(40 HEWLETT

PACKARD

RTE-6/VM Serial Driver

Reference Manual

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92084-90050 Printed in U.S.A. June 1993
E0693 Second Edition



NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1989, 1990, 1993 by Hewlett-Packard Company




Printing History

The Printing History below identifies the edition of this manual and any updates that are included.
Periodically, update packages are distributed that contain replacement pages to be merged into the
manual, including an updated copy of this printing history page. Also, the update may contain write-in
instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its
user-inserted update information. New editions of this manual will contain new information, as well as all
updates.

To determine which manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’'s Documentation Index. (The Manual Numbering File
is included with your software. It consists of an “M” followed by a five digit product number.)

First Edition .................. Jan 1989 ........ Rev. 5010 (Software Update 5.1)
Update 1 .................. Jul 1990 ........ Rev. 5020 (Software Update 5.2)
Second Edition ............... Jun 1993 ........ Rev. 6000 (Software Update 6.0)

3/4



Preface

This manual describes the serial I/O drivers supported by the RTE-6/VM Operating System.
These drivers allow the operating system to communicate with peripheral devices via the
computer’s interface cards. The drivers are programmed via standard EXEC I/O requests.

This manual is written for the system programmer or system manager experienced with the
RTE-6/VM Operating System and familiar with HP 1000 peripherals. The manual assumes a
familiarity with the HP 1000 A-Series Computer I/O structure.

Because the situation may arise when it is necessary to write programs that will run on both
RTE-6/VM and RTE-A, this manual also contains information on drivers supported by the RTE-A
Operating System.

This manual contains the following chapters and appendixes:

Chapter 1

Chapter 2

Chapter 3
Appendix A
Appendix B

Appendix C
Appendix D
Appendix E

lists the drivers supported by RTE-6/VM and RTE-A, and discusses
compatibility issues when writing programs to run on both systems.

describes the EXEC calls to use when writing programs to run on RTE-6/VM
drivers.

explains the differences between DV800 and DVMO00, and DVC00 and DVRO00.
contains an example protocol chart for block mode ASCII reads and writes.

discusses system generation considerations that enable you to preconfigure the
drivers for boot up.

contains a sample page mode application using Revision 5010 serial I/O drivers.
illustrates the ENQ/ACK handshake.

lists the HP character sets.

5/6



Table of Contents

Chapter 1
Introduction

RTE-6/VM and RTE-A Compatibility Information .................... ... .......
Timeout Bits . . ... e
Program Scheduling . ........ .. i
LU Number ReStriCtions . . ... ...ttt e
FIFO Mode and Type-Ahead Mode ......... ...t
Protocols . ...
Screen Mode . ..o

Chapter 2
User-Level Interface

Read Request . .. ... oo
BUFR and BUFLN . ... e e
CNTWD (Read Request Control Word) ...t
Special CharaCters .. ... ...ttt e e e e

Carriage Return (octal 015) (Ctrl-M) ... i
Line Feed (octal 012) (Ctrl-J) ... .o e
Backspace (octal 010) (Ctrl-H) . ...
Delete (octal 177) ..o oo
EOT (octal 004) (Ctrl-D) ...t e
Break ...
ASCII vs. Binary Read Modes . ...... ...t
Block Mode Read . ... ... o
AH: Auto-Home Bit ... .. ..
Special Status Read ........ ... i e

Write Request . . ... e
BUFR and BUFLN . ... e e
CNTWD (Write Request Control Word) .......... .. ...,

Control Requests ... ...
CNTWD (Control Request Control Word) .......... ..., ..
Function Code 6B: Dynamic Status ............ ...t .

EQT 5: Device Status . ... e
Dynamic Status Special Forms .......... .. ..
Function Code 11B: Line Spacing/Page Eject ......... ... ... .. ... ... .. . ...
Function Code 16B: Define Baud Rate Group ........... ... ... ... ... .. ...
Function Code 17B: Definable Terminator .............. ... ... ... coviiian..
Function Code 20B: Enable Program Scheduling ............ ... ... .. .. ....
Program Scheduling Conditions . .......... ...t iinenn.n.
Pass Program Name . ........ ... i i e e
RTE Compatibility: Pass Program Name ................................
Function Code 21B: Disable Program Scheduling ............................
Function Code 22B: Set Device Timeout ........... . ... ...,
Function Code 23B: Flush Output .......... . ..
Function Code 24B: Restore Output Processing ................ccoviiiino...
Function Code 25B: Read HP Terminal Straps ........... ... ... ... oo,

OO
AR QRO

NN S N N N S N N N I IS NN S SN
CLOOVOUTNUUNEARARRARARANR R~



Function Code 26B: Flush Input Buffers ........... ... . ... ... . ... . ....
Function Code 30B: Set Port ID .. ..ot e
DVCOO0 . ..ot e
DV 800 .ot e
Default BRG Ranges (DV800 Only) . ...t
Function Code 32B: Generate Break .........co ..
Function Code 33B: FIFO Buffer Mode Control ............. ... .o ...
Function Code 34B: Set Port Protocol ...........c ..
Function Code 35B: Reseta Baud Rate Group ........... ... ... oo,

Chapter 3
Comparison to Previous Drivers

Comparing DV800 and DVMOS . ... ...
Comparing DVC0O0 and DVROO . . . ... e e

Appendix A
Example Protocol Charts

Appendix B
System Generation Considerations

Appendix C
Sample Page Mode Application

Appendix D
ENQ/ACK Handshake Details

Appendix E
HP Character Set



Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

Table 1-1
Table 1-2
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table B-1
Table B-2
Table E-1
Table E-2

List of lllustrations

Conceptual Block Diagram of Type-Ahead Mode and FIFO Mode ... .. 1-4
Read Request Control Word (CNTWD) ........ ... ... 2-2
Write Request Control Word (CNTWD) .......... ... oot 29
Control Request Control Word (CNTWD) .......... ... ... ...... 2-11
Dynamic Status Control Word . ....... .. .. . i, 2-12
Define Baud Rate Group ........ ..ottt 2-14
Definable Terminator ........... ...ttt 2-15
Program Scheduling .. ........ ... i 2-17
FIFO Buffer Mode Control ......... ... ... .. 2-24
Buffered Read Mode Algorithm ......... ... ... ... .. .. ... ... .. 2-25
Tables
RTE-6/VM Serial Drivers . ... 1-1
RTE-A Serial Drivers ...........o i 1-1
Character Mode Read Types . ........coviuiiiiiiiiniiniinn... 2-3
Special Status Read Words ......... ... i 2-8
BRG RANEES . . .ot e 2-23
Carriage Control Capabilities ........... ... ... ... 2-27
Driver Device TYPES ..o .vvti it e 2-27
DRT Table Entry .. ... i B-3
Typical Device Configurations (DVC00) ............ccooiiiiiinn... B-4
Hewlett-Packard Character Set for Computer Systems ............... E-2
HP 7970B BCD-ASCII COnversion . ..........c..coeeuunieiunneennnnn. E-6






Introduction

This chapter describes the Revision 5010 serial I/O drivers supported on the RTE-6/VM
Operating System. The serial I/O drivers were introduced to gain the advantages of universal
device driver compatibility, ease of use, speed, efficiency, increased applicability, and reduced
table size. The transition of the earlier revision drivers to the Revision 5010 drivers is
summarized in Table 1-1.

Because it is possible to write programs that run on both the RTE-6/VM and RTE-A Operating
Systems, this chapter also contains information on the RTE-A serial I/O interface and device
drivers. Table 1-2 lists the RTE-A serial drivers. For complete information on the RTE-A serial
I/O interface and device drivers, refer to the RTE-A Driver Reference Manual, part number
92077-90011.

Table 1-1. RTE-6/VM Serial Drivers

Driver Interface Card
Previous Rev. 5010
DVR0O DVCO00 HP 12531C TTY
DVROO DVCO00 HP 12531D HS Terminal
DVROO DVCO00 HP 12800 CRT
DVMO0O0 DV800 HP 12792C 8-Channel MUX
Table 1-2. RTE-A Serial Drivers
Driver Interface Card or Device
Previous Rev. 5010
DD.00 DDCO00 Terminal
DD.20 DDCO1 Terminal and CTU
IDMOO ID800 HP 12040 8-Channel MUX
IDMOO ID801 HP 12040 8-Channel MUX w/ modems
IDMOO IDMOO HP 37222 Integral Modem Card
IDMOO ID400 HP 12100A A400 4-Channel MUX
ID.00 ID.00 HP 12005 ASIC
ID.01 ID.01 HP 12005 ASIC w/ modems

Introduction 1-1



RTE-6/VM and RTE-A Compatibility Information

When writing programs to run on both RTE-6/VM and RTE-A, it is important to keep
compatibility in mind. Simple read and write capabilities are compatible in the Revision 5010 or
later drivers. When writing programs that use more advanced driver features, consider the
following areas.

Timeout Bits

The RTE-6/VM drivers prior to Revision 5010 use bit 0 of the status byte to indicate that a
timeout has occurred. The Revision 5010 or later RTE-6/VM drivers and the RTE-A drivers use
bit 1. To determine which bit is being used, include the following code fragment in programs:

TimeOutMask = 2 ! Assume bit 1 for RTE-A and new
if ( HpRte6( ) ) then ! RTE-6/VM drivers. In RTE-6/VM,
if ( .not.HpCrtSSRCDriver (LU) ) then ! old drivers need bit 0
TimeOutMask = 1
endif
endif

Program Scheduling

The serial drivers in both RTE-6/VM and RTE-A allow you to schedule a program upon
unsolicited interrupt from the user. With RTE-6/VM drivers prior to Revision 5010, the program
to be scheduled is determined during system generation and there is no HP-supplied way to
change the selection online. With Revision 5010 or later drivers, the selected program can be
changed online. However, direct calls to the drivers (the CN 20 requests) have different formats
on the two systems because of operating system differences. Subroutines to hide the differences
exist in the relocatable library (HpCrtSchedProg and HpCrtSchedProg_S).

A second consideration is that RTE-A provides a two-level program scheduling mechanism with
both a primary and a secondary program, while RTE-6/VM provides only a single level. For
compatible implementations, use the RTE-A primary level only.

LU Number Restrictions

RTE-6/VM and RTE-A handle the problem of LU numbers greater than 63 in different ways
because of the presence of a session control block in RTE-6/VM. There are subtleties involved
when writing programs that are to control LUs outside your session, or if you are not in session.
However, the general rule is that you must use XLUEX calls for all I/O if you wish to have
portable programs. The user’s terminal is an exception; for both operating systems ensure that
I/O to LU 1 is mapped to the LU where the user is logged in.

1-2 Introduction



FIFO Mode and Type-Ahead Mode

FIFO mode, or its predecessor type-ahead mode, are not available on all interface cards.
Programs that depend upon these modes restrict users to using only certain ports on the system.
Depending on the complexity of your application, you may be able to write code to
interchangeably use FIFO mode or type-ahead mode. More complex applications will require
code that handles FIFO mode and type-ahead mode differently. The Revision C multiplexers
have type-ahead and the Revision D multiplexers have FIFO. The following paragraphs describe
the two modes; refer to Figure 1-1 for conceptual block diagrams.

Type-ahead allows input from a MUX port to be saved in a buffer until a read is posted to
retrieve the data. This feature permits a limited amount of full-duplex I/O so that input and
output occur simultaneously. The unusual aspect is that type-ahead has two buffers of up to 255
bytes each. When input data is received, it is saved in the active buffer until a terminator is
received. Because the type-ahead is active when a read is not active, the terminator must be
defined by a method other than the usual function bits in the EXEC call control word. The
method used is two control calls: CN 37 (Set Read Type) and CN 36 (Set Read Length).
Assuming that carriage return is selected as the terminator, the input data is saved in buffer 1
until the first carriage return and then in buffer 2 until the next one. If more data is received
after that, it is discarded. This causes two carriage returns in a row consuming both buffers, even
though only two bytes were received. In addition, the data is echoed as it is put in the type-ahead
buffer even though the future read might not indicate to echo the data.

To summarize, type-ahead mode has the following characteristics:

e Two buffers up to 255 bytes long between the receiver and the CPU.
e Buffers are ‘filled’ when a terminator byte is received.
e Data echoes as received.

e The type of buffer termination can be selected.

On the Revision D MUX, however, a one-kilobyte buffer is implemented between the output of
the UART and the user. The UART (Universal Asynchronous Receiver/Transmitter) on the
MUX card serves as a serial-to-parallel converter for incoming data and a parallel-to-serial
converter for outgoing data. When incoming data is received, it is put into the FIFO without
echo. No interpretation of the data is done, as it is not yet known what kind of read will be
removing the data from the FIFO. Thus the full kilobyte can be used without regard to ‘record’
lengths. When a read is posted by a program, the bytes are removed from the FIFO and
interpreted according to the rules established by the current request. Each byte is also echoed, if
echo is enabled, and compared against the current terminating conditions.

To summarize, FIFO mode has the following characteristics:
e The 1024-byte circular queue is logically between the output of the UART and the receiver.
e Characters are not echoed until a read gets the data.

e The concept of a FIFO buffer terminator does not apply, as the data is not examined until a
read is posted and the receiver section retrieves the data from the FIFO.

Note that the Revision C MUX can be upgraded to the Revision D MUX by installation of new
firmware. Contact your local Hewlett-Packard Sales Representative for ordering information.

Introduction 1-3



© MUX Card .
X »| Buffer 1 f|——>
Data _ 3] UART > OR Ly . To Calling
In ' . Program
. v '
I ECHO > Buffer 2 |—> Backplane
' Switch X | —
Data . luarT |_ B : From Calling
Out I OR < ' Program
TYPE-AHEAD MODE
MUXCard !
Data : X .
n ——yl UART FIFO > > TF? (():;lgng
' ' rogram
: ECHO :
: Switch X Backplane
Data o * [ aRT OR < e From Calling
out ' \ Program
FIFO MODE

Figure 1-1. Conceptual Block Diagram of Type-Ahead Mode and FIFO Mode

Protocols

Several of the protocols available on the Revision 5010 or later drivers, such as bi-directional
Xon/Xoff and CPU-to-CPU, are not available on drivers prior to Revision 5010. Do not use
these protocols if your code must be transportable to older revision drivers.

Screen Mode

In screen mode reads, some older drivers return the Unit Separator characters to the user buffer.
The newer drivers do not. To hide this difference, use the HpCrtStripChar routine from the
relocatable library.

1-4 Introduction



User-Level Interface

This chapter describes the EXEC calls that can be used with the RTE-6/VM serial drivers.
Unless otherwise noted, the following information applies to all the drivers. For general

information on EXEC calls, refer to the RTE-6/VM Programmer’s Reference Manual, part number
92084-90005.

Read Request

The calling sequence for a read request is

CALL EXEC (1, cntwd,bufr,bufln [, pram3, pram4])

BUFR and BUFLN

The bufr parameter is the user buffer that receives data from the read request. bufr cannot be a
FORTRAN character data type. Refer to the HpCrtReadChar subroutine in the RTE-A ¢
RTE-6/VM Relocatable Libraries Reference Manual, part number 92077-90037, for information on
FORTRAN character variables.

The bufln parameter is the request length. It defines the maximum transfer size. Fewer
characters may be transferred in an ASCII mode read. After the read, the B-Register contains
the transmission log, a positive value in the same units as the original request length indicating
the number of valid characters stored in the user buffer.

If bufin is positive, it indicates the maximum number of words to be transferred (0 to 32767
words, 0..077777B), half the number of characters. The transmission log is expressed in a
positive number; it equals the rounded-up character count divided by 2. If bufln is negative, it
indicates the number of characters to be transferred (1 to 32768 bytes, 177777B..100000B). The
returned transmission log will be the positive number of characters received. In binary mode, a
zero-length read terminates immediately with a transmission log of zero. In ASCII mode, a
zero-length request terminates when the terminator or timeout is detected with a transmission
log of zero.

If the input data ends on an odd (left) byte, the last word is padded with a blank (octal 40) in
ASCII mode or a null (octal 0) in binary mode. This byte is not included in the transmission log
computation. In all cases, the contents of the user buffer beyond the last valid word as indicated
by the transmission log is undefined. There is no guarantee that the buffer has not been altered
by any editing that may have occurred, nor should it be assumed that the terminator byte (if any)
is present in the buffer.

User-Level Interface 2-1



CNTWD (Read Request Control Word)

The read control word (cntwd) has the following form:

15114 13 12|11 10 9| 8 7 6| 5 4 3| 2 1 0
oS Z|R|TR| R |[EC|AH | BI Device LU

Figure 2-1. Read Request Control Word (CNTWD)

OS: RTE option bits; refer to the RTE-6/VM Programmer’s Reference Manual, part
number 92084-90005.

VA Write/Read bit. If the Z bit is clear, pram3 and pram4 in the call are ignored.

If the Z bit is set, pram3 and pram4 in the call describe a buffer (referred to as the
Z-buffer). The Z-buffer is written to the external device before a read or write, as
described by bufr and bufin. pram3 is the buffer address. pram4 represents a
character count, if negative, or a word count, if positive. The Z-buffer is sent in
normal ASCII mode, with the data bytes followed by a driver generated Carriage
Return Line Feed (CRLF), unless disabled by a trailing underscore.

When HP protocol is enabled, the control buffer is sent with ENQ/ACK
handshaking enabled. The normal data buffer, described by bufr and bufln, is
transferred according to the rules established by the remainder of the bits in the
control word.

With Z-buffer calls, you can execute a command and a data transfer in a single
call. A write call followed by a read call cannot always respond quickly enough to
prevent loss of data, especially in the case where the external device has a quick
“turnaround” time and the user program is pre-empted by other higher priority
programs. The write/read call should be able to receive the data under almost all
circumstances following the transmission of the Z-buffer because the I/O card
switches from the transmit mode to the receive mode in less than one character’s
time.

TR: Transparency bit. During an ASCII read, this bit determines whether special
character processing is done. When this bit is clear, the incoming data stream is
examined for the presence of special characters, which cause the contents of the
user buffer to be changed before the read is completed. This is sometimes
referred to as input editing. If the transparency bit is set, the termination
character is the only special character. The termination character can be altered.
Refer to the section “Function Code 17B Definable Terminator™ later in this
chapter.

This bit and the binary bit (bit 6) indicate read request type as described in Table 2-1.
R: Reserved; should be set to 0.

EC: Echo bit. Echo is enabled when this bit is set and disabled when it is clear.

2-2 User-Level Interface



AH: Auto-Home bit. Auto-home has no effect in character mode transfers. Refer to

the “Block Mode Read” later in this chapter.

BI: Binary bit. Binary reads are performed when the binary bit is set. A binary read
ends when the user’s request length has been satisfied, that is, the buffer has been
filled or timed out. All characters received are saved in the buffer.

ASCII reads are performed when the binary bit is clear. An ASCII read ends
only when a terminator character is detected in the incoming data stream or
timeout. The terminator character is a delimiter only, and as such may not be
saved in the user’s buffer. If the buffer receives more characters than it can hold
before it receives the terminator character, the excess characters are lost without
notification.

This bit and the transparency bit (bit 10) indicate read request type as described

in Table 2-1.
Table 2-1. Character Mode Read Types
Read Type TR BI Terminating Condition Description of Read
NORMAL ASCII 00 Detection of CR or EOT. Allow special character recognition.
If echo enabled, echo each incoming
character as received. Send LF for
terminating CR if echo is enabled,
send CRLF if disabled.
Does not terminate on Send “\CRLF” for DEL if echo
character count. enabled, send nothing if disabled.
TRANSPARENT ASCII 10 Detection of CR (or other if No special character recognition
CN 17 has changed it). other than the terminator .
If echo enabled, echo each incoming
character as received. Send LF for
terminating CR if echo is enabled,
send CRLF if disabled.
Does not terminate on Note that the terminating condition
character count. may be changed with a CN 17 call.
BINARY X 1 Satisfy character count. If echo enabled, echo each
incoming character as received.

Note:  This table is for character mode transfers. For information concerning block mode transfers using HPCRT
calls, see the Block Mode Read section later in this chapter.

User-Level Interface 2-3




Special Characters
The special characters recognized in normal ASCII reads are:
Carriage Return ~ (octal 015) (Ctrl-M)

Line Feed (octal 012)  (Ctrl-J)
Backspace (octal 010) (Ctrl-H)
Delete (octal 177)

EOT (octal 004) (Ctrl-D)

The special characters are described in the following subsections.

Carriage Return (octal 015) (Ctrl-M)

This character is the read terminator for normal ASCII reads and the default terminator for
transparent ASCII reads. The read request is complete when the carriage return is received and
a CRLF sequence is output by the driver to move the cursor to the next line on the CRT.

Line Feed (octal 012) (Ctrl-J)

This character causes different results, depending on the driver being used. DVC00 and DV800
leave line-feed characters in place. DVROS strips line feeds from the incoming data. For
applications where DVC00 and DV800 drivers may be used and line feeds are generated by the
device connected to the serial interface, the utility subroutine HpCrtStripChar should be called
to ensure proper operation.

Backspace (octal 010) (Ctrl-H)

This character causes the preceding character in the buffer to be erased. Successive backspace
characters remove a character at a time from the buffer until the buffer is empty. Note that if
echo is enabled and the read is not transparent, the cursor moves to the left on the screen. The
drivers then issue a blank, causing the character to disappear from the screen, followed by
another backspace to reposition the cursor. Thus as each backspace is entered, a character is
erased from the screen.

For backward compatibility, DVCO00 also recognizes (octal 1) (Ctrl-A) and (octal 31) (Ctrl-Y) as
backspace characters. If the character is Ctrl-A, an underscore character (_) instead of a space is
sent as the erasing character.

Delete (octal 177)

This character, which is labeled DEL or RUBOUT on some terminals, causes the driver to reset
the buffer pointer. This results in the driver forgetting all the characters that have been entered
into the buffer, and the user can “start over”. If echo is enabled and the read is not transparent,
the driver acknowledges the delete key by sending a backslash (\) CRLF sequence to the
terminal.

EOT (octal 004) (Ctrl-D)

When this character is received and the read is a normal ASCII read, it causes the read to be
terminated, the transmission log to be set to zero, and bit 5 to be set in the status bits. The
cursor position is not altered (no CRLF is issued). Any data that the user entered prior to the
Ctrl-D is lost.

2-4 User-Level Interface



Break

The break condition terminates a read, write, or control request. DV800 performs program
scheduling upon receipt of a break condition or an unsolicited character (an unsolicited character
is any character that arrives when the driver is not executing a read).

Some driver/interface combinations have FIFO buffer modes that effectively leave a read
pending at all times. When this mode is invoked, the BREAK key is a more reliable way to
schedule the prompt program. The BREAK key is a key present on most keyboards that causes
a long space condition to be sent on the communications line, approximately 250 milliseconds.
BREAK is a condition on the line, not a character. BREAK is always recognized, even if a read
is pending.

ASCII vs. Binary Read Modes

One advantage of a normal ASCII read is that no action is taken until a carriage return is
entered. You can change the input buffer to correct errors or decide that what was entered is not
desired. This is essential in creating a “friendly” program. When single-character reads are
used, each keystroke is evaluated as it is entered, thereby denying the user an opportunity to
think about the input.

Additionally, there are hardware advantages to posting a read that terminates on a character
instead of a count. For some I/O cards the CPU overhead is considerably less for an ASCII read
than a binary read. Input via a series of single-character binary reads entails interaction up to
the program level for each character. The program may not be the highest priority program and
may have even been swapped out to disk, thereby causing dropped characters if the next read is
not posted within one character time. Unless FIFO buffer mode is in effect, the system will lose
characters when even moderate baud rates are used with single-character input.

For these reasons, you should avoid single-character reads in all but the most trivial cases (such
as the permission prompts used by LI).

Block Mode Read

The Auto-Home bit is used by block mode reads. Echo is inhibited in block mode, therefore, the
Echo bit is ignored in block mode reads. During a block mode read, if the first character
received is DC2, then a DC1 is sent. The TR bit is set to inhibit the CRLF normally sent at
termination.

There are two types of block mode reads: line mode and page mode. The difference between
line mode and page mode is the terminating condition. In line mode, the block mode read is
terminated by a CR. In page mode, it is terminated by an RS.

Block mode can be set using the terminal’s block mode key or the appropriate escape sequence.
Refer to the documentation for your terminal to configure your terminal for line or page block
mode. To ensure that the driver and the terminal are in the same mode of operation, a CN 25
call must be issued after each terminal mode change. HP block mode transfers are only available
if HP protocol is selected and the terminal is configured with its G and H straps enabled. Refer
to the CN 34 and CN 25 sections of this manual.

User-Level Interface 2-5



If there is a driver mismatch of the terminal mode and the driver mode, the terminal appears to
lock up or hang. If the terminal is in block mode and the driver is in character mode, the
terminal hangs, waiting for a DC1/DC2/DC1 handshake sequence that is not issued by the driver
in character mode. You can escape from this condition by performing a soft reset of the
terminal. If the terminal is in character mode and the driver is in block page mode, entering an
RS character (Cntl- ™) from the keyboard terminates the read. In both cases, the read
eventually terminates if the LU has a non-zero timeout set. For this reason, it is strongly
recommended that all terminals have timeouts assigned.

For your convenience, the HpCrt subroutines HpCrtPageMode, HpCrtLineMode, and
HpCrtCharMode are available and should be used to set the terminal and initiate the CN 25 call.
These subroutines do the required CN 25 call for the user. For more information about these
subroutines, refer to the RTE-A * RTE-6/VM Relocatable Libraries Reference Manual, part
number 92077-90037.

AH: Auto-Home Bit

The auto-home bit is set to inform the driver that it should output a control sequence during the
long handshake used by a terminal in block page mode only. The control sequence emitted is
“Esc ¢ Esc H”, which is the command to lock the keyboard and home the cursor (including
transmit only fields).

The purpose of the home cursor is to remove the restriction that you must manually position the
cursor to home before pressing the ENTER key. The purpose of the locked keyboard is to
prevent changing the data on the screen until the program permits it. This allows more reliable
applications to be written. The keyboard lock condition will persist until specifically cleared by
the application program with an explicit write of an “Esc b” sequence. In addition, you can
re-enable the keyboard by performing a soft terminal reset, if necessary.

The auto-home bit is effective only on user initiated transfers (when you press the ENTER key).
It has no effect on program initiated transfers (the program sends “Esc d” to simulate the
ENTER key), because such transfers do not use the terminal’s long handshake mode. Refer to
Appendix A, “Example Protocol Charts” and Appendix C, “Sample Page Mode Applications” for
details on record blocking and escape sequences.

2-6 User-Level Interface



Special Status Read

CALL EXEC(1,ior (lu,3700b), status_buffer,length)

This read request reads the driver configuration and status words. It can be used to determine
which driver is in use. The call is identified as special because the function bits are 37B and the
length is 32 words (or 64 bytes). Table 2-2 contains a summary of the contents of each word.

Note that this call will I/O suspend if a read is pending or if the LU has been downed.
Words 1-3 contain the device driver name in ASCII. For example, DV800 or DV801.

Word 4 contains the revision code of the device driver. The left byte contains the major
cycle revision level, and the right byte the minor. For example, Revision 12.62
would be stored as 006076B.

Word 5 is the current driver type from the EQT/DVT tables and may be different from
the device driver type because of the effects of a CN 30 call.

Word 6 contains the address of the EQT/DVT. The formats of the I/O Tables are
documented in the RTE Operating System Driver Writing Manual, part number
92200-93005.

Words 7-10  are always blank in RTE-6/VM but return the interface driver name and revision
code in RTE-A.

Word 11 is the firmware revision code in the major/minor format. This is non-zero only for
the intelligent I/O cards (8-channel MUX).

Words 12-14  contain the name of the interrupt program. If scheduling is currently enabled, the
sixth byte is “E”, otherwise it is “D”.

Words 15-17  are always blank in RTE-6/VM but return the name of the secondary interrupt
program in RTE-A.

Words 18-23  are the optional parameters required in the respective control calls to set the
driver to the current conditions.

Words 24-31  are reserved.
Word 32 returns the driver communication word. This word contains the following:

bit6  Reserved for scheduling HpMdm.
7  Next timeout is expected (line down delay and so forth).
8  Internal multi-buffer bit.
11 Program needs to be scheduled.
13 Terminal in page mode.
14 Terminal in block mode.
15  Last call was to a slave device.

User-Level Interface 2-7



2-8

Table 2-2. Special Status Read Words

©Co~NOOGOPrWN =

.31

Device driver name

Device driver revision code
DVT word 6

DVT address

Interface driver name

Interface driver revision code
Firmware revision code
Primary interrupt program name

Secondary interrupt program name

Echo back of CN 17 parameter
Echo back of CN 22 parameter
Echo back of CN 30 parameter
Echo back of CN 31 parameter
Echo back of CN 33 parameter
Echo back of CN 34 parameter
Reserved

Echo back of DVT 20

User-Level Interface




Write Request

The calling sequence for a write request is:

CALL EXEC (2, cntwd,bufr, bufln [, pram3, pram4] )

BUFR and BUFLN

The bufr parameter is the user’s buffer containing the data to be written to the selected LU. bufr
cannot be a FORTRAN character data type. Refer to the HpCrtSendChar subroutine section in
the RTE-A « RTE-6/VM Relocatable Libraries Reference Manual, part number 92077-90037.

The bufln parameter is the length of the data in the user buffer. If the length parameter is
positive, it indicates the number of words to be transferred (0 to 32767 words, 0..077777B). If the
length parameter is negative, it indicates the number of characters to be transferred (1 to 32768
bytes, 177777B..100000B). bufln set to zero produces a CRLF sequence in ASCII mode; in
binary mode, the write is suppressed. The trailing carriage return/line feed combination that is
expected by most terminals is supplied by the driver, so the user buffer need contain only the
data characters. If this action is not desired, it can be suppressed by setting the TR bit in cntwd.

CNTWD (Write Request Control Word)

The write request control word (cntwd), has the following form:

15114 13 12|11 10 9| 8 7 6| 5 4 3| 2 1 0
oS Z | R|TR|FH|EC| V | BI Device LU

Figure 2-2. Write Request Control Word (CNTWD)

OS: Operating system specific bits; see the RTE/6-VM Programmer’s Reference Manual,
part number 92084-90005.
Z: Write/write bit. If clear, PRAM3 and PRAM4 of the call are ignored.

If set, the control buffer indicated by PRAM3 and PRAM4 are written to the
external device in ASCII mode before the user buffer is written, as described in
the Read Request section. The normal data buffer, described by BUFR and
BUFLN, is transferred according to the rules established by the remainder of the
bits in the control word.

R: Reserved; set to 0.

TR: Transparency bit. Used to alter the normal addition of a trailing Carriage
Return/Line Feed (CRLF) to the user data. If the transparency bit is clear, then
the characters in the user buffer are sent to the given LU without special
processing, except for the last character. If it is an underscore (octal 137), then
the underscore itself and the trailing CRLF are suppressed. In other words, for a
request length of N characters where the Nth character is an underscore, N minus
1 characters are transferred. If the Nth character is not an underscore, N plus 2
characters are transmitted, the extra 2 characters being a trailing CRLE.

If the transparency bit is set, the special processing described above does not
occur. Thus, exactly N characters are transferred with no additions or deletions.

User-Level Interface 2-9



FH:

EC:

BI:

2-10

Force handshake bit. When in HP protocol mode, this bit causes an ENQ/ACK
handshake to be executed before the user data buffer transfer begins.

Refer to the Example Protocol Charts appendix for an example of the use of the
FH and BI bits in a write/write call to write to the graphics memory of an HP
terminal.

Echo bit. The echo bit is ignored on writes.

Printer Honesty mode bit. This bit is ignored for ports that are not configured as
printers. If set, column 1 has no special meaning. If clear, column 1 is used for
FORTRAN style carriage control.

Binary bit. Inhibits HP protocol for this write. Causes the buffer described by
BUFR and BUFLN to be transferred without the ENQ/ACK handshakes that
would normally occur after each 80 bytes of output. If over 80 bytes are
transmitted, then an ENQ/ACK handshake will be pending at the beginning of the
next write. ENQ/ACK handshakes may be removed permanently with the
appropriate change of protocol using a CN 34 call.

Refer to the Example Protocol Charts appendix for an example of the use of the
FH and BI bits in a write/write call to write to the graphics memory of an HP
terminal.

User-Level Interface



Control Request

The calling sequence for a control request is

CALL EXEC(3,cntwd[,praml])

CNTWD (Control Request Control Word)

The control request control word (cntwd) is shown in Figure 2-3.

i5114 13 12|11 10 9| 8 7 6| 5 4 3| 2 1 0
0S A Function Device LU

Figure 2-3. Control Request Control Word (CNTWD)

OS: these bits are defined in the RTE-6/VM Programmer’s Reference Manual, part
number 92084-90005.

A: RTE-6/VM ignores bit 11. This bit is used in RTE-A function calls.

Function: contains the function code that defines the control action to be performed.

Function control codes are referred to by the octal value, so the five bits allow for
control codes 00 to 37 (octal).

The following lists the control functions.

Code Function

06B Obtain dynamic status

11B Line spacing/page eject

16B Define baud rate group

17B Define terminator

20B Define/enable primary program scheduling
21B Disable program scheduling

22B Set device timeout

25B Read HP terminal straps into driver
26B Flush input buffers

30B Set port ID

31B Modem environment

32B Generate break

33B Configure driver responses

34B Set port protocol

35B Reset BRG (ID800/01 only)

If function codes other than those listed above are issued, the driver rejects the
call as an illegal request, or accepts it with no action, depending on the state of
the “nice” bit set in the CN 34 call.

Device LU: contains the LU number to control.

User-Level Interface 2-11



Function Code 6B: Dynamic Status

CALL EXEC(3,ior (lu,600b) [, praml])
CALL ABREG (istatus, itlog)
CALL RMPAR (istat_array)

Function code 6B returns the requested port status in EQT word 5 and in the A-Register. The
standard form of the EXEC 3 call is pram1 set equal to zero or omitted. praml can be set to a
non-zero value to return other information. Refer to Dynamic Status Special Forms, later in this
section.

The ABREG routine, documented in the RTE-A © RTE-6/VM Relocatable Libraries Reference
Manual, part number 92077-90037, can be used to retrieve the contents of the A-Register.

The RMPAR routine, documented in the RTE-6/VM Programmer’s Reference Manual, part
number 92084-90005, can be used to retrieve extended status. Five words of status are returned
in the five-word array istat_array. The format of istat_array is as follows:

15(14 13 12|11 10 9 8 7 6| 5 4 3| 2 1
Word 1 AV Device Type EF |BR|EM | LD | OF | PF | TO
Word 2 0
Word 3 Length of Type Ahead Data Available
Word 4 0
Word 5 0 Driver Revision Code

EQT 5: Device Status

This status word is returned in the A-Register after unbuffered requests. The A-Register can be
accessed from high level languages via an ABREG call. The status field in EQT 5 is updated by
each call to the driver. The format of the status returned in EQT 5 is as follows:

15114 183 12|11 10 9 8 7 6| 5 4 3| 2 A1 0
EQT 5 AV Device Type EF |[BR|EM |LD |OF |[PF |TO | E
(A-Reg)
Figure 2-4. Dynamic Status Control Word
AV: Device availability. These bits are used by the system for I/O control. The DS
operator command can also be used to examine the availability.
If AV is 00 the EQT is available for a new request to be initiated (the device
is free to process a new request).
If AVis 01 the associated device has been set down by the driver or the
operator. New requests will be suspended on the downed device.
If AVis 10 the device is busy processing an I/O request. New requests may be
pending (that is, linked through word 2 of the EQT).
IfAVis 11 the device is down, but busy with a request (such as an abort
request).
2-12  User-Level Interface



Device Type: Driver device type. This 6-bit value describes the type of device associated with
the current EQT. All device type values are initially established at generation.
Refer to Table 2-5 for device type values.

EF: End of file (set by CTU drivers only).

BR: Break character detected on received data line.

EM: End of medium (set by detection of EOT in Normal ASCII read).

LD: Line down; valid for modem lines after first connect. Can be set by speed sense

failures also.

OF: Overtflow error; the application is losing data.

PF: Parity or framing error; there was a bit error in the data.
TO: Timeout by the device driver.

E: Error.

Dynamic Status Special Forms

To read the firmware revision code, the dynamic status call optional parameter can be set to —1.
The format of istatus (the A-Register) is then:

15|14 13 12|11 10 9, 8 7 6| 5 4 3| 2 1 0
MS Byte of Rev. Code LS Byte of Rev. Code

When the optional parameter is set to —2, the driver returns the constant 123456B in the
B-Register for use in distinguishing Revision 5000 drivers from the previous drivers.

When the optional parameter is positive, the corresponding MUX memory location is read.

Function Code 11B: Line Spacing/Page Eject

This control function emits a specified number of line feeds or performs a page eject, depending
upon the call parameter.

CALL EXEC(3,ior(lu,1100b) [, NumLines])

emits the number of line feeds specified by a positive parameter. The default is one line. Some
drivers limit NumLines to 128 line feeds.

CALL EXEC(3,ior(lu,1100b),-1)
CALL EXEC(3,ior(lu,1100b),-2)

Either of the above calls performs a page eject, but only on hardcopy devices as defined by the H
bit in the CN 34 call. The effect on a terminal is to skip only one line. When the parameter is
—1, the form feed is conditional. A parameter of —2 performs an unconditional form feed. If
backward compatibility is needed, all form feeds can be made unconditional by setting bit 10 in
the CN 34 call.

User-Level Interface 2-13



Function Code 16B: Define Baud Rate Group

Function code 16B applies only to DV800. This control call reconfigures the BRG (baud rate
group) to a range other than the predefined BRG setting (see CN 30 for the default setting).
This control request should be used only if the desired BRG range cannot be obtained from the
CN 30 control call, and it must be used before any ports on a given BRG are initialized. If ports
are already initialized on the same BRG, then the BRG must be reset before the CN 16 can be
executed. See the CN 35 command to reset a BRG.

CALL EXEC(3,ior(LU,1600Db) ,BrgRange)

sets either baud rate group to a preconfigured setting for the CN 30 control code.

15 {14 13 12|11 10 9| 8 7 6| 5 4 3| 2 1 0
BRG Reserved BRG Range

Figure 2-5. Define Baud Rate Group

BRG: 0 Set Baud Rate Group 0
1 Set Baud Rate Group 1

The assignment of ports to a Baud Rate Group (BRG) is determined by jumpers
in the cable connector hood.

BRG Range: These bits set a given baud rate group to one of the following ranges:

BRG Range Possible Baud Rates
0B - | Reserved ]
1B - [ 1800 * -— —— ]
2B - | 134 * —— —— ]
3B - | 14,400 —— -— ]
4B - | 9600 19,200 38,400 * ]
SB - | 4800 * 9600 * 19,200 * ]
6B - | 2400 4800 9600 ]
7B - | 1200 2400 * 4800 ]
10B - | 300 * 600 * 1200 * ]
1uB - | 75 * 150 * 300 ]
2B - | —— —— 110 * ]
3B - | 600 * —— —— ]

* If you specify a given baud rate using the CN 30B command, and the BRG is not assigned,
the starred range is selected. For example, if you specify 9600 baud, range 5B is selected.

2-14 User-Level Interface



Function Code 17B: Define Termination Character

CALL EXEC(3,ior (lu,1700b) , Terminator)

You have the option to redefine the terminator used in all subsequent transparent ASCII reads.

15 |14 13 12 ({11 10 9 8 7 6|5 4 3| 2 1 0

Reserved S E Terminator

Figure 2-6. Definable Terminator

Reserved: Reserved, should be set to 0.

S: Schedule bit.
0 Does not enable scheduling.

1 Enable scheduling upon receipt of the terminator character (bits 0 through 7),
if FIFO mode is enabled and per-character scheduling is not enabled (the
CN 30 parameter is equal to 100000B).

E: Enable bit.

0 Transparent ASCII reads are terminated by a CR, as described in the “Read
Request” section.

1 All subsequent transparent ASCII reads terminate upon receipt of the
character specified in bits 7 through 0. This also disables the CRLF that is
normally output upon receipt of the terminator of an ASCII read.

Terminator: Termination character. These bits define the new transparent ASCII read
termination character.

You can use the CN 17 to set up transparent ASCII reads that do not generate a CRLE. If a
CRLF is needed, execute the call with a parameter of 415B to set the termination character to
15B (Carriage Return).

Function Code 20B: Enable Program Scheduling

This control call enables program scheduling (see Figure 2-7) upon recognition of certain
interrupting conditions. Those conditions vary depending upon which driver is in use, as
explained below.

Program Scheduling Conditions

DVCO00 performs program scheduling upon receipt of an unsolicited character. DV800 performs
program scheduling depending on the CN 33 selection.

An unsolicited character is any character that arrives when the driver is not executing a read.
Some driver/interface combinations have FIFO buffer modes that effectively leave a read

User-Level Interface 2-15



pending at all times. When this mode is invoked, the BREAK key is a more reliable way to
schedule the prompt program. The BREAK key is a key present on most keyboards that causes
a long space condition to be sent on the communications line, approximately 250 milliseconds.
BREAK is a condition on the line, not a character. BREAK is always recognized, even if a read
is pending.

When the program is scheduled, the B-Register is set to the EQT 4 address.

Pass Program Name
To alter which program is scheduled upon interrupt, the following call can be used:
CALL EXEC(3,ior (lu,2000Db),index)

This call passes the index to an internal table of program names in the optional parameters.

To enable a program that is already known, either from the system generation or from a call to
HpCrtSchedProg, the following form of the EXEC call can be used:

CALL EXEC(3,ior (lu,2000B))

RTE Compatibility: Pass Program Name

To facilitate portability between operating systems, it is suggested that the utility subroutine
HpCrtSchedProg in HpCrt.lib be used in place of the CN 20 calls.

CALL HpCrtSchedProg (lu,ShPRMRY [,2hPR]) or HpCrtSchedProd S

The schedule table for the MUX driver in RTE-6/VM is located in the system tables area with
the following format:

Ssctb Dec NumberOfWords

asc 2, PR
asc 2, MP
asc 2, T

The first word is the number of words allowed by the user at generation time. The minimum
default value is five words, which allows for PRMPT and one other name. The table size can be
increased by changing the second parameter when replying to the question “# OF LU
MAPPINGS?” in the answer file. Each additional name requires 2.5 words, rounded up to an
integer. For example, allowing 5 names in the table increases the table size to 14 (2.5 x 5 plus 1
for the length).

Refer to the System Generation Considerations appendix for details on how programs can be
specified at system generation.

2-16 User-Level Interface



Function Code 21B: Disable Program Scheduling

CALL EXEC(3,ior (lu,2100B))

This call disables program scheduling enabled by function code 20B. It does not change the
name of the interrupt schedule program, so a subsequent function 20B call with no parameters
re-enables the same program. Refer to Figure 2-7 for a state diagram of CN 20 and 21.

Program
Scheduling
Disabled

CN 20 CN 21

Program
Scheduling
Enabled

Figure 2-7. Program Scheduling

Function Code 22B: Set Device Timeout

CALL EXEC(3,ior (lu,2200B) , NewTimeOut)
CALL ABREG (dummy, OldTimeOut)

This call changes the value of the device timeout. NewTimeOQOut is the number of centiseconds
(100ths of a second) allowed for a read or a write to complete. If a nonzero value is passed, it is
complemented and then used as a count-up timer. If NewTimeOut is set to 1, the device timeout
equals .01 seconds. Likewise, setting NewTimeQOut to 32767 sets the device timeout to 327.67
seconds. Longer timeouts are possible, but they appear odd when expressed in decimal because
of the lack of an unsigned integer data type. Numbers from —32768 through —1 produce
timeouts in the range 327.68 seconds to 655.35 seconds.

A timeout value of 0 disables timeout processing, giving an infinite timeout. 7This is not
recommended. Because read calls are blocking I/O, messages cannot be written to a terminal
that has a read outstanding. In addition, a timeout ensures that the driver is allowed to detect
and correct certain error conditions. When a read call times out, the driver returns the status
word, with bit 1 set, to the program. The status word is available in the A-Register, which can be
accessed from high level languages via the ABREG call. All interactive programs should check
this bit and take appropriate action upon timeout (usually they should loop to re-prompt the
user).

User-Level Interface 2-17



This control call has a similar effect as the TO operator command:
CI> TO,lu, NewTimeOut

except that all values are accepted. The TO command does not allow values 1 through 499 on a
terminal.

Function Code 23B: Flush Output

This call is supported only by DVCO00 and is available for backward compatibility.

When the driver receives this call, it ignores all further action requests until one of the following
happens:

e The queue on the EQT is empty.
* An input request is received.
e A restore control request (CN 24) is received.

This call is used with hardcopy devices such as TTYs that get backlogged with output requests
that are buffered by the system. If a high priority program (such as CI) issues this request, all
pending output is dumped and the terminal is then ready for the next input or other action.

Function Code 24B: Restore Output Processing

This call is supported only by DVCO00 and is available for backward compatibility.

This call terminates the CN 23 prior to a full flush. It is intended for use with programs that do
not want their output flushed by a CN 23.

Function Code 25B: Read HP Terminal Straps

CALL EXEC(3,ior (lu,2500B))

This call must be issued each time the operating mode of an HP terminal is changed, to allow the
driver to update the internal flags that indicate what protocol to use in a read call. To make this
easier, the utility subroutines HpCrtPageMode, HpCrtLineMode, and HpCrtCharMode are
available. Note that this EXEC call clears FIFO buffers.

Function Code 26B: Flush Input Buffers

CALL EXEC(3,ior (lu,2600B))

This function clears the input buffers of the interface cards. If FIFO buffer mode is enabled, it
clears any data that is being held on the multiplexer cards. This has the same effect as re-issuing
the “enter FIFO buffer mode” command. For all drivers that support FIFO mode, this call
clears the hardware and software error bits.

2-18 User-Level Interface



Function Code 30B: Set PortID

CALL EXEC(3,ior (lu,3000B) , Portword)

This function establishes the logical connection between the LU and the physical device
connected to the card. It is used by the multiplexer drivers to map LUs to the ports and to set
the baud rate on cards when possible.

DVCO00
The Portword parameter must be set to 0 for DVC00. DVCO00 supports only:

e 8 bits per character

* hardware selected baud rate

e 1 or 2 stop bits, set by a hardware jumper on the HP 12966A BACI card.
* no parity

If Portword is set to a non-zero value, DVCO00 will reject the control call with an error 15B return.

DV800

All configuration parameters can be specified at generation. The values of the EQT extension
words 1 through 4 initialize the CN 17, CN 20, CN 30, CN 33, and CN 34 parameters for the
MUX. These values may be changed in the welcome file or at any time.

The specified configuration occurs on the first request to the interface driver (such as a read or
write request) on a per LU basis. Note that this configuration does not occur when it is initiated
from the remote device (such as a carriage return before initializing the port). In the welcome
file, ports may be initialized by a “CN lu 6B”, “CN lu 11B”, or a write request to the particular
port.

Note Function code 30B must be issued before any other request is sent to a
specified port. Any requests sent to an LU prior to function code 30B are
ignored by the driver, with the exception that CN 6 requests are processed, to
aid in identifying the drivers (see CN 6,—2 option). Also, the LU number
given should specify a unique device on the MUX. If the request is invalid, or
if a conflict exists, an error is issued and the request rejected. The driver
parameters can be set so that the port is preconfigured (refer to the System
Generation Considerations appendix).

User-Level Interface 2-19



The Portword parameter for DV800 has the following format:

CF:

%

SB:

2-20

15 |14 13 12 ({11 10 9 8 7 6|5 4 3| 2 1 0
CF M | x SB P R S PO
Character Framing bits. These bits indicate the number of data bits per character
as follows:
No. of
15 14 Bits/Char
0 0 8 bits
0 1 7 bits
1 0 6 bits
1 1 5 bits

When using 5-bit data, the upper three bits must be set to zero. Otherwise,
undesirable results may occur due to limitations in the 8-channel MUX hardware.

Modem control bit. Modem control is not supported on the RTE-6/VM MUX.

This bit is not set by the user; it is returned by the MUX driver. This field was
used by previous drivers to inform the driver and the firmware of the distribution
of the two baud rate clocks to the UARTS on the 8-channel MUX cards. The
wiring in the connector hood determines this bit. There are several different
cables for the MUX cards, with different wiring arrangements. It is also possible
that the wiring may have been changed in the field. To alleviate this problem,
DV800 determines the BRG wiring during initialization.

The sensed value is returned in this bit as follows (any user-supplied value is
ignored):

bit 12 =0: generator 0
bit 12 =1: generator 1

Stop bit selection bits. These bits indicate the number of stop bits as follows:

No. of
11 10 Stop Bits
0 0 1
0 1 2
1 0 1.5
1 1 (reserved)

Parity checking bits. If parity checking hardware is not available on a card, it can
be generated or checked in the user buffer by use of the subroutines
HpCrtParity Gen and HpCrtParity Chk. Parity checking is not disabled by
binary reads. If parity checking is enabled, it is the programmer’s responsibility
to check the parity bit in the status. Standard HP utility programs, such as CI or
FMGR, do not check for parity error.

no parity
no parity
odd parity
even parity

—_ -0 O\
—_ O = O

User-Level Interface



R: Reserved; set to 0. If this bit is set, the driver reports a configuration error.

S: Speed, baud rate selection bits. These bits select the baud rate as follows:
Bits 6..3
00b (0000 n/a (DV800 will reject control call with error 15B return)
01b (0001 600 baud
02b (0010 75 baud
03b (0011 110 baud
04b (0100) 134.5 baud
05b (0101 150 baud
06b (0110) 300 baud

07b (0111) 1200 baud
10b (1000) 1800 baud
11b (1001) 2400 baud
12b (1010) 4800 baud
13b (1011) 9600 baud
14b (1100) 19.2K baud
15b (1101) 38.4K baud *
16b (1110) 14.4K baud *
17b %1111% speed sense

*  Because RS-232 connections have a recommended upper frequency limit of

19.2K baud, the RS-422 circuitry on the cards should be used for all settings
higher than 19.2K.

PO: Port number bits.

2 1 0

0 0 0 port0
0 0 1 portl
0 1 0 port2
0 1 1 port3
1 0 0 portd
1 0 1 ports
1 1 0 port6
1 1 1 port7

Default BRG Ranges (DV800 Only)

There are interactions between channels that are in the same baud rate group on the 8-channel
MUX. The baud rates of all channels on a BRG must have baud rates in 1, 1/2, and 1/4 ratios.
For example, if the highest baud rate on BRG 1 is 9600 baud, then 4800 and 2400 baud are also
available for use by other ports in the same group. If 19.2K is the highest, then 9600 and 4800
are available, and so on.

The BRG range is determined by the baud rate of the first port accessed on the BRG. If this
automatic range selection is not desired, the CN 16 call may be used. Refer to the Function
Code 16B section in this chapter.

For example, ports 4 and 5 are on the same BRG and require 4800 and 2400 baud, respectively.
If port 5 is set to 1200 baud first, then port 4 cannot be set to 4800 baud, because the BRG range
was automatically set to [ 300 ——— 1200 ]. This problem can be overcome by first setting the
BRG range to [ 1200 2400 4800 ] using the CN 16 control code. It will not necessarily be

User-Level Interface 2-21



corrected by using speed sensing. This will cause the BRG range to be determined by the first
port whose speed is sensed. Table 2-3 lists the BRG ranges.

A baud rate selection of 17B causes the port to perform speed sensing. This allows the user’s
terminal to determine the appropriate baud rate. If the port is enabled for HP protocol, the
driver sends an ENQ at each available baud rate, then waits half a second for an ACK to be
returned.

When an ACK is received correctly, the baud rate is then known, and the driver sends a carriage
return to the terminal. Other than random characters that may appear on the screen as a result
of the terminal receiving the ENQ characters at the wrong baud rate, the process is automatic
and the user is not aware that it is occurring.

If the port is configured for non-HP protocol, the user must supply CR characters until the
interface card can detect the appropriate baud rate. This may require several tries, as the card is
sampling at 1-second intervals. When the baud rate is detected, a CRLF is echoed to the
terminal.

The new baud rate can be read by using the special status read described earlier in this chapter.
If the card is unable to detect or match the baud rate within the read timeout, the baud rate is
left at 17B and the line down bit is set in EQT 5. (The programmer should ensure that the
timeout is set to a reasonable value, such as two minutes, before issuing the speed sense
command.) The programmer can detect speed sense failure from the CN 30 field of a special
status read. Until the speed sense failure is corrected by another CN 30 call, all other requests
are rejected. Asynchronous interrupts and breaks will cause speed sensing to occur again.

Note The baud rates that are possible are limited by the hardware configuration of
the cards (and in some cases the interface cable hoods) plus any modems, line
drivers, and so on, in the communications line, and the destination equipment.
To operate at high baud rates, the CRT and the driver must use a handshake
protocol. Refer to the Function Code 34B section that follows.

2-22 User-Level Interface



50
75
110
134
150
300
600
1200
1800
2400
4800
9600
14.4k
19.2k
38.4k
115.4k

Table 2-3. BRG Ranges

CN30 Baud Rate Field (in octal)

2 3 4 5 6 7 10 11 12 13 14 15 16

88

UL
[oe]
1

7
1
(o] 6
5 5 5
4
I @
@°

1 2 3 4 5 6 7 10 11 12 13 14 15 16

Note: The boxes enclose baud rates that are generated by the same BRG setting. The number to
the upper right of each box is the BRG range selection (in decimal) for use in the CN 16 call.
Within a given box, the default baud rate is shown by a ‘D’. The other baud rates that are
available with the BRG set to the given value are shown by ‘o’.

For example, if the first port configured is set to 9600 baud by the CN 30 call (CN lu 30B 13),
the default BRG selection will be 5. Once that port is configured, the other ports that share
the BRG would be restricted to 4800, 9600, or 19.2K baud.

This is a reasonable default in most cases. However, assume you have 2400 baud terminals
that must be connected to the same MUX. A CN 16 call could be included in the Welcome
file (before the first port is configured) to force the BRG range to 6. This would allow the

ports driven by that BRG to be configured to 2400, 4800, or 9600 baud instead.

Prior to Revision 5.19 of the MUX firmware, 50 baud rate and 115.4k baud were available as
selections 1 and 16, respectively. At Revision 5.19, these were changed to produce 600 and 14.4k
baud instead.

User-Level Interface 2-23



Function Code 32B: Generate Break

Function code 32B allows for programmatic breaks. This function applies only to DV800.

CALL EXEC(3,ior (LU,3200b) [,time])

where:

time  specifies the break duration. If time is equal to 0 or omitted, the transmit

data line is held low for approximately 250 milliseconds.

If time is not equal to zero, it specifies the number of “character times” for
the break duration. “character times” is the time required to transmit one
character at the current BAUD rate and framing. Values from 1 to 254 are
legal.

Function Code 33B: FIFO Buffer Mode Control

FIFO buffer mode is available only on DV800. The FIFO is 1024 characters per port on the
8-channel MUX.

EN:

CH:

SD:

Reserved:

15

14 13 12 ({11 10 9 8 7 6|5 4 3| 2 1 0

EN

CH | SD Reserved

Figure 2-8. FIFO Buffer Mode Control

FIFO mode enable.

0 No FIFO buffering. System attention is gained by pressing any key when a
read is not pending. The remaining bits are ignored if bit 15 is not set.

1 Enable FIFO buffering. If data is received without a pending read, it is saved
until the next read is posted, unless more data is received than can be held on
the card.

Character-by-character scheduling.

0 Accumulate characters, but take no action until a read is posted or a break is
detected.

1 Enable program scheduling for each character that is received.

Save data on break.

0 Clear the buffer before scheduling the interrupt program when a break is
detected.

1 Keep the FIFO buffer data, even when a break is detected.

Reserved; set to 0.

2-24 User-Level Interface



A buffered read mode can be implemented for “single character” style editors by the algorithm
illustrated in Figure 2-9. The following is a step-by-step representation of the algorithm. It is a
useful technique when you need full duplex I/O.

Enable FIFO mode.

1
2
3
4a
4b
5
6a
6b

Set timeout to a value short enough to satisfy the response time constraints.

Perform a dynamic status call (CN 6) to see if any characters are in the FIFO.
If characters are available, post a read for that many characters; process the data.
If no characters are available, post a read for one character.
When the read completes, check for a timeout.
If timeout, go to step 7.
If no timeout, 1 or more characters have been received; process the data.
See if outbound data is available.
If data is available, change timeout to a large enough value to allow the write to
complete; write the data.
Perform any other processing necessary.

Go to step 2.

Issue Read for
1 Character

<<

yes

Enable
FIFO Buffering

v

Set Timeout for Read

v

Dynamic Status
Call (CN 6)

v

Process Input
Characters

no Characters es
Avairl)able

>

Issue Read for
N Characters

4

no

»<_Data for Output ?
’Y

Set Timeout for Write

v

Write

v

Perform Other
Processing

Figure 2-9. Buffered Read Mode Algorithm

User-Level Interface

2-25




Function Code 34B: Set Port Protocol

CALL EXEC(3,ior (lu,3400b) , Protocol Word)

1514 13 12|11 10 9 8 7 6|5 4 3| 2 1 0
R N|H|[UI(RD| P Protocol
R: Reserved; set to zero.
N: Nice bit.
0 Unimplemented control requests are rejected.
1 Unimplemented control requests are accepted but ignored.
H: Hardcopy/spacing mode.
0 The port is connected to a CRT.
1 The port is connected to a hardcopy device. This enables page eject
processing.
U: Unconditional page ejects.
0 CNI11,—-1 page ejects are conditional.
1 CN11,—1 page ejects are unconditional.

RD: Return data on timeout.

Caution  The RD Bit (bit 9) should not be set for interactive ports, as it leaves the
possibility that destructive commands could be given to the system if the user
inadvertently allows the terminal to timeout in the middle of a command. For
example, if the user intended to enter the command “PU,@.1st”, but was
called away from the terminal, it could be seen as “PU,@”.

0 No data is returned, transmission log is zero.
1 When a timeout is detected, the transmission log will indicate the number of
data bytes in the buffer.

P: Printer/paper position.

0 Port is connected to an interactive terminal.

1 Port is connected to a printer and is, therefore, not interactive.

This bit changes the meaning of the H bit (bit 11) to be 0 = post spacing and 1 =
pre-spacing. Carriage control is a matrix of capabilities defined by bits 8, 11, and
10 as described in Table 2-4.

2-26 User-Level Interface



Table 2-4. Carriage Control Capabilities

Bit
8 11 10
(P-bit) (H-bit) (U-bit)
0 0 X CRT PRMPT No CCTL No CN 11s
0 1 0 TTY PRMPT No CCTL Conditional CN 11s
0 1 1 TTY PRMPT No CCTL Unconditional CN 11s
1 0 0 printer no PRMPT  post-spacing CCTL Conditional CN 11s
1 0 1 printer  no PRMPT  post-spacing CCTL  Unconditional CN 11s
1 1 0 printer  no PRMPT  pre-spacing CCTL  Conditional CN 11s
1 1 1 printer ~ no PRMPT  pre-spacing CCTL  Unconditional CN 11s

CCTL means carriage control via column 1 as used by the FORTRAN formatter.
CCTL can be disabled by bit 7 of the CNTWD in the write call.

In addition to

the above, bits 8, 11, and 1 determine the driver device type as described in

Table 2-5.
Table 2-5. Driver Device Types
Bit
8 11 1
(P-bit) (H-bit) Type
0 0 0 0 non-HP CRT
0 0 1 5 HP CRT
0 1 0 6 non-HP hardcopy terminal (TTY)
0 1 1 6 HP hardcopy terminal (HP 2635)
1 X 0 12 printer that does not use ENQ/ACK protocol
1 X 1 12 printer that uses ENQ/ACK protocol
Protocol: Bits 7 through 0 define the protocol as follows:
Bits 7 thru 0 DVCO00 | DV800
000b: TTY ok ok
001b: Xon/Xoff N/A ok
002b: HP N/A ok
003b: HP Xon/Xoff N/A ok
004b: CPU-to-CPU N/A ok
202b: Half HP N/A ok
203b: Half HP Xon N/A ok
The protocols are described in the paragraphs that follow.
Caution  The protocols listed above are those supported by Hewlett-Packard. They

provide a solution for most configurations. Other bit combinations are
possible, but may cause unpredictable and undesired results.

User-Level Interface

2-27



The driver type in the DVT is changed to reflect the protocol selection. Driver type 5 is used to
indicate that block mode operation is possible. Therefore, the driver type is not changed to 5 if
the hardcopy bit is set. Driver type 6 is assigned for interactive hardcopy terminals. Driver type
12 is assigned for printers.

Reissuing the protocol command causes the port to enter the known state of transmit enable, for
recovery from error situations where the CPU is waiting for an Xon from a device that will not
send one.

The protocols available are:

TTY PROTOCOL. No flow control handshaking, normal CRLF processing. This mode is
primarily for interactive use with “dumb” terminals.

Xon/Xoff. This bi-directional protocol allows both the port and external devices to issue Xon
and Xoff characters to pace the flow of incoming data. When the receiving end approaches a
buffer full condition, the Xoff character is transmitted to suspend the flow of data. When buffer
space is again available, the Xon character is transmitted to resume data flow. Excess Xon
characters are discarded by the port in this mode, thus it is not possible to receive Xon characters
as part of the data record.

It is possible to get into deadlock situations with this protocol. For example, assume that the
port is connected to a line printer and the line printer runs out of paper. When the paper-out
condition is detected, the printer transmits an Xoff to the CPU to stop the flow of data. If the
user turns off the printer to reload paper, as is required by some printers, then turns it back on,
expecting data to be printed, nothing will happen. The CPU is waiting for an Xon to give it
permission to proceed.

Some printers have a front panel button that causes an Xon to be sent, while others send an Xon
every time they are placed online. However, most do not have either feature. Because of this, if
the port times out (beware of zero timeouts) during an Xon/Xoff write, the driver internally
enables itself to the Xon state, and then goes down (but only if the hardcopy bit is set).

In FIFO buffer mode, the interface card sends an Xoff when 15 bytes of buffer storage remain.
A second Xoff is sent when only 10 bytes remain. An Xon is sent when the buffer level drops
below 20 characters available.

The MUX card suspends output when it receives an Xoff . If it then receives a BREAK (which
usually indicates that the user wants to schedule the CM program), it reacts as if an Xon had
been received. If the MUX did not do this, the prompt could not be displayed to the user.

HP PROTOCOL. Read pacing is by DC1 and DC1/DC2/DC1 software handshakes. Write
pacing is by ENQ/ACK software handshakes. See the example protocol charts in Appendix A for
further information.

HP-Xon/Xoff. This type of protocol is a combination of HP and Xon/Xoff protocols. When this
mode is enabled, the Xon/Xoff characters can cause interactions with EDIT/1000. Therefore,
alternative characters must be used in place of ctrl-S and ctrl-Q. See the EDIT/1000 User’s
Manual, part number 92074-90001.

2-28 User-Level Interface



CPU-TO-CPU. This protocol has no handshake; flow control must be done by higher level
software. The particular advantage of this protocol over TTY is that it disables echoes at all
times, overriding the echo bit in the read CNTWD, and it does not append a line feed on write
completion or generate a CRLF on read completion.

For normal ASCII reads, backspace and delete are processed as usual, except that no characters
are echoed. Although this mode can be used to drive terminals that use local echo and auto-line
feed (sometimes erroneously called “half-duplex”), it is primarily intended for non-interactive
ports, as when driving “black boxes” or for terminal emulation.

HALF HP. This selection is used to disable the ENQ/ACK handshake of the HP protocol while
preserving the D1 pacing on read requests. It is used with satellite links, statistical multiplexers,
and some high-speed modems.

HALF HP + Xon/Xoff. This protocol disables the ENQ/ACK portion of HP protocol and
enables Xon/Xoff.

Function Code 35B: Reset a Baud Rate Group

CALL EXEC(3,ior (lu,3500b), BRG_Control)

The format of control word BRG_Control is as follows:

i5|114 13 12|11 10 9| 8 7 6| 5 4 3| 2 1 0
Reserved BRG

BRG: 0 — Reset BRG #0
1 — Reset BRG #1

This control call allows a programmatic reset of a BRG. The current values assigned to the BRG
are cleared, allowing the BRG to be set to a preconfigured range by a CN 16 call. The hardware
is not reset until the BRG is assigned a new value.

User-Level Interface 2-29



Comparison to Previous Drivers

This chapter describes the differences between the Revision 5010 serial I/O drivers supported on
the RTE-6/VM Operating System and previous drivers.

Comparing DV800 and DVMO0O0

DV800 has the following features:

Supports TTY protocol.
Supports CPU to CPU protocol.
Backspace erases characters.
Rubout produces \CRLE
Supports bidirectional Xon/Xoff.

Performs speed sensing.

The following are differences between DV800 and DVMO00:

DVMOO0 does not have a write/read or write/write capability. DV800 implements these capa-
bilities so that the feature is available even in driver bypass mode.

DVMO0O0 terminates normal ASCII reads on RS and DC2. DV800 does not.

DVMO00 uses PRAM3 and PRAM4 for the pace character and number of interrupts to ig-
nore. Because DV800 processes the Z-buffers, this is not possible. DV800 uses the Z-buffer
for pacing and the driver communications area for ignore count.

Disable ENQ/ACK is controlled by CN 34.
CN 6 (dynamic status request) allows a more compatible form.
CN 31 and CN 32 (modem connect and disconnect) are combined as CN 31.

CN 33 (configure driver response) cannot control how device is downed when modem goes
down.

CN 30 now senses the BRG wiring in the hood.

Comparison to Previous Drivers 3-1



Comparing DVC00 and DVRO0O

DVCO00 implements the Z-buffer transfers.

CN 17 calls are supported.
CN 20 changed to the new convention.
CN 23 and CN 24 are supported for backward compatibility.

CN 34 bits 9, 10, and 11 are implemented.

The terminal interface cards used with DVCO00 are susceptible to overrun because they have no
on-card buffering. The received character must be read by the driver before the first data bit of
the next character arrives, which is sometimes too little time for the driver to respond. The
driver can detect this overrun condition, and it responds by issuing a backslash, carriage return,
line feed sequence and then echoing as much of the line as was correctly received. The user can
continue from that point to complete the line.

3-2 Comparison to Previous Drivers



Example Protocol Charts

For the following examples, we will assume that the user has a buffer called ALPHA that con-
tains the upper and lowercase alphabet sequences:

e o200 3000/ o 4 ... /....5.. <character number
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz < buffer contents

We will also make use of another buffer called BETA that has underscore characters (octal 137)
as follows:

A BC G H

In memory, the data would look like the following:

A B A B high memory
ALPHA BETA
C D C -
y y 7
/ ’ 7 _ —
w X G H low memory
y z

For the read call examples, a 40-word (80-byte) input buffer called IBUF is assumed.

The protocol charts given are representative of what would be observed on the serial data lines
using an HP 4953, 4955, or 4951 serial data analyzer. The top line of each chart is the data from
the CPU to the device, and the bottom line is the data from the device back to the CPU.

The blank character (octal 40) is represented by “ @ ” in the protocol charts. A character whose
value is not known is represented by “ m .

Characters from the user buffer, from the external device, or echoed by the driver are shown in
solid outline boxes. Characters generated by the driver are shown in dotted outline boxes.

from user or device or echo from driver :I

Example Protocol Charts A-1



Example 1:

Call EXEC(2,LU,Alpha,-15)
normal ASCII write of 15 bytes to a protocol 0 (TTY) device

[Alelcl Twln]o[c]ii]

Carriage return and line feed appended by the driver

Example 2:

Call EXEC(2,ior(LU,2000b),Alpha,-5)
transparent ASCII write of 5 bytes to a protocol 0 (TTY) device

[alelclole]

This time the CRLF was not appended by the driver because the transparency bit was set.

Example 3:

Call EXEC(2,LU,Beta,?2)
normal ASCII write of 2 words to a protocol 0 (TTY) device

afefc

This time the CRLF was not appended by the driver because the last data byte was an under-
score. Note that the underscore was also suppressed.

Example 4:

Call EXEC(2,LU,Beta,-5)
normal ASCII write of 5 bytes to a protocol 0 (TTY) device

afefe]

Again the CRLF was suppressed by the driver because the last data byte was an underscore.
Note that only the last underscore was suppressed. An underscore in any position other than the
last character position is data.

A-2 Example Protocol Charts



Example 5:

Call EXEC(2,LU,Alpha,26)
normal ASCII write of 52 bytes to a protocol 2 (HP) device

[aTe]clo[elF[a]H]ena| Tkl Tx [y TeTer[u]
|ACK
——>| terminal response time

At least once every 80 bytes of output, the driver will suspend data transmission to perform an
ENQ/ACK handshake with the terminal. The terminal will not respond with an ACK until it has
processed all the characters preceding the ENQ, so the driver is assured that it is okay to resume
transmission of data. The handshake does not necessarily occur in a fixed location in each
record because the drivers keep a running 80-byte counter without regard to the records. This
uncertainty can be eliminated by using the Force Handshake bit in the write call. The handshake
can be suppressed for one line by performing the write in binary mode.

Example 6:

Call EXEC(2,LU,Alpha,26)
normal ASCII write of 52 bytes to a protocol 1 (Xon/Xoff) device

[AlBlc|ofe|FlafH]i o]k |t [m[O] PLTQ[RT ST TxT[y[z]Cr]if|
|Xon

driver overshoot time

device catch-up time

The Xoff character is asynchronous to the transmitted data. It indicates that the buffer of the
receiving device is becoming full and that the transmitter should pause. When the receiving de-
vice has emptied its buffers to a sufficient degree, it sends an Xon character to the transmitting
device to resume the data flow.

Alternate names:

Xon <> DCl <> Ctrl-Q <> ~Q <> octal21
Xoff <> DC3 <> Ctrl-S <> ~S <> octal 23

Example Protocol Charts A-3



Example 7:

Call EXEC(1l,ior(LU,400b),Ibuf,-80)
Call Abreg(iStatus, iTransLog)

normal ASCII read for 80 bytes with echo from protocol 0 (TTY) device

nEnEoEnEEn
ORCRORORE

d IBUF contents. Tansmission log = 4.

-
Q
o

Example 8:

Call EXEC(1,LU,Ibuf,-80)
Call ABREG(iStatus, iTransLog)

normal ASCII read for 80 bytes without echo from protocol 0 (TTY) device

o [ 1

|a|b|c|d|e|f|g|h|i|Cr

The resulting transmission log would be 9, and IBUF would contain:

1 a b

2 [¢] d

3 e f

4 g h

5 : ° The right byte of the last word is blank padded.

6 - - The contents of these words is unspecified.
The user should not depend upon their contents to be

7 u u unaltered. The terminator byte (in this case the
carriage return) is not stored in the buffer.

e ~7 V4
39 ] ]
40 L] m

A-4 Example Protocol Charts



Example 9:

Call EXEC(1l,ior(LU,400b),Ibuf,-80)
Call ABREG(iStatus, iTransLog)

normal ASCII read for 80 bytes with echo from protocol 0 (TTY) device showing editing

characters

K

|_1| Del

A N

Example 10:

T[] 2] [5] [] [7
DpCRORE

Eak

=T-1a]

Cc

oTa]

N

Call ABREG(iStatus, iTransLog)

|_| Bs Bs Cr
IBUF contents. Tansmission log = 3.
Right byte is blank padded because this is an ACII read.
47
Call EXEC(1l,ior(LU,400b),Ibuf,-80)
normal ASCII read for 80 bytes with echo from protocol 2 (HP) device
bl 2 [ [] [5] [alv]
[ORDRORERE
] b IBUF contents. Tansmission log = 3.
° Right byte is blank padded because this is an ACII read.
2
3 [
4. T /I’

Example Protocol Charts A-5



Example 11:

Call EXEC(1,LU,Ibuf,-80)
Call ABREG(iStatus, iTransLog)

normal ASCII read for 80 bytes without echo from protocol 2 (HP) device Terminal strapped for
line mode and cursor on a line containing “abcd” when the user presses ENTER.

o ST

D02|Cr a|b|c|d|Cr
1 a b IBUF contents. Tansmission log = 4.
2 c d
3 = =
4... |/ ¥ 7
Example 12:
Call EXEC(1,ior(LU,10400b),ibuf,-80,5hCI> ,-5)

Call ABREG(iStatus, iTransLog)

normal ASCII write/read for 80 bytes with echo from protocol 2 (HP) device

[ Po] [ ] feulIald] T [ [w] [erld]
npnjen [ Do e

user response time >

«—>

IBUF contents. Tansmission log = 2.

A-6 Example Protocol Charts



Example 13:

Call EXEC(1,Cntwd, Ibuf,-80)
Call ABREG(iStatus, iTransLog)

normal ASCII read for 80 bytes without echo from protocol 2 (HP) device Terminal strapped for
page mode, with a form containing 4 unprotected fields of 4 bytes each.

User presses ENTER key

[eer | ¥ foer |
oz | ~ [a[o] o] o[s [ o] o] o] o[vs [wlx[slzl o] ]2] o]l rs]

Same read with Auto-Home bit set.

Dct Esc ]:c:[Esc |H ]:Dc1

Dc2 alb|e|[e|Us | c|d| e|®|Us|w]|x|y|[z|Us |1|2] 3]|4]|Rs
1 a b

5 ° ° IBUF contents. Tansmission log = 20.
3 Us c

4 d e

5 ° Us

6 w X

7 y z

8 Us 1

9 2 |8

10 4 [ )

11 . .

12 ) 4 b4 v

The fields can be accessed individually by calling either HpCrtGetField_S or HpCrtGetField_I.
For example,
Flag = HpCrtGetField S(ibuf,iTransLog, 3, String)
sets String to “wxyz” and Flag would be .TRUE. because the third field contains data.
In addition, for backward compatibility with DVAOS, the call:
NewLog = HpCrtStripChar (ibuf, iTransLog, 37b)

performs an in-place conversion of the data buffer by deleting the Unit Separator characters
(octal 37).

Example Protocol Charts A-7



a b
; ° ° IBUF contents. Newlog = 16.
3 c d
4 e [ ]
5 w X
6 y z
7 1 2
8
9 3
10 4
11 | |
12... 7 ~ »

Example 14:
Call EXEC(2,ior(LU,13100b),Alpha,-90,Graph write,-7)
Call Abreg(iStatus, iTransLog)

transparent binary write/write for 90 bytes forcing handshake to protocol 2 (HP) device. Note
that the graphics escape sequence is in the Z-buffer.

Graph__write is a
- . Esc *
buffer that contains:
b 9
0 w
- ® | <€«— underscore to inhibit CRLF
Esc|*|b| 9]0 |W]ENQ A |B|C|IDIE]| .| X|Y|Z]al b

ACK
€ »| time needed for the terminal to enter raster dump mode

The 90 bytes are sent without intervening handshakes that would spoil the graphics data.

See Chapter 3 of the HP 2648 Graphics Terminal Reference Manual, part number 02648-90002, for
information on raster dumps.

A-8 Example Protocol Charts



Example 15:
Call EXEC(3,ior(LU,1700Db),403Db)
Call EXEC(1l,ior(LU,12000b),ibuf,-30,5hDUMP_ , -5)

ASCII transparent write/read of 30 bytes from a protocol 4 (CPU to CPU) device with termina-
tor configured to be an ETX.

[ofulmle

Stx ID[A|T |A| ®F|R|(O(M|®D|E| V|I|C|E|Etx

DL
<

IBUF contents. Tanxmission log = 17.

mM—mMeO M>»>
g 00<UOZ T -0

\
A
A\
N
A\
N\

Q0N ~AWN =

—_ -

Example 16:
Call EXEC(1,ior(LU,10400b),ibuf,-80,5hCI> ,-5)
Call ABREG(iStatus, iTransLog)

normal ASCII write/read of 80 bytes with echo from protocol 2 (HP) device. The user enters
“ignored”, which echoes, and then enters a ctrl-D. The data is ignored.

clif| > Dc1 i g n |_o r e d Eot
i g n ﬂ r e d Eot
1 u u IBUF contents is undefined.
o = = Transmission log is 0,

status bit 5 is set.
3.. P L Note that no CRLF is emitted.
|

Example Protocol Charts A-9



Example 17:

Call EXEC(3,ior(LU,400Db))

rewind cartridge tape (example is for left tape)
Esc I:c]:Esc]: & I:p:[ 1|u ]:O:[C Dc1 Esc 82|p E ]:A Dc1 Esc| b |
t s|cr t Esc[\[p|1]4 9] 1]cr
rewind status
lock

command command

keyboard unlock
command tape status keyboard
successful from terminal

All motion commands are followed by a status check. An ENQ/ACK handshake could appear
anywhere in the driver output sequences with no ill effect.

Example 18:

Call EXEC(2,LU,Alpha, 26)

normal ASCII write of 52 bytes to a protocol 8 (hardware handshake) device

A|B|C|ID|E|F|G|H|[I|J|K]|]L|M|O PI|Q|R]|S XyzCr[Lf]

cTS |

> driver overshoot time
€< | device catch-up time

driver resume time

When the receiving device sets the CTS line low, it indicates that the buffers of the receiving
device are becoming full, and that the transmitter should pause. When the receiving device has

emptied its buffers to a sufficient degree, it sets the CTS line high to signal the transmitting de-
vice to resume the data flow.

A-10 Example Protocol Charts



System Generation Considerations

Generation Instructions for DV800

DV800 consists of the two relocatable files DV800_0.REL and DV800_1.REL. DV800_1is a
superset of DV800_0. DV800_0 is unable to drive slave devices (the CTUs or internal or
external printers). You cannot generate both in the same system because you will get duplicate

entry point names.

To generate an RTE-6/VM system with DV800, make the following modifications to your answer

file:

1. DV800_0.REL or DV800_1.REL must be relocated with the other drivers.

2. Make EQT entries for the D-MUX. The D-MUX drivers have GEN records within the
driver that specify values such as EQT Extension size, buffering, and timeout.

The D-MUX driver does not require DMA, so the MUX can be installed in any slot (above
the privilege fence, if you have one) including in an I/O extender that does not have DCPC

installed.

The GEN records have a suffix that indicates with which port the EQT is associated. They
also cause the proper choice of protocol based upon the name. For example, to use HP ter-

minals on all eight ports:

24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:
24,DV800,Gr=Hp Term:

<N O U WN RO

*EQT
*EQT
*EQT
*EQT
*EQT
*EQT
*EQT
*EQT

0 J o

11
12
13

D-MUX port
D-MUX port
D-MUX port
D-MUX port
D-MUX port
D-MUX port
D-MUX port
D-MUX port

<o Uk W B o

System Generation Considerations B -1



The GEN records available are:

Hp_ Term:0..7 CRT that uses HP ENQ/ACK protocol, performs speed sense,
PRMPT enabled, device type 5

Term:0..7 CRT that uses Xon/Xoff protocol, performs speed sense,
PRMPT enabled, device type 0

HP_Printer:0..7 non-interactive printers that use HP protocol, 9600 baud,
program scheduling disabled, device type 12

Printer:0..7 non-interactive printers that use Xon/Xoff protocol,
9600 baud, program scheduling disabled, device type 12

Hp2635:0..7 hardcopy terminal that uses HP protocol, performs speed
sense, PRMPT is enabled, device type 6

To decide which GEN record to use, determine which of the modes above is closest to that
needed by the device you will connect to a given port. Probably the most general class is
“Term:x”, so it is a good choice for “black boxes”. You can use control calls to tailor the port
after it is booted. If you wish, you can choose to not use the default GEN records and pro-
vide all the parameters for the EQT entry.

The RTE-6/VM generator allows you to preset the EQT Extension words, so you can specify
the auto-configure parameters yourself. For example:

24,Dv800,t=1000,b,x=16,140004b,0,117b,100002b

configures an EQT for: Timeout = 10 seconds (t=1000)
Buffered output (Buffered bit set)
FIFO mode enabled,
char-by-char scheduling,
and CPU-to-CPU protocol (EQx 1 = 140004b)
No special termination (EQx2 =0)
2400 baud; port 7 (EQx 3 = 117b)

Schedule program 2 enabled (EQx 4 = 100002b)

Refer to the EQT Extension Word Usage at the end of this appendix for extension word for-
mats.

3. Create LUs for the D-MUX by making entries in the LU table. For example:

*D-MUX in SC 24 <LU 30>
*D-MUX in SC 24 <LU 31>
*D-MUX in SC 24 <LU 32>
*D-MUX in SC 24 <LU 33>

O 00 J O
o O O o

~

4. Put the card in the interrupt table, pointing to the MUX pre-driver, for example:

24 ,ent,MPrDv *D-MUX

B-2 System Generation Considerations



Generation Instructions for DVC00

This section provides configuration information for driver DVC00 and is intended to augment
the data provided in the RTE-6/VM System Manager’s Manual, part number 92084-90009.

Real-Time Generation

Due to the variety of input/output devices that can be controlled by DVCO00, it is not possible to
provide specific configuration information. Instead, Table B-2 supplies you with typical device
configurations that will assist you in configuring your own system. Particular attention should be
made to “Note A”, detailing the use of DVCO01 and DVCO02 with a photoreader and punch,
respectively.

HP 2615A Keyboard Display Terminal Processing

The HP 2615A requires that null characters be output before each line. Therefore, it must be
configured with an odd channel number.

EOT/Timeout Options

Driver DVCO00 intercepts both a timeout and EOT. The caller always receives the status
appropriate to the condition; however, the system need not be notified of that condition. The
driver takes the subchannel number assignment, set by the operator during generation or set with
the LU command, and performs a Logical OR with both it and the error code. The result is
placed in the A-Register prior to the completion return. This has the effect of telling the system
what to do with the device when a timeout or EOT occurs. Thus, the subchannel entry in the
DRT Table defines both the possible errors sent to the system and the device type, as shown in
Table B-1. For example, if a timeout is to set an HP 2762B as down, bits 3 and 0 must be set
(type is 2762B), and bit 2 must also be set (timeout downs device). The result of setting bits 3, 2,
and 0 to 1 gives a subchannel number of 13 (octal 15). If a timeout is to set the 2762A as down,
bit 2 must be set (timeout downs device), and bit 0 must also be set (type is 2762A). Setting bits
2 and 0 gives a subchannel number of 5.

The NOT-READY error caused by low tape on the punch is detected at initiation and will cause
the punch to be set down, regardless of the subchannel setting. This implies that a teleprinter or
photoreader with a subchannel number of 0 or 1 is set down only by an operator “DN” request.

Table B-1. DRT Table Entry

Subchannel Function

Bit 3 Bit 2 Bit 1 Bit 0
“8!! “4!! “2!! “1 ”
HP 2762B Timeout downs device EOT downs device HP 2762A, 2762B or 2615

* For an HP 2762B, bit 0 must also be set.

System Generation Considerations B -3



Table B-2. Typical Device Configurations (DVCO00)

Device EQT Entry DRT Entry Interrupt Table
1 — AuxTTY 11,DVCO00, B 7 =1 11,EQT, 1
(or CRT)
2 — AuxTTY 12,DVCO00 8 =21 12,EQT, 2
3 — AuxTTY 13,DVCO00 9=3 13,EQT, 3
4 — Punch 14,DVC02, B, T 10 = 4,4 14,EQT, 4
5 — Photoreader 15,DVCO1, T 11 = 5,6 15,EQT, 5
6 — Printer 16,DVCO06, B, T 12 = 6,13 16,EQT, 6
NOTES
A. At generation time, EOT entries for both photoreader and punch must be specified as follows:
Photoreader —  xx, DVCO1 (,T)
Punch = Y DvCo2 (,B,T)
Where xx and yy are the device select codes and the bracketed parameters are optional.
Note that DVC01 and DVC02 must be used (even though the driver is designated as DVCO00)
in order for this driver to properly recognize the specific type of device with which it is
communicating.
B. Device 1 is an auxiliary TTY or CRT and is buffered.

C. Device 2 is an auxiliary TTY. Because it is an odd-numbered subchannel, it is treated like an
HP 2762 Terminal Printer or an HP 2615 or HP 2640 Terminal.

D. Device 3 is an auxiliary TTY that has been designated as a terminal. When enabled, any
character input from the terminal schedules the serial program as set by HpCrtSchedProg.

E. Device 4 is a buffered punch with a subchannel equal to four, so it will be downed when a
timeout condition occurs.

F. Device 5 is a photoreader with a subchannel of 6, so it will be downed on either a timeout or
an end-of-tape condition.

G. Device 6 is a serial printer set up with subchannel 13 to get null character stalls and is downed
on timeout.

B-4 System Generation Considerations



EQT Extension Word Usage in DV800

The following is a description of the EQT Extension word usage for DV800. For individual bit
definitions, refer to the description of the appropriate CN function code in Chapter 2 of this

manual.

EQx01

EQx02

EQx03

EQx04

15 |14 13 12 |11 10 9 7 6|5 4 3|2 1 0
EN|ICH|SD|N|H|U/|L|T Protocol

<« CN33 >« CN 34 >
15 |14 13 12 |11 10 9 7 6|5 4 3|2 1 0
X X X | SL X E Terminator Character

<«— CN17

v

Note that bit 12, when set to 1, provides speed sense on logon.

15 |14 13 12 (11 10 9 8 6|5 4 32 1 0
DB/C |MC |BG | #SB PAR R Baud Rate Port
< CN 30 —>
15 |14 13 12 (11 10 9 8 6|5 4 32 1 0
EN X Primary Prog.
—— -~ —— -
T CN 20/CN 21 T

Extension size is 26 words for port 0, 16 words for ports 1. ..7
For the Master EQT (the EQT for port 0), there are 10 additional words, as follows:

Eqx17
Eqx18
Eqgx19
Eqx20
Eqgx21
Eqgx22
Eqx23
Eqgx24
Eqx25
Eqgx26

Raw Card Status (updated by the predriver)
Card State word

EQT address for port 0
EQT address for port 1
EQT address for port 2
EQT address for port 3
EQT address for port 4
EQT address for port 5
EQT address for port 6
EQT address for port 7

System Generation Considerations B -5






Example Page Mode Application

character*80 FieldString
integer*2 Clear (3)
integer*2 Ibuf (200)
data Clear /15510b,15512b,15542b/

100 call EXEC(2,LU, Form, FormLength)
call HpCrtPageMode (LU, .true.)
200 call EXEC(2,1ior(LU,2000b),Clear, -6)

call EXEC(1l,ior (LU, 200b),
> ibuf,-400)

call abreg(istatus,itrans_log)
if ( iand(istatus,1l).eqg.l .or.

> itrans log.eq.0 ) then

go to 100
endif
flag = HpCrtGetField S(ibuf,itrans log,
> 1,fieldstring)
if ( flag ) then

if ( fieldstring.eqg. 'EN’ ) then

go to 300

endif

endif

kkhkkkkhkkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkkk,kkhkkk,kkkk*x*

* Process the data from the screen here *
dAhkkhkhkkhhkhdhhdhdhkdhhkdhhkhhkhdhhdhdhkdd,dd,khdhhdhdhdddhxk*x

go to 200
call HpCrtCharMode (LU)
call EXEC(2,ior(LU,2000b),Clear,-6)

300

end

Example Page Mode Application

to receive one field

escape sequence

to receive raw screen data
home cursor, clear form,

and unlock keyboard

(Esc H Esc J Esc b)

put the form on the screen
put terminal in block page
mode, protected forms enabled

clear the unprotected fields,
enable the keyboard

do the block mode read of the
unprotected part of the form
auto-home will lock the keys
get driver status

check for timeout

or zero transmission log
which can happen only if

the user messed up the CRT
so go through set-up again
get data from first
unprotected field

look for end command
to escape application

do another screen

back to normal terminal mode
clear the screen and enable
keyboard before terminating

C-1



ENQ/ACK Handshake Details

The following flowchart shows the algorithm used for the ENQ/ACK handshakes to pace writes
in HP mode.

v

ENQ/ACK yes
counter
= 807 \
no set
missed [€
ACKs=0
v
send |
ENQ |€
increment
(5 sec) o| missed
timedout | ACKs
delay long enough
no .| for all missed
”| ACKs to arrive
delay > 1/2 second
set
ENQ/ACK
cntr=0
send |
data [€
char
v
increment
ENQ/ACK
counter
l Done

ENQ/ACK Handshake Details D-1



HP Character Set

Effect of Control Key * M
<—000-037B—e- | «+—040-077B—» | «—100-137B— | =1 40-177B—>|
1

765: O00 O01 O‘10 01‘1 100 10‘1 1 0 1‘1‘1
Bits Col.

0 1 2 3 4 5 6 7
4 3 2 1 |Row
0o|0|0]O 0 NUL | DLE SP 0 @ P p
00|01 1 SOH | DC1 ! 1 A Q a
o|0|1{o0 2 STX | DC2 ? 2 B R b r
0|0 |11 3 ETX | DC3 # 3 C S c s
o|1]ofo 4 EOT | DC4 $ 4 D T d t
01|01 5 ENQ | NAK % 5 E u e u
o|1|1]o0 6 ACK | SYN & 6 F \Y f v
0|1(1](H1 7 BEL | ETB ’ 7 G w g w
110(0]|0 8 BS | CAN ( 8 H X h X
110(0|1 9 HT EM ) 9 | Y i y
110(1]0 10 LF SuUB * J Y4 j z
1(0]1]1 11 VT ESC + ; K [ k {
1{1]{olo| 12 FF FS , < L \ | |
11|01 ]| 13 CR | GS - = M ] m }
1(1(1]0 14 SO RS > N ~ n ~
11|11 15 sl us / ? 0 _ o | DEL

—
32 Control Upshifted
Codes Lowercase
+—— 64 Character Set
; % e e :

Example: The representation for the character “K” (column 4, row 11) is
Bit 76 54321
Binary 1 0 01 0 1 1
Octal 1 1 3

Note: * Depressing the Control Key while typing an uppercase letter produces the corresponding
control code on most terminals. For example, Control-H is a backspace.

HP Character Set E-1



Table E-1. Hewlett-Packard Character Set for Computer Systems

This table shows Hewlett-Packard’s implementation of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices
may substitute alternate characters from those shown in this chart (for example, Line Drawing Set or Scandinavian
font). Consult the manual for your device.

The left and right byte columns show the octal patterns in a 16-bit word when the character occupies bits 8 to 14 (left
byte) or 0 to 6 (right byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add
the two values. For example, “AB” produces the octal pattern 040502. (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

. Octal Values
Decimal Mnemonic | Graphic! Meaning
Value Left Byte | Right Byte

0 000000 000000 NUL Nu Null

1 000400 000001 SOH Sy Start of Heading

2 001000 000002 STX Sx Start of Text

3 001400 000003 EXT Ex End of Text

4 002000 000004 EOT Et End of Transmission

5 002400 000005 ENQ Eq Enquiry

6 003000 000006 ACK Ak Acknowledge

7 003400 000007 BEL JAN Bell, Attention Signal

8 004000 000010 BS Bs Backspace

9 004400 000011 HT Ht Horizontal Tabulation
10 005000 000012 LF Lg Line Feed
11 005400 000013 VT V1 Vertical Tabulation
12 006000 000014 FF Fe Form Feed
13 006400 000015 CR Cr Carriage Return
14 007000 000016 SO So Shift Out Alternate
15 007400 000017 Sl S Shift In ] Character Set
16 010000 000020 DLE D, Data Link Escape
17 010400 000021 DC1 D4 Device Control 1 (X-ON)
18 011000 000022 DC2 D» Device Control 2 (TAPE)
19 011400 000023 DC3 D3 Device Control 3 (X-OFF)
20 012000 000024 DC4 Dy Device Control 4 (TAPE)
21 012400 000025 NAK Nk Negative Acknowledge
22 013000 000026 SYN Sy Synchronous Idle
23 013400 000027 ETB Eg End of Transmission Block
24 014000 000030 CAN Cn Cancel
25 014400 000031 EM Ewm End of Medium
26 015000 000032 SUB Sg Substitute
27 015400 000033 ESC Ec Escape?
28 016000 000034 FS Fs File Separator
29 016400 000035 GS Gs Group Separator
30 017000 000036 RS Rs Record Separator
31 017400 000037 us Us Unit Separator

127 077400 000177 DEL [ | Delete. Rubout3

E-2 HP Character Set




Table E-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
32 020000 000040 Space, Blank
33 020400 000041 ! Exclamation Point
34 021000 000042 ? Quotation Mark
35 021400 000043 # Number Sign, Pound Sign
36 022000 000044 $ Dollar Sign
37 022400 000045 % Percent
38 023000 000046 & Ampersand, And Sign
39 023400 000047 ’ Apostrophe, Acute Accent
40 024000 000050 ( Left (opening) Parenthesis
41 024400 000051 ) Right (closing) Parenthesis
42 025000 000052 * Asterisk, Star
43 025400 000053 + Plus
44 026000 000054 , Comma, Cedilla
45 026400 000055 - Hyphen, Minus, Dash
46 027000 000056 . Period, Decimal Point
47 027400 000057 / Slash, Slant
48 030000 000060 0 \
49 030400 000061 1
50 031000 000062 2
51 031400 000063 3
52 032000 000064 4
53 032400 000065 5 } Digits, Numbers
54 033000 000066 6
55 033400 000067 7
56 034000 000070 8
57 034400 000071 9 }
58 035000 000072 : Colon
59 035400 000073 ; Semicolon
60 036000 000074 < Less Than
61 036400 000075 = Equals
62 037000 000076 > Greater Than
63 037400 000077 ? Question Mark

HP Character Set

E-3



Table E-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
64 040000 000100 @ Commercial At
65 040400 000101 A
66 041000 000102 B
67 041400 000103 C
68 042000 000104 D
69 042400 000105 E
70 043000 000106 F
71 043400 000107 G
72 044000 000110 H
73 044400 000111 I
74 045000 000112 J
75 045400 000113 K
76 046000 000114 L
77 046400 000115 M
78 047000 000116 N Uppercase Letters
79 047400 000117 @)
80 050000 000120 P
81 050400 000121 Q
82 051000 000122 R
83 051400 000123 S
84 052000 000124 T
85 052400 000125 U
86 053000 000126 \
87 053400 000127 W
88 054000 000130 X
89 054400 000131 Y
90 055000 000132 z
91 055400 000133 [ Left (opening) Bracket
92 056000 000134 \ Backslash. Reverse Slant
93 056400 000135 1 Right (closing) Bracket
94 057000 000136 ~1 Caret. Circumflex: Up Arrow*
95 057400 000137 _+ Underline: Back Arrow*

E-4 HP Character Set




Table E-1. Hewlett-Packard Character Set for Computer Systems (continued)

Octal Values
Decimal Character Meaning
Value Left Byte Right Byte
96 060000 000140 ‘ Grave Accent®
97 060400 000141 a
98 061000 000142 b
99 061400 000143 c
100 062000 000144 d
101 062400 000145 e
102 063000 000146 f
103 063400 000147 g
104 064000 000150 h
105 064400 000151 i
106 065000 000152 j
107 065400 000153 k
108 066000 000154 I
109 066400 000155 m
110 067000 000156 n Lowercase Letters®
111 067400 000157 o]
112 070000 000160 p
113 070400 000161 q
114 071000 000162 r
115 071400 000163 S
116 072000 000164 t
117 072400 000165 u
118 073000 000166 \Y
119 073400 000167 w
120 074000 000170 X
121 074400 000171 y
122 075000 000172 z
123 075400 000173 { Left (opening) Brace®
124 076000 000174 | Vertical Line®
125 076400 000175 } Right (closing) Brace®
126 077000 000176 ~ Tilde, Overline®

Note 1: This is the standard display representation. The software and hardware in your system determine if the
control code is displayed, executed, or ignored. Some devices display all control codes as “@” or space.

Note 2: Escape is the first character of a special control sequence. For example, ESC followed by ‘J” clears the dis-
play on an HP 2640 terminal.

Note 3: Delete may be displayed as “_”, “@”, or space.

Note 4: Normally, the caret and underline are displayed. Some devices substitute the up arrow and the back arrow.

Note 5: Some devices upshift lowercase letters and symbols (‘ through ™) to the corresponding uppercase
character (@ through *). For example, the left brace would be converted to a left bracket.

HP Character Set E-5



Table E-2. HP 7970B BCD-ASCII Conversion

BCD ASCII BCD ASCII

Mool | (oot Code) | (ESMEE || SIMBOL | (octal Code) | SUVEETL
(space) 20 040 @ 14 100
! 52 041 A 61 101
” 37 042 B 62 102
# 13 043 C 63 103
$ 53 044 D 64 104
% 57 045 E 65 105
& 11 046 F 66 106
’ 35 047 G 67 107
( 34 050 H 70 110
) 74 051 | 71 111
* 54 052 J 41 112
+ 60 053 K 42 113
, 33 054 L 43 114
- 40 055 M 44 115
. 73 056 N 45 116
/ 21 057 0 46 117
0 12 060 P 47 120
1 01 061 Q 50 121
2 02 062 R 51 122
3 03 063 S 22 123
4 04 064 T 23 124
5 05 065 U 24 125
6 06 066 v 25 126
7 07 067 w 26 127
8 10 070 X 27 130
9 11 071 Y 30 131
15 072 Z 31 132
; 56 073 [ 75 133
< 76 074 \ 36 134
= 17 075 ] 55 135
> 16 076 1 77 136
? 72 077 — 32 137

Note 1: 1The ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape.

E-6

HP Character Set




Index

A

ASCII mode read, 2-1
ASCII vs binary read modes, 2-5
auto-home bit, read request, 2-3

B

backspace, 2-4
baud rate group, 2-14
default (DV800 only), 2-21
resetting, 2-29
baud rates
selection bits, 2-21
supported, 2-14
BCD-ASCII conversion (HP 7970B), E-6
binary bit
read request, 2-3
write request, 2-10
block mode
read, 2-5
terminal, 2-7
break condition, 2-5
generate, 2-24
save data on break, 2-24
BRG Range, 2-14
ID800/ID801 default, 2-21
buffered read, 2-25
BUFR and BUFLN parameters
read request, 2-1
write request, 2-9

o

carriage control capabilities, 2-27
carriage return, 2-4
character framing bits, 2-20
character mode, read, 2-3
character set, HP, E-1
character-by-character scheduling, 2-24
comparison to previous drivers, 3-1
DV800 and DVMO00, 3-1
DVC00 and DVRO00, 3-2
compatibility (RTE-A vs. RTE-6/VM), 1-2
FIFO vs. type-ahead mode, 1-3
LU numbers, 1-2
pass program name, 2-16
program scheduling, 1-2
protocols, 1-4
screen mode, 1-4
timeout bits, 1-2
control request, 2-11

control word (CNTWD), 2-11
define baud rate group, 2-14
define termination character, 2-15
device LU, 2-11
disable program scheduling, 2-17
dynamic status, 2-12

control word, 2-12

special forms, 2-13
enable program sheduling, 2-15
FIFO buffer mode control, 2-24
flush input buffers, 2-18
flush output, 2-18
function codes, 2-11
generate break, 2-24
line spacing/page eject, 2-13
LU number, 2-11
read HP terminal straps, 2-18
reset baud rate group, 2-29
restore output processing, 2-18
set device timeout, 2-17
set port ID, 2-19
set port protocol, 2-26

control word (CNTWD)
read request, 2-2
write request, 2-9
CPU-to-CPU protocol

definition, 2-29
setting, 2-27

D

delete (special character), 2-4
device
timeout, setting, 2-17
type, 2-27
device LU, control request, 2-11
disable, program scheduling, 2-17
driver communication word, 2-7
driver device types, 2-27
DRT table entry, DVC00, B-3
DV800, EQT extension word usage, B-5
DVC00
generation considerations, B-3
DRT table entry, B-3
EOT/timeout options, B-3
subchannel assignment, B-3
typical device configurations, B-4
DVC01 and DVCO02, B-3
dynamic status, 2-12
control word, 2-12
device status, 2-12
special forms, 2-13

Index-1



E setting, 2-27
hardcopy/spacing mode, 2-26

echo bit honesty mode bit, 2-10
read request, 2-2 HP 7970B BCD-ASCII conversion, E-6
write request, 2-10 ‘ HP character set, E-1

enable, program scheduling, 2-15 HP protocol

ENQ/ACK handshaking, flowchart of algorithm, definition, 2-28
D-1 setting, 2-27

EOT (ctrl-D), 2-4 . HP Xon/Xoff protocol

EOT/timeout options, DVC00 generation, B-3 definition, 2-28

EQT entries, B-1 setting, 2-27

EQT extension words, serial drivers, B-2 HpCrtParity Chk, 2-20
usage, B-5 HpCrtParity_Gen, 2-20

example o HpCrtReadChar, 2-1
page mode application, C-1 HpCrtSchedProg, 1-2
protocol charts, A-1 HpCrtSchedProg_S, 1-2

HpCrtStripChar, 1-4

F HpMdm, 2-7

FIFO mode, 1-3 |
control, 2-24

enable, 2-24 input editing, 2-2
flush input buffers, 2-18 interrupt table, serial drivers, B-2
flush output, 2-18
force handshake bit, write request, 2-10 L
Function Code 11B, 2-13 ]
Function Code 16B, 2-14 line feed, 2-4 '
Function Code 17B, 2-15 line spacing/page eject, 2-13
Function Code 20B, 2-15 LU number
Function Code 21B, 2-17 control request, 2-11
Function Code 22B, 2-17 restrictions, 1-2
Function Code 23B, 2-18 LU table, serial drivers, B-2
Function Code 24B, 2-18
Function Code 25B, 2-18 M
Eﬁggﬁgg gggz ggg’ %_g Master EQT, serial drivers, B-5
Function Code 32B: 2-24 modem control bit, 2-20
Function Code 33B, 2-24 MUX pre-driver, B-2
Function Code 34B, 2-26
Function Code 35B, 2-29 N

Function Code 6B, 2-12

function codes, control request, 2-11 nice bit, 2-26

G P
page eject/line spacing, 2-13
generate break, 2-24 page ejects, unconditional, 2-26
generatlon page mode’ 2-7
DVC00, B-3 example application, C-1
DRT table entry, B-3 parity checking bits, 2-20
EOT/timeout options, B-3 port ID, setting, 2-19
subchannel assignment, B-3 port number bits, 2-21
serial drivers, B-1 printer, honesty mode bit, 2-10
printer/paper position bit, 2-26
H program, scheduling, 1-2
disable, 2-17
half HP protocol enable, 2-15
definition, 2-29 protocol
setting, 2-27 defining with CN 34B, 2-27
half HP Xon protocol descriptions, 2-28
definition, 2-29 protocol chart examples, A-1

Index-2



R

RD bit, 2-26
read HP terminal straps, 2-18
read request, 2-1
ASCII mode, 2-1
ASCII vs binary mode, 2-5
auto-home bit, 2-3
binary bit, 2-3
block mode, 2-5
buffered, 2-25
BUFR and BUFLN parameters, 2-1
character mode types, 2-3
control word (CNTWD), 2-2
echo bit, 2-2
special status read, 2-7
transparency bit, 2-2
Z-bit, 2-2
restore output processing, 2-18
return data on timeout (RD bit), 2-26

S

save data on break, 2-24
screen mode, 1-4
serial drivers
comparison to previous drivers, 3-1
DV800 and DVMO00, 3-1
DVC00 and DVRO00, 3-2
control request, 2-11
device type, 2-27
EQT entries, B-1
EQT extension words, B-2
usage, B-5
generation considerations, B-1
interrupt table, B-2
list of
RTE-6/VM, 1-1
RTE-A, 1-1
LU table, B-2
Master EQT, B-5
MUX pre-driver, B-2
read request, 2-1
special characters, 2-4
user-level interface, 2-1
write request, 2-9
set port ID, 2-19
set port protocol, 2-26
special characters, 2-4
special status read, 2-7
word definitions, 2-8
speed sensing, 2-22
stop bit selection bits, 2-20
subchannel assignment, DRT entry, B-3
supported baud rates, 2-14
system generation
DVC00, B-3

DRT table entry, B-3

EOT/timeout options, B-3

subchannel assignment, B-3
serial drivers, B-1

T

terminal
block mode, 2-7
page mode, 2-7
read straps, 2-18
termination character, define, 2-15
timeout
return data on, 2-26
setting, 2-17
timeout bits, 1-2
timeout/EOT options, DVC00 generation, B-3
transparency bit
read request, 2-2
write request, 2-9
TTY protocol
definition, 2-28
setting, 2-27
type-ahead mode, 1-3

U

UART (Universal Asynchronous Receiver/Trans-
mitter), 1-3

unconditional page ejects, 2-26

user-level interface, 2-1

w

write request, 2-9
binary bit, 2-10
BUFR and BUFLN parameters, 2-9
control word (CNTWD), 2-9
echo bit, 2-10
force handshake bit, 2-10
honesty mode bit, 2-10
transparency bit, 2-9
Z-bit, 2-9

X

XLUEX calls, 1-2

Xon/Xoff protocol
definition, 2-28
setting, 2-27

z

Z-bit
read request, 2-2
write request, 2-9
Z-buffer, 2-2

Index-3






	RTE-6/VM Serial Driver
	Preface
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - User-Level Interface
	Chapter 3 - Comparison to Precious Drivers
	Appendix A - Example Protocol Charts
	Appendix B - System Generation Considerations
	Appendix C - Example Page Mode Application
	Appendix D - ENQ/ACK Handshake Details
	Appendix E - HP Character Set
	Index



