(40 HEWLETT

PACKARD

RTE Operating System

Driver Writing Manual

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92200-93005 Printed in U.S.A. June 1993
E0693 Eighth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1980, 1981, 1983, 1987, 1993 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included.
Periodically, update packages are distributed that contain replacement pages to be merged into the
manual, including an updated copy of this printing history page. Also, the update may contain write-in
instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its
user-inserted update information. New editions of this manual will contain new information, as well as all
updates.

To determine which manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’'s Documentation Index. (The Manual Numbering File
is included with your software. It consists of an “M” followed by a five digit product number.)

Fifth Edition Feb 1980

Update 1 Jul 1981 Manual Enhancement
Reprint Jul 1981 Update 1 incorporated
Sixth Edition Dec 1983 RTE-6/VM compatibility
Seventh Edition Aug 1987 Rev. 5000 (Software Update 5.0)
Eighth Edition Jun 1993 Rev. 6000 (Software Update 6.0)

3/4

Documentation Map

RTE Operating
System Driver
Writing Manual

92200-93005

HP 1000 M/E/F-Series Computers
I/O Interfacing Guide
02109-90006

5/6

RTE-6/VM Programmer’s
Reference Manual
92084-90005

RTE-IVB Programmer’s
Reference Manual
92068-90004

RTE-IIl Programming
and Operating Manual
92060-90004

RTE-Il Programming
and Operating Manual
92001-93001

RTE-M Programmer’s
Reference Manual
92064-90002

Table of Contents

Chapter 1
Introduction
PUIPOSE . .ot e 1-1
S0P . 1-1
Supporting Documentationt e 1-1
Chapter 2
RTE Input/Output Structure
INtroductiono 2-1
Software I/O Structure i e 2-2
Input/Output Device Driverso i i 2-2
System I/O Processorottt e 2-2
Base Page Communications AT€ao.ueuntinnernenneennennennennnn 2-3
Equipment Table 2-5
Logical Unit Numbers i e 2-8
Device Reference Table 2-9
Computer Interrupt Mechanism i 2-12
Interrupt Table 2-13
Driver Mapping Table (RTE-IV and RTE-6/VM Only) 2-15
General Operation of RTEI/O 2-15
/O Initiationo oo 2-19
I/O Continuationttt e 2-19
I/O Completion i 2-20
Chapter 3
Writing Standard RTE Drivers
INtroduction o 3-1
General Driver Structure and Operationc..oiiiiiiiiiniineennn... 3-1
Driver Naming Requirements oot 3-2
Initiation SECtiOnt e 3-3
Functions of the Initiation Section i i i 3-7
Continuation/Completion Sectionttt 3-10
Device Clear on Program Abort it i 3-14
I/O Controller TIMEOULttt 3-14
Driver Processing of Timeout i 3-15
System Processing of Timeout i 3-16
DCPC PrOCESSING . . . v vttt et e e e e e e e e e e e e e e e 3-17
RTE Control of DCPC ASSignmentouiiunirniieninnennnen.. 3-17
DCPC Assignment by RTE e 3-18
Preferred Method 3-18
Alternate Methods 3-18
Alternate Method I: Initiation Request 3-19
Alternate Method II: Continuation Request 3-20
Determining the DCPC Assignment Method 3-20
Returning DCPC Channels to RTE i 3-22

Handling the DCPC Interrupt oo, 3-22

Intermixed DCPC and Non-DCPC Operationsc..coviiiiinnenn.... 3-24
Driver Automatic “Up”ttt 3-24
Powerfail Processingo.ioiiii e 3-25

Power Down Sequence e 3-25

Power Up Sequenceo 3-25

Restart I/O Sequencet e 3-26
Program Scheduling by Drivers i 3-27
Determination of Operating System Environment 3-30
Subroutines for Special Mapping Function (DMS Systems Only) 3-31

Mapping in RTE-IIT and RTE-M/IIT i, 3-32

Mapping in RTE-IV and RTE-6/VMo i, 3-33

Obtaining the Subchannel 3-35

Operating System Trap Cell Instructionscoiiiiiiiiineenaen.. 3-35
Sample Standard RTE Drivero i e 3-35
Chapter 4
Writing Privileged RTE Drivers
INtroduction i e 4-1
General Privileged Driver Structure and Operation oiu... 4-3
Initiation SECtiON it e 4-4
Privileged Section i 4-5
Completion SECLIONottt e e et e e e 4-8
Privileged Driver Design Considerationsoouiiiiuniiinneennnonn. 4-9
Communication with User Programs (DMS Systems Only) 4-9
Discussion of Sample DMS Privileged Driver i L 4-10

Initiation Section i 4-10

Privileged Section 4-10

Completion SECLIONttt e e e e e 4-11
Timeout Values for Privileged Drivers 4-11
Subroutines for Special Mapping Functions (DMS Systems Only) 4-12

Mapping in RTE-IIT and RTE-M/IIT 4-13

Mapping in RTE-IVand RTE-6/VM 4-15
Sample Privileged DIiverst e 4-17

Figure 2-1
Figure 2-2
Figure 2-3A
Figure 2-3B
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 4-1
Figure 4-2

Table 2-1
Table 3-1

List of lllustrations

Equipment Table Entry Format 2-6
Expansion of CONWD Word (EQT Entry Word 6) 2-8
Device Reference Table Entry Format (for RTE-6/VM) 2-10
Device Reference Table Entry Format (except for RTE-6/VM) 2-10
Device Reference Table o o i 2-11
Interrupt Table 2-14
Driver Mapping Table 2-16
Unbuffered I/O Read Request 2-17

EQT Fields Setby RTE oo 3-4

EQT Fields Set by the Generator oo .. 3-5
EQT Words the Driver Can Modify 3-6
I/O Driver Initiation Section, 3-9
I/O Driver Continuation/Completion Section 3-13
DCPC Channel Assignment Words, 3-18
Determining DCPC Assignmentc..ooiiiiiiiinienn.... 3-21
Standard RTE Driver Example it 3-36
DMS Privileged RTE Driver Example 4-17
Non-DMS Privileged RTE Driver Example 4-23
Tables
Base Page Communications Area — I/O Operations 2-4
$OPSY Word FOrmatuueeunnuieeiiieeniieannnnns 3-30

Introduction

Purpose

The RTE Operating System Driver Writing Manual is a reference for those users who wish to
develop their own device drivers. A device driver provides the software interface between a
peripheral device and the RTE operating system. Many drivers for Hewlett-Packard peripherals
have already been written and are available from HP. Users who wish to interface peripherals
that are not supported by HP will require specialized drivers. The information in this manual
will aid the user in the development of such routines.

Note that it is not the purpose of the manual to describe the various HP-supplied drivers in
detail. Each of these is described in a separate manual specific to the driver.

Scope

The manual first provides a general description of the input/output (I/O) characteristics of the
RTE family of operating systems on M/E/F-Series Computers. The techniques and requirements
for developing device drivers are then presented in subsequent sections.

Because all of the RTE operating systems have the same general 1/O structure, the manual can
be used to develop general purpose drivers for use in any of these RTE systems. There are some
areas where differences between operating systems may affect driver structure and operation,
these areas are clearly pointed out in the text with notations such as “RTE-IV only” or “RTE-III
only”. Phrases such as “RTE-III only” should be interpreted as referring to both RTE-III
(disk-based system) and RTE-M/III (memory-based equivalent of RTE-III).

Supporting Documentation

To use this manual effectively, you should be thoroughly familiar with HP Assembly Language
and with the Programming and Operating Manual for the RTE system in which the driver is to be
used. Refer to the Documentation Map at the front of this manual for information on these and
other available manuals. For specific information on an HP supplied driver, refer to the
appropriate driver manual.

Introduction 1-1

RTE Input/Output Structure

Introduction

In RTE, centralized control and logical referencing of input and output (I/O) operations effect
simple device-independent programming. By means of several user-defined I/O tables, I/O driv-
ers, and program EXEC calls, the programmer is relieved of most I/O problems. To understand
the software I/O characteristics of RTE, you should be familiar with two hardware related terms
used in this manual:

I/O Controller A combination of I/O card, cable, and (for some devices) controller box used
to control one or more I/O devices on a computer I/O select code.

I/O Device A physical unit (or portion of a unit) identified in the RTE operating system
by means of an Equipment Table entry and a subchannel assignment.

Each I/O device is interfaced to the computer through an I/O controller. This controller is asso-
ciated with one or more of the computer I/O select codes. Interrupts from controllers on specific
select codes are directed to specific memory locations in the computer for system processing.

It is also important to note the difference between a synchronous device and a non-synchronous
device. An interrupt from a synchronous device controller must be processed within a specified
time period, or the data will be lost. Examples of synchronous devices are moving-head disk
drives and nine-track magnetic tape drives. Non-synchronous devices have no such requirement,
and interrupts from these device controllers can be serviced whenever the computer is able to do
so. Examples of non-synchronous devices include paper tape punches and readers.

RTE Input/Output Structure 21

Software 1/O Structure

The RTE 1/O structure is made up of two general types of software (the system I/O processor
and the various device drivers) and a number of I/O tables and a communications area (the
Equipment Table, the Device Reference Table, the Interrupt Table, the Driver Mapping Table
(RTE-IV and RTE-6/VM only), and the Base Page Communications Area). These tables and
areas are used for communication between the system and the drivers, and for control of the
many I/O operations that can be in progress simultaneously. Each component of the I/O struc-
ture is discussed individually in this subsection. A summary of the overall I/O process is given in
the next subsection.

Input/Output Device Drivers

Input/Output device drivers provide the software interface between peripheral I/O devices and
the operating system. Drivers are responsible for the initiation, continuation, and completion of
all data transfers between an I/O device and the computer. Drivers communicate with the sys-
tem directly via parameter passing, and indirectly through the various tables and communications
areas (particularly the Equipment Table and the Base Page Communications Area) that are dis-
cussed later in this subsection. There are two types of drivers, standard and privileged. Standard
drivers are simpler and can be used for most asynchronous devices and some high-speed and syn-
chronous devices (if DCPC transfers are used); these drivers are discussed in Chapter 3. Privi-
leged drivers are more complex and are generally used for high-speed and synchronous devices
that require driver interaction on each data word transferred (that is, DCPC transfers cannot be
used); these drivers are discussed in Chapter 4.

System I/O Processor

The system I/O processor provides the software interface between user programs that perform
I/O and the drivers that actually handle the I/O operations. The system I/O processor checks
user I/O calls for validity, suspends programs while their I/O is in progress (if necessary), calls
drivers to initiate the I/O data transfers, directs controller interrupts to the appropriate drivers,
and restarts programs suspended for I/O. The mechanism for communication between the sys-
tem I/O processor and user programs is the EXEC call and its associated parameter. Communi-
cation between the system I/O processor and drivers is handled directly via parameters and indi-
rectly through the various I/O tables discussed in this section.

Two general areas within the system I/O processor are discussed in this manual, IOC and CIC.
The Input/Output Control module (IOC) is entered when a user program makes an I/O request.
I0C is responsible for initiating the I/O transfer by calling the appropriate driver. The Central
Interrupt Control module (CIC) is entered when a device controller interrupt is detected. CIC is
responsible for calling the correct driver to handle the interrupt.

2-2 RTE Input/Output Structure

Base Page Communications Area

A block of storage in base page contains the system’s communications area and is used by RTE
to define request parameters, I/O tables, scheduling lists, operating parameters, memory bounds,
and so forth. The RTE Assembler and Macroassembler allow absolute references to addresses
less than octal 2000 so that user programs can read information from the base page. Programs
cannot alter the base page, however, because of the memory protect feature of RTE. Table 2-1
illustrates the portion of the Base Page Communications Area that pertains to I/O operations.
The meaning and use of the various words illustrated in the table will become clear in subsequent
sections of this manual. For a complete description of the Base Page Communications Area, re-
fer to the appropriate RTE System Programming and Operating Manual.

RTE Input/Output Structure 2-3

Table 2-1. Base Page Communications Area — 1/O Operations

Octal I
Location Contents Description
01650 EQTA Address of Equipment Table (EQT)
01651 EQT# Number of EQT entries
01652 DRT Address of Device Reference Word 1 Table
01653 LUMAX Number of logical units (in Device Reference Table)
01654 INTBA Address of Interrupt Table
01655 INTLG Number of Interrupt Table entries
01656 TAT Address of Track Assignment Table (disk-based systems only)
01657 KEYWD Address of keyword block
01660 EQT1 A
01661 EQT2
01662 EQT3
01663 EQT4
01664 EQT5 ‘ Addresses of first 11 words of current EQT entry
01665 EQT6
01666 EQT7 (see location of 01771 for last four words)
01667 EQT8
01670 EQT9
01671 EQT10
01672 EQT11 J
01673 CHAN Current DCPC Select Code (6 or 7)
01717 XEQT ID segment address of current program
01737 DUMMY I/O channel of privileged interrupt card (0 if none)
01770 MPTFL Memory Protect On/Off (0/1) flag
01771 EQT12
8] ;;g EgEi Addresses of last 4 words of current EQT
01774 EQT15

2-4 RTE Input/Output Structure

Equipment Table

The Equipment Table (EQT) is used to maintain a list of all the I/O equipment in the system.
This table consists of a number of EQT entries, with one EQT entry for each I/O controller de-
fined in the system at generation time. The EQT entry contains all of the information required
by the system and the associated driver to operate the equipment, including: the I/O select code
in which the controller is interfaced to the computer, the driver type, and the various require-
ments and specifications of the controller or driver (for example, DCPC, buffering, timeout,
powerfail, and so forth). To distinguish between multiple I/O devices connected to a single con-
troller, the system also inserts the subchannel number of the device being referenced into the
EQT entry before calling the driver.

The format of each EQT entry is illustrated in Figure 2-1. Some information in the EQT entry is
static, other parts are dynamic. Information marked <A> is fixed at generation time (or, for the
I/O select code number in RTE-IV and RTE-6/VM, at reconfiguration time) and never changes
during online operation of the system. Words marked are also fixed at generation time
(or, for RTE-IV and RTE-6/VM, at reconfiguration time), but can be changed online via opera-
tor commands. Information marked <C> is modified or set up for the driver prior to each I/O
initialization; it informs the driver of the nature of the request. Words marked <D> are not
used by the system and are therefore available to the driver for use as temporary storage for the
duration of each I/O request.

EQT words 9 and 10 are available for use as temporary storage unless optional parameters were
specified in the EXEC call. For the case of an EXEC call with the control word’s Z-bit clear,
EQT words 9 and 10 contain the values of the optional parameters. If the Z-bit was set, how-
ever, EQT word 9 contains the address of the optional buffer while word 10 contains the length
of the buffer.

If the number of words marked <D> does not provide sufficient temporary storage for the
driver, additional space can be allocated at generation time by specifying that an EQT entry ex-
tension is needed for a particular EQT entry. This space can only be used to extend the refer-
enced EQT entry and, therefore, should only be allocated for drivers that need the additional
space. When an EQT entry extension is specified, EQT entry words 12 and 13 are used to iden-
tify the location and length of the extension (because the extension does not immediately follow
the EQT entry) and, therefore, should not be modified by the driver. Otherwise, these words are
available as temporary storage. EQT word 12 should be checked to ensure that sufficient words
were provided in the generation. Once this is done, the driver can modify word 12 because the
system does not use it.

For programming convenience, the addresses of the words in the current EQT entry (except for
words in the extension, if an extension exists) are placed in the Base Page Communications Area
by the system before calling the driver to initiate or continue an I/O operation. In RTE-6/VM, if
the first word is set up correctly, it is assumed that the others are correct and are not reset. A
driver should use these addresses instead of computing them from the EQT entry number and
the start of the Equipment Table. In this way, the driver can remain independent of the actual
organization of the Equipment Table in memory.

All Equipment Table entries are located sequentially in memory beginning with EQT entry num-
ber 1. The address of the first entry and the total number of entries in the table can be found in
the Base Page Communications Area.

RTE Input/Output Structure 2-5

Contents

Word| 15 |14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0
1 R I/O Request List Pointer <C>
2 | R Driver Initiation Section Address <A>
3 <;> Driver Continuation/Completion Section Address <A>
4| D|BfP|S|T ol;osmﬁcigri;{r?el 4 /O Select Code #
<A>||<E>|<E>|<C> <C> <A>
5 AV <F> Equipment Type Code <A> Status <E>
6 CONWD (Current 1/0 Request Word) <C> ZISE
7 Request Buffer Address <C>
8 Request Buffer Length <C>
9 Temporary Storage <D> or Optional Parameter <C>
10 Temporary Storage <D> or Optional Parameter <C>
11 Temporary Storage for Driver <D>
12 Temporary Storage for Driver <D> or EQT Extension Size, if any <A>
13 Temporary Storage for Driver <D> or EQT Extension Starting Address, if any <A>
14 Device Timeout Reset Value
15 Device Timeout Clock <C>

Where the letters in brackets (<>) indicate the nature of each data item as follows:

<A> = fixed at generation time (or, for I/O select code # in RTE-IV, at reconfiguration
time); never changes.

 = fixed at generation time; can be changed online.

<C> = set up or modified at each I/O initialization.

<D> = available for use as temporary storage by driver.

<E> = can be set by driver.

<F> = maintained by system.

2-6

Figure 2-1. Equipment Table Entry Format (Sheet 1 of 2)

RTE Input/Output Structure

And where:
R

I/O Request
List Pointer

A

- w TV W O

Subchannel #
MSB

I/O Select
Code #

AV

Equipment
Type Code

Status
CONWD

= reserved for system use.

= pointer to list of requests queued up on this EQT entry. First entry in list
is current request in progress; zero if no requests.

= 1 if DCPC was allocated dynamically at request of driver continuation
(RTE-IVB only).

1 if DCPC required.
1 if automatic output buffering used.
= 1 if driver is to process powerfail.
1 if driver is to process timeout.
1 if device timed out (system sets to zero before each 1/O request)
= last subchannel addressed (lower 5 bits).
= most significant bit of the subchannel (bit 6).

= 1/O select code for the I/O controller (lower number if a multi-board
interface).

= 1/O controller availability indicator:

0 = available for use.

1 = disable (down)

2 = busy (currently in operation).

3 = waiting for an available DCPC channel.

= in general, indicates type of device on this controller. When this octal
number is linked with “DVy,” it identifies the device’s software driver
routine. Some standard driver numbers are:

00to 07 = paper tape devices or consoles
00 = teleprinter or keyboard control device
01 = photoreader
02 = paper tape punch
05 = HP 26xx-series terminals
07 = multi-point devices
10to 17 = unit record devices
10 = plotter
11 = card reader
12 = line printer
15 = mark sense card reader
20 to 37 = magneic tape/mass storage devices
23 = 9-track magnetic tape (800/1600 BPI)
31 = HP 7900 moving head disk
32 = HP 7905/06/20/25 moving head disk drive,
33 = flexible disk drives, CS/80 moving head disk drive,
or cartridge tape drive
36 = writable control store
37 = HP-IB
40to 77 = instruments

actual physical status or simulated status at the end of each operation.

= combination of user control word and user request code word in the 1/0
EXEC call (see EQT word 6).

Figure 2-1. Equipment Table Entry Format (Sheet 2 of 2)

RTE Input/Output Structure

|| | || | ||
i5(14 13 12(11 10 9(8 7 6| 5 4 3| 2 1 0

— — \—— - — - —— ——
| Z Subfunction U Function
| |
00 = Standard Call _ 01 = Read Call
00000 = Clear Controller
01 = Buffered Call - 41— 10 = Write Call
11 = Class Call (if Function = 11 = Control Call 11 = Control Call
For Z=1, the U = MSB of

operation is Subchannel #

double buffered

Other subfunctions are driver specific and may or may not be defined.

Figure 2-2. Expansion of CONWD Word (EQT Entry Word 6)

Logical Unit Numbers

Logical unit numbers (LUs) provide the RTE user with the capability of logically addressing the
physical devices defined by the Equipment Table. LU numbers are maintained by the Device
Reference Table (see below), and their definition can be changed online by the LU operator re-
quest. This scheme allows the programmer to reference changeable logical units instead of fixed
physical units.

The functions of LUs 0 through 6 are predefined in the RTE system as follows:
0 — “bit bucket” (null device, no entry in Device Reference Table)
1 — system console
2 — reserved for system (system disk subchannel in disk-based systems)
3 — reserved for system (auxiliary disk subchannel in disk-based systems)
4 — standard output device
5 — standard input device

6 — standard list device

LU 8 is recommended for the magnetic tape device, if one is present in the system. Peripheral
disks must be assigned LUs greater than 6. Additional LUs may be assigned for any functions
desired.

2-8 RTE Input/Output Structure

Device Reference Table

The Device Reference Table (DRT) is part of the mechanism by which unit numbers for I/O are
implemented. RTE users request I/O by specifying a logical unit number. The DRT is used to
translate this logical unit number into a physical device, as specified by an EQT entry number
and subchannel. The DRT is also used to queue requests for I/O on a device when it is unavail-
able (down). (The DRT is not used to queue requests when the device is up. The request list for
available (that is, up) devices originates from word 1 of the EQT entry as illustrated in Figure
2-1.)

Each DRT entry is two words long (two and one-half words for RTE-6/VM). There is one entry
for each logical unit number defined at generation time, beginning with logical unit 1. The for-
mat of each entry is illustrated in Figure 2-3. The word of the entry contains several items, in-
cluding: 1) the EQT entry number of the controller assigned to the logical unit, and 2) the
subchannel number of the specific device on that controller to be referenced. The second word
of each entry contains the status of the logical unit: up (available) or down (unavailable). If the
device is down, word two also contains a pointer to the list of requests waiting to access the LU.
The extra half word in RTE-6/VM is used to indicate an LU lock (zero for no lock, non-zero for a
resource number lock).

The DRT table is actually split into two separate parts (three parts for RTE-6/VM). The first
part contains word 1 of each DRT entry, the second part contains word 2 of each DRT entry, and
the third part (in RTE-6/VM) contains byte 5 of each DRT entry. This format is illustrated in
Figure 2-4. The starting address and length of part one of the table can be found in the Base
Page Communications Area. Part two is located in memory immediately following part one and
has the same length as part one. Part three is located in memory immediately following part two.

RTE Input/Output Structure 2-9

T | T 1 1 1
15114113 12 11 10 9 8| 7 5 4 3 2 1
Reserved Subchannel # EQT Entry Number
F Downed I/O Request List Pointer
Odd LU Lock Even LU Lock
where:

F (Up/Down Flag) = 0 if device is up
= 1 if device is down

LU Lock

= 0 if no lock on the LU, non-zero if resource number

is being used for the lock.

Bit No.
Word 1
Word 2

Byte 5

Figure 2-3A. Device Reference Table Entry Format (for RTE-6/VIM)

Bit No.

Word 1

Word 2

15 14 13 12 1110 9 8 7 5 4 3 2 A1
Subchannel # Reserved EQT Entry Number
F Downed 1/O Request List Pointer
where:

F (Up/Down Flag) = 0 if device is up

=1 if device is down

Figure 2-3B. Device Reference Table Entry Format (except for RTE-6/VM)

2-10 RTE Input/Output Structure

LU 1

LU 2

LU 3

First word of
each DRT entry

LUN

LU 1

LU 2

} Second word of
each DRT entry

LU 1

LU 2)

| Byte 5 of each DRT
entry in RTE-6/VM

LUMAX (if odd)

LUMAX (if even) J

where:

N = the number of LUs in the system.

Figure 2-4. Device Reference Table

RTE Input/Output Structure

2-11

Computer Interrupt Mechanism

When a device controller interrupts RTE, the computer transfers control to one of a group of
memory locations on base page known as the interrupt trap cell. The I/O select code of the in-
terrupting controller determines the location of the transfer. For example, interrupts from select
code 12 cause a transfer to memory location 12. Interrupts from select code 13 cause a transfer
to memory location 13, and so on. Select code numbers range from 4 to 77 (octal). Thus, the
group of memory locations from 4 to 77 (octal) comprises the entire set of interrupt trap cells.

Transferring control to an interrupt trap cell causes the instruction located there to be executed.
For all devices operating under the control of CIC, this instruction is a JSB LINK,I, where LINK
is a base page link containing the address of the entry point to CIC. This instruction is initially
set up by the RTE generator and is reset into the trap cell each time the system is rebooted. In
RTE-6/VM, the JSB LINK, I on an E-or F-Series CPU is replaced by four new instructions that
handle these interrupts. The new instructions are described under Operating System Trap Cell
instructions in the next chapter. The fact that the JSB instruction references an indirect address
causes the computer to hold off any further interrupts for one instruction after the JSB. This
gives CIC a chance to issue a CLF 0 instruction (which disables the interrupt system entirely) to
prevent further interrupts from occurring while the current one is being processed.

Because CIC is entered at the same location for all device controller interrupts under its control,
a method is needed by which the select code of the interrupting device controller can be deter-
mined. CIC obtains the interrupting select code number by accessing the contents of the com-
puter’s Central Interrupt Register via an LIA 4 instruction. CIC can then use this information to
index into the Interrupt Table (see next subsection) to determine how to process the interrupt.

The interrupt trap cells are not limited to containing a JSB LINKI instruction (where LINK con-
tains the address of CIC). Other instructions can be placed in a trap cell by the generator or by a
system routine. However, the trap cell should not contain any instruction other than a HALT
instruction, an OS trap cell instruction (RTE-6/VM only) or a JSB indirect to an interrupt proc-
essing routine (such as CIC or a user-written routine) that saves the state of the machine on en-
try and restores it to its original state on exit. This includes saving and restoring the registers, the
state of the memory protect fence, and so forth.

Specifically, I/O instructions and NOP instructions must not be put into trap cells because they
do not provide a way to restore the system to its original state. Microcode macros (that is, jumps
to microcoded routines) may be used if a microcoded driver is used to process the interrupts or if
you are using the OS trap cell instructions (RTE-6/VM only).

2-12 RTE Input/Output Structure

Note that if a JSB instruction is placed in the interrupt trap cell, it must reference an indirect ad-
dress. The indirect address keeps the interrupt system suppressed for one instruction after the
JSB, as explained above. This allows the interrupt processing routine to issue a CLF 0 instruc-
tion to prevent further interrupts from occurring while the state of the machine is being saved.
(Note that the generator automatically provides a base page link for all JSB instructions it places
in the interrupt trap cells. A JSB indirect instruction is created whenever an “ENT,” “PRG,” or
“EQT?” entry is specified during generation.)

Systems without the powerfail/auto-restart feature have a HLT 4 instruction inserted by the gen-
erator into the powerfail interrupt trap cell (memory location 4). As a result, the computer will

halt when a powerfail interrupt occurs. An example of a JSB to a user-written interrupt process-
ing routine is discussed later in the “Writing Privileged Drivers” section of this manual.

Interrupt Table

The Interrupt Table directs CIC’s actions when an interrupt occurs on any I/O select code that
contains a JSB LINK,I instruction (where LINK contains the address of CIC). CIC can call a
driver, schedule a specified program, or handle the interrupt itself.

There is one Interrupt Table entry for each I/O select code from 6 up to the highest select code
defined in the system at generation. (Systems with I/O reconfiguration ability at bootup (for
example, RTE-IV and RTE-6/VM) always include Interrupt Table entries for all select codes,
even if some select codes were not defined in the initial generation.) Each Interrupt Table entry
is one word long and can have three possible values: zero, positive, or negative.

1. If the entry is zero, the select code is undefined in the Interrupt Table. Any interrupts on this
select code are illegal and cause the following message to be printed:

ILL INT xx

where xx is the octal I/O select code number. RTE then clears the interrupt flag on the select
code and returns to the suspended process at the point of interruption. (Note that an Inter-
rupt Table entry can also be zero if interrupts on the associated select code are handled by a
special routine instead of by CIC and a driver. Refer to the “Writing Privileged Drivers” sec-
tion later in this manual for more information on this subject.)

2. If the contents are positive, the entry contains the address of the EQT entry associated with
the controller on the select code.

RTE Input/Output Structure 2-13

3. If the contents are negative, the entry contains the negative of the address of the ID segment
of the program to be scheduled whenever an interrupt occurs on the select code. If such a
program is not dormant when an interrupt occurs on the select code, the following message is
output to the system console:

SCO03 INT xxxxx

where xxxxx is the program name. RTE then clears the interrupt flag on the select code and
control is returned to the suspended process at the point of interruption. This implies the
program should be quick, if scheduled often, and preferably memory-resident.

All Interrupt Table entries are located sequentially in memory beginning with the entries for I/O
select codes 6 and 7 (DCPC). This format is illustrated in Figure 2-5. There are no entries for
I/O select codes 4 and 5 because the system is able to process interrupts from these select codes
(powerfail interrupts, memory protect violations, and so forth) without the need for an Interrupt
Table entry. The address of the first word of the table and the number of entries in the table can
be found in the Base Page Communications Area.

Note Do not confuse the interrupt trap cell area of the computer, which is located
on base page, with the Interrupt Table of RTE, which is located elsewhere.
The interrupt trap cells are those memory locations (4 to 77 octal) to which
control is transferred when an interrupt occurs. The Interrupt Table, on the
other hand, is merely a convenient way for RTE to record what action CIC
should take when an interrupt occurs on a select code under CIC’s control.

Word 1 Entry for I/O Select Code 6
Word 2 Entry for I/O Select Code 7
Word 3 Entry for I/O Select Code 10
Word 4 Entry for I/O Select Code 11
Word N-4 Entry for I/O Select Code N-1
Word N-5 Entry for I/O Select Code N

where:

N = the highest /O select code known to the system

Figure 2-5. Interrupt Table

2-14 RTE Input/Output Structure

Driver Mapping Table (RTE-IV and RTE-6/VM Only)

In the RTE-IV and RTE-6/VM Operating Systems, drivers can be placed in one of two areas: in
the System Driver Area (SDA) or in one of the driver partitions. Most standard drivers are
placed in driver partitions. The SDA is primarily used for privileged drivers, drivers that do their
own mapping, and very large drivers.

The Driver Mapping Table (DMT) is used to record where a driver resides in physical memory
and other static and dynamic information about the driver and the location of the I/O request
buffer.

There is one DMT entry associated with each EQT entry defined at generation time. Each entry
is two words long, as illustrated in Figure 2-6. Word 1 is set up at generation time and its con-
tents are never changed. It indicates whether the drive resides in the System Driver Area (SDA)
or in a driver partition. If it is in the SDA, it also indicates whether or not the driver is doing its
own memory mapping. (See the “Subroutines for Special Mapping Functions” subsection in
Chapter 3.) If the driver is in a partition, word 1 also indicates the starting physical memory
page number of the driver partition in which it is located.

Word 2 of the DMT entry is dynamic in nature and is set up at each I/O initialization of the asso-
ciated EQT entry. This word indicates whether the I/O request buffer is located within a disk-
resident program, memory-resident program, or system area. If a disk-resident program is mak-
ing the request and the I/O request buffer is located within the program (that is, an unbuffered
request), word 2 also indicates the physical memory page number of the disk-resident program’s
base page. This information is used to save time on setting up the proper map when processing
interrupts handled by the driver.

General Operation of RTE 1/O

Input/Output transfers in RTE can be conveniently broken into three parts for discussion: initia-
tion, continuation, and completion. A user program is involved only in the initiation and comple-
tion phases, the system I/O processor and the device drivers are involved in all three phases. The
following is a simplified discussion of each phase. As an aid to understanding this explanation,
the general flow of events for an unbuffered I/O READ request is illustrated in Figure 2-7.

RTE Input/Output Structure 2-15

Word 1
of DMT for
EQT entry:

Word 2
of DMT for
EQT entry:

where:

sb =

sSb =

MR =

MR =

15 14 13 12 11 10 9 8 7 6 5 4 3 21 O

— 4 SD Reserved M
2 SD Reserved
3 SD Reserved
[]
[]
[]
— N SD Reserved M
— 1 MR Reserved P
2 MR Reserved P
[]
[]
[]
— N MR Reserved P

implies driver resides in a driver partition, and
M = starting page number of partition in bits 0-9

implies driver resides in system driver area, and
M = 0 implies driver not doing its own mapping
M = 1 implies driver doing its own mapping

implies that the 1/0O request buffer is located in a memory resident program.
(P value not significant — reserved for future use)

implies that the I/O request buffer is not located in a memory resident pro-
gram. Buffer location is indicated by the value of P, as follows:

P=0 implies buffer is in the system area
P=0 implies buffer is located in a disk resident program. P is the
physical page number of the program’s base page.

number of EQT entries in system

2-16

Figure 2-6. Driver Mapping Table

RTE Input/Output Structure

Figure 2-7. Unbuffered I/O READ Request

RTE Input/Output Structure 2-17/2-18

RTE Input/Output Structure 2-17

2-18 RTE Input/Output Structure

1/O Initiation

A user program makes an EXEC call to initiate I/O transfers. Parameters passed along with this
call specify the logical unit, control information, buffer location, buffer length, and type of re-
quest (READ, WRITE, or CONTROL) to be made. The user request is channelled to the IOC
(Input/Output Control) module of the system by the RTE request processor. The request is
checked for legality and rejected if any errors are found. If there are no errors, the logical unit
number supplied is used to index into the DRT (Device Reference Table) to determine which I/O
controller (EQT entry number) and device (subchannel) are actually being referenced. The I/O
request is then linked into the request list for the referenced controller.

When the device controller becomes available (that is, no prior requests are pending), the pa-
rameters of the request are put into the associated EQT entry, the addresses of the EQT entry
words are set into the Base Page Communications Area, the proper map (System or User) is en-
abled (performed in systems with Dynamic Mapping only), and the “initiation” section of the
driver is called. This section initializes the device controller, starts the data transfer or control
function, and returns to I0OC.

IOC then returns to the system’s dispatching module to begin execution of the highest priority
scheduled program. If the operation was successfully initiated by the driver, the data transfer is
now under way.

/O Continuation

When the device controller finishes transferring a data word or block of words, it interrupts the
computer. This causes a transfer to one of the interrupt trap cell locations in the computer’s
memory, and the instruction located there is executed. For most I/O devices, this instruction is a
JSB LINK,I (where LINK contains the address of the entry point to CIC). Execution of this in-
struction causes control to be transferred to CIC, the Central Interrupt Control module of the
system. CIC obtains the number of the interrupting select code from the computer’s Central In-
terrupt Register and uses it to index into the Interrupt Table. In RTE-6/VM, most of this is han-
dled by a trap cell instruction.

For those I/O processes operating under the control of CIC and a driver, the Interrupt Table tells
CIC which EQT entry is associated with the interrupting select code. CIC looks at the EQT en-
try, determines which driver is responsible for handling the interrupt, enables the correct map
(System or User) in systems with Dynamic Mapping, and calls the driver’s “continuation/comple-
tion” section to process the interrupt. The driver either accepts the data from the device (read
operation) or sends more data to the device (write operation) and restarts the device. Return is
then made to CIC with a code indicating that more interrupts are expected. This process (inter-
rupt, CIC, driver, CIC) is repeated once for each word or block of words transferred until the
entire transfer is complete.

RTE Input/Output Structure 2-19

/0 Completion

Eventually the driver will determine that the required amount of data has been transferred and
that the I/O process is now complete. The driver then returns to CIC with a special code indicat-
ing that the I/O operation is complete and can be terminated; no more interrupts are expected.

CIC, in turn, transfers control back to IOC to terminate the IOC process. IOC causes the pro-
gram that made the initial I/O request to be placed back into the scheduled list and checks to see
if there are any other I/O requests pending for this controller. If at least one request is pending,
the initiation section of the driver is again called to begin the next operation. IOC then returns
control to the system’s dispatching module to begin execution of the highest priority scheduled
program.

2-20 RTE Input/Output Structure

Writing Standard RTE Drivers

Introduction

This section describes in detail the structure, operation, and design of standard RTE drivers.
Standard drivers are fairly simple in structure and can generally be used to control most asyn-
chronous devices. They can also be used to control synchronous and high-speed devices if these
devices are driven under DCPC control. DCPC processing is also described in this section.

An alternate method for controlling synchronous and high-speed devices is to employ the more
complex privileged driver. Chapter 4 of this manual describes the differences in the design of
privileged drivers versus standard drivers. Thus, if you wish to design a privileged driver, the ma-
terial in this section should be read and understood before continuing with the privileged driver
discussion in Chapter 4.

Note that the operation of RTE requires that synchronous and high-speed devices be driven
either by a standard driver utilizing DCPC transfers or by a privileged driver. This is necessary
to ensure that interrupts from such devices are serviced within the required response time. You
should keep this requirement in mind when deciding upon the type of driver to be written.

General Driver Structure and Operation

An /O driver, operating under control of the Input/Output Control (IOC) and Central Interrupt
Control (CIC) modules of RTE, is responsible for all data transfers between an I/O device con-
troller and the computer. Each driver is written in two functional sections: an initiation section
and a continuation/completion section. The initiation section is responsible for starting up the
device and initiating the first data transfer. The continuation/completion section is responsible
for processing each interrupt generated by the device under its control. This involves accepting
data from the device (read operation), sending more data to the device (write operation), and
then restarting the device to continue the transfer. Eventually, the continuation/completion sec-
tion determines that a sufficient amount of data has been transferred and terminates the I/O op-
eration.

A standard RTE driver operates with the interrupt system disabled, or effectively disabled, if the
system contains a Privileged Interrupt card. Refer to the “Writing Privileged Drivers” section of
this manual. This means that once a driver is entered to process an interrupt, no other interrupts
(except privileged interrupts) can be serviced until the driver completes its operation and returns
to CIC. (CIC turns the interrupt system back on to allow other interrupts to occur.) Drivers
should therefore be coded as efficiently as possible to minimize the amount of time that the in-
terrupt system is disabled and the processing of other interrupts is delayed.

Writing Standard RTE Drivers 3-1

Driver Naming Requirements

To facilitate the identification of driver programs and entry points, the following naming scheme
has been devised. This scheme must be incorporated into the design of all RTE drivers so that
the RTE system generator programs can identify the drivers and relocate them in the proper
memory area of the operating system.

a. Driver names must be five characters in length, beginning with the characters “DV” and end-
ing with a two-digit octal number (known as the equipment type code of the device).

b. The initiation and continuation/completion sections must have entry points whose names are
four characters in length, beginning with the character “I” or “C”, respectively, and ending
with the same two-digit octal number used in the driver name.

Thus, if nn is the octal equipment type code, Ixnn and Cxnn are the entry point names of the in-
itiation and continuation/completion sections, respectively. DVynn is the driver name.

The user is allowed some flexibility in the choice of the x (in Ixnn and Cxnn) and y (in DVynn)
characters referred to above. This flexibility allows several drivers with the same octal equip-
ment type code to have unique names and entry points. The rules for the choice of x and y are:

Ifyis “R” thenx = “.”
Ifyis not “R” thenx =y

Using the above rules, a driver named DVR66 has entry points 1.66 and C.66. A driver named
DVAG66 has entry points IA66 and CA66.

The octal equipment type code (nn) can be any octal number between 00 and 77. A table of
“standard” type codes is given in Figure 2-1. Care should be taken to choose the type code and/
or x and y characters so that new driver names and entry points do not conflict with those of any
standard HP drivers or other user-written drivers present in the system.

3-2 Writing Standard RTE Drivers

Initiation Section

The IOC module of RTE calls the driver initiation section when an I/O transfer is initiated.
(Note that the initiation section may also be entered when a DCPC channel is assigned by IOC
in response to a dynamic DCPC request by the driver. Refer to the “DCPC Processing” subsec-
tion of this manual.) Prior to actually entering the driver initiation section, IOC sets up all infor-
mation needed by the driver to process the call in the associated EQT entry and in the Base Page
Communications Area, as follows:

a. Locations EQT1 through EQT1S in the Base Page Communications Area are set to contain
the address of each word of the EQT entry associated with the call. Base page word EQT1 is
set to contain the address of EQT entry word 1, base page word EQT?2 is set to contain the
address of EQT entry word 2, and so on. If the driver uses DCPC (that is, if bit 15 of EQT
entry word 4 is set), [OC also assigns a DCPC channel to the driver and stores the DCPC
channel number in base page word CHAN.

b. Words 6 through 10 of the EQT entry pointed to by the Base Page Communications Area are
set to contain the request parameters from the user’s EXEC call (request code, subfunction,
buffer address, buffer length, and optional parameters, if present). Note that EQT entry
word 6 (CONWD) contains the CONWD from the user’s EXEC call, modified to contain the
request code in bits 0 and 1 in place of the logical unit. The subchannel being referenced by
the call is placed into bits 6 through 10 of EQT entry word 4. For RTE-6/VM only, the
subchannel number occupies six bits, the sixth (most significant) bit being bit 2 of word 6.
Refer to the EQT diagram in Figure 2-1.

c. CIC also sets up and enables the correct map (System or User) needed by the driver to proc-
ess the call. This step is performed in systems with Dynamic Mapping only.

d. EQT word 14 is copied to EQT word 15 to set the default timeout.

After performing these tasks, IOC enters the driver directly via a jump subroutine to the initia-
tion entry point Ixnn (JSB Ixnn). Upon entry, the A-Register contains the I/O select code of the
controller being referenced in the call. (This same information is present in bits 0 through 5 of
EQT entry word 4.) Later, when the driver has completed (or rejected, if necessary) the initiali-
zation procedure, it must return to IOC via a jump indirect through the Ixnn entry point

(JMP Ixnn,l).

Once entered, the driver is free to use EQT entry words 6 through 13 in any way, but words 1
through 4 must not be altered, except for the D, P, and S bits of EQT word 4. If an EQT entry
extension was specified at generation, the space in the extension is also available to the driver.
In this case words 12 and 13, which define the extension, must not be modified. The driver can
also update the status field in word 5, if appropriate, but this must be done without altering the
rest of word 5. Finally, EQT entry word 15 may be modified, if desired, to override the default
timeout value for the device. Refer to the “I/O Controller Timeout” subsection in this manual.

EQT word 14 can be altered to permanently change the default timeout value (for example, the
serial drivers do this in response to a CN 22 call).

Figures 3-1 and 3-2 show the EQT fields set by RTE and the generator, while Figure 3-3 shows
the EQT fields the driver can modify.

Writing Standard RTE Drivers 3-3

Contents
Word I sT7a "1 12] 117 10" 9 [8 ' 7 5' 4 ' 3[2"' 0
1 R /O Request List Pointer <C>
2 R Driver “Initiation” Section Address <A>
3 <£> Driver “Continuation/Completion” Section Address <A>
4 <’5> <E> <E> <E> <-|c-;> éﬂ"ggﬁgnﬁié?;f <C> I/O Select Code # <A>
5 AV <F>| Equipment Type Code<A> Status <E>
6 CONWD (Current I/O Request Word) <C> fn%E
7 Request Buffer Address <C>
8 Request Buffer Length <C>
9 Temporary Storage <D> or Optional Parameter <C>
10 Temporary Storage <D> or Optional Parameter <C>
11 Temporary Storage for Driver <D>
12 Temporary Storage for Driver <D> or EQT Extension Size, if any <A>
13 Temporary Storage for Driver <D> or EQT Extension Starting Address, if any <A>
14 Device Timeout Default ValueB>
15 Device Timeout Clock<C>
Figure 3-1. EQT Fields Set by RTE (shaded portions)
3-4 Writing Standard RTE Drivers

Contents

Word I sT7a "1 12] 117 10" 9 [8 ' 7 5' 4 ' 3[2"' 0
1 R /O Request List Pointer <C>
2 R Driver “Initiation” Section Address <A>
3 <£> Driver “Continuation/Completion” Section Address <A>
s B 5175127 Stbchanne # <c> | VOSelectCode # <A>
5 AV <F>| Equipment Type Code<A> Status <E>
6 CONWD (Current I/O Request Word) <C> fncs;E
7 Request Buffer Address <C>
8 Request Buffer Length <C>
9 Temporary Storage <D> or Optional Parameter <C>
10 Temporary Storage <D> or Optional Parameter <C>
11 Temporary Storage for Driver <D>
12 Temporary Storage for Driver <D> or EQT Extension Size, if any <A>
13 Temporary Storage for Driver <D> or EQT Extension Starting Address, if any <A>
14 Device Timeout Default ValueB>
15 Device Timeout Clock<C>

Figure 3-2. EQT Fields Set by the Generator (shaded portions)

Writing Standard RTE Drivers

3-5

Contents
Word sTia "1 2] 117 10" o[8 ' 7 65 4 " al2" 1" 0
1 R I/O Request List Pointer <C>
2 R Driver “Initiation” Section Address <A>
3 <A:> Driver “Continuation/Completion” Section Address <A>
s | B18] P16 F] slbohamer# <c> | /O Select Code # <A>
5 AV <F>| Equipment Type Code <A> Status <E>
6 CONWD (Current I/O Request Word) <C> Ng3
7 Request Buffer Address <C>
8 Request Buffer Length <C>
9 Temporary Storage <D> or Optional Parameter <C>
10 Temporary Storage <D> or Optional Parameter <C>
11 Temporary Storage for Driver <D>
12 Temporary Storage for Driver <D> or EQT Extension Size, if any <A>
13 Temporary Storage for Driver <D> or EQT Extension Starting Address, if any <A>
14 Device Timeout Default ValueB>
15 Device Timeout Clock <C>

Figure 3-3. EQT Words the Driver Can Modify (shaded portions)

3-6 Writing Standard RTE Drivers

Functions of the Initiation Section

As part of the general I/O structure of RTE, the initiation section of a standard driver performs
the functions illustrated in Figure 3-4. A more detailed description of the initiation section func-
tions is given below.

1.

Checks for powerfail/auto-restart entry by examining bit 15 of EQT entry word 5, which is set
to 1 only on this type of entry. If bit 15 is set, the appropriate powerfail/auto-restart process-
ing should be done. This check need only be made by drivers that are designed to process
powerfail interrupts as described in the “Powerfail Processing” subsection of this manual.

Rejects the request by following the procedure described in step “7” if:
a. A status check of the device or controller indicates that it is inoperable, or
b. The request code or other parameters are illegal.

Configures all I/O instructions in the driver to reference the specific I/O select code (and
DCPC channel, if used) of the device controller.

Initializes DCPC, if used. Refer to the “DCPC Processing” subsection of this manual.

Initializes software flags and activates the device controller. All variable information perti-
nent to the transmission must be saved in the EQT entry associated with the controller, be-
cause the driver may be called for another controller before the first operation is complete.

Optionally sets the device controller timeout clock (EQT entry word 15) to modify the
default timeout value inserted there by the system. Refer to the “I/O Controller Timeout”
subsection of this manual.

Returns to IOC (via JMP Ixnn,I) with the A-Register set to indicate initiation or rejection
(and the cause of the rejection) as follows:

A-Reg Status

0 The operation was initiated successfully.

1 Operation rejected: read or write illegal for device (I007, program aborted).
Operation rejected: control request illegal or undefined.

Operation rejected: equipment malfunction or not ready (IONR message issued).

L= VS I \O)

The operation was immediately completed. This means that the driver was able to
completely satisfy the request without the need of a subsequent interrupt and that the
program making the I/O call can be rescheduled immediately. The B-Register should
be set to the positive number of words or characters (depending upon which the user
specified) transferred. This value is known as the transmission log.

5 A DCPC channel is required, but none was assigned by IOC. This can only occur
when the “DCPC channel required” bit is not set in the EQT entry, and the driver
decides that it needs a DCPC channel to process this specific call. Refer to the
“DCPC Processing” subsection of this manual.

Writing Standard RTE Drivers 3-7

3-8

to
99

A DCPC channel was assigned by IOC, but the driver did not use it and wants to give
it up. After IOC deallocates the channel, processing continues as for a successful in-
itiation return (A = 00). (RTE-IV and RTE-6/VM only.)

I0xx message issued: the program making the I/O request is aborted (unless the
no-abort bit was set in the call), and an I/O error message is printed on the system
console. Note that this return can be used for unbuffered user I/O requests only.
This, therefore, excludes the use of return codes 7 through 99 on any Class, buffered
or system I/O requests. The error mesage has the following format:

IOxx yyyyy
NNNNN ABORTED

where:
xx = the return code from the driver (decimal 07 to decimal 99),
YWyy = the address of the aborted I/O request in program NNNNN, and
NNNNN = the name of the program that made the I/O request.

This type of return can be used by drivers to generate their own I/O error messages at the
system console. Note that certain codes are reserved for system use, as follows:

Return Code Reserved for
7-159 HP system modules and system drivers.
60 — 99 User written drivers.

Writing Standard RTE Drivers

CONFIGURE 11O
INSTRUCTIONS
FOR DEVICE'S
CONTROLLER

IO CLEAR YES _ ISSUE
REQUEST > CLEAR
» REQUEST
Yy
POWER DO POWER
FAIL vEs FAIL
RECOVERY RECOVERY
?
4
REQUEST NO (A) =10R2
CODE LEGAL 2 REJECT &
? CODES
Y
DEVICE A) = 3,
G T
Pl
READY CODE
?
YES
INITIALIZE
OPERATING
CONDITIONS
FLAGS, ETC.
SET BUFFER
ADDRESS,
LENGTH, MODE,
ETC. FOR
TRANSFER
ACTIVATE
DEVICE'S
CONTROLLER
A
OPTIONALLY
SET DEVICE'S
CONTROLLER
TIME-OUT
CLOCK (EQT 15)
(A) REGISTER
= RETURN CODE*
* IF A =4 SET,B = TRANSMISSION LOG
<

RETURN
TO
10C

Figure 3-4. 1/O Driver Initiation Section

Writing Standard RTE Drivers

3-9

Continuation/Completion Section

The CIC module of RTE calls the continuation/completion section of a driver whenever an inter-
rupt is recognized on an I/O controller associated with the driver. Before calling the driver to
process the interrupt, CIC issues a clear flag instruction (CLF) to the interrupting select code,
sets the addresses of the associated EQT entry into the Base Page Communications Area, sets
the interrupt source code (I/O select code of interrupting controller) into the A-Register, and
copies EQT word 14 into EQT word 15. The interrupting I/O select code address is also avail-
able in EQT entry word 4.

CIC also sets up and enables the correct map (System or User) needed by the driver to process
the call. (This step is performed in systems with Dynamic Mapping only.) The driver is then en-
tered with the correct map enabled by executing a jump subroutine to the continuation/comple-
tion section of the driver at entry point Cxnn (JSB Cxnn). This call has the following format:

Location Action
(Set A-Register equal to interrupt source code)
P JSB Cxnn
P+1 Completion return from Cxnn
P+2 Continuation return from Cxnn
P+3 Get/give up DCPC continuation return from Cxnn

(RTE-IV and RTE-6/VM only)

The return points from Cxnn to CIC indicate whether:

1. The transfer has been completed.
2. The transfer is continuing, that is, further interrupts are expected from the device controller.

3. The driver is requesting the allocation or deallocation of a DCPC channel.

The continuation/completion section of the driver is flowcharted in Figure 3-5 and performs the
following functions. Note that steps “1” through “5” are always executed whenever the driver is
entered at Cxnn. Then, depending on whether the I/O operation is now complete or is still con-
tinuing, the driver executes either step “6” (completion return) or step “7” (continuation return),
respectively.

1. Checks whether bits 14-0 of EQT entry word 1 (the controller I/O request list pointer) equal
zero. If so, a spurious interrupt has occurred (that is, no I/O operation was in progress on
the controller). The driver can handle the spurious interrupt in one of two ways:

a. Ignore the interrupt by setting EQT entry word 15 (the timeout clock) to zero to prevent
timeout and making a continuation return as described in step “7” below.

b. Ignore the interrupt and have RTE display a message by making a completion return as
described in step “6”. No special A-Register return value is needed. Upon return from
the driver, RTE looks at the I/O request list pointer and, if the pointer is zero, displays
the following message on the system console (where the sc indicates the interrupting se-
lect code):

ILL INT sc

3-10 Writing Standard RTE Drivers

If the interrupt is valid, that is, bits 14-0 of word 1 are non-zero, the driver configures all I/O
instructions in the continuation/completion section to reference the interrupting select code.

Checks to see if a timeout has occurred on the device by checking bit 11 of EQT entry word
4. If this bit is set, the device has timed out and any required timeout processing should be

done. Note that this check need only be made by drivers that are designed to process time-
out interrupts (as described in the “I/O Controller Device Timeout” subsection of this man-
ual). Drivers not processing timeout interrupts are not entered on device timeout.

If both the DCPC and the device controller interrupts are expected, but only the device con-
troller interrupt is significant, the DCPC interrupt can be ignored by making a continuation
return to CIC as described in step “7” below. Refer to the “DCPC Processing” subsection of
this manual for a method to suppress the DCPC interrupt entirely.

Performs the input or output of the next data item if the device is driven under program con-
trol. One of three possible actions is then taken:

a. If the transfer is not complete, the driver follows the procedure described in step “7” be-
low to make a continuation return.

b. If the transfer is complete, the driver follows the procedure described in step “6” below
to make a completion return.

c. If the driver detects a transmission error, it can reinitiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT en-
try. After initiating each retry, the driver makes a continuation return to CIC as de-
scribed in step “7” below.

(Completion Return.) At the end of a successful transfer or after completing the retry proce-
dure, the driver performs the following steps before returning to CIC:

a. Sets the actual or simulated device controller status into bits 7 through 0 of EQT entry
word 5 without altering the rest of word 5.

b. Sets the number of words or characters (depending on which the user requested) trans-
mitted into the B-Register. This value is known as the transmission log.

c. Clears the device controller (and DCPC if used).
d. Sets the A-Register to indicate successful completion and the reason as follows:

IfA=0 The operation was successfully completed.

IfA=1234 The operation was not completed, where:

device or controller malfunction or not ready (IONR issued)
end-of-tape or end-of-information (IOET issued)
transmission parity error (IOPE issued)

device timeout (IOTO issued)

1
2
3
4
e. Return to CIC at P+1 (JMP Cxnn,I).

Writing Standard RTE Drivers 3-11

7. (Continuation return.) When the driver wishes to continue the transfer, that is, additional
interrupts are expected, the driver performs the following steps before returning to CIC at
P+2:

a.

Sets the device controller (and DCPC if used) for the next transfer or retry.

b. Optionally sets the device timeout clock (EQT entry word 15) to modify the value in-

3-12

serted there by the system. Refer to the “I/O Controller Timeout” subsection of this
manual.

Returns to CIC at P+2 or (for RTE-IV and RTE-6/VM) P+3 as follows:

ISZ Cxnn or ISZ Cxnn
JMP Cxnn, I ISZ Cxnn
JMP Cxnn, I

for the P+3 return, the contents of the A-Register determines the action taken by the sys-
tem. The A-Register should be set as follows:

A=5 Request the allocation of a DCPC channel. After assigning a DCPC channel,
the system will re-enter the driver at Ixnn.

A=6 Request the deallocation of a DCPC channel. After releasing the DCPC
channel, the system continues processing as if this were a P+2 continuation
return.

Writing Standard RTE Drivers

! §

YES

OFF-LINE
TO READY
INTERRUPT
?

CONFIGURE 1/0
INSTRUCTIONS SET EQT 15
FOR DEVICE'S =0
CONTROLLER

TIME-OUT
ENTRY

DO TIME-

ouT
PROCESSING

DEVICE
CONTROLLER
INTERRUPT

ERROR
IN
TRANSFER
?

?

TRANSFER
BY DCPC
?

END OF
OPERATION
?

YES

RETRY\NO
REQUIRED
?

RE-INITIALIZE
CONDITIONS

OPTIONALLY
SET DEVICE'S
CONTROLLER
TIME-OUT
CLOCK (EQT 15)

¥

RETURN
TO
P+2

UPDATE
STATUS IN
EQT (5}

¥

(8) = #
WORDS OR
CHARACTERS
TRANSFERRED

v

(A) =
COMPLETION
COODE

v

CLEAR
DEVICE'S
CONTROLLER
CONTROL

L]

RETURN
TO
P+1

NO

3

TRANSFER NEXT

DATA ITEM;
UPDATE
INDEXES;

FLAGS, ETC.

v

OPTIONALLY
SET DEVICE'S
CONTROLLER
TIME-OUT
CLOCK (EQT 15}

<
<

RETURN
TO
P+2

Figure 3-5. 1/0 Driver Continuation/Completion Section

Writing Standard RTE Drivers

3-13

Device Clear on Program Abort

If an I/O suspended program is aborted while waiting for a controller, the system attempts to
clear the controller by issuing a clear control request to the driver, that is, request code 3, sub-
function code 00, as indicated in EQT entry word 6. All drivers written for use in RTE must be
prepared to handle this request even if no other control requests are supported for the control-
ler.

If the controller can be cleared without interrupt (that is, immediately), the driver should per-
form the clear operation and return to IOC with the A-Register equal to 2 (control request ille-
gal) or 4 (immediate completion). Either return is sufficient in this case, they are both treated
the same by the system.

If an interrupt is required, the driver should return with the A-Register equal to 0. In this case,
the system forces a 1-second timeout for the controller. When the device controller interrupts,
the driver should complete the clear operation and make a successful completion return (A-Reg-
ister = 0) to CIC at P+1. However, if the interrupt does not occur within the 1-second timeout,
the system itself issues a clear control command (CLC) to the controller’s select code(s). Note
that in this case the driver is not entered to process the timeout even if it had previously set the
“driver processes timeout” bit in EQT entry word 4. Refer to the “I/O Controller Timeout” sub-
section in this manual.

1/O Controller Timeout

Each I/O controller can have a timeout clock to prevent indefinite I/O suspension. Indefinite I/O
suspension can occur when a program initiates I/O, and the device controller fails to return a flag
indicating that the transfer is complete. This can occur as the result of either a hardware mal-
function or improper program encoding. Without the controller timeout, the program making
the I/O call would remain in I/O suspension indefinitely, awaiting the completion indication from
the device controller.

EQT entry words 14 and 15 function as an I/O controller’s timeout clock. EQT entry word 15 is
the actual working clock. Prior to each call to the driver, word 15 is set to a value “m,” where
“m” is a negative number of ten-millisecond time intervals. Thereafter, this counter is incre-
mented by one at each ten-millisecond tick of the system’s real-time clock. If the controller does
not interrupt within the required time interval (that is, before the counter in EQT entry word 15
goes to 0), it is considered as having “timed out”.

The EQT entry word 15 clock for each controller can be individually set by either of the follow-
ing two methods:

1. The system always inserts the contents of EQT entry word 14 (a negative number) into EQT
entry word 15 before the initiation or continuation/completion section of a driver is entered,
unless it is running (EQT word 15 is not zero). Word 14 can be preset to “m” by entering a
timeout value during the EQT entry phase of generation, or it can be set or modified online
with the TO operator request.

2. When the driver initiates I/O and expects to be entered due to a subsequent interrupt, the
driver itself can set the value “m” into EQT entry word 15 just before it exits. The value “m”

3-14 Writing Standard RTE Drivers

can either be coded permanently into the driver or can be passed to the driver as an I/O re-
quest parameter.

Note The system always inserts the contents of EQT entry word 14 into EQT entry
word 15 before entering a driver, with the following exceptions: 1) if an initia-
tion call is being made and word 15 is already non-zero, it is not reset, and 2) if
a continuation call is being made and word 14 is zero, word 15 is not reset. In
any case, a timeout value inserted by the driver directly into word 15 overrides
any value previously set by the system.

A timeout value of zero is equivalent to not using the timeout feature for a particular controller.
If a timeout parameter is not entered, its value remains zero and timeout is disabled for the con-
troller.

Timeout is enabled for a controller only while the controller is processing an I/O request. The
working timeout clock (EQT entry word 15) is set as described above. If the controller does not
time out, the clock is then cleared by the system after one of these driver returns:

1. An Initiation return indicating a rejected initiation request (A-Register not equal to zero).

2. A Completion return.

Driver Processing of Timeout

When a controller times out, a driver has the option of performing its own timeout processing or
of letting the system handle it entirely. A driver that processes its own timeouts indicates this to
the system by setting bit 12 of EQT entry word 4. Because the system never clears this bit, it
needs to be set only once. When bit 12 is set, the following action takes places upon controller
timeout:

1. Bit 1 in EQT entry word 4 is set by the system.

2. The driver is entered at Cxnn with the A-Register set to the 1/O select code of the controller
that timed out. The same information is available in EQT entry word 4.

3. The driver recognizes that the entry is for timeout by examining bit 11 of EQT entry word 4.
When bit 11 is set, a timeout has occurred, and the driver should perform whatever process-
ing is necessary. This can involve completing the operation in progress or restarting the de-
vice and continuing the operation. If the latter option is taken, the driver should clear bit 11
prior to exiting in case it is entered again before completion of the operation. This enables
the driver to distinguish between a normal continuation entry (bit 11 = 0) and another time-
out entry (bit 11 = 1). Note that IOC only clears bit 11 prior to entering the driver at Ixnn
on an initiation call.

Writing Standard RTE Drivers 3-15

4. The driver may decide to continue (that is, restart the device) or complete (that is, termi-
nate) the operation, as follows:

a. If the driver decides to complete the operation, it sets the A-Register equal to 4 (to indi-
cate that a timeout has occurred), sets the B-Register equal to the transmission log, and
returns to CIC at P+1. This causes CIC to set the LU down and to print the following
message:

I/0 TO L #x E #y S #z
where:
#x is the LU number being set down,
#y is the number of the EQT entry associated with this LU, and
#z is the channel associated with this LU.

It is possible to complete the operation without having a message printed. To do this, the
driver simply makes a normal completion return (A-Register = 0, B-Register = transmis-
sion log) to CIC at P+1.

In either case (A = 4 or A = 0), CIC reschedules the calling program and passes it the
transmission log returned by the driver.

b. If the driver decides to continue the operation, it makes a normal continuation return to
CIC at P+2.

System Processing of Timeout

When a timeout occurs and bit 12 of EQT entry word 4 is not set, the system handles the inter-
rupt itself in the following way:

1. The program that made the initial I/O request is rescheduled, and a zero transmission log is
returned to it.

2. The LU is set down, and the following message is printed:
I/0 TO L #x E #y S #z
where:
#x is the LU being set down,
#y is the number of the EQT entry associated with this LU, and
#z is the subchannel associated with this LU.

3. A clear control instruction is issued to the controller’s select code(s) through the EQT entry
number located in the Interrupt Table.

3-16 Writing Standard RTE Drivers

Note that the driver is never entered for timeout processing when bit 12 of EQT entry word 4 is
zero. This means that only those drivers that set bit 12 to indicate that they are to process time-
out need to check for a timeout entry.

Because the system issues a CLC instruction to the controller’s select code(s), each controller
interface card requires an entry in the Interrupt Table during generation. Otherwise, the system
would not be able to issue the CLC instruction when a controller timed out.

Note Some drivers expect an “sc,PRG,xxx” entry in the interrupt table phase of the
generation to cause the ID segment address of program “xxxx” to be put in the
Interrupt Table. On initialization, the driver will copy the ID segment address
to the EQT or EQT extension, and then copy its own EQT address into the
Interrupt Table.

DCPC Processing

The Dual Channel Port Controller (DCPC) feature of the HP 1000 M/E/F-Series of computers
can be used to transfer blocks of data between I/O devices and the computer at high data transfer
rates. The DCPC transfers are initiated in software, but the actual word-by-word transfer is han-
dled under hardware control. Words are transferred to or from the computer via a “cycle steal-
ing” technique that operates concurrently with the normal execution of programs. This design
eliminates the overhead associated with driver processing of individual interrupts and allows syn-
chronous and high-speed devices to be controlled by standard RTE drivers.

This subsection discusses some of the aspects of DCPC transfers in the RTE operating systems.
It is assumed that you are already familiar with the general techniques of DCPC programming as
described in the appropriate computer reference manual.

RTE Control of DCPC Assignment

RTE controls the allocation of the two DCPC channels available via the first two words of the
Interrupt Table. Interrupt Table entry word 1 records the current assignment of DCPC channel
1, and word 2 records the current assignment of DCPC channel 2. This arrangement is illus-
trated in Figure 3-6. This figure also illustrates the format of each individual DCPC Assignment
Word. Note that DCPC channels 1 and 2 generate interrupts on I/O select codes 6 and 7, respec-
tively, and hence are often referred to as DCPC channels 6 and 7.)

Each DCPC Channel Assignment Word in the Interrupt Table can be in one of two states, as-
signed or unassigned. If the entire word is zero, the respective DCPC channel is unassigned and
is, therefore, available for use. A non-zero word implies that the DCPC channel is currently as-
signed. Bits 0 through 14 contain the address of the EQT entry (which in turn points to the
driver) to which the DCPC channel has been allocated. Once a DCPC channel is allocated, a
driver can set bit 15 in the appropriate DCPC Channel Assignment Word as a flag to the operat-
ing system. Use of this flag is fully explained later in this subsection.

Writing Standard RTE Drivers 3-17

DCPC Channel 1 Assignment Word Interrupt Table Word 1 (I/O Select Code 6)
DCPC Channel 2 Assignment Word Interrupt Table Word 2 (I/O Select Code 7)

where each DCPC channel assignment word has the format:

15 14 13 12 11 10 98 76 54 3 2 1 0 Bitno.

F Address
where: F = 1 if the driver assigned to the channel needs the DCPC
completion interrupt (set only in systems with a privileged
interrupt card).
= 0 otherwise.
Address = the address of the EQT entry of the driver to which the

DCPC channel is assigned.
= 0 ifthe DCPC channel is currently not assigned.

Figure 3-6. DCPC Channel Assignment Words

DCPC Assignment by RTE

Before a driver can initiate a DCPC transfer, it must be assigned by RTE the exclusive use of a
DCPC channel. This prevents simultaneous access to the channel by several drivers. A driver
can be assigned a DCPC channel in the following two ways:

Preferred Method

If the driver’s EQT entry had a “D” specified at generation time, the “DCPC channel required”
bit is permanently set in the EQT entry (EQT entry word 4, bit 15). In this case, the system al-
ways assigns a DCPC channel to the driver at each I/O initiation. The assigned DCPC channel
number can be found (at initiation only) in the Base Page Communications Area word CHAN.
It should then be saved in one of the temporary storage words of the EQT entry because it is not
available in CHAN on later entries to the driver for the same I/O request.

Alternate Methods

If a driver needs a DCPC channel only for a certain subset of the functions that it performs, it
can a) set the “D” bit as described above and return the DCPC when it is not needed, or

b) dynamically ask the system to assign it a DCPC channel as required. In this case, the DCPC
option is not selected for the driver’s EQT entry at generation time, and the “DCPC channel re-
quired” bit is not set in the EQT entry.

A driver can dynamically request a DCPC channel from either its Initiation or (RTE-IV and
RTE-6/VM) Continuation/Completion sections. Each method is described in the following sub-
sections.

3-18 Writing Standard RTE Drivers

Alternate Method I: Initiation Request

The driver will be entered at Ixnn without a DCPC channel assigned by IOC. The driver must
analyze the request and determine if a DCPC channel is required. If so, the driver requests a
DCPC channel from IOC by returning via a jump indirect through Ixnn (JMP Lxnn,I) with the
A-Register equal to 5. IOC then assigns a DCPC channel and recalls the driver.

However, IOC does not differentiate between the initial call to the driver and the recall with the
DCPC channel assigned. The EQT entry is set up identically in both cases, and the driver is en-
tered at Ixnn. Furthermore, it is possible that the driver may never be recalled with the DCPC
channel assigned for a particular I/O request. For example, this can occur if the program making
the request is aborted before IOC has a chance to assign the DCPC channel. If the program is
aborted, the driver will not be entered again until another program requests I/O for a device un-
der the driver’s control.

Thus, a driver can never know from the calling parameters or from its past history whether it is
being called for the first time for an I/O request (that is, no DCPC channel is assigned) or
whether it is being recalled with a DCPC channel now assigned. The only way the driver can dis-
tinguish between these two cases is to access the two DCPC Channel Assignment Words (in the
Interrupt Table) to determine whether a DCPC channel is currently assigned to the driver.

If the value in either DCPC Channel Assignment Word is equal to the address of the EQT entry
currently being serviced by the driver, that DCPC channel is currently assigned to the driver.

The driver can then assume that it has been recalled with a DCPC channel assigned and can initi-
ate the transfer on that DCPC channel. If neither value matches, no DCPC channel is assigned
to the driver, and it must return to IOC to request that one be assigned. Note that in this case
the driver cannot use Base Page Communications Area word CHAN as an indication of whether
or not it has been assigned a DCPC channel. This is because CHAN indicates only which chan-
nel was last assigned to any driver, not to whom it was assigned.

The following code illustrates the DCPC assignment check technique. In reviewing this and sub-
sequent examples, remember that the Base Page Communications Area word INTBA contains
the address of the Interrupt Table and that base page word EQT1 contains the address of the
EQT entry currently being serviced by the driver.

CHDCP EQU * Execute this code if DCPC required
DLD INTBA,I Access DCPC Channel Assignment Words
CPA EQT1 Is DCPC channel 1 assigned to this driver?
JMP CH1 Yes, configure and initiate transfer on channel 1
CPB EQT1 Is DCPC channel 2 assigned assigned to this driver?
JMP CH2 Yes, configure and initiate transfer on channel 2
LDA =B5 No. A DCPC channel is not assigned. Set
JMP Isnn,I A = 5 to request one from IOC, and return

Note that if a driver obtains a DCPC channel in this way, a special procedure must also be fol-
lowed to return the DCPC channel to RTE. The return procedure is discussed in the “Returning
DCPC Channels to RTE” subsection.

Writing Standard RTE Drivers 3-19

Alternate Method Il: Continuation Request

Alternately, in RTE-IV and RTE-6/VM, the driver can request a DCPC channel from 10C by
returning via a jump indirect through Cxnn with the A-Register equal to 5 as follows:

(Set A-Register to 5)
ISZ Cxnn

ISZ Cxnn

JMP Cxnn, I

IOC then assigns a DCPC channel and recalls the driver, entering at Ixnn. In this case, IOC
does not reset the EQT before entering at Ixnn.

The Initiation section of the driver can determine if this method is being used to acquire a DCPC
channel by examining bit 15 of word 3 in the EQT. If this bit is set, then the Initiation section was
entered as a result of a DCPC request from the driver’s Continuation section. The DCPC chan-
nel assigned is available in Base Page Communications Area word CHAN.

Note that a DCPC channel obtained this way must be returned to RTE by a special procedure.
The return procedure is discussed in the “Returning DCPC Channels to RTE” subsection.

Determining the DCPC Assignment Method

These alternate methods of obtaining a DCPC channel are more complex than the preferred
method and should only be used by drivers that: 1) process a mixture of DCPC and non-DCPC
operations and 2) cannot afford to tie up a DCPC channel during the non-DCPC operations.

It should also be noted that the Initiation section of the driver may have to use different methods
to determine if a DCPC channel was assigned by IOC. Figure 3-7 summarizes these methods.

Regardless of the method used to obtain a DCPC channel, RTE records the assignment by put-
ting the address of the EQT entry being assigned the DCPC channel into the appropriate DCPC
Channel Assignment Word in the Interrupt Table.

If a DCPC channel is not available, the requesting EQT is set into a “waiting for DCPC” state.
As soon as another driver releases a DCPC channel, the lowest-numbered EQT waiting for
DCPC is assigned the DCPC channel, and its I/O request is initiated.

3-20 Writing Standard RTE Drivers

ye

IXNN

initial processing

Driver no
uses DCPC
?
S “D" bit no
set at generation

?

Bit 15, EQT 3

set
?

DCPC channel NO,
= (CHAN)

DCPC channel NO.

determined from
INTBA

more Initiation
section processing

Figure 3-7. Determining DCPC Assignment

Writing Standard RTE Drivers

3-21

Returning DCPC Channels to RTE

As soon as a driver completes a DCPC transfer and the associated I/O request, the DCPC chan-
nel must be returned to the available pool so that it can be used by other drivers. This occurs in
two different ways, depending on how the DCPC channel was assigned:

1. If the DCPC channel was assigned automatically (Preferred Method discussed previously),
the DCPC channel is returned automatically by RTE when the driver makes its completion
return to CIC. No special driver processing is required.

2. If the DCPC channel was assigned as the result of a specific request by the driver (Alternate
Method discussed previously), the driver must explicitly inform RTE of this fact when the I/O
request is completed. This is done by setting the sign bit in the A-Register on the completion
return to CIC. This bit may be set at all times, even when the driver has not been assigned a
DCPC channel. However, some extra system overhead is created if the sign bit is set when
not required. Note that the sign bit is set in addition to the normal completion code, as illus-
trated below:

LDA COMCD Set A = completion code determined earlier
IOR =B100000 Set sign bit to indicate dynamic DCPC assignment
JMB Cxnn, I Return to CIC

In either of the above cases, RTE implements the return of the DCPC channel by clearing the
appropriate DCPC Channel Assignment Word in the Interrupt Table. DCPC Channel 1 Assign-
ment Word (Interrupt Table word 1) is cleared if DCPC channel 1 was assigned to the driver;
DCPC Channel 2 Assignment Word (Interrupt Table word 2) is cleared if DCPC channel 2 was
assigned to the driver. No action is taken if a DCPC channel was not assigned to the driver.

In RTE-IV and RTE-6/VM, a driver may also return a DCPC channel assigned to it through an
Initiation or a Continuation return. In each case, the A-Register having value 6 selects this
deallocate DCPC option. IOC will deallocate the DCPC channel, if one was indeed allocated,
and then proceed as for a normal Initiation or Continuation return. In addition, if a DCPC
channel is deallocated from a Continuation return, IOC will check to see if another EQT is
waiting for a DCPC channel. If so, IOC assigns the DCPC channel to that EQT and initiates its
I/O request, thus increasing DCPC utilization.

Handling the DCPC Interrupt

An end-of-operation interrupt is generated by the DCPC hardware when a DCPC transfer is
complete. Depending upon the nature of the device under control, the associated driver may or
may not wish to recognize the DCPC interrupt.

If the driver does not require or use the DCPC completion interrupt, it can be disabled by issuing
a clear control instruction (CLC) to the DCPC select code (6 or 7) after initializing the DCPC
transfer. No further special processing is necessary.

If the driver uses the DCPC completion interrupt, some special processing must be included in
the driver to ensure that the completion interrupt occurs only at the correct time in systems using
a Privileged Interrupt card. These systems are described more fully in Chapter 4.

The following potential problem exists: In systems using a Privileged Interrupt card, the inter-
rupt system is always ON, even when a driver is executing. It is therefore possible that a driver

3-22 Writing Standard RTE Drivers

using DCPC could start the DCPC transfer and be interrupted by its own DCPC completion in-
terrupt before it has a chance to complete the initiation procedure and return to IOC.

To eliminate this problem, a scheme has been designed to hold off the DCPC completion inter-
rupt until the standard driver using DCPC completes the initiation procedure and returns to
IOC. This scheme requires the cooperation of the standard driver utilizing DCPC and of both
RTE and any privileged drivers present in the system, as follows: After disabling the interrupt
system and initializing the DCPC transfer, the standard driver clears control on the DCPC select
code (6 or 7) to inhibit the completion interrupt while the standard driver completes the initia-
tion procedure. The standard driver also sets a flag (F in the interrupt table, Figure 3-6) to in-
form RTE that the standard driver actually needs the interrupt, and that RTE should re-enable
the interrupt later, after the driver returns to IOC.

The flag is also used by privileged drivers. A privileged driver disables the DCPC completion
interrupts upon entry so that the privileged driver will not be interrupted while processing the
privileged interrupt. A privileged driver will re-enable a DCPC completion interrupt before exit-
ing only if it is needed by a standard driver (as indicated by the flag being set).

Bit 15 of each DCPC Channel Assignment word in the Interrupt Table is used as the flag for the
respective DCPC channel. If this flag is set, RTE and the privileged drivers will enable the
DCPC interrupt on the correct DCPC channel at the appropriate time. No action is taken if the
flag is not set.

The section of code listed below illustrates the special processing required when a standard
driver uses the DCPC completion interrupt. Note that although this processing must be included
in all drivers using DCPC, it need only be executed when the driver is operating in a privileged
system. The type of system in which a driver is operating can be determined by examining base
page word DUMMY. If DUMMY is 0, the system is non-privileged (that is, no Privileged Inter-
rupt card is present); otherwise the system is privileged (a Privileged Interrupt card is present).

CLF 0 Disable the interrupt system
STC DCPC,C Initiate transfer on DCPC channel
CLA Bypass section below if
CPA DUMMY DUMMY = 0 (non-privileged system)
JMP X and special processing not needed.
CLC DCPC Clear DCPC control to inhibit DCPC
LDB INTBA interrupt. Set B = address of the appropriate
LDA CHAN DCPC Channel Assignment word in the
CPA =D7 Interrupt Table.
LDA B,I Set bit 15 of DCPC channel assignment entry
IOR =B100000 equal to 1 as flag to system to turn DCPC
STA B, I interrupts back on later. Reenable the
STF 0 interrupt system.
X EQU * Continue processing.

Writing Standard RTE Drivers 3-23

Intermixed DCPC and Non-DCPC Operations

Occasionally a driver may have a special requirement to intermix a series of non-DCPC opera-
tions with DCPC operations during the same I/O request. If it is necessary or desirable to retain
assignment of the DCPC channel throughout the non-DCPC operation, the F bit should be
cleared prior to beginning the non-DCPC operations. This prevents the system from re-enabling
the DCPC completion interrupt when it is not desired. Note that this processing need only be
done if the flag was previously set under the conditions discussed in the preceding paragraphs.

Driver Automatic “Up”

A driver has the capability of automatically returning its EQT entry and all associated LUs to the
“up” state through a JMP instruction. For example, if a driver makes a not ready, parity error,
end-of-information, or timeout return to the system, the system sets the associated LU and EQT
entry into the “down” state. If the driver subsequently detects an interrupt (or timeout) entry
that signals that the controller is now ready, it may return the EQT entry and associated LUs to
the “up” state as follows:

JMP $UPIO

The device controller’s EQT entry and all associated LUs are reset to the up (available) state by
$UPIO. If an I/O request is pending, $UPIO restarts the request by entering the driver at the
initiation entry point Ixnn. If there are no requests pending, §UPIO goes to the dispatcher to
start the next program.

3-24 Writing Standard RTE Drivers

Powerfail Processing

When an RTE system is generated, the user has the option of including DVP43, the powerfail/
auto-restart driver, and AUTOR, the automatic restart program. If DVP43 is not included, the
system executes a HALT 4 when power is restored to the computer.

If the powerfail/auto-restart modules are included in the generation, they enable the system to
recover automatically from a power failure. Powerfail/auto-restart processing can be divided into
three parts:

1. The power down sequence.
2. The power up sequence.

3. The sequence required to restart any I/O transfers that were in progress when the powerfail
occurred. A driver has the option of restarting its own I/O or of letting the system restart it
from the beginning of the request. These two alternatives are discussed below.

Power Down Sequence

When a powerfail occurs, a powerfail interrupt is generated and DVP43 is entered to process the
interrupt. In the brief period of time available before the system becomes completely inoper-
able, DVP43 performs the following steps to save the state of the machine:

1. Stops all DCPC transfers.
2. Saves all user-accessible registers (A, B, X, Y, E, O ...).

3. Saves the status of the memory protect fence. Also saves the status of the Dynamic Mapping
System (DMS) in systems that include the DMS feature.

4. Saves all map registers (System Map, User Map, and the two DCPC maps). This step is per-
formed in systems with Dynamic Mapping only.

DVP43 then executes a HLT 4 instruction before power fails completely.

Power Up Sequence

When power is restored to the computer, an interrupt is generated and DVP43 is re-entered to
process the interrupt. DVP43 performs the following steps to restart the system:

1. Sets a software flag to prevent resaving the state of the machine if a subsequent power failure
occurs before the system is completely restored.

2. Re-enables the powerfail hardware.

3. Restores the state of the memory protect fence. Also restores all map registers and the
status of the Dynamic Mapping System in systems that include the DMS feature.

Writing Standard RTE Drivers 3-25

4. Saves the time of the powerfail.

5. Finds the powerfail EQT entry (that is, the EQT entry associated with DVP43) and sets up a
very short timeout on this EQT entry by setting EQT entry word 15 (the timeout clock) to
—1. This causes DVP43 to be re-entered after one tick of the real-time clock. DVP43 can
then begin to restart any I/O transfers that were in progress at the time of the power failure.

6. Restarts the real-time clock.
7. Restores all user-accessible registers.

8. Clears the software flag that was set in step “1”, so that the state of the machine will be saved
as usual on any subsequent power failures.

9. Returns to the suspended process (that is, the process that was in operation when the power-
fail occurred) at the point of interruption.

Restart /O Sequence

As soon as the powerfail EQT entry times out, DVP43 is entered again because it previously set
the “driver processes timeout” bit. DVP43 now attempts to restart any I/O transfers that were in
progress at the time of the powerfail by performing the following steps:

1. Makes the following checks for each I/O controller:

a. Checks bits 14 and 15 of EQT entry word 5. The value of bits 14 and 15 indicate whether
the I/O controller was “down” or “busy” at the time of the power failure.

b. Checks bit 13 of EQT entry word 4 to see if the driver associated with the EQT entry is
prepared to process a powerfail/auto-restart entry. Drivers that are prepared to process
powerfail/auto-restart entries will have previously set bit 13 to one. Otherwise this bit is
zero. Note that the system never clears bit 13, so a driver only needs to set it once.

c. Checks to see if any EQT entries are currently waiting for a DCPC channel.

2. Depending upon the above information, one of the following three actions is taken for each
controller or device in the system:

Case 1. Controller (EQT entry) busy and “driver processes timeout” bit set:

If the controller was reading or writing data when the powerfail occurred and the
driver is designed to handle powerfail, the driver has the responsibility to recover
from the powerfail in the best possible manner. The system simply sets bit 15 of
EQT entry word 5 to 1 to indicate that a powerfail has occurred and enters the
driver at the initiation entry point Ixnn.

Case 2. Controller waiting for a DCPC channel.

If the controller was waiting for a DCPC channel when the power failure oc-
curred, no action is taken. The I/O transfer will be initiated as usual when a
DCPC channel is released by another driver.

3-26 Writing Standard RTE Drivers

Case 3. All other EQT entries.

For all EQT entries not falling under Case 1 or Case 2 above, DVP43 makes a
call to $UPIO to up the EQT entry and all associated LUs. (See the “Driver
Automatic Up” subsection of this manual.) $UPIO restarts any I/O requests that
were in progress (EQT entry was busy) or pending (EQT entry or LU was down)
at the time of the power failure. This is done by resetting the parameters of the
original call into the EQT entry and reentering the driver at the initiation point
Ixnn.

After the above action is taken for each I/O controller in the system, an HP-supplied program
called AUTOR (auto-restart) is scheduled. AUTOR sends the time of power failure to all user
consoles on the system (thereby re-enabling all terminals).

AUTOR is written in FORTRAN, and the source file is supplied so that it can be easily modified
for site-specific applications.

Program Scheduling by Drivers

Occasionally some I/O applications may require that a driver schedule a program to perform a
certain task. The system list processor, $LIST, has several calls available that provide drivers
with this capability. These calls are illustrated below. All of these calls cause a program to be
scheduled. They differ only in the format of the calling sequence and in the type of information
that each call may specify to be stored in the ID segment of the program to be scheduled. In a
session environment, drivers schedule programs outside of session, so files that they access must
be on cartridges mounted outside of session.

Method 1. Puts five parameters in the ID segment and then schedules the program.
EXT SLIST
JSB SLIST
OCT 701
DEF RTN Return point. Must be immediately after the call.
DEF PNAME Address of 3-word array containing program name.
DEF P1 Addresses of up to five optional parameters to be
DEF P2 placed in program’s ID segment.
DEF P3
DEF P4
DEF P5
RTN . Return point. Must be located immediately after call.
(See below for error status return in A/B-Registers.)
PNAME ASC 3, XXXXX Name of program to be scheduled.
Pl OCT A Up to five optional parameters to be copied to the
P2 OCT B program’s ID segment (temporary storage area)
P3 OCT C prior to scheduling it.
P4 OCT D
P5 OCT E

Writing Standard RTE Drivers 3-27

This call causes the system to copy whatever number (1-5) of optional parameters
are supplied into the temporary storage area of the ID segment of the program
whose ASCII name is contained in the variable PNAME. The system then sched-
ules the program to run at its own priority.

Caution You must pass at least one parameter (P1). The driver will cause a system
crash if it calls $LIST with no parameters.

Method 2. Same as Method 1, except that the ID segment address rather than the program
name is supplied. Note that in some RTE systems a driver may not be able to
search the ID Segment Table for a program’s ID segment address. It is therefore
recommended that drivers scheduling programs do so by specifying the program’s
name (function code 701 call to $LIST), rather than the ID segment address.
Note that if function codes 001 or 601 are used, the driver should schedule only
permanently loaded programs because RTE re-uses the ID segment of a tempo-
rary program.

EXT SLIST
JSB SLIST
OCT 001
DEF RTN Return point. (Must be immediately after call.)
OCT IDADR ID segment address of program to be scheduled.
DEF P1 Address of up to five optional parameters to be
DEF P2 placed in program’s ID segment.
DEF P3
DEF P4
DEF P5
RTN Return point. Must be located immediately after call.
(See below for error status return in A/B-Registers)
P1 OCT A Up to five optional parameters to be placed in
P2 OCT B program’s ID segment (temporary storage area)
P3 OCT C prior to scheduling it.
P4 OCT D
P5 OCT E
This call causes the system to place whatever number (1-5) of optional parame-
ters are supplied into the temporary storage area of the ID segment specified by
IDADR. The system then schedules the program associated with the ID segment
to run at its own priority.
3-28 Writing Standard RTE Drivers

Method 3. Puts a value into the “B-Register at suspension” word in the ID segment and then
schedules the program. This call can be used to set the B-Register to point to a
scheduling parameter storage area. The scheduled program can then recover the
parameters via a call to subroutine RMPAR. The driver should make sure that
the parameters are placed in a memory area that is mapped with the user pro-

gram.
EXT SLIST
JSB SLIST
OCT 601
OCT IDADR ID segment address of program to be scheduled.
OCT BVAL Value to be put into “B-Register at suspension” word.
RTN . Return is always made to here by $LIST.

(See below for error status return in A/B-Registers.)

This call causes the system to place the value BVAL into the “B-Register at sus-
pension” word of the ID segment specified by IDADR. If this value is an address
that points to a set of scheduling parameters, the program can recover the pa-
rameters by making a call to subroutine RMPAR. The system then schedules the
program associated with the ID segment to run at its own priority.

Error Conditions:

When $LIST returns from any of the program schedule calls described above, the A and B-Reg-
isters indicate whether or not the program was successfully scheduled, as follows:

IftA=0 The program was successfully scheduled. The B-Register contains the ID seg-
ment address of the scheduled program,

IftA =0 The program could not be scheduled. The B-Register indicates the reason, as fol-
lows:

B = 3 Illegal status (program not dormant)

B =5 No such program.

Writing Standard RTE Drivers 3-29

Determination of Operating System Environment

There are times when it may be necessary for a driver to know the operating system within which
it is executing. The system entry point $OPSY provides this and other information in the form of
a one-word table, as illustrated in Table 3-1.

Table 3-1. $OPSY Word Format

Bit 15 Bit 3 Bit 2 Bit 1 Bit 0
System $\g llauseY
0=Memory-Based | 0=No DMS | 0= 64-Word Disk
1=RTE | Type 1=Disk-Based 1=DMS 1=128-Word Disk
RTE-M/I -7 1 1 0 0 1
RTE-M/II -15 1 0 0 0 1
RTE-M/III -5 1 1 0 1 1
RTE-II -3 1 1 1 0 1
RTE-II -1 1 1 1 1 1
RTE-IV -9 1 0 1 1 1
RTE-IVE -13 1 0 0 1 1
RTE-6/VM| —17 1 1 1 1 1

$OPSY can be referenced by loading it into a register and testing the appropriate bits. This tech-
nique is illustrated below:

EXT $OPSY

LDA $OPSY Access $OPSY information.
AND MASK Isolate appropriate bits.

Take appropriate action.

In Dynamic Mapping System ($OPSY bit 1 = 1) mode, it may also be necessary to determine
whether the System Map or User Map is currently enabled. This can be done in a driver by ac-
cessing the status of the Dynamic Mapping System via an RSA instruction and looking at bit 12.
Bit 12 is 0 if the System Map is enabled, and 1 if the User Map is enabled. The following code
illustrates this procedure.

RSA Access Dynamic Mapping System Status.
ALF, SLA Position Bit 12 into Bit 0.
; System Map enabled?
JMP USER No, User Map Enabled.
JMP SYSTM Yes, System Map Enabled.

3-30 Writing Standard RTE Drivers

Subroutines for Special Mapping Function
(DMS Systems Only)

By using the Dynamic Mapping System (DMS) feature of the HP 1000 M/E/F-Series of comput-
ers, RTE provides the capability for addressing memory configurations larger than 32K words.
This is accomplished by translating memory addresses through one of four “memory maps”. A
memory map consists of a set of hardware registers. These registers provide the interface be-
tween memory addresses used by programs (logical memory addresses) and actual memory ad-
dresses (physical memory addresses). There are four distinct maps: the System Map, the User
Map, and the two DCPC maps. The DCPC Maps are loaded (that is, set up) by the system as
necessary to describe the logical memory configuration required by the currently executing pro-
gram or DCPC transfer.

Prior to entering a driver to process an I/O request, RTE loads and enables the correct map (Sys-
tem or User) needed to describe the buffer of the request. The driver can access the buffer
through the request buffer address word in the EQT without having to consider which map con-
tains the buffer.

Certain drivers may, however, need to access a buffer in addition to the primary request buffer.
If a driver is entered with the System Map enabled (for example, when the primary request
buffer is in System Available Memory or System Common), it must access the second buffer
through the User Map if the second buffer is located in the program making the I/O request. In
addition, the driver must load the User Map because the current contents of the map may or may
not describe the desired program.

Subroutine $XDMP can be called by standard drivers to reload the User Map to describe the
program containing the second buffer. The driver uses $XDMP as follows:

1. Save the contents of the current User Map.

2. Load the A-Register with the ID Segment address of the program containing the second
buffer.

3. Call $XDMP (JSB $XDMP) to load the User Map for the program specified in the A-Regis-
ter.

4. Check for an error return. $XDMP returns with the A-Register set to zero if the specified
program was not in memory and the User Map could not be set up.

If no error was detected, access the second buffer through the newly loaded User Map.

After all accesses to the second buffer have been made, restore the User Map to its original
contents and continue with normal operation.

Notice that the use of $XDMP requires that the driver know the ID Segment address of the pro-
gram making the I/O request. Because the driver cannot be sure that this ID Segment address is
available on base page or in the EQT, the program making the I/O request should cooperate with
the driver and pass its ID Segment address. This could be done by using one of the optional pa-
rameters and allowing the driver to retrieve the address through the appropriate optional pa-
rameter word in the EQT or by including the address in one of the words of the primary request
buffer.

The recommended procedure for using $XDMP and accessing the second buffer is somewhat
different in RTE-III, RTE-IV and RTE-6/VM. Each of these procedures is described in a sepa-

Writing Standard RTE Drivers 3-31

rate section below. Note that subroutine $XDMP can be called by standard RTE drivers only.
Privileged drivers wishing to perform the same function must use subroutine $PVMP, which is
described in Chapter 4 of this manual.

Mapping in RTE-IIl and RTE-M/III

Any standard driver operating in RTE-III may use subroutine $XDMP to perform the memory
map switching discussed above. The driver first saves the current state of the User Map registers
and the Dynamic Mapping System, and then calls $XDMP to reload the User Map registers to
describe the user program. The driver can then enable the User Map and access the memory
described by it. After all accesses have been made, the driver re-enables the System Map and
restores the original state of the User Map registers before continuing with its normal processing
under the System Map.

Note that subroutine $XDMP need only be used to reload the User Map registers when the
driver is entered with the System Map enabled. The calling sequence is as follows:

EXT $XDMP
RSA Get Dynamic Mapping System (DMS) status.
ALF, SLA Position bit 12 into bit 0.
; Is System Map Enabled?
JMP USER No, so do not need to execute code below.
Normal driver processing under System Map.
RSA Get Dynamic Mapping System (DMS) status.
RAL,RAL Position current status in upper bits.
STA DMSST Save status for later.
LDA MAPAD Set A = address of User Map storage area.
IOR SIGN Set sign bit indicating STORE Map in memory.
USA Save current User Map in memory for later.
LDA IDADR Get ID address of program that contains buffer.
JSB S$XDMP Call $XDMP to set up User Map for this program.
SZA,RSS Check for error return.
JMP ERROR Error exists, go handle it.
UJP CONT No errors. Enable new User Map and continue.
CONT
Process buffer under new User Map.
SJP NEXT Re-enable System Map.
NEXT LDA MAPAD Access address of User Map storage area.
UsA Restore original contents of User Map.
JRS DMSST NXT Restore original DMS status (that is, System Map).
NXT
Proceed with normal processing under System Map.
MAPAD DEF MAP Address of User Map storage area.

3-32 Writing Standard RTE Drivers

MAP BSS 32 User Map storage area.

SIGN OCT 100000

IDADR BSS 1 Storage for ID segment address.
DMSST BSS 1 Temporary storage for DMS status.

Remember that any driver using $XDMP must save the original contents of the User Map before
calling $XDMP. It must also restore the original User Map before continuing with its normal
operation under the System Map. Also remember that if the driver accesses the memory de-
scribed by the User Map by enabling the map, it must save and restore the DMS status in addi-
tion to the original contents of the User Map. The example above illustrates this procedure.

Note The driver could also access the buffer in the user program through a series of
cross-map loads and stores without actually enabling the User Map. This is in
fact the recommended procedure for using $XDMP in an RTE-IV or
RTE-6/VM system, and use of it by a driver would allow the same driver to be
used in either type of system.

Mapping in RTE-IV and RTE-6/VM

Drivers in RTE-IV and RTE-6/VM may be located in one of the Driver partitions or in the Sys-
tem Driver Area of memory. If a driver resides in a driver partition, RTE automatically includes
the correct driver partition as it loads and enables the correct map (System or User) prior to en-

tering the driver. Drivers generated into a driver partition are always in the same map as their
I/O buffer(s).

The other location for a driver in RTE-IV and RTE-6/VM is the System Driver Area (SDA) of
memory. Drivers are placed in SDA by specifying either “M” or “S” in the EQT entry definition
phase during system generation. The “S” option specifies that the driver will be entered under
the appropriate map (System or User) depending on the location of the I/O request buffer. The
“M” option specifies that the driver will always be entered under the System Map regardless of
the location of the I/O buffer.

The “S” and “M” options also differ in the types of checks performed by RTE prior to entering
the driver. If the “S” option is selected and the I/O buffer is in the user program, RTE will check
to see if SDA is included in the program’s logical address space (map). If not, RTE aborts the
program with an IO11 error, “Type 4 program made an unbuffered I/O request to a driver that
did not do its own mapping”. If the “M” option is selected, RTE will not check to see if the I/O
request buffer and SDA are in the same logical address space; rather, RTE enters the driver un-
der the System Map, assuming that the driver will perform any needed mapping. This is why the
“M” option is sometimes called the “driver does its own mapping” option.

Thus drivers in SDA with the S option are always in the same map as their I/O buffer(s).

Drivers using the M option are always in the System Map. However, for non-privileged drivers,
RTE-6/VM will always reload the User Map registers to describe the requesting program if the
I/O buffers are located in the program.

In RTE-6/VM $XDMP never needs to be used.

Writing Standard RTE Drivers 3-33

The procedure for using $XDMP is as follows: The driver first saves the current contents of the
User Map registers and then calls $XDMP to reload the User Map to describe the desired pro-
gram. The driver can then use a series of cross-map loads and stores to access the buffer de-
scribed by the User Map. Note that the User Map should not be enabled because drivers in SDA
are not necessarily included in all user maps. After all accesses have been made, the driver re-
stores the original state of the User Map registers before continuing with its normal processing.

The following example shows how an SDA driver operating under the System Map might use the
$XDMP subroutine to access a buffer in a user program.

EXT $XDMP

LDA MAPAD
IOR SIGN
USA

LDA IDADR
JSB $XDMP

SZA,RSS

JMP ERROR

LDA MAPAD
USA

MAPAD DEF MAP
MAP BSS 32
SIGN OCT 100000
IDADR BSS 1

Normal SDA driver processing under System Map.

Set A = address of User Map storage area.
Set sign bit indicating STORE Map in memory.
Save current User Map in Memory for later.

Get ID Segment address of program that contains
buffer.

Call $XDMP to set up User Map for this program.
Check for error return. If A-Register = 0,
specified program was not found in memory and
user map is not set up.

Error exists, go handle it.

No errors. Access buffer via series of
cross-map loads and stores, since System
Map is still enabled.

Access address of User Map storage area.
Restore original contents of User Map.

Proceed with normal processing under System Map.
Address of User Map storage area.
User map storage area.

Storage for ID segment address.

Remember that the driver using this routine must save the current contents of the User Map reg-
isters before calling $XDMP, and must restore the registers to their original value after all ac-
cesses have been made to the buffer. The example above illustrates this procedure.

3-34 Writing Standard RTE Drivers

Obtaining the Subchannel

There are two ways to obtain the subchannel number. The first is to pull it out of the EQT. The
second, for RTE-6/VM only, is to use the system subroutine $SUBC. $SUBC will return the
subchannel number in the low bits of the A-Register.

EXT $SUBC

JSB $SUBC
subchannel # returned in the A-Register

Operating System Trap Cell Instructions

In RTE-6/VM, for E- and F-Series computers only, there are four instructions available for han-
dling interrupts, excluding powerfail. These instructions replace the JSB LINK,I that is in the
trap cell in RTE-M, -II, -IIT and IV systems.

The four interrupt-handling instructions perform some of the operations handled by the central
interrupt processor, thereby speeding up the interrupt processing and reducing overhead.

The four instructions speed up interrupt processing in two ways. First, the driver does not need
to execute code to determine what type of interrupt occurred (memory protect, DCPC, TBG, or
normal device). Second, the operations are performed in microcode, allowing faster execution of
the functions.

Operating system trap cell instructions do not have to be generated into the system. On the E-
and F-Series computers, the system places them in the trap cells for you.

Sample Standard RTE Driver

The sample driver illustrated in Figure 3-8 demonstrates some of the principles involved in writ-
ing a standard I/O driver for the RTE operating system. Note that this driver is for tutorial pur-
poses only and is not one of the drivers supplied with the system.

Writing Standard RTE Drivers 3-35

ASMB, Q
NAM DVR70 **STANDARD RTE DRIVER EXAMPLE **

*

ENT I.70,C.70

DRIVER 70 OPERATES UNDER THE CONTROL OF THE I/O CONTROL (IOC)
AND THE CENTRAL INTERRUPT CONTROL (CIC) MODULES OF RTE.

THIS DRIVER IS RESPONSIBLE FOR CONTROLLING OUTPUT
TRANSMISSION TO A 16 BIT EXTERNAL DEVICE.

I.70 IS THE ENTRY POINT FOR THE *INITIATION* SECTION

AND C.70 IS THE ENTRY POINT FOR THE *CONTINUATION/COMPLETION*
SECTION.

NOTE THAT THIS DRIVER DOES NOT PROCESS TIME-OUTS OR
POWER FAIL. THESE PROCEDURES ARE LEFT ENTIRELY UP TO
THE SYSTEM.

REMEMBER THAT RTE SETS THE ADDRESSES OF EACH WORD OF

THE 15 WORD EQT ENTRY FOR THE DEVICE BEING SERVICED INTO
THE BASE PAGE COMMUNICATIONS AREA ON EACH ENTRY TO THE
DRIVER.

THIS DRIVER REFERENCES THESE ADDRESSES THROUGH VARIABLES
EQT1 THROUGH EQTI15.

kkhkkkkhkkkkhkhkkhkkkhkkkkkkkk*

* INITIATION SECTION *

kkhkkkkhkkkkhkhkkhkkkhkkkkkkkk*

THE INITIATION SECTION IS CALLED FROM I/O CONTROL (IOC) TO
INITIALIZE A DEVICE AND INITIATE AN OUTPUT OPERATION

THE CALLING SEQUENCE FOR THE INITIATION SECTION IS:
(SET A = SELECT CODE OF I/O DEVICE)
P JSB I.70
P+1 (RETURN POINT)

ON RETURN, A REGISTER INDICATES STATUS, AS FOLLOWS:

A =0, OPERATION SUCCESSFULLY INITIATED

A NOT 0, OPERATION REJECTED FOR THE FOLLOWING
REASON':
A = 1 = ILLEGAL READ REQUEST
A = 2 = ILLEGAL CONTROL REQUEST

(NOTE, HOWEVER, THAT A “CLEAR” CONTROL REQUEST FROM THE
SYSTEM WILL BE PROCESSED BY THE DRIVER, AS REQUIRED.)

ok ok ok K ok R K ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok k ok ok ok ok k ok Kk ok K ok ok F ok *

Figure 3-8. Standard RTE Driver Example

3-36 Writing Standard RTE Drivers

k% ok ok Kk ok ok ok ok K ok ok K ok ok ok ok k ok ok K ok ok ok ok K ok K K ok K ok ok Kk ok

* Ok ok ok

khkkkkhkhkkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkkkkkk**

* CONTINUATION/COMPLETION SECTION *

kkkkkkhkkhkkkhkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkkkkhkkkkkkkx*

THE CONTINUATION/COMPLETION SECTION IS CALLED BY CENTRAL

INTERRUPT CONTROL (CIC) TO CONTINUE OR COMPLETE AN OPERATION WHEN
AN INTERRUPT IS DETECTED ON THE DEVICE

THE CALLING SEQUENCE FOR THE COMPLETION SECTION IS:

(SET A = SELECT CODE OF I/O DEVICE)

P JSB C.70
P+1 COMPLETION RETURN
P+2 CONTINUATION RETURN

ON RETURN, A & B REGISTERS INDICATE STATUS, AS FOLLOWS:

ON A COMPLETION RETURN:

A = 0, SUCCESSFUL COMPLETION, WITH
B = NUMBER OF WORDS TRANSMITTED
A = 2, TRANSMISSION ERROR DETECTED

ON A CONTINUATION RETURN, THE REGISTERS ARE

MEANINGLESS

RECORD FORMAT:

THIS DRIVER PROVIDES A 16 BIT BINARY WORD

TRANSFER ONLY.

kkhkkkkhkkkkhkkkhkkkhkkkkhkkkkk*

* INITIATION SECTION *

kkhkkkkhkkkkhkkkhkkkhkkkkhkkkkk*

00000 000000 I.70 NOP ENTRY FROM IOC

00001 000100R JSB SETIO CONFIGURE I/O INSTRUCTNS FOR DEVICE
00002 001665 LDA EQT6,I GET CONTROL WORD OF REQUEST, AND
00003 000117R AND =B3 ISOLATE THE REQUEST TYPE

00004 000115R CPA =Bl IF REQUEST IS FOR INPUT

00005 000000R JMP I.70,I THEN REJECT (A=1=ILLEGAL READ)
00006 000116R CPA =B2 IF REQUEST IS FOR OUTPUT

00007 000017R JMP D.X1 THEN GO PROCESS WRITE REQUEST

CONTROL REQUEST CHECK IF IT IS A “CLEAR”

CONTROL REQUEST

IF SO, ASSUME IT WAS ISSUED BY SYSTEM, CLEAR DEVICE, AND RETURN

00010 001665 LDA EQT6,I ACCESS CONTROL WORD

00011 000124R AND =B3700 ISOLATE SUBFUNCTION

00012 002002 SZA “CLEAR” REQUEST?

00013 000015R JMP REJCT NO, SO REJECT REQUEST AS ILLEGAL

Figure 3-8. Standard RTE Driver Example (continued)

Writing Standard RTE Drivers

3-37

*

* Ok ok ok

00014 106700 I.0 CLC scC YES, CLEAR DEVICE AND RETURN

REQUEST ERROR - CAUSE REJECT RETURN TO IOC

00015 000116R REJCT LDA =B2 SET A=2=ILLEGAL CONTROL REQUEST
00016 000000R JMP I.70,I AND RETURN

(A=2=ILLEGAL CONTROL REQUEST)
WRITE REQUEST PROCESSING
00017 001666 D.X1 LDA EQT7,I GET REQUEST BUFFER ADDRESS
00020 001670 STA EQT9,I AND SET IT AS CURRENT ADDRESS
00021 001667 LDA EQTS8,I GET REQUEST BUFFER LENGTH
00022 003004 CMA, INA MAKE NEGATIVE AND
00023 001671 STA EQT10,T SAVE AS REMAINING BUFFER LENGTH
00024 002002 SZA IS BUFFER LENGTH = 07
00025 000031R JMP D.X3 NO, PROCESS AS USUAL
00026 000120R LDA =B4 YES, MAKE IMMEDIATE COMPLETN RETURN
00027 006400 CLB SET TRANSMISSION LOG = 0 INTO B
00030 00O0O0O0OR JMP I.70,I AND RETURN (A=4=IMMED. COMPLETION)

CALL THE CONTINUATION/COMPLETION SECTION TO WRITE FIRST WORD

00031 000114R D.X3 LDA P2 ADJUST RETURN ADDRESS SO WILL
00032 000036R STA C.70 RETURN HERE (INITIATION SECTION)
00033 000047R JMP D.X2 GO TO COMPLETION SECTION
*
00034 002400 IEXIT CLA NOW RETURN TO IOC WITH
00035 000000R JMP I.70,1I OPERATION INITIATED (A = 0 = OK)
*
* kkhkhkkkhkkhhkkhkkhkhkhkkhkhkhkkhkdhhkhkkhkdhhkkhkdhrhkkhkdkhkkhkdhkkxx
* * CONTINUATION/COMPLETION SECTION *
* kkhkhkkkhkkhhkkhkkhkhkhkkhkdhkhkkhkdhhkkhkdhhkkhkdhrhkkhkdhhkkhkdhkkxx
*
00036 000000 C.70 NOP CONTINUATION/COMPLETION ENTRY POINT
*
00037 000100R JSB SETIO CONFIGURE I/O INSTRUCTIONS
*
00040 001660 LDA EQT1,I CHECK FOR SPURIOUS INTERRUPT
00041 000126R AND =B77777 ISOLATE I/O REQST LIST PTR (15 BITS)
00042 002002 SZA IS REQST IN PROGRESS?
00043 000047R JMP D.X2 YES, GO PROCESS REQUEST
*
00044 001774 STA EQT15,I NO SPURIOUS INTRUPT-ZERO TO CLOCK
00045 000036R ISZ C.70 ADJUST RETURN TO P+2 (CONTINUATION)
00046 000036R JMP C.70,1I MAKE CONTINUATION RETURN TO CIC
*
00047 002400 D.X2 CLA IF CURRENT BUFFER LENGTH = O,
00050 001671 CPA EQT10,I THEN GO TO STATUS
00051 000063R JMP I.3 SECTION. (I.E., TRANSFER DONE NOW)
*
00052 001670 LDB EQT9,I GET CURRENT BUFFER ADDRESS
Figure 3-8. Standard RTE Driver Example (continued)
3-38 Writing Standard RTE Drivers

* ok ok ok K ok ok ok

00053 001670 ISZ EQT9,I
00054 000001 LDA B, I
00055 001671 ISZ EQT10,I
00056 000000 NOP

00057 102600 TI.1 OTA SC
00060 103700 TI.2 STC SC,C
00061 000036R ISZ C.70
00062 000036R JMP C.70,I

STATUS AND COMPLETION SECTION

00063 102500 I.3 LIA SC
00064 000121R AND =B77
00065 000001 STA B
00066 001664 LDA EQTS, T
00067 000127R AND =B177400
00070 000001 IOR B
00071 001664 STA EQTS, I
00072 002400 CLA
00073 000120R CPB =B4
00074 000116R LDA =B2
00075 001667 LDB EQTS8, I
00076 106700 I.4 CLC SC
00077 000036R JMP C.70,1
*hkkhkkhkhkkkhkhkhkkhkkhkhkhkkhkhkkkhkkkkx
* SUBROUTINE SETIO *
*hkkhkkhkhkkkhkhkhkkhkkhkhkhkkhkhkkkhkkkkx
SUBROUTINE <SETIO> CONFIGURES ALL
00100 000000 SETIO NOP
00101 000113R IOR LIA
00102 000063R STA I.3
00103 000122R ADA =B100
00104 000057R STA I.1
00105 000123R ADA =B1100
00106 000060R STA I.2
00107 000125R XOR =B5000
00110 000014R STA I.0
00111 000076R STA I.4
00112 000100R JMP SETIO, I

ADD 1 FOR NEXT WORD

GET WORD TO BE WRITTEN TO DEVICE
INCREMENT WORD COUNT ALSO

IGNORE P+1 SKIP IF LAST WORD

OUTPUT WORD TO INTERFACE
TURN DEVICE ON

ADJUST RETURN TO P+2
MAKE CONTINUATION RETURN

GET STATUS WORD FROM DEVICE
STRIP OFF UNUSED BITS

SAVE IN B TEMPORARILY

REMOVE PREVIOUS STATUS

BITS IN EQT WORD 5

OR IN NEW BITS

AND RESET INTO EQT WORD 5

SET A = 0 = OK RETURN CODE
ERROR STATUS BIT ON?

YES, SET A = 2 = ERROR RETURN
SET B = TRANSMISSION LOG
CLEAR DEVICE CONTROLLER

MAKE COMPLETION RETURN TO CIC

I/0 INSTRUCTIONS IN DRIVER
ENTRY POINT (A = SELECT CODE)

COMBINE LIA WITH I/O
SELECT CODE AND SET IN CODE
CONSTRUCT OTA INSTRUCTION

CONSTRUCT STC,C INSTRUCTION

CONSTRUCT CLC INSTRUCTION

RETURN

(CONTINUATION)

Figure 3-8. Standard RTE Driver Example (continued)

Writing Standard RTE Drivers

3-39

P S T

*

kkhkkkkkkkhkkkkk*k

* DATA AREA *
Kk ok ok ok ok ok ok ok ok ok ok ok

CONSTANT AND

000000
000001

000000
00113 102500

STORAGE AREA

A
B

SC
LIA

00114 000033R P2

EQU O A-REGISTER

EQU 1 B-REGISTER

EQU O DUMMY I/O SELECT CODE NUMBER
LIA O CODE FOR LIA INSTRUCTION

DEF IEXIT-1 RETURN POINT IN INITIATION SECTION

** BASE PAGE COMMUNICATIONS AREA DEFINITIONS *=*

001650

001660
00l1le61l
001662
001663
001664
001665
001666
001667
001670
001671
001672
001771
001772
001773
001774

00115 000001
00116 000002
00117 000003
00120 000004
00121 000077
00122 000100
00123 001100
00124 003700
00125 005000
00126 077777
00127 177400

EQT1
EQT2
EQT3
EQT4
EQTS5
EQT6
EQT7
EQTS8
EQTO9
EQT10
EQT11
EQT12
EQT13
EQT14
EQT15

EQU 1650B
EQU .+8
EQU .+9
EQU .+10
EQU .+11
EQU .+12
EQU .+13
EQU .+14
EQU .+15
EQU .+16
EQU .+17
EQU .+18
EQU .+81
EQU .+82
EQU .+83
EQU .+84
END

3-40

Figure 3-8. Standard RTE Driver Example (continued)

Writing Standard RTE Drivers

Writing Privileged RTE Drivers

Introduction

Peripheral devices that are synchronous in nature, that generate interrupts at very high rates, or
that cannot tolerate long latency time, need special attention in an RTE system. Such devices
cannot be controlled by standard RTE drivers on a word-by-word transfer basis, because this
method cannot guarantee that the interrupts generated by such device controllers will be proc-
essed within the required response time. There are two reasons why the response time may be
exceeded:

1. An interrupt is not recognized immediately by RTE if the interrupt system is disabled at the
time the interrupt occurs. For example, this happens if the interrupt occurs while a standard
driver is processing a previous interrupt or while RTE itself is executing.

2. Once an interrupt is recognized, the system overhead required to direct the interrupt to the
appropriate driver for processing may be too long.

One way to guarantee a fast interrupt response time is to utilize DCPC transfers for synchronous
and high-speed devices. The special DCPC hardware allows the transfer to occur simultaneously
with other RTE operations, thereby eliminating the above problems.

However, DCPC transfers do not allow the driver to perform processing that might be required
on each data word as it is transferred. For example, it might be necessary to check a parity bit on
each word as it is received from the device. Thus, a special interrupt processing method is
needed for a high-speed or synchronous device that requires driver interaction on each data word
transferred. This interrupt processing method must have the following properties:

a. The ability to recognize interrupts immediately, regardless of what other RTE operation is in
progress.

b. A means to eliminate the system overhead associated with processing an interrupt.

c. Driver interaction on each data word transferred.

Privileged interrupt processing was specifically designed to meet these criteria. This method re-
quires that a special I/O card, known as the Privileged Interrupt Fence card, be present in the
system. The Privileged Interrupt Fence card is inserted in the computer such that it physically
separates the I/O cards into two groups. All devices whose I/O cards are in lower-numbered

Writing Privileged RTE Drivers 4-1

(higher priority) select codes are known as privileged devices; these are the high-speed and syn-
chronous devices that require driver interaction on each word transferred. The I/O cards of all
other devices in the system are placed in higher-numbered (lower priority) select codes and are
known as non-privileged devices.

Systems with Privileged Interrupt Fence cards are referred to as privileged systems, and a special
type of RTE driver (known as a privileged driver) is required for each privileged controller pre-
sent in the system. Standard RTE drivers are used for the remaining non-privileged devices.

The Privileged Interrupt Fence card can be almost any standard I/O card that contains the nor-
mal control and flag flip-flop circuitry, for example the HP 12620A Breadboard, HP 12966A
BACI, HP 12531D Terminal, or HP 12566C Microcircuit Interface Cards. Because of the posi-
tion of the Privileged Interrupt Fence card in the I/O priority chain, setting of the control flip-
flop on the card holds off all interrupts from the non-privileged device controllers, while at the
same time allowing the privileged device controllers to interrupt.

When a Privileged Interrupt Fence card is present in the system and a non-privileged interrupt
occurs (or when the system is requested to perform some function via an EXEC call or operator
request), RTE performs the following functions before entering the standard driver (or system
routine) to process the interrupt:

1. Disables the interrupt system and saves the state of the machine.

2. Sets the control flip-flop on the Privileged Interrupt Fence card to hold off any further non-
privileged interrupts.

3. Disables the DCPC completion interrupts. These interrupts are not held off by the Privi-
leged Interrupt Fence card because the DCPC completion interrupts occur on the highest
priority select codes (6 and 7).

4. Re-enables the interrupt system and enters the driver to process the interrupt.

The above means that a privileged system processes standard (that is, non-privileged) interrupts
and requests for system functions with the interrupt system in a held-off state, rather than with
the interrupt system disabled (as it does in non-privileged systems). The privileged interrupts
are always enabled, and they can interrupt any process taking place and be serviced almost im-
mediately.

When servicing of the non-privileged interrupt is completed, RTE clears the control flip-flop on
the Privileged Interrupt Fence card and re-enables the DCPC completion interrupts if they are

needed by the standard driver using DCPC. This returns the system to a state where any inter-

rupt (privileged or non-privileged) can occur and be recognized almost immediately.

RTE records a system as privileged by storing at generation time (or, for RTE-IV, at reconfigura-
tion time) the I/O select code address of the Privileged Interrupt card in Base Page Communica-
tions Area word DUMMY. Systems without a Privileged Interrupt card have a a zero in base
page word DUMMY.

In general, privileged drivers are very similar to standard drivers, thus most of the material pre-
sented in Chapter 3 for standard drivers also applies to privileged drivers. Because only the dif-
ferences are pointed out in this section, you should be familiar with the material presented in
Chapter 3 before continuing with the privileged driver considerations described here.

4-2 Writing Privileged RTE Drivers

General Privileged Driver Structure and Operation

Privileged drivers are responsible for the initiation, continuation, and completion of all I/O re-
quests for privileged devices just as in a standard driver. Because privileged drivers operate in-
dependently of RTE, there are several additional requirements and restrictions that must be fol-
lowed to ensure the integrity of the operating system and the proper operation of the driver.
These restrictions and requirements are described in subsequent subsections.

Privileged drivers are generally designed in three sections: 1) an initiation section, 2) a privi-
leged section, and 3) a completion section. The driver must have a name in the form DVynn, and
the initiation and completion entry points must have names in the forms Ixnn and Cxnn respec-
tively. The rules for the choice of x, y, and nn are the same as those given previously for standard
drivers. There are no special rules for the entry point name of the privileged section. For consis-
tency with Ixnn and Cxnn, it is suggested that a name such as Pxnn be chosen where x and nn
agree with the characters chosen for Ixnn and Cxnn.

IOC calls the initiation section of a privileged driver when an I/O request for the privileged de-
vice is made. This call has the same format as the call to the initiation section of a standard
driver, described in the previous chapter.

The privileged section of a privileged driver is somewhat similar to the continuation section of a
standard driver. The privileged section is entered on each interrupt from the privileged device
controller and is responsible for reading and writing the next data word and restarting the device.
Because the privileged section is entered directly from the trap cell on interrupt (rather than
from CIC), it must save and restore the state of the computer on entry and exit. These tasks are
performed by CIC for standard drivers.

The completion section of a privileged driver has an entry point named Cxnn and is responsible
for returning to RTE when the I/O transfer is complete.

The overall operation of a privileged I/O request from initiation to completion is summarized
below:

1. The privileged driver is called by a standard EXEC I/O call.

2. If the request is being made by a user program and the call is not buffered, the calling pro-
gram is placed into I/O suspension.

3. Each time the device controller interrupts, the system overhead is circumvented because the
privileged section Pxnn is entered directly.

4. After each interrupt, if another data transfer is still required to satisfy the buffer length, the
device controller is restarted and the privileged section is exited.

5. When the entire data buffer has been filled, the driver needs a way to inform RTE that the
transfer is complete. This is accomplished by allowing the driver to timeout, which causes
IOC to re-enter the driver at Cxnn.

6. Cxnn returns the transmission log (via the B-Register) and a successful completion indication
(via the A-Register) to IOC.

7. 10C then reschedules the program that made the I/O request.

Writing Privileged RTE Drivers 4-3

Initiation Section

The initiation section of a privileged driver performs the functions listed below. The list is simi-
lar to the one given earlier for standard drivers with the exception that no DCPC processing can
be done by privileged drivers. See the “Privileged Driver Design Considerations” subsection of
this manual.

1. Checks for powerfail/auto-restart entry by examining bit 15 of EQT entry word 5, which is set
to 1 only on this type of entry. If bit 15 is set, the appropriate powerfail/auto-restart process-
ing should be done. This check need only be made by drivers that are designed to process
powerfail interrupts (as described in the “Powerfail Processing” subsection).

2. Configures all I/O instructions in the driver to reference the specific I/O select code of the
device controller. This step is done only on the first entry to the driver because there is one
privileged driver for each privileged device controller in the system. See the “Privileged
Driver Design Considerations” subsection.

3. Clears bit 12 in EQT entry word 4 if timeouts are to be handled by the system. This bit will
be reset to 1 by the privileged section when it sets up to complete the call.

4. Rejects the request and follows the procedure described in step “6” if:
1. A status check of the device or controller indicates that it is inoperable, or
2. The request code or other parameters are illegal.

5. Initializes software flags and activates the device controller. All variable information perti-
nent to the transmission can be saved in the EQT entry associated with the controller, pro-
viding that the driver saves the addresses of the EQT entry internally in the driver itself at
initiation. These addresses are not available on base page on subsequent entries to the
driver. See the “Privileged Driver Design Considerations” subsection.

6. Returns to IOC (via JIMP Ixnn,I) with the A-Register set to indicate initiation or rejection
(and the cause of the rejection) as follows:

A-Reg Status
0 The operation was initiated successfully.

1 Operation rejected: read or write illegal for device.

2 Operation rejected: control request illegal or undefined.
3 Operation rejected: equipment malfunction or not ready.
4

The operation was immediately completed. This means that the driver was able to
completely satisfy the request without the need of a subsequent interrupt and that the
program making the I/O call can be rescheduled immediately. The B-Register should
be set to the number of words or characters (depending upon which the user speci-
fied) transferred. This value is known as the transmission log.

5 This return must NOT be used by privileged drivers.

4-4 Writing Privileged RTE Drivers

6 Return DCPC — should NOT be used.

7 The program making the I/O request is aborted (unless the no-abort bit was set in

to the call), and an I/O error message is printed on the system console. Note that this

99 return can be used for unbuffered I/O requests only. This, therefore, excludes the use
of return codes 7 through 99 on any Class, buffered, or system I/O request. The error
message has the following format:

IOXX yyyyy
NNNNN ABORTED
where:
XX = the return code from the driver (decimal 07 to decimal 99),
YV = the address of the aborted I/O request in program NNNNN, and

NNNNN = the name of the program that made the I/O request.

This type of return can be used by drivers to generate their own I/O error messages at
the system console. Note that certain codes are reserved for system use, as follows:

Return Code Reserved for
7-59 HP system modules and system drivers.
60 — 99 User-written drivers.

The method of setting up the trap cell is to point the trap cell directly to the privileged section
entry point when the system is generated. This is done by entering sc, ENT,Pxnn (where sc is the
select code of the privileged controller) during the Interrupt Table definition phase of the gen-
eration. When the generator detects an entry of this form it places a JSB $JPNN,I instruction
(where $JPNN contains the address of Pxnn) into the appropriate interrupt trap cell. The gen-
erator also places a zero in the corresponding Interrupt Table entry to indicate that interrupts on
the select code are not handled by RTE. The privileged section entry point, Pxnn, is declared as
an entry point in the privileged driver (via the ENT pseudo-instruction).

Privileged Section

When a privileged interrupt occurs, the operation currently in progress is suspended, and the
privileged section of the driver is entered directly via the JSB $JPNN,I instruction in the trap
cell. In addition to the normal tasks associated with continuing the data transfer, the privileged
section is required to perform several housekeeping functions that are normally performed by
CIC. This includes saving and restoring the state of the computer on entry and exit and disabling
the DCPC completion interrupts so that the driver’s operation is not interrupted.

The privileged section of a privileged driver performs the following functions:

1. Executes the following tasks done by CIC for standard drivers:

a. Disables the entire interrupt system with a CLF 0 instruction so that the driver is not in-
terrupted while performing the housekeeping functions.

Writing Privileged RTE Drivers 4-5

b. Disables the DCPC completion interrupts by issuing a CLC 6 instruction and a CLC 7
instruction. The DCPC completion interrupts are associated with I/O select codes 6 and
7 and, therefore, precede the Privileged Interrupt card in the I/O priority chain. Inter-
rupts from these device controllers are not held off by the Privileged Interrupt card and
must be disabled to prevent an interrupt from occurring while the privileged driver is exe-
cuting.

c. Saves the current contents of all program accessible registers (A, B, E, O, and if present,
X, and Y) in a local buffer. These registers must be restored to their original contents
before exiting the driver.

d. Saves the previous state of the memory protect fence. When an interrupt occurs, the
memory protect fence (if ON) is automatically turned off. The driver can determine the
previous state of the memory protect fence (which is the state to which it should be re-
stored after processing the interrupt) by examining Base Page Communications Area
word MPTFL. If MPTFL equals zero, memory protect was ON when the privileged in-
terrupt occurred and the privileged section must turn the fence back on before exiting. If
MPTFL is non-zero, memory protect was OFF, and the privileged section must not re-
store the memory protect fence.

e. Sets base page word MPTFL to 1 to indicate that the memory protect fence is now OFFE.

f. Saves the status of the Dynamic Mapping System so that it can be restored to its original
state before returning to the point of interruption. This is done by executing an SSM in-
struction. (Applicable to systems with Dynamic Mapping only.)

g. Re-enables the interrupt system by executing an STF 0 instruction. This allows a higher
priority privileged controller (if one exists) to interrupt the driver. All lower priority
(higher select code) privileged interrupts and non-privileged interrupts are held off be-
cause the flag is still set on the card that caused the privileged interrupt.

2. Checks whether bits 14 through 0 of EQT word 1 (the controller I/O request list pointer)
equal zero. If so, a spurious interrupt has occurred (that is, no I/O operation was in progress
at the time of the interrupt). The driver ignores the interrupt as follows:

a. Disables the interrupt system via a CLF 0 instruction so that the driver is not interrupted
while clearing the controller.

b. Clears the control and flag flip-flops on the controller (usually via a CLC DEVIC,C in-
struction).

c. Proceeds to step “5d” below to restore the computer to its original state before exiting.

3. Performs the input or output of the next data item. One of the following three actions is then
taken:

a. If the transfer is not complete, the driver follows the procedure described in step “5” to
return to the suspended process at the point of interruption.

b. If the transfer is complete, the driver follows the procedure described in step “4” to set
up for a completion return to IOC.

4-6 Writing Privileged RTE Drivers

If the driver detects a transmission error, it may reinitiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT en-
try. After initiating each retry, the driver follows the procedure described in step “5” to
return to the suspended process at the point of interruption.

4. Once the transfer is complete, the driver needs a way to indicate this fact to RTE so that the
program that made the I/O request can be rescheduled. This is accomplished by forcing the
driver to time out. To do this, the driver performs the following steps:

a.

Disables the interrupt system with a CLF 0 instruction so that no interruptions occur
while the timeout is being set up and the computer is being restored to its original state.

Turns off the device controller to prevent further interrupts (usually with a CLC instruc-
tion).

Sets the timeout clock (EQT entry word 15) to —1 to cause a timeout of the privileged
device controller at the next tick of the real-time clock. This will cause the completion
section of the driver to be entered from IOC so that a normal completion return can be
made to RTE.

Sets the “driver processes timeout” bit in EQT entry word 4 to one so that the driver will
be re-entered when the timeout occurs.

Follows the procedure described in step “5d” below to restore the computer to its origi-
nal state before exiting.

5. Before returning to the point of interruption, the privileged section performs the following
steps to restore the computer to its original state upon entry:

a.

Disables the interrupt system so that no interruptions occur while the computer is being
restored to its original state.

Encodes the device controller to initiate the next data transfer, usually via a STC
DEVIC,C instruction. Note that the device controller must not be encoded until the in-
terrupt system is disabled and the driver is about to return to the point of interruption. If
the device controller were encoded earlier, the driver might be re-entered at Pxnn by the
next interrupt before completely servicing the previous interrupt. Clearing of the flag on
the privileged device controller’s I/O card will also allow any lower priority interrupts to
be recognized by the system when the interrupt system is re-enabled.

Copies EQT word 14 to EQT word 15; this is optional, refer to the section “Timeout Val-
ues for Privileged Drivers” in this chapter for more information.

Checks to see if either of the DCPC completion interrupts must be re-enabled, as fol-
lows:

e [If the memory protect fence was initially OFF, the driver must not re-enable the
DCPC completion interrupts. If the memory protect fence was initially OFE, the
privileged driver interrupted the operation of the system or another privileged driver.
These routines operate with the DCPC completion interrupts disabled and assume
that the completion interrupts will remain disabled if they are interrupted.

Writing Privileged RTE Drivers 4-7

e If the memory protect fence was initially ON, the DCPC completion interrupts are
turned back on only if the standard driver currently using the DCPC channel needs
the interrupt. Standard drivers that need the DCPC completion interrupt set bit 15
of the appropriate DCPC Assignment Control Word (in the Interrupt Table) to 1 as a
flag. See the “DCPC Processing” subsection earlier in this manual. If bit 15 is set, a
privileged driver must re-enable the appropriate DCPC completion interrupt by issu-
ing a STC 6 or STC 7 instruction. If bit 15 is not set, the privileged driver must not
re-enable the interrupt.

d. Restores all saved registers to their original values.

e. Restores base page word MPTFL to its original value. This word is used to indicate the
current status (ON/OFF) of the memory protect fence.

f. Turns the interrupt system back on via a STF 0 instruction to allow other interrupts to
occur.

g. Turns the memory protect fence back on via a STC 5 instruction if the fence was ON in-
itially.

h. Performs one of the following actions depending on whether or not the system includes
the Dynamic Mapping feature:

e Restores the Dynamic Mapping System to its original value at interrupt and returns
to the suspended process at the point of interruption by executing a jump and restore
status (JRS) instruction indirect through the entry point Pxnn. (Performed only in
systems with the Dynamic Mapping feature.)

e Returns to the suspended process at the point of interruption via a jump indirect
through the entry point Pxnn. (Performed only in systems without the Dynamic Map-
ping feature.)

[{P =)

Note If the memory protect fence was turned on in step “g”, execution of the JRS
instruction (in step “h”) to restore DMS status can only be performed if the
System Map is currently enabled. An attempt to execute it with the User Map
enabled will result in a DMS violation. Thus, if the driver switches to opera-
tion under the User Map for any reason, the System Map must be re-enabled
before executing the JRS instruction. The explanation of map switching given
in the “Subroutines for Special Mapping Functions” subsection illustrates this
procedure.

Completion Section

When the timeout set up by the privileged section occurs, IOC enters the continuation section of
the privileged driver at entry point Cxnn. The continuation section sets the A-Register equal to
the appropriate completion code and the B-Register equal to the transmission log. It then re-
turns to IOC via a jump indirect through the entry point Cxnn (JMP Cxnn,I). The return point
(P+1) and allowable completion codes (0-4) are the same as those described earlier for the com-
pletion section of a standard driver.

4-8 Writing Privileged RTE Drivers

Privileged Driver Design Considerations

Privileged drivers operate independently of RTE. In fact, the operation of the RTE operating
system itself may be suspended while a privileged interrupt is being serviced. As a result, the
writer of a privileged driver must adhere to the following design requirements:

1. Privileged drivers must not use any of the features or request calls of RTE. Calling a system
process might involve entering RTE while it is processing another request. This cannot be
allowed because RTE is not re-entrant.

2. Privileged drivers cannot use either DCPC channel because it is very difficult to coordinate
the use of DCPC with the operating system and other drivers that may be using DCPC.

3. The initiation section must read the EQT entry addresses from the Base Page Communica-
tions Area and save them internally in the driver. These addresses are not available in base
page on subsequent interrupts because the privileged driver is entered directly from the trap
cell instead of from CIC. (CIC is the module that places these addresses into the base page
before calling a standard RTE driver to process an interrupt.)

4. Because privileged drivers are required to keep information relating to the I/O request inter-
nally (see “3” above), a separate privileged driver is required for each privileged device con-
troller present in the system. For each additional controller of the same type, an additional
copy of the privileged driver must be generated into the system. Each copy of the driver
must have unique names for DVynn, Ixnn, Pxnn, and Cxnn.

Communication with User Programs
(DMS Systems Only)

Privileged drivers are automatically entered with the System Map enabled when a privileged in-
terrupt occurs. If the I/O request buffer for the privileged call is located in a user program, the
driver must switch maps before it can access the buffer. Any privileged driver in a DMS system
should therefore be designed for user communication through SYSTEM COMMON or the Sub-
system Global Area (SSGA) to avoid the overhead of map switching. These areas can be speci-
fied at generation to be included in both the System Map and User Map, and hence can be ac-
cessed directly by both user programs and privileged drivers without any map switching.

Otherwise, if the I/O request buffer is located in a user program, some map switching will have to
be done before the privileged driver can access the buffer. This map switching procedure is de-
scribed in detail in the “Subroutines for Special Mapping Functions” subsections of this manual.

Writing Privileged RTE Drivers 4-9

Discussion of Sample DMS Privileged Driver

The following discussion describes Figure 4-1, an example of a privileged driver written specifi-
cally for use in a system with the Dynamic Mapping feature. Figure 4-2 shows a similar driver
written specifically for a system that does not include the Dynamic Mapping feature. For the
purposes of the discussion, this driver has been given the generalized name of DVYNN.

The device controller transfers one word of data each time it interrupts, and the data is stored in
a buffer passed to the driver via the call parameters. Note that the design of the DMS privileged
driver assumes that the I/O request buffer is located in SYSTEM COMMON for two reasons:

1) it ensures that the driver’s initiation section is entered with the System Map enabled (this is
necessary for the proper operation of the trap cell modification technique used in that section),
and 2), it allows the driver to place data values directly in the I/O request buffer without any map
switching.

Note that the driver does not process powerfail interrupts nor does it process timeouts, except
for the timeout it creates as a means to complete the I/O request and return to IOC.

Initiation Section

Refer to the partial listing of the sample privileged driver in Figure 4-1 (or Figure 4-2). A stan-
dard I/O call to input from the device causes the calling program to be I/O suspended and the
driver to be entered at Ixnn.

Because this driver can control just one device controller, there is no need to configure the 1I/O
instructions more than once. Therefore, the driver is configured the first time it is entered, and
the switch at “FIRST” is set so that the configuration code is not executed on any subsequent en-
try to the driver. The initiation section also saves the addresses of those EQT entry words that
will be used by the privileged section because these addresses will not be available in base page
on subsequent interrupts.

The request code is checked for validity. All write and control requests (except a “clear” control
request from the system) are rejected. For read requests, a counter is established for the number
of readings to be taken, and the buffer address for the storage of the data is saved. The “driver
processes timeout” bit in EQT entry word 4 is cleared so that any unexpected timeouts are han-
dled by the system. This bit is later reset to 1 by the privileged section when it sets up a timeout
as a means of returning to IOC at the end of the I/O request. Finally, the initiation section sets
up and encodes the device controller to begin a read operation and returns to IOC.

Privileged Section

When the device controller interrupts, the privileged section (Pxnn) is entered directly as a result
of the controller’s trap cell modification.

Because entry is made directly into Pxnn, Pxnn must do the housekeeping that is normally done
by CIC when a standard interrupt occurs. Thus, before Pxnn can turn the interrupt system back
on to allow higher priority privileged interrupts to be recognized, Pxnn must ensure that the
DCPC channels cannot interrupt, save the user-programmable registers, save the old memory
protect status, and set its new status. For systems with Dynamic Mapping, Pxnn must also save
the Dynamic Mapping System status at the time of interrupt.

4-10 Writing Privileged RTE Drivers

Pxnn then loads and stores the data in the next unfilled buffer word. If there is yet another data
point to be taken, Pxnn sets up the device controller for the next reading, disables the interrupt
system, encodes the device controller, restores memory protect status and its flag, restores the
user programmable registers, turns the interrupt system back on, and exits. For systems with Dy-
namic Mapping, Pxnn must also restore the Dynamic Mapping System status to its original value.
All of this basically resets the system to its state before Pxnn was entered.

When the privileged section wants to perform system operations such as scheduling a program,
and still continue with the privileged section, then Pxnn should set EQT word 15 to —1 so a time-
out will occur at the next tick of the real-time clock. The continuation section can perform the
required system task and then do a continuation exit.

When the last reading is taken, Pxnn disables the interrupt system, turns off the device control-
ler, and sets up the privileged controller’s EQT so that a timeout will occur at the next tick of the
real-time clock. Pxnn then resets the system to its original state and returns to the suspended
process at the point of interruption.

Completion Section

The status of the device controller and the driver is now unchanged until the Time Base Genera-
tor (TBG) interrupts. The TBG causes a timeout of the privileged controller (because a —1 was
set into EQT entry word 15), which in turn causes IOC to pass control to the completion section
at Cxnn. The completion section simply sets the A- and B-Registers to the status and transmis-
sion log, respectively, and returns to IOC. IOC then reschedules the calling program and initi-
ates any remaining requests for the controller as if it were a standard (non-privileged) controller.

Timeout Values for Privileged Drivers

If you wish to specify a timeout value for the privileged controller (to prevent indefinite suspen-
sion in the event that the controller malfunctions), the timeout value must be long enough to
cover the entire period from I/O initiation to completion. This is different from the timeout
value for a standard driver, which is normally only long enough to cover the expected time be-
tween interrupts from the standard device controller.

Each time IOC or CIC enters a standard driver to initiate or continue an I/O request, it resets
the timeout clock (EQT entry word 15) to the value specified at generation. However, because
privileged drivers are not entered from CIC on interrupt, the timeout value is inserted into the
privileged controller’s timeout clock only at initiation. If this value is not long enough to cover
the entire I/O transfer period, a timeout will occur while the data transfer is still in progress, and
the transfer will be prematurely terminated. This can be prevented by specifying a suitably long
timeout value or by specifying a timeout value of zero (which disables the timeout feature en-
tirely), or by setting EQT word 15 on each privileged entry.

The timeout value set by the user to prevent indefinite suspension should not be confused with
the timeout set up by the privileged driver to complete the call and return to IOC. In the latter
case, the driver overrides the user-specified timeout by inserting its own value (—1) directly into
the timeout clock before returning.

Writing Privileged RTE Drivers 4-11

Subroutines for Special Mapping Functions
(DMS Systems Only)

The mapping considerations for the initiation and continuation/completion sections of privileged
drivers are the same as those for standard RTE drivers (see Chapter 3 of this manual). Prior to
entering either of these sections, RTE will load and enable the correct map (System or User)
needed to describe the I/O request buffer.

The privileged section of a privileged driver requires special mapping considerations, however.
The System Map will always be enabled when the privileged section is entered because this sec-
tion is entered directly from the interrupt trap cell. If the I/O buffer is not accessible under the
System Map, the privileged section must reload the User Map to describe the appropriate pro-
gram before accessing the buffer. Therefore, if the privileged driver only processes I/O requests
from buffers in System Common or System Available Memory, the privileged section can access
the I/O buffer directly without making special mapping considerations.

Subroutine $PVMP can be used by privileged drivers to perform any needed map switching. The
driver uses $PVMP as follows:

1. Save the contents of the current User Map.
2. Load the A-Register with the ID Segment address of the program containing the buffer.

3. Call $SPVMP (JSB $PVMP) to load the User Map for the program specified in the A-Regis-
ter.

4. Check for an error return. $PVMP returns with the A-Register set to zero if the specified
program was not in memory and the User Map could not be set up.

5. If no error was detected, access the buffer through the newly loaded User Map.

6. After all accesses to the buffer have been made, restore the User Map to its original contents
and continue with normal operation.

The only time a privileged driver must set up the user map is when the I/O buffers are in the pro-
gram (that is, a user normal request, T field — 00). In this case, the driver can obtain the pro-
gram’s ID segment address from EQT word 1 during driver initiation.

The recommended procedure for using $PVMP is somewhat different in RTE-III and RTE-IV.
Each of these procedures is described in a separate section below.

Note Subroutine $PVMP can be called by privileged RTE drivers only. Standard
drivers wishing to perform the same function must use subroutine $XDMP,
which is described in Chapter 3 of this manual.

4-12 Writing Privileged RTE Drivers

Mapping in RTE-IIl and RTE-M/IlI

Before entering the initiation or continuation section of a privileged driver, IOC enables the cor-
rect map needed to process the call, as follows:

1. When the I/O request buffer is located in SYSTEM COMMON or System Available Mem-
ory, IOC enables the System Map before entering the driver.

2. When the I/O request buffer is located in the calling program, IOC enables the User Map
before entering the driver.

However, the System Map is always enabled upon entry to the privileged section, because the
privileged section is entered directly from the interrupt trap cell.

Because the buffer, in general, may be located in either the User Map (program not swappable)
or the System Map, the driver needs to identify which map is used. If necessary, the driver can
then use $PVMP to access the buffer while in the privileged section.

In the following example, the initiation section of the privileged driver checks the status of the
Dynamic Mapping System and sets a flag to indicate whether the System or User Map is enabled.
The initiator also retrieves the ID Segment address of the program making the I/O request.

Note that the driver is assuming that the program making the I/O request has cooperated with
the driver and placed its ID Segment address in the first optional parameter.

The privileged section of the driver then saves the current state of the User Map registers and
Dynamic Mapping System. After the driver has determined that the User Map is needed, it calls
$PVMP to reload the User Map registers to describe the calling program. The driver then
switches to operation under this map and accesses the memory described by it. After all accesses
have been made, the driver re-enables the System Map and restores the original state of the
User Map registers before continuing with its normal processing under the System Map.

EXT $PVMP
IXNN NOP Initiation Section entry point
(System Map or User Map enabled depending on
location of I/O request buffer.)
CLA .
STA IDADR Clear IDADR signifying System Map used
RSA Access Dynamic Mapping System Status
ALF Position bit 12 into bit 0
SLA,RSS System Map enabled?
JMP PROCD Yes, System map enabled
No, user map enabled
LDA EQT9,I Access address of program making request
STA IDADR Save for use of Privileged Section later
PROCD NOP

Continue Initiation Section processing

Writing Privileged RTE Drivers 4-13

JMP IXNN, I

Return to IOC
PXNN NOP Privileged Section entry point (System Map Enabled)
Normal driver processing under System Map
RSA Get Dynamic Mapping System (DMS) status
RAL, RAL Position current status in upper bits
STA DMSST Save status for later
LDA MAPAD Set A = address of User Map storage area
IOR SIGN Set sign bit indicating Store Map in Memory
USA Save current User Map in memory for later
LDA IDADR Access IDADR to determine if User or System Map used
SZA,RSS System Map used?
JMP CONT Yes, System Map used
No, User Map used
*
JSB S$PVMP Call $PVMP to set up User Map for this program
SZA,RSS Check for error return
JMP ERROR Error exists, go handle it
UJP CONT No, errors. Enable new User Map and continue.
CONT
Process buffer under new User Map.
LDA IDADR Determine if System or User Map is used
SZA,RSS System Map used?
JMP NXT Yes, System Map used
* No, User Map used
SJP NEXT Re-enable System Map
NEXT LDA MAPAD Access address of User Map storage area
UsA Restore original contents of User Map
JRS DMSSTNXT Restore original DMS status (i.e., System Map)
NXT Enable Interrupt System.
Proceed with normal processing under System Map
MAPAD DEF MAP Address of User Map storage area
MAP BSS 32 User Map storage area
SIGN OCT 100000

IDADR BSS 1
DMSST BSS 1

ID segment address saved by initiation section
Temporary storage for DMS status

Remember that any driver using this routine must save the original contents of the User Map
registers before calling $PVMP. It must also restore the original User Map after all accesses to
the buffer have been made. Also remember that if the driver accesses the memory described by
the User Map by enabling the map, it must save and restore the DMS status in addition to the
original contents of the User Map. The example above illustrates this procedure.

4-14 Writing Privileged RTE Drivers

Note The privileged driver could also access the buffer in the user program through
a series of cross-map loads and stores without actually enabling the User Map.
This in fact is the recommended procedure for using $PVMP in an RTE-IV
system, and use of it by a privileged driver would allow the same privileged
driver to be used in either type of system.

Mapping in RTE-IV and RTE-6/VM

Privileged drivers in RTE-IV must reside in the System Driver Area (SDA) of memory because
the privileged section is always entered under the System Map directly from the trap cell. The
driver can be placed in SDA by selecting either the “M” or “S” option during the EQT entry defi-
nition phase of system generation (see Chapter 3 of this manual for a discussion of the “M” and
“S” options). The initiation and continuation/completion sections of the driver may be entered
under either the System Map or the User Map depending on the location of the I/O buffer and
the option selected at generation. The privileged section, however, will always be entered under
the System Map.

If the I/O buffer being processed by the driver is located in System Common on System Available
Memory, the privileged driver will always have access to the buffer under the System Map. If,
however, the I/O buffer is located in the user program, the driver must consider two possible
situations in which it is operating under the System Map while the buffer is in the User Map.

1. The initiation and continuation/completion sections of the driver must access the buffer
through the User Map if the “M” option was selected.

2. The privileged section must access the buffer through the User Map regardless of the option
selected.

A privileged driver that needs to access a buffer in a user program while operating under the Sys-
tem Map can use the $PVMP subroutine to reload the User Map to describe the desired pro-
gram.

In the following example of an “S” option privileged driver, the initiation section of the driver
checks the request type field in EQT6 (bits 14 and 15) and, if the request type is 0, saves the ID
segment address of the program making the request. This is the only request type that has the
user’s buffer in its map. For these requests, the ID segment address is in the system map, so the
driver saves 0 for the ID segment address.

The privileged section of the driver then saves the current contents of the User Map. If the User
Map is needed to access the buffer, the privileged section then calls $PVMP to reload the User
Map registers to describe the calling program. The driver then uses a series of cross-map loads
and stores to access the buffer described by the User Map. Note that the User Map should not
be enabled because drivers in SDA are not necessarily included in all user maps. After all ac-
cesses have been made, the driver restores the original state of the User Map registers before
continuing with its normal processing under the System Map.

Writing Privileged RTE Drivers 4-15

EXT $PVMP

IXNN NOP

CLB

LDA EQT6,1I
AND =B140000
SZA,RSS

LDB EQT1,T
STB IDADR

PROCD NOP

JMP IXNN, I
PXNN NOP

LDA MAPAD
IOR SIGN
USA

LDA IDADR
SZA,RSS
JMP SYACC

JSB $PVMP
SZA,RSS
JMP ERROR

LDA MAPAD
USA

MAPAD DEF MAP
MAP BSS 32
SIGN OCT 100000
IDADR BSS 1

Initiation Section entry point
(System Map or User Map enabled depending on
location of I/O request buffer.)

Get Control word

Isolate T field

User normal request

Yes, get ID segment address

Save for use of Privileged Section later

Continue Initiation Section processing

Return to IOC
Privileged Section entry point (System Map Enabled)

Normal driver processing under System Map.

Set A = address of User Map storage area
Set sign bit indicating Store Map in memory
Save current User Map in memory for later

Access IDADR to determine if User or System Map used
System Map used?

Yes, System Map used — access buffer directly

No, User Map used

Call $PVMP to set up User Map for this program

Check for error return

Error exists, go handle it

No errors. System Map is still enabled.

Access buffer via a series of cross-map loads and stores
because SDA drivers are not included in all User maps.
Access address of User Map storage area

Restore original contents of User Map

Proceed with normal processing under System Map
Address of User Map storage area

User Map storage area

ID segment address saved by initiation section

Remember that any driver using this routine must save the original contents of the User Map
registers before calling $PVMP and must restore the registers to their original value after all ac-
cesses to the buffer have been made. The example above illustrates this procedure.

4-16 Writing Privileged RTE Drivers

Sample Privileged Drivers

The sample drivers illustrated in Figures 4-1 and 4-2 demonstrate some of the principles involved
in writing a privileged I/O driver for use in an RTE system with Dynamic Mapping (Figure 4-1)
and without Dynamic Mapping (Figure 4-2). Note that the drivers are examples only and are not

drivers supplied with the system.

ASMB, Q

SUP

ENT IXNN, CXNN

EE R R R R R R EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
* SAMPLE RTE PRIVILEGED DRIVER DVYNN - FOR DMS SYSTEMS *
EE R R R R R R EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEE SRR R
*

HANDLES USER PROGRAM REQUESTS TO READ FROM A PRIVILEGED
CONTROLLER

USER PROGRAM CALLING SEQUENCE:

JSB EXEC CALL EXEC

DEF *+5 RETURN POINT

DEF RCODE REQUEST CODE (MUST BE READ REQUEST)

DEF CONWD CONTROL WORD

DEF BUFFR ADDRESS OF BUFFER (MUST BE IN SYSTEM COMMON)
DEF LENTH LENGTH OF BUFFER

CAUTION:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* THIS DRIVER WILL NOT WORK WITH MORE THAN ONE PRIVILEGED
* CONTROLLER. IF MORE THAN ONE PRIVILEGED CONTROLLER

* EXISTS IN A SYSTEM, DVYNN MUST BE

* RE-ASSEMBLED WITH ALL NAMES CONTAINING “NN” CHANGED SO
* THAT EACH COPY OF THE DRIVER HAS UNIQUE ENTRY POINTS.
* THEN ONE DRIVER PER CONTROLLER MUST BE PUT
* INTO THE SYSTEM AT GENERATION TIME.
*
*
*
*
*
*
*
*
*
*
*
*
*

NOTE :

1.) THE DESIGN OF THIS DRIVER ASSUMES THAT THE I/O
BUFFER BEING PROCESSED IS LOCATED IN SYSTEM COMMON.
CONSEQUENTLY, THE DRIVER IS ENTERED WITH THE
SYSTEM MAP ENABLED. THIS IS NECESSARY FOR THE
CORRECT OPERATION OF THE TRAP CELL MODIFICATION
TECHNIQUE ILLUSTRATED BELOW. IN ADDITION, THE
BUFFER IN SYSTEM COMMON ALLOWS THE DRIVER TO PUT THE
DATA VALUES DIRECTLY INTO THE BUFFER, WITHOUT
THE NEED FOR MAP SWITCHING

NAM DVYNN **DMS PRIVILEGED DRIVER EXAMPLE**

Figure 4-1. DMS Privileged RTE Driver Example

Writing Privileged RTE Drivers

* ok ok ok Kk ok K ok

* Ok ok ok

*

2.) THIS DRIVER DOES NOT PROCESS POWER-FAIL INTERRUPTS.
3.) THIS DRIVER DOES NOT PROCESS ANY TIME-OUTS EXCEPT
FOR THE TIME-OUT THAT IT CREATES AS A MEANS TO
COMPLETE THE I/O REQUEST AND RETURN TO IOC

*kkhkkhkkhkkhkhkhkhkkkdhkhkhkkhkhkhkkkkkkk

* INITIATION SECTION *

kkhkkhkkhkkhkhkhkhkkkdkhkhkkhkhkhkkkkkkk
00000 000000 IXNN NOP INITIATION SECTION ENTRY POINT
00001 000201R STA SCODE SAVE SELECT CODE OF CONTROLLER
00002 000204R LDB FIRST ACCESS FIRST TIME THROUGH FLAG
00003 006002 SZB IS THIS THE FIRST TIME THROUGH?
00004 000020R JMP INIT NO, SO SKIP CONFIGURATION CODE
CONFIGURE I/O INSTRUCTIONS
00005 000220R TOR LIA CREATE LIA INSTRUCTION
SAVE EQT ADDRESSES
00010 001774 LDA EQT15 SAVE EQT15
00011 000216R STA EQ15
00012 001663 LDA EQT4 EQT4
00013 000215R STA EQ4
00014 001660 LDA EQT1 AND EQT1
00015 000214R STA EQ1 ADDRESSES
00016 002404 CLA, INA SET FLAG TO PREVENT CONFIGURING ON
00017 000204R STA FIRST SUBSEQUENT INITIATIONS
CLEAR THE “DRIVER PROCESSES TIME-OUT” BIT TO ALLOW
NORMAL TIME-OUT OPERATION
00020 001663 INIT LDA EQT4,I ACCESS EQT WORD 4
00021 000227R AND =B167777 CLEAR BIT 12
00022 001663 STA EQT4,I AND RESET EQT WORD 4
CHECK THE REQUEST CODE
00023 001665 LDA EQT6, T ACCESS REQUEST CODE
00024 000224R AND =B3 ISOLATE REQUEST TYPE
00025 000222R CPA =B1 READ REQUEST?
00026 000041R JMP PROC YES, GO PROCESS READ REQUEST
00027 000224R CPA =B3 CONTROL REQUEST?
00030 000033R JMP CNTRL YES, GO PROCESS CONTROL REQUEST
00031 002404 CLA, INA NO, REJECT AS ILLEGAL WRITE REQUEST
00032 000000R JMP IXNN, I

4-18

Figure 4-1. DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers

* ok ok ok

*

* %

* Ok ok ok

* Kk ok ok K ok ok

CONTROL REQUEST.

CHECK IF IT IS A “CLEAR” CONTROL REQUEST

IF SO, ASSUME IT WAS ISSUED BY SYSTEM, CLEAR DEVICE, AND RETURN.

00033
00034
00035
00036

00037
00040

001665 CNTRL LDA EQT6,I

000225R AND =B3700
002002 SZA
000037R JMP REJCT

EXECUTE CODE TO

000223R REJCT LDA =B2
000000R JMP IXNN, I

SET UP FOR THE DATA TRANSFER

00041
00042
00043
00044
00045
00046
00047

001667 PROC LDA EQTS,I

003004 CMA, INA
000202R STA CVCTR
002021 SSA,RSS
000037R JMP REJCT
001666 LDA EQT7,I
000203R STA DAPTR

INITIATE A READ AND RETURN

00050
00051
00052
00053

000054R JSB READ
103700 TIT.1 STC SC,C
002400 CLA
000000R JMP IXNN, I

SUBROUTINE TO INITIATE A READ

00054

00055

000000 READ NOP

000054R JMP READ, I

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

* PRIVILEGED SECTION *

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

ACCESS CONTROL WORD

ISOLATE SUBFUNCTION

“CLEAR” REQUEST?

NO, REJECT AS ILLEGAL CONTRL REQUEST

CLEAR CONTROLLER

REJECT AS ILLEGAL CONTROL REQUEST

ACCESS $ OF CONVERSIONS REQUIRED
NEGATE FOR CONVERSION COUNTER
AND SAVE

REJECT IF

NUMBER <0

SAVE DATA BUFFER ADDRESS

FOR PXNN

START A READ
ENCODE DEVICE

RETURN TO IOC

ROUTINE CONTAINING
CONFIGURED I/O
INSTRUCTION TO

SET UP THE DEVICE

TO INITIATE ONE READING

SAVE STATE OF COMPUTER AT INTERRUPT

00056

00057

00060
00061

000000 PXNN NOP

103100 CLF O
106706 CLC 6
106707 CLC 7

PRIVILEGED SECTION ENTRY POINT

TURN OFF INTERRUPT SYSTEM

TURN OFF DCPC COMPLETION INTERRUPTS

Figure 4-1. DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers 4-19

* %

00062
00063
00064
00065
00066
00067
00070
00072
00074

00076
00077
00100
00101

00102

CHECK

00103
00104
00105
00106

00107
00110
00111

000205R
000206R
001520
102201
002004
000207R
105743
105753
105714

001770
000213R
002404
001770

102100

STA ASV
STB BSV
ERA,ALS
SocC

INA

STA EOSV
STX XSV
STY YSV
SSM DMSTS

LDA MPTFL
STA MPFSV
CLA, INA

STA MPTFL

STF O

FOR SPURIOUS INTERRUPT

000214R
000226R
002002

000112R

103100
107700
000122R

LDA EQ1,I
AND =B77777
SZA

JMP PREAD

CLF O
I.2 CLC sC,C
JMP EXIT

PROCESS READ REQUEST

000112R PREAD EQU *

SAVE REGISTERS

SAVE X REGISTER
SAVE Y REGISTER
SAVE DYNAMIC MAPPING SYSTEM STATUS

SAVE OLD MEMORY PROTECT FLAG

SET MEMORY PROTECT FLAG TO OFF
BECAUSE MEMORY PROTECT IS NOW OFF

TURN INTERRUPT SYSTEM BACK ON

ACCESS REQUEST LIST POINTER WORD
ISOLATE REQUEST LIST POINTER

IS A REQUEST IN PROGRESS?

YES, GO PROCESS INTERRUPT

NO, TURN OFF INTERRUPT SYSTEM
RESET CONTROLLER, AND
IGNORE SPURIOUS INTRUPT BY RETURNING

* LOAD IN DATA FROM DEVICE
* VIA CONFIGURED I/O INSTRUCTIONS
*
*
00112 000203R STA DAPTR, I STORE WORD IN DATA BUFFER
00113 000202R ISZ CVCTR IS THIS THE LAST CONVERSION?
00114 002001 RSS NO
00115 000165R JMP DONE YES, GO SET UP TO TERMINATE CALL
*
00116 000203R ISZ DAPTR NO, SET UP FOR NEXT CONVERSION
00117 000054R JSB READ INITIATE IT
*
* RESTORE MACHINE TO ORIGINAL STATE ON INTERRUPT
*
00120 103100 CLF 0 TURN OFF INTRUPT SYSTEM TEMPORARILY
*
00121 103700 I.3 STC SC,C ENCODE DEVICE
*
00122 000213R EXIT LDA MPFSV ACCESS PREVIOUS STATE OF MEM PROTECT
00123 002002 SZA WAS MEMORY PROTECT ON?
00124 000135R JMP EXIT1 NO, DO NOT TURN ON DCPC INTERRUPTS
Figure 4-1. DMS Privileged RTE Driver Example (continued)
4-20 Writing Privileged RTE Drivers

* %k ok ok ok ok Kk Kk ok

* Ok ok ok

00125
00126
00127
00130
00131
00132
00133
00134

00135
00136
00137
00140
00141
00142
00144

00146
00147
00150
00151

00152
00153
00154
00155

001654
000001
002020
102706
006004
000001
002020
102707

000207R EXIT1

103101
000036
102101
000206R
105745
105755

000213R
001770
002002
000160R

000205R
102100
102705
105715

LDB INTBA
LDA B, I
SSA

STC 6

INB

LDA B, I
SSA

STC 7

LDA EOSV
CLO

SLA, ELA
STF 1
LDB BSV
LDX XSV
LDY YSV

LDA MPFSV
STA MPTFL
SZA

JMP EXIT2

LDA ASV
STF O
STC 5

JRS DMSTS PXNN, I

YES, TURN DCPC COMPLETION INTERRUPTS
BACK ON IF THEY WERE ON INITIALLY.
ON/OFF STATUS IS INDICATED BY BIT 15
OF EACH DCPC ASSIGNMENT WORD IN THE
INTERRUPT TABLE

RESTORE E AND O REGISTERS

RESTORE
RESTORE
RESTORE

B-REGISTER
X REGISTER
Y REGISTER

RESTORE MEMORY PROTECT FLAG

IN BASE PAGE

WAS MEMORY PROTECT ON AT INTERRUPT?
NO

YES, RESTORE A-REGISTER

TURN ON INTERRUPT SYSTEM

SET MEMORY PROTECT ON

RESTORE DMS STATUS AND RETURN

(NOTE: EXECUTION OF A “JRS”
INSTRUCTION AFTER TURNING THE
MEMORY PROTECT FENCE ON IS
ALLOWED ONLY IF SYSTEM MAP

IS CURRENTLY ENABLED.

THIS

DRIVER HAS BEEN DESIGNED SUCH
THAT THIS IS ALWAYS THE CASE.

00160 000205R EXIT2 LDA ASV

00161
00162

THIS CODE SETS UP THE TIME OUT TO COMPLETE

00165
00166
00167
00170
00171
00172
00173
00174

102100
105715

103100
106700
003400
000216R
000215R
000217R
000215R
000122R

DONE
I.4

STF O

JRS DMSTS PXNN, I

CLF O

CLC scC
CCA
STA
LDA
IOR
STA
JMP

EQ15,T
EQ4,T
BIT12
EQ4,T
EXIT

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

* COMPLETION SECTION *

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

NO, RESTORE A-REGISTER
TURN ON INTERRUPTS
RESTORE DMS STATUS AND RETURN

THE CALL

TURN OFF
TURN OFF
SET TIME
ONE TICK AND SET
BIT12 IN EQT4 SO
RTIOC WILL

CALL CXNN ON TIMEOUT
GO TO EXIT ROUTINE

THE INTERRUPT SYSTEM
PRIVILEGED DEVICE
OUT FOR

Figure 4-1. DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers

4-21

00175 000000 CXNN NOP COMPLETION SECTION ENTRY POINT

00176 002400 CLA SET A = 0 = NORMAL RETURN
00177 001667 LDB EQTS8,I SET B = TRANSMISSION LOG
00200 000175R JMP CXNN, I RETURN TO IOC

*

CONSTANT AND STORAGE AREA

000000 A EQU O

000001 B EQU 1

000000 SsC EQU O DUMMY I/O SELECT CODE NUMBER

*

00201 SCODE BSS 1
00202 CVCTR BSS 1
00203 DAPTR BSS 1
00204 FIRST BSS 1
00205 ASV BSS 1
00206 BSV BSS 1
00207 EOSV BSS 1
00210 X8V BSS 1
00211 YSV BSS 1
00212 DMSTS BSS 1
00213 MPFSV BSS 1
00214 EQ1 BSS 1
00215 EQ4 BSS 1
00216 EQ15 BSS 1
00217 010000 BIT12 OCT 10000
00220 102500 LIA LIA O

*

* BASE PAGE COMMUNICATIONS AREA DEFINITION

*
001650 . EQU 1650B
001654 INTBA EQU .+4
001660 EQT1 EQU .+8
001663 EQT4 EQU .+11
001665 EQT6 EQU .+13
001666 EQT7 EQU .+14
001667 EQT8 EQU .+15
001774 EQT15 EQU .+84
001770 MPTFL EQU .+80

END

Figure 4-1. DMS Privileged RTE Driver Example (continued)

4-22 Writing Privileged RTE Drivers

ASMB, Q
NAM DVYNN **NON-DMS PRIVILEGED DRIVER EXAMPLE **

ENT IXNN, CXNN

*
kkhkkkkhkkhkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkkhkhkkhkkkhkkk,kk,kkk,k*x*

* SAMPLE RTE PRIVILEGED DRIVER DVYNN - FOR NON-DMS SYSTEMS *

kkhkkkkhkkhkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhhkhkkhhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkkhkhkkhkkkhkkk,kk,kkk,k*x*

HANDLES USER PROGRAM REQUESTS TO READ FROM A PRIVILEGED
CONTROLLER

USER PROGRAM CALLING SEQUENCE:

JSB EXEC CALL EXEC
DEF *+5 RETURN POINT
DEF RCODE REQUEST CODE (MUST BE READ REQUEST)
DEF CONWD CONTROL WORD
DEF BUFFR ADDRESS OF BUFFER (MUST BE IN COMMON)
DEF LENTH LENGTH OF BUFFER

CAUTION:

THIS DRIVER WILL NOT WORK WITH MORE THAN ONE PRIVILEGED
CONTROLLER. TIF MORE THAN ONE PRIVILEGED CONTROLLER
EXISTS IN A SYSTEM, DVYNN MUST BE

RE-ASSEMBLED WITH ALL NAMES CONTAINING “NN” CHANGED SO
THAT EACH COPY OF THE DRIVER HAS UNIQUE ENTRY POINTS.
THEN ONE DRIVER PER CONTROLLER MUST BE PUT

INTO THE SYSTEM AT GENERATION TIME.

NOTE :
1.) THIS DRIVER DOES NOT PROCESS POWER-FAIL INTERRUPTS.
2.) THIS DRIVER DOES NOT PROCESS ANY TIME-OUTS EXCEPT
FOR THE TIME-OUT THAT IT CREATES AS A MEANS TO
COMPLETE THE I/O REQUEST AND RETURN TO IOC
hkkhkkkhkkhkhkkhkkhkkkkkk

* INITIATION SECTION *

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

00000 000000 IXNN NOP INITIATION SECTION ENTRY POINT

00001 000163R STA SCODE SAVE SELECT CODE OF CONTROLLER
*

00002 000166R LDB FIRST ACCESS FIRST TIME THROUGH FLAG

00003 006002 SZB IS THIS THE FIRST TIME THRU?

00004 000020R JMP INIT NO, SO SKIP CONFIGURATION CODE

* CONFIGURE I/0O INSTRUCTIONS

Figure 4-2. Non-DMS Privileged RTE Driver Example

Writing Privileged RTE Drivers 4-23

* ok ok ok

* Ok ok ok

*

00005 000177R IOR
MODIFY TRAP CELL

00006 000200R LDA
00007 000163R STA

SAVE EQT ADDRESSES

00010 001774 LDA
00011 000175R STA
00012 001663 LDA
00013 000174R STA
00014 000173R LDA
00015 000173R STA
00016 002404 CLA,
00017 000166R STA

LIA

$JSB
SCODE, T

EQT15
EQ15
EQT4
EQ4
EQ1
EQ1

INA

FIRST

CREATE LIA INSTRUCTION

SET TRAP CELL TO
JSB S$JPNN, I ($JPNN=ADDR OF PXNN)

SAVE EQT15
EQT4

AND EQT1
ADDRESSES

SET FLAG TO PREVENT CONFIGURATING ON

SUBSEQUENT INITIATIONS

CLEAR THE “DRIVER PROCESSES TIMEOUT” BIT TO ALLOW

NORMAL TIMEOUT OPERATION

00020 001663 INIT LDA
00021 000206R AND
00022 001663 STA

CHECK THE REQUEST CODE

00023 001665 LDA
00024 000203R AND
00025 000201R CPA
00026 000041R JMP
00027 000203R CPA
00030 000033R JMP
00031 002404 CLA,
00032 000000R JMP

EQT4, I
=B167777
EQT4,I

EQT6, I
=B3
=B1
PROC

=B3
CNTRL

INA
IXNN, I

ACCESS EQT WORD 4
CLEAR BIT 12
AND RESET EQT WORD 4

ACCESS REQUEST CODE

ISOLATE REQUEST TYPE

READ REQUEST?

YES, GO PROCESS READ REQUEST

CONTROL REQUEST?
YES, GO PROCESS CONTROL REQUEST

NO, REJECT AS ILLEGAL WRITE REQUEST

CONTROL REQUEST. CHECK IF IT IS A “CLEAR” CONTROL REQUEST
IF SO, ASSUME IT WAS ISSUED BY SYSTEM, CLEAR DEVICE, AND RETURN.

00033 001665 CNTRL LDA
00034 000204R AND
00035 002002 SZA
00036 000037R JMP

EQT6, I
=B3700

REJCT

ACCESS CONTROL WORD

ISOLATE SUBFUNCTION

“CLEAR” REQUEST?

NO, REJECT AS ILLEGAL CNTRL REQUEST

EXECUTE CODE TO CLEAR CONTROLLER

4-24

Figure 4-2. Non-DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers

*

*

* X

* ok ok ok

* Ok ok ok ok ok X

00037 000202R REJCT LDA =B2 REJECT AS ILLEGAL CONTROL REQUEST

00040 000000R JMP IXNN, I

SET UP FOR THE DATA TRANSFER

00041 001667 PROC LDA EQTS,I ACCESS $ OF CONVERSIONS REQUIRED
00042 003004 CMA, INA NEGATE FOR CONVERSION COUNTER
00043 000164R STA CVCTR AND SAVE

00044 002021 SSA,RSS REJECT IF

00045 000037R JMP REJCT NUMBER <0

00046 001666 LDA EQT7,I SAVE DATA BUFFER ADDRESS

00047 000165R STA DAPTR FOR PXNN

INITIATE A READ AND RETURN

00050 000054R JSB READ START A READ
00051 103700 TI.1 STC sC,C ENCODE DEVICE
00052 002400 CLA

00053 000000R JMP IXNN, I RETURN TO IOC

SUBROUTINE TO INITIATE A READ

00054 000000 READ NOP

ROUTINE CONTAINING

CONFIGURED I/O
INSTRUCTIONS TO

SET UP THE DEVICE

TO INITIATE ONE READING

00055 000054R JMP READ, I

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

* PRIVILEGED SECTION *

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

SAVE STATE OF COMPUTER AT INTERRUPT

00056 000000 PXNN NOP

00057 103100 CLF O TURN OFF INTERRUPT SYSTEM

00060 106706 CLC 6 TURN OFF DCPC COMPLETION INTERRUPTS
00061 106707 CLC 7

00062 000167R STA ASV SAVE REGISTERS

00063 000170R STB BSV

00064 001520 ERA,ALS

00065 102201 SocC

00066 002004 INA

00067 000171R STA EOSY

PRIVILEGED SECTION ENTRY POINT

Figure 4-2. Non-DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers

4-25

00070
00071
00072
00073

00074

*

CHECK

00075
00076
00077
00100

00101
00102
00103

00104
00105
00106
00107

00110
00111

00112

00113

00114
00115
0011e

00117
00120
00121
00122
00123
00124
00125
00126

001770
000172R
002404
001770

102100

LDA MPTFL
STA MPFSV
CLA, INA

STA MPTFL

STF O

FOR SPURIOUS INTERRUPT

000173R
000205R
002002

000104R

103100
107700 TI.2
000114R

* PROCESS READ REQUEST

LDA EQ1,I
AND =B77777
SZA

JMP PREAD

CLF O
CLC sC,C
JMP EXIT

000104R PREAD EQU *

000165R
000164R
002001

000147R

000165R
000054R

103100
103700 1I.3

000172R EXIT
002002
000127R

001654
000001
002020
102706
006004
000001
002020
102707

STA DAPTR, I
ISZ CVCTR
RSS

JMP DONE

ISZ DAPTR
JSB READ

* RESTORE MACHINE TO ORIGINAL STATE

CLF O
STC SC,C

LDA MPFSV
SZA
JMP EXIT1

LDB INTBA
LDA B, I
SSA

STC 6

INB

LDA B, I
SSA

STC 7

SAVE OLD MEMORY PROTECT FLAG

SET MEMORY PROTECT FLAG TO OFF,
BECAUSE MEMORY PROTECT IS NOW OFF

TURN INTERRUPT SYSTEM BACK ON

ACCESS REQUEST LIST POINTER WORD
ISOLATE REQUEST LIST POINTER

IS A REQUEST IN PROGRESS?

YES, GO PROCESS INTERRUPT

NO, TURN OFF INTERRUPT SYSTEM
RESET CONTROLLER, AND
IGNORE SPURIOUS INTRUPT BY RETURNING

LOAD IN DATA FROM DEVICE
VIA CONFIGURED I/O INSTRUCTIONS

STORE WORD IN DATA BUFFER

IS THIS THE LAST CONVERSION?

NO

YES, GO SET UP TO TERMINATE CALL

NO, SET UP FOR NEXT CONVERSION
INITIATE IT

ON INTERRUPT
TURN OFF INTRUPT SYSTEM TEMPORARILY
ENCODE DEVICE

ACCESS PREVIOUS STATE OF MEM PROTECT
WAS MEMORY PROTECT ON?
NO, DO NOT TURN ON DCPC INTERRUPTS

YES, TURN DCPC COMPLETION INTERRUPTS
BACK ON IF THEY WERE ON INITIALLY.
ON/OFF STATUS IS INDICATED BY BIT 15
OF EACH DCPC ASSIGNMENT WORD IN THE
INTERRUPT TABLE

Figure 4-2. Non-DMS Privileged RTE Driver Example (continued)

4-26 Writing Privileged RTE Drivers

* Ok ok ok ok

00127 000171R EXIT1 LDA EOSY
00130 103101 CLO

00131 000036 SLA, ELA
00132 102101 STF 1
00133 000170R LDB BSV
00134 000172R LDA MPFSV
00135 001770 STA MPTFL
00136 002002 SZA

00137 000144R JMP EXIT2
00140 000167R LDA ASV
00141 102100 STF O
00142 102705 STC 5
00143 000056R JMP PXNN, I
00144 000167R EXIT2 LDA ASV
00145 102100 STF O
00146 000056R JMP PXNN, I
THIS CODE SETS UP THE TIME OUT TO
00147 103100 DONE CLF O
00150 106700 CLC scC
00151 003400 CCA

00152 000175R STA EQ15,1I
00153 000174R LDA EQ4,I
00154 000176R IOR BIT12
00155 000174R STA EQ4,I
00156 000114R JMP EXIT

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

* COMPLETION SECTION *

kkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkk*

00157 000000 CXNN NOP
00160 002400 CLA
0016l 001667 LDB EQTS8, I
00162 000157R JMP CXNN, I

CONSTANT AND STORAGE AREA

000000 A EQU O
000001 B EQU 1
000000 sSC EQU O

RESTORE E AND O-REGISTERS

RESTORE B-REGISTER

RESTORE MEMORY PROTECT FLAG

IN BASE PAGE

WAS MEMORY PROTECT ON Al INTERRUPT?
NO

YES, RESTORE A-REGISTER

TURN ON INTERRUPT SYSTEM

SET MEMORY PROTECT ON

RETURN TO POINT OF INTERRUPTION

NO, RESTORE A-REGISTER

TURN ON INTERRUPT SYSTEM

RETURN TO POINT OF INTERRUPTION
COMPLETE THE CALL
TURN OFF
TURN OFF
SET TIME
ONE TICK AND SET
BIT12 IN EQT4 SO
RTIOC WILL

CALL CXNN ON TIME-OUT
GO TO EXIT ROUTINE

THE INTERRUPT SYSTEM
PRIVILEGED DEVICE
OUT FOR

COMPLETION SECTION ENTRY POINT

NO,
SET B =
MAKE COMPLETION RETURN

SET A = 0 = NORMAL POINT
TRANSMISSION LOG

(P+1) TO IOC

DUMMY I/O SELECT CODE NUMBER

Figure 4-2. Non-DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers

4-27

*
*
*

*

00163
00164
00165
00166
00167
00170
00171
00172
00173
00174
00175
00176
00177

010000
102500

SCODE
CVCTR
DAPTR
FIRST
ASV
BSV
EOSY
MPFSV
EQ1
EQ4
EQ15
BIT12
LIA

BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
oCcT
LIA

0000

ORRRRPRRERRPRRPRRPRR

BASE PAGE COMMUNICATIONS AREA DEFINITION

001650
001654
001660
001663
001665
001666
001667
001774
001770

INTBA
EQT1
EQT4
EQT6
EQT7
EQTS8
EQT15
MPTFL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

1650B
.+4
.+8
.+11
.+13
.+14
.+15
.+84
.+80

CODE TO SET UP JSB $JPNN,I INSTRUCTION ON BASE PAGE

00000
00000

00200
00200

00201
00202
00203
00204
00205
00206

000056R $JPNN DEF PXNN

ORB

ORR

RESET LOCATION COUNTER TO BASE PAGE
PRIV. SECTION ENTRY POINT ADDR

RESET LOC COUNTER TO RELOCATABLE

000000B $JSB JSB S$JPNN, I JSB INSTR. TO PRIV SECTION, INDIRECT

000001
000002
000003
003700
077777
1677717

END

4-28

Figure 4-2. Non-DMS Privileged RTE Driver Example (continued)

Writing Privileged RTE Drivers

Index

Symbols

$LIST: program scheduling, 3-27
$OPSY, 3-30
$SUBC, 3-35
$XDMP, 3-31

A
AUTOR, 3-27

B

base page communications area, 2-3

o

CHAN: base page word, 3-3
CIC: Central Interrupt Control module, 2-2
communication with user programs, 4-9
completion section, 4-11

privileged driver, 4-8
computer interrupt mechanism, 2-12
continuation/completion section, 3-10
controller, 2-1

D

DCPC: Dual Channel Port Controller, 3-17
assignment by RTE, 3-18
control of assignment, 3-17
intermixed DCPC/non-DCPC operation, 3-24
interrupt handling, 3-22
processing, 3-17
returning channels to RTE, 3-22
device, 2-1
device clear on program abort, 3-14
device drivers, 2-2
Device Reference Table, 2-9
DMS: Dynamic Mapping System, 3-31
privileged driver, 4-10
DMT: Driver Mapping Table, 2-15
driver
automatic “up”, 3-24
device, 2-2
Mapping Table, 2-15
naming requirements, 3-2
privileged, 4-2
structure and operation, 4-3
processing of timeout, 3-15
sample, 3-35
standard, 2-15
structure and operation, 3-1
DRT: Device Reference Table, 2-9

E

EQT: Equipment Table, 2-5
driver initiation, 3-3
EXEC call, 2-2

F

function of the initiation section, 3-7

G

general driver structure and operation, 3-1
general operation of RTE 1/O, 2-15

1/O
completion, 2-20
continuation, 2-19
controller, 2-1

timeout, 3-14

device drivers, 2-2
initiation, 2-19
processor, 2-2

initiation section, 3-3, 4-4
function, 3-7
standard driver, 3-3

intermixed DCPC and non-DCPC operations, 3-24

interrupt mechanism, 2-12
Interrupt Table, 2-13
1I0C: I/O Control module, 2-2

L

LINK: base page link, 2-12
LU: Logical Unit numbers, 2-8

M

mapping
RTE-III and RTE-M/I11, 3-32, 4-13
RTE-1V and RTE-6/VM, 3-33, 4-15
table, 2-15

P

powerfail processing, 3-7, 3-25
power down sequence, 3-25
power up sequence, 3-25
restart I/O sequence, 3-26

privileged driver, 4-1
completion section, 4-8
design considerations, 4-9
DMS, 4-10

Index-1

initiation section, 4-4 subchannel number, 3-35

interrupt card, 4-1 subroutines, special mapping functions, 3-31
privileged section, 4-5 privileged drivers, 4-12

sample, 4-17 synchronous device, 2-1

structure and operation, 4-3 system I/O processor, 2-2

timeout values, 4-11 System Map, 3-30

privileged interrupt fence, 4-1

program scheduling by drivers, 3-27 T

R

restart I/O sequence, 3-26
RTE input/output structure, 2-1

timeout processing, 3-16

timeout values, privileged drivers, 4-11
trap cell, 2-12

trap cell instructions, 3-35

S
SDA: System Driver Area, 2-15 u
select code, 2-12 User Map, 3-30
software I/O structure, 2-2 ’
special mapping function subroutines, 3-31
privileged drivers, 4-12 w
standard driver, 2-15, 3-1
sample, 3-35 writing standard RTE drivers, 3-1

Index-2

	RTE Operating System Driver Writing Manual
	Documentation Map
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - RTE Input/Output Structure
	Chapter 3 - Writing Standard RTE Drivers
	Chapter 4 - Writing Privileged RTE Drivers
	Index

