A paciars

RTE-A

User’s Manual

Software Services and Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 92077-90002 Printed in U.S.A. April 1995
E0495 Eighth Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at

DFARs 252.227.7013.

Copyright © 1983, 1985 - 1987, 1989, 1990, 1992, 1993, 1995 by Hewlett-Packard Company

Printing History

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed which contain replacement pages to be merged into the manual,
including an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine what manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File. (The Manual Numbering File is included with your software. It consists of an
“M” followed by a five digit product number.)

Second Edition Jun 1983 ...

Update 1 Dec 1983 Command stack enhancement
Reprint Dec 1983 Update 1 incorporated
Third Edition.................. Jan 1985l Cl enhancements

Update 1 Jan 1986 ...
Reprint Jan 1986 Update 1 incorporated
Fourth Edition Aug 1987 Rev. 5000 (Software Update 5.0)
Fifth Edition Jan 1989 Rev. 5010 (Software Update 5.1)

Update 1 Jul 1990 Rev. 5020 (Software Update 5.2)
Sixth Edition Dec 1992 Rev. 6000 (Software Update 6.0)
Seventh Edition Nov 1993 Rev. 6100 (Software Update 6.1)
Eighth Edition Apr 1995 Rev. 6200 (Software Update 6.2)

3/4

Preface

This manual introduces the interactive features of the RTE-A Operating System and shows how
to communicate with the system from the terminal keyboard. The commands described are
those provided by the Command Interpreter (CI) program, which is designed to simplify
interactive operations for RTE-A users. To run other programs such as the editor or LINK
interactively, consult the manuals that describe those programs.

RTE-A also provides an interactive user program called FMGR, which maintains files previously
created with FMGR. Appendix B of this manual contains a full description of the FMGR
program.

This manual also includes information on the HP 92078A Virtual Code+ System Extension
Package (VC+). Information related to this product is indicated as optional; it is only needed if
your system uses VC+.

You should be familiar with the RTE-A Getting Started Manual, part number 92077-90039,
supplied with the RTE-A Operating System. It is assumed that RTE-A has been successfully
booted up and is operating. All users of this manual must be familiar with the display terminal
being used in the system.

How This Manual Is Organized

Chapter 1 Describes the features of the RTE-A Operating System and introduces the
basic concepts and terms used throughout this manual.

Chapter 2 Describes how to obtain system information and how to control certain
user-level system operations.

Chapter 3 Describes files, their associated attributes, and how to manipulate files.

Chapter 4 Describes programs, their associated attributes, and how to control programs.

Chapter 5 Describes the multiuser operations provided with VC+.

Chapter 6 Contains descriptions of all CI commands and utility programs. The
descriptions are given in alphabetical order.

Chapter 7 Describes the methods of editing CI command strings.

Chapter 8 Describes exception condition handling.

Appendix A Contains error messages and error codes that may be encountered during

interactive operations. Operator error message formats are also described in
this appendix.

Appendix B Describes the FMGR commands for disk/file manipulation, transferring files,
and FMGR scheduling.

Appendix C Describes the CS/80 Exerciser Utility (EXER) used to diagnose and
troubleshoot CS/80 disk drives on HP 1000 systems.

Conventions Used in This Manual

The command syntax and other conventions used in this manual are described in the following
paragraphs. Sample terminal displays include both user inputs and program prompts and
messages. Comments are given in parentheses. For example,

Cl> dl /derick/casey/ @@ (List all files in subdirectory CASEY under
directory DERICK)

Certain commands and command parameters are applicable only to systems using VC+. These
are indicated by “(VC+ Only)” in the heading or in the descriptive comment column.

The command syntax conventions are as follows:

Convention Meaning

Uppercase characters Capital letters indicate the exact characters required. However, CI
accepts lowercase input. For example, the command syntax for the
AS command is:

AS prog <partition number> [C| D|
and the actual sample entry can be:
Cl>as testprogram 2 c
[] Optional parameters are shown in square brackets. If you omit a
parameter, use a comma as a placeholder before specifying
additional parameters, unless the omitted parameter(s) begins

with a + or — character.

| Separate alternate choices by a vertical bar (|). The “C|D” shown
above indicates either C or D can be entered.

, or blank Use a comma or a space as a delimiter between commands and
parameters. Blank spaces are used throughout this manual in all
syntax strings.

lowercase Italicized lowercase letters represent user-supplied variables. In
and long descriptive phrases, the variable may be enclosed in angle
<> brackets for clarity, for example, <partition number>.

There are certain terms used in all syntax strings that have standard meanings throughout this
manual. The most common terms are described below.

prog

lu

file

mask

file |lu

prog|file
pram
pram*2

pram*n

Program name; up to five characters can be used. For VC+ systems, session
identification is optional. Examples of program names:

A

PROGA

ADVEN

TI MER

LRUN 3 (Session ID is 3)

Logical unit number in the range of 0 to 255. It refers to a physical
input/output (I/O) device. LU 1 is usually the user terminal. Exceptions are
noted throughout this manual, for example, in the TO command description
in Chapter 6. LU 0 is the bit bucket, a non-existent device to which
unwanted data can be dumped.

File descriptor. Refer to the CR command description in Chapter 6 for a
full description of the file descriptor. It can be accepted in any of the
following formats:

Standard: [dirl subdir! filename: : : type: size: rlen
Combined: subdirl filename: : dir: type: size: rlen
FMGR: filename: sc: crn: type: size: rlen

Mask field. May be the wildcard characters in the filename parameter (- and
@) or a mask qualifier appended to the filename parameter. Refer to
Chapter 3 for details.

Either a file descriptor or a logical unit number may be specified. A mask
may be used in the file descriptor.

Either a program name or a file descriptor may be specified. Refer to the
RU command description in Chapter 6 for more information.

One parameter is allowed.

Two to n parameters are allowed. Unspecified parameters can default
to zero or zero-length strings depending on the application.

Table of Contents

Chapter 1
Introduction
Using RIE-A o e e e e e e 1-1
Command Interpreter Features, 1-2
Introduction to Programs 1-4
Introduction to Files 1-4
System Information e 1-5
CITerminationttt e e e e 1-5
When Clis Not Available i e 1-5
Chapter 2
Using the System
Getting Helpo oo 2-3
Using the Command Stack 2-4
Obtaining System Statusttt e 2-6
Display Program Statust e 2-6
Display Memory USageovuti ettt 2-8
Display I/O Configurationt 2-8
Controlling DEvVICESottt e 2-10
Changing I/O Device Attributesttt it 2-11
How to Bring UpaDeviceot 2-11
Changing Timeout Values it 2-12
Displaying System Timec.iuiiit i et 2-13
Executinga Command File i 2-13
Positional Variables 2-14
User-Defined Variables 2-15
Environment Variables (VC+ Only)o et 2-16
Predefined and Other Variables i i 2-16
Tilde (7)) SubSHIULION oo ettt 2-21
Nesting Command Files i e 2-21
String Processing and Positional Variables Parsing 2-22
QUOLINE .ttt et e e e e e 2-23
Multiple Commands per Linettt 2-24
Return Status 2-24
Execution Control Structures e 2-25
Timeout/Logoff Function 2-25
Spooling (VCH+ ONly) ...t e e e e 2-26
Error Logging (VC+ Only) ...t e i 2-26
System Setup ULIIItIESot e e 2-27
Chapter 3
Manipulating Files
File Propertiesot e e 3-1
File Names e e 3-1
Temporary Files 3-2
I/O Devices Referenced as Files 3-2

File Type EXtensionsouuiiiniiiiii i 3-4
File DeSCriptorsottt e e e e e e e e 3-5
DIrectOriesttt 3-6
SUbIrECtOriesottt e 3-8
Directory Specifiers “.” and “..7 3-9
Directory Specifier “#n” e 3-10
File TYpe oot 3-11
File Size . ..o o 3-12
Record Length 3-12
File Ownership and Associated Group (VC+ Only) 3-13
Protection (VC+ Only)oooin e 3-13
TImMe StAmMPS . . o oot 3-14
File Maskso 3-14
Masking and FMGR Files i e 3-20
Destination File Masks i 3-20
File Operationsttt e e e e e 3-22
Directory Listingsot e 3-22
Listing Files 3-23
Copying Files 3-24
Renaming Files 3-24
Moving Fileso 3-25
Purging Fileso 3-25
Unpurging Files e e e 3-26
Creating Empty Files i 3-26
Change File Protection (VC+ Only) ...ttt e 3-27
Creating Symbolic Links (VC+ Only) 3-28
Manipulating Dir€ctoriesottt e 3-29
Creating a Dire€ctoryttt e e e 3-29
Creating a SUDAITeCtOTYottt e e e 3-30
Display/Setup Working Directory, 3-30
Moving Dir€Ctori€sttt e e e 3-31
Displaying Directory Owner (VC+ Only) ...t .. 3-31
Changing Directory Owner and Associated Group (VC+ Only) 3-32
Purging Dir€CtOri€sttt e e e 3-33
Display/Change Directory Protection o i, 3-33
Searching for Fileso e 3-34
Default Search Sequence i 3-34
Defining UDSPs (VC+ Only)ttt 3-34
Specifying UDSPs in File Descriptors (VC+ Only), .. 3-35
Manipulating VOIUmESst e e 3-36
Mount/Dismount Volumes 3-36
Volume Ownership and Protection 3-37
Listing VOlumes o e e e 3-37
Initializing Volumes 3-38
File Manipulation Utilities i i e 3-38
File System UtIlItIESot e e 3-38
Transferring Data to and from Devices i i i 3-39
FMGR Files . ..o e e e e e e e 3-40
DS File Access (DS ONly) . .. ooooin i e e 3-41
Specifying Remote Files i 3-41
Multiuser Remote File ACcessot 3-42
DS File Access Considerationsoouuiiiuiiiinttne e, 3-43
Remote File Access Limitations 3-44

10

Chapter 4
Controlling Programs

Program Identification i 4-2
Program Prioriti€st e 4-2
Running a Program i e 4-2
Program Executiono e 4-3
Running Programs with Wait 4-3
Running Programs without Wait 4-4
Time Scheduling Programs i i 4-5
Restoring Programs i 4-5
Program ID Segments 4-5
Prototype ID Segmentst e 4-6
Program ID Duplicatingot e 4-6
Removing Programs 4-7
Breaking Program Execution i 4-7
Suspending a Program 4-8
Resuming Program Execution e 4-8
Restarting a Program 4-8
Displaying Program Statuso it e 4-8
Changing Program Prioritiest 4-9
Changing Memory Requirementsottt 4-9
Assigning Partitionst e 4-10
Changing Virtual MemoOry Ar€attt et 4-11
Shared Programs (VC+ Only) ...t e 4-11
Changing CDS Program Memory Requirement
(VCH Only) it e e 4-12
Models of EMA/VM A ... 4-13
Chapter 5
Multiuser Session Operation (VC+ Only)
Logon and Logoff e 5-1
GIOUP ACCOUNLS . . e vttt ettt et e e e e e e e e e e e e e e e et et ens 5-4
USET ACCOUNES ..ottt t ettt et e e e e e e e e e e e e 5-4
Creating and Modifying ACCOUNtSttt i 5-5
SUPETUSETS - . . ettt ettt e e e e e e e e e e e e e 5-5
Capability Levels e 5-5
Command Capability Levels e 5-6
Program Protection through Capability Levels 5-6
Session Handling i 5-7
Identifying Programsttt e 5-8
Running Out of SAM 5-8
Chapter 6
Command Descriptions
Capability Levels for CI Commands i, 6-1
Precedence Within CI 6-2
D (HeID) - et 6-3
FLCOMMENT) .ttt ettt et e e ettt e e 6-3
AB2MI (Absolute Binary to Memory Image), 6-4
Break Detection 6-4
AB2ZMI Er10r MeESSAZES . o v ottt ettt e et e e e e e 6-5

11

ALIAS (Define/Display Aliases; VC+ Only)ooouniniii i 6-6
AS (Assign Partition)™ 6-8
ASK (Display a Prompt and Read a Response)ccooiiiiiiiiiiin .. 6-9
AT (Set Program Run Time)coouiiiii i 6-11
BR (Break Program Execution)™ it e 6-13
CALLM (Merge Text Files for CALLS Utility) ..., 6-14
Include Directive e 6-15
CALLS (Online Help Facility)oouii e 6-16
CALLS Catalog File e e e 6-17
CALLS DITECHIVES . .ttt ettt ettt e e e e e i 6-17
Relating Topics to Other TOpicSovuiiit i i 6-18
Index File oo 6-19

CD (Change Working Directory)ttt 6-20
CL (List Mounted DisKS)ttt e 6-22
CLOCK (Access A990 Clock Chip) .« v v vie et e 6-23
CN (Control DEeVICE) . . .o v vttt e e e e e 6-24
CO (Copy FIles) . .o e e 6-26
CP (Copy Files and Directory Subtrees; VC+ Only), 6-29
CR (Create File) e e 6-32
CRDIR (Create Directory/Subdirectory)oouuuuiniiiiiiinnin... 6-35
CRON (Clock Daemon; VC+ 0nly)ttt 6-37
CRONTAB (User CRONTAB File; VC+only)ooviininniiiiiiii ... 6-38
CSYS (COPY SYSIEIM) . o o ettt ettt e e e e e e e e et e e e 6-40
OPETAtION . . oottt ettt e e e e e e e e e e 6-41
EXamples e 6-41
Loading CSY S .o 6-42
Error Messages . .« v v ittt e e 6-43

CZ (Display/Modify Code Partition Size; VC+ Only)*, 6-44
DC (Dismount Disk Volume)ttt e 6-45
DL (Directory LiSt) . ..ottt e e 6-46
DT (Display/Modify Data Partition Size; VC+ Only)* 6-50
ECHO (Display Parameters at Terminal) i .. 6-51
EX (EXit) o ottt e 6-52
FOWN (Report File Space by OWNer)ooiiiiininniiiiinneeann... 6-54
Return Valueso 6-55
EXamples e 6-55
FPACK (File System Pack) e 6-57
The Packing Processt e e e 6-57
Moving Dir€Ctoriesttt e e 6-59
Moving SUbdIreCtOries oottt e 6-60
Moving Fileso e 6-61
FPUT (Bootable System Installation) it 6-62
FPUT Operationttt ettt e 6-63
FREES (Indicate Free Space ona Volume) iiiiiiiiiiiinaaan. 6-64
FSCON (File System CONVeTrSION)ccuuuunttttie ettt iae e eiiaeeeeen 6-67
Requirements for Successful Conversioncoo i, 6-67
The Conversion Processt 6-67
File Renaming i e e e 6-68
Converted CI Directory Entriesot 6-68

Error MeSSages . .« .o vv ettt et e e e e 6-69
FUNCTION (Define a Function; VC+ Only) ..., 6-70
FUNCTIONS (Display Functions; VC+ Only) ...t 6-72
FVERI (File System Verification)ouiiuiiiinii e, 6-73
Error RecOVeTYo e 6-75
Error Messages . .« oo ittt e e e 6-76

12

GO (Resume Suspended Program)™* 6-79

GREP, FGREP (Search a File fora Pattern) i, 6-80
IF-THEN-ELSE-FI (Control Structure)ottt 6-83
IN (Initialize Disk Volume) i e 6-85
INSTL (Initialize BOOTEX File)cooti e 6-86
INSTL Operationottt ettt ettt et e 6-88
Error MeSSages . .« v vttt ettt e e 6-89

10 (Display I/O Configuration and Status)coiiiiiiiiinneernnnnn. .. 6-90
IS (Compare Strings or NUMDbETS)ottt e 6-95
KTEST (ksh-style Condition Evaluation Command) 6-96
LI (List FIles)ttt e e 6-98
LI Flags . ..ot 6-98

LI Commandsttt e e 6-100
LNS (Create Symbolic Link; VC+ Only) ...t 6-103
LS, LL, LSE LSX (List Directory Contents)uuueieiininneeennnnnn... 6-105
MC (Mount Disk VOIumEe)t e 6-108
MERGE (Concatenate Many Files into One)oiiiiiniiiinn. .. 6-109
METER (Display CPU USagE)vvuitt ittt e 6-111
Sorting and Displaying Process Information 6-112
Example of METER Output i 6-113
Loading METER 6-113
MI2AB (Memory Image to Absolute Binary), 6-114
Break Detectiont 6-114
Error MeSSages . .« v vv ettt et e e 6-115
MO (MOVe Files) . ..ottt e e 6-116
MPACK (File Compacting and Disk Pack) o i ... 6-117
MPACK OPLIONS . ettt ettt e e et e e e e e e e e e e e e e 6-117
Compacting and Reporting Optionscoiiniinnineinnnnnenn.. 6-117

Remove Extents from Files (+R)o i 6-118

Packing Optionsttt e e et et e e e 6-120
OKtoOverlay Data (+OK)t e 6-121

Enable Visual Mode (+V) ...t 6-121

Logging Optionottt e e e 6-122
EXamples e 6-123
MYV (Move/Rename Files/Directories; VC+ Only) 6-124
NOTIFY (Send a Message toa Terminal)c..o oot .. 6-125
Defining Aliases for Notification 6-126
Alternate Logons fora User ...t 6-126

Group Distribution Lists 6-126
Hostsina DS Network i i 6-127

Alias Definition Format i 6-127

OF (Stop/Remove Program)™® i 6-128
OLDRE (Extended Record CONVEIter)ooueeeuinnneeenuninneeennnnn. 6-129
OLDRE Extended Records i, 6-129
OLDRE Operationc.uouuiuntie ettt it 6-129
Translation Results o 6-130
Program Restrictionsot e 6-131
MACIO . ottt 6-131

Pascal 6-131

FORT RAN . e 6-132

Error MeSSages . .« . v vttt it e e e 6-132
OWNER (Display/Change Owner; VC+ Only) 6-133
PATH (Display/Modify UDSP; VC+ Only)o 6-134
POLL (Polling FUnction) oottt 6-137
PR (Change Program Priority)™ e 6-138

13

PROT (Display/Change Protection; VC+ Only) ... iiiiiiin. 6-139

PS (Display Program Status)®o i 6-141
PU (Purge Files)t e e 6-143
PWD (Display Working Directory)uuiiiituine i, 6-145
RESIZE (Set SLINES/$COLUMNS Variables; VC+ Only) 6-146
RETURN (Return from Command File) i ... 6-147
RM (Remove Files or Directories; VC+ Only) ..., 6-148
RN (Rename File, Directory, or Subdirectory)ccooiiiiiiiiinn. .. 6-149
RP (Restore Program File) 6-150
RS (Restart Program)t 6-152
RU (Run Program)® e e e e 6-153
Base Set Version of the RU Command o oa... 6-155
SAM (Show the Status of System Available Memory) 6-156
Running SAM without the AL Parameter, 6-156
Running SAM with the AL Parameter i, 6-157
Returned Values 6-157
Loading SAM . ..o 6-158
SCOM (File COMPATiSON)ttt ettt e e e e e e 6-159
F1, B2, BO .o 6-160

NN 6-160

NH 6-160

N 6-160

DB o 6-160

DB 6-160

DX oo 6-160

5 6-161

6-161
P 6-161

BT ER . 6-161

BR, BB .. 6-161

0 6-162

The Compare OPerationuuuueunt et ee et 6-162
Returned Values 6-162
Status Interrogationttt 6-163
SCOM EXamPIES . ..ottt e e e e e e e e 6-163
SCOM Error MEsSagesvvtttin ettt et ettt ettt 6-170
SET (Display/Define Variables)ooouniiiii e 6-171
SPORT (Serial Port Analyzer)ot i 6-173
Including SPORT in a User Program 6-174
Loading SPORT e e 6-175

SS (Suspend Program)™ 6-176
SYSTZ (Set Time Zone and Daylight Savings Time) 6-177
SZ (Display or Modify Program Size)™ 6-179
TM (Display or Set System Clock)™ i i 6-180
Base Set Version of the TM Command o i, 6-180

TO (Display or Modify Device Timeout)c..uuiiiiiiiiniiinnneen. 6-181
TOUCH (Update File Times; VC+ Only) 6-182
TR (Transfer to Command File) i et 6-184
UL (Unlock Shareable EMA Partition; VC+ Only)* oot 6-186
UNALIAS (Delete Alias; VC+ Only) ...ttt 6-187
UNPU (Unpurge Files)ot e e 6-188
UNSET (Delete User-Defined Variable) i iiiiiinnan. 6-189
UP (Up a DeviCe)™ oottt e e e e e e 6-190
VS (Display or Change VMA Size)™o et 6-191
WC (Line, Word, Character Count)couuiiiiniiiiiniiiniiennnn. 6-192

14

WD (Display or Change Working Directory)ouiiiiiiiniiiiinnnen. 6-194

WH (System Status Reporting)c.uuiiiiiiin i, 6-195
WH OPLIONS . ..ottt e e e e e e e e 6-197
WH Option Examplesooiiiiii i i 6-197
WH, CL (Class Table Information)oouiiiiniiiiinniineennn.. 6-198
WH, D (Show Prototype ID Segments)c.couiniiiiniiinnineennn.. 6-199
WH, SC (Show Scheduled Programs)o i, 6-199
WH, PA (Memory Partition Listing)o i, 6-199
WH, RN (Display Resource Number Information) 6-200
WH, SH (Display Shareable EMA)t 6-201
WH, ST (System Status Information) i, 6-202
Locking WH in Memoryooi i e e e 6-202
WHILE-DO-DONE (Control Structure)uuuiieeininneeeennnnneeenn. 6-203
WHOSD (Report Users; VC+ Only) ...ooonniii i 6-204
WS (Display or Modify VMA Working Set Size)*, 6-206
XQ (Run Program Without Wait)* 6-207
Base Set Version of the XQ Command 6-207
Chapter 7
Command Editing
/ (Command Stack Editor)oo o 7-1
$VISUAL Mode Command Line Editing (VC+ Only) 7-8
Performance Considerationso iuntinninen i, 7-8
EMACS/GMACS Visual Editing Mode 7-9
Cursor Motion Commandsc.uieniinninnenein e, 7-10
Deleting, Killing, and Restoring Commands 7-10
Formatting Commandsttt 7-11
Marking Commandsttt e 7-11
Searching Commandsiiiniiiin it 7-11
Other EMACS Editing Commandsc..ciiiiiinniineneenaen.. 7-12
VI Visual Editing Mode i e 7-13
Input Mode Edit Commandsciiiiiiiiiiiiiiiiii. 7-13
Control Mode Edit Commandsc.o i, 7-13
Cursor Motion Commandsc.uiuiiiiiinnennennenneennnn. 7-13
Search Commandsttt 7-14
Text Modification Commandscouiiniiniineneennenn.. 7-15
Other Edit Commandsoiuiiiiii i 7-16
CSH Visual Editing Mode e 7-17
CMNDO MODItOT ...ttt e e e e e e e 7-17
Chapter 8
Exception Condition Handling
Unusual File Access EIrors i 8-1
Non-Standard File Namesot i e 8-1
File Not Found e 8-2
Directory Name and FMGR Cartridge Reference 8-2
Unable to Open File or Create Directorycoiiiiiiiiiniinnaen.. 8-2
OWNER, PROT, or WD Command Failures 8-3
Unusual Logon Errorsot e 8-3
Disk Volume Full 8-3
Disk Volume Dismountedt 8-5
Clearing Open Fileso e e e 8-5
Parity Brrors 8-6

15

VCP INerrupt e 8-6

Missing System Programs it e 8-7

The RTE Prompto e e e e e e 8-8

The System Prompt 8-8

Power Failure 8-9

Appendix A

Error Messages

Error FOrmatso e A-1
Error Messages and Codesttt e A-1
I/O EITOrS ..o A-2
Program Abort Errorst A-3
Parity Errorso A-4

Error Messages votn ettt e e A-4

FMP Error Codest e e e A-13
DS Transparency Softwareot A-23
DS/1000 Software Errorso e A-24
Native Language Support Utilities Errors i, A-24

Appendix B

File Manager (FMGR)

FMGR Control e e B-2
List DevICe ...t B-2
LOog DevICe ...ttt B-2
Severity Codet B-2
FMGR EIT0rs . . oo B-2
FMGR Control Commandso.iiiiiiiii .. B-2

Explain Error Codes (77) ...ttt B-3
?? Command Examples e B-3
Display or Change List Device (LL) ...t .. B-4
LL Command Examplesooouiiniiii it B-4
Change Log Device (LO) ...ttt e B-5
Display or Set Severity Code (SV)ot B-5
SV Command Exampleso it B-6

Disk Manipulation e B-7
Logical vs Physical B-7
Disk Logical Units and LU Numbers i, B-7
Cartridges and Cartridge Reference Numbers B-8
Configuration of Logical Units/Cartridges i, B-8
Mounting and Dismounting Cartridgesc.uiiniinin .. B-9
Cartridge DIreCtoryottt e B-10
Cartridge File Dir€ctoryttt et B-10
Cartridge Initialization i e B-11
Master Security Codettt e B-12
Re-initializing @ Cartridgeoout i e B-12
Purging Files on a Cartridge During Re-initialization B-13
Packing a File Cartridgeiiniiniii it B-14
Transferring Files Between Disk Cartridges o .. B-15
Disk Manipulation Commands i B-15

List Cartridge Directory (CL) ..ot B-16
CL Command Example i B-17
Copy Files (CO) ..ot e e B-17
CO Command OPLiONSttt ettt e e B-18

16

CO Command Option Examplesc.o .. B-19

CO Command Examplest B-20

CO Command Termination ...t B-22
Dismount File Cartridge (DC) ...t e B-23

DC Command Error Handling i, B-23

List File Directory (DL)t e B-24

DL Command Examplest B-25
Initialize File Cartridge (IN)ttt B-27

IN Command Error Handling i, B-30
Mount File Cartridge (MC)o et B-30
MC Command Error Handling B-31
Pack File Cartridge (PK)o B-31

PK Command Error Handling B-32

File Manipulation B-33
Records and File Typesoooiii i e B-33
Scratch Fileso o B-34
Accessinga Disk File e B-34
Creating a File oo e e e e e B-35
Purging Files o e B-35
Storing Dataona Deviceor New File B-36
Listing the Contentsof a File i B-36
Renaming Files ot B-36
File Manipulation Commandsc.iiuniinninninennnennnn B-36
Create a File (CR)ot e B-37

CR Command Examplesiiuiiii i B-39

CR Command Error Handling i B-39
Dump Data to a Device or Existing File (DU) B-40

DU Command Examplesot B-41

List Contents of a File (LI)ot e B-42

LI Command Example i B-43
Purge a File (PU)o e B-44

PU Command Examplest B-44
Rename a File (RN)o e B-45

RN Command Exampleso B-45
Store Data on a Device or New File (ST) B-45

ST Command Examplesottt B-48
Transfer Files o B-51
Creating a Transfer File i i B-51
G-Type Global Parametersoouiiniiiniiniin i, B-51
P-Type Global Parametersttt B-53

TR and Related Commands B-55
Calculate Global Parameter (CA) ...ttt B-56

CA Command Examplesttt B-57
Display Parameters (DP) i B-58

DP Command Examples B-58
Conditional Skip (IF)o e B-59

IF Command Examplest B-60
Pause and Send Message (PA)ttt B-61

PA Command Example e B-61

Set Global Parameter (SE)t B-61

SE Command Examplest B-62
Transfer Control to a File or Device (TR) oot B-62

TR Command Exampleso i, B-63
Device Manipulationttt e e B-64
Calling FMGR and COMND e e B-64

17

Device Manipulation Commandso B-66

Display/Modify Buffer Limits (BL)o it B-66
BL Command Examples oot B-67
Make Device Unavailable (DN) i B-68
DN Command Example i B-68
Display Device Statusttt e e B-69
DS Command B-69
Other FMGR Commandst i B-70
COMND . B-71
Appendix C
CS/80 Exerciser Utility (EXER)
INtroductiono e C-1
Getting Startedot C-1
Loading the Program e e C-2
Using the EXEICiSerttt e e e e C-2
Selected Command DeSCriptionsoouneintint i C-5
Error Handlingot e C-8
EXER and CS/80 Tape DIIVESottt e e et C-8
EXER and Cache Disks (HP 793xXP)ttt C-8
EXER and SubSet 80 Disks o C-8

List of lllustrations

Figure 3-1 Sample Hierarchical File Organization 3-7
Figure B-1 Cartridge Structureottt i B-11
Figure B-2 Disk Structure Before and After Packing B-14
Figure B-3 Initialized Cartridge Structure oo, B-29
Figure B-4 Global Parameters i B-53

Tables

Table 1-1 Typical RTE-A Interactive Programs 1-2
Table 2-1 System Commandsuuiiintinn it 2-1
Table 2-1 System Commands (continued)ooiiiiiniiiineenn... 2-2
Table 2-2 System Status Commandsl 2-6
Table 3-1 File Manipulating Commands, 3-2
Table 3-2 Standard File Type Extensionst .. 3-4
Table 3-3 Mask Qualifiers 3-16
Table 4-1 Program Control Commands i, 4-1
Table 4-2 Three Models of EMA/VMA 4-13
Table 6-1 LI Flags Summaryttt 6-99
Table 6-2 LI Commands SUmMmarycuuiuneinennennennenneennnn. 6-100
Table 6-3 LI RESPONSES . vttt ettt e et et e e e e e e e e 6-102
Table 6-4 EXpressions SUMMAryoouuiiiniiineiinenineennnnnn 6-102
Table 6-5 MPACK Options SUMMATYottt ettt et e 6-118
Table 6-6 PU RESPONSES . . . v ettt ettt e e e e e 6-144
Table 6-7 WH Options Summaryouiiiniinninininnennen. 6-197
Table 7-1 Stack Mode Commandso ittt 7-2
Table 7-2 Editing Commands i 7-3

18

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8

FMGR Control Commands i, B-3
Disk Manipulation Commands Summary B-16
CO Command Options Summaryc.cooviiniiinnneenn... B-18
Record and File Type Equivalences, B-33
File Manipulation Commands Summary B-37
Transfer Commands Summaryc.o ... B-55
FMGR/CI Commandsoouiiiiniiiiii i B-70
COMND Commandscouuiiiiiiiit i, B-71

19

Introduction

This chapter presents an overview of the RTE-A features available through the display terminal.
Basic concepts used throughout this manual are also included here.

It is assumed that the RTE-A Operating System is booted and operating so that interactive
operations can be performed. System bootup information can be found in the RTE-A Primary
System Software Installation Manual, part number 92077-90038, and the RTE-A System Generation
and Installation Manual, part number 92077-90034. Interactive operations are accomplished
through the Command Interpreter (CI), a system program that allows effective use of the
computer system through a set of user commands. There are other interactive programs in the
RTE-A system, described in separate manuals. Refer to the RTE-A Index and Glossary Manual,
part number 92077-90036, for a documentation map and description of each manual.

Using RTE-A

The RTE-A Operating System is the foundation for program development, file management, and
support of user application programs. It includes many programs that help you perform these
functions. The typical interactive programs are shown in Table 1-1. Many HP products can also be
ordered with the RTE-A system to add other features. For example, ordering the HP 92078A
Virtual Code (VC+) Package provides the following capabilities: outspooling, I/O redirection,
large program and shared program support, and multiuser operations.

In program development, an editor (EDIT) program can be used to create and modify source
programs and files. You can then compile the programs with the appropriate language compiler
(or assembler) and link them with the LINK program. These programs can be debugged with the
HP 92860A Symbolic Debug/1000 program. Control of the executable program is accomplished
through the CI program.

File management tasks can be done through system programs such as EDIT and CI. EDIT creates
and modifies files, and CI provides many file manipulating functions. You can merge files with the
MERGE program and print hard copies through the system printer with the PRINT utility. Files
can be transferred between different media with the LIF, TF, and FST utilities. In addition, you
can use the file management program (FMGR) and the file copy utility (FC) to perform tasks
similar to those provided by CI and TE. These are used primarily to handle existing FMGR files.
The limitations of using FMGR are discussed in Chapter 3 under the FMGR Files heading.

Special application support is accomplished through the CI program, which provides the
capabilities to monitor system status and the control of the interactive system operations.

Table 1-1. Typical RTE-A Interactive Programs

Introduction 11

Name Prompt Description Manual

Cl Cl> User interface; simplifies User’s Manual
interactive system operations (92077-90002)
EDIT / Text editor with screen mode EDIT/1000 User’s
Guide (92074-90001)
DEBUG Debug> Symbolic Debugger with profiler Symbolic Debug/1000
User’'s Manual (92860-90001)
LINK link: Linkage Editor LINK User’s Manual
(92077-90035)
FST FST> High performance logical Backup and Disk Formatting
(File-by-File) backup utitlity Utilities Manual (92077-90249)
TF TF: File copy utility Backup and Disk Formatting
Utilities Manual (92077-90249)
FMGR FMGR : Alternate user interface used User’s Manual
for handling FMGR files (92077-90002)
FC FC: Alternate file copy utility Backup and Disk Formatting
for handling FMGR files Utilities Manual (92077-90249)

Command Interpreter Features

The Command Interpreter (CI) is usually scheduled and run automatically as soon as the RTE-A
operating system is booted. The program prompt is displayed, and CI is ready to accept a
command. The command and the required parameters can be entered in the command string in
either uppercase or lowercase letters. Blank characters and commas can be used as the command
string delimiters. Throughout this manual, the blank is used as the command string delimiter.
However, if there are parameters omitted from the middle of a string, commas must be used as
placeholders. Following are examples of CI command entries.

Cl>edit (Runs the Editor program to create a file.)
Cl > wh (Displays system status.)

Cl>co report.txt data (Copies REPORT.TXT into new file DATA.)
Cl>dl /jones/ (Displays all files in directory JONES.)

1-2 Introduction

Interactive operations available in RTE-A through CI include the following functions:

System Status Check

System Control

File Manipulation

Program Control

Multiuser Operations (VC+ Only)
Spooling (VC+ Only)

The Command Interpreter provides commands that start and stop programs and commands that
change the way programs execute. Commands are available for the creation of directories and
subdirectories that are used in file management. Files can be created, copied, stored in a directory
or subdirectory, purged (destroyed), and renamed. You can control access to files and manipulate
a group of files with a single command using the file mask feature. Time stamps are maintained
for all files to keep track of date of creation, access, and update. System information can be
displayed on the terminal screen; for example, program status and input/output device status.
System behavior can be controlled through the system commands.

One of the features available in the optional VC+ Package is spooling capability. Spooling
provides the means to control shared devices; its most common use is for shared access to the
system line printer. A description of the spool system is contained in Chapter 2.

Interactive operations are performed through the display terminal keyboard. Each of the
functions mentioned above includes a variety of tasks such as executing programs, creating files,
and copying files. Each task may be executed with a single CI command. The commands are
described in Chapters 6 and 7, and typical interactive tasks are described in Chapters 2 through 5.

In a VC+ system, CI provides another level of commands for the superuser, a person who is
thoroughly familiar with the RTE-A system. Typically, a superuser manages the system. A
superuser is designated at system installation time and can in turn designate any user as a
superuser. In addition to using all the interactive capabilities described in Chapters 2 through 5,
the superuser is allowed to do the following:

e Change the properties of any program (including all protected system programs). Applies to
all program control commands.

e Override file protection. Applies to all file manipulating commands.
e Modify system attributes such as the system clock. Applies to all system control commands.

e Re-initialize disks.

If Security/1000 is on in a VC+ system, CI filters its commands using capability levels. The user
must have a capability level equal to or greater than that defined for the command to use it. Users
with capability level 0—30 are subject to capability level checking and file system protection.

Users with capability level 31 are superusers and have full access to the system. That is, they can
use all commands, run all programs, and override file protection.

Introduction 1-3

Introduction to Programs

Programs are written for a specific task or set of tasks; they control the computer’s execution.
There are various properties associated with programs, including what they do, how much memory
they use, and how important they are relative to other programs.

In order to reduce the amount of information maintained by the RTE-A Operating System at any
time, many programs are kept in an “unrestored” state. The unrestored program is a file that
contains a memory image of the program, along with information describing the applicable
program properties. Such a file must be restored into a system program table before the program
can be executed.

Restoration of a program file can be done automatically when you schedule a program for
execution. You may also restore the file and then perform other program control tasks.

There are several kinds of programs, each with different system memory or data handling
requirements. There are differences in the type of instructions that programs need, the type of
users allowed to change the way the program runs (system programs), and the way the program
uses memory (EMA/VMA programs). All of these items are discussed in Chapter 4. Note that
the system does not differentiate programs on the basis of what type of computation they do or the
language in which they are written.

Introduction to Files

Files contain various types of information organized in a specific manner to facilitate storage,
access, and data transfer. The information can be text (usually called ASCII data), data collected
from some experiments or tests (binary data), information used by programs, or even programs
themselves.

Files are identified by file names. Additional information is added to the file name to describe the
file’s associated properties. The storage location of the file is recorded in a directory. The file
name includes a file type extension that further describes the type of information contained in the
file. The file name and the associated attributes that identify a file are called a file descriptor.
Colons, dots, and slashes are delimiters in file descriptors. Following are the various forms of file
specification:

proga (File name with blank file type
extension)

prog.rel (File name)

user Manual chap2. t xt (File name)

progb.rel::directory (File descriptor)

/directory/progb.rel (File descriptor)

/directory/subdirectory/chapter6:::4:609 (File descriptor)

1-4 Introduction

In the RTE-A file system, files can be grouped under unique directories or subdirectories.
Subdirectories can be nested within other subdirectories. Thus a hierarchical file structure can be
established.

The file name, file type extension, file descriptor, file type, directory, subdirectory, and other file
properties are described in Chapter 3.

System Information

Certain system information can be displayed on the display terminal screen with CI commands.
The system time can be obtained with the TM command. Other commands display information
about I/O devices and the system program status. The IO command can be used to show the I/O
devices in the system and the LU numbers associated with those devices. The WH command can
be used to show program status. Detailed descriptions of these commands as well as others that
control system operations are given in Chapter 6 of this manual. Chapter 2 of this manual
describes how to use the common system commands.

Cl Termination

The Command Interpreter can be terminated at any time with the EX command. If your system
has multiuser capability, the EX command will also log you off (if you are using the startup copy of
CI, not a secondary copy run later). However, if you are running programs without wait when you
give the EX command, CI needs more information about what to do with these programs. It will
ask whether you want to wait until they finish, stop them, or (in a multiuser environment) allow
them to run as background programs.

When CI is Not Available

CI may be busy when you want to enter another CI command. This usually happens if the
program you are running takes a long time or if it gets into trouble, such as running out of printer
paper when running PRINT.

A copy of CI called CM is kept waiting to handle such situations. Interrupting the system while CI
is busy will run a standby program. You can interrupt the system by pressing any key on your
session terminal, unless the terminal is connected to a multiplexer port that has FIFO buffering or
type-ahead turned on. In all cases, pressing the break key on your session terminal will interrupt
the system. Note that special consideration must be given to using the break key on the system
console. Refer to the RTE-A System Manager’s Manual, part number 92077-90056, for information
on the system console and VCP.

Introduction 1-5

Once you get the system’s attention, the following prompt is displayed:
v

This is the prompt for a copy of CI named CM, which differs from CI in two ways: CM always
runs programs without wait, and it exits after completing a single command. It lets you obtain
system status quickly. Besides getting a system status report, you can use CM to stop the program
for which you are waiting. The TR, EX, FUNCTION, IF-THEN-ELSE-FI, and
WHILE-DO-DONE commands (refer to Chapter 6), and the command stack cannot be used in
CM. The RS command is available only in CM.

After executing one command, CM terminates and control is returned to CI. If the busy situation
persists, you need to get the system’s attention again to run CM and execute another command.

Be careful when running CM,; it is designed as a backup user interface and not for tasks that take a
long time, such as copying files. Doing such tasks keeps others from using CM because there is
only one copy of CM. Use CM only for simple commands such as OF, RS, UP, or WH.

At times CM may be busy either with a normal command or because an operation is blocked. In
these cases, you will encounter the system prompt:

Syst e

If your system does not have the optional VC+ Package, you may encounter another prompt while
CM is busy:

RTE:

These prompts may occur if the operating system is interrupted or when there is a problem while
running CM. If the prompt appears as a result of an interrupt such as pressing a key, the return
key should return control to CM. Refer to Chapter 8 for a discussion of exception conditions and
the RTE and system commands.

1-6 Introduction

Using the System

This chapter discusses using the system to display system status, manipulate files, and control
programs. There are system commands that display help information and system status, and

control certain system operations. In a VC+ system, commands that affect system processes and

control system operations are reserved for the superuser who manages the operating system.

Superuser capabilities are described in Chapter 5. A summary of system commands is shown in

NO TAG below.
System Commands

Command

Task

2 (or HELP)

Display help summary

? command or HELP command

Display command description

| [parameters]

Access command stack

ALIAS alias_name

ALIAS [—x| +X] [alias_name [[=] string value]]

Define ClI alias or display defined aliases

CN lu [function| pram*4]]

Control I/O device

ECHO [parameters]

Display parameters to terminal

EX [B|C|L]

Exit Cl

FUNCTION [—X| +X] function_name {
command-list

}

Define a function

FUNCTIONS [—x| +X|function_name]

Display functions

IF command-list
THEN command-list
[ELSE command-list]
Fl

Execution control structure

1O [parameters]

Display I/O configuration

IS strgl <rel op> strg2 [opt]

Compares two strings or numbers

Using the System

2-1

Table 2-1. System Commands (continued

Command Task
SET [variable [= string]] Display/define positional, user-defined, and
SET [—x| +X] [variable [[=] string]] predefined variables
™ Display system time
TO lu[interval] Display/modify device timeout
[TR] file[pram*9] Transfer to command file
UL label Unlock shareable EMA partition
UNALIAS alias1 [alias2 ...] Delete one or more aliases
UNSET variablel [variable2 ...] Delete a user-defined variable or function
UNSET —f functionl [function2 ...]
UP lu Up a device
WH [parameters] System status reports
WHILE command-list Execution control structure
DO command-list
DONE

2-2 Using the System

Getting Help

The CI program provides an online help summary and a quick reference guide. The help
summary or a brief explanation of any command or item listed in the summary can be displayed
with the HELP command.

The help command can be entered as ? or HELP. This gives a list of the commands by their
command mnemonics and other useful items such as a description of file mask. For example, here
is the response from a ? command:

a>?
Hel p avail able on: (use ? <command> for help on <command>)
directory /HELP.D R

?? ADVLI NK ALI AS AS
ASK AT BR BREVL
BRTRC CALLM CALLS CD

cl CL CLCSE CN

CO COWPI LE CP CR
CRDI R cz DC DL
DSCOPY DSRU DT ECHO
ERROR EVMON EX FMIRC
FOWN FPACK FREES FREL
FTP FUNCTI ON FUNCTI ONS FVERI
GO GREP GRUVP I F

I N 10 IS KI LLSES
LC LI LI NDX LI NK
LNS LOGCHG LS MACRO
MAI L MAKE MAKEFI LE MASK
MC MERGE METER MO
More. ..

To get information about a command, enter the command name after the help command. For
example, to get information about the OF command, entering “? of” displays the following:

Cl> ? of
OF -- Terminate a program and optionally renove its |ID segnent or
renove a prototype |ID segnent

Usage: OF [prog[/session][opt]]

prog is either a program name with optional session qualifier or

the nanme of a prototype ID segnent if the D option is given. The
default is the |ast schedul ed unprotected program on the primary

program (usually Cl) chain.

l\/bre:..

In addition to commands and explanations, other information is available with the help command,
including such items as file descriptor, file mask, and file type extension.

It is possible to add items to this list. The help command works by listing a file contained in
directory /HELP. You select the file it lists when you ask for help on a particular command.
Entering the help command without a parameter displays the contents of directory /HELP. By
adding files to this directory, you can increase the number of items listed in the help summary.

Using the System 2-3

Using the Command Stack

As command lines are entered at the terminal keyboard, they are saved in a stack for reference or
reuse. The number of command entries in the stack varies depending on the length of the entries.
A minimum of 20 entries are saved; however, the average is approximately 300 commands.

If the stack is full, the oldest commands in the stack are removed to make room for new
commands. Duplicate commands are not saved in the stack. Commands entered from a
command file are not saved in the stack. Command lines in the stack can be edited and reentered,
or simply reentered without retyping.

Commands in the stack can be saved in a file. By default, a file called CI.STK on the working
directory is used. (CI uses CI.STK on the home directory if one is defined; otherwise, it uses the
working directory when you log on.) Another file can be created or selected to hold the command
stack. Refer to the command stack and the WD command descriptions in Chapter 6 for details.

If you do not want to save your command stack in a file or do not want the file updated, set the
predefined variable $SSAVE_STACK to FALSE. Refer to the section on “Predefined Variables”
for details.

To display the command stack, enter a slash:

a> |/ (A screenful of commands,

——020/ 320— Commands: [Cl. STK:: DEXTER] defaulting to 20, is displayed. See
SET command description in
Chapter 6 for changing the default.)

dl

i syslog

pu sysl og

ru print report.txt
co 8 reportl.sale

co 8 report2.sale

co 8 report3.sale

co 8 report4.sale

co 8 reportb5.sale

co reporth5.sale 4
prot report5.sale rw

The command stack window is preceded by a banner that contains the starting line number of the
window and the total number of lines selected for this display in inverse video, separated by a
slash, and the name of the current stack file in square brackets, for example, [newfile].

Note that the cursor is at the bottom of the stack. Pressing the return key returns to CI, and a new
command can then be entered. The cursor can be moved to any line using the terminal cursor
control keys. The line can be edited using the local editing keys of the terminal. When the
carriage return key is pressed, the line is entered as if it was typed from the terminal keyboard.

2-4 Using the System

You can recall just the last command with the cursor positioned on the command line. This is
done with two slashes. For example:

Cl>//
—001/320— Commands: [Cl. STK:: DEXTER]
prot report5.sale rw

In this example, pressing the carriage return key repeats the last command. To display the stack
with the cursor positioned on the second to the last line, enter three slashes. The number of lines
backward from the last line can be specified with the corresponding number of slashes after the
command stack command (the first slash). A maximum of 80 slashes is allowed.

You can enter a slash followed by a number (/n). In this case, a screenful of commands is
displayed beginning with the line number specified (backward from the last line). The cursor is
positioned on the line specified.

At this point, either enter the command or use the terminal editing keys to change the entry.
Pressing the carriage return key enters the command line. If you do not wish to enter this line, you
can move the cursor to a blank line and press the return key to return to the CI prompt, or enter a
slash to repeat the whole command stack.

After you have displayed the command stack and before you return to the CI prompt, you can use
stack mode commands in addition to terminal keys to manipulate the stack and mark groups of
commands. Refer to the command stack descriptions in Chapter 7 for details. You can display all
command lines containing a specific string by entering a slash followed by a period followed by the
string (for example, /.string). If you insert a caret (™) between the period and the string, only the
command lines starting with the string are displayed. Refer to Chapter 7 command stack
descriptions for examples.

You can change the command stack display size by using the SET command. For example, the
following command changes the command stack display size to 15 lines:

Cl> set frame_size = 15

Obtaining System Status

You can display system information on your terminal screen with the appropriate CI command. A
brief description of how to use some of these commands to get the desired information is
explained in this section. Note that these are the most common uses. A full description of each
command is given in Chapter 6.

System Status Commands

Using the System 2-5

Command Description
WH [parameters] Display program status and system memory usage. *
10 [parameters] Display system devices and attributes of those devices.
METER [lu] [commands] Display CPU usage.
SAM [AL] [XS] [lu|QU] Display status of System Available Memory (SAM).
SPORT [port_lu [display lu [waitflag]]] Display status of serial ports (using device driver
DDCO00/01).

* Note that although WH is extremely useful it does not provide a true snapshot of the system state.
To restrict all other system activity while WH takes a snapshot could compromise the real-time
characteristics of the system. WH can, therefore, occasionally report inconsistent information.

Display Program Status

To display the status of your programs, use the WH command as shown in the following example.

Cl > wh
Pr ogram Dat aPartition CodePartition
Nanme Prio PC Seg Size Status Size Status Program Status

Session 44 User CARCLYN

c 51 14532 32 in wai ting for WH
PRO&2 90 54321 32 in schedul ed
VWA 51 5640 15 in 5 schedul ed

Fri Feb 14, 1992 3:49:35 pm

In this example, the user entering the WH command is logged on as CAROLYN to session 44 and
has three programs active: CI, PROG2, and WH. Note that one of the programs is the WH
program itself, which is run when the WH command is entered. CI is waiting for WH to finish.
PROG?2 is running at priority 90, but because WH is running at a higher priority, WH preempts
PROG?2 while it is printing its information. The status column shows what the programs are doing.
The common conditions are shown in the following example. The information in the other
columns is explained fully in the WH command description in Chapter 6.

To display the status of all programs, enter:
Cl> wh al

A sample display is shown below.

Cl> wh al
Pr ogram Dat aPartition CodePartition
Nare Prio PC Seg Size Status Size Status Program Stat us

Sessi on 1 Superuser MARK
a 51 14515 32 in waiting for WH

2-6 Using the System

VWH 5 6330 15 in schedul ed

M 2 0 32 dor mant

Syst em Sessi on

D. RTR 1 22574 32 in dor mant savi ng resources
PROMT 3 3322 10 in dor mant savi ng resources
LOGON 2 3056 13 in cl ass susp on class #50
Down lu's : 3

Thu Feb 20, 1992 11:16 am

This display is similar to the previous example except that it includes other programs, either
system programs or programs belonging to other users. Programs are grouped by owner; those at
the bottom of the list are system programs.

The status column in this example includes the following categories:

Status Meaning
scheduled The program is scheduled to run or is

executing.
waiting for WH The program (CI) is waiting for WH to finish.
dormant The program is not running.
dormant - saving resources The program is suspended, waiting for directives.
class susp on class #xx The program is suspended waiting on a class

number, usually waiting for I/O.

Using the System 2-7

Display Memory Usage

How the operating system uses memory is indicated by the partition status. Use the WH
command to display the programs that are in the partitions. You can use this information to tell if
you have enough memory in your system for all the programs you want to run. To display the
partition status, enter the following:

Cl > wh pa

Pt n# Page Range Size COccupant St at us Priority

No reserved partitions.

48— 79 32 ar’i 51
80- 111 32 D. RTR saving resources 1
112—- 121 10 PROMT saving resources 3
122—- 134 13 LOGON 2
135- 149 15 W 1 5

161- 255 95 free

Thu Feb 20, 1992 11:20 am

Display I/0 Configuration

Systems differ widely in the number and types of peripherals such as disks, printers and tape
drives. The I/O configuration of a system is the way that these devices are connected to the system
and identified. The operating system identifies each device by a logical unit (LU) number. The
LU number for a particular device can be used to specify that device. The I/O configuration
information is displayed with the IO command.

The —cs option of the IO command displays on your terminal screen a listing of the devices on
your system. For each LU, the IO command returns the type of device attached to that LU, a
select code identifying the I/O card the device is attached to, and other configuration information,
depending upon the parameters. Note that select codes are in octal.

The IO command can be used to list all devices in the system, a selected device specified by the
LU number, or a range of devices.

Following is an example that displays information about LU 6.

Cl>io —-c 6
sel ect bus dvt dvt i nterface
| u device nane code addr nbr addr type
6 printer (12) 25 5 63 51707 37

Thu, Apr 28, 1988, 10:05 AM

2-8 Using the System

All of the fields in the listing and possible values are explained in the IO command description in

Chapter 6.

To display all devices grouped by select code, enter:

Cl>io -sc

sel ect code 20b: interface type Ob
lu devi ce nane
1 termnal (5)

2,3 cassette tape (20)

sel ect code 25b: HPIB interface (37)

bus
addr lu devi ce nane
1 40-43 MAC/ I CD disk (32)
2 59 printer (12)
3 7 stream ng tape drive (24)
4 8 tape drive (23)
5 6 printer (12)
6 52,53 floppy disk (30)
36 9 instrument (77)

To display a range of devices, for example, LUs 6 through 9, enter:

Cl>io-c 69
sel ect bus

lu device nane code addr
6 printer (12) 30 2
7 not assigned

8 tape drive (23) 26 4
9 CS/80 tape drive (26) 31 2

Thu, Dec 10, 1992, 3:03 PM

dvt
nbr

11

dvt i nterface
addr type
36460 37

36372 37

36273 37

Using the System 2-9

Controlling Devices

There may be times when you need to control the operations of an I/O device from the terminal,
such as to rewind tape or eject paper. The system performs these operations in response to the
device control requests. To control devices interactively, the CN command is used to send the
control requests. This is done by entering the CN command with the proper command parameter.

The common functions and the command parameters required are listed below.

Function Command Parameter
Reset device 0 (zero)
Top-of-Form (paper feed) TO
Rewind tape RwW
Write End-of-File EO
Forward one file FF
Backward one file BF
Forward one record FR
Backward one record BR

The following examples illustrate some typical device control requests. In these examples, the
printer is LU 6 and the magnetic tape drive is LU 8. For some devices such as tape drives and
printers, the parameters may be omitted for the most common operations. For example, if CI
recognizes an LU as a tape drive or printer, it assumes that the command without any control
parameter is rewinding tape or ejecting paper, respectively.

Cl>cn 6 (Eject printer paper on LU 6)
Cl>cn 8 (Rewind tape drive on LU 8)
Cl>cn 8 ff (Advance tape to the next file)

Cl> cn 8 bf (Rewind tape to the previous file)
Cl>cn 8 fr (Advance tape to the next record)
Cl>cn 8 br (Rewind tape to the previous record)

In each RTE-A computer system, there are many different types of devices that are controlled by a
software interface module called a device driver. There may be additional parameters needed for
controlling a peripheral device. Refer to the appropriate driver description in the RTE-A Driver
Reference Manual, part number 92077-90011, for details.

Various other I/O control requests can be issued with the CN command. For example, the
following command sets up multiplexer ports on the Revision C MUX (IDMO00):

Cl> cn 1 30b 152331b

In this case, the numbers are octal parameters required for the multiplexer specified in the
multiplexer documentation. This entry sets up LU 1 as a 9600 baud terminal on port 1 with the
standard options. The equivalent for the Revision D MUX (IDM00) is:

Cl>cn 1 30b 131b

The CN command treats LU 1 as the system LU 1, rather than as your terminal. Other control
requests are described in the CN command description in Chapter 6.

2-10 Using the System

Changing I/O Device Attributes

The CI program provides several commands that modify I/O operations. The RTE-A Operating
System maintains a set of attributes for each device. The common attributes include the
operational status of the device and the waiting period to complete an I/O request. Most of the
attributes are set up when the system is created; details are contained in the RTE-A System
Generation and Installation Manual, part number 92077-90034. Some of the attributes can be
modified with CI commands if necessary. Modifications made with CI commands remain in effect
until the system is rebooted or another modification is made to the same device.

In addition to the attributes mentioned above, there are others that can be changed in special
situations. These are the device HP-IB address, device priority (not to be confused with program
priority), and the driver parameters specified at generation time. In VC+ systems, modifying
these requires superuser capability. Details are given in Chapter 6.

How to Bring Up a Device

One of the most important attributes of a device is whether it is working or not. The RTE-A
system maintains the device status, whether a device is “up” (working) or “down” (not working).
All devices are initially assumed to be working; if the operating system finds out that a device is
not working, it suspends I/O operations to the device until the situation is corrected. The UP
command notifies the system that a particular device has been fixed. For example, to notify the
system that the magnetic tape unit (LU 8) is operational, enter:

Cl> up 8

This allows I/O requests to go to the device. If the original problem recurs, the device goes down
again. This happens for various reasons. A device may be inadvertently taken offline, effectively
disconnected from the system. Tape drives go offline because most tape save/restore utilities put
the tape drive offline when they are finished to allow removal of the tape and to prevent another
user from using the tape drive. Printers are taken offline for manual form feeds. Whenever a
device is offline and you need to access it, you must first place it online and bring up the device.
Otherwise, the device cannot complete the control request and the operating system marks the
device as down.

When the operating system detects a downed device, a message is displayed:

Cl> cn 8

I/ O device error on LU 8 The reason is:

Device tined out

Devi ce has been downed (use UP,lu to try recovery)

This indicates that the device is unavailable until the problem is fixed. Note that only the first
request to a downed device gets this message. Subsequently, all I/O control requests to that device
are placed on hold. It can be mysterious to have programs waiting to access a downed device,
because the programs seem to be waiting for no reason. Either the WH or IO command can be
used to find out if there are any downed devices in the system. To bring up your terminal, use the
LU number for that terminal and not LU 1.

Using the System 2-11

Changing Timeout Values

In most cases, there is something wrong if an I/O operation takes too long. A disk or printer
should always respond within 1 second and a disk I/O operation should complete in 5 seconds.
The RTE-A Operating System detects when a problem occurs through a mechanism called a
timeout.

Each LU has a timeout value associated with it. This is a device attribute that tells the system how
long to wait for a response from the device. When the system starts an I/O operation, it also starts
a timeout timer. If the timer goes off before the operation completes, then some appropriate
action is taken. This action varies from device to device; it is determined by the driver. Usually
the device is noted as being down, awaiting user intervention.

Timeout values can be specified either during system generation or with the TO command (by the
superuser only). They are specified in units of 1/100th of a second. A timeout value of 100 means
one second. This unit is chosen to match the resolution of the time base generator.

To set the timeout on LU 8§ to 10 seconds, enter the following:
Cl> to 8 1000

This sets the device on LU 8 (by normal convention a magnetic tape unit) timeout value to 10
seconds.

There are two other useful forms of the TO command. Specifying a timeout of zero really
requests an infinite timeout. This is useful for devices where there is no limit to how long it might
take I/O to complete. The most common example is a terminal; there is no particular time limit
for entering commands, so it is reasonable to set terminal timeout values to zero.

Entering the TO command with an LU but without any timeout parameter displays the timeout
value currently in effect for that LU. To display the timeout value for your terminal, use the
system LU number for the terminal, not LU 1.

2-12 Using the System

Displaying System Time

The current system time can be displayed with the TM command. Although this command is also
used to reset the system time, it is typically used only by the System Manager or installer for this
purpose.

To display the current system time, enter:

Cl>tm
Wwed Mar 2, 1989 7:39:34 am

It is important to maintain the correct system time. Otherwise, the RTE-A features such as time
scheduling programs and time stamping files cannot be used effectively. Refer to the discussion of
the TM command in Chapter 6 to learn how to set and reset the system time.

Executing a Command File

To execute a series of commands without user intervention, a command file can be created using
the EDIT program. The file contains all the commands to be executed in the desired sequence.

To execute commands in the file, the command file name is entered with or without the TR
command. At the end of the command sequence, CI returns to the source of the TR command,
either another command file or the interactive mode. We recommend that you use the file type
extension .CMD on all your command files. Note that the .CMD file type extension is required if
the file is to be found via UDSP#2. Refer to Chapter 6 for a detailed description of the PATH and

TR commands.
The following is a sample command file REPORT.CMD on the working directory:

co report0l1l::src datafilel::data
co report02::src datafile2::data

co report30::src datafile30::data
pu reportOl::src ok
pu report02::src ok

bu report30::src ok
pu /src ok

To execute REPORT.CMD, enter any of the following:
Cl> tr report.cnd
Cl> tr report
Cl> report

Cl> report.cnd

Functions are memory-resident command files that are defined via the FUNCTION command
described in Chapter 6. To execute a function, simply enter its name:

Cl > nyfunc

Using the System 2-13

Positional Variables

Positional variables are defined in the CI command string or in the TR command. The variable
names are $1 through $9, where the number following the dollar sign indicates the position of the
variable in the CI or TR command string. For example, either of the following commands sets the
positional variables $1 through $4:

Cl> ru ci nyfile.cnd progl prog2 prog3 prog4

Cl>tr nyfile.cnd progl prog2 prog3 prog4

Positional variables can be separated by blanks or commas but commas must be used to specify
non-consecutive positional variables. For example, to transfer to a command file and specify
values for only $1 and $4, enter:

Cl>tr nyfile.cnd progl,,, prog4

Three commas are required to ensure the value of positional variable $4 is PROGA4.

You can specify any string (for example, a number or a valid file descriptor) for the positional
variables; unspecified positional variables are set to null. If more than 9 variables are specified,
only the first 9 values are used and the extra values are ignored. The command string containing
the positional variables can be a maximum of 256 characters, including delimiters. Positional
variables cannot be deleted.

Once values are set for the positional variables, they are used until CI terminates, another TR
command is executed, or you exit from a command file.

The values of positional variables are local. Before executing a TR command or a user-defined
function, CI saves the current values of $1 through $9. While executing the command file or
function, the values specified in the TR or function command string are used in the variable
substitutions. When the command file or function is exited, the previous values of $1 through $9
are restored.

A command file must be specified to set the positional variables; however, LU 1 (your terminal)
can be entered instead of a command file name. For example, you can specify values for the
positional variables as follows:

Cl>tr 1 myprogl nyprog2 myprog3 nyprog4 mnyprog5

You then can use the positional variables in other CI commands; for example, LI $1 would list file
MYPROGTI1 at the terminal.

Concatenation of variables is allowed. For example:
G>tr 1 RTE (3 parameters are set up)
Cl> co $1%$2%3AnswerFile Spool A (Copies file RTEAnswerFile)

2-14 Using the System

User-Defined Variables

User-defined variables are defined using the SET command and deleted using the UNSET
command. See Chapter 6 for a detailed description of the SET and UNSET commands.

User-defined variables are available to both CI and command files. A variable defined in
response to a CI prompt can be used in a command file, and a variable defined in a command file
can be used in response to a CI prompt. Note that a user-defined variable is referenced by
preceding the name with a dollar sign ($).

When referencing a user-defined variable, CI determines the end of the variable name to be the
first character that is not valid for a variable name (valid characters are letters, digits, and
underscores). For example, in the following command, the period indicates the end of the
user-defined variable name:

Cl> echo $file.ftn

This allows you to define similar variable names, such as $FILE, $SFILENAME, and
$FILENAMEI].

Concatenation of user-defined variables is allowed. For example:

Cl> set file = programl (Define file’s name,

Cl> set ext = .ftn file type extension,

C> set dir = ::nydir and directory)

Cl> ftn7x $file$ext$dir (Compile PROGRAMI1.FTN::MYDIR)

Another example of concatenation is as follows:

Cl> set dir = /system (Define a directory)
C> 1i $dir/answers (List file /SYSTEM/ANSWERS)

Note that the slash (/) entered after user-defined variable $DIR is necessary. If you omit the
slash, CI thinks the variable name is SDIRANSWERS because the blank after ANSWERS is the
first invalid character for a variable name.

To concatenate two words, use the backslash (\) or the single character quote described in the
section on “Quoting”. In the following example, variable NAME is set to “user”, and the
backslash is used to concatenate the variable with other ASCII strings.

Cl > set nane = user

Cl> i $name\2 (List file USER2)
Cl>1i $nane\3 (List file USER3)
Cl> |i $nane\prog (List file USERpROG)

Note that the character after the backslash is not changed to uppercase by CI. So if you need to
enter a string such as PROG, you must type P instead of p.

You should delete unnecessary user-defined variables. CI uses its free space to save variable
names and values. If too many variables are defined, CI runs out of space and returns an error.
This may affect user-defined and predefined variables; for example, CI may not have enough
space to return a value to a variable. There is no set number of user-defined variables. The
names and values of variables are hashed into two separate tables, so the number allowed depends
on the lengths of the names and values.

Using the System 2-15

Environment Variables (VC+ Only)

Environment variables allow programs within a session to share variables. This is an extension of
the SET command in CI. The original SET command can be thought of as resulting in “local” (to
one copy of CI) variables. The extension creates “session” variables that can be “exported” to
(and “imported” from) the session environment. Exported variables are available to all programs
in the session.

Note that it is possible to have a local and an environment variable by the same name. Access is
always to the local variable.

The SET command by itself displays all defined variables, in alphabetical order. The local
variables are listed first, then a blank line and then the environment or exported variables.

Environment variables can be used either interactively or in CI transfer files. Any program in the
session can access the value of an environment variable. Variable access in CI command lines is
done by preceding the variable name with a dollar sign ($) as in the preceding section.

The environment variables are stored in a space called the Environment Variable Block (EVB).
The EVB is kept in sharable EMA and is identified by the session number; for example,
Environment 90 for session 90. The block is allocated and initialized when a user logs on. The
size of a user’s EVB is indicated in the user file. If you need more space in your EVB, see your
system manager.

The UNSET command is used to remove either type of variable.
Cl > unset [-f] varnane

When the UNSET command is given, first the local variable list is searched; if a local copy is
found, it is unset. If no local variable is found, the exported variables are searched. Remember
that unsetting an exported variable removes it for all programs in the session.

Refer to Chapter 6 for a detailed description of the SET command.

Predefined and Other Variables

When you begin a CI session, some of the variables are predefined. These variables are initialized
to default values by CI. However, you can use the SET command to modify the values of all the
variables except SMY_NAME. You can also modify $WD, but CI updates its value after each CD
or WD command. Likewise, you can modify the SRETURN variables, however, CI does not
recognize the new value when evaluating control structures. With VC+, some variables are
automatically exported and cannot be imported.

The SET and ECHO commands can be used to display the values of predefined variables. Unless
otherwise noted, the following variables are predefined and you cannot use the UNSET command
to delete them.

$AUTO_LOGOFF
Allows for automatic logoff if the session is inactive. CI initializes SAUTO_LOGOFF to
zero, which means automatic logoff is not in effect. If you set SAUTO_LOGOFF to a
non-zero value, CI times out after that many terminal timeouts. If CI is the only active
program, after four CI timeouts an EX,B command is executed to terminate the session.
Default: 0
Allowed: ranges from 0 to 32767

2-16 Using the System

$CMNDO (VC+ only)

The $CMNDO variable can be set to TRUE or FALSE to control CMNDO usage in
programs that support the CMNDO monitor. This variable is not predefined. Refer to
Chapter 7 for information regarding CMNDO.

$COLUMNS (VC+ only)

$COLUMNS is the number of columns in your display. This variable is used by LI, LS,
and FmpPaginator. CI automatically exports it at startup. You may import, modify or
unset SCOLUMNS. If the value is invalid, CI uses the default. The RESIZE program
can be executed to compute the size of your display and set SCOLUMNS accordingly.
$COLUMNS can be deleted by the UNSET command.

Default: 80

$DATC

The datecode revision of the operating system; for example, 6000 for Revision 6.0. This
variable is for user information and can be deleted by the UNSET command.

$EVB_SIZE (VC+ only)

The size of the session’s EVB in pages; zero if no EVB is available. This variable is for
user information and can be deleted by the UNSET command.

$FRAME SIZE

The size of the command stack display in lines. When you log on, the command stack
display size is initialized to twenty lines. It can be set to any positive integer greater than

zero.
Default: 20
Allowed: ranges from 1 to 32767

$HOME

For VC+ CI, $HOME is your home directory, as given by User Defined Search Path
(UDSP) #0, set up by the PATH program or CI. If PATH is not run, SBHOME is set to the
directory in which the first copy of CI starts up. SHOME is automatically exported and
cannot be imported or deleted by UNSET.

For non-VC+ CI, $SHOME is set to the directory in which CI starts up.

$IFDVR (VC+ only)

The interface driver of your port; for example, IDZ00, ID100, ID400, or ID800. This
variable is for user information and can be deleted by the UNSET command.

$KILLCHAR (VC+ only)
$KILLCHAR is used with the visual editing modes described in Chapter 7. When the kill

character is entered, the contents of the current command line become invalid and the user

is given another prompt. When not defined by the SET command, the DEL character is
used.

Using the System 2-17

2-18

$LINES (VC+ only)
$LINES is the number of lines in your display. This variable is used by LI, LS, and
FmpPaginator. CI automatically exports $LINES at startup. You may import, modify, or
unset it. If the value is invalid, CI uses the default. The RESIZE program can be used to
set the value correctly for your display. $LINES can be deleted by the UNSET command.
Default: 24
Allowed: ranges from 0 to 32767

$LOG

A flag indicating if commands executed in a command file are logged to the terminal. CI
initializes this variable to OFFE which means that commands are not displayed at the
terminal. To display commands at the terminal, set the value to ON.

Default: OFF

Allowed: ON or OFF

$LOGON
The user and group name with which the user is associated during the session, in the form
“user. group”.

$MY_NAME
The true or scheduled name of CI. This variable can never be altered.

$OLDPWD

$OLDPWD is set to the previous working directory ($WD) whenever a WD or CD
command is executed.

In VC+ CI, $SOLDPWD is automatically exported and cannot be imported or deleted by
UNSET.

$OPSY
The value of the system entry point SOPSY for the current system. For example, the value
of SOPSY for RTE-A Revision 6000 is —125.

$POLL

This variable is set by the POLL command to be the command that is executed via the
POLL command. $POLL can be altered by the SET command and can be deleted by the
UNSET command. $POLL is not predefined.

$POLLINT

The approximate number of minutes between the successive executions of $POLL.
$POLLINT cannot be altered by the SET command but can be deleted by the UNSET
command. $POLLINT is not predefined.

$PROMPT
The prompt that is displayed when CI is waiting for input. CI initializes this variable based
on the program name with which CI has been scheduled, for example, “Cl . . A>”.
Default: Cl >
Allowed: up to 78 characters in VC+; up to 16 characters in non-VC+

Using the System

$QUIET_CMD (VC+ only)
A flag indicating whether or not certain CI commands should run in quiet mode. If this
variable is set to ON, the commands CO, MO, PROT, PU, RN, and UNPU do not display
any messages if there are no errors. If it is not set or is set to OFF, the commands display
messages for each file acted upon. This variable is not preset.

Allowed:
ON CI does not display file messages except when errors occur.
OFF CI gives messages for each file that is being acted upon.

$REPROMPT (VC+ only)

If this variable is not set or is TRUE, CI automatically reissues the prompt upon a timeout.
This can be inconvenient to workstation users using terminal emulators that de-iconify
themselves when they receive output (that is, hpterm with mapOnOutput set to True). To
correct this behavior, you can either set the terminal’s timeout to 0, which is not
recommended, or set REPROMPT to FALSE. If REPROMPT is set to FALSE and the
terminal emulator still de-iconifies itself when a timeout occurs, change the interface
driver protocol to not use DC1 handshakes (for example, use Xon/Xoff protocol). See the
RTE-A Driver Reference Manual, part number 92077-90011, for details.) This variable is
not predefined.

Allowed: TRUE or FALSE

$RETURNI1 - SRETURNS

Five integer values (ASCII representation) returned from execution of the last command.
CI updates the values as commands are executed. These variables can be set to values
between —32768 and 32767, inclusive.

$RETURN _S

A character string returned from execution of the last command. The string is 256
characters in VC+, and 80 characters in non-VC+. CI updates the value as commands are
executed.

$RU_FIRST

A flag indicating whether RU or TR is to be assumed if you enter only a file name in
response to a CI prompt or as a line in a command file. $RU_FIRST can have the
following meanings:

TRUE (I first attempts to execute an RU command for the specified file name.
FALSE CI first attempts to execute a TR command for the specified file name.

You should set the variable to FALSE if you execute more command files than program
files.
Default: TRUE

Using the System 2-19

$SAVE_STACK

A flag indicating if the command stack is saved when you exit CI or when the command
stack file is changed with the WD command. $SAVE_STACK can have the following
values:

TRUE the stack should be saved.
FALSE the stack should not be saved.

Default: TRUE

$SESSION

The number of your current session. CI initializes this variable to your session number and
updates the value after execution of every CI command.

$VISUAL (VC+ Only)

Required to edit the command line in a manner similar to ksh or csh, command
interpreters that are used in the HP-UX operating system. Values can be CSH, EMACS,
GMACS, VI, or CI, with or without the NODUPES option. This variable is not
predefined.

Example: “set visual = enmcs” allows file name completion and emacs-type editing
of the command line.

Setting $VISUAL to EMACS, GMACS, VI, or CSH also has an effect on the functionality
of the RTE command stack. By default, the RTE command stack routines do not insert
duplicate lines in the stack. When setting §VISUAL, duplicate lines are allowed in the
stack. To override this behavior, a “, NODUPES” can be added to the visual mode. For
example, to use the VI editing mode without saving duplicate lines in the command stack,
set $VISUAL to “vi , nodupes”.

Executing the command “set vi sual ci, nodupes” is equivalent to not setting the
variable. Unsetting it accomplishes the same thing.

Allowed:
emacs, [nodupes] ksh-style EMACS command editing
gmacs, [nodupes] ksh-style GNU emacs command editing
Vi, [nodupes] ksh-style VI command editing
csh, [nodupes] csh-style name completion and directory lists
ci, [nodupes] disables command editing, except for “/” commands

See Chapter 7 for more information on the use of $VISUAL.
$WD

Name of the current working directory. CI updates this variable after execution of each
WD or CD command.

2-20 Using the System

The following example changes the value of SPROMPT:

Cl> set pronpt = waiting:
VAI TI NG

The following example displays the value of SOPSY:

Cl > echo $opsy
-125

Tilde (™) Substitution

Each command parameter is checked to see if it begins with an unquoted tilde (7). If it does and
the tilde is alone or before a slash (/), the tilde is replaced with the value of the SHOME variable.
This is known as tilde substitution. A tilde followed by a plus (+) or minus (—) is replaced by the
value of the variable PWD or OLDPWD, respectively. In addition, tilde substitution is attempted
when the value of a variable assignment begins with a tilde. For example:

Cl > echo foo=~/bar
FOO=~/ BAR

Cl > set foo=~/bar
Cl > echo $hone

/ EAH

Cl > echo $foo

/| EAH BAR

Note that in the case of:
Cl> co ~/foo>renote_node @

K~ 9

will not use the home directory on the remote_node. For example, assume your home
directory on remote_node is /EAH. Your home directory on the local node is /ESTHER. The
above command is equivalent to:

Cl> co /esther/foo>renote_node @
not
Cl > co /eah/foo>renpte_node @

as might be expected.

Nesting Command Files

Command files can be nested by using the TR command, implicitly or explicitly, in a command
file. Before CI transfers control to a new command file, the positional variables ($1 through $9)
are saved. Upon returning from one level of command file nesting to the previous level, these
values are restored.

Using the System 2-21

If CI is currently executing nested command files and you wish to stop, issue the BR command. CI
will give you the following prompt:

Multiple levels of command files. Do you wish to
(R eturn to prior command file or (A)bort all command files [A]?

If you reply with either an “A’ or a carriage return, CI returns to the interactive level. If you reply
with an “R’, CI exits from the command file currently executing and proceeds with the previous
(upper) one.

String Processing and Positional Variables Parsing

CI processes a non-quoted command string by taking the following actions:

1. Shifts it to uppercase.

2. Strips any contiguous group of blanks that precedes or trails a comma.
3. Replaces each remaining contiguous group of blanks with a comma.

4. Delimits a command at a semicolon.

5. Performs variable substitution before executing the command.

Thus, the string is shifted to uppercase and parameters are delimited by spaces and/or commas.
For example:

String Entered Parsed Value
Cl> now is the, time ,for,all NOW I S, THE, Tl ME, FOR, ALL
Cl> now |, is the, tine for all NOW I S, THE, Tl ME, FOR, ALL
parml —T J L T—parm6
parm2 parmS5
parm3 — — parm4

Strings substituted for dollar variables are processed in a slightly different manner. The case of
the string is not altered and spaces are preserved in the substituted string.

Positional variable parsing occurs after the string processing for the commands that set the
positional variables. When parsing the positional variables $1 through $9 of the substituted string,
each contiguous group of blanks that precedes or trails a comma is stripped but all other blanks in
the string are preserved. This has the effect that substituted string parameters are delimited by
commas but not by blanks. Also, note that commas delimit positional variables even when the
commas were originally quoted.

2-22 Using the System

For example, if FIRST.CMD consists of:

set log = on

set parans = ‘now is the, time , for all, good

tr ech $paramns

and ECH.CMD consists of:

set log = off
echo >$1<
echo >$2<
echo >$3<
echo >$4<

executing FIRST.CMD results in the following:

Cl> first
SET, PARAMS, =, now is the, tinme , for all,good
TR, ECH, now is the, time , for all,good

SET, LOG, =, OFF
>now 1S the<
>t i nme<

>for all<
>good<

If FIRST.CMD consists of:

set log = on

set parans = ‘now, is,the, tinme , for all,good

tr ech $parans

executing FIRST.CMD results in the following:

Cl> first

SET, PARAMS, =, now, is,the, tinme , for all, good

TR, ECH, now, is,the, time , for all, good
SET, LCG, =, OFF

>now<

>j s<

>t he<

>time<

Quoting

There are two methods of quoting available to allow characters to pass unaltered to the
destination program, command file, or CI command. A single character is quoted by preceding it

with a backslash (\). A string is quoted by enclosing it in backquotes ().

To include a backquote in a quoted string, enter a second backquote with the backquote you want

passed as part of the string.

Using the System

2-23

Some examples of quoting are as follows:

Cl> echo ‘Hello. How are you?’ (Displays string unaltered by CI)
Hell 0. How are you?

Cl > echo ru, savename, ‘ Jane Doe' (Passes a blank in command string)
RU, SAVENANME, Jane Doe

Cl> echo ‘This is a backquote (‘')."* (Passes a backquote as part of the
This is a backquote (). quoted string)

Cl > echo peek\npoke (Displays string with the “n”
PEEKNPOKE unaltered by CI.)

> 1i $file\x (Uses the backslash to indicate that

$file is the user-defined variable
(not $filex). If $file is Foo, this will
list FOOX.)

Multiple Commands per Line

You can enter more than one CI command per input line by separating the commands with
semicolons (;). Blanks immediately before or after a semicolon are ignored. A semicolon used to
separate commands must not be enclosed in quotes.

Two examples are as follows:
Cl > wh; dl
This executes the WH program followed immediately by DL.
Cl> ftn7x test.ftn O - ; link test.rel ; test

This compiles, links, and runs program TEST.

Return Status

Most commands, programs, and command files can return status to CI to indicate success or
failure of execution. CI interprets the internal status returned by commands.

Programs and command files can return five integer values and a string to CI. The first of these
integers is used for status. The rest of the values are additional information for the user. A status
of zero indicates success; anything else indicates failure. The five integers are then made available
to you in the string variables SRETURNI1 through SRETURNS. The returned string is saved in
variable SRETURN _S.

Programs pass CI the five integer values through the system routine PRTN, and the string via an
EXEC 14 call. Command files return these values using the CI RETURN command. See the
RETURN command description for further details.

2-24 Using the System

The return status is used by the execution control structures of CI discussed later in this chapter.
The control commands IF-THEN-ELSE-FI, WHILE-DO-DONE, and the SET and ECHO
commands do not alter the return variables. This is to ensure that you can access these values
before they are modified. Note that SET can be used to modify a return variable, however, when
done within a control structure, the new value is not used to evaluate the control structure.

The CZ, DT, OF, PR, PS, SP, SZ, UL, VS, and WS commands do not return status to CI;
therefore, SRETURNI always equals zero after any of these commands are executed.

Execution Control Structures

A powerful feature available in command files is the IF-THEN-ELSE-FI and WHILE-DO-DONE
control structures, which enable decision making during execution of the command file. (See
Chapter 6 for detailed information.)

The following statements compile TEST. If no errors or warnings occur during the compile, TEST
is linked; otherwise, EDIT is run on TEST.FTN so you can fix the errors.

IF ftn7x test.ftn O -
THEN link test.| od
ELSE edit test.ftn

Fl

In the next example, the file SOME_FILE is printed five times. The IS command compares the
value of SCOUNT and zero; as long as §COUNT is greater than 0, the WHILE loop continues
executing. CALC is a simple user written program that accepts two ASCII representations of
integers, converts them to integers and performs the specified operation. The result, in ASCII, is
returned to SRETURN_S.

set count =5

VWH LE is $count gt O
DO cal ¢ $count - 1
set count = $RETURN S
print some_file

DONE

Timeout/Logoff Function

To eliminate inactive sessions on a system, CI can log off a user. The variable SAUTO_LOGOFF
can be defined to tell CI how many device timeouts can occur at your terminal before CI times
out. Each time CI times out, a warning message is displayed on the terminal. After the fourth
timeout, CI executes an EX command.

Using the System 2-25

The next example begins the CI timeout process after CI waits 15 minutes for input. Set the
terminal timeout to 30000 (see the TO command) and the SAUTO_LOGOFF variable to 3. If CI
receives no input for 60 minutes, the session is terminated.

Cl> to 113 30000

Cl > set auto_l| ogoff = 3
ca >

Waiting for input...

&oi ng. ..

&oi ng. ..

Gone!

Fi ni shed

Spooling (VC+ Only)

A spool system manages concurrent access to system resources by multiple users and processes.
The spooler establishes a queue of tasks for the resource and decides which of the queued tasks to
next schedule for the resource.

The most common usage of spoolers is the sharing of printers and plotters among users. The
spool system performs the actual output of the print data to the printer device. A number of
services and options related to printing formats are provided, such as generating banner pages at
the start of the output, downloading printer fonts, and so on.

There are three spoolers on RTE-A:

e The LP spool system
e The SP spool system

e The RTE-A PRINT and PRINO programs

Refer to the RTE-A Print and Spooling Reference Manual, part number 92077-90248, for detailed
information on the above spooling systems.

Error Logging (VC+ Only)

Error logging is a feature included in the spool system provided in a VC+ system. Any user can
initiate logging by entering the following:

Cl> sp | o on ErrorFile

The parameter ErrorFile is a file descriptor of the error log file. After error logging is initiated, all
subsequent serious system messages (abort, I/O error, and so on.) and all logon/logoff transactions
are entered in the error log file. If the system resources are not available, these messages are not
entered in the log file. The messages that are to be displayed on the user terminal still appear at
the terminal. The log file also includes a time stamp of each error occurrence.

2-26 Using the System

To check the error log file, error logging must be stopped. This can be done with the following
entry:

Cl> sp lo off

After error logging is terminated, the log file can be listed with the LI command. Note that the
spool status report indicates error logging if enabled.

System Setup Utilities

The following utilities, INSTL and FPUT, are used during the system installation process which is
described in the RTE-A Generation and Installation Manual, part number 92077-90034. Refer to
that manual for details on when to use these utilities. A detailed description of the utilities
themselves is contained in Chapter 6 of this manual.

Initialize BOOTEX File (INSTL) allows you to initialize the boot extension (BOOTEX) file for an
RTE-A disk LU.

Bootable System Installation (FPUT) installs bootable systems and diagnostics in the space on the
file system volume that was reserved by a CI command.

The Copy System (CSYS) utility copies memory image files from disk to CS/80 cartridge tape to
create a bootable memory-based system. Creating memory-based systems is described in the
RTE-A Generation and Installation Manual. Refer to Chapter 6 of this manual for a detailed
description of CSYS.

The Absolute Binary to Memory Image (AB2MI) and Memory Image to Absolute Binary (MI2AB)
utilities convert absolute binary files to memory image files and vice versa. Refer to Chapter 6 of
this manual for a detailed description of these utilities.

Using the System 2-27

Manipulating Files

This chapter describes how to use CI commands to manipulate files, directories, and
subdirectories. Table 3-1 provides a summary of the commands. Chapter 6 contains the detailed
descriptions for the commands.

Also included in this chapter are descriptions of file properties; this information will help you take
full advantage of the file system.

File Properties

Each file has certain properties associated with it. Some properties describe the way information
is organized within the file, and others contain information about the file, such as its location,
ownership, protection, and time stamps. The file properties are listed below and described in the
following paragraphs:

file name

file type extension
directory
subdirectory

file type

file size

record length
owner

protection

time stamps

File Names

Each file in a directory has a unique name, consisting of up to 16 characters, which distinguishes it
from other files in the directory. (Duplicate file names may be used for files that reside in
different directories.) The first character of each file name must be a letter or a number but
names “0” through “255” are not allowed in order to avoid confusion with LU numbers that
represent I/O devices.

A file type extension, consisting of a period followed by up to four characters, can be appended to
a file name. Thus, a full file name, including a file type extension, can contain up to 21 characters.
The following file name includes a file type extension that indicates it is a text file:

Cur r ent Manual Chl. t xt

File names can be entered in upper or lowercase letters, and capitalization is optional. CI always
shifts the input to uppercase. We recommend that you avoid using characters other than letters
and numbers in a file name. “Reserved” characters are those that have special meaning to CI

Manipulating Files 3-1

and/or cannot be used. For example, the slash (/), “at” sign (@), minus sign (—), left bracket ([),
greater than sign (>), period (.), and comma (,) are reserved characters. The use of other
punctuation characters should also be avoided. Although FMGR file naming does not have the
same restrictions, note that problems could occur if you tried to move FMGR files whose names
contained reserved or other punctuation characters to a new file volume.

It is possible to accidentally create a file name that has the high order bit in a character set. Such
a name will print as a normal file name, but cannot be manipulated as a normal name, nor purged
from CI. In this case, you must use FMP routines with the appropriate ASCII and non-ASCII
characters to manipulate or purge the file name. FMP routines are described in the RTE-A
Programmer’s Reference Manual, part number 92077-90007.

Temporary Files

A temporary file is one that is intended to be used while a program runs and is typically purged
after the program finishes executing. A temporary ClI file is identified by a bit in the file’s
directory entry. A temporary FMGR file is identified by having a number as the first character in
its name.

Temporary CI and FMGR files can be created using FMP routines. See Appendix F of the RTE-A
Programmers’s Reference Manual for a detailed discussion of temporary files, and to the discussion
of FMP routines in that manual.

1/0O Devices Referenced as Files

In addition to identifying a file, the file name can be a number that identifies an I/O device. This
number is a logical unit (LU) number assigned at generation time to all devices in the RTE-A
system. The LU numbers for devices such as terminals and printers can be used in most cases
where a file name appears. To try using LU numbers to indicate I/O devices, use the CO
command to copy a file. Because your terminal is always LU 1, you can display a file to your
terminal as follows:

Cl> co welcone.txt::system 1

Use of LUs is further described in the section “Data Transfer To and From Devices” later in this
chapter.

Table 3-1. File Manipulating Commands

Command Task
CD [directory] Change working directory
CL List mounted disk volumes
CO <src file> <dest file>[pram] Copy file
CP filel |[file2, ..] dest Copy file(s)
CR file Create file
CRDIR <directory name>[Iu] Create directory on specified LU

3-2 Manipulating Files

Table 3-1. File Manipulating Commands (continued)

Command

Task

DC u

Dismount disk volume

DL [mask [option | file| lu [msc]]]1]

Display directory contents

IN fu [blocks [ok]]

Initialize disk volume

LI [flags] file| lu

List file or LU

LNS filel [file2, ..] dest

Create symbolic link(s)

LS maskl [mask2, ..]

Display directory contents

MC u

Mount disk volume

MO <src file| dir> <dest file| dir>

Move file or directory

MV filel [file2, ..] dest

Move files and/or directories

OWNER directory] newOwner]

Display/reassign directory owner

PATH

Display current UDSP information

PATH [-E] [-N:n] udspnum
[dirmamel[dirnam?2[...]1]]

Display/define specified UDSP or UDSP entry

PATH [-E] -—F, file| lu

Display/define UDSP using commands from
specified file or LU

PROT file [newprot]

Display/modify file protection

PU file| dir [ok]

Purge file or directory

PWD

Display current working directory

RM filel [file2, ..]

Purge files and/or directories

RN file| dir newname

Rename file or directory

TOUCH filel [file2, ..]

Update the access time of a file

UNPU file

Unpurge file

WD [<directory name> | file| +S]]

Display/set up working directory with option for
posting or changing command stack file

WHOSD file| directory| lu

Display the users of a file, directory, or LU

Manipulating Files

3-3

File Type Extensions

A file name may include a file type extension that indicates the type of information in the file, for
example, text, binary data, or listing. The file type extension consists of a period and up to four
characters appended to the file name. For example, in the file name parameter EDITRUN, the
file type extension is .RUN. A blank file type extension is allowed, and is the default for some
programs and commands. If you do not use a file type extension, you need not include a period
after the file name.

Standard file type extensions should be used when files contain standard information. For
example, all executable program files should have file type extension .RUN, relocatable files
should have file type extension .REL, and all CI transfer files should have file type extension
.CMD. The standard file type extensions are listed in Table 3-2.

Table 3-2. Standard File Type Extensions

File Type Extension File
.C C source file

.cmd Cl command file

.dat Data file

.dbg Symbolic Debug/1000 file
.dir Directory or subdirectory entry
.doc Document file

.err Error message file

ftn FORTRAN source file

ftni FORTRAN source include file
.h C include file

.hlp or .help Help file

dib Library of relocatables
Jod LINK command file

Ist Listing

.mac Macro source file

.maci Macro source include file
.map Load map list

.mlb Macro library file

.mnf Manual numbering file
.mrg or .merg Merge file

.pas Pascal source file

.pasi Pascal source include file
.rel Relocatable (binary) file
.run Program file

.snp System snapshoit file

.Spl Spool system file

.stk Command stack file

.Sys System file

Axt Text file

3-4 Manipulating Files

When you specify a file, you must include the file type extension if there is one. If you specify only
REPORT for a file named REPORT.TXT, you are implying a blank default file type extension,
which does not match REPORT.TXT.

Some programs and program commands assume different default type extensions. For example,
the CI program RU command uses the default file type extension of .RUN for programs
scheduled without file type extension. Refer to the manuals appropriate for the programs you are
using for any default file type extensions (for example, the manuals for EDIT and DEBUG/1000).

File Descriptors

A file descriptor is a term used to specify a file by means of its attributes, including file size, type,
record length, subdirectories, and directory. Colons are used to separate the parameters, and
slashes are used to separate subdirectories, directory, and file name. The following two examples
show file descriptor formats:

filename: : directory: type: size: record_length
or

| directoryl subdirectoryl filename: : : type: size: record_length

Note that the filename parameter includes the file type extension, if there is one. You must use a
colon as a placeholder for each default parameter that is followed by another parameter.

The maximum length of a file descriptor is 63 characters, including delimiters, and we recommend
that you keep file descriptors in the range of 40 characters, because FMP routines expand them to
include unspecified attributes, which may cause them to exceed the limit. It is possible, however,
to create files with file descriptors longer than 63 characters by using working directories or by
renaming directories.

The filename parameter in the file descriptor can contain a mask qualifier that you can use to
access multiple files. In addition, two wildcard characters, @ and —, can be used in the filename
parameter. Refer to the “File Masks” section later in this chapter for details.

In the following examples of file descriptors, the file names in the user entries are shown in
uppercase letters for clarity only. Directories and subdirectories in the comments are shown in
uppercase letters as they are throughout this manual.

MANUAL. TXT: : op: 4 (Type 4, text file on directory OP)

/ op/ out put / QUTLI NE. TXT: : : 4 (Type 4, text file on subdirectory OUTPUT in
directory OP)

EDI T. RUN: : pr ogr ans (File in directory PROGRAMS)

PROGRAMMERS: : : 3: 356 (Type 3, text file in working directory with a size
of 356 blocks)

/ new pascal . dir (Subdirectory PASCAL in directory NEW)

/ new (Directory NEW)

/jones/ @@ (All files in directory JONES)

@@:-16 (All files on disk LU 16)

Manipulating Files 3-5

Directories

Directories contain files and other directories, called subdirectories. Directories maintain
information about files including their names, file type extensions, all the optional properties
defined for the files, and their locations. Many directories can be on one system, and each
directory can have multiple subdirectories.

Each directory has a unique name of up to 16 characters, subject to the same rules as file names
except that a global directory name can be a single integer. The directory name can be specified
along with the name of a file you want to access, but its use is optional.

Directories can be specified as follows:

. 1 <directory name> (or : : —disklu to refer to all directories on a disk LU)
or

| <directory name>

In the “: : <directory name>” format above, the directory name is preceded by two colons, which
separate the file name from the directory name. This form is generally used with FMGR files and
the system may display this form for compatibility with FMGR files. The field between the colons
is used by FMGR files to define an optional file security code; for example, file:sc:crn.

The “/ <directory name>" format is typically used if the files are organized in a hierarchical
structure. Such a file structure may contain directories that have nested subdirectories. This form
of specitying files is used to indicate the search path for the files in the CI, or hierarchical, file
structure. Figure 3-1 illustrates the hierarchical file organization.

If the directory name is omitted in a file descriptor, a default directory called the working
directory (WD) is used. The working directory can be defined or changed with a WD command.
Once defined, the working directory remains in effect until changed by another WD command.
You may display the name of the working directory by using the WD command without a
parameter.

If the optional VC+ (HP 92078A) is used in your system, the multiuser logon system can set up
your working directory automatically whenever you log on.

Certain programs contain a special feature that lets you schedule other programs without
specifying the directory name. If you omit the directory in the program runstring, standard
directories set up by the system are searched. For example, in executing the RU (Run) command,
CI searches a directory named PROGRAMS for programs specified without a directory. The
standard default directory search sequence used by CI is described later in this chapter.

3-6 Manipulating Files

DIRECTORY DIRECTORY DIRECTORY
SYSPROGRAMS PROGRAMS HELP
y A J A J
SUBDIRECTORY SUBDIRECTORY SUBDIRECTORY
DOCUMENTATION APPLICATIONS TESTPROGRAMS
FILE SUBDIRECTORY SUBDIRECTORY
PROJECTLOG GRAPHICS MEASCONTROL
SUBDIRECTORY SUBDIRECTORY FILE
SUBROUTINES SUBROUTINES DATALOG
FILE FILE FILE
DRAWCKTAA REL CLEARSCREEN SYSTEMLOG

Figure 3-1. Sample Hierarchical File Organization

Manipulating Files 3-7

Subdirectories

Subdirectories are directories that are contained or embedded within other directories.
Subdirectories in turn can contain other subdirectories, and there can be many levels of
subdirectories. Unlike directories, subdirectories can have duplicate names as long as all names
within a single directory are unique.

Subdirectories have the same properties as directories, and in this manual, references to
directories also apply to subdirectories, unless otherwise noted.

When you want to specify a file that is in a subdirectory, use the hierarchical format, preceding the
file name with the subdirectory name and separating the two names by slashes. For example, if a
file named MANUAL.TXT is in directory /DIR, it can be specified as follows:

/di r/ manual . t xt
If this file is moved to the subdirectory SUBDIR, it is specified as follows:
/ di r/ subdir/manual .t xt

The first form above is used when there are no subdirectories. The second form is used to specify
a search path in a hierarchical file structure in which there may be many levels of subdirectories.
There is no limit to the number of levels of subdirectories that can be nested inside other
directories; however, there is a limit to the length of the file descriptor (a maximum of 63
characters, including delimiters).

In a sample hierarchical file structure, shown in Figure 3-1, enter the following to specify a file
named DRAWCKTAA.REL located in subdirectory SUBROUTINES:

[prograns/ appl i cati ons/ graphi cs/ subrouti nes/ drawckt aa. r el

There may also be a file with the same name in subdirectory APPLICATIONS. To specify this file,
the following form is used:

/ prograns/ appl i cati ons/drawcktaa.re

The hierarchical file structure provides a search path to minimize the search time and allow
duplicate file names for files that reside in different directories or subdirectories.

In a hierarchical file specification, a directory name is always preceded by a leading slash; without
the slash, the name is assumed to be a subdirectory. For example,

/system archive/file. txt:::3
specifies that FILE. TXT is located in subdirectory ARCHIVE in directory SYSTEM, while
systenfarchive/file. txt:::3

specifies that FILE.TXT is in subdirectory ARCHIVE of subdirectory SYSTEM. (Because no
slash precedes the name SYSTEM, it is assumed to be a subdirectory.) In this case, because a
directory is not specified, the working directory is assumed, which means SYSTEM is a
subdirectory of the working directory. In other words, the entire search path is different.

3-8 Manipulating Files

Directory Specifiers “.” and “..”

Two other specifiers can be used to indicate the directory path to a file and are useful for moving
around the directory tree without explicitly specifying subdirectory names. They are:

. — identical to “the current working directory”
.. — identical to “the parent of the current working directory”

These characters are used in place of specific directory names in a file descriptor.

For example, assume the directory structure is as shown in Figure 3-1 and the current working
directory is /PROGRAMS/APPLICATIONS/GRAPHICS. To access the file PROJECTLOG, you
can use the file descriptor

| PROGRAMS/ APPLI CATI ONS/ PRQJECTLOG

or you can enter

.. | PROOECTLOG

Here the leading “..” is identical to “/PROGRAMS/APPLICATIONS?” (the father directory of
GRAPHICS). Similarly, the file DATALOG can be accessed using

.. | MEASCONTROL/ DATALOG

Multiple sets of “..” can be used to continue up the directory tree. For example, if the working
directory is

| PROGRAMS/ APPLI CATI ONS/ GRAPHI CS/ SUBRQUTI NES
the file SYSTEMLOG can be reached with the following descriptor:

... ./ MNEASCONTROL/ SUBROUTI NES/ SYSTEMLOG

Here the first “..” refers to the parent of SUBROUTINES (GRAPHICS) and the second refers to
the parent of GRAPHICS (APPLICATIONS). The remainder of the descriptor continues down
from that point. An equivalent descriptor is

/ PROGRAMS/ APPLI CATI ONS/ MEASCONTROL/ SUBROUTI NES/ SYSTEML.OG

“ »

You can string the “..” characters together until the top level of the directory tree is reached. At
that point, additional “..” sequences have no effect. For example, from
/PROGRAMS/APPLICATIONS, the descriptor

oo ../ DOCUMENTATI ON
is identical to /PROGRAMS/DOCUMENTATION.

The “.” character refers to the working directory, and the descriptor “./xxx” is basically equivalent

G »

to the descriptor “xxx”. The reason for using “.” instead of just specifying the file alone is that

Manipulating Files 3-9

some commands and applications treat the two descriptors differently. For example, the
command

ru prog.run

causes PROG.RUN to be picked up from the working directory or some other directory in the
programs search path (refer to the discussion of the RU command for details on the search path).
But the command

ru ./prog.run

forces PROG.RUN to be picked up only from the working directory; that is, it disables the search
algorithm.

Directory Specifier “#n”

You can use another leading character sequence,
#n

where n is a number from 0 to 8, in place of the directory name in a file descriptor. This instructs
FMP to search for the specified file using UDSP number n. For example, the file descriptor

#1/ prog. run

tells FMP to search through the directories defined in UDSP number 1 to find the file
PROG.RUN. (UDSPs are further described later in this chapter and in the discussion of the
PATH command in Chapter 6.)

Note that some commands and applications use a default UDSP when searching for files; for
example, the RU command uses UDSP #1. This sequence overrides the default UDSP. For
example, the command

ru #4/prog.run

causes a search for the file PROG.RUN within UDSP #4 instead of the default UDSP #1, which
is normally used for the RU command.

3-10 Manipulating Files

File Type

Each file descriptor has a file type parameter that indicates how the information in the file is
organized. The file type is a number and is not to be confused with a a file type extension. There
are standard RTE-A file types defined with the following characteristics:

Type —1 Symbolic link files. A symbolic link is a file that indirectly refers to another file.
The symbolic link file itself contains a file descriptor that points to the new file.
The LNS command, described in Chapter 6, is used to create a symbolic link.

Type 0 An I/O device. Type 0 is used in accessing devices with file calls. There is no disk
file or directory entry for type O files, and they do not have the other properties
listed in this section.

Type 1 Random access files. These do not have any structure information in them. These
files contain fixed record lengths (128 words). They can be read and written very
quickly.

Type 2 Fixed-length record, random access files. The record length is defined when the

files are created. They are usually user-created, large data files.

Type 3 Type 3 and higher files are variable-length and higher record, sequential files
suitable for use as text files. There is no difference in the handling of file types 3, 4,
and 7. Type 3 is for general purpose files and can be used for text. This is the
default file type when files are created with the CR command. Type 4 is
recommended for text files. By convention, type 5 is used for Compiler or
Assembler relocatable output files, type 6 is for program files that are
memory-images of executable programs, and type 7 is for Compiler or Assembler
absolute binary output files. Type 6 files are treated the same as type 1 files.

Type 8 Type 8 and higher files are user-defined, with the following exceptions.

Type 12 Byte stream files. These do not have any structure information in them. The
directory entry for each type 12 file contains a pointer to the last byte in the file.
The fields for number of records and record length are not defined for type 12 files.

Type 6004 CALLS catalog files.

File type is important when files are accessed programmatically. Substituting a random access file
for a sequential file or vice versa will cause problems.

File type is specified after the directory name, separated by a colon. For example, you can create
a type 1 file with the following entry:

Cl> cr file.dat::system1

If the subdirectory and directory are specified before the file name, the file type is preceded by
three colons. For example:

Cl> cr /systemsubdir/file.dat:::1

The directory name was moved to the front of this case, but colons are required as placeholders.
When creating a file in the working directory, placeholders are also required if the file type is
specified. For example:

Cl> cr subdir/file.dat:::1

Manipulating Files 3-11

File Size

The file size parameter in the file descriptor specifies how many blocks of disk space the file
needs. One block is 128 words (256 bytes or characters). One printed page takes about 10 blocks
of disk space. You can specify how big a file should be when you create it. If you do not specify
the size and there is no information about the file, the file system chooses a size of 24 blocks. If
the contents of the file are known, for example, when you create a file with the CO command, the
exact size of the file is used.

The size of a file is specified in the file descriptor after the file type parameter, separated by a
colon. For example, to create a file of 100 blocks, enter the following:

Cl> cr bigger.dat::system:100
To specify both size and type, enter the following:

Cl> cr macro.err::system1:100 (Create a type 1 file, 100 blocks in length, called
MACRO.ERR in directory /SYSTEM.)

Except for type 6 and some type 1 files, the file system automatically increases the file size to
accommodate more data as needed through a process called “extending the file.” “Extents” are
always at least as big as the original file size, because there are performance advantages to having
fewer, larger extents. Type 6 and some type 1 files cannot be extended, because they are memory
images of programs of the RTE system.

Files that are larger than 16383 blocks are rounded off to multiples of 128 blocks. Files can be as
large as any disk available in your system. Files larger than 16383 blocks must be created by
specifying the size as a negative number of 128-block “chunks” of the file. For example, a 50000
block file is specified by a size of —50000/128 = —391, rounding to the nearest larger number in
absolute value. Large files are usually created by a program and rarely by a user.

Be aware that a file size parameter larger than 32767 blocks will be accepted, but the desired file
size will not be created. For example, the following command creates a file with 13110 blocks:

Cl> cr file::::36214

Record Length

Record length is the last parameter in the file descriptor, specified in units of words and used
mostly for fixed-length, type 2 files. For example, the following entry creates a type 2 file of 100
blocks with 64-word records:

Cl> cr file.dat::system 2:100: 64
This field is also used in type 3 and higher files. The file system uses the value of the longest
record in the record length field. This value appears in messages displayed by the file system

utilities to indicate the longest record. Any other value specified by you in type 3 and higher files
is ignored.

3-12 Manipulating Files

File Ownership and Associated Group (VC+ Only)

A directory’s owner is the user who created it. All files in a directory are considered owned by the
directory owner. The associated group of a directory is the associated group of the directory
owner. The same is true for subdirectories. However, the owner and the associated group of a
subdirectory can be different from the owner and associated group of the directory that contains
the subdirectory.

The directory owner can change the protection status of files in that directory. The protection
status defines the read/write access allowed for the owner, members of the associated group, and
general users. See the section on “Protection” below for more information. The directory owner
(and no other user) can also reassign the directory ownership and the associated group.

An entire CI volume can have an owner and associated group. The initial owner of a volume is
the user who initialized the volume, and the associated group is that user’s associated group. A
volume’s ownership and associated group may be reassigned using the owner command.

See the section on “Manipulating Directories” in this chapter for more information about
ownership, associated groups, directories, and subdirectories.

Protection (VC+ Only)

File protection is a security measure in the RTE-A file system that governs read and write access.
It is defined when a file is created or copied into a directory, and it can be specified differently for
the owner, members of the associated group, and general users. The default file protection
provides both read and write access for the owner and read access only for members of the
associated group and other users.

When a file is created, it assumes the protection status defined for the directory on which it
resides. A copied file assumes the protection status defined for that file if one exists; otherwise, it
assumes the protection of the directory into which it is copied.

You can specify protection on a file-by-file basis, in any combination of read and write access for
the owner, members of the associated group, and general users.

Directories also contain protection information that governs the protection status of any file
created in that directory. For example, if a directory allows read and write access for the owner
and read access only for members of the associated group and general users, all files created in
that directory have that same protection status unless it is changed by the PROT command.

Read and write protection for a directory differs slightly from that for a file. Directories that are
write-protected (read access only) prevent general users from changing information in the
directory through CI commands; they cannot create, purge, or rename files in the directory.
Directories that are read-protected prevent general users from finding out the contents of those
directories.

A CI volume also has a protection status that regulates the reading, creating, purging, or renaming
of the global directories on that volume.

Manipulating Files 3-13

Time Stamps

Time stamps are maintained for all files in the RTE-A file system except those created with
FMGR. The time stamps include the time of creation, time of last access, and time of last change.
Times reflect both time of day and date, with a one-second resolution. Time stamps are not
maintained for directories.

Time stamps are changed automatically by the system; users can only examine them with the DL
command. The examples that follow illustrate the use of time stamps.

Cl> dl <file descriptor> a (Examine time last accessed)
Cl> dl <file descriptor> c (Examine time created)

Cl> dl <file descriptor> u (Examine time last updated)
Cl> dl <file descriptor> uac (Display all three time stamps)

The creation time of a file is set when the file is created. Access time is set whenever a file is
opened. Update time is set whenever a file is written, whether the data in the file has been
modified or not. Because the update time is not set until a file is closed, the update time of an
open file is not accurate.

Examining the directory information for a file has no effect on the file’s access or update time.

When a file is created by copying an existing file, the create and last access times are changed to
the time of copying. The last update time, however, remains the same as that of the existing file,
thus preserving the revision history of the file.

File Masks

Access to multiple files is simplified when you use a file mask, which lets you specify several files
with a single entry, using one or more of the fields in the file descriptor. For example, the daily
entries of a system log can be accessed by masking the date code in the file names. Alternatively,

2

all those files can be accessed by specifying “syslog—————— .

SYSLOG010181
SYSLOG010281

SYSLOG123081
SYSLOG123181

In this case, the dash (—) is used to mask one character position (except a blank character).

The @ character is used to mask all characters. Thus, the files shown above can also be accessed
with another single entry:

SYSLOG@

3-14 Manipulating Files

Some file-related commands can refer to a number of files using one file descriptor with the aid of
a file mask. The file mask feature uses all the fields in the file descriptor plus a special mask
qualifier field. The fields used in this manner can be any or all of the following:

file name (including file type extension)
mask qualifier appended to file name
directory

subdirectory

file security code (FMGR files only)
file type

file type extension

file size

file record length

time stamps

user.group

backup status

The “.” and “..” alternate directory specifiers may be used in file masks just as in regular file
descriptors. However, the #n specifier may not be used.

The mask characters “—” and “@” can be used only in the file name and file type extension fields;
they have no special meaning in any other fields, including directory and subdirectory. The dash
masks a single character position and the @ character masks zero or more characters.

You can use an LU number as the file name, but the type extension will be ignored. There must be
a placeholder for the type extension to separate it from the mask qualifier. For example, the
following command lists all files on LU 16 that have the backup bit set:

C>d 16..b

The mask qualifier field is a string of characters appended to the file name after the file type
extension. It is separated from the file name by a period. Special characters are used in the
qualifier to facilitate finding the desired files, as shown in Table 3-3.

Table 3-3. Mask Qualifiers

Manipulating Files 3-15

Characters

Description

(user.group)

Mask by specified user. Return the files belonging to a given user,
files in a specified group, or files belonging to a given user
regardless of group.

Access time stamp mask (see the section on “Time Stamp Masks”
in this chapter).

Match only those files that need to be backed up. (Refer to the
discussion of the TF utility in the RTE-A Backup and Disk Formatting
Utilities Manual.)

Create time stamp mask (see the section on “Time Stamp Masks” in
this chapter).

A search directive. If any directory matches a mask, then all files in
that directory match, regardless of other characteristics.

A search directive. Search all the mounted disk volumes in the
system, including the FMGR file system disk cartridges. (This can
take a long time, depending on the size, contents, and the number
of volumes.)

A search directive. When used with ‘d’, ‘k’ or ‘s’ directives, masking
will not search symbolic links to directories.

A search directive. Search from the specified directory down

through any subdirectories in that directory, applying the mask to all
files within the search path. ‘K’ is similar to ‘d’ in that it preserves the
directory structure (for example, in a copy) and similar to ‘s’ in that it
applies the mask to each file in the path. ‘k’ overrides or cancels a ‘d’
qualifier.

Return the directory information for a symbolic link file rather than the
directory information for the file pointed to by the symbolic link.

Return extent entries on FMGR directories.

Do not match directories. Useful mostly for copying. Overrides the
d qualifier.

Match only open files.

Match only purged files.

A search directive. Search from the specified directory down
through any subdirectories in that directory, applying the mask to
those files throughout the search path.

Match only temporary files.

Update the time stamp mask (see the section on “Time Stamp
Masks” in this chapter).

3-16 Manipulating Files

Table 3-3. Mask Qualifiers (continued)

Characters Description

w Walk through FMGR directories. FMGR directories are written on the disk in a
staggered fashion. They must be accessed in the same staggered fashion to
find files in the order that they appear in the directory. This is known as walking.
An application in which the order of file access is not important can gain
performance by accessing the directory in a faster, non-staggered manner
known as running. The masking routines use the fast way unless the ‘w’
qualifier is set or the buffer area supplied is 8K words, in which case no speed is
gained by running.

X Match only files with extents (not applied to FMGR files).

y Return correct extent information on directories (requires an additional disk
access for each directory).

Any of the time stamps can be used as the mask qualifier. Time stamps can be specified as an
option in commands that use the file mask feature, or as a range. The format is as follows:

[c] a] u] [xxxxxX. XXXXXX] [=] [XXXXXX. XXXXXX]

where the xxxxxx.xxxxxx is a date and time in the format YYMMDD.HHMMSS; thus,
920529.120000 is noon May 29, 1992. Only one choice among c|a|u (create, access, or update) is
allowed. The default is the last update time. The dash character “—" is not a mask character
when used in the qualifier field, but is used to specify a range of dates. If “—” is not used, the
specification is for files that match that date/time. For example:

c880416. 121108-910611. 141411

This entry specifies files created between April 16, 1988 12:11:08 and June 11, 1991 14:14:11. The
time can be specified with as few digits as desired. Thus “a89-91" specifies files last accessed
during or after 1989 and before or during 1991.

The time stamps in the file system begin on Jan 1, 1970. Dates specified in years between 00 and
37 (inclusive) are interpreted as being the year 2000 through 2037. Time stamp values do not go
beyond the year 2037.

Appropriate default values for each field are defined. If the name is not specified, all names
match. The same is true for type, size, and record length. If the qualifier is not specified, all files
qualify except purged files. (Note that if p is specified, only purged files qualify.) If the file type
extension is not specified, only files with blank type extensions match. If the directory and
subdirectory are not specified, only the working directory is used. The directory and subdirectory
specification has precedence over the e option (if both are specified, only the specified directory is
searched).

There are several special cases in specifying directories using file masks. If the mask ends with a
slash (/), as in /[FOO/JOE/, it is equivalent to /FOO/JOE/@.@ (default name and file type
extension). This mask directs the file system to search for all files with any name and file type
extension in subdirectory JOE of global directory /FOO.

The trailing ‘ /’ is a way of referring to the contents of a directory rather than to the directory
itself. To refer to the files in directory FOO, the proper mask is /FOO/. Thus to list the files in
directory FOO, the command is:

Cl> dl /fool

Manipulating Files 3-17

Note that /FOO will not list the files in directory FOO, but the following entries will:
Cl>dl ::foo
Cl>d @@:foo
Cl>d /fool@@

If the file name in a mask ends with the wild card character (@) and the file type extension is not
specified, a wild card file type extension is assumed. For example:

filel@
is the same as filel@.@

Files with a null file type extension can be specified with a trailing dot as follows:
file2@

If the mask ends with .DIR, as in /FOO/JOE.DIR, only subdirectory JOE in global directory /FOO
is matched. The .DIR file type extension is needed in all contexts where either a file or directory
can be given; it may be omitted where only directories are allowed.

Examples of mask qualifiers:
ug2— (Updated during or since 1982)
u82-83 (Updated during 1982 or 1983)

Examples using the whole mask:

@ (Equivalent to “@.@?”, specifies all files
on the working directory)

/ f oo/ (Equivalent to /[FOO/@.@, specifies all
files on directory /FOO)

/ fool @ (Specifies all files on directory /FOO with

a blank file type extension)

/@ftn.su82 (Search all CI volumes for all FORTRAN
source files last updated during 1982)

/ ganes/ backganmon/ source/ @ @ (All files on subdirectory SOURCE of
subdirectory BACKGAMMON on directory

/GAMES)

@dir (All subdirectories on the working
directory)

@Q@x:::4 (Type 4 files with extents on the working
directory)

3-18 Manipulating Files

Examples using the (user.group) mask qualifier:

dl /@ @s(user)
or
dl /@@s(user.@
dl @ @ (user)
dl /@ @s(user.)
d /@@s(@)
dl /@ @s(user.group)

Examples using search directive qualifiers:

co /ANB@ @k /SCRATCH

co / ANo@k @

co A @

Examples using symbolic link qualifier:

DL o@::4

DL o@!:::4
DL @@l :::-1
Other examples:
dl @txt
dl a@ @c83
dl /]joel @@sc80-83

(Return the files belonging to user,
regardless of group, in all CI directories
and subdirectories)

(Return the files belonging to user in the
working directory (will be all or none as
the same user owns all files in a directory)

(Return the files belonging to the user with
associated group NOGROUP in all CI
directories and subdirectories)

(Return the files with associated group
NOGROUP in all CI directories and
subdirectories)

(Return the files belonging to the user in
specified group and search all CI directories)

(Copies all subdirectories and files matching
B@.@ within the directory /A to the directory
SCRATCH, preserving the directory
structure)

(Copies all subdirectories and files within the
directory /A to the working directory,
preserving the directory structure)

(Copies all subdirectories and files within the
directory /A to the working directory,
preserving the directory structure because the
CO command implies use of the ‘d’ search
structure)

Display all type 4 files and symbolic links that
play ype ¢ Yy
point to type 4 files)

(Display all type 4 files)
(Display only symbolic link files)

(Display files in the working directory with file
type extension TXT)

(Display files in the working directory that start
with a, created during 1983)

(Display files in directory /JJOE created during
the period between 1980 and 1983. Also, the s
qualifier directs a search of any subdirectories
of directory JOE for similar files)

Manipulating Files 3-19

Masking and FMGR Files

For FMGR files, the dot “.”, is both a legal character and a delimiter in the mask. If necessary,
the masking routines modify masks as follows for FMGR files with dots in their names before
applying the masks to the FMGR files.

e The name and type extension are examined as if they referred to a CI file.
e If there is no dot in the mask, no change is made.

e If the type extension is null (that is, there is none), the dot is replaced by a “—" (minus)
character. For example, “xyz.” becomes “xyz—".

e If the type extension is “@”, the dot is changed to “@”. For example, “xyz.@” becomes
“xyz@@”. A CI file name represented simply as “@” (which is equivalent to “@.@") is
modified to “@@@”.

e Otherwise, the type extension is put back with the name. For example, “xyz.w” remains
“xXyz.w”.

All FMGR files with a single dot in their names will be found, but additional files may also be
returned. When defining masks for FMGR files with names containing multiple dots, replace all
but one dot with a minus (—) character.

Destination File Masks

The CO, CP, MO, MV, LNS, and RN commands can use a destination file mask in addition to a
source file mask to give the command a framework for the destination file name. For example, the
command “RN @ SRC @ FTN” renames all the files on the current directory that have file type
extension .SRC to have file type extension .FTN. In general, if a name or a file type extension is
specified in the destination mask, it is used for the destination file name or file type extension. If
either is defaulted using the @ character, the name or file type extension of the source file is used.

The @ character must mask a complete name or file type extension. Thus the command

“RN %@ REL @ REL” will NOT remove the “%” from the front of the files with type extension
.REL. The .DIR file type extension cannot be changed in the destination file descriptor. If the
source file type extension is .DIR, the destination type extension will be .DIR, regardless of the
destination mask type extension.

The destination mask has the same rules as the source mask for implicit “@”. Thus, /SSOURCES/
is equivalent to /SOURCES/@.@. This results in the default name and file type extension.

For the type and record length fields, the values from the source file are always used, even if a
value was specified in the destination mask. For the security code and file size fields, any value
used in the destination mask will override that of the source. The following paragraph describes
how the destination directory path is generated.

The destination directory path consists of both the destination mask and the source file directory
path, starting with the destination mask, to which the source directory path, less the directory path
in the source mask, is appended.

3-20 Manipulating Files

The following examples illustrate destination masks used with the CO command.

Copy all files in subdirectory /PROGRAM/DOCUMENTS into subdirectory
/MANUAL/DOCUMENTS.

Cl> co /program docunents/ @ / manual / docunents/ @

In this example, the destination subdirectory must exist prior to executing the copy command.
This also could have been accomplished using the following command:

Cl> co /program docunments.dir.d /manual/ @

In this example, the d qualifier in the source mask specifies all files in the directory
/DOCUMENTS. The subdirectory will be created if it does not exist.

Copy these files to a subdirectory called /MANUAL/CHAPTERS, changing the subdirectory name
at the destination.

Cl> co /program docunents/ @ / manual / chapt ers/

Subdirectory /MANUAL/CHAPTERS must be an existing subdirectory for the command to work.
An alternate form is:

Cl> co /progranfdocunents.dir /manual/chapters.dir

The destination subdirectory in this example will be created if it does not exist.

More examples are as follows:

Cl> nmo main.txt subroutine.ftn (Move MAIN.TXT to SUBROUTINE.FTN)

Cl> co main.lst @tenp (Copy MAIN.LST to MAIN.TEMP)
Cl> rn /program /pgm (Rename directory PROGRAM to PGM)
Cl> co /pgmdir /new @ (Create subdirectory PGM on directory

NEW with all files and subdirectories
that are in directory PGM)

Manipulating Files 3-21

File Operations

The following sections describe the file operations you can perform using CI commands. The CI
commands that are used here are documented in more detail in Chapter 6. The tasks performed
by the DL, CO, MO, PU, and CR commands described here can also be performed in a similar
manner by the LS, CP, MV, RM, and TOUCH commands, respectively. The latter commands,
which have been provided as of RTE-A Revision 6000, are similar to UNIX* commands. These
commands are also described in detail in Chapter 6. Note that the CP, MV, RM, and TOUCH
commands are supported on VC+ systems only.

Directory Listings

One of the most useful file operations is listing the files in a directory, which shows the files
available to you. The directory list command is DL. Entering DL without any parameters returns
a list of file names in your working directory, sorted in alphabetical order. For example, to list all
files in the working directory:

Cl > dl
directory ::SMTH
A B D.E TEMP. FTN TVENTY. FTN

Here the working directory is SMITH, which contains the four files listed. Note that files A and D
have uninformative names and non-standard file type extensions. Such names are not
recommended for important data.

DL can also be used to get a list of the files contained in another directory simply by specifying the
name of the directory. There are several ways to list the contents of a directory, as shown below.

To list all files in directory named JONES:
Cl> dl ::jones (Recommended for FMGR files)

Cl> dl @@:jones
Cl> dl /jones/ (Recommended for hierarchical files)
Cl> dl /jones/ @@
To list all files in subdirectory SUBDIR, which is in global directory JONES:
Cl> dl /jones/subdir/

Cl> dl /jones/subdir/ @@

This gives the names of the files contained in those directories. The trailing slash must follow the
directory or subdirectory to get the desired effect.

See also the LS command described in Chapter 6.

*UNIX® is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

3-22 Manipulating Files

Listing Files

The LI command lists the contents of a file to your terminal for examination. You can use a file
mask to list a group of files. To list file /SYSTEM/WELCOME.CMD:

C>1i /system welcone.cnd

In this example, the file is displayed on the terminal screen in pages of lines separated by the
following prompt:

More. ..
After the first use of the LI command your prompt may look like this:
More [x%

where x%represents the percentage of the file already listed.

You can respond to this prompt by entering a single character, optionally preceded by a number,
from 1 to 32767 called n below, to select from the following standard options:

Character Action

<space> List another page, or another # lines, if given.

<return> List the remaining lines without page breaking.

AorQ Abort the listing.

+ List one more line or skip # lines and list one more line.

P Set page size to n lines and list another page.

Z Suspend the LI program (restart with the system GO command).

The abort character “a” can be either upper or lowercase. After it is entered, the listing stops and
the CI prompt is displayed.

Several other commands use this method of display, pausing after each screenful to let you read
what has been displayed with the same choices for abort or continuation.

The LI command also provides many more paging functions and options than the standard choices
shown above. If you are using a printing terminal, you can use the —0 option to copy the file to
the printing terminal without stopping. Refer to the LI command description in Chapter 6 for
details of all the LI options.

If you enter a file mask, you are prompted as follows before each file is listed:
File: filedescriptor, list? [YV]

Respond to this prompt by entering a single character:

Character Action

Y or <space> Yes, list this file.

N Skip this file, move to the next file.
AorQ Abort the LI command.

LI has many options for display formatting and file filtering; see Chapter 6.

Manipulating Files 3-23

Copying Files
The CO command can be used to make a copy of any type of file and to copy files to or from I/O

devices.
To copy FILE1.TXT to NEWFILE1.TXT, enter:

Cl> co filel.txt newfilel.txt

The source file is given first, followed by the destination file. The source file descriptor can be
masked to include a number of files. The destination file must not exist in this case; CO will not
overwrite files unless directed by a replace duplicate (D) option.

The CO command creates the destination file with the same attributes as those associated with the
source file. Some attributes in the destination file can be specified in the file descriptor (security
code in FMGR files and file size). There is a set of optional command parameters to control the
copying process. These are options provided to control the way data will be transferred and are
most useful when transferring data to or from an I/O device. For more information on the CO
command options, refer to the CO command description in Chapter 6 of this manual. Following
are more examples of file copying entries.

Copy /SYS/REPORTT1 to the working directory:

Cl> co /sys/reportl reportl

Note that the destination file uses the default working directory and is not defaulted to the source
file directory.

Copy a file to an existing file on the working directory:
Cl> co filel masterfile d

‘d’ is the replace duplicate option; the current MASTERFILE is to be purged if it exists.
Copy a file to magnetic tape (LU 8):

Cl> co file 8
Copy a file to the terminal screen (LU 1):
Cl>co file 1l

See also the CP command described in Chapter 6.

Renaming Files

The RN command is used to change the name of a file (or files with the use of a file mask). It can
also change the file type extension. You must have write access to the directory containing files to
be renamed. To change the name FILE1.TXT to NEWFILE1.TXT, enter the following:

Cl>rn filel.txt newfilel.txt

In this example, the file FILE1.TXT will no longer exist after this operation. The new file name
cannot be an existing file in this case. Refer to the RN command description in Chapter 6 for
details.

3-24 Manipulating Files

Moving Files

The MO command is used to move files from one directory to another. For example, to move file
FILE1.TXT::SMITH to FILE1.TXT::JONES, you could copy the file to the new destination and
then purge the original file. However, if FILE1 is an enormous file, this takes a long time, and
there must be enough disk space for both copies.

You can use the MO command to move the file to a different directory if both directories are on
the same LU. If the directories are on different LUSs, an error is returned. You must use the CO
command to copy the file to the new directory and the PU command to purge the original file. Or
you can use CO with the P option to purge the source after the copy. Before moving a file
between directories, you can use the DL command with the L option to display the LUs on which
the directories reside.

The following example moves FILE1.TXT from directory /SSMITH to directory /JONES:

Cl> nmo /smth/filel.txt /jones/filel.txt

See also the MV command described in Chapter 6.

Purging Files

The PU command is used to purge a file, removing it from the directory. A group of files can be
purged by using a file mask. You must have write access to the directory containing the files to be
purged.

To remove FILE1.TXT, enter the following:

Cl> pu filel.txt
Purging FILEL TXT ...[o0Kk]

This removes FILE1.TXT from the working directory. The disk space that FILE1.TXT occupied
is now available for use by another file, but the data is still unaffected. The PU command does not
destroy the contents of a file it removes. It leaves enough information so that as long as the disk
area occupied by the purged file has not been overwritten, the file can be recovered with the
UNPU command. This is very useful if you inadvertently purge the wrong file.

You can purge a number of files using the file mask feature. If the optional OK parameter is not
specified, a prompt is displayed before each file is purged, and a Yes response is required to purge
the file.

For example:

Cl> pu file—. txt
Purging FILE2. TXT:::4:24 (Yes, No, Abort, Stop Asking) [Y] ? Y
Purging FILE3. TXT:::4:24 (Yes, No, Abort, Stop Asking) [Y] ? Y

If you choose the Stop Asking option, the prompt is not displayed again; only a message indicating
that the file is being purged is displayed.

Manipulating Files 3-25

If the OK parameter is specified, the prompt is suppressed and only the message indicating the file
is being purged is displayed. For example:

Cl> pu fil— txt ok

Purging FILA TXT:::4:24 ... [o0K]
Purging FILB. TXT:::4:24 ... [o0K]
Purging FILC TXT:::4:24 ... [o0K]

Be sure that the directories containing important files are write-protected. The PU command only
checks the directory protection, NOT the file protection, when purging files.

See also the RM command described in Chapter 6.

Unpurging Files

The UNPU command is used to restore a purged file (or files), usually immediately after the error
occurs. It is effective as long as the purged file has not been overwritten.

To restore file FILE1.TXT that was purged earlier, enter:
Cl> unpu filel.txt

There is no particular limit to the length of time that a purged file remains recoverable. It
depends on random factors such as the number of files being created and the position of the file
on the disk and in the directory. Unpurging should be used immediately after an erroneous purge
command. If the command returns an error message indicating that the file cannot be recovered,
the file has been overwritten.

In program development, there may be several purged files with the same name. This can happen
through sequences of create and purge operations, but it is relatively uncommon. You can
unpurge all of the files of the same name successively by unpurging and renaming them one at a
time.

Creating Empty Files

Empty files can be created with the CR command. The file space specified for these files is
reserved as soon as each file is created. The CR command cannot be used to overwrite an existing
file.

To create a file called FILE1.TXT:
Cl> cr filel.txt

You can specify various file attributes: type, size, and record length. The following examples
illustrate creating empty files with these attributes.

Cl> cr file.dat::system1 (Create a type 1 file)

Cl> cr /systemsubdir/file.txt:::1 (Create a type 1 file in a
subdirectory)

> cr fileeml:::1 (Create a type 1 file in working
directory)

Cl> cr /system bigger.dat::::100 (Create a file of 100 blocks)

See also the TOUCH command described in Chapter 6.

3-26 Manipulating Files

Change File Protection (VC+ Only)

The protection status of files can be displayed with the PROT command. Protection status of a
file can only be changed by the owner of the directory containing the file or by a superuser.

To display the protection status of a file in the working directory:

Cl> prot file.txt
directory ::DOUG
name pr ot

FI LE. TXT rwr/r (File is write protected from members of
the associated group and general users)

The protection status is given in abbreviations, W for write access and R for read access. The
owner status is given first, followed by a slash, then the status for members of the associated
group, followed by a slash, then the general user status.

Most files are usually assigned read access for general users and members of the associated group,
and read and write access for owners. To reassign the protection status, refer to the following
examples.

Cl> prot report rw (Read and write allowed for owner only)
Cl> prot receipts rwr (Read/write for owner; read for others)

Cl> prot testdata.txt rwrwr (Read/write for owner and group; read
for others)

Cl> prot nenmo rwr/ (Read/write for owner; read for group;
no access for others)

To change the protection for all files in a directory, follow the example shown below.

Cl> prot /data/ rwrwrw (Read/write access to everyone for
or all existing files in directory DATA.)
Cl> prot ::data rwrwrw

In this example, all existing files in directory DATA are allowed both read and write access. Note
that the protection for directory DATA has not changed. All files to be created in that directory
still follow the directory protection status.

Manipulating Files 3-27

Creating Symbolic Links (VC+ Only)

Symbolic links can be created with the LNS utility. Symbolic links can refer to FMP files, FMP
directories, or devices. A symbolic link may also be used to point to a remote file or directory.
The file pointed to in the symbolic link does not need exist at the time that the link is created.
LNS overwrites existing files when the user has write access to the existing file and its directory.

To create a symbolic link called /HELP/FGREP that points to GREP:
Cl> Ins grep /help/fgrep

When the user does not have write access to an existing file, LNS will prompt the user before
overwriting an existing file. To create a symbolic link named /DEV/MAGTAPE that points to LU 8:

Cl> Ins 8 /dev/nagtape
override protection (r—/r—/r-) for /DEVI MAGTAPE? (y/n)

The —I option can be used to cause LNS to issue a prompt before overwriting an existing file. If
the response begins with a ‘Y’ or a ‘y’ and the user has write permission to the directory, the
existing file is overwritten. To create a symbolic link to the /SCRATCH directory in the
subdirectory SCR.DIR :

Cl>Ins —i /scratch/ scr/
override protection (rwrwrw) for SCR SCRATCH DI R? (y/n)

The —V option can be used to cause LNS to display each symbolic link as it is created. To create a
symbolic link to a remote source file, SRC/PROG.FTN>SOURCES, in the current directory :

Cl> Ins —v /src/prog.ftn>sources ./
Ins: ./PROG FTN —> / SRC/ PROG. FTN>SOURCES ... [o0K]

Refer to the LNS command description in Chapter 6 for more information.

3-28 Manipulating Files

Manipulating Directories

Directories can be thought of as system files with which only the operating system is concerned.
Each directory contains information about the files that are in the directory, although the data in
the file itself is not in the directory. File data is kept elsewhere on the disk volume. (Volumes are
described separately in this chapter.) Directories have an initial size, and they are automatically
extended to hold more files as necessary. When files are purged, the directories are not truncated;
the space previously occupied by the purged files is reused when new files are added.

Subdirectories can appear in other directories in much the same way that any other file does.
Directory and subdirectory names always have file type extension .DIR to distinguish them as
directories; no other file can have a type extension of .DIR. There is usually no need to specity
the .DIR file type extension when dealing with directories because it is implied by the way the
name is used. For example, .DIR is not needed in the name /MAIN/SUBDIR/FILE, nor is it
needed in the WD (working directory) command. (The entry /MAIN.DIR/SUBDIR.DIR is not
valid, as the file type extension .DIR cannot be used in front of a slash.)

Operations involving directories include creating directories, changing the working directory,
listing directories, renaming directories, purging directories, and examining and changing directory
ownership and protection. These are all discussed in the following sections.

Creating a Directory

Directories are created with the CRDIR command. To create a global directory named
/SYSTEM, enter the following:

Cl> crdir /system

This entry creates a global directory /SYSTEM on the same disk volume as the working directory.
If there is no working directory or if you want to place /SYSTEM on a different disk volume, enter
the following:

Cl> crdir /system 12

This creates directory /SYSTEM on disk volume LU 12. To find out what disk volumes are
available, use the CL command. In this example, because you entered the command, you become
the owner of directory /SYSTEM. Other users are not allowed to create another directory of the
same name. This directory is a global directory with the initial default protection status. Global
directories have the following default protection status:

RWR R (Read and write allowed for owner and read only for other users)

All subsequent files managed in directory /SYSTEM have the same protection status unless
changed by the PROT command, either for the directory or individual files.

Note that the following command does not create a global directory; rather, it creates a
subdirectory called SYSTEM in the current working directory.

Cl> crdir system

Manipulating Files 3-29

Creating a Subdirectory

Creating a subdirectory is similar to creating a directory. To create a subdirectory of directory
/SYSTEM called SUBDIR, enter the following:

Cl> crdir /system subdir

This creates the subdirectory SUBDIR in global directory /SYSTEM. Note that the .DIR file type
extension is not necessary. The subdirectory protection is set to that of the directory in which it is
being created. If this is a global directory, protection is set to RW/R/R. The user who creates the
subdirectory becomes its owner, even if it is a subdirectory of a directory that the user does not
own (but has write access to).

The difference between specifying subdirectories and directories is that a leading slash is used for
a global directory, while none is used for a subdirectory.

Display/Setup Working Directory

The working directory is searched first by the file system when it searches for files. It is the
directory used if a file is specified without any directory name. The working directory can be a
subdirectory.

To examine the name of the working directory, use the WD command without any parameter. For
example

a>wd
Wrking directory is ::DOUG

To set up a working directory or to reassign another directory as the working directory, enter the
WD command with the name of the directory (or subdirectory). For example:

Cl > wd ganes

Here GAMES, a subdirectory in the current working directory, becomes the working directory.
Cl> wd /ganes/rules

In this case, subdirectory RULES is a working directory.

If there is no need for any working directory, specify 0 as follows:
Cl>wd O

The effect of this command is that the first FMGR disk on the cartridge list is used if the directory
or CRN (in FMGR files) is omitted.

The WD command can also be used to post the contents of the command stack to the associated
file or to change this file. The default command file is CI.STK on the working directory. To post
the contents of the stack to the default command stack file, enter:

Cl> wd,, +s

CI.STK is opened and command stack posted there.
This can also be done as you change the working directory. For example:

Cl> wd /debbie +s

The above command causes the file associated with the command stack to be posted with the
contents of the stack. Then the command stack is overwritten with the contents of

3-30 Manipulating Files

/DEBBIE/CI.STK or cleared if the file does not exist. You can specify any file to be associated
with the command stack. For example:

Cl> wd,,cndstackfile.stk

In this case, the command stack is posted to the current command stack file if one exists; if it does
not exist, it is created. Then the contents of CMDSTACKFILE.STK are placed into the command
stack. If this file does not exist, the command stack is cleared. At logoff, this file is posted with
the contents of the command stack and closed.

See also the CD and PWD commands described in Chapter 6.

Moving Directories

The directory path of a file or subdirectory can be changed by the MO command, which is
especially powerful in manipulating directories. MO can be used to move all files in one directory
to another. For example, to change subdirectory /SYSTEM/SUBDIR into a new global directory
NEWDIR, enter the following:

Cl> nmo /system subdir.dir /newdir (Move SUBDIR into the global

directory table and rename it to
NEWDIR.)

This changes the way you refer to all of the files in the directory as well; they must be preceded by
/NEWDIR instead of /SYSTEM/SUBDIR. Directories do not have to be empty to be moved.

See also the MV command described in Chapter 6.

Displaying Directory Owner (VC+ Only)

The owner of a directory can be displayed with the OWNER command. This can be done by all
users of the system. To display the owner of a directory named SYSTEM, enter the following:

Cl > owner /system
Owmner of /SYSTEM is DOUG

Manipulating Files 3-31

Changing Directory Owner and Associated Group (VC+ Only)

The owner and associated group of a directory can be changed with the OWNER command. This
can only be done by the current owner or by a superuser. Assuming that you created directory
SYSTEM, to change its owner to JONES and associated group to LAB, enter the following:

Cl > owner /system jones.|ab

Use this command with caution. Once the ownership is changed, you are no longer the owner and
may not have the same protection status. You may not be able to write (or read/write) into the
directory and you cannot revert the ownership. From this point on, only JONES.LAB can change
the ownership and associated group. The subdirectories within directory /SYSTEM are not
affected.

If you do not specify an associated group in the OWNER command, the associated group becomes
the default logon group of the user who is the owner. For example, assume the group LAB is the
default logon for JONES. The following command

Cl > owner /system jones

changes the owner and associated group of the directory /SYSTEM to JONES and LAB,
respectively.

If you do not want a directory to have an associated group, you can specify NOGROUP. This also
turns off group protection in the directory, as shown in the example that follows.

Cl> owner /temp

Omer of /TEMP is JONES. LAB (An associated group is defined)
Cl> prot /tenp directory / (Group protection is on)

nane pr ot

TEMP. DI R rwrlr

Cl> owner /tenp jones.nogroup (Making no associated group)

Cl> owner /temp
Omner of /TEMP is JONES (No associated group is defined)

Cl> prot /tenp directory /
nane pr ot
TEMP. /DI R rwr

Cl> owner /tenp jones.accounting (Defining an associated group)

Cl> owner /temp
Omer of /TEMP is JONES. ACCOUNTI NG

Cl> prot /tenp directory / (Group protection is on again)
nane pr ot
TEMP. DI R rwr/r

3-32 Manipulating Files

Purging Directories

Directories and subdirectories can only be purged by the owner when they are empty. All files
must be purged or moved to another directory before purging the directory. Directories cannot be
unpurged.

To purge a directory named GAMES:
Cl> pu /ganmes

Note that the form ::GAMES cannot be used because this is interpreted by PU as all files in
directory GAMES. PU will purge them all if there are files in directory GAMES. If not, the
message “Directory is empty ::GAMES” is displayed. You must precede the directory
specification with a slash.

To purge a subdirectory called SUB.DIR under directory /SYSTEM:

Cl> pu /system sub.dir

See also the RM command described in Chapter 6.

Display/Change Directory Protection

The protection status of a directory or subdirectory can be displayed with the PROT command.
Only the owner can change the protection status of a directory or subdirectory.

The following examples show displaying protection status:

Cl> prot /system (For directory /SSYSTEM)
Cl> prot /systent (For all files in directory /SYSTEM)
Cl> prot /systemdata.dir (For subdirectory DATA)
Cl > prot /system data/ (For all files in subdirectory DATA)

To change the protection for a directory (/SYSTEM):

Cl> prot /systemrwrwrw (Read/write access for everyone)

To change the protection for a subdirectory (DATA):

Cl> prot /systemdata.dir rw/ (Read/write access for owner only;
read/write protected from others)

Manipulating Files 3-33

Searching for Files

When you enter a file-referencing CI command, CI checks to see if you specified a directory; if so,
CI searches that directory for the file and returns an error if the file is not found.

If you do not supply directory information, CI attempts to locate the file. For all file-referencing
commands except RU and TR, CI searches your current working directory or all mounted FMGR
cartridges if you do not have a working directory. An error is returned if the file is not found.

When searching for files specified in the RU and TR commands, CI follows special default search
sequences. By defining UDSPs #1 and #2, you can change the default search sequences for the
RU and TR commands, respectively.

Default Search Sequence

If you do not include directory information with a RU or TR command (implied or explicit), the
following search sequence is used to locate the file:

1. The current working directory is searched. If the file is not found, a default type extension of
.RUN or .CMD is assumed and the working directory is searched again.

2. If you do not have a working directory, all mounted FMGR cartridges are searched.

3. If the file is still not found, global directory /PROGRAMS or /CMDFILES is searched using
the .RUN or .CMD default file type extension, respectively.

Defining UDSPs (VC+ Only)

User-Definable Directory Search Paths (UDSPs) allow you to change the default search sequence
used to find command and program files. The RU command uses UDSP #1 and the TR
command uses UDSP #2.

For example, suppose you want CI to search the following directories when searching for a
command file:

1. Current working directory
2. /JONES/UTILITIES/CMDS
3. /CMDFILES

The following PATH defines UDSP #?2 to use this search sequence:
Cl> path 2 . /jones/utilities/cmds /cndfiles

The period (.) indicates that your working directory is to be searched for the file at the time the
TR command is entered.

3-34 Manipulating Files

To display the contents of UDSP #2, enter the following:

Cl> path 2

UDSP #2: [JONES/ STUFF [current WD
[JONES/ UTI LI TI ES/ CVDS
| CNDFI LES

The first directory displayed, /JJONES/STUFE is the name of the working directory at the time you
entered the PATH command to display UDSP #2.

UDSP #1, which is used by the RU command, can be set to use a different search pattern.
Assume you want the RU command to use the following search sequence:

1. /MINE/PROGRAMS

2. Current working directory
3. /MINE/MORE/PROGS

4. /PROGRAMS

The following PATH command sets UDSP #1 to this sequence:

Cl> path 1 /M NE/ PROGRAMS . /M NE/ MORE/ PROGS / PROGRAMS

Refer to the description of the PATH command in Chapter 6 for more details.

Specifying UDSPs in File Descriptors (VC+ Only)

Just as UDSPs #1 and #2 are used by the TR and RU commands by default, it is possible to
explicitly request a UDSP search sequence for a particular file. For example:

C>1li #2/conp.cmd

requests the LI command to search through UDSP #2 to find COMP.CMD. This lists the same
file that the TR command finds.

The sequence #N/FILE may be used with the FmpOpen routine and with any command that
opens the file, except where a file mask is required (such as with DL).

Manipulating Files 3-35

Manipulating Volumes

Each physical drive consists of one or more volumes. A volume is a self-contained section of a
disk, independent of any other volume. A volume is always identified by its disk LU number, from
1 to 63. Volumes never cross physical drives, and files and directories never cross volumes.

Each volume contains a unique set of information about the files on it, including the names of all
the global directories on the disk, as well as a table that tells which disk blocks have been allocated
to files. This table is called a bit map, because the table is composed of bits rather than addresses
or values.

Common operations performed are: mounting a volume, dismounting a volume, changing
ownership and protection, and listing contents of a volume. An operation that is infrequently
performed is initializing a volume, making it ready for system use.

Mount/Dismount Volumes

Mounting a volume makes that volume and all the files on it available to the file system.
Dismounting a volume removes that volume and makes the files on it inaccessible to the system.
These operations are not performed frequently except with removable media such as floppy disks,
which must be mounted after they are installed and dismounted before they are removed.

For example, to mount a volume with disk LU number 12:
Cl>nc 12

If the disk volume has a valid FMP or FMGR directory, the volume is mounted. If the disk
volume does not have a valid FMP or FMGR directory, you are prompted to confirm that the
volume should be initialized. This is done to avoid the accidental corruption of volumes that are
not FMP or FMGR types (for example, backup utility volumes).

Initializing a volume sets up information needed by the operating system, including the list of
directories and the bit map for keeping track of disk space usage.

When you mount a volume there is a chance that directory names on the volume just mounted will
conflict with directory names on already mounted volumes. If duplicates occur, the names of the
duplicate directories are displayed. If you need the new ones, you can rename the duplicate
directories already mounted, then dismount and remount the volume.

For example, to dismount volume LU 12:
Cl> dc 12

Before you dismount a volume, make sure there are no open files, working directories, restored
programs, or directories that are part of a current user’s UDSPs on that disk volume. Otherwise,
when you try to dismount the volume you will get an error message each time an error is
encountered and the dismount command will be aborted.

The DC command shows only one error at a time, which means that you must repeat the
command until all the errors are found. You must identify and correct all the errors separately
before the dismount command can be completed. The following commands can be used to check
for conditions that can prevent dismounting a disk LU:

3-36 Manipulating Files

Cl > WH AL (Check all RP’d programs)

C>DL luo (Check for opened files. This lists all files on the
disk volume, which can take a long time if there
is a large number of directories and files.)

> W 0 (Remove the working directory. This command
must be used for each user who has a working
directory on that LU in a multiuser
environment.)

Cl> WHOSD dir|lu (Check for any session accessing a specified
directory or LU as a working directory or as
part of a UDSP)

Volume Ownership and Protection

Volumes have owners, associated groups, and protection as do directories. The original owner of a
volume is the user who initialized it. The protection of a volume governs the accessibility of global
directories on that volume.

Ownership is displayed and changed with the OWNER command. For example:

Cl > owner 12v (Display the owner of volume 12)

Cl > owner 15v fred.lab (Change the owner of volume 15 to FRED
and the associated group to LAB)

Protection is displayed and changed with the PROT command. Only the owner of a volume can
change the protection. For example:

Cl> prot 10v (Display protection of volume 10)

Cl> prot 13v RWR/' R (Change the protection of volume 13 to rw/r/r.
Note that with the new protection, only the
owner may create global directories on volume 13)

Listing Volumes

The CL command is used to list the volumes that are currently mounted. The CL command has
no parameters. It provides a list of two types of volumes: those mounted as described above and
those mounted as FMGR cartridges (as discussed in the section on “FMGR Files” in this chapter).
Unmounted volumes are not listed.

Cl> cl

File System Di sk LUs: 19 17
FMGR Disk LUs (CRN): 16(16) 20(A2)

Manipulating Files 3-37

Initializing Volumes

Initializing a volume prepares it for first-time system use. This function is done automatically by
the MC command, but the IN command can also be used on a mounted volume. The IN
command can be used to remove all the data on a volume without having to purge all the files first.
Initializing a disk volume permanently destroys any existing files, so be certain that the files on
that LU are no longer needed. In a VC+ environment, this command can be used only by the
superuser.

For example, to remove all data on volume 12 without dismounting it, enter the following:

C>in 12
Re-initialize valid directory [N? vy
Initializing D sk

File Manipulation Utilities

The following are the file manipulation utilities available for use in the CI file system. Refer to
Chapter 6 for the detailed description of each utility.

Concatenate Files (MERGE) collects two or more input files and combines them in a single
composite output file.

Extended Record Converter (OLDRE) is a standalone utility that provides backward compatibility
with loaders and generators that do not accept extended record formats.

Compare Files (SCOM) compares two input files and identifies their differences.

File System Utilities

The following are the file system utilities provided for use in the CI file system. Refer to
Chapter 6 for the detailed description of each utility.

File System Conversion (FSCON) converts the directory structure of a FMGR cartridge to a
hierarchical directory entry. Once converted, FMGR files have the characteristics of the
hierarchical file system.

File System Pack (FPACK) rearranges the files on a file system volume to pack them together
more tightly. This allows more or larger files to be created.

File Compacting and Disk Pack (MPACK) compacts files and packs a disk, removing unused blocks
and extents from the files and arranging all of the disk’s free space as one large block.

Report Disk Free Space (FREES) scans the free space table on the hierarchical file system disks
and reports on the total amount of free space and the largest amount of free space.

Report File Space by Owner (FOWN) scans files according to a user-specified mask and displays
the total disk space used by each owner. This utility can be used to identify users with excess disk
space or files using excess space.

File System Verification (FVERI) scans the directories and table structure of a hierarchical file
system disk LU and reports inconsistent data. Extent pointers, data pointers, non-negative file
types, and so on, are checked. This utility can be used after a system crash to verify the file system
is still intact.

3-38 Manipulating Files

Transferring Data to and from Devices

You can send data to and from an I/O device instead of a file by replacing the file descriptor with
the LU number of the I/O device. Devices that can be used include printers, terminals, magnetic
tape units, and HP-IB devices. This method of data transfer should never be used with disks,
CTDs, and Distributed System (DS) network links.

The CI commands that transfer data to or from files are CO, CP, and LI. Other CI
file-referencing commands that do not deal with the data in files (for example, RN and PU)
cannot be used for this purpose.

The CO command can include an LU as either the source or destination LU, or both. When an
I/O device is specified as a source, the CO command moves data until the device sends an
end-of-file mark. On a magnetic tape, there is an end-of-file mark; on a terminal, data is
terminated with a CNTL-D character (control key CNTL and D typed at the same time). For
example:

Cl> co 1 newfile.txt

The CO command puts everything you type into the file until a CNTL-D is entered.

The CO command is also used to send data to an I/O device. File masking can be used to send
several source files with each CO command. These are sent to the device one file at a time, so
they are written sequentially. Both the source and destination parameters in the CO command
can be LU numbers representing different I/O devices. You can copy from the terminal keyboard
to the display by entering:

Cl>co 11

The LI command can also be used to list information from an I/O device. The same rules apply as
when you use the CO command with I/O devices.

The file system does some special processing depending on what type of device you are using.
Some devices must be used by one user at a time to get good results; for example, you cannot have
line printers or magnetic tapes with output from several different programs being interleaved. The
system locks the LU to the program using it to prevent access by other programs. If another
program already has the LU locked, the second program waits until the LU becomes available.
Terminals are not locked so that messages can still get through to them.

Other special processing ensures that the data is transferred to or from the LU in the proper
format. The system recognizes printers, magnetic tapes, and terminals, and it does special
processing required for them. For most devices, data transfer is not a problem. If you have
special devices, a special program must be written for computer-device interface.

In addition to the CI commands, most programs that use files accept an I/O device LU number as
a file. For example, EDIT can list part of a file to an I/O device. However, there are times when a
program expects a disk file and in this case, an LU number will not be accepted. This may occur
because the program needs to read the data twice, or because it needs to refer to the directory
information for the file. I/O devices do not have file directory information.

Manipulating Files 3-39

FMGR Files

The following paragraphs present an overview of how files are handled by the FMGR program.
FMGR should be used only for existing files created with FMGR. When using FMGR files in the
RTE-A file system, note the differences between the two types of files.

The main characteristics of FMGR files and the difference between FMGR and normal files are:
e File names are limited to six characters.

e Directory names are limited to two characters, or can be a number.

e Subdirectories are not allowed.

e There can only be one directory per volume; the volume and directory are known collectively
as a cartridge.

e There are no file type extensions, time stamps, or owners.
e Protection is included as part of the file descriptor in the form of a security code parameter.
e There is no facility available to unpurge a file.

e The following characters are not allowed in FMGR file names: + — : ,

(I file-referencing commands can be used to a limited extent for FMGR files. For example, with
the proper parameters, DL can be used to list a FMGR disk and/or CI directory, and CO will copy
files to and from a FMGR disk directory. Other commands that can be used with FMGR are MC,
DC, CL, LI, PU, and RN. It is not possible to set your working directory as a FMGR directory,
but you can set it to zero:

Cl>wd O

This indicates that you have no working directory. When you have no working directory, the file
system searches for a file specified with no directory name by searching all of the FMGR
cartridges in the order they are mounted (as reported by CL).

Although CI can handle FMGR files, note the following cases:
e Names with slashes cannot be used.

e Names with dots or ending with dots are not acceptable, except for a single dot in character
position 2, 3, 4, or 5.

e The “at” sign (@) is interpreted as a wild card character in CI commands, although a FMGR
file name containing @ will eventually be selected.

We recommend that you rename such files. Otherwise, only FMGR can be used to access them.
If CI commands are used for FMGR files, they must observe the FMGR restrictions given here.

Some CI commands do not work with FMGR files because of the differences between FMGR and
CI directory information. For example, you cannot change the protection status of an FMGR file
with the CI PROT command. In addition, FMGR is the only program that can initialize or pack
an FMGR directory.

3-40 Manipulating Files

DS File Access (DS Only)

RTE-A systems that use the DS/1000-IV Distributed System Network can access files located on
other RTE-A systems within the DS network. This includes FMGR files located on other RTE-A
systems connected to your system. The same operations used to access files on any local system
can be used to access files in the DS network. Local system (or local node) means your system,
and remote system (or remote node) means any other system connected to your system via the DS
network. If your system does not use the DS/1000-1V Distributed System Network, skip the
following paragraphs.

In addition to the DS/1000-1V Distributed System Network, DS transparency monitors TRFAS
and DSRTR must be linked and RP’d in your system.

Specifying Remote Files

RTE-A DS transparency software is used to access files at remote systems. For files in a VC+
environment, refer to the “Multiuser Remote File Access” section.

Files and directories in a remote system can be listed and copied to and from your system.
Wildcard characters can be used in the file name parameter, and file masks can be used in the file
descriptor. You can specify a remote file as an input to programs such as LINK, EDIT, or other
utility programs.

To specity a file located in a remote system, the node number or name of the remote system is
included in the file name. Each system has a node number; these numbers are explained in the DS
manuals. Each system can also be assigned a node name; these are kept in a file called
NODENAMES, which is described in the RTE-A System Generation and Installation Manual, part
number 92077-90034. This file is used to associate node names with node numbers. The DS
software uses it to build a table of names for node numbers. The NODENAMES file contains
entries of the form:

* <comment >
or
node # nodenane [coment]

As an example:

Test Systenil (comment line)
SYS1

Test Systen?

SYS2

Central System

Central 1

Central 2

AW *N *p *

Specify the node number (or name) by appending it to the file descriptor, separated by a “>" sign;
for example:

/ Di rectory/ Fil e>Nodenane
or
Fi |l e:: Di rect or y>Nodenarmne

This specifies a file located at the node named NODENAME. The > sign must follow all other
file information, including type, size, and record length. Note that the nodename delimiter is the

Manipulating Files 3-41

> sign, and it is a valid FMGR file name character. Any FMGR file name with the > sign
anywhere except the first character cannot be accessed. For example, the name >FILE can be

used in a file specification, but A>FILE is interpreted as file A in the remote system named
FILE.

Multiuser Remote File Access

If the remote system operates in the multiuser environment, provided by the optional HP 92078A
VC+ Package, the appropriate account logon entry can be included in the remote file
specification. The account name and password, if one is required, are specified within square
brackets; for example, [USER] or [USER.GROUP]. The trailing bracket is optional but is
recommended for clarity. The account delimiter ([) cannot be used in a FMGR file name except
as the first character. To specify a file at node 27 in the multiuser environment:

/directory/file[user]>27
or
/directory/file>27[user]

If the USER account has a password, you must enter it; use a slash as a delimiter:
/directory/file[user/password]>27

Note that the password will be displayed on your terminal screen. If you enter the wrong password
or log on without it, an error message will be displayed:

I ncorrect password

Upon successful logon, you can access all files available in that account, with the same restrictions
applicable to that account. You’ll remain logged on as long as the file is open and logged off at the
remote node when the file is closed.

Files within the DS network can be transferred to and from any two nodes, local-remote or
remote-remote. When transferring files from one remote VC+ system to another, two logon
entries and two nodes are required for the source and destination system. The node specification
for a local system can be omitted. File masks can be used.

Cl> co /nydir/ @ftn>systemA[UserA] /dir/ @systenB[User B]

This example copies all FORTRAN source files from a directory in SYSTEMA to a directory in
SYSTEMB. This sample entry is valid as long as the systems specified (and your system) are
actively connected in the DS network and the file system access rules are observed. If you are at
either SYSTEMA or SYSTEMB, the local node name can be omitted:

Cl> co /nydir/@ftn /dir/ @systenB[User B]
or
Cl> co /nydir/@ftn>systemA UserA] /dir/

3-42 Manipulating Files

DS File Access Considerations

In accessing remote files through the DS network, keep in mind the following considerations.

FMGR files are accessible unless the file name contains one or more characters that have special
meaning, such as > or [. The DS transparency software operates from CI and other programs that
use the RTE-A file system. If your system operates strictly with FMGR, refer to the DS manuals
for all DS operations.

It is legal and useful to specify the local system in the node specification. For example, this allows
you to move a file from another account on your local system. If an account name is specified
without a node, the local system is assumed.

Some file names may begin with a greater-than sign (>). For example, the entry “dl /dir/>27”
does not specity a remote file. To specify a remote file, use:

G> dl /dir/ @27

If a system failure such as power failure occurs while remote files are being accessed, note the
following:

e If the remote system is down, requests to it will timeout, causing an error return from the FMP
call making the request.

e If the remote system goes down and comes back up immediately, files that were open on that
system will no longer be open, though it may appear that they are at the local end. Accesses to
such files may get errors. Use the CLOSE utility described below to close these files.

e If the local system goes down, its files will be left open at the remote system. DS transparency
software Revision 5000 and later will attempt to close them the first time the local system
sends a request to the remote system after it is rebooted. Versions earlier than Revision 5000
will not close files that were left open. The recommended way to close these files is to use the
CLOSE utility described below.

To close open files while accessing remote files:

Cl> close /directory/file (At local node)

or
Cl> close /directory/fil e>node (At local or remote node)

This sample entry closes a file if it is open to the DS transparency monitor TRFAS. You must
specify a logon name for the local file if one was supplied when it was opened, even if the file is in
your local node. CLOSE must be given the full file descriptor of the file to be closed, including
the path and DS information.

Manipulating Files 3-43

Remote File Access Limitations

In some cases, CI file manipulation commands cannot be used on a remote system. The most
common cases are:

e The default working directory cannot be used at a remote system.

e A program contained in a remote file cannot be run. (However, you can copy the file to the
local system and then run the program.)

e Volumes at remote systems cannot be mounted or dismounted.
e Ownership of directories cannot be examined at a remote system.

e I/O devices (such as terminals or printers) at a remote system cannot be accessed.

3-44 Manipulating Files

Controlling Programs

This chapter explains how to use the CI commands for controlling programs. You can manipulate
programs in several ways: restore them into system tables, remove them from system tables, stop
programs momentarily or completely, resume execution of a suspended program, and modify the
memory requirements. A brief summary of the program control commands is shown in NO TAG.
Refer to Chapter 6 for a full explanation of these commands.

. Program Control Commands

Command

Task

AS prog <part #> [C| D

Assign partition

AT time [intvl] prog| file [pram*5]

Set run time

BR [prog]

Break program execution

CZ prog [<seg #>| AL]

Display/modify CDS code space

DT prog [size emaSize] [msegSize]

Display/modify CDS data space

GO [prog [pram*5]]

Resume suspended program

OF [prog [1D]]

Remove program

PR prog [priority]

Display/modify program priority

PS [prog]

Display program status

RP file [prog]

Restore program

RS [prog[| session]] [pram*5]

Restart program

[RU] prog| file [pram*5]

Run program with wait

SS [progl

Suspend program

SZ prog [size [mseg size]]

Display/specify program size

VS prog [vsSize]

Display/modify virtual EMA size

WS prog [wsSize]

Display/modify VMA working set size

XQ prog| file [pram#*5)

Run program without wait

? [prog]

Online help

Controlling Programs

4-1

Program Identification

RTE-A provides many different programs to support a variety of tasks. These programs can be
run from CI. Programs are scheduled by name, along with a program runstring that may include
program parameters. The program name consists of up to five characters and must begin with a
letter. If a program file with a file name of more than five characters is specified in the run
command, only the first five characters are used as the program name.

RTE-A manages program execution by identification (ID) segments. Before a program can be
executed, it must be assigned an ID segment, which identifies the program and the location of its
associated program file, and maintains information such as program size, status and priority. The
ID segment may be released at the end of program execution, or it can be established permanently
with the RP command and removed with the OF command.

Program Priorities

Each program has an assigned priority, an attribute that indicates the program’s importance.
When you schedule a program for execution, the system may not execute your program
immediately, depending on its priority in relation to that of other scheduled programs.

Program priority is in the range of 1 to 32767, lower numbers indicating higher priorities. If two
programs are scheduled to run at the same time, the higher priority program will be run first. In
addition, programs with equal priorities may be timesliced to appear to run concurrently.
Program priorities can be changed interactively, as explained later in this chapter.

Running a Program
A program may be run from CI by using the RU command. For example, to run the editor
program (EDIT), enter:

Cl>ru edt

In CI, RU is an implied command, which means it is not necessary in the command runstring.
Therefore, the editor may also be run by entering:

Cl> edit

Any time a non-CI command is entered, CI first checks the $RU_FIRST predefined variable. If
the variable is set to TRUE, CI assumes that the RU command was intended and attempts to
execute the file. If you will be executing more programs than command files, you should set the

$RU_FIRST variable to TRUE.

As you run the editor program, you may want to specify a file to be edited. The editor was written
to accept a file name parameter in the runstring. For example:

Cl> edit prog.ftn

Program EDIT will also accept, as a second parameter, a command to be entered after opening
the file. The entry

Cl> edit prog.ftn s

runs the editor, opens file PROG.FTN, and executes the editor S command (enter screen mode).

4-2 Controlling Programs

Parameters are accepted by other RTE-A programs such as LINK, FTN7X, and MACRO. These
are described in their respective manuals. User programs may be written to accept up to five
numeric parameters from the runstring and a character string. This facility is described in the
RTE-A Programmer’s Reference Manual, part number 92077-90007.

Program Execution

Upon receipt of a RU command, RTE-A searches for an existing ID segment for the program
specified or creates one for that program. Then the program is scheduled to run by having its ID
segment placed in a list of programs ready to execute. The system dispatches programs from this
list in order of their priority.

Program CI is suspended to allow interaction between the program and your terminal. When the
program terminates, CI again issues its prompt and accepts commands. This cycle is known as
“run with wait.”

Sometimes it is desirable to let a program run while continuing CI interaction. This may be so for
lengthy programs that require no user interaction. The XQ command will schedule a program to
run and return control to CI. Its use is described in the following section.

Running Programs with Wait

To start a program with wait, enter the program name after the CI prompt.
Cl> edit

Program CI first checks that this is not a CI command. If the program name is the same as a CI
command, precede the program name with the CI run command, RU. For example, to run a
program called OWNER, enter:

Cl> ru owner

In this example, if the program was restored (that is, was assigned an ID segment), CI executes it.
After the program terminates, it remains restored. If the program was not restored, CI restores
and executes the program, and releases its program ID segment at completion.

Special processing occurs when a program file needs to be restored. When CI looks for a program
file, it uses the name and directory specified. If only the program name is specified and
User-Definable Directory Search Path (UDSP) number one is not defined, CI first searches for an
existing restored program, then for a file in the working directory, and finally for a file in a system
global directory called PROGRAMS. If only the program name is specified and UDSP #1 is
defined, CI first searches for an existing, restored program, then uses the search path defined by
UDSP #1.

The following example illustrates how CI searches for programs, assuming UDSP #1 is not
defined.

When the command EDIT is entered, it is examined by CI and interpreted as a program because it
is not a CI command. CI searches for an ID segment restored for EDIT. If one is found, CI runs
EDIT, using that ID segment.

Controlling Programs 4-3

If there is no restored EDIT, CI scans the working directory for a file named EDIT or EDITRUN.
If one is found, CI allocates an ID segment for that program file and executes it. If EDIT is still
not found, CI searches for EDITRUN in directory /PROGRAMS.

If there is no working directory (such as after a “wd 0” command), CI scans all FMGR cartridges
in the same way FMGR searches for files. If unsuccessful, CI then searches for
/PROGRAMS/EDIT.RUN.

The above program search sequences apply to the RU, XQ, AT, and RP commands as well as to
scheduling operations done by other system programs such as EDIT and LOGON. The program
search sequence does not apply to other CI commands. For example, entering “li edit.run” will
not find EDITRUN unless it is in the working directory. You must specify the directory (or
FMGR cartridge) where EDITRUN resides.

Specifying the directory/subdirectories allows CI to skip the search sequence and proceed directly
to the file. Entering /DIRNAME/EDIT allows CI to find EDIT quickly in directory DIRNAME.

One way to make use of the default program search sequence is in program development.
Because your working directory is searched first, you can have your own version of any program in
the working directory, leaving the unmodified version in directory PROGRAMS where it is
accessible to other users.

You can use UDSP #1 to change the default program search sequence. See the PATH command
for information on defining UDSP #1.

Program CI can handle cases where there are two or more programs scheduled with the same
name. This can happen in two situations: several copies of a program may be running at the same
time (for example, EDIT may be run by several users); or shortening of two different file names
may lead to the same 5-character program names (for example, DATALATCH.RUN and
DATALOGGER.RUN). CI handles these situations by changing the names of the duplicate
programs, replacing characters four and five of the program name with a .A, .B, .C, and so forth.
For example, the second copy of EDIT becomes EDI.A, the third copy EDI.B, the fourth copy
EDI.C, and so on. This process is known as cloning a program. In a multiuser environment,
programs are also identified by a session number. The session number is described in Chapter 5.

Running Programs without Wait

To run programs without wait, the XQ command is used. XQ starts the program specified and
returns control to you, indicated by the CI program prompt. For example:

Cl> xq prog/file (Scheduling PROG/file without wait)
cl> (PROG¢/file executing; CI back in interpretive
mode)

The XQ command is not recommended for use with interactive programs. It is best used for
programs that take a long time to run and do not require any user intervention.

You can run several programs at the same time using XQ. This command works the same way as
the RU command, including restoring the program and changing the name if necessary. If you try
to start a program that is already running with XQ, a message is displayed to report that the
program is busy. CI returns to the interactive state with the CI> prompt. To run a program
without wait, enter:

Cl> xq /testdatal/subharnonics.run
cl >

4-4 Controlling Programs

Any errors reported during program execution are displayed at the terminal along with any
completion message. The WH command can be used to check the status of the program scheduled
with the XQ command. Refer to Chapters 2 and 6 for use of the WH command.

Time Scheduling Programs

To schedule a program to start at a later time (up to 24 hours), the AT (execute time) command is
used. AT runs a program at a particular time based on the processor time-of-day clock. It
operates in the same way as the XQ command, except for the time delay. For example, to run
program CLOCK with parameters A, B, and C at noon, enter:

Cl> at 12:00:00 CLOCK a b ¢
a>

CI returns control to you after this command. At 12:00, program CLOCK runs once. The AT
command handles ID segments and program naming in the same way as the RU and XQ
commands.

The time can be specified with the AM or PM parameter or in 24-hour format; 1:30 pm is 13:30.
Minutes and seconds are optional. The maximum time delay is 24 hours. If at 4:05 pm you specify
the program start time as 4 pm, the program runs at 4:00 pm tomorrow, rather than immediately.

You can also use AT to start a program and subsequently run it repeatedly at some time interval.
To run program CLOCK at one-hour intervals in the above example:

Cl> at 12:00:00 1 hour CLOCK a b c
Note that the a, b, and ¢ parameters are passed to CLOCK on the first run only.

The time interval for repeated execution can be specified as hours, minutes or seconds. These can
be abbreviated to the first character of the word (h, m, or s). Numbers such as 90 seconds are
legal; the interval value can be up to 4095. The time scheduled program running at regular
intervals must be stopped with the OF command. Refer to Chapters 2 and 6 for more
information.

Systems having VC+ can also use the CRON utility and CRONTAB to schedule programs at
specified dates and times. Refer to Chapter 6 for details.

Restoring Programs

Restoring a program is a process that establishes a program ID segment or a prototype ID
segment for a program file.

Program ID Segments

Typically, program restoring is a process that assigns to the program file an ID segment in a system
table that keeps track of programs to be executed. The ID segment contains information
necessary to run the program: the 5-character program name, its location on disk, scheduled run
time, priority, partition assignments, and other information required by the operating system. CI
commands that affect these program attributes cannot be used until the program is restored.

Controlling Programs 4-5

A program can be restored in one of two ways. The most common method is to implicitly restore
the program through the use of a RU, XQ, or AT command where no ID segment has been
allocated for that program. The ID segment is released upon program termination. A second
method is to explicitly restore the program with the RP command. The program is allocated an
ID segment but is not scheduled for execution. The ID segment is permanently assigned until
removed with the OF command.

For example, to restore program TESTRUN, enter:
Cl>rp test.run

The program can now be run using the RU, XQ, or AT command and the ID segment will remain
allocated upon program termination. This is useful for shared CDS programs in the VC+
environment or programs that may be needed by only one user.

If a second user tries to run a non-CDS program restored with the RP command, an error message
is issued, indicating that the program is busy. The second user can either wait for the program to
finish or use a second parameter in the RP command to create another ID segment with a new
program name:

Cl> rp test.run test?2

The second user can now use the RU, XQ, or AT command with program TEST2. Note that the
second program name must be five characters or less. This method is not required for programs
that were previously restored implicitly, because RTE-A will automatically create a new name in
this case (described in the “Running Programs with Wait” section). In a multiuser environment,
RP’d programs that are not running or time scheduled will be OF’d when the user logs off.

Prototype ID Segments

Using the “D” option with the RP command establishes a prototype ID segment (proto-ID) for a
program file in a list in XSAM. Proto-IDs are selected words of program ID segments that are
used to create program ID segments quickly (without going to the disk) when a program is
scheduled without specifying a directory path. This process is called ID duplicating or “duping.”

Program ID Duplicating

RTE-A provides a way to quickly create program ID segments by duplicating existing program ID
segments or prototype ID segments. This process is performed if the program is scheduled
without a directory path and one of the following conditions exists:

1. A program with the same name is permanently restored, busy, and clonable.
2. There is a proto-ID defined for the program in the system.

This saves considerable time when scheduling programs, because the disk does not need to be
searched for the program file to create the program ID segment.

4-6 Controlling Programs

Removing Programs

The OF command is used to remove a program. To remove a program restored by the RU, XQ,
or AT command, enter:

Cl > of <prog>

If the program was not restored with RP, its ID segment is released. If the program was restored
with the RP command, only the execution is terminated, and the program ID segment remains
intact. To remove the program’s ID segment, the second parameter, ID, is needed. For example,
to remove the ID segment of program TOWER that was restored with the RP command:

Cl> of tower id

The OF command (with or without the ID parameter) stops an executing program abruptly.
Stopping a program in this way terminates the program execution without performing the normal
clean-up operations. This command is normally used to stop a program in trouble. Any I/O
operation in progress is terminated (any system resources used are returned). Data being written
to a file is not posted, which may leave the file in an abnormal state.

The OF command with the D parameter removes currently defined proto-IDs from the system.

Breaking Program Execution

You can use the BR command to stop a program in an orderly manner, rather than abruptly as
with the OF command. BR can be entered when you do not want to wait for a program to finish.
If the program was scheduled with wait (RU command), you must first interrupt the system and
obtain the CM > prompt. If the program was scheduled without wait (XQ or AT command), the
BR command can be issued from CI. BR can be entered with or without a program name. For
example:

Cl> test2

(press any key or, if FIFO buffering is enabled, press the break key)
CV> br test2
c >

The program name must be the same name as the name reported by the WH command (including
the session identification if in the VC+ environment), because CI may have made up the name to
avoid having duplicate names. The BR command can be used without the program name to break
the program most recently run without wait. Refer to Chapter 6 for details.

For this command to work, a program must acknowledge the break bit in the ID segment using the
system call IFBRK (refer to the RTE-A Programmer’s Reference Manual). This is implemented in
all system programs but not necessarily in user programs. If BR does not halt the program, you
must wait until the program finishes or use the OF command.

Controlling Programs 4-7

Suspending a Program

Another method of stopping an executing program is to suspend it with the SS command. This
command does not adversely affect the program or open file status; it simply suspends execution.
SS is used the same way as the OF or BR command. However, the suspended program can be
resumed with the GO command or terminated with the OF command.

The SS command does not interrupt any I/O operation in progress. It waits until the I/O
operation is finished. Note that this may take a long time, and there is no message while CI is
waiting.

Resuming Program Execution

Suspended programs can be resumed with a GO command. GO is used the same way as the OF,
BR, and SS commands. The program is resumed at the point of suspension. For example:

Cl> xq test?2

Cl> ss test?2
Cl> go test2

Restarting a Program

The RS command restarts a program that is not executing properly; for example, a program that is
hung on a downed device. The program is aborted and rescheduled for execution. The RS
command can be used only from CM.

The following example restarts CI:

CW> rs,ci

Displaying Program Status

The PS command can be used to return the status of a specific program. PS returns some of the
same information as the WH command, but in a shorter format. For example,

Cl > ps progl
PROGL PR(99) PC(0) COF

4-8 Controlling Programs

Changing Program Priorities

All programs running under RTE-A have a priority number that is recorded in the respective
program ID segments. The priority number can be assigned when the program is written or when
it is linked. It can also be changed dynamically with the PR command, as shown below.

The priority number can be in the range of 1 to 32767, with smaller numbers representing higher
priorities. Typical values for user application software are in the range of 50 to 200. Higher
priority real-time and system programs range from 1 to 40.

A primary task of the RTE-A Operating System is to run the highest priority executable user
program followed by the next highest, and so on. When there are programs of the same priority, a
technique called timeslicing is used. Programs of the same priority share the processor by having
small intervals (or slices) of time allocated to them by the operating system in a round robin
fashion. Timeslicing need not be implemented for all programs. A value called the timeslice
fence is established at system generation time to set the priority below which timeslicing will be
implemented.

If a user program has a very long elapsed running time in a busy system, or if it does not run at all,
its priority may be too low. On the other hand, if it runs to the exclusion of other user programs,
then its priority might be too high.

To change the priority of a program, use the PR command. For example:

Cl> pr test2 50 (Changes priority of program TEST 2 to 50)

If you give the PR command with a program name but no value, it displays the priority of the
program.

Cl> pr test2
Program priority = 50
cl >

Program priorities should be handled with caution. If you have a program with a very high
priority, it might run continuously and prevent other programs from executing indefinitely.

Changing Memory Requirements

Some programs may require dynamic memory allocation; for example, reentrant routines or
Pascal recursive procedures and dynamic data structures. Memory requirements may vary
depending on input parameters or data given to the program. RTE-A will not be aware of these
factors and might not allocate enough memory to the program unless explicitly instructed to do so.

You can change the amount of memory allocated to a program in two ways. You can use LINK to
make sure the program will get extra memory every time it runs (this is described in the RTE-A
LINK User’s Manual, part number 92077-90035.) Or you can use the SZ command after the
program has been restored but before running it. For example, to change the memory allocation
of DATALOGGER to 20 pages:

Cl > rp datal ogger

RP" ed DATAL (Note the 5-character program name)
Cl> sz datal 20

Controlling Programs 4-9

Now DATALOGGER will have 20 pages. The new memory partition allocation remains in effect
as long as DATALOGGER s restored. If it is removed, it will revert to that defined by LINK.
The SZ command cannot be used for a program that is executing. This command applies only to
non-CDS programs. The CDS commands are described later in this chapter.

If a program uses EMA, the SZ command modifies the EMA data space only (in the range of 2 to
32,733 pages). Refer to “Models of EMA/VMA” in this chapter. For example:

Cl> rp emapr
Cl> sz emapr 300 (Changes the EMA space of EMAPR to 300 pages)

The size of a program can be displayed by entering the SZ command without parameters. For
example:
Cl> sz proge

Last =65211 Mn Part=211 EMNV W5=180 Mseg=2 VVA=0
\

T_ program’s VMA
size in pages

program’s MSEG size.

EMA size in pages (not including PTE).
— minimum required partition size in pages.

— address of (last word + 1) of the program.

Assigning Partitions

The RTE-A system memory is divided at bootup into dynamic and reserved partitions. Normally,
when a program is run it is assigned memory as required from the dynamic memory. Reserved
partitions are partitions of fixed sizes that can be reserved for specific programs. You can assign a
reserved memory partition to a program with the AS command. The reserved partitions available
can be checked with the WH,PA command.

For example, to assigh PROGA to partition 1, which was previously created in the system, enter:
Cl> as proga 1

Program PROGA must be restored and must not be running.

When it is no longer necessary for a program to run in a reserved partition, you can remove the
designation by using the AS command again, assigning the program to partition 0. There is never
a partition zero; this number is used to remove the assignment. For example, to reassign PROGA
to run in dynamic memory, enter:

Cl> as proga O

If your system has the VC+ option and uses CDS programs, use the C or D parameter to assign
the code or data partition, respectively:

Cl> as proga 1 c

Cl> as proga 8 d

4-10 Controlling Programs

Changing Virtual Memory Area

VMA programs are those that utilize an RTE-A feature that enables execution of programs
requiring a very large amount of data storage. The data for a VMA program is contained in an
area on disk called the Virtual Memory Area (VMA). The portion of data being processed is
moved from disk to an area in memory called the Working Set (WS) so data is transferred
between VMA and WS as necessary during program execution.

The WS size, from 2 to 32,733 pages, and the VMA space (VS), up to 65,536 pages, are defined
using LINK. Refer to “Models of EMA/VMA” in this chapter. These can be changed with the WS
or VS commands, respectively.

You may want to change the size of WS and VS with LINK, because this changes the size
permanently. Alternatively, you can use CI commands after restoring the program. The WS or
VS commands can also be used to find out the area defined. For example:

Cl> rp datal ogger

Cl > ws datal (Display VMA information for DATA1)
2 Last Adr= 70221 Mn. Part= 29 EMN W5= 20 Mseg= 2 VMA= 200

Cl > vs datal (Display VMA information for DATA1)
3 Last Adr= 70221 Mn. Part= 29 EMN Ws= 20 Mseg= 2 VMA= 200

To change the WS and VS areas of a program:

Cl> ws datal 45 (Change working set size to 45 pages)

Cl > vs datal 2500 (Change VS size to 2500 pages)

The change made with the WS or VS command is effective as long as the program ID segment is
in memory; when the program ID segment is released, the size reverts to that defined at program
link time. Refer to Chapter 6 for more information on the WS and VS commands.

Shared Programs (VC+ Only)

In systems with VC+, if program memory usage is a concern, shared programs let you save
memory. Any CDS program can be specified as shareable at link time (details are given in the
LINK User’s Manual). Sharing a program means that each program invoked (RP’d) from that type
6 program file will share one code partition when dispatched. This saves memory and the disk
overhead of loading a code partition for each program dispatched. Each shared program will own
a separate data partition.

A typical shared program environment can be set up by entering the following:

Cl>rp sh s2
Cl>rp sh s3
Cl> xq s2
Cl> xq s3
Cl> xqg sh

Controlling Programs 4-11

In this example, only one code partition exists and it is the one shared by programs SH, S2, and S3
during their execution. There are separate data partitions for these programs.

Shared programs are transparent to the users. However, the code partition attributes cannot be
altered without relinking. An error message is displayed when attempts are made to change the
code partition attributes.

Changing CDS Program Memory Requirement
(VC+ Only)

CDS programs have two areas of memory associated with them, one for code (the program itself)
and one for data. To change the size allocation for these areas, use the CZ and DT commands.

The CZ command changes the size allocation of the code section. It changes the amount of
memory the code uses by changing the number of code segments (pieces of the program) that are
kept in memory at one time; the other pieces are kept on the disk. RTE-A keeps the most actively
used pieces of the program in memory, leaving the others on the disk. To set up a CDS program
called BIG with 5 code segments in memory at once, use the following command sequence:

Cl>rp big
Cl> cz big 5

If you use the keyword AL in place of a number, all code segments are kept in memory. This
allocates more memory to program BIG, allowing less for other programs in the system. Note that
all code segments must be in memory before a shared program can be executed.

The DT command changes the size allocation of the data section. To allow program BIG to use 30
pages of data, enter the following:

Cl>rp big
Cl> dt big 30

If BIG is an EMA program, the EMA space size is modified as in the SZ command.

The only method for a permanent change is to use LINK. The SZ, CZ, and DT commands are
only effective until the program ID segment is released.

These commands can also be used to display the memory allocation for a particular CDS program.
For example:

Cl> cz big
Partition size=15 Program segnents=10 Segnent Bl ocks=3

This shows that the code partition will be 15 pages; there are 10 segments in BIG and three
segments can be memory resident. Because all segments must be of equal size, it can be seen from
the example that each segment will occupy five pages (partition size/segment blocks).

Cl> dt big
Last Adr= 64000 Mn.Part.= 112 EMA/ W5= 85 Mseg= 1 VMA=2000

4-12 Controlling Programs

Models of EMA/VMA

There are three “models” of EMA/VMA for programs to use:

1. The Normal EMA/VMA model is used by programs that do not need to access more than one
shareable EMA area, nor to access a shareable EMA in conjunction with a local EMA or
VMA, nor to use an extended EMA or VMA working set size. This model is the most
commonly used.

2. The Large EMA/VMA model is used by programs that need to access more than one
shareable EMA area, or to access a shareable EMA and a local EMA or VMA.

3. The Extended EMA/VMA model is used by programs running on an A990 Computer that
need to access an EMA or VMA working set that is larger than 1,022 pages. This model also
offers all the features of the Large model: multiple shareable EMAs, and mixed shareable
EMA and local EMA/VMA. Programs that use this model will execute correctly only on an
A990 Computer.

The EMA/VMA model to be used by a program is specified at link time. Refer to the RTE-A4
Programmer’s Reference Manual, part number 92077-90007, for detailed information.

. Three Models of EMA/VMA
Feature EMA/VMA Model
Normal Large Extended
Maximum size of any one EMA in pages 1022 1022 32733
Maximum size of a VMA working set in pages 1022 1022 32733
Maximum number of SHEMAs a program may access 1 64 64
Number of SHEMAs accessible when local EMA/VMA used 0 63 63

Controlling Programs 4-13

Multiuser Session Operation (VC+ Only)

This chapter describes the multiuser session capability available on systems with the HP 92078A
VC+ Package. Multiuser session handling is recommended for program development systems as
well as other systems where several users are using the RTE-A Operating System at once. Topics
in this chapter include logon and logoff, group and user accounts, creating and modifying user
accounts, capability levels, superuser capabilities, session handling, identifying programs, and
running out of SAM.

Note The concepts of capability levels and of sufficient user capability to perform a
function are discussed throughout this chapter but apply only if Security/1000 is
installed and turned on in your system. The concept of superusers applies only
if Security/1000 is not installed in your system or Security/1000 is installed but
turned off.

Logon and Logoff

Logging on is the process of entering a user.group identification and a password, if one is defined.
The user.group identification consists of a user name and group account name separated by a
period to identify who is going to use the system. You must log on before you can perform any
operations on the system.

RTE-A displays a prompt on a currently enabled (but not currently logged on) session terminal
when it is ready to accept a logon request. If the logon prompt was not displayed, hit any key to
get the attention of the system. A sample prompt is as follows:

Pl ease | og on:

You can log on by entering a user.group identification (established for you by the System Manager
or installer) at the logon prompt. Every user in the multiuser system has a unique user name and
is a member of one or more groups. An example of a valid user.group identification is:

Pl ease | og on: Sandi. Lab (User “Sandi” in group “Lab”)

The “.group” portion in the user.group identification above is optional, because every user has a
default logon group as part of his/her user definition. Thus, if the default logon group for user
Sandi is group QA and just the user name Sandi is entered at the logon prompt, the user is logged

Multiuser Session Operation (VC+ Only) 5-1

on as user Sandi in group QA (Sandi.QA). If user Sandi wants to be logged on in group Lab, the
“.Lab” portion of the user.group identification must be specified. To determine your default logon
group you can list your user account definition with the LIST command in GRUMP, the Group
and User Management Program. You can also log on without specifying a group name and do a
set command in CI; your user.group identification will be in the CI set variable SLOGON. A
user’s default logon group can be changed with the ALTER USER command in GRUMP by the
System Manager, a superuser, or a user with a high enough capability.

After a user.group identification is received, the system prompts for a password.
Passwor d?

Enter your password. Your entry will not be displayed on the terminal screen to prevent others
from seeing your password. If you do not have a password, just enter a carriage return at the
‘Password? > prompt.

Alternatively, you may enter your user name or user.group identification followed by a slash (/) if
you have no password; this avoids being prompted for a password. For example,

Pl ease | og on: Sandi. Lab/ (User “Sandi” in group “Lab” has no password)

If you do have a password, you may enter your user name or user.group, followed by a slash and
your password (do not use commas or blanks as separators), all on one line, thus avoiding being
prompted for your password. Because your password is displayed using this method, it should only
be used if you are not concerned with account security. For example,

Pl ease | og on: Sandi.Lab/aslan (User “Sandi” in group “Lab” with
password “aslan”)

If the user name in the user.group identification provided is not recognized as valid by the system
program LOGON, one of the following error messages is displayed on your terminal (assume
FRED is the user name supplied):

LOGOX: No such user FRED
or
LOGOX: Logon incorrect

If the group name in the user.group identification provided is not recognized as valid by LOGON,
the following error message is displayed (assume BANK is the group name supplied):

LOGOX: Unable to access group BANK
If the password provided is incorrect, one of the following error messages is displayed:

LOGOX: Incorrect password
or
LOGOX: Logon incorrect

The messages are preceded by “LOGOX:”, as opposed to “LOGON:”, because the system
program LOGON handles both the logon and logoff process and some of the messages are used
for both processes. You can try to log on again by repeating the process. After two or three
unsuccessful attempts you should contact your System Manager for assistance.

There are also checks for CPU usage and connect time limits for users within groups and for
groups as a whole. Thus, you can enter a valid user.group identification and password but if you

5-2 Multiuser Session Operation (VC+ Only)

have exceeded any one of the four limits, you will be denied access to the system. If this happens,
one of the following messages will be displayed on your terminal (assume SANDI.LAB is the
user.group identification supplied):

LOGOX: Your CPU tine within LAB has been exceeded
LOGOX: Your Connect tine within LAB has been exceeded
LOGOX: LAB CPU tinme limt has been exceeded

LOGOX: LAB Connect tinme limt has been exceeded

The first two messages above refer to the limits of the user within the group (SANDI in group
LAB for the given user.group identification). The second two messages refer to the limits of the
group as a whole (group LAB for the given user.group identification). If you receive any of these
messages, you should contact your System Manager for assistance.

If there are no error messages displayed on your terminal, you are now successfully logged on.
The system then runs a predefined startup program as part of the logon process to get you started.
Typically, this program is the standard Command Interpreter, CI. The program to be executed at
logon can be changed to a program of your choice with the ALTER USER command in GRUMP
by the System Manager, a superuser, or a user with high enough capability.

Only users with accounts can log on. User accounts are explained in the “User Accounts” section.
If you forget your password, there is no way to reconstruct it. The System Manager, a superuser,
or a user with high enough capability can assign you a new password without supplying the old
password using the ALTER USER command in GRUMP. Any user can change a password with
the PASSWORD command in GRUMP, providing he/she knows the existing password.

Logging off is straightforward. The operating system automatically logs you off when your last
active or scheduled program terminates. If this program is CI, an EX command after the CI>
prompt will log you off. When you exit from CI and have a logoff program/command file, it is
executed or transferred to before your CI terminates and the OS logs you off. Note that if CI is
your primary program and aborts for any reason, such as when an OF command is issued from
CM when your CI is waiting for a locked LU, you are automatically logged off and the logoft
program/command file is not executed. The logoff program/command file can be defined and
modified with the ALTER USER command in GRUMP by the System Manager, a superuser, or a
user with high enough capability.

If you cannot exit from your primary program and have programs running, you must give directives
for the disposal of these programs. This situation is discussed further in the session handling
section of this chapter.

If multiuser accounting is enabled, the system program LOGON, which handles both the log on
and log off process, updates the accounting information in the user and group configuration files
that correspond to the user.group you are logged on with. Then your CPU usage and system
connect time for this session are displayed on the terminal. For example:

Session 110 fi ni shed. Tue Nov 24, 1988 9:36:45 am

Connect tinme CPU usage
Sessi on: 5 hr 5 mn 22 sec O hr O mn 4 sec 660 nsec
Cunul ati ve: 684 hr 51 mn 34 sec 8 hr 8 mn 42 sec 140 msec

When logging off, you should allow all of the accounting information to be displayed. If you
interrupt the system program LOGON in any way, for example, by turning off your terminal,
switching your terminal connection, or hitting a key, LOGON can be suspended. If LOGON is
suspended on your terminal, it can cause problems for other people trying to log on and log off.

Multiuser Session Operation (VC+ Only) 5-3

Group Accounts

The operating system maintains information on all groups in group configuration files in the
/USERS directory. Each group configuration file contains the group ID, CPU and connect time
totals, CPU and connect time limits, an LU access table, a list of its members, and other pertinent
information.

The system uses this file when it creates a session for a user trying to log on associated with the
group it defines. The file is used to verify that the user is a member of the group, to check that the
accounting limits of the group were not exceeded, and to include the group’s resources in the
operating environment of the user session. When a user associated with a group logs off, the CPU
usage and connect time totals are updated in the group configuration file if multiuser accounting is
turned on.

User Accounts

The operating system maintains information on all users in user configuration files in the /USERS
directory. Each user configuration file contains the user’s real name, the encoded password, other
pertinent information about the user, and information unique to the user for each group to which
the user belongs.

When you log on, the system uses this configuration file to:

verify the user logon name,

e check the user CPU usage and connect time limits,

e run the startup program,

e designate a working directory,

e initialize the UDSP tables,

e create the session LU access table,

e determine the size of the Environment Variable Block, and

e initially determine the capability of the user (in the form of a capability level and/or the
superuser/non-superuser status).

When you log off, CI retrieves the logoff program/command file from the user configuration file, if
one is defined, and executes it. The system uses the user configuration file to update CPU usage
and connect time totals if multiuser accounting is turned on.

The user logon name is used by programs that provide system status. The WH US command can
be used to display all the active users and their associated sessions. The spooling system can be
directed to maintain a record of users logging on and off with the error logging feature.

Your working directory is established automatically when you log on. This eliminates the step of
establishing your working directory with a WD command. The name of the working directory can
be any existing directory available to you. If this directory does not exist, a message is displayed
on your terminal screen. A typical practice is to use the same name for the working directory as
the logon name. For example, user SMITH would be assigned directory /SMITH.

5-4 Multiuser Session Operation (VC+ Only)

Creating and Modifying Accounts

In order to log on, a user must have an established user account. A user account is defined by a
user configuration file, located in the /USERS directory, which contains information about the
user. Every user must belong to one or more groups. A group account is defined by a group
configuration file, also located in the /USERS directory, which contains information about the
group.

The GRoup and User Management Program (GRUMP) is used to create and modify group and
user accounts with the NEW and ALTER commands, respectively. Group and user accounts can
be removed from the system with the PURGE command in GRUMP. Typically, these commands
can only be used by the System Manager, a superuser, or a user with a very high capability.

Listings of group and user accounts can be obtained with the LIST command in GRUMP. As
stated earlier, the PASSWORD command in GRUMP can be used to change a user’s password if
the existing password is known. See the RTE-A System Manager’s Manual, part number
92077-90056, for a description of GRUMP commands.

Superusers

The concept of superusers and non-superusers applies only in environments where Security/1000 is
not installed or is installed but not turned on.

Generally, only the System Manager is given superuser capabilities. The System Manager has a
thorough knowledge of RTE-A and the current system configuration and will use the superuser
account only for system maintenance duties.

Superusers are not subject to file protection; they can read or write any file or directory.
Superusers are also given owner privileges to all directories, so they can change protection or
ownership of any file or directory.

The commands IN, TM, and TO used with the parameters to modify information are reserved for
superusers, because they can adversely affect system performance if used improperly. When
normal users try to use them, they get a message indicating that these commands are for
superusers only.

Superusers are allowed to control the protected system programs. For example, they can remove
or change the priority of system programs by using the OF and PR commands. These programs
are protected because they affect system operations.

Capability Levels

A capability level is an integer in the range of 0 to 31, where 0 is the lowest and 31 is the highest.
A capability of 31 is equivalent to a superuser in an environment without Security/1000. Capability
levels are used to control access to the various functions and resources of the system. The
meaning of a capability level is dependent on its context. Specifying what can be done with a given
capability is a function of the Security/1000 configuration as defined by the System Manager.

Note The concepts of capability levels apply only if Security/1000 is installed and
turned on in your system.

Multiuser Session Operation (VC+ Only) 5-5

Command Capability Levels

Command capability levels define which set of commands can be executed by the user. The sets of
commands are SYSTEM commands, CI commands, SECTL commands, GRUMP commands,
LINK commands, and the commands of any program using Security/1000 to control command use.
A user has access to all commands at or below his/her capability level. For example, a user with a
capability level of 30 has access to all commands available at level 30 and below. Users can see
what their capability level is with the WH command in CI or by listing their user account definition
in GRUMP.

A user’s command capability level is defined and altered with the NEW USER and ALTER USER
commands, in GRUMP by the System Manager or a user with high enough capability, and stored
in the user configuration file. A user has the same capability level in each group in which he/she is
a member. As a user’s needs change, command capability levels can be altered with GRUMP by
the System Manager or a user with high enough capability.

Program Protection through Capability Levels

Programs can have three capability levels. The program capability level (PROGCPLV) is the
capability at which the program runs. It determines which functions a program can perform. A
program cannot perform any function where the PROGCPLYV is less than the capability required
to perform the function. The required user capability level (RQUSCPLYV) is the level that a user
must equal or exceed in order to run the program. The third capability level is a copy of the
original program capability level (ORGCPLV) given to the program at link time or set with the
SECTL utility. This is used for internal management and is not directly accessible to the user.

When a program is run with Security/1000 turned on, the higher of the ORGCPLV and
USERCPLYV is assigned to the PROGCPLV. This allows programs assigned a low capability level
to perform tasks requiring a high capability level if requested.

There are two levels of checking performed before you can run a program. The first level check is
the file system security. If you cannot access the program file, it cannot be RP’d. If it cannot be
RP’d, it cannot be run. The second level of security checking is that the RQUSCPLYV of the
program, once its ID segment has been constructed, must be less than or equal to the capability
level of the user making the schedule request. Thus, if a program does not have an ID segment,
both levels of security checking must be passed before it can run. If the program already has an
ID segment, that is, it is already RP’d, only the second level must be passed as the file system is
not involved in the schedule request.

The double layer of checking can lead to a situation where you may pass the file system check and
thus RP the program, but cannot schedule it because the second layer failed. If you fail at either
level of the security checking, you will not be able to run the program and the program’s ID
segment will be released.

5-6 Multiuser Session Operation (VC+ Only)

Session Handling

When any user logs on, the RTE-A system handles all operations connected with that user. The
system management of that user’s operations, including all programs initiated by that user, is
called a session. A logon creates a session, and a logoff terminates the session. Session handling
is a more advanced topic. If you are a first time user of the multiuser environment, you may skip
to the paragraph under Identifying Programs.

When a system is generated, the maximum number of concurrent sessions allowed is defined. At
the beginning of each session, upon successful logon, the startup program defined in the account
file (usually CI) is run. From this point, all programs run from CI belong to the session created.
These programs are attached to the same session as CI. This means these programs inherit the
capabilities of the session for the duration they are attached to it, including the user name,
working directory and user flag attributes. It is important to note that these properties really
belong to the session, and not to the individual program. If, for example, the working directory is
changed for a session, it is changed for all programs attached to the session.

Most sessions are associated with the terminal where the logon request was made. This terminal
is assigned a logical unit number LU 1 for I/O purposes. Sessions that have a terminal are known
as interactive sessions. Interactive sessions receive services such as automatic scheduling of CM
when a user types a character when CI is unavailable.

Sessions can also be background (or non-interactive) sessions. Background sessions are not
associated with a terminal in the same way that normal (interactive) sessions are. Background
sessions are initiated either through programmatic logon requests, by programs such as DS
monitors, or through an EX command to CI that turns the session into a background session.
Background sessions are appropriate for programs that can run without a terminal. They are not
appropriate if the programs attached to the session require interactive inputs, because they could
conflict with an interactive session using that terminal.

There is always one session created without an owner; this is known as the system session, and it is
used to hold programs not attached to any other session. Protected system programs typically are
included in this session. The system session has the following attributes: name SYSTEM, a
superuser (capability level 31), and a working directory of that set in the Welcome file (unless a
program in the system session changes it).

Each session is identified by a session number. For interactive programs, this is the LU number of
the terminal associated with the session. For background sessions, the system selects a session
number that does not correspond with any LUs in the system. The session number is useful when
examining the system status. The session LU number is important in identifying programs
attached to other sessions in the system.

Multiuser Session Operation (VC+ Only) 5-7

Identifying Programs

There are two kinds of programs: normal programs such as EDIT, which are used by all users, and
system programs such as D.RTR, which are not cloned. This attribute is selected when the
program is linked.

There can be one or more copies of each normal program per session. The second through nth
copy will be clones of the first. For example, each user has a copy of the normal program CI,
named CI in his/her session. If a user runs a second copy of CI, it will be a clone of the first copy,
called CIL..A.

Also note that the system session is considered an extension of each user session. This means if
there is a normal program running in the system session and you, as a session user, try to run the
program in your session, it will be a clone of the one in the system session. Thus, if CI is running
in the system session (for example, CI is the startup program and the welcome file is executing)
and CI is run in a user session, the user session gets a clone of CI (for example, CI..A). Similarly,
if you try to RP CI, the system reports “Program name exists CI”.

To identify a program associated with a different session, qualify the name with a session number.
For example, to check the priority of EDIT associated with LU 14, enter:

Cl> pr edit/14

Without the LU number, you will receive a message such as “No such program” because there is
no EDIT attached to your session, nor is there any EDIT that is a system program.

System programs can always be identified by name, as there is only one. They are usually
protected to prevent modification of their attributes and they are never cloned with different
names.

Running Out of SAM

If your RTE-A/VC+ system runs out of System Available Memory (SAM), the PROMT program
takes action to allow the system to be recovered. If you get error messages indicating this problem
exists, inform your System Manager.

5-8 Multiuser Session Operation (VC+ Only)

Command Descriptions

This chapter contains descriptions of all CI commands. The commands are described in
alphabetical order. A tutorial of most of these commands and a command summary were
provided in previous chapters of this manual. Commands or capabilities that are specific to the
HP 92078A VC+ option are indicated as “VC+ Only”. Base set commands, which are available
from the system prompt, are indicated by an asterisk (*).

Capability Levels for C| Commands

If Security/1000 is installed, capability levels can be defined for all CI commands. You must have a
capability level that is equal to or greater than the level of a command in order to use it.

A number of CI commands map directly onto FMP routines or the OS kernel. For example, PU
(purge file) maps onto FmpPurge, and BR maps directly onto the OS kernel command BR. It is
therefore possible to pass the CI command security check but fail at a deeper level, such as FMP
or the kernel. More details are provided in the RTE-A System Manager’s Manual.

CI commands fall into the following categories:

e The command is really a program. Three levels of security are involved:
— CI security check. Can the command be issued from CI?

— Program security. Do you have enough capability to run the program that implements the
command?

— FMP or operating system kernel checking. Do you have enough capability to call the FMP
routine or issue the kernel command that the program uses?

CI commands in this category:
ASK, DL, 10, IS, PATH, RS, SP, WH, WHOSD.
e The CI command maps onto an FMP routine. Two levels of security are involved.
— CI security check. Can the command be issued from CI?
— FMP routines. Do you have the capability to call the FMP routine that CI is about to use?
CI commands in this category:

CD, CR, CRDIR, DC, IN, LI, MC, MO, OWNER, PROT, PU, PWD, RN, RP, UR,
UNPU, WD, XQ.

Command Descriptions 6-1

KTEST

e The CI command maps onto an operating system kernel command. Two levels of security are
involved.

— CI security check. Can the command be issued from CI?

— Operating system kernel command. Do you have the capability to use the operating
system kernel command that CI is about to use?

CI commands in this category:
AS, BR, CZ, DT, GO, OF, PR, PS, SS, SZ, UL, UP, VS, WS.
e The CI command is handled internally. One level of security is involved.
— CI security check. Can the command be issued from CI?
CI commands in this category:

ALIAS, AT, CL, CN, ECHO, EX, FUNCTION, FUNCTIONS, IF-THEN-ELSE-FI,
RETURN, SET, TM, TO, TR, UNSET, WHILE, ?.

Some documented utilities that are run implicitly by CI, such as LINK, SECTL, and TF, are
subject to the following:

e Program security checking; a check to determine whether there is enough capability to run the
program.

e FMP or operating system kernel checking; a check to determine whether there is enough
capability to call the FMP routine or issue the kernel command that the program uses.

e Any capability level checking that the program may do internally on its functionality or
commands.

Precedence Within CI

The precedence within CI is: aliases, internal CI commands, functions, or implied TR or RU (that
is, transfer or run files). In order to bypass this, for example, to have an alias use a CI command,
the command must be preceded by a backslash (\) and be in uppercase.

6-2 Command Descriptions

? (Help)

? (Help)

Purpose: Displays a summary of CI commands or a brief description of a command or item on
the summary display.

Syntax: ? [command]
Description:

This command provides a quick reference of CI commands and utility programs. The form “?”
without any parameters lists the HELP directory, showing a summary of available files. Entering
“? command” lists a file called /HELP/command; for example, “? owner ” lists file
/HELP/OWNER. If there is no file by the name specified, a message is displayed. You can add
files to the HELP directory to provide a quick reference of selected topics.

* (Comment)

Purpose: Allows entry of comments in transfer files.
Syntax: * [comment]
Description:

When an asterisk (*) is the first character in a line, CI ignores the entire line. The asterisk can be
used to add comments to a CI command (transfer) file.

Command Descriptions 6-3

AB2MI

AB2MI (Absolute Binary to Memory Image)

Purpose: Converts an arbitrary type 7 file to a type 1 file in memory image format.

Syntax: AB2M [input_file output_file]

input_file s the file name of a type 7 file or device.
output_file is the file name of a type 1 file.

If no parameters are specified, AB2MI prompts you interactively, as follows:

Thi s program copies an absolute binary (type 7)
file to a menory image (type 1) file.

Pl ease enter the input and output fil enanes.
Format: input::directory, output::directory::size

Description:

AB2MI allows any arbitrary code, whether or not it was produced by the system generator, to be
loaded into processor memory. This is useful because memory image format is required by the
disk bootstrap program.

AB2MI also patches an existing type 1 file. In this case, the input file overlays selected portions of
the output file.

If the output file does not exist, it is created by AB2MI (default size, 256 blocks); otherwise, it is
overlaid.

At the conclusion of the conversion, the program displays the message:
Hi ghest block witten: nnn

Here nnn is the number of blocks required to contain the input file data.

Break Detection

To stop execution of the program, you may enter the BReak command as follows:
Cl > br, ab2m

When AB2MI detects a break, it issues the following message:
Break Fl ag Set

The program then closes the input and output files and terminates. Note that the output file is
incomplete if the break flag is set during a conversion.

6-4 Command Descriptions

AB2MI

AB2MI Error Messages

Break Flag Set

The break flag is tested in each major loop within the program. When the break flag is
detected, the program closes the input and output files and terminates.

Checksum Error

The checksum is computed on the input record and must match the checksum word stored

in the record itself. This error can result from specifying an input file of the wrong type
(that is, ASCII).

Input File Error xxxxxx
Output File Error xxxxxx

Any error arising from calling a file management subroutine results in this message. The
file error code is reported and the files are closed.

Command Descriptions 6-5

ALIAS

ALIAS (Define/Display Aliases; VC+ Only)

Purpose: Defines a CI alias or displays all previously defined aliases.

Syntax: ALI AS [—x| +x] [alias name [[=] string value]]
ALl AS alias_name

—X if the user session has an Environment Variable Block, this option
“exports” a defined alias or defines a new one as exported (also known
as being in the environment). Exported aliases are available to all
copies of CI in the session, including CM.

+X imports an exported alias or defines a new alias as imported (also
known as being a local alias). An imported alias is defined only for the
current CIL

If neither the —x or +x option is given, the alias is defined as a local
alias.

alias_name is a string of up to 32 letters, digits, and underscores, not starting with a
digit.
string_value is a command string terminated by the end of the command line or a

semicolon (;), whichever comes first. Command lines can be 255
characters.

Description:

The command “ALI AS alias_name” displays the value of alias_name.

The command “ALI AS” (with no parameters) displays all aliases. The local aliases are displayed
first, followed by a blank line, then the exported aliases are displayed. The blank line occurs
whether or not any aliases of either type are defined.

When an alias is entered as the first word of a command, CI replaces the alias with the defined
value before processing the command. The remainder of the command line is concatenated onto
the alias value.

Quoting preserves lowercase letters and spaces.

The precedence within CI is: aliases, internal CI commands, functions, or implied TR or RU (that
is, transfer or run files). In order to by-pass this, for example, to have an alias use a CI command,
the command must be preceded by a backslash (\) and be in uppercase.

The UNALIAS command, described in this chapter, can be used to delete an alias.

6-6 Command Descriptions

Examples:

a>

a>

a>

a>

a>

a>

Cl >

Cl >

Cl >

Cl >

Cl >

Cl >

Cl >

Cl >

al i

al i

al i

al i

al i

ali

al i

al i

al i

al i

ali

al i

al i

al i

as

as

as

as

as

as

as

as

as

as

as

as

as

as

ALIAS

func = function (Define a local alias called FUNC, shorthand for
the FUNCTION command)

funcs=functions (Define a local alias FUNCS, shorthand for the
FUNCTIONS command)

smth jones (Define a local alias SMITH to be JONES)

howdy = ‘echo '‘How are you today? '’

(Define a alias HOWDY that has lowercase
letters and blanks)

unfunc unset -—f (Define an alias UNFUNC that will unset
functions)

—-X whu wh, us (Define and export the alias WHU; does not
affect local copy, if any)

-x func (Export the previously defined alias FUNC;
deletes the local copy)

+Xx lin=li,—-n (Define a local alias LIN that is LI with the line
number option)

i “\LI -n° (Defines LI to be LI with the line number
option)

+X m ne (Take the alias MINE from the EVB and make it
a local alias, assuming MINE was previously
exported)

(Show defined aliases and their values)

+X (Show local aliases and their values)

—X (Show exported aliases and their values)

func (Show the value of the alias FUNC)

Command Descriptions 6-7

AS

AS (Assign Partition)*

Purpose: Assigns a program to a reserved partition.
Syntax: AS prog <part #> [C| D]
prog is the program name, up to five characters, with an optional session
identifier.
part # is a number that identifies the partition to which the named program

will be assigned. If the partition number equals 0, the AS command
removes the current assignment.

gD optional parameter (VC+ only).
C (or code)

assign the code (executable) section of the
program to the reserved partition.

D (or data)

assign the data section of the program to the
reserved partition.

The default is the data section.

Description:

The program being assigned must have been restored previously with the RP command and must
be dormant. Whenever the program runs, its code and/or data are placed in the designated
partition(s). If assigned to partition zero, they are placed in dynamic memory. Refer to the
RTE-A System Design Manual for a description of reserved and dynamic memory. If more than
one program is assigned the same partition, the programs contend for the space in a normal
priority swapping scheme.

Examples:
Cl> as test2 2 (Assigns program TEST?2 to reserved partition 2)
Cl> as test 0 d (Program test to run in dynamic memory)
Cl> as prog 1 c (Assigns the code section of CDS program PROG to

reserved partition 1)

6-8 Command Descriptions

ASK

ASK (Display a Prompt and Read a Response)

Purpose: Displays a question or prompt, reads the response from the terminal and passes it
back to the scheduling program in SRETURN_S.

Syntax: ASK ‘ character string'
character string is any question or prompt you want to use. The string

must be enclosed in backquotes (* *).

Description:

The ASK command displays a question or prompt, reads a response from the terminal, and passes
back information about the response to the scheduling program in return variables. It passes the
following information back: an indication if the command was successful (Returnl), the character
length of the response string (SRETURN?2), the index of the first response character in the option
string (SRETURN3), and the response string (SRETURN_S).

If the character string parameter of ASK contains a ‘?’, the question string stops at the first ?’
found and the rest of the string is taken as an option string. The zero relative index of the first
response character in the option string is returned to the scheduling program. If you want it to be
1 relative, put a space between the ‘?” and the first character in the option string. If the first
character in the response is not in the option string, a —1 is returned. If there are no non-blank
characters in the response, a —2 is returned.

ASK returns the following in SRETURN1 through SRETURN3 and RETURN_S:

$RETURN1: 0 command executed successfully
—1 error in executing the command

$RETURN?2 : contains the character length of the response string

$RETURN3: =0 zero relative index of the first response character in the option string
—1 first response character is not in the option string
—2 no non-blank characters were entered

-3 timeout detected

$RETURN S: contains the response string

Command Descriptions 6-9

ASK

Examples:

6-10

Cl> ASK ‘ How are you?'

Cl > ASK ‘ Conmand>’

Cl> ASK ‘Purge this (Yes,

Command Descriptions

(Displays the question “How are you?” on the next
line, reads the answer, and passes it to the scheduling
program. If no option string is specified, the index
$RETURN3 is —1.)

(Displays the prompt “Command>" on the next line,
reads the response, and passes it to the scheduling
program.)

No, Abort, Stop asking)?YNAS

(Displays the question:

“Purge this (Yes, No, Abort, Stop asking)?”,

reads the response, determines the zero relative index
of the first response character in the option string, and
passes the information back to the scheduling program.

This will return the following in SRETURN3:

0 if Y is the first character in the response.
1 if N is the first character in the response.
2 if A is the first character in the response.
3 if S is the first character in the response.

-1 if the first character in the response is some
other character.

-2 if there are no non-blank characters in the
response.

-3 if the request timed out.

AT

AT (Set Program Run Time)

Purpose: Sets the execution time of a program. The program also can be set to run at regular
intervals.

Syntax: AT time [inwl] prog| file [pram*5]
time is the program run time, specified in 24-hour or 12-hour format:

intvl

prog|file
pram*5

Description:

hr:min:sec (For example, “13: 30” for one-thirty pm)
or
hr:min:sec AM PM (For example, “1: 30 pni)

If time is zero, the program is scheduled immediately.

is the optional rescheduling interval with a value between 0 and 4095
specified in the following unit:

mil for milliseconds
S Or sec for seconds
mor min for minutes

h or hour for hours

Intervals greater than 24 hours are reduced to modulo of 24 hours (for
example, 27 hours to 3 hours). The start time must be specified even if
only interval scheduling is needed.

is a 5S-character program name or a file descriptor that identifies a type
6 file.

are the parameters passed to the program. Up to five are allowed, with
up to 256 characters for the whole command runstring.

A program scheduled with AT executes in the same way as with the RU command except that it
waits until the designated time to begin executing. The runstring and parameters are passed only
once if an execution interval is specified. You can use the RU command to run programs
scheduled with AT before the scheduled time without affecting the schedule. However, any
parameters passed to the scheduled program will be lost.

Refer to the discussion of Parameter Passing and Parsing in the RTE-A Programmer’s Reference
Manual to learn more about retrieving a runstring.

Command Descriptions 6-11

AT

Examples:

Set PROGB execution time to 4 am:

Cl> at 4:00:00 progb
or
Cl> at 4 progb

Note that if the program name is AM or PM in the above example, CI will be confused. In this
case, the runstring must be specified as:

Cl> at 4 am pm

Therefore, to avoid confusion, do not use program names such as AM or PM.

To execute program TIMER every minute:
C>at 1 1 mn tiner

or
Cl> at 1 60 sec tiner

Program TIMER will start at 1 am and execute every minute thereafter.

To execute program TIMER now and every 10 seconds after:

Cl> at 0 10 sec tiner

6-12 Command Descriptions

BR

BR (Break Program Execution)*

Purpose: Sets a flag to allow limited communication with a program.
Syntax: BR [prog]
prog is the program name, up to five characters, with an optional session

identifier. The default is the last scheduled program.

Description:

This command is used to stop programs in an orderly manner. BR sets a break flag in the

program’s ID segment, providing a way to signal a running program that it is to be stopped. It is
up to the program to check the break flag; otherwise, the command has no effect. The break flag
can be checked with system call IFBRK, described in the RTE-A Programmer’s Reference Manual.

If no program is specified and the startup program (usually CI) has scheduled another program,
the BR command executes on that program unless it, in turn, has scheduled a program. The
search continues down the program scheduling chain and the BR command is executed on the last
program. However, if the last program is a protected system program, the BR command executes
on the program that scheduled the protected system program.

If the BR command is issued while CI is executing nested command files, you will receive the
following prompt:

Multiple levels of command files. Do you wsh to
(Ryeturn to prior command file or (A)bort all command files [A]?

Returning to the prior level means that CI breaks out of the currently executing command file and
goes to the next one up. Aborting means that CI breaks out of all the command files, no matter
how deeply they are nested, to the interactive level.

Command Descriptions 6-13

CALLM

CALLM (Merge Text Files for CALLS Utility)

Purpose: Merges together a number of text files that contain input to the CALLS program and
creates a single compressed file suitable for reading by the CALLS facility.

Syntax: CALLM [—options] cmd_file dest_file

- options is a string of one or more of the following characters preceded by a
dash:

I suppress listing the names of files read
0 overlay an existing dest_file
v verify that an existing dest_file should be overlaid

Cc inhibit text compression of dest_file. The default is to compress
the text in dest_file.

cmd_file is the name of a file containing a list of text files to be read, one per
line. The CALLS input is extracted from each of these files and merged
into dest _file.

dest_file is the name of the destination file, to be used as an input file for
CALLS. If compression is performed then this file will be of file type
6004.

Description:

Compression is performed via the CompressAsciiRLE routine. As explained in the
RTE-A/RTE-6/VM Relocatable Libraries Reference Manual, part number 92077-90037, this
compression cannot be performed on characters that use the eighth bit of the ASCII code, such as
binary data or extended ASCII character sets (Kanji, for example).

The command file is a file in format similar to MERGE command files. Each line contains either
the name of an input text file to be merged into dest_file, or the line contains a comment prefixed
with “* 7. Each input text file may be the compressed output of a previous CALLM execution if it
is of file type 6004. The suggested file type extension for CALLM command files is “.CMRG”.

The text files may be program source code that contain CALLS input in comments, where the
comment must start with character “*” or “{” in column 1, and be followed immediately by the
CALLS directive or explanatory text. CALLM will include in the dest_file only lines between and
including “.topic” and “.end” CALLS directives, leaving out the intervening source code. If a
plain text line not within a source code comment begins with either “*” or “{” in column 1, then
that character must be doubled, such that the first one is discarded as a comment character.

6-14 Command Descriptions

CALLM

.Include Directive

The CALLM utility processes an additional directive that includes another text file into the output
file at the position where the directive is given. The syntax is:

.include <file>

These directives cannot be nested.

The example below shows the source code input format in FORTRAN or Macro:

* topic nysubroutine
* group subroutines
*one—l i ne description of nysubroutine

*

*Cal i ng sequence:

*

* call nysubroutine(parnt, par n2)
*

* etc.

*

* see otherroutine

* end

A Pascal example:

{.topic nyprocedure
{one-line description of myprocedure

{

{Cal l'ing sequence:
etc.

{.end

{}

Note the closing brace on the last line that terminates the Pascal comment.

See the section earlier in this chapter on the CALLS utility for more information about that
program, and about the text input format expected.

Command Descriptions 6-15

CALLS

CALLS (Online Help Facility)

Purpose: Looks up keywords entered by the user in a catalog containing definitions of
keywords and associated text, and displays that text.

Syntax: CALLS [—flags] [keyword]

—flags is a string of characters preceded by a dash (—). Where an argument is
required, the next word in the runstring is consumed, delimited by
blanks or a comma. The flags are:

C catalog The name of the CALLS catalog to use. By default,
directory /CATALOGS and type extension .CALL are added

to the given name. The default catalog is
/CATALOGS/CALLS.CALL.

L lstfile Divert the text listing to the named file. By default the text
is listed to the terminal.

P pgsize Set the number of lines per page for “More...” prompting
on the terminal. The default size is 22 lines.

B Build the index file and terminate. See the discussion later
in this chapter on index files.

For example, “cal s —c utils —p 5”and “calls —cp utils
5” both use catalog /CATALOGS/UTILS.CALL and five lines per page.

keyword is the keyword for which the associated text is to be listed. If not given,
the default keyword (“[default]”) for the selected catalog is listed.

Description:
The catalog used by CALLS can specify hierarchical groupings of keywords and can suggest
related keywords that may be of further interest after the text for a certain keyword is viewed.

At certain times, CALLS may prompt you to select another topic to display as indicated below:
Put cursor on desired name or type new nane, press return.

This occurs when no topic keyword is given in the runstring, or when a mask is given. This also
occurs when the topic selected has other topics associated with it, which you may also want to
read.

When you press carriage return, CALLS reads the line under the cursor from the screen, isolates
the word under or to the left of the cursor, and uses that word as the new topic name. If there is
no word to the left or under the cursor, CALLS looks to the right of the cursor. If there is no word
on the line at all, CALLS terminates. CALLS isolates the word by looking for blanks, commas, or
right parentheses. To terminate CALLS, type carriage return on a blank line.

If an unknown keyword is given, CALLS lists the 16 keywords in alphabetical sequence around the
given keyword, and then enters interactive mode as above.

6-16 Command Descriptions

CALLS

CALLS Catalog File

The CALLS catalog is a text file that acts as a database containing keywords and explanatory text.
Catalog files may be compressed by the CALLM utility. The default catalog name is actually
based on the name by which CALLS is scheduled (that is, the second word in the received
runstring). If CALLS is RP’ed under a different name or the .RUN file is renamed, the new name
becomes the default catalog name for that copy.

For example, if youissue “rp calls util s” and then execute UTILS, it will use the default
file named /CATALOGS/UTILS.CALL.

CALLS Directives

The CALLS catalog files may be plain text files in the format given below, but more commonly the
final catalog is built by the CALLM utility, which merges together plain text files and performs
text compression on the result. Additionally, CALLM can extract CALLS catalogs from
comments in source code. (See the CALLM section later in this chapter or enter “? callm” from
the CI prompt for more information about the CALLM utility.)

A catalog file consists of explanatory text lines and CALLS directives. The CALLS directives
must begin in column 1, and are:

.topi c primarykey[, aliaskey, aliaskey . . .|

Begin a new topic. primarykey is the official name of this topic, a string of up to
64 characters not containing blanks or commas. aliaskey is an alias name
following the same syntax; the user can receive help on this topic by specifying
either primarykey or any of the aliaskeys.

The next line of text (that is, which is not a CALLS directive) is used as the
one-line description for this topic. This description appears with the primarykey
when the topic explanation is read, and for any “associated topics” menus.

Any subsequent text lines are printed verbatim by CALLS when this topic is
read, until a subsequent “.end” or “.topic” directive is found.

.group key[, key ...]

Used within a topic, joins this topic to a group of related topics given by the
named keys. Each key may name a primary key used for a topic elsewhere, or
may be used solely in the “.group” directives for the related topics. A
discussion on related topics appears below.

. page Forces a page break (“More...” prompt) at the current location in the
explanatory text, if the listing is to the terminal.
. see key[, key, key ...]

“See also” relates the named keys to the current topic, such that a menu of the
named keys is presented after this topic text is read, and the user is invited to
select one of these keys for more help. A discussion on related topics appears
below.

. end Terminates the current topic.

.include Directive that is recognized only by the CALLM utility. See the section later in
this chapter on the CALLM utility for more information.

Command Descriptions 6-17

CALLS

Relating Topics to Other Topics

Two of the CALLS directives are used to “relate” topics to other topics:
. group for topic groupings.
. see for referrals to “see also” topics.

A topic grouping occurs when several topics use the same key in a “.group” directive. When the
user requests help on that key, a menu of all the topics that belong to this group is presented.

For instance,

.topic help, 2, ??
. group conmmands
Hel p!

description of help command
. end

.topic exit, quit
. group conmmands
Exit this program

description of exit command
. end
If the user requests help on “commands”, CALLS answers with:
The followi ng topics are associated with “comuands”:
help — Hel p!
exit — Exit this program
Put cursor on desired nane or type new nane, press return.

If “commands” were used as a primary key for its own topic, that text would be listed before the
above menu is given. For example, some general information about the “command” entry could
be given before the menu of actual commands is presented.

The “.see” directive is used within a topic to refer the user to other topics that may be of interest.
A similar menu of those topics is printed after CALLS lists the current text block. For example,

.topi c NewProduct
one-line description of NewProduct

NewPr oduct relies heavily on ProductA and ProductB
.see ProductA, ProductB

.end
.topic ProductA

etc.

6-18 Command Descriptions

CALLS

Index File

The first time CALLS runs on a catalog, and after subsequent updates of the catalog, CALLS
builds a file called the index file. CALLS builds the index file in the same directory and with the
same name as the catalog, but with type extension “.indx”. More specifically, if the index file is
missing or has an update timestamp that is older than the corresponding catalog, CALLS rebuilds
the index file. CALLS will also attempt to rebuild the index if it appears that the index is invalid
for the catalog, even if the update timestamps are in order.

Note The index file contains FMP internal file position pointers into the catalog file
for the various topics, plus the keyword list and associated topic groupings. This
means that the first person to run CALLS on a catalog after an update must
have write access into the catalog directory for the index file to be successfully
created. It is suggested that the system manager installing a new catalog
immediately run CALLS on the catalog with the “—b” option to build the index.

Command Descriptions 6-19

CD

CD (Change Working Directory)

Purpose: Changes the working directory.

Syntax: CD [—| directory]
CD old new
CD [-p] [directory] (VC+ Only)

2

—p when using any of the ksh-style editing modes, the command “cd . .
moves the current directory one path component closer to the root
directory. The —p option preserves the physical path when treating
symbolic links. “cd —p ..” changes the working directory to the
parent directory of the current working directory. This option is only
available for the ksh-style editing modes.

Description:

The CD command can take one of two forms. In the first form, it changes the current directory to
directory. If a dash (—) is specified as the argument, the directory is changed to the previous
directory (SOLDPWD). The default for directory is the value of the SHOME variable.

The second form of CD substitutes the string new for the string old in the current working
directory name, $WD, and tries to change to this new directory.

When either the CD or WD command is used, the variables §WD and SOLDPWD are updated.
The WD command always sets $WD to the physical name of the current working directory. When
$VISUAL is set to any of the ksh-style editing modes (EMACS, GMACS, or VI), the CD
command preserves the logical naming when treating symbolic links. For any of the other
$VISUAL modes, the CD command saves the physical name of the current working directory in
$WD. $VISUAL is only available in the CDS version of CI.

Examples:

Cl > pwd
/niners/lott
Cl> cd /raiders
Cl > pwd
/raiders

Cl> cd -

Cl > pwd
/niners/lott

Suppose LOTT.DIR exists in both /NINERS.DIR and /RAIDERS.DIR. The “cd old new”
syntax can be used to switch directories. In the following example, the current working directory is
/NINERS/LOTT; by substituting the string “nin” for all occurrences of the string “raid”, the
current working directory is changed to /RAIDERS/LOTT:

Cl > pwd
/niners/lott
Cl>cd ninraid
Cl > pwd
/raiders/lott

6-20 Command Descriptions

CD

The CD command functions in a different manner depending on how $VISUAL is set. For
ksh-modes, CD retains the logical path of the working directory. The same sequence of
commands can result in a different working directory if symbolic links are used.

For example, suppose that the following directory structures exists.

[wor k. dir
/wor k/ source. dir

/ wor k/ sour ce/ subs. dir
/ wor k/ source/ progs. dir

/source.dir
/ source/ progs.dir
/ source/ subs. dir

> synmbolic link to /source/progs.dir

The following sequences of commands have different results:

non ksh-style modes

(always physical)

Cl > cd /work/source
Cl > cd progs

Cl > pwd

/ sour ce/ progs

Cl> cd ../subs

Cl > pwd

/ sour ce/ subs

ksh-style modes

default optional
(logical) ot (physical)
Cl > cd /work/source Cl > cd /work/source
Cl > cd progs Cl > cd progs
Cl > pwd Cl> pwd —p
/ wor k/ sour ce/ pr ogs / sour ce/ pr ogs
Cl> cd ../subs Cl>cd —p ../subs
Cl> pwd Cl> pwd
/ wor k/ sour ce/ subs / sour ce/ subs

Command Descriptions 6-21

CL

CL (List Mounted Disks)

Purpose: Displays all mounted disk volumes.
Syntax: CL
Description:

The CL command is used to show the mounted disk volumes by their logical unit numbers. It lists
separately all LUs mounted as file system LUs and all LUs mounted as FMGR LUs. For FMGR
system disks, the LUs and the associated CRNs are listed in the FMGR search order.

Examples:
Cl> cl
File System Disk LUs: 54 56
FMGR Di sk LUs (CRN): 27(DB) 45(TY) 46(PM 30(XX)
61(SO 59(&R

6-22 Command Descriptions

CLOCK

CLOCK (Access A990 Clock Chip)

Purpose:

Syntax:

Description:

Accesses the A990 Computer’s clock chip.

clock [-Q [A990] [SET|TM

-Q Quiet. Do not output the current times to the terminal. The return
values will still be set.

A990 Parameter to maintain compatibility with prior revisions of this
program. It is ignored.

SET Writes the current system time to the A990’s time-of-day clock.

™ Sets the system time to the time read from the A990’s time-of-day
clock.

CLOCK is used to read from and write to the time-of-day clock that is part of the HP 1000 A990’s
hardware. When CLOCK executes, it reads the time-of-day clock and reports the clock’s current
value along with the current system time.

Return Values:

$RETURNI1

0 Success.
—1 The processor where CLOCK executed does not have a clock chip.
—2 Invalid option in command line.
—3 The clock chip’s battery is depleted.
—4 The clock chip’s time has not been set.
—5 You must be a superuser to set the time.

The remaining return values are used to retrieve the hours, minutes, seconds, Julian day of the
year, and a timestamp that is compatible with FMP masking (YYMMDD.HHMMSS). If the
“SET” option is specified, the values returned refer to the system’s time. Otherwise, they refer to
the clock chip’s time. These fields are always zero when $SRETURNT1 is —1, =3, or —4.

$RETURN2 = Hours (0—23)

$RETURN3 = Minutes (0—59)

$RETURN4 = Seconds (0—59)

$RETURNS = Julian day of the year. (1—-366)

$RETURN_S = Timestamp compatible with FMP masking (YYMMDD.HHMMSS).
Examples:

Cl > clock

Cock chip time: Tue Jul 5, 1994 8:54:14 pm

Systemtine: Tue Jul 5, 1994 8:54:14 pm

Cl > echo $returnl $return2 $return3 $returnd $return5 $return_s
0, 20, 54, 14, 186, 940705. 205414

Cl >
Cl >
Cl >
Cl >
Cl >
Cl >

*
*
*
*
*

Set the systemtine fromthe A990 clock and then reset the
access tinme for each file in /PROGRAMS that has an access
time that is equal to or later than the tinme retrieved from
the A990 clock. An error is generated for any prograns that
are active, such as TOUCH.

clock —q tm touch —a /progranms/ @ @ a$return_s—
Program is active TOUCH. RUN: : PROGRAMS: 6: 185: 128

Command Descriptions 6-23

CN

CN (Control Device)

Controls peripheral devices.

Purpose:

Syntax:

CN lu function [pram*4]

lu is the logical unit of the device to receive the control request.
LU 1 controls the user’s terminal. To control the system console,
indicate LU = 100001B.
function is the control function code (0-63B) as defined in the function field of
the control word (cntwd) listed for each driver in the RTE-A Driver
Reference Manual. A two-character mnemonic code can be used for
some of the more commonly used control functions. The following is a
list of the mnemonics and their equivalent function codes. Note that
the action performed for a particular function code is dependent on the
driver. Refer to the RTE-A Driver Reference Manual for a complete list
of the function codes available for a particular driver and the actions
that they perform.
Equiv. Octal Pram 1-4
Mnemonic Func. Code Definition Action
AB none None Abort current request
(at head of queue)
AD 24B Device Establish new device
address address
TO 11B # lines Issue top-of-form or
on page line spacing on printer
RwW 4B None Rewind cassette tape
EO 1B None Write end-of-file
FF 13B None Forward space file
BF 14B None Backward space file
FR 3B None Forward space record
BR 2B None Backward space record
DPp 25B 1-4 prams Set device prams
nja 0 None Clear device
nja 20B Program name Enable primary program
nja 21B Disable primary program
40B Program name Enable secondary program
41B Disable secondary program
pram*4 are the optional parameters that specify additional device details as

appropriate for a given driver. Specific meanings for these parameters
may be found in the RTE-A Driver Reference Manual under each driver.

If an ASCII character string is given as a parameter, it is parsed into
2-byte words and passed to the driver as separate parameters.

6-24 Command Descriptions

CN

Examples:
C>cn4d4rw (Rewinds the tape in cassette tape unit, LU 4)
Cl>cn 6 to -1 (Causes a top-of-form, page feed, on printer LU 6)
Cl> cn 7 20B proga (Establishes PROGA as the primary program to be
scheduled on LU 7 when an asynchronous interrupt is
generated)
Cl>cn 16 ad 12 (Sets HP-IB device address 12 at LU 16)

Refer to the RTE-A Driver Reference Manual for full information on the control requests that can
be issued for each driver.

Command Descriptions 6-25

CO

CO (Copy Files)

Purpose: Copies one or more files between directories and/or I/O devices.
Syntax: CO filel| lu file2| lu [option]
filel |Iu The source file descriptor or the LU number of an I/O device. (Refer

to the CR command syntax description for the definition of file
descriptor.) May be masked to operate on more than one file. (Refer
to the “File Masks” section in Chapter 3 for the mask syntax.)

file2 |Iu The destination file descriptor or the LU number of an I/O device. May
be masked to allow the system to generate destination names. When
copying from a device, the default file type is type 3; a different file type
must be specified if one is desired. Note that the destination LU should
not be a cartridge tape drive.

option The following characters indicate particular actions to be taken:
A ASCII records, no checksum (default).
B Binary.
C Clear backup bit on source after copying (note that backup
bits for @.DIR files are not cleared with this option).
D Replace duplicates; existing file with the same name

will be replaced.

No carriage control in source.

Purge source after copying.

Quick; do not record access time on source.

Preserve directory information (timestamps, protection, and
backup bit) of the source file.

Truncate destination to length of valid data.

Replace duplicates if update time is older.

nwo TvVZ2

c -

Description:

The CO command can be used to copy a group of files from one directory to another. Masking
the filel parameter allows matches of a number of files. If a wildcard character is used in the
name field of filel, an appropriate destination mask should be used to default destination file
names (unless output is to an LU).

The file mask is a very powerful but complicated tool, and it should be used with caution. For
example, you can copy all type 6 files on several different directories to a particular directory,
which can be a global directory or a subdirectory. An implicit D qualifier is used whenever you
use a wildcard mask. This means that if any directory matches the mask, all files in that directory
will also be copied.

The D qualifier can be overridden with the mask qualifiers K or N, which is particularly useful
with time qualified copies, because directory time stamps are not maintained. Note that the D
qualifier is automatically appended to the unspecified mask and appears in error messages. For
example:

Cl> co /global/@ftn /new @ftna
No such directory @FTN. D:: GLOBAL (D appended to file name)

6-26 Command Descriptions

CO

When copying a file from one directory to another, the creation and access times are those of the
copying process. However, the update time of the new file is that of the current file, to maintain a
history of the latest revision date.

When copying a file to a line printer, the characters in the first column are not printed because
they are used by the printer for carriage control. The N option indicates that characters in the first
column are printed.

When using the C option, the backup bit on directories is not cleared. The backup bit and the
time stamps on directories are never changed, because although directories are structured like
files, they are not accessed like files. When a directory is copied, a new directory by the same
name is created and all the contents are copied.

The Q option is used when you do not want to have the access time of the file updated. It is useful
when you are copying from a file that resides on a write-protected disk. Normally, the file system
attempts to update the file access time when it opens the file, and because the LU is
write-protected, the CO command would fail.

The S option allows you to save directory information (timestamps, protection, and backup bit) of
the source file.

The T option allows a file with wasted space to be copied into a new file as a perfect fit. The
end-of-file directory information of the source file is used to determine how many blocks of valid
data to copy to the destination file. This option is not used with type 1, 2, and 6 files or FMGR
files.

The U option allows overwriting of the destination file, but only if the update time of the
destination file is older than that of the source. Because FMGR files do not have update times,
they are considered the oldest.

The file type of the destination file is the same as the source file if you do not specify a different
one. If the destination file size is not specified, a size will be selected to eliminate extents. The
protection of the destination file will be the same as the source file if the source is not an LU or a
FMGR file and the other user is the owner of the destination directory. Otherwise, it will have the
protection of the directory into which it is copied.

When copying type 1 files to devices, the device record length is set to 256 bytes. If a different
record length is desired on the device, copy the type 1 file into a type 2 file with the desired record
length. The type 2 file can then be copied to the device.

When copying type 2 files to or from devices, the record length of the type 2 file is used as the
device record length when reading from or writing to a device. When copying from a device to a
type 2 file, if records exist on the device that are greater than the record length of the type 2 file,
the records are truncated without warning. When the record length of the type 2 file is too large
for CO to accommodate, CO reports an illegal DCB buffer size error.

When copying from a device to a type 1 file or from a device to another device, CO reads as large
a record as possible from the source device. The input buffer size is dependent on the amount of
free memory available to the CIX program. Any records on the source device that have record
lengths greater than the input buffer size is truncated without warning.

When copying from a device to a variable-length file, records are truncated to 256 bytes without
warning.

Command Descriptions 6-27

CO

For VC+ only, when the variable SQUIET_CMD is set to ON, the message

Copying FILEl1 to FILE2 ... [okK]

is not displayed. Also, there is no message if the U option was specified and there was no copy
because the destination file was current.

Examples:

Cl> co @src.e /backup/archivel/source/l @@

This command copies all files with file type extension .SRC on all accessible directories to
subdirectory SOURCE of subdirectory ARCHIVE of directory BACKUP. Their names and file
type extensions remain unchanged. Note that all files copied by this directive will be copied to the
same directory. To copy subdirectories to subdirectories, use the K qualifier in the mask instead of
the S qualifier.

Cl>co @rel 8 b

This command copies all files with file type extension .REL on the working directory to LU 8.
Note that this example shows that CO can be used to copy to an I/O device. The preferred
method is to use the TF utility for this type of copying.

Cl> co 8 /prograns/programrun:::6:1000

When copying from a device (such as a tape unit), the default file size is 24 blocks. If the file is
longer and extents are not desirable (that is, type 6 files), a longer file size must be explicitly
specified. After copying, the file is truncated to its actual size.

The following example is not allowed because CI does not copy a directory into its own
subdirectory:
Cl>co @dir.d sub/ @@

If CI were to allow copying a directory into a subdirectory of itself, this command would find
subdirectory SUB in the working directory and copy it into subdirectory SUB, creating file
SUB/SUB.DIR. Then, following the D qualifier, all files in subdirectory SUB would be copied,
including SUB/SUB.DIR. This would continue until the name overflows the FMP limit of 63
characters. Therefore, either do not copy from a directory into its subdirectory, or use the N
qualifier to disallow copying of subdirectories.

Cl>co @/dir/@t

This command copies all the files in the working directory into /DIR/, but only copies as much
data as the directory information says is valid.

Cl> co @/ backup/ @u

This command copies into /BACKUP/ the files in the working directory whose update times are
newer than the corresponding file in /BACKUP/.

6-28 Command Descriptions

CP

CP (Copy Files and Directory Subtrees; VC+ Only)

Purpose:

Syntax:

Copies files and directory subtrees.

cp [-F|-I] [-PQRV] filel dest file

cp [-F|-I]1 [-PQRV] filel| maskl [file2| mask2 ...]| dest_directoryl

cp [-F|-I] [-PQRV] filel| maskl [file2| mask2 ... | dest_mask

cp [-F|-I] [-PQV] -R directoryll [directory2] ..] dest directoryl

-F Forced copy - purge any existing destination file before each copy
without prompting for confirmation. Only write access to the
directory is required.

- Interactive copy - issue a prompt requesting confirmation for each
copy that would overwrite an existing file. The —I option is ignored
if the —F option is also set.

-P Preserve - preserve the directory attributes when copying files;
ownership of directories is also preserved.

-Q Quiet; inhibit error/warning reporting.

-R Recursive copy - recursively copy a directory subtree to another
directory. If the destination directory already exists, the source
directory and all of the files under it are copied to the destination
directory. If the destination directory does not exist, it is created
and all of the files under the source directory are copied to the
destination directory.

When the —R option is specified, symbolic links are copied such
that the target points to the same location as the source.

-V Verbose mode.

— indicates the end of the options (required if mask begins with ‘=).

filel ... one or more files or directories to be copied.

maskl ...

directoryll ...

dest_directoryl the directory or destination file mask to which the file or directory is

dest_mask to be copied. When files are copied to dest_directory, the files are
copied into the directory. When a source mask is specified (maskI ...)
or when two or more files are to be copied, the destination must be a
directory or a destination mask. When the —R option is specified, the
destination directory will be created if it does not aready exist.

When specitying directories in the argument list, a directory may
optionally be specified with a trailing slash (dirnamel) or with the
type extension (dirname. DI R). The trailing slash or the type
extension is necessary when a file name without a type extension
exists that has the same name as the directory.

Command Descriptions 6-29

CP

Description:

The CP command copies files to new or existing file names, or into an existing directory. CP can
also copy directory subtrees into an existing directory.

By default, when copying a file to a new destination file, if the destination file already exists and
the user has write access to the file, its contents are destroyed. To overwrite files when using the
—F option, the user only needs write access to the directory of the files being overwritten.

When CP does not have write access to the destination file or directory, CP reports an error.

If the destination file is a symbolic link to an existing file, by default, CP overwrites the existing file
and retains the symbolic link. When the —F option is specified, the symbolic link file is purged
before the copy.

CP copies a symbolic link file when the source mask includes the L mask qualifier or when the —R
option is specified. By default, when the file being copied is a symbolic link, CP copies the
contents of the file pointed to by the symbolic link.

The —R option is required when copying one or more directory subtrees to another directory.

CP will only create subdirectories when the —R option is used or when either the D or the K mask
qualifier is specified in the source mask.

When copying type 1 files to devices, the device record length is set to 256 bytes. If a different
record length is desired on the device, the user should copy the type 1 file into a type 2 file with
the desired record length. The type 2 file can then be copied to the device.

When copying type 2 files to or from devices, the record length of the type 2 file is used as the
device record length when reading from or writing to a device. When copying from a device to a
type 2 file, if records exist on the device that are greater than the type 2 file’s record length, the
records are truncated without warning. When the type 2 file’s record length is too large for CP to
accommodate, CP reports an illegal DCB buffer size error.

When copying from a device to a type 1 file or from a device to another device, CP reads as large a
record as possible from the source device. The input buffer size is dependent on the amount of
free memory available to the CP program. Any records on the source device that have record
lengths greater than the input buffer size are truncated without warning.

When copying from a device to a variable length file, records are truncated to 256 bytes without
warning.

CS/80 cartridge tape devices may not be used with CP.

Return values:

$RETURN1 returns the number of files that could not be copied.
$RETURN?2 returns the number of files that were successfully copied.

6-30 Command Descriptions

Examples:

a>

a>

a>

cl >

cl >

cl >

cp

cp

cp

cp

cp

cp

CP

filel file2 subdir/ (Copy FILE1 to SUBDIR/FILE1 and FILE2 to
SUBDIR/FILE2; SUBDIR.DIR must already
exist and, for symbolic links, files pointed to by
the links are copied)

—r filel file2 subdir/ (Copy FILE1 to SUBDIR/FILE1 and FILE2 to
SUBDIR/FILE2; SUBDIR.DIR will be created
if it does not already exist and, for symbolic
links, the links themselves are copied.)

—r /dir/subl/ /dir/sub2/ /destdir
(Copy the directory trees /DIR/SUB1.DIR and
/DIR/SUB2.DIR to /DESTDIR/SUB1.DIR and
/DESTDIR/SUB2.DIR; for symbolic links, the
links themselves are copied)

/dir/l@@k /destdir/ (Copy every file in the /DIR directory to the
/DESTDIR directory and preserve the
subdirectory structure; for symbolic links, files
pointed to by the links are copied)

—p /dir/ @ @kgl /destdir/
(Copy every file in the /DIR directory to the
/DESTDIR directory, preserving the
subdirectory structure and the directory
attributes of each file; for symbolic links, the
links themselves are copied)

8 data.tar:::2:400:5120 (Copy data from the device at logical unit 8 to
file DATA.TAR and use a record length of 5120
words as the input and output buffer size)

Command Descriptions 6-31

CR

CR (Create File)

Purpose: Creates a disk file.
Syntax: CR file
CR file[user] >node
file is a file descriptor, up to 63 characters, in one of the following formats:
Standard

[/ dirl [subdirl] filename] : : : type| : size[: rlen]]] [ds_port]

Combined
[subdirl | filenamel : : dir] : type[: size[: rlen] 1]] [ds_port]

FMGR
filename| : sc[: crn| : type[: size[: rlen] 1] 1] [ds_port]

where:
dir specifies the unique (global) directory for the file. The
directory name can be up to 16 characters long, not
counting delimiters (slashes).
subdir specifies one or more subdirectories for the file, separated

by slashes (/). Each subdirectory can be up to 16 characters
long not counting delimiters. Any number of
subdirectories can be specified with the limit of 63
characters for the full file descriptor.

filename specifies the name of the file including a file type extension.
The file name can be up to 21 characters: 16 characters for
the name followed by a period and 4 characters for the file
type extension. The file type extension is used to describe
the type of information in the file. Standard file type
extensions are described in Chapter 3 of this manual.

type is a number used to indicate how the file is organized.
Standard types are:

1 Type 1 files are random access files that do not have
any structure information in them. They can be read
and written very quickly, but they are not suitable for
use as text files. Fixed length records are 128 words
long.

2 Type 2 files are fixed-length record, random access
files. The record length is defined when the file is
created. They are not suitable for use as text files.

3—7 Type 3 and above files are variable length record,
sequential files. They are suitable for use as text
files. There is no difference in the handling of file
types 3 and above. By convention, types 5, 6 and 7
are used for relocatable object, executable program,
and absolute binary files, respectively.

6-32 Command Descriptions

Description:

size

rlen

ds_port

CR

If type is not specified, 3 is used. Types greater than 7 are
user defined.

Specifies the file size in number of blocks. Default is 24
blocks.

Specifies the record length in type 2 files in number of
words.

Specifies the node and user for files to be accessed via DS
transparency. The format of the ds_port is:

>node [userl password]
or
[userl password] >node

where:
>node is optional; if not entered, the current node
is used.
[user/ is optional; if not entered, the default DS

password] account at >node is used.

Note that the square brackets (‘" and ‘]’) shown in the
ds_port format description are required characters, unlike
the square brackets used elsewhere to denote optional
parameters.

The CR command creates an empty file. The minimum information that must be specified is the
name. The remaining parameters can be defaulted. Default values are:

file type extension:
directory:

type:
size:

blank

working directory

3

24 blocks

To create a file, you must have write access to the directory where the file will reside. The owner
of this file is the owner of the directory. The protection status of this file is the same as that for
the directory it is on. This allows you to write into a file or create a file on another directory to
which you have write access. Only the owner of the directory can alter the protection status of the

file thus created.

Command Descriptions 6-33

CR

Examples:

Cl> cr /applications/docunentation/conpiler

This example creates an empty file named COMPILER with the following attributes: blank file
type extension, size = 24, type = 3, on subdirectory DOCUMENTATION on global directory
APPLICATIONS.

Cl> cr /joe/notes.txt:::4:10

This example creates file NOTES.TXT with the following attributes: file type 4, size = 10 blocks,
on directory JOE.

Cl> cr data.dat:::2:5:18

This example creates file DATA.DAT as a type 2 file with 5 blocks and a record length of 18 words
in the working directory.

Cl> cr notes/project.txt

This example creates file PROJECT.TXT on subdirectory NOTES on the current working
directory. The default attributes are used: type 3, 24 blocks.

6-34¢ Command Descriptions

CRDIR

CRDIR (Create Directory/Subdirectory)

Purpose: Creates a global directory or a subdirectory.

Syntax: CRDI R directory [lu]

directory is the character string that identifies the directory. It can be up to 63
characters and either a global directory or a subdirectory. The directory
in which a subdirectory is created must already exist.

The name can include an optional size subparameter specified in
number of blocks as follows:

directory: : : . size

The default size is equal to the track size of the disk used, typically 48
or 64 blocks for hard disks and 30 or 16 for flexible disk. The directory
size is extended as needed.

lu specifies where to place a global directory. It must be a mounted disk
volume. If it is set to zero, the disk volume of the working directory is
used. This parameter is ignored for subdirectories, which go on the
same volume as the directory in which it resides.

Description:

The CRDIR command creates a directory or subdirectory. A subdirectory can be created within a
subdirectory. There is no limit to the level of subdirectory nesting except for the 63-character limit
of a file descriptor.

If the optional disk volume parameter is omitted and there is no working directory, the lowest
numbered disk volume is used.

The size of the directory can be specified in the same way as a file is created. There are four
directory entries per block, and two directory entries are used for internal information. Thus, if a
size of four blocks is specified, the directory can hold 14 file entries (extents require additional
entries) before the directory must be extended. As is the case with files, extents slow directory
search performance. The created size is not a limit on the number of entries in a directory. The
maximum size allowed is 64 blocks. Some programs assume that directories contain no more than
32767 files.

If a directory is created with the same name as a FMGR CRN, the FMGR disk cartridge cannot
be accessed by a CI command unless the working directory is set to 0.

The default protection for a global directory is RW/R/R. The default protection for a subdirectory
is the protection of the directory in which it is created.

Command Descriptions 6-35

CRDIR

Examples:

Cl> crdir

Cl> crdir

Cl> crdir

Cl> crdir

Cl> crdir

Cl> crdir

Cl> crdir

6-36

j ones

jones::::12

sm th/jones

/smth/jones

jones::smth

o HP

/ HU

Command Descriptions

(Create Subdirectory JONES in the working directory)

(Create Subdirectory JONES in the working directory with
12 blocks)

(Create Subdirectory JONES on Subdirectory SMITH in the
working directory)

(Create Subdirectory JONES in global directory SMITH)

(Create Subdirectory JONES in global directory SMITH)

(Create global directory HP on the same LU as the working
directory)

(Create global directory HU on the same LU as the working
directory)

CRON

CRON (Clock Daemon; VC+ only)

Purpose: Executes programs at specified dates and times.
Syntax: XQ CRON
Description:

CRON executes programs at specified dates and times. Regularly scheduled programs can be
specified according to instructions found in CRONTAB files. Users can also submit their own
CRONTAB file via the CRONTAB command. Programs that are to be executed only once can be
submitted by using the AT command. CRON should be executed only once. This is best done by
running CRON from the system welcome file (“xq cron”).

CRON only examines CRONTAB files during process initialization and when a file is changed
with the CRONTAB command. This reduces the overhead of checking for new or changed files at
regularly scheduled intervals.

A history of all actions taken by CRON is recorded in /usr/lib/cron/log.

Caution CRON does not make any adjustments for daylight savings time.

When the system time is changed, CRON always resets to the new time. No
scheduling adjustments are made.

Command Descriptions 6-37

CRONTAB

CRONTAB (User CRONTAB File; VC+ only)

Purpose: Copies the specified file into a directory that holds the CRONTAB files of all system
users (see CRON command).

Syntax: CRONTAB file
CRONTAB —r
CRONTAB I

file is the file descriptor of a CRONTAB file.
—r removes the invoking user’s CRONTAB file from the CRONTAB directory.
=l lists the CRONTARB file of the invoking user.

Description:

CRONTAB copies the specified file into a directory that holds all users’ CRONTAB files. When
CRONTAB is used to add a file, it causes the CRON utility to re-read all of the CRONTAB files.

The output of CRONTAB can be redirected to an output file by specitying either ‘>filename’ or
‘> >filename’ in the runstring. The output file specified must be delimited by commas and is
position independent. If the file already exists, it will be overwritten. To append to a file,
‘>>filename’ can be used. If the file does not exist, it will be created.

Users are permitted to use CRONTAB if their names appear in the file /usr/lib/cron/cron_allow.

If that file does not exist, the file /usr/lib/cron/cron_deny is checked to determine if the user should
be denied access to CRONTAB. If neither file exists, only superusers are allowed to submit a job.
If only cron_deny exists and is empty, global usage is permitted. The allow/deny files consist of
one user name per line.

A CRONTARB file consists of lines of at least six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns that specify the following:

minute (0—59),

hour (0—23),

day of the month (1-31),

month of the year (1-12),

day of the week (0—6 with 0=Sunday).

Each of these patterns can be either an asterisk (meaning all legal values), or a list of elements
separated by commas. An element is either a number, or two numbers separated by a hyphen
(meaning an inclusive range). Note that the specification of days can be made by two fields (day
of the month and day of the week). If both are specified as a list of elements, both are adhered to.
To specify days by only one field, the other field should be set to *.

For example:

0 01,15 * 1 runs acommand on the first and fifteenth of each month, as well as on
every Monday.
00* *1 runs a command only on Mondays.

The sixth field can designate an optional numeric field. When the sixth field is a numeric
parameter, it specifies the logical unit that should be used as the log LU for the session that is
created to execute the command. If omitted, the log LU defaults to the system LU 1.

6-38 Command Descriptions

CRONTAB

The remaining field of a line in a CRONTARB file is a program runstring that is executed by CRON
at the specified times. The program is invoked from your startup working directory. By default,
CRON will upshift the characters in this runstring before executing the program. There are two
methods of quoting available to allow characters to pass unaltered to the destination program. A
single character is quoted by preceding it with a backslash (\). A string is quoted by enclosing it in
backquotes (). CRON does not perform any variable substitution (for example, $VARIABLE).

If this is required, you can schedule CI and pass it a CI command file.

A comment line is indicated with a pound sign (#) in column 1.
Example:

The following CRONTAB entry executes a CI command file that performs a backup at 11:30 pm
on every week night.

30 23 * * 1-5 /prograns/ci /cndfiles/backup.cnd

The following CRONTAB entry executes DSCOPY on the first and fifteen of every month at 12:00
am. LU 97 will be used as the log LU for the CRON session. Backquotes are required to preserve
the case of the target file name, system, and login name.

0 0 1,15 * * 97 dscopy /systeni backup.log ‘/tnp/log>systenuser/pw"

The following CRONTAB entry executes a program called “test” at 10-minute intervals from 0900
through 0950 every day.

0, 10, 20, 30,40,50 9 1-31 1-12 0-6 /prograns/test

Command Descriptions 6-39

CSYS

CSYS (Copy System)

Purpose: CSYS copies type 1 (memory image) files from a CS/80 disk to a cartridge tape
(CTD) in a memory-based system.

Syntax: CSYS, filename, tapeL U, file#, [SA: [next file#]] , [BCMoffset]

filename
tapeLU
file#

SA

next file#

BCMoffset

Description:

is the name of the type 1 file on disk.
is the LU number of the CTD to be copied to.

is the number of the file VCP will use (this is the “target”) to boot the
system from the tape.

is an optional parameter that specifies that the memory-based system
will be hidden inside an ASAVE file. This allows ASAVE files and
memory-based systems to reside on the same CTD tape. This option
uses a 256-block VCP file for the ASAVE header and an additional
256-block VCP file for the trailer. When using this option, file# should
not be zero.

is an optional subparameter of the SA parameter. It specifies where to
put the ASAVE end-of-data record. The default value for next file# is
immediately after the memory-based system.

To reserve space for more than one memory-based system:

next file# = last file# + {truncation to an integer of ((blk size + 255)/256)}

where: last file# is the file number of the last file to be put on tape.
blk size is the number of disk blocks in the last file on
cartridge tape. This value is derived from the
information contained in the FMGR or CI DL
command. Note that a CTD block is 512 words and a
disk block is 128 words.

is the BCM file number. The file # and the BCM offset determine the
starting block for the file on tape. For example, if the file # is 1 and the
BCM offset is 1, then the file starting block is 288 (256 + 32).

Files are written to the CTD in a format compatible with the RTE-A VCP (Virtual Control Panel)
boot/loader file system organization. This allows you to boot the system from any file you write to

the tape into the system.

Note You should boot the tape to verify that the file has been correctly copied to it.

Refer to the RTE-A System Generation and Installation Manual for details of the boot procedure

and the boot command.

6-40 Command Descriptions

CSYS

The CTD drive is a high capacity device that requires data to be transferred in a continuous
streaming mode. A 64K byte disk buffer called a cache is created in an area reserved on the
associated disk drive. The data is thus buffered and transferred to the CTD in a continuous
stream. Refer to the RTE-A Driver Reference Manual for details of the disk-caching scheme.

CSYS runs only in an online environment with the HP 7908, 7911, 7912, 7914, 7946 disk drives and
CTD drive.

Operation

CSYS first checks that the file exists and that the tape LU is that of a CTD. If those requirements
are satisfied, CSYS clears the CTD tape cache, starts reading the file in 512-word blocks from the
disk file, and writes to the cartridge tape.

The reading process continues until the end of the disk file is reached. When the file is copied,
CSYS closes the cache and verifies the blocks just written on the tape drive. After verification, the
disk file is closed and CSYS issues the message:

CSYS COWPLETED. xxxx BLOCKS WRI TTEN TO TAPE.
If you selected the SA option, the following message also appears:
ADDI NG ASAVE FORNMAT

CSYS does not acknowledge the system BReak command; once invoked, the program continues to
completion or until aborted by an error.

Note that CSYS will not run if the CTD LU is buffered by RTE-A (use the FMGR, BL command
to check this condition).
Examples

For the following examples !PBV and !XYZ are type 1 files that are 480 blocks long. The CTD
tape LU is 24 with select code 27 and HPIB address 0.

Example 1: Enter the runstring as shown.

Cl > csys, !pbv, 24,0

CSYS returns the prompt:
120 (KB) BLOCKS WRI TTEN TO TAPE

This puts the program !PBV onto the beginning of the CTD tape. It can be booted by typing:
VCP> %phdc0127

Command Descriptions 6-41

CSYS

Example 2: Enter the following commands.

Cl > csys,!pbv,24,1,sa:5
Cl > csys, !xyz, 24,3
Cl > asave, ta, 24| sa, 16, ap, ve| ex

The first line puts ASAVE header information into CTD tape file 0, !PBV into tape files 1 and 2
and, ASAVE trailer information into tape file 5.

The second line saves ! XYZ into files 3 and 4.

The third line appends an LU immediately after the ASAVE trailer information. Note that there
are two ways of looking at files on tape. CSYS and the boot loader consider a file to start every 64
tape blocks. ASAVE and ARSTR consider a file to run until an ASAVE trailer record. This
means that CSYS files 1,2,3,4 and 5 of this example will be put into the first ASAVE file. The
second ASAVE file contains LU 16.

To boot !PBV enter:
VCP> %dc010127
To boot !XYZ enter:
VCP> %»dc030127
To restore LU 16 enter:
Cl> arstr,ta, 24|re, 16:2,2,ve| ex

Note that LU 16 is restored from ASAVE file number 2. ASAVE file 1 contains !PBV and !XYZ
and should not be restored.

Loading CSYS

To load CSYS, use the load file #CSYS and enter:

Cl> link #csys

6-42 Command Descriptions

CSYS

Error Messages

The following error messages can be generated by CSYS. Unless otherwise specified, errors are
fatal and immediately terminate the program.

FILE NOT TYPE 1

The file specified is not a type 1 file; it cannot be copied to the tape in the proper format.
ILLEGAL LU

The tape drive LU specified is the wrong type; it must be a CTD.
WARNING. TAPE WRITE DID NOT VERIFY

Warning only. This is not a fatal error; it indicates that tape verification failed, but the file
was completely written to the tape.

TAPE IS NOT LOADED

The tape is not loaded in the tape drive.
TAPE IS NOT INITIALIZED

The tape in the drive was not initialized (certified) by the utility FORMC.
TAPE IS WRITE-PROTECTED

The tape is write-protected and thus data cannot be written on the tape.
INVALID ASAVE FORMAT PARAMETER

Some error was made specifying the SA parameter on next file# subparameter.

Standard FMP errors are reported using the common file system error messages (that is, “FILE
NOT FOUND XYZ”).

Command Descriptions 6-43

CZ

CZ (Display/Modify Code Partition Size; VC+ Only)*

Purpose: Displays or modifies the code partition size of a CDS program.
Syntax: CZ prog [<seg #>| AL]
prog is the program name, up to five characters, with an optional session
identifier.
seg # is the number of segments to be included in the calculation of the

partition size. This number must be less than or equal to the actual
number of segments.

AL is the parameter that specifies that all the segments in the program are
to be included in the calculation of the partition size.

Description:

The partition size displayed is in the following format:

Partition size=pppp Pr ogram Segs=nr Segnent Bl ocks=mmm

where: pppp = partition size required in pages

nr = number of segments in the program

mmm = maximum number of segments that will be loaded into the
code partition at a time.

The program code partition size is modified to a new value determined automatically by the
system from the parameter specified. This value is derived by multiplying the number of segments
specified (n or AL) and the code segment block size. The segment block size is equal to the
number of partition pages required (pppp shown above) divided by the maximum number of
segments (mmm).

If the AL parameter is specified, all segments are loaded into memory on dispatch. Note that a
shared program must have all the code segments in memory.

Examples:
Cl> cz prog 5 (Allow 5 code segments to be in a partition at once)
Cl> cz prog al (Load all code segments when the program is dispatched)
Cl> cz prog (Display program segment information)

6-44 Command Descriptions

DC

DC (Dismount Disk Volume)

Purpose: Dismounts a disk volume.
Syntax: DC lu

lu is the positive LU number of the disk volume to be dismounted.
Description:

The DC command dismounts a disk volume, making the global directories on that disk
inaccessible. If there are any open files, working directories, or active type 6 files (or the swap
file), an error message is displayed and the LU specified is not dismounted. The first problem
encountered causes the error message. If there are more problems, it may take several tries to
discover and correct all of them.

For FMGR disk volumes, use the FMGR DC command because it provides more information
when there are active programs. If the dismount fails on a FMGR disk cartridge, the disk remains
mounted but moves to the bottom of the volume list.

Command Descriptions 6-45

DL

DL (Directory List)

Purpose: Lists files in a directory.
Syntax: DL [mask [options [file| lu [msc]]]]
mask is a field specifying the names of files matching the mask to be

displayed. The default is all the files in the working directory.

The file mask can include any or all of the file descriptor parameters
and a mask qualifier appended to the filename parameter. Refer to the
“File Masks” section in Chapter 3 for the file mask syntax description.

options specify what particular information from the directory will be displayed.
They can be listed without any delimiters, in any order.

A Time last accessed displayed in the following format:
Wed Jun 30, 1988 9:55:48 am

B Files that have not been backed up to be marked with an asterisk

(*)-
Creation time displayed in the same format as option A.
File type extension (for sorting only).

File type.

- T m 0O

Location of the file; displays the block address and LU of the
main file entry. The first block on disk is address 0.

<

Main file size in blocks, excluding extents.
Number of records.

O Mark open files by displaying the name of the program that has
the file open next to that file. If there are no open files, this field
is not displayed.

P Protection on the file is displayed in the following form (read
and write abbreviated to first letter):

owner/other The directory containing the entities listed
does not have a group associated with the
owner (Tw/r).

owner/group/other ~ The directory containing the entities listed
has a group associated with the owner

(rw/r/1).
R Record length; gives length of longest record in the file in words.
S Size; the total number of blocks used by file, including extents.

T Temporary file marked with asterisk (*).

6-46 Command Descriptions

DL

U Time last updated is displayed in the same format as option A.
w Words in the file, up to EOF.
X Files with extents to be marked with an asterisk (*).
Y Security code (FMGR files only).
z Contents of symbolic links.
* A useful subset of the above (FWNSXP).
! All of the above.
+ Ascending sort by item specified.
- Descending sort by item specified.
file |lu is an optional file or LU where the DL output is to be stored.
msc is the master security code for the system. Needed only if the security

codes of FMGR files are requested (Y or ! option).

Description:

The DL command displays a list of the files that match the specified mask in a directory or
subdirectory. The display format is as many names as possible per row if no options are specified.
If any display option is specified, the format requires one line per file. If several options are
specified, multiple lines per file may be required.

The display is normally sorted by name. There are two sort options: + for ascending sort order
and — for descending sort order. Preceding an option specifier with + causes the list of files to be
sorted with the lowest value first. Preceding an option with — causes the reverse. If either + or —
is specified and not followed by an option specifier, the names are ascending or descending sorted.
The default is an ascending sort by name. The number of files that can be sorted depends on the
amount of free memory the program has.

If there are too many files, as many as possible are sorted and displayed, then another list of files
is sorted and displayed until all the files are displayed. Sizing the DL program scheduled by CI to
a larger size increases the number of files that can be sorted at one time.

Some of the information in the directory is dynamic and may not always be accurate, particularly if
a file is open or the last program that accessed that file failed to close it. This information
includes access time, total size, time last updated, and words in file. These fields can be specified
with the options A, S, U, and W respectively. Note that for FMGR files, only the options F, L, M,
O, R and Y are displayed; other fields are not maintained in the directory for FMGR files.

The E option is used only for sorting because the file type extension is always displayed. If
specified with + or —, the files are sorted by type extension and file name. The E option is
ignored if specified without + or —.

The protection displayed depends on whether the owner of the directory belongs to NOGROUP
or another defined group. For example, if the directory’s owner belongs to NOGROUP, the group
protection is not displayed and appears as RW/R. Otherwise, the group protection is displayed, for
example, RW/R/R.

For FMGR files, the master security code parameter is needed only if the Y option is specified. If
an incorrect master security code is entered, no security code is displayed. Note that if the master
security code is zero, any value (or no value) can be entered for the msc parameter. If necessary,
see your System Manager or a superuser for the system security code.

Command Descriptions 6-47

DL

Examples:

c> dl (Display all files in the working directory)

C>d @dir (Display all subdirectories on the working directory)

C>d a@.c83 -s (Display files that start with a and were created during
1983, sorted in descending order by size)

Cl> dl /progranm (Display all files in directory PROGRAM)

Cl> dl /joelfoo (Display file FOO in directory JOE)

C>d @txt +s (Display files with file type extension TXT on the

working directory, displaying the size in number of blocks
sorted in ascending order)

Cl> dl joe/f@ @sc80-83 (Display files in directory JOE that start with f, have any
file type extension, and were created during 1980
through 1983. The S option in the mask qualifier directs
a search of all subdirectories of directory JOE for similar

files)

Cl> dl /joe/@dir (Display all subdirectories in JOE)

C> d,@:sc,y,,hp (Display all files on CRN SC with their security codes;
msc is HP)

a>dl,,!

di rectory DEMO
name ex ba tnp prot type nsize blks words recs rlen addr/lu

COPY. REL * rwr/r 5 86 86 6312 127 128 8390/ 38
create tine Wed Jan 12, 1989 9:16:13 am
access tine Wed Jan 12, 1989 9:47:09 am
update tine Wed Jan 12, 1989 9:39:47 am
COPY. SRC * % rwr/r 4 92 184 13418 820 38 7908/ 38
create tine Wed Jan 12, 1989 9:00: 33 am
access tine Wed Jan 12, 1989 9:44:29 am
update tine Wed Jan 12, 1989 9:30:35 am

6-48 Command Descriptions

DL

The previous example gives a complete directory listing of the working directory with two files.
The display columns of those shown above and those in the O and Y options are:

ex — extent; an asterisk (*) indicates that the file has extents (X option)

ba — backup; an asterisk (*) indicates that the file needs to be backed up (B option)
tnp — temporary; an asterisk (*) indicates that the file is a temporary file (T option)
pr ot — protection; shows file access for owner/other (P option)

type — file type (F option)

nsi ze — size of main file (M option)

bl ks — size of file in blocks (both main and extents) (S option)

wor ds — number of words up to the end-of-file mark (W option)

recs — number of records in the file (N option)

rien — length of the longest record in the file (R option)

addr /1 u — block address of the beginning of the file (L option)
open — name of the program (if any) accessing the file (O option)

sc — security code; displayed only for FMGR files (Y option)

C>d @-1*m

di rectory DEMO
name ex prot type nsize blks words recs addr/lu

COPY. REL rwr/r 5 86 86 6312 127 8390/ 38
COPY. SRC *rwr/r 4 92 184 13418 820 7908/ 38

C>d & dlx::db !

directory ::DB
name sc type nsize rlen addr/lu

&FDLX 0 4 131 0 4830/ 27

This example demonstrates the limited directory information available for FMGR files.

Command Descriptions 6-49

DT

DT (Display/Modify Data Partition Size; VC+ Only)*

Purpose: Displays or modifies the data partition size of a CDS program.
Syntax: DT prog [size emaSize [msegSize]]
prog is the program name, up to five characters, with an optional session
identifier.
size is the size of the data partition in number of pages.

emasSize is the number of pages needed for EMA if EMA is used.
msegSize is the size of data space mapped into the EMA if it is used.

Note that the data partition size plus msegSize must be less than 32 pages.
Description:

The program named must be dormant. The display format of this command is:

Last Adr=llll Mn. Part.=pppp EMA WS=ceee Mseg=mm VMA=vvvvy

where:
i = size of the data segment in words (not including EMA/WS)
pppp = partition size required in pages
eeee = size of EMA or working set area in pages
mm = MSEG size
vwywy = virtual memory size in pages

The display is the same as the SZ command except that the “Last Adr ” field (/llll) is always on a
page boundary.

DT changes the size of the data partition to the number of pages given in segment size (or EMA
size). For EMA programs, the data partition and EMA sizes are altered by that number of pages.
If the msegSize parameter is entered, the MSEG is set to that size. Note that working set and
virtual EMA sizes are not changed by DT, but can be changed by the WS and VS commands.

Example:

Cl > dt spice
Last Adr= 64000 Mn.Part.= 112 EMN W5= 85 Mseg= 1 VMA= 2000

6-50 Command Descriptions

ECHO

ECHO (Display Parameters at Terminal)

Purpose: Displays parameters, separated by commas, at the terminal.

Syntax: ECHO [parameters]

parameters is one or more parameters separated by blanks or commas.
Positional, user-defined, and predefined variables can be included in
the string. If this parameter is omitted, a blank line is displayed.

Description:

The ECHO command displays the specified string after CI shifts the input to uppercase, puts
commas between the parameters in the string, performs variable substitution, and removes CI
quotes (backquotes and backslashes). You can use CI backquotes to keep CI from altering any
parameters in the input string.

Positional, user-defined, and predefined variables are referenced by including a dollar sign ($)
before the variable name. If you want to examine the value of only one variable, you can use the
ECHO command instead of the SET command.

Examples:
Cl> echo ru edit test.ftn (Display specified string)
RU, EDI T, TEST. FTN (String is displayed in uppercase and commas
separate parameters)
Cl > echo $session (Displays value of $SESSION)
45 (Session number is 45)
Cl> wd /mne/tenp (Set working directory)

Cl > echo ‘Your working directory is ‘$wd
Your working directory is /M NE TEMP
(Display message indicating your current
working directory)

Command Descriptions 6-51

EX

EX (Exit)

Purpose: Terminates the Command Interpreter program.
Syntax: EX [option]
option specifies the action to take if programs are active. The values are as
follows:
B Make background session (non-interactive, in multiuser
environment only).
C Continue execution; do not log off.
L Log off; active programs are aborted.
Description:

EX terminates CI and prints the message “Fi ni shed”.

For HP 92077A systems, no further user action is required after entering this command. For
systems with VC+, follow the description given below for the appropriate action to be taken.

If CI is not the primary program, no further action is required after entering the EX command.
CI terminates and the father program regains control.

The simplest and most common case is where CI is the primary program and no programs are
active. CI schedules or transfers to the logoff program/command file if one is defined for the user;
programs RP’d but not active are removed without comment. System utility programs are put in
the system session; then CI terminates and the session is logged off.

If CI is the primary program and there are active programs scheduled by XQ or AT commands, CI
displays the active programs and prompts for the action to be taken. There are three options
available: remain in CI without exiting (C), abort all active programs and exit immediately (L), or
run the current session as a background session where active programs continue to run until they
finish, but the terminal is freed for other sessions (B).

If the log off (L) option is specified, CI schedules or transfers to the logoff program/command file
if one is defined for the user. All active programs that are not system utilities are aborted.
Programs RP’d but not active are removed without comment. System utility programs are put in
the system session. Then CI terminates and the session is logged off.

If the background session (B) option is specified, CI schedules or transfers to the logoff
program/command file if one is defined for the user, changes the current session to a background
session, and terminates. Note that if the only program or all remaining programs in the
background session are dormant, saving resources, the program(s) will be aborted and the session
will terminate.

If EX is entered from a command file, CI follows the same steps it does for the log off (L) option
in interactive mode with active programs.

Note If spooling is active in the session when it is about to be terminated in any of the
previously mentioned cases, all LU redirection for the session is terminated, and
associated spool files are closed and released or passed to the outspool queue
prior to terminating the session.

6-52 Command Descriptions

EX

Example:

To exit CI and abort any active programs:
C> EXL

To exit CI with active programs:

Cl> EX

Your prograns:

APPL1

PROGX

Conti nue, Logoff, Background, or ? [(C?

Command Descriptions 6-53

FOWN

FOWN (Report File Space by Owner)

Purpose: Scans the files named by the masks supplied in the runstring, displaying the total disk
space used by each owner. Disk space can be reported in kilobytes, megabytes, or
blocks. The default display mode reports disk usage in 128-word blocks. FOWN
also displays the total disk space used by all files matching the masks.

Syntax: FOWN [options] [fileMask] [fileMask2 . . .]

options is one or more of the following (note, however, that the —k and —m
options are mutually exclusive):

—k report the disk usage in kilobytes. Selecting this option also
changes the value returned in SRETURN_S.

—m report the disk usage in megabytes. Selecting this option also
changes the value returned in SRETURN_S.

—q (quiet) inhibit error reporting.

—— marks the end of the options. This is only required when the
first mask begins with a hyphen (—).

fileMask specifies the files to scan. Refer to Chapter 2 in this manual for a

fileMask2 ... description of file masks. The default mask is/ @ @ sgl , which
displays information about all FMP files on the system. Symbolic links
to directories are not followed. This can be analyzed to identify users
or classes of files that may be using excess disk space.

Description:

If FOWN is unable to identify the owner of a file, it reports the system number corresponding to
the owner in the form “Unknown (number)”. This typically means the file owner is no longer a
user on this system. Owners of files on remote systems are always shown as numbers.

The message “FMER fil es not scanned” indicates that some FMGR files matched the mask
but were not counted because FMGR files contain no ownership information.

FOWN reports only the total space used if one owner owns every file in the mask.

The output of FOWN can be redirected to an output file by specifying either “>filename” or
“>>filename” in the runstring. The output file specified must be delimited by commas and is
position independent. If the file already exists, it will be overwritten. To append to a file,
“>>filename” can be used. If the file does not already exist, it will be created.

6-54 Command Descriptions

Return Values

$RETURNI1
$RETURN2
$RETURN3

$RETURN4
$RETURNS

$RETURN _S

Examples

FOWN

= 0 FOWN executed successfully.
(0 An error was encountered during the file search.

the high-order bits (31—16) of the total number of blocks used by all files found

matching the mask.

the low-order bits (15—0) of the total number of blocks used by all files found

matching the mask.

the high-order bits (31—16) of the number of files found.

the low-order bits (15—0) of the number of files found.

the total disk space used by all files found matching the mask.

Example 1: The default mask is used. User number 7 is no longer known to the system.

Cl > fown
Scanni ng. . . Mask = /@ @s
Onner D sk Bl ocks

DOUG. NOGROUP 6715
DON. NOGROUP 4032
MANAGER. SYSTEM 2761
DOUGL. NOGROUP 328
NAOM . NOGROUP 69
Unknown (#7) 198
Tot al 14103

Nunmber of files

1065
843
404

3
2
58

2375

Command Descriptions 6-55

FOWN

Example 2: All type 6 files are counted and their owners identified. The message “FMGR files
not scanned” indicates that some FMGR files matched the mask but were not
counted. There is no ownership information available for FMGR files.

Cl> fowmn,@@e::: 6

Scanni ng. . . Mask = @Q@E::: 6
Omner Di sk Bl ocks Nunber of files
DOUG. NOGROUP 2943 362
DON. NOGROUP 433 48
DOUGL. NOGROUP 143 3
Tot al 3524 413

FMGR files not scanned

Example 3: Ownership ID requested for directory /HOME only, thus the format of the output is
changed.

Cl > fown,/home/
Scanni ng. . . Mask = /HOWE/

Omner: HOVE. NOGROUP Total Blocks: 641 Nunber of files: 86

Example 4: Report the disk usage, in megabytes, and owners of all files on the system. Inhibit
error reporting and redirect the output to the file DISK_USAGE.LST.

Cl > fown —gm >di sk_usage. | st

Example 5: Return the number of kilobytes used on disk LU 17 in SRETURN_S. Inhibit error
messages and redirect the output to LU 0.

Cl> fown —q -k 17 >0

6-56 Command Descriptions

FPACK

FPACK (File System Pack)

Purpose: Rearranges the files on a disk volume, packing the files together more tightly to
increase the size of the largest free space on the volume.

Syntax: FPACK, lu

lu is the LU of the volume to be packed.

Description:

When the FPACK operation is complete, there is usually free space at the high end of the volume.
After the disk volume is packed, you can run the FREES utility to determine the amount of free
space and the largest area of free space.

If the disk volume can be dismounted during the packing process, then MPACK should be used
instead. Because MPACK dismounts the volume, it can move all files and directories. Thus it can
do a more thorough pack and is much faster than FPACK. See the description of MPACK later in
this chapter for more information.

The Packing Process

FPACK first scans the directories and generates a list of files in the order of their location on the
disk volume. Then FPACK copies files from higher numbered blocks to free spaces in lower
numbered blocks on the disk, purges the original files, and marks the original file blocks as free
space. A file is copied only if there is an area of free space below it that is large enough to contain
the file and its extents. When a file is copied, any extents are copied into the main. All other
attributes of the file (time stamps, protection, and so on) are not changed.

Note that to copy a file, you must have read/write access to the file and to its directory; generally,
only a system manager has access to all files and directories.

Because the integrity of a directory cannot be guaranteed if it is moved, FPACK does not copy
directories. Open files, type 6 files, and the swap file are also not copied.

The process is illustrated below. Assuming that all files are the same size, FPACK converts the
disk volume structure on the left into the one on the right.

Command Descriptions 6-57

FPACK

Block n File E —_—
_— Empty
Empty
Dir XYZ Dir XYZ
File D Empty
File C File C
Empty —> File D
File B File B
Empty —> File E
Block 0 File A File A

File E, the file in the highest numbered block, is copied into the free space in the lowest numbered
block. FPACK skips the directory, then copies File D. This process frees one area of space at the
top, enlarging the available free space area on the volume. An area of free space still remains
below directory XYZ.

After FPACK moves as many files as possible, it scans the LU again and issues an ordered listing
of the files that could not be moved, beginning at the highest disk volume address (a maximum of
ten files are listed). The files listed are generally those that cannot be copied, for example, type 6
files, open files, directories, and the swap file. The entry for each file includes name, directory,
file type, size, and record length.

After printing the list, FPACK exits, and you may run FREES to see the amount of free space that
now exists on the disk volume and the size of the largest free space area. (Refer to the description
of FREES provided later in this chapter for the utility output format.)

If you still do not have enough free space, you can gain more by moving the appropriate files. For
example, you can move down directory XYZ (shown above) to increase the largest free space
area. The procedure for moving the directory is provided in the next section. If file C can then be
moved, there is even more space in the largest area. (If file C cannot be moved, moving file D
does not help.)

Alternatively, you can purge some existing files from the disk volume, and run FPACK again to
move files into the now empty space.

6-58 Command Descriptions

FPACK

Moving Directories

The following sequence of CI commands moves the global directory XYZ to a different disk
location. The leading slash in the command argument indicates the named directory is a global
directory.

1. Change the working directory to XYZ. This simplifies the command sequence.
Cl> wd /xyz

2. Create the temporary directory TEMP. The directory is created on the same disk volume as
the working directory, at the lowest numbered block available.

Cl> crdir /tenp
3. Move all the file entries from XYZ to TEMP. Only the directory entries are moved; the file
data is unaffected. As each directory entry is moved, a message defining the entry is issued to
your terminal. A successful move is indicated with the notation [ok]. If an entry cannot be
moved, the notation [failed] is given, followed by the reason (often an open file on XYZ). If

you cannot correct the failure and move the file, move all the files back to directory XYZ
(mo /temp/@.@ /xyz/@.@) and stop the attempt.

C>m @Q@/temp/ @@
4. Change the working directory to TEMP.
C>wd /tenp
5. Purge the old directory, freeing the disk space. (Note that you must include the type extension
.DIR when purging a directory.) If the directory is not empty, it cannot be purged. Move the
files back to XYZ, purge TEMP, and terminate the action.

Cl> pu /xyz.dir

6. Restore the original name. The files now have the same name as before, but the directory has
moved.

Cl>rn /tenmp /xyz

After this operation, the example disk volume structure is converted, as follows:

Command Descriptions 6-59

FPACK

Block n
Empty
Empty
Dir XYZ
Empty Dir XYZ
File C File C
File D File D
File B File B
File E File E
Block 0 File A File A

Moving Subdirectories

You can move subdirectories the same way; however, you must specify the hierarchical path, as:

Cl> crdir /xyz/tenp.dir

Cl> nmo /xyz/sub/ @@ /xyz/tenp/ @ @
Cl> pu /xyz/sub.dir

Cl>rn /xyz/tenp.dir /xyz/sub.dir

The concept is the same: Create another subdirectory, move all the files into it, purge the original,
and rename the new subdirectory to the original name.

6-60 Command Descriptions

FPACK

Moving Files
When you use the CO command to copy a file to a disk volume, the file is placed in the lowest free
space large enough to hold it. This allows you to move files on a disk volume to recover free

space. If you copy a file to a different name on the same directory, the new copy is moved to a
lower free space.

For example, using the original example in this section, you can move file E to the lowest free
space with the following command sequence (assuming file E is on directory XYZ).

1. Change the working directory to XYZ to simplify the command sequence.
Cl> wd /xyz

2. Copy file E to file X (which does not exist). File X is placed in the lowest free space available.
Cl> co e X

3. Purge the original file.
Cl> pu e

4. Restore original file name.

Cl>rn x e

When this is done, the example disk volume structure has a larger free space.

Command Descriptions 6-61

FPUT

FPUT (Bootable System Installation)

Purpose: Installs bootable systems and diagnostics in the space on a file system volume that
was reserved by the CI IN command.
Syntax: FPUT filedescriptor diskLU [VCPfilenumber [BCMoffset]]

filedescriptor is the name of the file to be copied to the bootable area on the CI
file system volume given by diskLU.

diskLU is the CI file system volume to which the specified file will be
copied.

VCPfilenumber is an offset within the bootable area in 256-block units.

BCMoffset is an offset within the bootable area in 32-block units.

Description:

You can use FPUT to install a BOOTEX file that was initialized by INSTL, or to install
diagnostics or user-configured memory-based systems in a bootable position on a file system
volume.

The VCP bootstring for a SCSI or CS/80 disk is in the form:

YBDCffbusc
where:

ff is a VCP file number that describes an offset into the bootable area in
256-block units. Default is 0. The ff parameter provides the option to select
one of several bootable systems stored on the same disk LU. This allows you
to, for example, place more than one copy of BOOTEX on the LU, such that
multiple RTE-A systems that require different revisions of BOOTEX may be
booted.

b is the bus address of the disk.

u is the unit number of the disk (always 0 for SCSI or CS/80).

sc is the select code of the interface card.

As an example, assume that your system has LU 10 on a CS/80 disk that is unit 0, bus address 2,
and select code 24. To install BOOTEX on that system, you would first run INSTL to make a copy
of BOOTEX that is configured properly for the target system (see the INSTL documentation).
Assuming that the output file name is “NEWBOOT?” and that it is 768 blocks long, you could then
run “FPUT NEWBOOT 10” to copy it to block zero of the target disk. The bootstring to boot the
resulting system would be “%BDC002024”. It could be abbreviated to “%BDC2024” because the
ff parameter defaults to 0.

You may also wish to have a second copy of BOOTEX for redundancy. The FPUT command
would be “FPUT NEWBOOT 10 3”. The VCPfilenumber parameter is 3 because “NEWBOOT” is
768 blocks long and 768/256 is 3; so the first copy occupies VCP file numbers 0, 1, and 2. Thus, the
next available location is 3. This would be booted with ”%BDC032024”.

6-62 Command Descriptions

FPUT

The BCMoffset parameter is used in a similar manner, except that it is in units of 32 blocks. (See
the HP 1000 A-Series Computer Diagnostic Operating and Troubleshooting Manual, part number
24612-90013, for more information about the BCM--Basic Control Module.)

The absolute block number relative to the start of the disk is given by:

Block = (VCPfilenumber * 256) + (BCMoffset * 32)

FPUT Operation

FPUT opens the file to make sure it exists. You can install any file, so long as it fits in the
reserved space. Note that there is no directory describing the files in the reserved space. FPUT
verifies that the passed LU is a file system volume and that you reserved enough space on the
volume for this file. Reserve space by using the IN command described in this chapter.

If the file does not fit, FPUT exits with an informative message. Files in the normal portion of the
volume are not affected.

Caution Be aware that FPUT overwrites any previous information in the reserved space
without warning. For example, suppose BOOTEX, which requires 768 blocks, is
installed at offset 0 of the disk. If a memory-based system is installed at offset 1
(starting at block 256), FPUT overwrites part of BOOTEX without warning.

This error is not detected until the next time you try to boot the system, when the
cause may easily be forgotten. It is your responsibility to remember what is in this
reserved space. The easiest thing to do is put BOOTEX at block 0 (INSTL will do
this for you) and not put anything else there.

FPUT does not install files on an FMGR cartridge. You can place files on an FMGR cartridge in
a bootable position by controlling their placement in the directory. Put the first bootable file on
the cartridge first (this is where BOOTEX is usually found). Additional bootable files can be
placed immediately after the first one. Make sure each bootable file is on a 768-block boundary by
padding shorter files with empty dummy files.

Command Descriptions 6-63

FREES

FREES (Indicate Free Space on a Volume)

Purpose: Scans the free space table on hierarchical file system disks, and reports the amount

of free space and the size of the largest free space. The amount of free space on a
volume is an indication of how much more data will fit on the volume, while the
largest free area defines the largest file that can be created on that volume without
first packing the disk.

Syntax: FREES [options] [diskLU] [diskLU: diskLU]
options is one or more of the following:
-V inhibit the inverse video bar graph.
+ sends the listing to the given LU.
-g bar graphs are not relative to the largest disk.
disksz where disksz is one of the following:
+t report disk sizes in number of tracks.
+m report disk sizes in megabytes.
sort where sort is one of the following:
-S inhibit sort, report will be in cartridge list order.
+h sort by largest hole size.
+d sort by disk size.
quiet where quiet indicates quiet mode and is one of the following:
+q quiet mode, return the free space information to the
scheduling program in SRETURN_S.
+qd return the disk size in SRETURN_S.
+gf return the free size in SRETURN_S.
+gh return the largest hole size in SRETURN_S.
+gr return the reserved size in SRETURN_S.
+0% return the percent free in SRETURN_S.
+g%n return the percent max in SRETURN_S.
diskLU specifies a disk LU to display; it can be repeated.
diskLUdiskLU
specifies a range of disk LUs to display; if no disk LU is specified, all CI
volumes are listed.
Description:

Running FREES with a ? or ?? (RU, FREES, ?[?]) causes FREES to display usage information
and examples as shown below.

At the user’s option, FREES expresses size in number of blocks (the default), number of tracks
(+t option), or in megabytes (+m option).

At the user’s option, FREES sorts the disks by descending free size (the default), by largest hole
size (+h option), or by total disk size (+d option), or the sort can be inhibited to list the disks in
cartridge order (—s option).

6-64

Command Descriptions

FREES

FREES reports the total free space as an absolute number and also as a percentage of total space
on the volume. The only way that this number can be increased is to purge unnecessary files from
the disk.

The size of the largest free area (the hole size) is reported as an absolute number and also as a
percentage of total free space on the volume. The lower this percentage, the more fragmented the
volume is and the more effective the FPACK or MPACK utilities will be in packing the volume.

Following the space table is a short summary that totals all the disk space and free space on the
scanned disks.

Unless inhibited by the —v flag, FREES overlays the columnar output with a bar chart to indicate
graphically the amount of free space. FREES has two methods of bar chart display, Global
(default) and Local (—g option). In the Global mode, the widths of the bars are shown
proportional to the largest disk that was scanned. Think of it as a form of autoscaling. In the
Local mode, the widths of the bars are computed relative to the individual disks. Note that if only
a single disk is displayed there is no difference between Global and Local modes.

In the bar chart, the total width of the bar is proportional to the total free space, while the
highlighted portion is proportional to the amount of fragmentation. Here is an example:

ru, frees 10 11

LU Tot al Resvd Free Max Free %-ree %vax
—_——t + + + + + + + + +
11 100000 0 80000 40000 80 50
10 10000 1538 8000 4000 80 50
%-r ee = free space as percentage of total space.
%vax = | argest free space as percentage of total free space.

Total storage on all disks scanned is 110000 bl ocks; 88000 free bl ocks; 80%free.

Note that although there is 80% free space on both disks, the bar for LU 10 is much shorter than
the bar for LU 11 because the default Global mode was used. For both LUs, half of the bar chart
is highlighted because the largest free chunk is 50% of the total free space.

ru,frees 10 11

LU Tot al Resvd Free Max Free %-ree %vax

S + + + + + + + + +

11 100000 0 80000 40000 80 50

10 10000 1538 8000 4000 80 50
%-r ee = free space as percentage of total space

%vax = | argest free space as percentage of total free space.
Total storage on all disks scanned is 110000 bl ocks; 88000 free bl ocks; 80%free.

In this example, both bars are the same width because this is a Local mode display and both LUs
have the same percentages of free and fragmented space.

When the +1 option is used to send the output to a printer the —v option is automatically invoked
and a form feed is generated at the end of the report. The —v option is also automatic if the
driver type for the user’s terminal is not type 5 (HP protocol).

Command Descriptions 6-65

FREES

Return values:

$RETURNI1: = 0 FREES executed successfully.
(an error was encountered during the scan of a disk LU.
$RETURN2: the number of disk volumes successfully examined.

The following return variables are set when quiet mode is enabled.

$RETURNS3 : disk LU (when reporting on a single disk LU).

$RETURN4 : high order bits (31-16) of the value returned in SRETURN_S.

$RETURNS : low order bits (15-0) of the value returned in SRETURN_S.

$RETURN_S: this string contains all or part of the free space information depending on the
“+q” option selected.

Examples:
Cl> frees (Show free space information on all mounted volumes)
Cl> frees 54 (Show free space information on volume 54)
Cl> frees 54 22 (Show free space information on volumes 54 and 22)
Cl> frees 10:15 (Show free space information on volumes 10 through 15)

6-66 Command Descriptions

FSCON

FSCON (File System Conversion)

Purpose: Converts the directory structure of a FMGR cartridge, creating a hierarchical
directory entry for each file on the cartridge. After conversion, the files have all the
characteristics of the CI file system (time stamps, file type extensions, and so on).
Note that unconverted programs may have difficulty accessing the converted files.

Syntax: FSCON, lu
lu is the LU of the FMGR cartridge to convert.

Requirements for Successful Conversion

Before beginning the conversion, FSCON checks to see if all the conditions described below are
met; if not, FSCON terminates with an error message.

There must be sufficient free space between the last file and the FMGR directory at the end of the
cartridge to create the new directory and free space table. The amount of space required depends
upon such factors as the number of files in the directory and the number of extents. You can
usually free enough space by purging unneeded files and using the FMGR PK command to pack
the disk before calling FSCON. If there is not enough disk space for the conversion, FSCON exits
with the following message:

Not enough free space on disk

The total size of the cartridge cannot exceed 128K blocks. This is due to a limitation on the size of
the free space table. If the FMGR disk cartridge exceeds this size, FSCON terminates with the
following message:

Disk too big to convert

The disk must be dismounted before conversion, to preclude the possibility of any open files, swap
files, or active type 6 files. If the disk cartridge is mounted, FSCON terminates with the following
message:

Cartridge nust be disnounted

FSCON only converts FMGR cartridges. Any other cartridge causes the utility to terminate with
the following message:

Doesn’'t | ook like an FMER di sk

The Conversion Process

FSCON scans the directory on the given LU and builds a new directory in the unused space at the
end of the disk, before the FMGR directory. At the same time, it builds a free space table. The
FMGR directory is scanned once to determine whether it is possible to do the conversion, and
scanned again to build the CI directory.

File data is never moved during the conversion process; only the directory structure changes. The
new directory is built in unused space, and the entire conversion is done before any change is
made to the FMGR directory structure. Thus, if the conversion fails at any point short of
completion, the FMGR directory is still in place, and all the files remain unchanged.

The final step in the conversion process is to overwrite the FMGR directory with the hierarchical
CI directory. This is done in a single disk write operation. The new directory name is the CRN of

Command Descriptions 6-67

FSCON

the FMGR cartridge. In this way, the name of a file remains unchanged (except as noted in the
following section). For example, a reference to &SORC::DB accesses the same file before and
after the conversion.

After the successful conversion, FSCON informs you “Cartridge converted”. If an error occurs
during conversion, FSCON issues the appropriate error message, followed by “Cartridge not
converted”, and terminates.

File Renaming

If a file name includes a slash (/) or a period (.), those characters are changed to “|” and “~”
respectively. This is necessary because in the CI file system, a slash delimits directories and
subdirectories, and a period delimits the type extension and mask qualifier; therefore, a file name
containing those characters would not be found. As each file name is changed, the following
message is displayed:

Renam ng <name> to <name>
After conversion, you may list the files with the DL command. For example:
DL,@@:dir *list all files with “.“ changed to “ ™~

DL,@@:dir *list all files with “/” changed to “|”

Converted CI Directory Entries

When a new CI directory is built, information required for the directory entries is obtained from
the FMGR cartridge directory, from scanning the files or from the default values. The entries of a
newly converted CI directory contain the following information (refer to the RTE-A System
Manager’s Manual for the format of the file directory entry):
Word Meaning
1 — flag: protection set to rw/rw for all files and for directory;
backup bit (bit 8) set
— type: taken from FMGR file directory entry
— size: taken from FMGR file directory entry

— recln: type 1,2 files taken from FMGR file directory entry; all other
files calculated by scanning file

9-16 — name: taken from FMGR file directory entry as modified to change
special characters
17-18 — ext: extent type, blank
19-24 - time: create, access, update set to current time
25-26 — nblk: type 1,2 files taken from FMGR file directory entry; all other
files calculated by scanning file
27-28 — eof: type 1,2 files taken from FMGR file directory entry; all other

files calculated by scanning file

29-30 — nrec: type 1,2 files taken from FMGR file directory entry; all other
files calculated by scanning file

6-68 Command Descriptions

FSCON

Error Messages

If any of the following errors occurs, FSCON issues the related message and terminates:

Cartridge not converted

This message appears with a definitive message if an error occurs during conversion. If the
cartridge is not converted, the files are all intact and the FMGR directory structure is
unaltered.

Bad LU parameter
The LU parameter is not a disk LU.
Cartridge must be dismounted

The cartridge to be converted must be dismounted, which guarantees there are no open
files, active type 6 files, or the swap file on this cartridge.

Disk too big to convert

Disk has more than 128K blocks.
Doesn’t look like an FMGR disk

FSCON only converts FMGR disks into CI file system disk volumes.
Insufficient memory, size up program

FSCON uses free space for tables, and runs faster with more memory. Sufficient memory
for at least one track of the disk is required. If the LU contains many type 1 or type 2 files
with extents, more free space is required. Resize the program.

Not enough free space on disk

FSCON requires sufficient free tracks between the last file and the FMGR directory to
build a new directory and other tables. Correct this condition by purging some files and
packing the disk, using the FMGR PK command, before trying the conversion again.

Open file: xxxxxx

This message should never appear, because the cartridge must be dismounted before the
conversion begins. However, FSCON checks for open flags on files as it converts them.

Command Descriptions 6-69

FUNCTION

FUNCTION (Define a Function; VC+ Only)

Purpose: Defines a CI function.

Syntax: FUNCTI ON [—Xx| +x] function_name {
command_linel
command_line2

command_lineN

}

-X if the user session has an Environment Variable Block (EVB),
this option “exports” a defined function or defines a new one as
exported (also known as being in the environment). An exported
function is available to all copies of CI in the session.

+X imports an exported function or defines a new function as
imported (also known as being a local function). An imported
function is defined only for the current CI.

If neither the —x or +x option is given, the function is defined as
a local alias.

function_name is a string of up to 32 letters, digits, and underscores, not starting
with a digit.

command_linel —
command_lineN are CI command lines.

Description:

A function is essentially a memory-resident CI transfer file. It can include positional parameters
and logical constructs. When the name of a function is given in a command line, CI transfers
control to it as if to a command file. A function can be defined either interactively or from within
a command file.

Note that only one function can exist of a given name, either local or exported.

If a function is defined interactively, the user prompt changes to indicate what command must be
entered to terminate. This is also the case for the conditional constructs. The closing brace must
be the first character on a line followed by a space, comma, semi-colon, or carriage return to be
valid. If followed by a semicolon, the next command is to be executed. If it is followed by a space
or comma, the remainder of the line is to be ignored.

Also, syntax checking is done in the definition of a function (as is done in CI transfer files) and if
the function has errors, the function is not saved.

The precedence within CI is: aliases, internal CI commands, functions, or implied TR or RU (that
is, transfer or run files). In order to by-pass this, for example, to have an alias use a CI command,
the command must be preceded by a backslash (\) and be in uppercase.

All defined functions can be displayed via the FUNCTIONS command.
A function can be deleted with the UNSET command, —f option.

6-70 Command Descriptions

FUNCTION

Examples:

Cl> function flink {
} > if ftn7x $1.ftn - —

THEN > t hen

FI. > 1link $1.10d
FI > else

FI. >1i $1.1st

FI. > fi

} >}

Cl> function dll {
} > dl $1 -ufs

} >}

Using aliases and functions, it is possible to redefine a CI command. The following example shows
how to redefine WD to include changing the prompt of the current working directory. Note the
quoting of WD in the function.

Cl> alias wd ny_wd
Cl> function my_wd {
} > \WD $1 $2

} > set pronpt $WD >

P>}
The result is:

Cl> wd /system
| SYSTEM >

Note that in order to have a function that does nothing, at least one line containing a blank must
be entered. For example, the following will NOT be saved:

Cl> function nop {

} >}

Command Descriptions 6-71

FUNCTIONS

FUNCTIONS (Display Functions; VC+ Only)

Purpose: Displays all or specific defined functions.
Syntax: FUNCTI ONS [+x| —X| function_name]
+X display only local functions.
-X display only export functions. This option is only applicable if

the session has an Environment Variable Block (EVB).

function_name is a string of up to 32 letters, digits, and underscores, not starting
with a digit.

Description:

When all functions are displayed, the local functions are displayed first, followed by a blank line,
then the exported functions are displayed. The blank line is displayed whether or not functions of
either type are defined.

Examples:
Cl > functions (Display all defined functions)
Cl > functions —x (Display all exported functions)
Cl > functions +x (Display all local functions)
Cl > functions foo (Display the definition of the function FOO;

assuming it is defined)

6-72 Command Descriptions

FVERI

FVERI (File System Verification)

Purpose: Verifies a hierarchical file system disk LU by scanning the directory and table

structures and reporting inconsistencies. FVERI can also fix some of the
inconsistences found by the verification.

Syntax: FVERI [lu| mask] [options]

lu is the LU of the volume to be verified.

mask is the mask describing a directory in which all files and/or subdirectories
are to be verified.

options is one or more of the following options in any order:

+L file |lu list file or device for errors

+B verify bit map only; illegal if a mask is also specified
+FB fix the bit map

+FD fix illegal directory entries (set purged)

+FF fix file directory information

+OK perform fixes without asking each time

Description:

Running FVERI with a ? or ?? (RU, FVERI , ?[?]) displays usage information as shown above.

If neither an LU or a mask is given, the default is to verify all mounted volumes. For each volume,
the message:

Verifying LU xx

is issued while the verification is taking place. FVERI can be halted before completion with a
BR,FVERI. The utility quits immediately without completing a verification in process. When
performing a complete verification of a volume, FVERI can take several minutes to run, because
it reads every variable-length record file on the LU.

Two kinds of checks are done:

Internal consistency of the directories and correctness of the bit map (the bit map is a table on
the volume that keeps a record of used and free space on that volume).

FVERI checks directory consistency by looking for legal values within the entries: extent
pointers to valid extents, data pointers having legal disk addresses, non-negative file types, and
SO on.

FVERI checks the bit map by building its own version of the bit map (based on the files it finds
on the volume) and then comparing the two bit maps.

Consistency between directory entries and their associated files (for example, the number of
records in the file and number of words in the file), and internal consistency of the files (valid
record length, EOF marks, and so on.).

FVERI checks the consistency between directory entries and their associated files, and checks

internal consistency of the files, by reading through each file it finds (using normal FMP calls).
It collects appropriate data as it reads (the number of records in the file, number of words, and
so on), then compares what it finds with the directory entry for that file.

Command Descriptions 6-73

FVERI

Three kinds of fixes are done:

e Inconsistencies exist between directory entry information and the data actually within the file.
For file type 3, 4, 5, 7, and up, directory information may become inaccurate because of misuse
of the file system. Note that the user must have appropriate capability to change the directory
and file for any of these fixes.

FVERI can correct an erroneous word count (end-of-file position), record count, and record
length that is kept in a file’s directory entry.

e [Illegal directory entries (entries not recognized by the file system). Unrecognized entries
within a directory can confuse particular functions of the file system.

Note Such directory problems may be a sign of a bigger problem within the file
system. For example, an overwritten directory may have been caused by a
corrupted bit map. Use this fix carefully. Only superusers can use this fix, and
the disk must be dismountable.

FVERI can change an illegal directory entry to look like a purged entry, so that the file system
will not be confused by it.

e Bit map corruption. Occasionally a bit map can become corrupted when the directory
structure is still intact. For “free space marked used” there will be space on the disk that will
never be accessible. For “used space marked free” there is data loss possibility. FVERI
cannot correct a duplicate use of space problem.

Note Such directory problems may be a sign of a bigger problem within the file
system. Use this fix carefully. Only superusers can use this fix, and the disk
must be dismountable.

FVERI can overwrite the bit map on the disk with the bit map that was created by scanning the
directory structure.

If an LU is specified in the runstring, and the +B option is not given, FVERI will perform both
types of verifications. With the +B option, FVERI will only perform the first type of verification.
With a given mask, FVERI will verify all files or subdirectories in the directory described by the
mask, performing only the second type of verification. Because the bit map covers the entire
volume, the bit map verification cannot be done if a specific mask is specified, because FVERI
may not be looking at all the files on the volume.

Note that because the second type of verification requires that FVERI read through every file, it
will be slower than the first. For this reason, if you want to verify the overall integrity of a disk
volume, but do not need to verify each individual file, it will be faster to use the +B option. On
the other hand, if you are concerned about file integrity on a certain area of the volume, specifying
a mask can still be relatively fast because you are not asking FVERI to verify the whole volume.

6-74 Command Descriptions

FVERI

FVERI can be used after a system crash to verify that the file system is still intact. It should also
be run from time to time to verify the integrity of the file system. In order to gain access to all
read-protected files on the disk, FVERI is best executed by a System Manager (superuser).

FVERI is most efficient when verifying a disk not in use. If other programs are creating, purging,
or modifying files while FVERI runs, the tables will appear inconsistent due to synchronization
errors. For instance, if a file is purged after being verified but before the bit map is verified, the
bit map directories may appear to be invalid. For this reason, when FVERI is asked to fix
directories (+FD) or the bit map (+FB), it will first dismount the LU, lock it, and then remount
it. This method guarantees that no one else has access to the disk, so FVERTI’s data is reliable.

FVERI does not verify or fix FMGR cartridges.

Error Recovery

There are several possible responses to inconsistencies detected in the file system. Some problems
may be related to, or caused by, others, so recovery should be done with caution. For example,
invalid data pointers will probably cause bit map inconsistencies. In this case, fixing the bit map
could allow lost data to be overwritten, so that all opportunity for recovery would be gone.

e The fix options in FVERI can correct some of the problems. Directory information about a
file, invalid directory entries, and corrupted bit maps can all be corrected.

e Some directory problems can be corrected by creating a new directory on the same disk,
moving the troubled directory’s files into the new one, purging the old directory, and then
renaming the new one.

e Some directory and bit map problems can be corrected by doing a logical backing to tape or
disk, initializing the corrupted LU, and restoring the files. This can be time consuming, and
some of the logical backup utilities (TF/FST) use the word count (EOF position) to determine
how much of a file to backup. Make sure no “number of words” errors exist on the LU before
doing the backup.

FVERI can fix inconsistencies related to particular errors using specific options.

e Error messages that can be fixed with +FF
(3) Record length incorrect at block <nnnn>
(3) Nunber of words in file incorrect at block <nnnn>
(3) Nunber of records in file incorrect at block <nnnn>
e Error messages that can be fixed with +FD:
(5) Unidentifiable directory entry at block <nnnn>
e Error messages that can fixed with +FB:
(4) Free space is marked as used space

(9) Used space is marked as free space

Command Descriptions 6-75

FVERI

Error Messages

FVERI is susceptible to all FMP errors, which are reported as they occur. It also reports any
errors detected in the table structures. Each error message is preceded with a number indicating
the relative importance of the error. Most FMP errors are displayed as severity level 4; some,
usually protection violations, are reported with a severity level of 0. The higher the number, the
worse the problem. Continued use of an LU with a reported level 9 error can cause loss of data.

The error message usually includes a block number indicating the block on the disk where the bad
data was found. This is either the block number of the directory entry for some file, or the block
on the disk represented by the invalid data in the bit map.

Where possible, the error output will indicate the file whose directory entry is corrupt. This gives
some clue to the logical part of the disk that is corrupt, to complement the physical location
information provided by the block number.

As an example, the following message defines a Level 6 error in the directory entry for file
FOO.TXT :: JOE. This directory entry is at block 1435 of the disk.:

(6) Total blocks in the file less than main size at bl ock 1435
On file FOO TXT : : JCE

The following list of error messages is arranged in ascending order of severity, from 0 to 9. The
first four level O errors cause FVERI to terminate; all other error conditions are not fatal.

(0) Break detected; verification terminated.
(0) Internal buffer too small, size up program.
(0) Not a hierarchical file system disk.
This error occurs if the volume is not a CI disk or the volume header is corrupt.
(0) Disk volume not mounted.

The volume must be mounted to be verified. If you cannot mount the disk, FVERI cannot
give you any further information.

(0) Record Length exceeds 512 bytes at block <nnnn>.

FVERI has an internal buffer of 512 bytes for reading type 3 and above files. A record of
more than 512 bytes was read, and further verification of record length or word count will
not be done for this file.

(2) Directory Tag field is incorrect at block <nnnn>.

A special 32-bit tag is set for directories as a redundancy check to verify that this is, in fact,
a directory. This directory does not have the proper tag value.

(3) Record Length Incorrect at block <nnnnn>

The record length field in the directory does not reflect the length of the longest record in
the file. This message can be caused by another program having the file open, the file
being created in a non-standard way, or misuse of the FMP calls. Note that FVERI can
fix this problem by use of the +FF option.

6-76 Command Descriptions

3)

3

3)

4

4

®)

®)

(6)

(6)

(6)

FVERI

Number of words in file incorrect at block <nnnnn>

The End-Of-File pointer in the directory does not match the End-Of-File mark in the file.
This message can be caused by another program having the file open, the file being created
in a non-standard way, or misuse of the FMP calls. Note that FVERI can fix this problem
by use of the +FF option.

Number of records in file incorrect at block <nnnnn>

The record count in the directory does not match the number of records in the file. This
message can be caused by another program having the file open, the file being created in a
non-standard way, or misuse of the FMP calls. Note that FVERI can fix this problem by
use of the +FF option.

Directory header/trailer flag incorrect at block <rnnnnn>

The directory header and trailer (the two ends of a directory extent) should have a
particular identifying flag. This directory does not have one.

EOF pointer is beyond last block at block <rnnnnn>
The last word of the file is reported to be beyond the last block in the file.
Free space is marked as used space

The bit map has some disk space marked as used. However, the file system does not have
any files or directories in that space. The space is wasted and unrecoverable through FMP.
This message can be caused by having read-protected directories FVERI could not verify.
FVERI will work better if run by a system manager. Note that FVERI can fix this problem
by use of the +FB option.

Unidentifiable directory entry at block <nnnnn>

There is an entry in the directory that is not a file main, an extent, a purged file, or
anything else defined for the file system. Note that FVERI can fix this problem by use of
the FD+ option.

Directory main size does not equal extent size at block <nnnnn>

Each directory extent should be the same size as the main. This is not true for this
directory.

Actual blocks in file entry is wrong at block <nnnnn>

The sum of the size of the main and all the extents is not the same as the total number
indicated in the file’s directory entry.

Extent entry back pointer is wrong at block <nnnnn>

Extent entries have a pointer that points back to the previous extent entry or the main
(extent entries are in a doubly linked list). The return pointer in this extent entry does not
point back to the right place.

Directory extent back pointer is wrong at block <rnnnnn>

Directory extents have a pointer which points back to the previous extent or the main. The
pointer does not point back to the right place.

Command Descriptions 6-77

FVERI

(6)

(6)

)

o)

@)

C)

C)

C)

9

9

9

6-78

Total blocks in file less than main size at block <rnnnn>

The total number of blocks used by this file is less than the number of blocks in the main.
lllegal file type at block <nnnnn>

This file’s type is less than or equal to zero.

Invalid directory extent pointer at block <rnnnnn>

The pointer to the next or previous directory extent points to a disk address beyond the
valid address space on this disk.

Extent entry flag is wrong at block <nnnnn>

Extent entries in the directory should have a particular identifier flag. This extent does not
have the right flag, yet is pointed to as an extent of this file.

Invalid extent data pointer at block <nnnnn>

The pointer to the extent data points to a block address outside the legal address range of
this disk.

Invalid extent forward pointer at block <nnnnn>

The pointer to the next extent entry points to a block address outside the legal address
range of this disk.

Invalid extent pointer in main at block <nnnnn>

The pointer to the first extent of this file points to a disk address beyond the valid address
space of this disk.

lllegal directory size at block <nnnnn>
Each directory extent must be from 1 to 64 blocks long. This directory is not in that range.
Duplicate use of disk block <nnnnn>

Two or more files are stored on the same section of the disk. At least one of the files must
be corrupt. This message can occur as a result of other file activity on this disk while
FVERI is running.

Blocks per bit value is illegal at block <nnnnn>

The bit map represents up to 128 blocks of disk data per bit in the bit map. The actual
number of blocks per bit must be a power of 2. There can be no more than 8192 words in
the bit map., Finally, if blocks per bit is larger than 1, the number of words in the bit map
should be greater than 4K (otherwise blocks per bit should have been half as large). If this
value is wrong, the allocation of space on the disk can be corrupt.

Used space is marked as free space at block

There is a space on the disk pointed to by a directory entry; however, it is not marked used
in the bit map . This space is likely to be reclaimed at any time by the file system for some
other file. This message can occur as a result of other file activity on this disk while
FVERI is running. Note that FVERI can fix this problem by use of the +FB option.

Command Descriptions

GO

GO (Resume Suspended Program)*

Purpose: Resumes execution of a suspended program.
Syntax: QO [prog [pram*5]]
prog is the name of the suspended program. The session identifier is
optional.
pram*5 are the parameters to be passed to the program only if the program has

suspended itself.

The GO command resumes execution of a program that was suspended by an SS command or by
an EXEC 7 call. It is ignored if the program is not in the operator suspend state. Parameters are
ignored if the program was suspended with the SS call or if the program does not require them.
Parameters may be passed to a program that has suspended itself with an EXEC 7 call. Refer to
the RTE-A Programmer’s Reference Manual for details.

If prog is not specified and the startup program (usually CI) has scheduled another program, this
command is executed on the scheduled program unless it, in turn, has scheduled a program. The
search continues down the program scheduling chain and the GO command is executed on the last
program. The only exception is if the last program is a system utility program, in which case the
program that scheduled it is continued.

Example:

Cl > go progb

Command Descriptions 6-79

GREP, FGREP

GREP, FGREP (Search a File for a Pattern)

Purpose:

Syntax:

6-80

Searches a file for a pattern. These commands support redirection.

GREP [options] [expression] file| mask . . .

FGREP [options] [string] file| mask . . .

options one or more options listed below. Options that do not require an
argument may be grouped together after a single hyphen and may be in
any order. To specify an option that requires an argument, the option
must appear either by itself (for example, —e expr) or at the end of a
group of options (for example, —nbe expr).

—b

—e expr

—g /expr/

Command Descriptions

Each line is preceded by the block number on which it was
found. Block numbers are calculated as follows: (the
number of bytes that have been read from the file)/256; the
result is rounded down.

Only a count of the lines containing a match is printed.

Directory display mode. Displays directory names on
separate lines.

Same as the expression argument in the runstring. Must be
used when the expression begins with a hyphen (—). May
also be used multiple times to specify more than one
expression for which to search.

Same as the —e option, but the expression is delimited by
slashes. Useful when the expression contains a hyphen (—)
or a comma (,).

Display help information for GREP or FGREP.

Only the names of files that contain a match are listed. File
names are listed once, each separated by a new line.

Each line that contains a match is preceded by its relative
line number in the file starting at line 1.

Right justify block numbers (—b) and/or line numbers (—n).

Suppress error messages produced for nonexistent or
unreadable files.

Search only text (types 3 and 4) files.

Case sensitive match. Note that you must protect the search
pattern from CI, see below.

All lines that do not contain a match are printed.

Exact match; only lines matched in their entirety are printed
(FGREP only).

Display the file name of each file being searched.

Marks the end of the options.

GREP, FGREP

expression is the regular expression pattern (GREP) or string (FGREP) to be used

string for the search pattern. Spaces and upper and lowercase may be
protected from CI by enclosing the pattern in backquotes (‘), for
example * Thi s Pattern‘. If backquotes are not used, the string is
upshifted and commas are inserted as delimiters. For information on
regular expressions, see the EDIT/1000 User’s Manual, part number
92074-90001.

file| mask s the file(s) to be searched; up to 10 file names or masks may be
specified.

Description:

GREP and FGREP search files for lines matching a given pattern. By default, each line found is
copied to the session LU. GREP supports regular expression pattern matching in very much the
same way as EDIT/1000. FGREP patterns are fixed strings, making it a fast and compact means
for finding known text strings.

The output of GREP and FGREP can be redirected to an output file by specifying either
“>filename” or “>>filename” in the runstring. The output file specified must be delimited by
commas and is position independent. If the file already exists, it will be overwritten. To append to
a file, “>>filename” can be used. If the file does not already exist, it will be created.

If an output file is not specified, GREP breaks the output into screen pages. Paging is disabled
when an output file is specified. For example, to output to the terminal without paging, specify
“>1” on the command line. Multiple redirection strings may occur in the runstring; however, only
the last redirection is executed.

An input file name can also be specified in the runstring with the “<filename” syntax. This must
also be delimited by commas and is position independent. This is only used for the input file when
no files or masks are specified in the runstring.

Any file or mask starting with either a “<” or a “>” character must be specified with either a
relative or absolute path (for example, “. / >@ or “/ dir/l >@). Expressions starting with either of
these characters must be specified with the —e option (for example, “—e>expr”).

The default condition for GREP and FGREP is to ignore upper and lowercase distinctions during
comparisons.

Return values:

GREP and FGREP returns the following values:

$RETURN1 =0 if any matches are found
=1 if no matches are found
= 2 if an error occurs

$RETURN2 The total number of matches is returned as a 32-bit integer; where
$RETURN3 $RETURN?2 contains the high-order bits (bits 31-16); and SRETURN3, the
low-order bits (bits 15-0).

$RETURN4 The total number of files found containing matches.

Command Descriptions 6-81

GREP, FGREP

Examples:

The following example will search the file EIO for the patterns “—weird,pattern” and “eye”.
Lines will be displayed with the line number and file access errors will be suppressed. Note that
when the —e or —g option is used, the command line may not contain the expression |string
argument.

Cl> fgrep —ns —g/-weird, pattern/ —e eye eio
The following example will search the GREP help file for lines matching the regular expression

given and write the output to the file OUTFILE. Note that the expression contains spaces and is
case sensitive requiring the —u option and backquotes to protect the expression from CI.

Cl> grep —u >outfile ‘\—-[a-z] [el/f]* /help/grep

The following example will search files matching the mask —o for the —e pattern. Note that the
“——"flag is required when the pattern contains a leading hyphen.

Cl> fgrep — —-e -0

6-82 Command Descriptions

IF-THEN-ELSE-FI

IF-THEN-ELSE-FI (Control Structure)

Purpose: Allows decision making in a command file or a function.

Syntax: | F command _list]
THEN command_list2
[ELSE command_list3]
Fl

command_list is a list of commands. Commands may be entered either one per
line or several per line separated by semicolons. A command list
can be null.

Description:

The IF-THEN-ELSE-FI control structure lets you control execution of a command file or a
function. The control structure can be entered interactively, but is more useful in a command file.
The ELSE branch is optional.

The return status of the last command in the command list for IF determines which branch of the
IF structure is executed. If it is zero (the command was successful), CI executes the THEN
branch. If it is non-zero (the command was unsuccessful), CI executes the ELSE branch, if one
exists, or FI, which terminates the IF control structure.

CI determines the end of a command list to be the CI command before the next expected control
structure command. For example, the command list for IF ends when CI reaches THEN.

An [F-THEN-ELSE-FI control structure can be nested in either another IF-THEN-ELSE-FI or a
WHILE-DO-DONE control structure.

You must end the IF-THEN-ELSE-FI control structure with FI; otherwise, CI does not recognize
that it is finished and continues to process succeeding commands as though they were part of the
THEN or ELSE command list. Therefore, if an IF-THEN-ELSE-FI control structure was just
executed and CI is not executing commands as expected, check to see if you entered an FI
command to terminate the control structure.

Command Descriptions 6-83

IF-THEN-ELSE-FI

Examples:

The following interactive IFF-THEN-ELSE-FI control structure copies file TEST, if it exists, to
another directory or creates file TEST if it does not exist:

Cl> if dl test; then co test /junk/ @ else edit test; fi

The following command file compiles a FORTRAN source file. If successful, a library is created

from the relocatable, and the intermediate files created during the merging and indexing of the
library are purged.

IF ftn7x general _stuff.ftn — —
THEN
* Merge general _stuff
pu general _stuff.nmerg
nerge general _stuff.cnd general _stuff.merg
*

* Index the nmerged file
[indx general _stuff.merg general _stuff.lib

*

* Cean up

pu general _stuff.nmerg

pu general _stuff.| st

pu general _stuff.rel
Fl

6-84 Command Descriptions

IN

IN (Initialize Disk Volume)

Purpose: Prepares a blank disk volume for use in the system.
Syntax: IN lu [blocks [OK]]
lu is the LU number of the disk volume to be initialized.
blocks specifies the number of blocks at the beginning of the disk LU to be

reserved for the boot extension and diagnostics. The default is no
reserved space. Refer to the RTE-A System Generation and Installation
Manual for details.

XK is the optional parameter that suppresses the user prompt, indicating
that the command should be executed as entered.

Description:

This command is used to clear a disk volume, eliminating all its files. Before reinitializing a disk
volume with files on it, a prompt is displayed so that you can confirm your intent. A “yes”
response must be entered to start the process. The OK parameter can be used to suppress this
prompt. After the disk volume is initialized, it will be mounted to the file system.

The number of reserved blocks specified will be rounded up, if necessary, to an even multiple of
the number of blocks per bit defined for the bit map for the volume. The FREES utility may be
used to display the actual number of blocks reserved.

In the VC+ environment, only a superuser can initialize a disk volume with Security/1000 turned
off. When security is installed and turned on, only a user with capability level 30 can initialize a
volume owned by anyone or an uninitialized disk. Refer to the appendixes in the RTE-A System
Manager’s Manual that describe the Security Table for details on the capability levels within the IN
command.

To initialize a disk volume for use with FMGR files, you must run FMGR and use the FMGR IN
command. Refer to the FMGR description in this manual for details.

Command Descriptions 6-85

INSTL

INSTL (Initialize BOOTEX File)

Purpose:

Syntax:

Initializes the boot extension (BOOTEX) file for an RTE-A disk LU. You may run
INSTL on an RTE-A or RTE-6/VM system.

I NSTL [snap] [system] <bootdest> lu <boot source> [, option]

snap

system

boot dest

is the name of the snapshot file output by the generator. This is the
snapshot file of the target system.

is the name of the system file output by the generator. This is the
system file of the target system.

If you do not enter the snap and system parameters, the default is to
configure the boot extension file according to the specifications of the
current (host) system (RTE-A host only).

is the name of the fi