY Z =X *2

0356 24315 334 055042 JMP CNDX FLAG RJS EXIT1

PAGE 0009 RTE MICRO-ASSEMBLER REV.A 760t18

0358 24316 355 177047 IMM CMHI 52 1778 SET (52 53) = -1.0
0359 24317 006 037107 ZERO S3

0360 24320 305 006307 JsB FDVAC2 7 =-1/2

0361 24321 305 003247 EXIT1 JSB WAITL WAIT FOR BOX

0362 24322 227 174707 READ INC PNM P START READ

0363 24323 010 020172 MPPl1 PASS A MPPB PUT ANSWER IN (A B)
0364 24324 370 020232 RTN MPPl PASS B MPPB RETURN

0365 *

0366 *

0367 24325 340 162514 TANERR IMM SOV LOwW L 0713 SET (A B) TO

0368 24326 344 140147 IMM HIGH A 0608 ASCII 090R

0369 24327 012 006147 AND A A

0370 24330 341 044507 IMM LOW L 1228

0371 24331 345 036207 IMM HIGH B 1178

0372 24332 000 075732 ERRET MPPl DEC P P SET P = ERROR ADDR
0373 24333 227 174707 READ INC PNM P START READ

0374 24334 372 010207 RTN AND B B ERROR RETURN

0375 *

0376 *

G-46

Appendix G

0377 LR R R L L R R R P g P
PAGE 0010 RTE MICRO-ASSEMBLER REV.A 760818

0379 **
0380 *

0381 *

0382 * SINE ROUTINE

0383 *

0384 *

0385 24335 353 173007 COS IMM CMLO S1 375B SET J=2

0386 24336 325 016007 JMP SIN+1

0387 *

0388 *

0389 24337 006 037007 SIN ZERO S1 SET J=0

0390 24340 010 007213 COV PASS S5 A SAVE A,B FOR

0391 24341 010 011247 PASS S6 B INTRT ROUTINE
0392 24342 305 007347 JsB FOPI X = 4X/PI, REDUCE
0393 24343 335 122542 JMP CNDX OVFL SINERR REDUCE ERRCR

0394 24344 010 040507 PASS L sl SET L=J

0395 24345 003 006164 R1 ADD A A N = (N+J)/2

0396 24346 150 007024 LWF R1 PASS S1 A SET FLAG = BIT1(N)
0397 24347 305 005307 JSB XSQ GET X, SQUARE

0398 24350 334 060242 JMP CNDX FLAG RJS SINAG SIN OR COS ?

0399 *

0400 24351 343 127107 COSAG IMM LOW S3 3538 SET (S2 s83) = CC4 =
0401 24352 344 012507 IMM HIGH L 005B -.00031957

0402 24353 012 045107 AND S3 S3

0403 24354 346 131047 IMM HIGH S2 2548

0404 24355 340 164507 IMM LOW L 0728

0405 24356 012 043047 AND S2 s2

0406 24357 306 043242 JSB CNDX MPP RJS WAIT1 WAIT FOR BOX

0407 24360 010 021432 MPP1l PASS S9 MPPB SAVE VSQR IN (S9 S10)
0408 24361 010 021472 MPP1l PASS S10 MPPB

0409 24362 305 003047 JSB FMPY+1 Z = Z*CC4

0410 24363 345 000507 IMM HIGH L 1008 SET (S2 83) = CC3 =
0411 24364 343 133047 IMM LOW S2 355B .015851077

0412 24365 012 043047 AND S2 52

0413 24366 354 036507 IMM CMHI L 0178

0414 24367 353 157107 IMM CMLO S3 367B

0415 24370 017 045107 NOR S3 S3

0416 24371 305 004607 JSB F ADD Z = Z+CC3

0417 24372 305 006547 JSB VMPY Z = Z*VSQR

0418 24373 356 142507 IMM CMHI L 261B SET (S2 S83) = CC2 =
0419 24374 350 027047 IMM CMLO 52 0138 -.30842483

0420 24375 017 043047 NOR §2 s2

0421 24376 344 045107 IMM HIGH S3 0228

0422 24377 305 004607 JSB F ADD Z = Z+CC2

0423 24400 305 006547 JSB VMPY Z = Z*VSQR

0424 24401 356 177047 IMM CMHI s2 277B SET (S2 S83) = CCl =
0425 24402 353 173107 IMM CMLO S3 3758 1.0

0426 24403 305 004607 JSB F ADD Z = Z+CCl

0427 24404 325 022347 JMp CKSGN TEST SIGN OF ANSWER

G-47

Appendix G

PAGE

0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
04438
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477

G-48

0011 RTE MICRO-ASSEMBLER REV.A 760818

24405
24406
24407
24410
24411
24412
24413
24414
24415
24416
24417
24420
24421
24422
24423
24424
24425
24426
24427
24430
24431
24432
24433
24434
24435
24436
24437
24440
24441
24442
24443
24444
24445
24446

24447
24450
24451
24452

24453
24454
24455
24456
24457
24460

342
346
012
355
353
017
306
010
010
305
345
342
012
356
353
017
305
305
346
341
012
354
353
017
305
305
355
352
017
354
305
010
010
305

010
321
305
325

344
340
012
345
341
325

067047
150507
043047
002507
113107
045107
043242
021432
021472
003047
042507
057047
043047
110507
143107
045107
004607
006547
132507
043047
043047
044507
167107
045107
004607
006547
110507
017047
043047
045107
004607
055047
057107
003007

040747
155042
007007
015047

140514
152147
006147
036507
044207
015507

SINAG

*

CKSGN

*
*

SINERR

IMM
IMM

IMM
IMM

JSB

JsB
IMM
IMM

IMM
IMM

JSB
JSB
IMM
IMM

IMM
IMM

JSB
JSB
IMM
IMM

MM
JSB

JSB

JMP
JsB
JMP

IMM
IMM

IMM
IMM
JMP

CNDX
MPPL1
MPP1l

CNDX

SOV

LOW
EIGH
AND
CMHI
CMLO
NOR
MPP
PASS
PASS

HIGH
LOW
AND
CMHI
CMLO
NOFR

HIGH
LOW
AND
CMHI
CMLO
NOR

CMHI
CMLO
NOR

CMHI

PASS
PASS

PASS
ALO

HIGH
LOW
AND
HIGH
LOW

52
S2
S3
S3
RJS

S10

RJS

233B SET (S2 S3) = C4 =
2648 -.00003595043y
52

101B

3458

S3

WAIT1 WAIT FOR BOX

MPPB SAVE VSQR IN (39 510)
MPPB

FMPY+1 %2 = VSQR*C4

121B SET (32 S3) = C3 =
2278 .002490001

s2

2448

3618

S3

F ADD 2 = Z+C3

VMPY Z = Z*VSUR

255B SET (S2 S3) =C2 =
1218 -.0807454325

S2

0228

373B

S3

F ADD Z = 2+C2

VMPY Z = Z*VSQR

1448 SET (S2 Ss3) =Cl =
2078 .78539816

S2

0228

FADD Z = Z+C1l

s7 SET (S2 S3) =V

S8

FMPY Z2=12*V

Sl TEST SIGN

EXIT1 EXIT IF BIT2(N) = 1
NEGATE Z = -2

EXIT1 EXIT ROUTINE

0608 SET (A B) TO

0658 ASCII 050R

A

1178

1228

ERRET ERROR RETURN

0478
PAGE
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
U531
0532
0533

24461
24462
24463
24464
24465
24466
24467
24470
24471
24472
24473
24474
24475
24476
24477
24500
24501
24502
24503
24504
24505
24506
24507
24510
24511
24512
24513
24514
24515
24516
24517
24520
24521
24522
24523
24524
24525
24526
24527
24530
24531
24532
24533
24534
24535
24536
24537
24540
24541

24542

0lv
010
320
327
305
357
003
327
000
007
007
341
356
010
010
353
306
010
010
340
305
305
010
010
305
305
305
010
010
340
345
340
012
345
340
012
305
346
342
012
345
340
012
305
345
342
012
344
340

012

011253
007207
026702
126702
001007
062507
050747
123602
006147
110207
110207
040607
177051
006432
050147
173107
043242
021032
021532
040607
006047
003247
021332
021372
006007
005047
003247
021432
021472
130607
125051
020507
043047
115107
004507
045107
004347
126507
015047
043047
023107
010507
045107
006307
044507
141047
043047
177107
004507

045107

Appendix G

KRR Rk kA Rk ke k kAR RRRR KRR AR AR R AR R AR AR ARk kR AR KRR KRR KRR KRR Rk
0012 RTE MICRO-ASSEMBLER REV.A 760818

AR R kR kAR kA kAR Ak R R AR AR R AR R AR AR A R AR AR Rk kh kR KA KRR AR AR AR KRR AR AK

*
*
*

ALOG

LGNXT

NATURAL

JMP
JMP
JSB
IMM

JMP

IMM
IMM

IMM
JSB

IMM
JsB
JSB

JSB
JsB
JsB

IMM
IMM
IMM

IMM
IMM

JSB
IMM
IMM

IMM
IMM

JSB
MM
IMH

IMM
MM

LOGARITHM

cov

CNDX
CNDX

CNDX

MPP2
MPP1

CNDX
MPP1l
MPP1

MPP1
MPP1

MPPL
MPP1

MPP2

PASS
PASS
ALZ

AL1S

CMHI
ADD
AL15
DEC
INC
INC
LOW
CMHI
PASS
PASS
CMLO
MPP
PASS
PASS
LOW

PASS
PASS

PASS
PASS
LOwW
HIGH
LOW
AND
HIGH
LOW
AND

HIGH
LOW
AND
HIGH
LOW
AND

HIGH
Low
AND
HIGH
LOW
AND

ROUTINE
S6 B
S5 A
LOGERR
LOGERR
FLUN
L 331B
S5
LGNXT
A A
B B
B B
IRCM 1208
S2 277B
MPPB A
A S5
S3 375B
RJS WAIT1
s1 MPPB
$11 MPPB
IRCM 020B
BAB23
WAITI
s7 MPPB
S8 MPPB
FADAZ+1
FDIV?7
WAIT1
s9 MPPB
310 MPPB
IRCHM 0548
S2 1528
L 0108
S2 S2
S3 1463
L 002B
S3 S3
FSUB2
L 253B
s2 206B
s2 S2
S3 1118
L 004B
S3 S$3
FDVAC2
L 1228
S2 2608
52 52
S3 077B
L 0028
S3 S3

SAVE A,E FOR
INTRT ROUTINE
ERROR IF X = 0
ERROR IF X < 0
UMNPACK MANT AND EXP
TEST FOR BITS 14-7
OF X > 264B
JUMP IF GREATER
DECREMENT EXPO (X)
SET ZXPO(MAN(X)) = 1

BOX FLOAT OPCODE

SET (S2 s3) = 1.0
SEND OP1 = EXPO(X)
SET (A B) = MAN(X)

WAIT FOR BOX
SAVE CHAR IN (Sl sl1l)

BOX SUB OPCODE

7 = MAN(X) = 1.0
WAIT FOR BOX
SAVE IN Y (S7 S8)

Z = MAN(X) + 1.0
Z = 2/¥

WAIT FOR BOX

SAVE IN W (S9 S10)

BOX 2*Z OPCODE

START BOX

SET (S2 s3) =¢C =
1.6567626301

2 = Z2-C

SET (S2 S83) = MB =
-2.6398577035

Z = MB/2

SET (S2 S3) = A =
1.2920070987

G-49

Appendix G

PAGE

0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573

G-50

0013 RTE MICRO-ASSEMBLER REV.A 760818

24543
24544
24545
24546
24547
24550
24551
24552
24553
24554
24555

24556
24557
24560
24561
24562
24563

24564
24565

24566
24567
24570
24571
24572
24573
24574

305
305
010
010
305
355
352
017
357
305
325

344
340
012
345
341
325

305
374

000
355
350
017
347
305
325

004607
006547
041047
065107
004607
060507
163047
043047
147116
003007
015047

140514
144157
006147
052507
034207
015507

023047
023042

075707
136507
133047
043047
131107
003047
015047

JsB
JsB

JSB
MM
IMM

IMM
JsB

JMP
*

*

LOGERR IMM
IMM

IMM
IMM

JMP
*

*

hkkkhkhkhhkhkhhkhh ko kkhhhkhhhhhhkhhkhhkkhkhkhkhhkhkkhhhkhhhhkhhhhhhkhkkhkk

*
*

PASS S2
PASS S3

CMHI L
CMLO 52
NOR S2
CLFL CMHI S3

Sov HIGH L
STFL LOW A
AND A
HIGH L
LOW B

* COMMON LOG ROUTINE

*

ALOGT JSB

RTN
*

IMM
IMM

IMM
JSB

JMP
*

*

khkkdkhkhkkhhhhkhkhkhhdkhkhhkhhhkhhhhkhkhhhkhhhkhhhhhhhkhhhkhhkhkhkkhkkhhkkkk

CNDX FLAG

DEC P
CMHI L
CMLO 52
NOR S2
HIGH S3

FADD
VMPY
51
511
F ADD
130B
271B
S2
3638
FMPY
EXIT1

060B
062B
A
125B
1168
ERRET

ALOG

P

1578
055B
S2
354B
FMPY+1
EXIT1

Z = Z+A

Z = Z*

SET (S2 S3) =

Z = Z+CHAR

SET (S2 S3) =
.6931471806

Z = Z*LE2

EXIT ROUTINE

SET (A B) TO
ASCII 02J

ERROR RETURN

COMPUTE LN(X
ERROR RETURN

N

)

CHAR

LE2 =

SET RETURN ADDRESS

SET (52 83)
.43429228

EXIT ROUTINE

LOG (E)

PAGE
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
.0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
G604
0605
06U6
0607
U608
0609
0610
0611
0612
0613
0614
0615
06l6
0617
0618
0619
0620
0621
0622
0623
0624
0625

0014 RTE MICRO-ASSEMBLER REV.A 760818

LR R e R Y T I TS SRS S

24575
24576
24577
24600
24601
24602
24603
24604
24605
24606
24607
24610
24611
24612
24613
24614
24615
24616
24617
24620
24621
24622

24623

24624
24625
24626
24627
24630
24631
24632
24633
24634
24635
24630
24637
24640
24641
24642
24643
24644
24645
24646
24647
24650
24651
24652

340
150
010
010
320
334
327
340
006
010
010
010
010
334
345
342
012
354
356
353
350
012
320
007
007
305
325
306
010
010
305
305
010
010
305
305
305
010
010
340
345
342
012
347
340
012

000607
ulu764
011253
007207
035202
030242
170242
040607
037051
U42432
042432
006432
010432
032042
111007
016507
041007
045507
177047
173107
006507
010747
031402
165507
1655067
006307
032047
043242
020172
020232
007147
003247
021332
021372
006007
005047
003247
021332
021372
130613
001051
136507
043047
063107
010507
045107

*

* ARCTANGENT FOUTINE
*
*
ATAN IMM LOW
LWF Rl PASS
COV PASS
PASS
JMP CNDX ALZ
JdP CHDX FLAG
JMP CNDX AL15
IMM LCOW
POS MPP2 ZERO
MPPl PASS
MPPl P2SS
MPPl PASS
MPP1 PASS
JMP CNDX FLAG
IMM HIGH
IMM LOW
AND
MM CHMHI
IMM CHMHI
IMM CMLO
IMM CHLO
AND
J4P CNDX ALZ
INC
INC
JsB
Jup
ATANL JSB CNDX MPP
MPP1 PASS
MPP1 PASS
JSB
JsB
MPP1l PASS
MPPl PASS
JsB
JsB
ATAN3 Jsis
MPPl PASS
MPP1 PASS
IMM COV LOW
IM4 MPP2 HIGH
IMM LOW
AKD
1M HIGH
IMH LOW
AND

IRCM

56
S5

RJS
IRCM
S2

MPPB
MP PB
MPPB
MPPB

51
L
Sl
S1ll
S2
S3
L

000B

ZERO1
POS
POS
0208

ool M OWD]
NN

ATAN3
1448
2078
51
0228
2778
3758
003B
B
ATAN]1
S1l
511
FDVAC2
ATAN3
vAIT1
MPPB
MPPB
FSUB+1
WAIT1
MPPB
MPPB
FRDA2+1
FDIV?
WAIT1
MPPB
MPPB
0548
1008
2578
32
331
u043
S3

Appendix G

BOX ADD OPCODE
SET FLAG = BITO(B)
SAVE A,B FOR

INTRT ROUTINE
RETURN ZERO IF X = U
JUMP IF ABS(X) < .5
JuMP IF X > 0
BOX SUBTRACT OPCODE
SET 52 = 0
SEND OPl = 0

SEND OP2 = (A B)

JudpP IF ABS(x) < .5
SET (S1 S11) = PI/4

SET L = 0003743
TEST EXPO(X)

JuMp IF ABS(X) < 2
SET (S1 sll) = PI/:Z

X = 1/X
CONTINUE

wAIT FOR BOX
SAVE X IN (A B)

4 =1 - X
WAIT FOR BOX
SAVE (1-X) IN (57 S8)

2 =1+ X

Z (1-X) / (1+X)

WAIT FOR LOX

SAVE NEw X IN (S7 S8)

LOX Z2*: OPCODE
SET (52 S3) = C4 =
2.0214656

G-51

Appendix G

PAGE
U627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
PAGE
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704

G-52

0015 RTE MICRO-ASSEMBLER REV.A 760818

24653
24654
24655
24656
24657
24660
24661
24662
24663
24664
24665
24666
24667
24670
24671
24672
24673
24674
24675
24676
24677
24700
24701
24702
24703
24704
24705
24706
24707
24710
24711
24712
24713
24714
24715
24716

24717
24720
24721
24722
24723

24724
24725
24726

24727
24730
24731
24732
24733
24734
24735
24736
24737
24740
24741
24742
24743
24744
24745
24746
24747
24750
24751

306
010
0lo0
305
346
340
012
346
340
12
305
010
010
305
345
340
012
357
353
017
305
345
340
012
344
340
012
305
305
334
010
010
305
010
327
305

305
000
227
010
370

000
227
370

376
343
355
007
010
356
353
305
007
335
356
0l4
320
353
014
320
353
010
370

043242
021432
021472
U04647
151047
144507
043047
157107
014507
045107
006307
U61047
063107
004607
037u47
0lo507
043047
157107
172507
045107
003007
057047
116507
043047
061107
004507
045107
004607
005047
034742
041047
U65107
u04347
050747
134742
607007

003247
075707
174707
020172
020232

075707
174707
036747

000742
076347
167747
177747
076307
176147
162207
041007
177747
136442
176507
106747
076442
166507
110747
076442
000507
177747
76307

EXIT2

JsB

JSB
IMM
IMM

IMM
IMM

JSB
JsB
IMM
IMM

IMM
IMM

JSB
IMM
IMM

IMM
IMM

JSB
JSB
JMP
JSB

JMP
JsB

JSB

READ

RTN

READ
RTN

CNDX MPP
MPP1 PASS
MPP1l PASS

HIGH
LOW
AND
HIGH
LOW
AND

PASS
PASS

HIG
LOW
AND
CMHI
CMLO
NOR

HIGH
LOw
AND
HIGH
LOW
AND

CNDX FLAG
PASS
PASS

PASS
CNDX AL15

DEC
INC
MPP1l PASS
MPP1l PASS

DEC
INC

RJS
59
s10
S2

s2
S3

S3

52
S3

S2

S2
S3

S3
S2

S2
S3

S2
S3

P
PNM
A
B

P
PNM

WAIT1
MPPB
MPPB
FADD +1
2648
0628
52
2678
0068
S3
FDVAC2
59
S10

F ADD
1178
0078
S2
3678
3758
S3
FMPY
1278
0478
S2
030B
0028
53
FADD
FDIV7
EXIT2
sl
311
FSUB2
S5
EXIT2
NEGATE

WAIT1
P

P
MPPB
MPPB

P
P

WAIT FOR EOX
3AVE XSg IN (39 510)

Z =17 + C4

SET (82 S3) =C3 =
-4.7376165

2 = C3/2

SET (32 S3) = XSQ

Z =7 + XSQ
SET (S2 S3) = C2
. 154357652

Z=C2 * 12

SET (S2 S3) =Cl =
1.3617611

4 =Cl + 2

Z = X/%

EXIT IF ABS(X) < .5
SET (s2 S3) = PI/N

Z =% - PI/N
TEST MAN(X)
EXIT IF X < O
72 = - 2

WAIT FOR BOX

SET RETURN ADDE
START READ

SAVE ANS IN (A B)
RETURN

SET RETURN ADDR
START READ
RETURN

KkkkhkhhkkhhkhRhhhkhkhhkhhkhhhhhhhkhkkhhhhhhkhkhkhkhkhhhkhhkkhkhhkhhkkk

0016 RTE MICRO-ASSEMBLER REV.A 760818

khkhkkhhkhkhhhkhhhhkhkhkhkhhhhkhhhhkhkhkkhhhhkhhhkhhhhhkhkhhkhkkhhhkhhkkkkhhhk

0 * % % * *

DISPLAY
*

*

ELFTEST RTN

IMM
IMM

IMM
IMM
J5B

JMP
IMM

JMP
IMM

JMP
IMM

RTN

SELF-TEST POUTINE

CNDX NSNG
LOW
CMHI
INC
PASS
CMHI
CMLO

INC
CNDX OVFL
CMHI
XOR
CNDX ALZ
CHLO
XOR
CNDX ALZ
CMLO
IOR
PASS

DSPI
S
S
DSPL
A
B

RJS
L

S
DSPL

3378
173B

S

S

277B
3718
SQRT

S
DISPLAY
2773

A
DISPLAY
3738

B
DISPLAY
300B

S

S

RETURN IF NOT SNGL STEP
TURN ON "S" DSPI LED
SET S = 102001B

SEND TO PANEL
SET (A B) = 4.0

CALCULATE SQRT (4)
SET S = 1020023
JUMP IF OVERFLOW
CHECK ANSWER

JUMP IF A WRONG

JUMP IF B WRONG

3ET S = 1020778
SEND TO PANEL, PETURN

0705
PAGE
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
U726
0727
0728
0729
0730
0731
0732
P AGE
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774

0775
0776

0777
0778
0779
0780
0781
0782
0783

Appendix G

****************i************i*****************************i

0017 RTE MICRO~-ASSEM3LER REV.A 760518
A R R T R L
*
*
: RESERVED ENTRY POINTS
*

ORG 250008

25000 230 036740 READ RTN

25001 230 036740 READ RTN

25002 230 036740 READ RTN

25003 230 036740 READ RTN

25004 230 036740 READ RTN

25005 230 036740 READ RTN

25006 230 036740 READ RTN

25007 230 036740 READ RTN

25010 230 036740 READ RTN

25011 230 036740 READ RTN

25012 230 036740 READ RTN

25013 230 036740 READ RTN

25014 230 036740 READ RTN

25015 230 036740 READ RTN

25016 230 036740 READ RTN

25017 230 036740 READ RTN

*
*

*fﬁt**fii*f*fff*ifffiffﬁ*fiff**fﬁ**fﬁ#ffﬁfifffi*fi*f****fi****

0018 RTE MICRO-ASSEMBLER REV.A 760818

LA AR SRR R R 2L R RS PR R YR AR SLSE YRR YRS RSS20
*
* SQUARE ROOT ROUTINE
*
25020 010 011253 SQRT COV PASS S6 B SAVE A,B FOR
25021 010 007207 PASS S5 A INTRT ROUTINE
25022 320 013442 JMP CNDX ALZ EXIT3 EXIT IF X = 0
25023 327 104142 JMP CNDX ALI15 SQRERR ERROR IF X < 0
25024 305 001007 JSB FLUN UNPACK EXP AND MAN
25025 150 006762 LKF L1 PASS A ARITHMETIC SHIFT
25026 150 007524 LWF Rl PASS S11 A A-REG RIGHT
25027 321 102202 JMP CNDX ALO ODD JUMP IF EXP ODD
*
25030 010 050147 EVEN PASS A S5 RESTORE A
25031 345 027047 IMM HIGH S2 113B SET (S2 S3) = A2 =
25032 342 024507 IMM LOW L 212B 5901621
25033 012 043047 AND S2 S2
25034 356 041107 IMM CMHI S3 220B
25035 340 100607 IMM LOW IRCM 040B EOX MPY OPCODE
25036 305 006047 JSB BAB23 Z = F*A2
25037 345 125047 IMM HIGH S2 152B SET (S2 S3) = B2 =
25040 343 050507 IMM LOW L 324B .4173076
25041 012 043047 AND S2 S2
25042 346 131107 IMM HIGH S3 254B
25043 325 043047 JMP BOTH CONTINUE
*
25044 010 050147 ODD PASS A S5 RESTORE A
25045 345 125047 IMM HIGH S2 152B SET (S2 S3) = Al =
25046 343 050507 M LOW L 3248 .8346152
25047 012 043047 AND S2 S2
25050 355 045107 IMM CMHI S3 1228
25051 340 100607 IMM LOW IRCM 040B BOX MPY OPCODE
25052 305 006047 JsB BAB23 Z = F*Al
25053 345 027047 IMM HIGH S2 113B SET (52 S3) = Bl =
25054 342 024507 IMM LOW L 212B .5901621
25055 012 043047 AND S2 S2
25056 356 041107 MM CMHI §3 2208
25057 007 110207 INC B B SET F = 2 * F
25060 007 110207 INC B B
*
25061 305 004607 BOTY Jse F ADD Z = 2+B
25062 010 007307 PASS S7 A SET (S7 S8) = F =
25063 010 011347 PASS S8 B MAN (X)
25064 305 003247 JsB WAIT1 WAIT FOR BOX
25065 010 021072 MPP1l PASS S2 MPPB SAVE IN P (S2 S3)
25066 010 021132 MPPl PASS S3 MPPB
25067 305 005107 JsB FDIVI+l 2 = F/P
25070 353 172507 IMM CMLO L 3758 SET L = 2
25071 003 057347 ADD S8 S8 SET F = 4 * F
25072 003 057347 ADD S8 S8

G-53

Appendix G

PAGE 0019 RTE MICRO-ASSEMBLER REV.A 760818

0785 25073 305 004607 JSB FADD 7 = 4P
0786 25074 305 003247 JsB WAIT1 WAIT FOR BOX
0787 25075 010 021072 MPPl PASS S2 MPPB SAVE IN P (S2 Ss3)
0788 25076 010 021132 MPPl PASS S3 MPPB
0789 25077 305 005107 JSB FDIV7+l 2 = F/P
0790 25100 305 004607 JsB F ADD Z = Z+4P
0791 25101 004 165507 SUB S11 §11 DEC EXPONENT BY 2
g;g% 251U2 325 001307 . JMP PWR2 Z = Z*2**51]1, RETURN
0794 *
0795 25103 344 140514 SQRERR IMM SOV HIGH L 0608 SET (A B) TO
0796 25104 340 146147 IMM LOW A 063B ASCII 03UN
0797 25105 012 006147 AND A A
0798 25106 345 052507 IMM HIGH L 1258
0799 25107 341 034207 IMM LOW B 116B
8280 25110 325 015507 JMP ERRET ERROR RETURN
l *
0802 *
0803 **i LR ER R 2 X
PAGE 0020 RTE MICRO-ASSEMBLER REV.A 760818
0805 LR R R RS B R L ERRRP R R R R R IR FRRR R ETRRRTEERRTELEEL LTSI E S R]
0806 *
0807 * EXPONENTIATION ROUTINE
0808 *
0809 25111 010 007213 EXP COV PASS S5 A SAVE A,B
0810 25112 010 011247 PASS S6 B FOR INTRT ROUTINE
0811 25113 345 070507 IMM HIGH L 1348 SET (S2 S3 S4) =
0812 25114 341 053047 IMM LOW S2 125B 2/LE2
0813 25115 012 043047 AND S2 52
0814 25116 344 073107 IMM HIGH S3 035B
0815 25117 342 050507 IMM LOW L 224B
0816 25120 012 045107 AND S3 83
0817 25121 346 135147 IMM HIGH S4 2568
0818 25122 340 010507 IMM LOW L 0048
0819 25123 012 047147 AND S4 S4
0820 25124 305 010007 Jss REDUCE
0821 25125 150 006762 LWF L1 PASS A ARITH RT SHIFT
0822 25126 150 006164 LWF Rl PASS A A
0823 25127 007 107507 INC S1l1 & INC, SAVE IN S11
0824 *
0825 * PERFORM BOUNDS CHECKS
0826 *
0827 25130 010 050747 PASS S5 TEST X
0828 25131 327 145702 JMP CNDX AL1l5 RJS POSCHK JUMP IF X > 0
0829 *
0830 25132 351 176507 NEGCHK IMM CMLO L 1778 SET L = 128
0831 25133 003 064747 ADD sl INT < =128 ?
0832 25134 327 107502 JMP CNDX AL15 ZERO2 YES, ANS = 0
0833 25135 325 046107 Jmp EXPNXT NO, CONTINUE
0834 *
0835 25136 335 107642 POSCHK JMP CNDX OVFL EXPERR REDUCE ERROR
0836 25137 342 000507 IMM LOW L 2008 SET L = -128
0837 25140 003 006747 ADD A INT > 1282
0838 25141 327 147642 JMP CNDX AL15 RJS EXPERR YES, ERROR
0839 *
0840 25142 305 005307 EXPNXT JSB XSQ GET X, SQUARE
0841 25143 356 023047 IMM CMHI S2 211B SET (52 §3) = C2 =
0842 25144 355 143107 IMM CMHI S3 161B .05761803
0843 25145 353 162507 IMM CMLO L 371B
0844 25146 017 045107 NOR S3 s3
0845 25147 305 003007 JSB FMPY Z=C2 * 12
0846 25150 010 055047 PASS S2 s7 SET (S2 S3) = F
0847 25151 010 057107 PASS S3 s8
0848 25152 305 004347 JSB FSUB2 Z=32-F
0849 25153 345 071047 IMM HIGH S2 134B SET (S2 83) = Cl =
0850 25154 341 052507 IMM LOW L 125B 5.7708162
0851 25155 012 043047 AND 82 S2
0852 25156 345 007107 IMM HIGH S3 103B
0853 25157 340 014507 IMM LOW L 006B
0854 25160 012 045107 AND S3 83
0855 25161 305 004607 JSB F ADD 2 =Cl+ 2

G-54

Appendix G

PAGE 0021 KTE MICRO-ASSEMBLER REV.A 760818

0857 25162 305 005047 Jss FDIV7 Z =F/2

0858 25163 356 177047 IMM CMHI S2 2778 SET (S2 83) = .5
0859 25164 006 037107 ZERO S3

0860 25165 305 004607 JsB F ADD Z =2 + .5

0861 25166 305 001307 Jss PWR2 7 = ZL*2%x*gl]l

0862 25167 375 141302 RTN CNDX OVFL RJS RETURN IF PWR2 OK
0863 25170 010 050747 PASS S5 TEST X

0864 25171 327 147642 JMP CNDX AL15 RJS EXPERR ERROR IF X > 0
0865 *

0866 *

0867 25172 227 174732 ZERO2 READ MPP1 INC PNM P START READ

0868 25173 006 036153 COV ZERO A SET ANS = 0

0869 25174 366 036207 RTN ZERO B RETURN

0870 *

0871 *

0872 25175 344 140514 EXPERR IMM SOV HIGH L 0608 SET (A B) TO

0873 25176 340 156147 IMM LOW A 067B ASCII 070F
0874 25177 012 006147 AND A A

0875 25200 345 036507 IMM HIGH L 117B

0876 25201 341 014207 IMM LOW B 106B

0877 25202 325 015507 JMP ERRET ERRCR RETURN

0878 *

0879 *

0880 *****************i***************i**i************i**********
PAGE 0022 RTE MICRO-ASSEMBLER REV.A 760818

0582 khkhkkkhkhhkhhhhkhkhhkhkhhkhkhkhkhkhkhhkhkhkhhkhkhhkhkhkhhkhkhhkhhkhkhhkhkhhhkhkhhkhkkhkkhkhk
0883 *

0884 * TANH ROUTINE

0885 *

0886 25203 010 007213 TANH COV PASS S5 A SAVE A,3 FOR

0887 25204 010 011247 PAS5 S6 B INTRT KOUTINE
0888 *

0889 * PZRFORM BOUNDS CHECKS

0890 *

0891 25205 321 111342 JMP CNDX ALC TANH1 JUMP IF ABS(X) < .5
0892 25206 350 (16507 IMM CMLO L 007E SET L = 0003708
0893 25207 012 010747 AND B

0894 25210 320 153202 J4P CNDX ALZ RJS TANH2 JUMP IF ABS(X) > 8
0895 *

0896 25211 007 110207 INC B B SET X = 2%*X

0897 25212 007 110207 INC B B

0898 25213 305 (44547 JsB EXP+2 GET EXP(2*X)

0899 25214 000 075707 DEC P P SET RETURN ADDEESS
0900 25215 356 177047 IMM CMHI S2 277e SET (S2 s83) = 1.0
0901 25216 353 173107 IMM CMLO 53 3758

0992 25217 340 040607 IMM LOW IRCM 0203 BOX SUB OPCODE
0903 25220 305 006047 Js BABE23 Z = EXP(2*X) -1
0904 25221 3u5 003247 JsB WAITL #AIT FOR BOX

0905 25222 010 021332 MPP1 PASS S7 MPPB SAVE IN (S7 S3)
U906 25223 Ul0 021372 MPP1 PASS S8 MPP3

0907 25224 305 006007 Jss FADA2+1 7 = EXP(2*X) + 1
0908 25225 305 005047 JsB FDIV? z = TANH (X)

090Y 25226 325 034747 JMP EXIT2 EXIT ROUTINE

0910 *

0911 25227 340 100607 TANH1 IMM LOW IRCM 040B BOX MPY OPCODE
0912 25230 010 007047 PASS S2 A SET (S2 83) = X
0913 25231 010 011107 PASS S3 B

0914 25232 305 006047 JSB BAE23 Z =X * X

0915 25233 345 041047 IMM HIGH S2 1208 SET (S2 S3) = C3 =
0916 25234 340 112507 IMM LOW L 045B 2.5045337

0917 25235 012 043047 AND S2 52

0918 25236 344 111107 MM FIGH S3 0448

0919 25237 340 010507 IMM LOW L 0048

0920 25240 012 045107 AND S3 S3

0921 25241 305 004607 JSB FADD Z2 =2 + C3

0922 25242 345 005307 IMM HIGH S7 1028 SET (S7 S8) = C2 =
0923 25243 343 116507 IMM LOW L 3478 2.0907609

0924 25244 012 055307 AND S7 s7

0925 25245 346 007347 IMM HIGE S8 203B

0926 25246 340 010507 MM LOW L 0048

0927 25247 012 057347 AND S8 S8

0928 25250 305 005047 JSB FDIV7 Z2=C2/ 2

G-55

Appendix G

PAGE 0023 RTE MICRO-ASSEMBLER REV.A 760818

0930 25251 345 051047 IMM HIGH S2 124B SET (S2 83) =Cl =
0931 25252 342 054507 IMM LOW L 2268

0932 25253 012 043047 AND S2 52

0933 25254 355 035107 IMM CMHI S3 1168

0934 25255 353 172507 IMM CMLO L 375B

0935 25256 017 045107 NOR S3 S3

0936 25257 305 004607 JSB F ADD zZ =Cl +2

0937 25260 010 007047 PASS S2 A SET (S2 S3) = X
0938 25261 010 011107 PASS S3 B

0939 25262 305 003007 JSB FMPY 2 =2 *X

0940 25263 325 034747 JMP EXIT2 EXIT ROUTINE

0941 *

0942 *

0943 25264 000 075707 TANH2 DEC P P SET PETUERN ADDEESS
0944 25265 010 006747 PASS A TEST X

0945 25266 327 113542 JMP CNDX AL15 NEG JUMP IF X < 0

0946 25267 356 176147 MM CMHI A 2778 SET (A B) = 1.0
0947 25270 353 172207 MM CMLO B 3758

0948 25271 227 174707 EXIT3 READ INC PNM P START READ

0949 25272 370 036747 RTN RETURN

0950 *

0951 *

0952 25273 355 176147 NEG MM CMHI A 1778 SET (A B) = -1.0
0353 25274 006 036207 ZERO B

0954 25275 227 174707 READ INC PNM P START PEAD

0955 25276 370 036747 RTN RETURN

0956 *

0957 *

0958 KRk kkhkhk Ak hhhkkkhkhkhkhhkhkhhhhhhkkkkkhkhkhkhhhhhhkkhkhkhhhhkhhkhkkhhhhhk
0959 END

END OF PASS 2: NO ERRORS

PAGE 0024 RTE MICRO CROSS-REFERENCE REV.1813 771212
SYMBOLS=0062 REFERENCES=0168 SOURCE LINES=0959

ALOG 0484 0018 0561

ALOGT 0561 0023

ATAN 0580 0019

ATAN1 0607 0602

ATAN3 0616 0593 0606

BAB23 0207 0504 0753 0766 0903 0914
EOTH 0774 0758

CKSGN 0464 0427

COos 0385 0020

COSAG 0400 **NOT REFERENCED**

DISPLAY 0702 0693 0696 0699

ERRET 0372 0475 0553 0800 0877

EVEN 0747 **NOT REFERENCED**

EXIT1 0361 0356 0465 0467 0545 0570
EXIT2 0664 0656 0661 0309 0940

EXIT3 0948 0740

EXP 0809 0022 0898

EXPERR 0872 0835 0838 0864
EXPNXT 0840 0833

FADA2 0205 0508 0614 0907

FADD 0163 0328 0338 0352 0416 0422 0426 0445 0453 0459
0535 0539 0630 0640 0654 0774 0785 0790 0855 0860
0921 0936

FDIV7 0175 0509 0615 0655 0780 0789 0857 0908 0928

FDVAC2 0219 0335 0360 0527 0605 0637

FETCH 0013 0128

FLUN 0040 0488 0742

FMPY 0097 0345 0355 0409 0438 0462 0544 €569 0647 0845

G-56

PAGE 0025

FOP1
FSuUB
FSUB2
HORI
INTRT1
LGNXT
LOGERR
LOOP1
NEG
NEGATE
NEGCHK
oDD
PDONE
PNEXT1
PNEXT2
POS
POSCHK
PWR2
REDUCE
RNXT
SELFTEST
SIN
SINAG
SINERR
SQRERR
SQRT
TAN

PAGE 0026
TANERR
TANH
TANH1
TANH2
VMPY
WAIT1

XSQ
ZERO1
ZERO2

RTE MICRO CROSS-REFERENCE REV.1813 771212

0939
0259
0247
0151
0014
0137
0495
0548
0118
0952
0243
0830
0760
0083
0064
0077
0588
0835
0055
0270
0294
0684
0389
0429
0470
0795
0738
0312

0314
0610
0520
0141
0117
0491
0486
0121
0945
0466
**NOT
0745
0057
0061
0072
0585
0828
0792
0820
0290
0031
0021
0398
0393
0741
0017
0016

0392
0659 0848

0487
0137

0662
REFERENCED* *

0074
0586

0861
0292

0386

0691

RTE MICRO CROSS-REFERENCE REV.1813 771212

0367
0886
0911
0943
0231
0116
0247
0510
0187
0671
0867

0315
0024
0891
0894
0417
0055
0280
0607
0318
0584
0832

0423 0446 0454 0536
0097 0151 0163 0175 0187 0205 0219
0286 0297 0325 0361 0406 0435 0500

0611 0616 0627 0664 0777 0786 0904
0397 0840

0231
0505

Appendix G

G-57/G-58

Appendix H
FUNCTIONAL BLOCK DIAGRAM N

Appendix H

16 S-BUS
v —®
8 (UPPER BITS) 8 {LOWER BITS) 8
e _— COUNT
INSTRUCTION '
REGISTER I |
| : UP/DOWN |
i | COUNTER LOADER .
l , ADDRESSES 8 @
_J COUNTER
- = - = e ZERO
16
“ LOWER 4 BITS
COUNTER
ALL 8 BITS ZERO
SEQUENTIAL
—— ADDRESSING
ADDRESSING
14 MODIFICATION
,,E MICROJUMP JUumMmP
LOGIC TABLES {(ROM) |
{ADDRESSING)] 8 I
ISB OR RTN ADDRESS J %OE':AT::\#
ADDRESS
)DIFICATION (JUMPS)
IMMEDIATE DATA 2 d
7
ITS 95 Y BITS 14-10 ' }
|
S-BUS/SENSE |
I CONTROL
- - - PROCESSOR
Y NOTES:
FION ENABLE TO 1. DENOTES PROGRAM FLAGS
- R BRANCH SEE TABLES OF OR FLIP-FLOPS
§-8US gENSE MICRO-ORDERS

2. ACCESSORIES SHOWN IN LIGHT
DASHED LINES

E-Series and F-Series Computer
Functional Block Diagram
21 (Sheet 1 of 2)

H-1/H-2

s-BUS
RUN
MODE
| BASIC VARIABLE SHORT OR LONG
TIMING | TIMING I
1 CIRCUITS CONTROL MICROCYCLE TIMING
RUN
ENABLE
TIMING CONDITION
AND 1/0 TYPE DETERMINATION
6 THRU 9 AND 11
ERRUPT
\TION 00006
CONTROL -
MEMORY
ADDRESS
REGISTER
CONTROL |
- MEMORY . N
ADDRESSES 1
[———————————————===
| SAVE (JSB)
| r—————7 ADDRESS
o) b——= | THREE LEVEL | .
== [' FiamwARE | CONTROL SAVE STACK
-— 1 ACCESSORY | MEMORY
- | BOARD {BASE SET)
B I/ | i
-— — —
R P — |
I I 5 MICRO- ADDRESS MC
/ INSTRUCT 24 MICRO-
rRD) L _ _\ _f\\/ ___________ v/ _ _'NSTRUCTIONS INSTRUCTION
-t---—-— REGISTER
24
MICROINSTRUCTION WORD
| FIELD DECODERS P
ﬁITS 23-20 (an 4-0 {BITS 19-15 \y B
l OPERATION SPECIAL A'E:“O/xgg"g:"’ STORE
1/0 SECTION —_—] —
- . LN LW 3
Y ¥ Y Y
OPERATION SPECIAL OR JUMP ALU FUNCTION DESTINA®

O/FROM DCPC
ND
IEMORY PROTECT

MODIFIED

OR BRANCH
CONDITION

7115

S-BUS 116
(,/
(.
1/0 SKIP ii 5
E
CONDITION IN:E:gnl:\ng
CENTRAL
1/0 BUS
INTERRUPT
REGISTER (CONTROL
\ INTERRUPT
FLAG ,ENABLE 7
INTERRUPT
FLAG ADDRESS BUS | g SELECT CODES
INSTRUCTION BITS
| |
HALT OR INT
L FORCE TO LOC/
16
| Tl
I 1/0 CONTROL | INTERRUPT N
AND
SELECT LOGIC | CONTROL |
- > 16] e————
! 0
| : | | WRITABLE
| CONTROL
| | STORE
»| (1K EACH CAl
1/0 SIGNALS AND : L
DEVICE SELECT CODES | I e ——
T T TR INTERRUPT ' -
o ! REQUESTS [
| [USER
SLOTS$ —— —— —— ——— N | AND I CONTROL
t \ I | ACKNOWLEDGEMENTS | | STORE
Y | I | | (2K EACH CA
N 1 | | | |
| | < o R
| | o | ' I I ' i
|
liNTERFACES | I L S5 N SUUR
| | (CARDS) l l [i | \l |
| | 16 | | | | 1/0 BU ' '
S_J
| < fl l)I I I '
I— — a— _.J |] l : 1 | I I |
A I | /’\\ | | |
| I | ! ¢ 2 I I
| | | I |)
I | | |] | I
| | ' | I | I
| | I | I : | |
- gy |
LI A
| * 4 * I | * |
| vy ' oo
i Y I |
= ! T 1 I\
1 | e
: PERIPHERALS | __ 110 EXTENDER L/ \ I
I | | | TTTTT A
e e e e - — | e e e e e o e 1

7115-21

Appendix H

S-BUS

MEMORY PROTECTION CONTROL

VIOLATION
CHECK

|
|
|
|
|
M-BUS |
~) |
|
l} | l
t |
MEMORY | | |
ADDRESS| | I
_______________________________ Iy |
A\ I |
IMORY ' il |
ATA I i1 |
| |1
| T
— I
| 1] |
| 11 [
: éj Y :
__Y__\N
\ T
{ — sl !
{ READ/WRITE
B MEMORY PROTECT
PARITY _INHeiT | |
:R |e—>»] GENERATION | |
AND CHECKING L N
MEMORY | T TT T/
READ/MWRITE
CONTROLLER
STRUCTIONS -)
D
ATA i
|
:s)
MAIN MEMORY SECTION
NOTES:
1. DENOTES PROGRAM FLAGS OR FLIP-FLOPS

2, ACCESSORIES SHOWN IN LIGHT DASHED LINES

E-Series and F-Series Computer
Functional Block Diagram
(Sheet 2 of 2)

H-3/H-4

ECTION
S-BUS S-BUS
0) §p A
A 16 Il paTa
I | TRANSFERS
dh
— W e —
311 r 1!
CH OPERATOR 1o | DuAL CHANNEL
TERS PANEL SECTION </\'::"\>| PORT —— |- - -
K CONTROL v | CONTROLLER |
TER I Vi R |
STER i MEMORY
ADDRESS
- INDEX
ISTERS DISPLAY M-BUS
REGISTER e
{AM [g - Lt16
} 15 1
ER
rER | | v
(STER) —————— ——— -
ISTER : MEMORY |
EXPANSION - -
DISPLAY | MODULE I—
INDICATORS K™~ | | M
AND SWITCHES) L] D,
(_""‘——"j \ ///20
| Ly - -
| Vi Vi
I MEMORY
° ADDRESS T-REGIST!
e M-BUS REGISTER
[#2]
T I
@ I — >
2 20-8BI1T IN
T PHYSICAL Al
a2 ADDRESS D/
y MAIN
") (SEMICONDUCTOR MEMORY MODULE
_/
MICROPROGRAMMABLE
PROCESSOR PORT
S ONLY) (F-SERIES ONLY}
-
HARDWARE
=SIGNED
WAREE FLOATING POINT
PROCESSOR

7115-22

ARITHMETIC/LOGIC §

- S-BUS
ALU 4 \ (\ (3
$ 15 SET ‘PV"; Lt s 16
ALU s1 ‘ $1 THRU ¢
ONES =SCRA1
REGIS
s2
J SP = STAC
s3 POIN
: REG!
S4 j X AND Y :
REG
pU A-REGISTER <> B-REGISTER S5
‘LAG] P = PROGF
ss COUNT
REGIS
(P-REG
16 16 s7 ‘
j S - S-REG
—1)
T-BUS . B, 9
'lj :
s10 J
$11
AAF J
P __j
1
Y
)
S
1118 S __)
\/ RAM REGISTERS 16 BITS EACH
15 M-BUS
M-REGISTER J va
’ MEMORY ADDRESS SELECTION
J
L) N .. T SR S
{E-SERIE
USER Dt

HARD

S-BUS

i
I WORDS

64
WORDS

STANDARD
LOADERS

OPTIONAL
LOADERS

N e~
e e e

REMOTE PROGRAM
LOAD
CONFIGURATION
I SWITCHES

S-BUS

A
J

MPP CONTROL
AND
RESPONSE

ALU ALU CONDITIONAL
/L1s BITO SET ZERO TEST N
1 , LOGIC
l z
ALU
CARRY ™~
ouT
Ve
EXTEND
REGISTER
{\ N
&y |
- ————
ROTATE/
ALU 16 ALV SHIFTER
OUTPUT, 16
- v a— 7
1116
SECOND
OPERAND
Y
OVERFLOW ET
REGISTER [L0 S

-

(™

L-REGISTER

N

16

L

4, BITSOTHRU 3
7

7115-22A

Index I

INDEX

A

A (Store or S-bus Field), Table 4-1
A-Addressable Flip-Flop (AAF), Table 2-1
A-Register, Table 2-1

Abbreviations, Appendix A

Accessing A Parameter, 6-9

Activity Profile, 1-2

ADD, Table 4-1

Address Field Word Type III, Table 4-1
Address Field Word Type IV, Table 4-1
Address Field Microassembler, 8-17

ALO, Table 4-1

AL15, Table 4-1

ALGN Psuedo-Microinstruction, 8-21
ALU Field Word Type, Table 4-1

ALZ, Table 4-1

Analysis Method, 1-2

AND, Table 4-1

Arithmetic Logic Unit (ALU), Table 2-1, 2-3
Arithmetic/Logic Operations, 5-9

ASG, Table 4-1, 7-8

Assembler Interface Program, 14-3
Assembler Procedure, 6-8

Assembly Language Instruction, 2-12, 2-17

B

B (Store or S-bus Field), Table 4-1
B-Addressable Flip-Flop (BAF), Table 2-1
B-Register, Table 2-1

Base Set Listing, Appendix G

Base Set Modules, 2-15

Base Set Operation, 2-14

Binary Field Micro-Order Summary, Appendix C

Binary Microcode Format, Appendix B
Binary Object Code, 9-4

Binary Structures, 4-1, Appendix C
BIOI, 13-1

BIOO, 13-1

BIOS, 13-1

Block Diagram, Appendix H

Block /0, 13-1

Block I/O Address/Data Burst Input, 13-3
Block I/O Byte Packing Burst Input, 13-2
Block I/O Data Transfers, 13-1

Block I/O Word Burst Output, 13-6
Branch Field Word Type III, Table 4-1
Branch Field Word Type IV, Table 4-1
Branches, Control Memory, 5-10
BREAKPOINT Command (MDE), 10-11
Bus System, Table 2-1, Appendix H

C

CAB (Store or S-bus Field), Table 4-1
Calling MDE, 10-19

Calling Microprograms from FORTRAN, 6-15
Central Interrupt Register (CIR), Table 2-1
CIR, Table 4-1

CLEAR Command (MDE), 10-12

CLFL, Table 4-1

CM/Main Memory Linkage, 6-10

CMHI, Table 4-1

CMLO, Table 4-1

CMPL, Table 4-1

CNDX, 4-5

CNDX, Table 4-1

CNT4, Table 4-1

CNTS, Table 4-1

CNTR (Store or S-bus Field), Table 4-1, 7-11
CNTR Micro-Order, 7-10

Comment Field, 8-18

Computer Functions, 2-1, 2-10

Conditional and Invalid Operations, 7-5
Conditional Field Word Type III, Table 4-1
Conditional Flags, Table 2-1

Conditional Microbranches, 4-5
Considerations, Section 7

Constant Storage, 4-4

Contributed Library Catalog, 1-2

Control Commands, Microassembler, 8-8
Control Memory (CM), Table 2-1, 2-3, 2-13
Control Memory Address Register (CMAR), Table 2-1
Control Memory Boards, 3-2

Control Memory Mapping Method, 6-1
Control Memory Maps, 2-13

Control Processor Block Diagram, 2-2
Control Processor, 2-1, 2-10, 2-15
Controllable Functions, 2-1, 2-10
Conventional Control Section, 2-10

COUT, Table 4-1

COV, Table 4-1

Cross Reference Generator, 9-6

CRS, Table 4-1

D

DBLS, Table 4-1

DCNT, Table 4-1

DCPC, See Dual Channel Port Controller
DEC, Table 4-1

DEF Pseudo-Microinstruction, 8-24
Definitions and Abbreviations, Appendix A
Definitions and Timing Points, Table 2-1, 2-11
DELETE Command (MDE), 10-8

-1

Index

DES, Table 4-1

Display Indicator (DSPI), Table 2-1

Display Register (DSPL), Table 2-1

DIV, Table 4-1

DMA, See Dual Channel Port Controller

DMS (MEU) Instruction Listing, Appendix G
DMS Considerations, 7-33

Driver DVR36, 3-7

DSP1 (Store or S-bus Field), Table 4-1

DSPL (Store or S-bus Field), Table 4-1

Dual Channel Port Controller (DCPC), 2-9, 7-21
DUMP Command (MDE), 10-5

DVR36 and WLOAD Use Summary, 3-7, 11-2
Dynamic Mapping System (DMS), 2-8, 3-2, 7-33

E

E, Table 4-1

E-/F- to M-Series Comparison Summary, Appendix F
E-Intervals, 5-2

END Pseudo-Microinstruction, 8-22

Entry Points, 6-2

ENV, Table 4-1

ENVE, Table 4-1

Environment, 3-1

EQU Pseudo-Microinstruction, 8-23

Error Messages, 9-10, 10-17, 12-5

Examples, Section 14

Executing Microprogrammed I/O Instructions, 7-30
Execution, 2-17

Execution, Assembly Language Instruction, 2-17
Execution Command, Microassembler, 9-2
Execution Times, FPP, 13-32

EXIT Command (MDE), 10-4

Extend Register, Table 2-1

F

Fetching, 2-16

Field Decoders, Table 2-1

Field Template, 8-4

Fields, 8-4

Fields, Binary, 4-1

Fields, Microassembler, 4-2

Firmware Accessory Board (FAB), 1-3
FLAG, Table 4-1

Flip-Flops, Addressable, Table 2-1
Floating Point Processor (FPP), 13-10
Floating Point Processory, Hardware, 13-10
Format, Binary Microcode, Appendix B
Formats, Microassembler, 4-2, Appendix B
FORTRAN, Calling Microprograms From, 6-15
FTCH, Table 4-1, 7-14, Appendix C

FPP, 13-10

FPP Accumulator Operations, 13-20

FPP Addressing, 13-23

FPP Complete Test, 13-28

FPP Controllable Functions, 13-11

FPP Data Formats, 13-12

FPP Data Operations, 13-18

1-2

FPP Execution Process, 13-33

FPP Execution Times, 13-32

FPP Exponent Format, 13-14

FPP Fix and Float Operations, 13-19
FPP Instruction Execution, 13-24
FPP Instruction Store, 13-22

FPP Instruction Word Format, 13-13 .
FPP Interrupt Considerations, 13-34
FPP Microprogram Example, 13-35
FPP Microprogramming Rules, 13-36
FPP MPP Micro-Orders, 13-21

FPP Operand Length, 13-17

FPP Operand Source, 13-16

FPP, Operand to, 13-25

FPP Operation, 13-15

FPP Overflow Detection, 13-29

FPP Result to CPU, 13-26

Freeze, 5-6

Functions, Computer, 2-1, 2-10, 2-12
Functions, Control Processor, 2-2, 2-10, 2-15

G

General Tape Format, 12-2
Guidelines for Writing Loaders, 7-34

H

Hardware Floating Point Processor (FPP), 13-10
HIGH, Table 4-1

HOI, Table 4-1

HP 1000 E-Series and F-Series Microinstructions, 8-14

I

IAK, Table 4-1, 7-19

ICNT, Table 4-1

IMM, Table 4-1, 4-4

INCI, Table 4-1, 7-16, Appendix C
Indirect Reference Resolution, 6-9
Initialize Phase, 12-2

Input/Output Section, 2-5

Instruction Register (IR), Table 2-1
Interrelated Functions, 2-12

Interrupt Control, Table 2-1

Interrupt Handling (1A) bus, Table 2-1, 7-29
Interrupt Handling, 7-29

Interrupt, FPP, 13-34

I/O bus, Table 2-1

1I/O Control, Table 2-1, 7-25

I/O Input, 7-27

I/O Instructions, Microprogrammed, 7-22, 7-30
/O Micro-Order Summary, 7-32

I/O Microprogrammed Example, 14-4
/O Operation, 5-11

/O Output, 7-26

I/O Relation to Memory Protection, 7-28
I/O Select Logic, Table 2-1

I/O Signal Generation, 7-24

1/O Signals, 7-25

1/O Special Techniques, 7-31

/O Synchronizing, 7-23

I/0O Timing Operations, 5-11

IOFF (Modifier/Special Field), Table 4-1
IOFF Considerations, 7-20

10G (Modifier/Special Field), Table 4-1
10G Considerations, 7-18, 13-1

101, Table 4-1, 13-1

ION, Table 4-1

100, Table 4-1, 13-1

I0R, Table 4-1

IR11, Table 4-1

IR8, Table 4-1

IRCM Considerations, 2-15, Table 4-1, 7-15
IRCM (FPP), 13-32

J

J74, Table 4-1, Appendix C

JMP (Branch Field), Table 4-1

JMP, Table 4-1, 4-6

JSB (Branch Field), Table 4-1

JTAB, Table 4-1, Appendix C

Jump Tables, Table 2-1, 2-14, Appendix G

L

L, Table 4-1

L-Register, Table 2-1

L1, Table 4-1

L4, Table 4-1

L15, Table 4-1

Label Field, 8-15

LDR, Table 4-1

LGS, Table 4-1

Library, Contributed Catalog, 1-2

Linkage, Control Memory/Main Memory, 6-10
LO, Table 4-1

LOAD Command (MDE), 10-6

Loaders, Table 2-1, 7-34

Loading Microprogramming Support Software, 3-9
LOCATE Command (MDE), 10-13

LOW, Table 4-1

LU Command (MDE), 10-7

LWF, Table 4-1

M

M (Store or S-bus Field), Table 4-1
M- to E-/F-Series Comparison Summary, Appendix F
M-bus, Table 2-1

M-Register, Table 2-1

M-Series Micro-Orders, Appendix F
MACO, Appendix C

MAC1, Appendix C

MACTABLO, Appendix C
MACTABL1, Appendix C

Magnitude Tests, 7-12

Main Memory Address 00 and 01, 7-2

Index

Main Memory Operations, 5-12
Main Memory Procedures, 6-11
Main Memory Section, Table 4-1, 2-4
Main Memory/Control Memory Linkage, 6-7
Manual/Software Reference, 3-10
Mapping Control Memory- Section 6
Mapping Details, 6-2, Appendix C
Mapping, See Dynamic Mapping System and DMS
MBIO and MPP Considerations, 13-7
MDE Calling, 10-19
MDE Commands, 10-2
MDE Messages, 10-17
MDE Operator Command Syntax, 10-1
MDE Restrictions, 10-18
MDE Scheduling, 10-1, 10-13
MDE Sequence of Operations, 10-19
MDE, See Microdebug Editor
MDEP, See Microdebug Editor
MDES, See Microdebug Editor
MEM Signals, 7-33
MEM, See Memory Expansion Module
Memory Address Register, Table 2-1
Memory Expansion Module (MEM), 2-8
Memory Protect Considerations, 7-13
Memory Protect, 2-7
Memory Protection Relation to I/0, 7-28
Memory Timing Operations, 5-12
MESP, Table 4-1
Messages (MDE), 10-17
Messages, Error and Informative
(MICRO and MXREF), 9-8
MEU Micro-Order (Store or S-bus Field), Table 4-1,
Table 7-3, 7-26
MIC Pseudo-Instruction, 6-12
MIC Use Example, 6-14
MICMXE, 8-9
MICRO, 9-1, Also See Microassembler
Micro-Order, Binary Field Summary, Appendix C
Micro-Order Binary Formats, 4-1
Micro-Order Comparison Summary, Appendix F
Micro-Order Definitions, 4-7
Micro-Order Summary, Appendix C
Micro-Orders, 2-10, Table 4-1, 8-16
Micro-Orders, Special Use, Appendix C
Microassembler $CODE Command, 8-10
Microassembler $LIST and $NOLIST Commands, 8-12
Microassembler $PAGE Command, 8-11
Microassembler $PUNCH and $NOPUNCH
Commands, 8-13
Microassembler ?? Command (MDE), 10-3
Microassembler Assembly Command MIC, 8-9
Microassembler Binary Object Code, 9-4
Microassembler Control Commands, 8-8
Microassembler Cross-Reference Generator, 3-5, 9-7
Microassembler Description, 8-6
Microassembler Error Messages, 9-10
Microassembler Execution Command, 9-2
Microassembler Fields, 4-2, 8-14
Microassembler Formats, 4-2, Appendix B
Microassembler Informative Messages, 9-9
Microassembler Listing Output, 9-5
Microassembler Messages, 9-8

Index

Microassembler Output, 9-3

Microassembler Planning and Preparation, 8-1
Microassembler Preliminary Information, 8-3
Microassembler Rules, 8-7

Microassembler Symbol Table Output, 9-6
Microassembler, 3-4, 8-6, 9-1
Microassembler, Using, 9-1

Microbranches, Conditional, 4-5
Microbranches, Unconditional, 4-6
Microcycle Estimating Flowchart, 5-7
Microcycle, 2-11

Microcycle, Long, 5-2

Microcycle, Short, 5-2

Microcycle, Variable, 5-6

Microdebug Editor, 1-3, Also See MDE
Microinstruction Binary Structures, 4-1
Microinstruction Formats, Section 4, Appendix B
Microinstruction Register (MIR), Table 2-1
Microinstruction, 2-10, 4-1, 8-14
Microinstruction, Pseudo, 8-19

Microjump Logic (MJL), Table 2-1
Microprogram Entry, 8-5

Microprogram Planning, 8-2

Microprogram Preparation, Section 8
Microprogram, Base Set Listing, Appendix F
Microprogram, Shell Sort Example, 14-3
Microprogrammable Processor Port (MPP), 13-5
Microprogrammed I/O Operation, 14-4
Microprogrammed /O, 7-22
Microprogramming Accessories, 2-18
Microprogramming Concept, 1-1
Microprogramming Considerations, Section 7
Microprogramming Environment, 3-1
Microprogramming Examples, Section 14
Microprogramming Execution, 1-4
Microprogramming Form, Appendix D
Microprogramming Hardware, 3-2, 12-6
Microprogramming Overview, 1-1
Microprogramming Preparation, Section 3
Microprogramming Process, 1-3
Microprogramming Related Products, 1-5
Microprogramming Support Software, 3-3
Microprogramming Techniques, 7-6
Microprogramming the Floating Point Processor, 13-36
Microprogramming, User 2-10
Microsubroutine, 2-11

Modified Privileged Driver, 14-4

Modifier Field Word Type II, Table 4-1
Module Selection, Appendix C

MPBEN Signal, Table 13-1

MPBST Signal, Table 13-1

MPCK Use, 7-4

MPCK, Table 4-1, 7-17

MPP and MBIO Considerations, 13-8

MPP Hardware Interface, 13-6

MPP Microprogram, 13-7

MPP Signal Summary, 13-7

MPP Signals, Table 13-1

MPP, Table 4-1, 13-5

MPP1, Table 4-1, 13-27

MPP2, Table 4-1, 13-24

MPPA and MPPB (Store or S-bus Field), Table 4-1

1-4

MPPIO 0 thru 15 Signals, Table 13-1
MPY, Table 4-1

MRG, Table 4-1

MXREF, 9-7, Also See Microassembler

N

NAND, Table 4-1
NDEC, Table 4-1
NINC, Table 4-1
NINT, Table 4-1
NLDR, Table 4-1
NLT, Table 4-1
NMDE, Table 4-1
NMDE, Table 4-1
NMLS, Table 4-1

NOP (OP, Special, Store, or S-bus Field), Table 4-1

NOR, Table 4-1
NRM, Table 4-1
NRT, Table 4-1
NSAL, Table 4-1
NSFP, Table 4-1
NSNG, Table 4-1
NSOL, Table 4-1
NSTB, Table 4-1
NSTR, Table 4-1

o

Object Microcode, 9-4, Appendix B
Object Tape Formats, Appendix E

ONE, Table 4-1

ONES and ZERO Pseudo-Microinstruction, 8-25
ONES, Table 4-1

OP Fields, Word Type, Table 4-1, 4-7
OP1 through OP11 and OP13, Table 4-1
Operand Field Word Type II, Table 4-1
Operand to FPP, 13-25

Operational Overview, 2-15

Operator Panel, Table 2-1, 2-6

ORG Pseudo-Microinstruction, 8-20
Overall Block Diagram, 2-3, Appendix H
Overall Timing, 5-7

Overflow Detection, FPP, 13-29
Overflow Regisfer, Table 2-1

Overflow, 7-9

OVFL, Table 4-1

|

P (Store or S-bus Field), Table 4-1
P-Interval, 5-2, 5-5

Parameter Accessing, 6-9

Parameter Assignment Example, 6-13
Parameter Passing, 6-9

PARAMETERS Command (MDE), 10-14
PASL, Table 4-1

PASS, Table 4-1

Pause, 5-5

PIRST Signal, Table 13-1
Planning, 8-2

PLRO Signal, Table 13-1
PNM, Table 4-1, 7-10
PP1SP Signal, Table 13-1
PP2SP Signal, Table 13-1
PP5 Signal, Table 13-1
Preparatory Steps, 3-1, 3-10

Programmable Read Only Memory (pROM), 1-3

pROM Generation, Section 12
pROM Hardware, 12-6

pROM Tape Generator, 3-9, 12-1
PRST, Table 4-1, 7-2
Pseudo-Microinstructions, 8-19
PTGEN Error Messages, 12-5
PTGEN Initialize Phase, 12-2
PTGEN Punch Phase, 12-3
PTGEN Verify Phase, 12-4
PTGEN, 12-1

Punch Phase, 12-3

Q

Q0-Q7 Control Signals, 7-33

R

R1, Table 4-1

RAM Registers, Table 2-1)

Read and Write Considerations, 7-1

Read Operation Examples, 5-13, 7-2

READ, Table 4-1

READ/WRITE Conditional and Invalid
Operations, 7-5

Reading from Memory, 5-13

Real Time Executive, 3-1

Registers, Table 2-1

REPLACE Command (MDE), 10-9

Reserved UIG Codes, 6-4

Restrictions, Microdebug Editor, 10-18

RJ30 (Modifier/Special Field), Table 4-1

RJS, Table 4-1

Rotate Shifter (R/S), Table 2-1

RPT, Table 4-1

RTE Microassembler, 3-4, Sections 8, 9

RTE Microdebug Editor, 3-6, Section 10

RTE, 3-1

RTN (OP or Branch Field), Table 4-1

RUN Command (MDE), 10-15

RUN, Table 4-1

RUNE, Table 4-1

S

S (Store or S-bus Field), Table 4-1
S-bus Field Word Type, Table 4-1

Index

S-bus, Table 2-1

S1 through S11 (Store or S-bus Field), Table 4-1
Sample Privileged Driver, 14-4

SANL, Table 4-1

Save Stack, Table 2-1

Scientific Instruction Set Listing, Appendix G
Select Code (SC) bus, Table 2-1

SET Command (MDE), 10-16

Shell Sort Assembler Program, 14-3

Shell Sort Example, 14-3

SHLT, Table 4-1

Short/Long Microcycles, 5-4

SHOW Command (MDE), 10-10

Signals, BIOI, BIOO, BIOS, 13-1

Signals, MPP, 13-1

SKPF, Table 4-1

Software Entry Point Assignments, 6-2
SONL, Table 4-1

SOV, Table 4-1

SP (Store or S-bus Field), Table 4-1

Special Facilities, Computer, Section 13
Special Field Word Type, Table 4-1

Special Use Micro-Orders, Appendix C
Specialized Microprogramming, Appendix C
SRG1 and SRG2, Table 4-1, 7-7

SRUN, Table 4-1

STFL, Table 4-1

Store Field Word Type I and II, Table 4-1
STOV Signal, Table 13-1

SUB, Table 4-1

Summary, Controllable Functions, 2-19
Summary, I/O Micro-Orders, 7-32
Summary, Mapping to User’s Area, 6-16
Summary, Microinstruction Formats, 4-8
Summary, Microprogramming Concepts, 1-6
Summary, Microprogramming Considerations, 7-35
Summary, MPP, 13-34

Summary, Preparation With The Microassembler, 8-26
Summary, Special Facilities, 13-10
Summary, Timing Considerations, 5-15
Symbol Table, 9-6

Synchronizing with O, 7-23

T

T-bus, Table 2-1

T-period, 2-11

T-Register, Table 2-1

TAB (Store or S-bus Field), Table 4-1, 7-2

Test Programs, 14-3

Timing Calculations, 5-8

Timing Control Memory Branches, 5-10

Timing Definitions, 5-2

Timing I/O Operations, 5-11

Timing Main Memory Operations, 5-12

Timing Variables, 5-3

Timing, 5-1

Timing, Special Facilities Transfer
Rate Summary, 13-33

Timing Considerations, Section 5

I-5

Index

U WCS Software, 11-2
WCS Support Software, 11-1
UCS, See User Control Store, 1-3 WLOAD, 3-8, Section 11
UIG Codes, 6-3, 6-5 Word Type I, 4-3
UIG Decoding, Appendix C Word Type II, 4-4
UIG Mapping, Appendix C Word Type III, 4-5
Unconditional Microbranches, 4-6 Word Type 1V, 4-6
User Area UIG Codes, 6-5 Word Type/Binary Format, 4-1
User Control Store (UCS), 1-3 Writable Control Store (WCS), 3-2
User Instruction Group (UIG), 6-5 Write Operation Example, 5-14, 7-3
User Microprogramming, 2-10 Write, Table 4-1
User’s Area Mapping Example, 6-6 WRITE/READ Conditional and Invalid
Operations, 7-5
v Writing from Memory, 5-14

Variable Microcycle with Pause Conditions, 5-8
Vendor Default Formats, 12-1
Verify Phase, 12-4

XY Z

X (Store or S-bus Field), Table 4-1
XNOR, Table 4-1

w XOR, Table 4-1
Y (Store or S-bus Field), Table 4-1
WCS Hardware, 11-1 ZERO and ONES Pseudo-Microinstructions, 8-25
WCS Initialization, 11-2, 14-1 ZERO, Table 4-1

I-6

