A paciars

RTE Driver DVM72 Universal
Interface Driver

Reference Manual

Software Technology Division
11000 Wolfe Road
Cupertino, CA 95014-9804

Manual Part No. 09580-93027 Printed in U.S.A. June 1993
u1283

The Printing History below identifies the edition of this manual and any updates that are included. Periodi-
cally, update packages are distributed that contain replacement pages to be merged into the manual, in-
cluding an updated copy of this printing history page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past updates; however, no new information will be added.
Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-in-
serted update information. New editions of this manual will contain new information, as well as all updates.

To determine which manual edition and update is compatible with your current software revision code, refer
to the Manual Numbering File or the Computer User’'s Documentation Index. (The Manual Numbering File

Printing History

is included with your software. It consists of an “M” followed by a five digit product number.)

Third Edition.................. Aug 1981 To change RTE time-out information

Update 1 Dec 1983

Reprint Dec 1983 Update 1 incorporated
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-P ackard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARs 252.227.7013.

Copyright © 1981, 1983 by Hewlett-Packard Company

Table of Contents

Chapter 1
General Information
INtroduction o 1-1
Operating Environment e 1-1
SOftWaATE . . e 1-1
Hardware 1-1
Components of DVM72 ... 1-2
Initiation Segmentt 1-2
Completion Segmentt 1-2
Driver LImitationst e 1-3
Chapter 2
Applications
INtroductiono 2-1
Standard Read/Write Requests i 2-2
Calling SEqUENCEttt e 2-6
Control Word for Standard Read/Write Requests 2-6
Read/Write Requests with Subfunction i 2-7
Calling SEqUENCE . ..ottt e e e e 2-8
Control Word for Read/Write Request with Subfunction 2-10
Control ReqUESSottt e 2-10
Standard Control Functions i 2-11
Calling SEqUENCE . ..o\ttt e e e e e 2-11
Standard Control Functions i 2-12
Special Control Requestst e e e 2-13
Calling SEqUENCE . ..ottt e e e e 2-13
Special Control Request Calling Sequence Parameters 2-14
Control Word for Special Control Requests oo, 2-15
Special Read/Write ReqUestst i 2-16
Calling SEqUENCE . ..o\ttt et et e e 2-16
Special Read/Write Request Calling Sequence Parameters 2-18
Control Word for Special Read/Write Requests 2-19
DMA Programmingttt ettt e e e e e e 2-20
Calling SEqUENCE . ..ottt e et e e e 2-20
Calling Sequence Parametersoiuiiuiiiiei i, 2-21
Error and Status Information 2-22
Chapter 3
Configuration Data
INtroductiono 3-1
Driver Considerationsutnt ettt e e ettt e 3-1
Program Input Phase 3-1
Table Generation Phase 3-2
Equipment Table Entry (EQT Table)o i, 3-2
Device Reference Table (DRT Table) 3-2
Interrupt Table (INT Table) et 3-2

Appendix A
Utility Program DSCHD

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

Table 2-1
Table 2-2
Table 2-3
Table 3-1

List of lllustrations

General Format of DVM72 Calling Sequences 2-4
DVM72 Timeout Processingouueuninninnie e, 2-5
Control Word Format, Standard Read/Write Requests 2-7
Control Word Format, Read/Write Requests with Subfunction 2-10
Control Word Format, Special Control Requests 2-15
Control Word Format, Special Read/Write Requests 2-19
Tables
Standard I/O Sequencesoo ittt 2-2
Valid Combinations of Function and Subfunction Codes 2-9
DVM?72 Error and Status Information (EQTS) 2-22

EQT Table for DVMT72 ... e e i 3-3

General Information

Introduction

This manual is a programmer’s guide to DVM72, the RTE Universal Interface Driver. The driver
is callable from HP FORTRAN or HP Macro Assembler Language programs, using RTE EXEC
Read, Write, and Control requests. DVM?72 is accessible from Multi-User Real-Time BASIC only
through Device Subroutines written in FORTRAN or assembler language.

Operating Environment

The following paragraphs define the software and hardware for which the RTE Universal Interface
Driver, DVM72, was designed.

Software

DVM?72 may be operated within the HP Real-Time Executive Operating System (RTE-1V,
RTE-1VB, RTE-6/VM, and RTE-M). The driver requires only one external subroutine, $LIST, the
scheduling routine provided by the RTE Operating System.

Hardware

DVM?72 can be used with any computer/controller that is capable of supporting the specified
software operating system. The memory requirements of DVM72 are approximately 525
(decimal) words.

The following interface cards may be used with DVM72 to control the operation of a variety of
programmable instruments. This list is by no means all-inclusive; through experimentation the
user may find that a number of other I/O interface cards can be used with this driver.

Model Number Description
HP 12556B 40-Bit Output Register
HP 12566B Microcircuit Interface
HP 12604A General Purpose Data Source Interface
HP 12661A Digital Voltage Source Program Interface

DVM?72 also provides Direct Memory Access (DMA) for use with instruments whose I/O protocol
is compatible with HP 21xx DMA requirements.

General Information 1-1

Components of DVM72

DVM?72 is coded as one driver with two entry points: IM72 and CM72. Entry point IM72
provides access to the Initiation Segment; CM72 begins the Continuation Segment of the driver.
Both segments share common subroutines and constants contained within the driver. A
description of DVM?72 follows.

Initiation Segment

The Initiation Segment of DVM72 performs the following functions:

1. Configures I/O instructions with the select code (provided by RTE from the logical unit
number in the Control Word, conwd).

2. Makes validity checks on passed parameters.

3. Analyzes bits 6 through 10 of the conwd to determine the requested function. If bit 9 is set,
DVM72 examines the Subfunction Code (Word 1 of IDBUF).

4. Either initiates and completes I/O operations (return to RTIOC with A=4), or initiates only

(return with A=0). The latter indicates that further I/O is expected, pending an interrupt from

the device.

Completion Segment

The Completion Segment performs the following functions:

1. Configures I/O instructions with select code.
2. If a check for an I/O operation in progress proves false, a check is made for an available
interrupt processing routine. If one is found, the routine is scheduled. If no interrupt

processing routine is found, the interrupt is ignored and DVM72 makes a continuation return
(p + 2) to RTIOC.

3. If an I/O operation is already in progress, the cause of the interrupt and the Function Code
determine the course of action. One of the following may occur:

a. If the entry is due to a timeout, the driver will clear the timeout bit and continue normal
I/O operations.

b. If a DMA operation was in progress, the DMA channel in use is returned to the system
(bit 15 of A-Register set).

c. If the interrupt was expected, normal I/O operations (read or write) continue as specified
by Function Code and Subfunction Code.

1-2 General Information

Driver Limitations

Since it is a “universal” interface for many devices, DVM72 exhibits the following
device-independent characteristics:

1. DVM?72 does not verify that the device to be programmed is actually connected.
2. DVM72 does not analyze device-dependent status information.
3. DVM?72 does not verify that the device is functioning properly.

These and other device-dependent considerations must be handled by device subroutines external
to DVM72. The driver can be used, however, to collect the necessary device status and other
information for analysis by device subroutines.

Note RTE-6/VM does not support a control request from an extended background
program to set up an interrupt-handler program.

In the case of configuring and arming an interrupt-handler program, the request passes the name
of the program to the driver through a designated user buffer. However, if the calling program is
an extended-background type, the page in memory that contains the user buffer may be remapped
by the operating system before entry into the driver.

The call to set up an interrupt handler is supported from any program type other than extended
background, and all other driver functions are supported from any program type.

General Information 1-3

Applications

Introduction

This section describes how DVM?72 should be called from Assembler and FORTRAN programs.
In its general form, this driver uses two buffers declared by the calling program: IDBUF and
ICBUF, a data buffer and a control buffer, respectively.

In this section, a number of “codes” are described that control the operation of DVM72. These
“codes” are as follows:

Request Code this is a standard RTE EXEC Call Request Code as described in the
Programming and Operating Manual and/or Programmer’s Reference
Manual for the RTE Operating System. For DVM72, this code may be
1, 2, or 3 for Read, Write, and Control requests, respectively.

Function Code a general description of the format and purpose of the Function Code,
contained in the Control Word (conwd) of the EXEC Call, is found in
the Programming and Operating Manual and/or Programmer’s
Reference Manual for the RTE Operating System. Function Codes for
DVMT72 produce pre-defined I/O sequences, which are described in
detail in this section.

Subfunction Code =~ whenever the Function Code itself cannot specify the I/O sequence of
the driver in sufficient detail, a Subfunction Code will be found in Word
1 of the Data Buffer. Subfunction Codes are described in detail within
this section.

Command Code where the standard DVM72 I/O sequences (specified by Function Code
only) will not meet the requirements of a device to be programmed, the
user may generate his or her own I/O sequence with Command Codes in
the Command Buffer (ICBUF). Refer to “Special Control Functions”
for further details on Command Codes.

The general format of the DVM?72 calling sequences is shown in Figure 2-1.

Applications 2-1

Standard Read/Write Requests

If the device to be programmed can operate with one of the standard I/O sequences shown in
Table 2-1, the user may be able to use one of the standard DVM?72 functions to read data from or
output data to the device. A Control request may be needed to alter timeout processing or
schedule an interrupt program, but the function of the Read/Write request itself can be established
in bits 10 through 6 of the control word. Bits 8 and 7 of the control word (function code bits 10 - 6)
are shown in column one of Table 2-1. See Figures 2-2 and 2-3 for DVM72 Timeout Processing
and Control Word Format, respectively.

Table 2-1. Standard 1/O Sequences

Control
Word Driver 1/0
Bits 8/7 Mode Part Sequence Function
00 Read Interrupt on
INIT CLC arm device
LIA read one word after first interrupt
STC,C arm device for next interrupt
CONT LIA read one word
STC,C arm device again } for each word
FINI CLC set device and
STF I/O card to rest
00 Write Interrupt on
INIT CLC arm device
OTA output first word
STC,C arm device for next interrupt
CONT OTA output one word ¢ h d
STC,C arm device again | 'Or each wor
FINI CLC set device and
STF I/O card to rest
01 Read Non-interrupt
INIT CLC arm device for data transfer
LIA
LIA read into IDBUF until Data Buffer is filled
LIA
FINI CLC set device and
STF I/O card to rest
(Returns with A-Reg=4 to indicate completion.)
01 Write Non-interrupt
INIT CLC arm device for data transfer
8$ﬁ write from IDBUF until Data Buffer is empty
FINI CLC set device and
STF I/O card to rest
(Returns with A-Reg=4 to indicate completion.)

2-2 Applications

Table 2-1. Standard 1/O Sequences (continued)

Control
Word Driver 1/0
Bits 8/7 Mode Part Sequence Function
10 Read Interrupt on
INIT CLC arm device for data transfer
STC,C
CONT LIA read one word
STC,C arm device again repeat for each word in IDBUF
FINI CLC set device and
STF I/O card to rest
10 Write Interrupt on
INIT CLC arm device for data transfer
STC,C
CONT OTA output one word
STC,C arm device again repeat for each word in IDBUF
FINI CLC set device and
STF 1/O card to rest
11 Read Interrupt initially on
INIT CLC arm device for initial interrupt
STC,C
CONT LIA
LIA read into IDBUF (without interrupts)
LIA until buffer is full
STC,C arm device for “done” flag
FINI CLC clear device and
STF 1/0O card
11 Write Interrupt initially on
INIT CLC arm device for data transfer
OTA
OTA output to device from IDBUF (without
OTA interrupts) until Data Buffer is empty
STC,C arm device for “done” flag
FINI CLC set device and
STF 1/O card to rest

Applications

2-3

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF

RTN return point

ICODE DEC
ICNWD OCT
IDBL DEC
ICBL DEC
IDBUF DEC
ICBUF DEC
DEC
DEC
DEC
DEC
DEC

EXEC
RTN
ICODE
ICNWD
IDBUF
IDBL
ICBUF
ICBL

N

[

O Ul WNRERE O

CALL EXEC (ICODE, ICNWD, IDBUF, IDBL, ICBUF, ICBL)

Return Address

Request Code

Control Word

Data Buffer Address
Data Buffer Length
Command Buffer Address
Command Buffer Length

Request Code 2 is WRITE Request

Function Code plus Logical Unit Number
Data Buffer Length is one word only
Command Buffer contains six words
Data Buffer contains Subfunction Code 11
Command Code 1= LIA CHAN Instruction

2 = OTA CHAN

3 = STC CHAN,C

4 = CLC CHAN

5 = CLF CHAN

6 = STF CHAN

Figure 2-1. General Format of DVM72 Calling Sequences

2-4 Applications

If
Timeout

Timeout Processing
Cleared by Control
Request W. Func. = 02

Will

No
DVM72 Process
Timeout l
?
RTE Emits Error Message
Is
EQT 6 (CONWD)
Set
?
]
Set Status Word Set Status Word
EQT5=3 EQT5=4
(Legal Timeout) (Timeout Error)
y
‘ Exit 1 ’ ‘ Exit 2 ’
Continue 1/0 Return to RTIOC (p+1)

w. A-Reg. = 0 (completion)
No further 1/0.

Figure 2-2. DVM72 Timeout Processing

Applications 2-5

Calling Sequence

The following are general models of standard Read/Write requests.

Assembler Language

EXT EXEC
JSB EXEC
DEF RTN

DEF ICODE
DEF ICNWD
DEF IDBUF
DEF IDBL

RTN return point after execution

ICODE DEC 1 (or 2)

ICNWD oCT conwd

IDBUF BSS n

IDBL DEC n
FORTRAN

DIMENSION IDBUF (n)
IDBL=n

ICODE=2 (or 1)
ICNWD=conwdB

transfer control to RTE
return address

request code

control information
data buffer address
data buffer length

1 = READ, 2 = WRITE
described in following section
buffer of n words

same n; number of words in buffer

set up data buffer

buffer length

request code

set control word (B = octal)

REG = EXEC(ICODE, ICNWD, IDBUF, IDBL)

Control Word for Standard Read/Write Requests

Figure 2-3 shows the format of the control word (conwd) required in the calling sequence for
DVM?72 driven devices. Several fields defining the nature of the data transfer are shown.

2-6 Applications

13(12|11]10 9 8 7 6|5 4 3 2 1 O

Control Word Bits
Bits 5-0

Bits 10 - 6
10

Bit 12 (Z-bit)

0 T 0 01 01 f LU
|— binary transfer mode

interrupt/non-interrupt
function per Table 2-1

If 1, timeout accepted as legal

Function

Logical Unit number, which RTE changes to select code before passing
to driver.

Function Code, as defined below:

Timeout bit; if set to 1, DVM72 will handle timeout as a legal wait
between transfers. If set to 0, DVM72 will flag a timeout as an error.
For interrupt operation with wait between transfers, bit 10 must be 1.

Request Subfunction bit; if set to 1, Word 1 of the data buffer contains a
subfunction code. If 0, no subfunction code exists.

Interrupt/Function bits; defined in Table 2-1.
Transfer Mode must be binary, so bit 6 = 1.

Used only on special Read/Write requests; for standard requests, this
bit should be set to zero at all times.

Figure 2-3. Control Word Format, Standard Read/Write Requests

Read/Write Requests with Subfunction

A slightly more complex form of Read/Write Request uses Word 1 of the Data Buffer (IDBUF) to

pass a subfunction code to DVM72. Subfunction codes are used to specify DMA transfers with
and without terminating STC CHAN,C instructions (refer to DMA Programming), control
functions without data transfers (refer to Special Control Functions), and control functions with

data transfers (refer to Special Read/Write Requests). Refer to Table 2-2 for valid combinations of

Function and Subfunction Codes.

The least complex form of the Read/Write Requests described above uses DVM?72 in interrupt
mode to obtain I/O transfers with a fixed time delay between 1/O transfers.

Applications

Calling Sequence

The calling sequence for DVM72 Read/Write Requests with subfunctions 9, 10, and 15 is shown
below. For subfunctions 9 and 10, also refer to the DMA Programming section.

Assembler Language

EXT EXEC

JSB EXEC transfer control to RTE
DEF RTN return address

DEF ICODE request code

DEF ICNWD control information
DEF IDBUF data buffer address
DEF IDBL data buffer length

RTN return point

ICODE DEC 1 (or 2) 1 = READ, 2 = WRITE

ICNWD OCT conwd described in following section

IDBUF BSS n data buffer of n words

IDBL DEC n same #n; number of words in data buffer
FORTRAN

DIMENSION IDBUF (n) set up data buffer

IDBL=n define length of data buffer

ICODE=1 (or 2) define request code

ICNWD=conwdB set up control word (B = octal)

. establish contents of data buffer
REG = EXEC (ICODE, ICNWD, IDBUF, IDBL) used as Function
or
CALL EXEC (ICODE, ICNWD, IDBUF, IDBL) used as Call

2-8 Applications

Table 2-2. Valid Combinations of Function and Subfunction Codes

When Used with these
This Function Code Bits
Subfunction
Code 12 11 10 9 8 7 6 Produces this Function
9* o 0 o 1 0o O 1 DMA Read/Write without STC.
10* 0O 0 O 1 0o O 1 DMA Read/Write with STC.
15* o o0 1 1 o o0 1 Standard Read/Write Request with approximately 500us
1 0 1 delay between transfers.
0 0 0 1 0 1 1 Not valid; desired sequence will be produced only if
1 1 1 interrupt function is selected (bit 7 = 0).
117 1 0o O 1 X X 1 Command sequence in ICBUF with finish in INIT: bits 7
and 8 are ignored.
12% 1 0 0 1 X X 1 Command sequence in ICBUF with interrupt expected
before return to RTIOC, bits 7 and 8 are ignored.
Timeout handling as shown in Figure 2-2.

1 0 1 1 X X 1 Same except timeout handled by driver.

137 1 0o O 1 0o O 1 Execute command sequence in ICBUF, wait for interrupt,

1 o o0 1 1 0o 1 then transfer data to/from IDBUF. CLC and STC are sup-
pressed; timeout handling as shown in Figure 2-2.

1 0 0 1 0 1 1 Same as above, but without waiting for interrupt after

1 0o o 1 1 1 1 command sequence.

1 0 1 1 0 0 1 Execute command sequence in ICBUF, wait for interrupt,

1 0o 1 1 1 0o 1 then transfer data to/from IDBUF. Suppress CLC and
STC.

1 0 1 1 0 1 1 Same as above, but without waiting for interrupt after

1 0 1 1 1 1 1 command sequence.

147 1 0 0 1 0 0 1 Execute command sequence in ICBUF, wait for interrupt,

1 0 0 1 1 0 1 then transfer data with an interrupt at each transfer
to/from IDBUF. At the end, issue CLC and STC com-
mands to the device. Timeout is handled by RTE.

1 0 0 1 0 1 1 Same as above, but without waiting for interrupt after
command sequence.

1 0 0 1 1 1 1 Same, but wait only for the initial interrupt between
command sequence and first data transfer. Thereafter,
transfer data without waiting for an interrupt each time.
Timeout is handled by RTE.

1 0 1 1 0 0 1 Same as for corresponding bits 8 - 6 above, except time-

1 0 1 1 1 0 1 out is handled by driver instead of RTE.

1 0 1 1 0 1 1

1 0 1 1 1 1 1

x = Don't Care; bits are ignored.
* Does not require ICBUF.
¥ Requires ICBUF.

Applications 2-9

Control Word for Read/Write Request with Subfunction

Figure 2-4 shows the format of the control word (conwd) required for Read/Write Requests with
Subfunction.

15|14 13 12 11 | 10 918 7|65 4 3,2 1 0
0 0 0 0 o o1 1 01 0/1 A LU

|— binary transfer mode

interrupt/non-interrupt
function per Table 2-1

if 1, subfunction is in IDBUF
if 1, DVM72 will handle timeout

Control Word Bits Function
Bits 10 - 6 I/0O Request Function Code, as described below:
10 Timeout bit; must be set to 1 to allow DVM72 to handle the timeout that
is expected after each data transfer when subfunction 15 is being used.
9 Request Subfunction bit; set to 1 to indicate that Word 1 of the data

buffer contains one of the following subfunction codes:

9 = DMA transfer without STC to start device*
10 = DMA transfer with STC to start device*
15 = Interrupt mode I/O transfer with fixed-time delay between
transfers

* Refer to DMA Programming

Figure 2-4. Control Word Format, Read/Write Requests with Subfunction

Control Requests

DVM?72 Control Requests are available in two formats: Standard Control requests, which perform
a limited set of predefined functions, and Special Control requests, which permit the user to set up
custom I/O sequences. The latter group of “Control requests” are actually a set of complex
Read/Write requests. They are described in detail under “Special Read/Write Requests” (see the
Special Read/Write Requests section).

2-10 Applications

Standard Control Functions

The Standard Control Functions of DVM?72 are listed below. Each Control Function is described
in detail in the Standard Control Functions section that follows.

Code
01
03
04
05

Function

Set or reset timeout value
Define alarm program name*
Disarm the alarm program*
Arm the alarm program™

* The “alarm program” may be set up from BASIC by using the utility program DSCHD. Refer
to Appendix A for further details.

Calling Sequence

The calling sequence for Standard Control Requests is as follows:

Assembler Language

EXT

JSB
DEF
DEF
DEF

DEF

RTN return point

ICODE
ICNWD
IPRAM

IPRAM

DEC
OCT
DEF
ASC
or
DEC

EXEC

EXEC
RTN
ICODE
ICNWD

IPRAM

3

conwd
*+1

3, PROGN

time

transfer control to RTE
return address
request code
control information optional parameter

(see Function Code descriptions on next page)
optional parameter

(see Function Code descriptions on next page)
returns here after execution

3 = CONTROL request

described in following section

define address of interrupt program name
set name of interrupt program

set new timeout value

Applications

2-11

FORTRAN

*IPRAM = address of interrupt via user-written Assembler
program name Language routine
or
IPRAM = timeout value set new timeout value
ICODE = 3 request code
ICNWD = conwdB set control word (B = octal value)

*REG=EXEC (ICODE, ICNWD, IPRAM) used as Function
or
*CALL EXEC (ICODE, ICNWD, IPRAM) used as Call

* The interrupt program may be scheduled from FORTRAN using the utility program DSCHD.
This is done by deleting the IPRAM statement and replacing the EXEC calls with:
“CALL DSCHD (LU, 3, IPROG)” where IPROG is the interrupt program name. Refer to
Appendix A for further details.

Standard Control Functions

DVM?72 will accept the following Function Codes in bits 10 through 6 of the Control Word:

01 Reset the established timeout value for the driver. This function sets a new timeout
value, as defined by IPRAM in tens of milliseconds, into EQT14. When bit 10 of the
conwd is set during subsequent I/O requests, this function may be used to implement a
software wait between I/O transfers.

03 Set up the interrupt program defined by IPRAM for scheduling by a subsequent
interrupt. This function does not schedule the program; it only places the ID segment
address of the program into EQT13. IPRAM must contain the address of the alarm
program’s name. This function is not supported from an RTE-6/VM extended-
background program.

04 Disarm the defined alarm program. If an alarm program has been set up and armed
(Control Function 05), it must be disabled before further I/O to the controlled device
may take place. If the defined alarm program is not first disarmed, any interrupt caused
by normal I/O operations could schedule the program for execution. IPRAM is not used
with this function code.

05 Arm the defined alarm program. Before a program defined by Control Function 03 can
respond to an interrupt, it must be enabled or “armed”. This function is also used to
re-arm a program that was temporarily disarmed for I/O operations (Control Function
04). IPRAM is not used with this function code.

2-12 Applications

Special Control Requests

To meet the special code sequence requirements of some instruments’ I/O protocol, DVM72
provides the user with a means of generating custom I/O instruction sequences. These custom

instruction sequences do not transfer any data to/from the programmed device. The only
instruction capable of sending data (OTA) has a zero in the A-Register at the time of execution.
The configured I/O instructions provided by DVM?72 are defined as follows:

[N O R S

6

Each configured I/O instruction is assigned an integer command code in the range of 1 to 6.

LIA CHAN
OTA CHAN
STC CHAN,C
CLC CHAN
CLF CHAN
STF CHAN

Load into A-Register from I/O channel CHAN
Output from A-Register from [/O channel CHAN
Set I/O control bit and clear I/O flag on CHAN
Clear the I/O control bit of select code CHAN
Clear the I/O flag on select code CHAN

Set the I/O flag on select code CHAN

Configured I/O instructions may be called in any sequence and as often as required by placing the

proper command codes (not the I/O instructions themselves) into the command buffer in the

desired sequence. Note that the command buffer will not contain any data words or subfunction
codes; it should contain only integers between 1 and 6, one integer per word.

Calling Sequence

The calling sequence for Special Control requests is as follows:

Assembler Language

RTN

ICODE
ICNWD
IDBUF
IDBL
ICBUF
ICBL

EXT

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF

return point

DEC
OCT
BSS
DEC
BSS
DEC

EXEC

EXEC
RTN
ICODE
ICNWD
IDBUF
IDBL
ICBUF
ICBL

2 (or 1)
conwd

SIS S

transfer control to RTE
return address

request code

control information
data buffer address

data buffer length
command buffer address
command buffer length

2 = WRITE, 1 = READ

described in following section

data buffer of n words

same n; number of words in data buffer
command buffer of m words

same m; number of words in command buffer

Applications

2-13

FORTRAN

DIMENSION IDBUF (n),ICBUF (m) setup both buffers

IDBL=n define length of data buffer
ICBL=m define length of command buffer
ICODE=2 (or 1) request code

ICNWD=conwdB set up control word (B = octal)

establish contents of data buffer (see next section)
establish contents of command buffer
. (see next section)
REG = EXEC(ICODE, ICNWD, IDBUF, IDBL, ICBUF, ICBL)

Special Control Request Calling Sequence Parameters

ICODE RTE EXEC Request Code; must be one of the following: 1 = READ request, or
2 = WRITE request

ICNWD Control Word, see Figure 2-5.

IDBUF Data Buffer containing one of the following subfunction codes in Word 1 of the
buffer:

11 = Execute the command sequence stored in ICBUE, then finish in the
Initiation Section of DVM?72.

12 = Execute the command sequence stored in ICBUE, then wait for an
interrupt before returning to RTIOC.

IDBL Data Buffer Length; for subfunction codes 17 and 12 (no data transfer, only I/O
instructions), IDBL must be set to one. Only Word 1 is used for the subfunction
code.

ICBUF Command Buffer containing integer command codes that correspond to the
following I/O instructions. Each I/O instruction is configured with the select code
(CHAN) of the device specified by LU in the Control Word.

Command Word I/O Instruction
1 LIA CHAN
2 OTA CHAN
3 STC CHAN,C
4 CLC CHAN
5 CLF CHAN
6 STF CHAN

Command codes in ICBUF may be used in any order and as many commands as
may be required can be executed at any one time. It is the user’s responsibility to
know and understand the programming requirements of the instrument to be
controlled.

ICBL Command Buffer Length in words; one word per command code in ICBUE

2-14 Applications

Control Word for Special Control Requests

Figure 2-5 shows the format of the control word (conwd) required in the calling sequence for
DVM?72 special Control requests. Note that although the requests in this category are classified as
“Control requests”, they are in fact special types of Read/Write requests (Request Code is 1 or 2).
Although no data is transferred, the data buffer IDBUF is required to contain the subfunction
code that defines this type of request to the driver.

13 (12 | 11 | 10 918 7|65 4 3,2 1 0

Control Word Bits
Bits 5-0

Bits 10 - 6
10

LU

0 1 0 T 1 X x 1
|— binary transfer mode

if 1, subfunction is in IDBUF

if 1, timeout is accepted as legal

if 1, ICBUF is address of command buffer

Function

Logical Unit Number, changed to select code by RTE before it is
passed to the driver.

Function Code, as defined below:

Timeout bit; if set to 1, DVM72 will handle timeout as a legal wait
between commands. If set to 0, DVM72 will flag a timeout as an error.
For interrupt operation (e.g., subfunction = 12) bit 10 must be set to 1.

Request Subfunction bit; if set to 1, Word 1 of the data buffer contains a
subfunction code. For this type of request, one of the subfunction
codes described below must be provided.

Interrupt/Function bits; for this type of request, these bits are ignored.
Transfer Mode must be binary, so bit 6 = 1.

Parameter/Address bit for optional parameter; if set to 1, as it must be
for this type of request, it indicates to RTE and DVM72 that the entry
ICBUF is an address instead of a parameter. In this case, ICBUF is the
address of the command buffer containing a special 1/O instruction
sequence.

Figure 2-5. Control Word Format, Special Control Requests

Applications

2-15

Special Read/Write Requests

For instruments with special I/O sequence requirements, command sequences in ICBUF may be
combined with data transfers to/from the Data Buffer, IDBUF. This custom commands plus data
transfer capability of DVM72 can be combined with the extended function codes of the Control
Word (conwd) to satisfy the I/O requirements of practically any programmable instrument.

Using Special Read/Write Requests to DVM72, the user can combine any of the following
capabilities:

1. Read or Write data in interrupt or non-interrupt mode

2. 'Transfer data only after an initial interrupt

3. Programmed delay between I/O transfers

4. Custom I/O instruction sequences before or after data transfers.

The calling sequences for Special Read/Write Requests are, on the surface, very similar to the
calling sequences for Special Control Requests. The differences are that the Data Buffer Length
(IDBL) is greater than one, since the I/O request includes data transfer, that different subfunction
codes are expected in Word 1 of IDBUF (13 and 14 instead of 11 and 12), and several bits in the
CONWD (bits 7 and 8) are no longer ignored as they were with Special Control Requests.

Calling Sequence

The calling sequence for Special Read/Write Requests is as follows. Note that this sequence could
be described as the “general form” of the sequence introduced by Special Control Requests.

Caution Custom I/O instruction combinations, timing and data transfer sequences can be
issued in practically any combination defined by the user. It is the program-
mer’s responsibility to become thoroughly familiar with the I/O instruction and
timing requirements of the device to be programmed to avoid loss of data or
possible damage to the device.

2-16 Applications

Assembler Language

EXT EXEC

JSB EXEC transfer control to RTE
DEF RTN return address

DEF ICODE request code

DEF ICNWD control information

DEF IDBUF data buffer address

DEF IDBL data buffer length

DEF ICBUF command buffer address
DEF ICBL command buffer length

RTN return point

ICODE DEC 1 (or 2) 1 = READ, 2 = WRITE

ICNWD OCT conwd described in following section

IDBUF BSS n data buffer of n words, including subfunction code

IDBL DEC n same #; number of words in data buffer

ICBUF BSS m command buffer of m words

ICBL DEC m same m; number of words in command buffer
FORTRAN

DIMENSION IDBUF (n),ICBUF (m) setup both buffers

IDBL=n define length of data buffer

ICBL=m define length of command buffer

ICODE=1 (or 2) request code

ICNWD=conwdB set up control word (B = octal)

establish contents of data buffer (see next section)
establish contents of command buffer
. (see next section)
REG = EXEC(ICODE, ICNWD, IDBUF, IDBL, ICBUF, ICBL)
or
CALL EXEC(ICODE, ICNWD, IDBUF, IDBL, ICBUF, ICBL)

Applications 2-17

Special Read/Write Request Calling Sequence Parameters

ICODE

ICNWD
IDBUF

IDBL

ICBUF

ICBL

RTE EXEC Request Code; must be one of the following: 1, for READ requests,
or 2 for WRITE requests

Control Word, see Figure 2-6.

Data Buffer containing one of the following subfunction codes in Word 1 of the
buffer:

13 = Special command codes in ICBUF are executed, then data is to be
transferred from/to the controlled device to/from IDBUFE. Upon completion
of I/O, in either the Initiator or the Continuator, the normal sequence of
CLC,STF will be suppressed.

14 = Identical to subfunction 13, except terminating I/O sequence of CLC,STF
will be executed upon completion of data transfer.

Data Buffer Length; must be one word longer than the number of data words to be
transferred, since Word 1 of the Data Buffer contains the subfunction code.

Command Buffer containing integer command codes that correspond to the
following I/O instructions. Each I/O instruction is configured with the select code
(CHAN) of the device specified by LU in the Control Word.

Command Code I/O Instruction
1 LIA CHAN
2 OTA CHAN
3 STC CHAN,C
4 CLC CHAN
5 CLF CHAN
6 STF CHAN

Command codes in ICBUF may be used in any order and as many commands as
may be required can be executed at any one time. It is the user’s responsibility to
know and understand the programming requirements of the instrument to be
controlled.

Command Buffer Length in words; one word per command code in ICBUE

2-18 Applications

Control Word for Special Read/Write Requests

The format of the control word (conwd) for Special Read/Write Requests is shown in Figure 2-6.
A command buffer, ICBUE, is required to store any special I/O sequences that may be needed; the
data buffer, IDBUE is required for the subfunction code and all data to be transferred to/from the

programmed device.

13 (12 | 11 | 10 918 7|65 4 3,2 1 0

Control Word Bits
Bits 5-0

Bits 10 - 6
10

Bit 12 (Z-bit)

0 1 0 T 1 01 01 1 LU
|— binary transfer mode

interrupt/non-interrupt
function per Table 2-1

if 1, subfunction is in IDBUF

— if 1, timeout is accepted as legal

if 1, ICBUF is address of command buffer

Function

Logical Unit Number, changed by RTE to select code before passing to
driver.

Function Code, as defined below:

Timeout bit; if set to 1, DVM72 will handle timeout as a legal wait
between transfers. If set to 0, DVM72 will flag a timeout as an error.
For interrupt operation with a wait between transfers, bit 10 must be 1.

Request Subfunction bit; to get subfunction code from Word 1 of
IDBUF, bit 9 must be 1.

Interrupt/non-interrupt Function bits; refer to Table 2-1.
Transfer Mode must be binary; bit 6 must be 1.

Parameter/Address bit for optional parameter; if set to 1, as it must be
for this type of 1/O function, bit 12 indicates to RTE and DVM72 that the
entry ICBUF is an address instead of a parameter. In this case, ICBUF
is the address of the command buffer containing a special 1/0
instruction sequence.

Figure 2-6. Control Word Format, Special Read/Write Requests

Applications

2-19

DMA Programming

DVM?72 provides the user with the capability to handle I/O transfers via Direct Memory Access
(DMA) channels if the device to be programmed offers the I/O protocol necessary for DMA
processing.

Calling Sequence

The calling sequences for DMA Read/Write requests are as follows:

Assembler Language

EXT EXEC
JSB EXEC transfer control to EXEC
DEF RTN return address
DEF ICODE request code
DEF CONWD
DEF IDBUF
DEF IDBL
RTN return point
ICODE DEC 1 (or 2)
ICNWD OCT 11LU
IDBL DEC n+2
IDBUF DEF *+1
WD1 DEC 9 or 10 first DMA control word
oCT 0 or 100000B second DMA control word

WD2

,-L: Data: ,-L
Buff

T ™ T

WDn

FORTRAN

CALL EXEC (ICODE, CONWD, IDBUF, IDBL)

2-20 Applications

Calling Sequence Parameters

ICODE
CONWD

IDBL

IDBUF
WD1

WD2

Request Code: 1 = Read Request, 2 = Write Request.

Control Word with Function Code plus Logical Unit number. For DMA transfers,
the Function Code is 11B (bits 9 and 6 must be set to 1).

Data Buffer Length in number of 16-bit words. If n words are to be transferred,
IDBL must be set to n + 2 to include the first two words containing subfunction
code and DMA control word.

Data Buffer of length specified by IDBL.

The first two words contain a subfunction code and DMA control code as defined
below.

Word 1
9 DMA transfer without STC CHAN,C to start the device.
10 DMA transfer with STC CHAN,C to start the device.

The second word in the Data Buffer must contain the first DMA control word
(CW1).

Word 2
0 No STC CHAN,C is to be issued after each DMA transfer.

100000B DMA is to issue an STC CHAN,C at the end of each DMA cycle,
(Bit 15 set) except on the last cycle of a Read Request.

Applications 2-21

Error and Status Information

Status information on DVM72 is contained in Words 4 and 5 of the Equipment Table Entry and,

upon return from the driver, in the A- and B-Registers. This status data can be obtained through
an RTE I/O Status Request (EXEC 13) or by using the EXEC Function as shown in the example
below.

DIMENSION IREG(2)
EQUIVALENCE (REG, IREG, IA), (IREG(2),1IB)

REG = EXEC (ICODE,p2,...,pn)
IA = IAND(IREG,377B)

Upon return from this EXEC function, the B-Register (IB or IREG(2)) will contain the
transmission log. The status information contained in bits 7 through 0 of the A-Register (EQT
word 5) is defined by Table 2-3.

Table 2-3. DVM72 Error and Status Information (EQT 5)

Value in
Bits 7-0 Meaning
0 No error.
1 lllegal subfunction code.
2 Timeout after 500-usec delay (subfunction = 15).
3 Legal timeout (end of programmed delay) between 1/O transfers.
4 Timeout error; device failed to interrupt during allowed time and bit 10 of
CONWD was not set.
5 ID segment does not exist. Interrupt program defined by IPRAM could not be
located.
6 lllegal instruction code in command bulffer.
7 An alarm or interrupt program is currently scheduled.

2-22 Applications

Configuration Data

Introduction

This section provides configuration information for the Universal Interface Driver DVM72 and is
intended to augment the data provided in the RTE Operating System Programming and Operating
Manual and/or Programmer’s Reference Manual. The software to be configured into an RTE
System includes the following:

09580-16079 DVM72 Universal Interface Driver
(part of RTE) $LIST RTE Scheduling Routine

Driver Considerations

The RTE Operating System Programming and Operating Manuals, Programmer’s Reference
Manuals, and Online Generator Reference Manuals divide the process of System Installation (that
is, System Generation) into phases with headings appropriate to the required operations. The
following headings for DVM72 correspond to those parts of the System Installation with identical
headings in the RTE manuals.

Program Input Phase

Load DVM?72 into the system during this phase as you would load any other I/O Driver.

Configuration Data 3-1

Table Generation Phase

This phase is divided into three parts: the Equipment Table, the Device Reference Table, and the
Interrupt Table. DVM?72 requires entries in each of these tables.

Equipment Table Entry (EQT Table)

1. Determine the select code of the I/O slot for the device.
2. Unless special circumstances prevail, do not use the output buffering option “B”.

3. Do not specify the “D” option (DMA required). DVM?72 will request RTIOC to dynamically
assign a DMA channel whenever one is required.

4. 1If a permanent default timeout value is desired, specify the new value with the “T=ttttt”
option (where “ttttt” represents the timeout value in tens of milliseconds). This timeout value
may also be temporarily reset by a Control Request or an RTE System Command.

5. DVM?72 does not require an EQT extension. (Refer to Table 3-1 for DVM72’s EQT Table.)
A typical response during Equipment Table generation could look like the following:

EQT eqt = ?

I

nn,DVM72, T = xxx

EQT Table entry number

L timeout value (optional)
driver name

||—_

select code (octal)

Device Reference Table (DRT Table)

The Device Reference Table contains a cross-reference of logical unit (LU) numbers to EQT entry
and subchannel numbers. A typical entry for DVM72 might appear as follows:

lu = EQT #7

eqt, sub
subchannel is 0 for DVM72 entry

corresponding EQT entry number from EQT Table

|

Interrupt Table (INT Table)

This table establishes interrupt links that tie the octal select codes back to EQT numbers. For
DVM72, a typical generation response follows:

nn, EQT, eqt
EQT entry number

-

select code (octal)

3-2 Configuration Data

Table 3-1. EQT Table for DVM72

EQT1 Device Suspended List Pointer to ID Segment of the calling program. If REIO is used
in the CALL, this pointer is to an ID Segment created by EXEC.
EQT2 Driver Initiation Section Entry Point Address.
EQT3 Driver Continuation Section Entry Point Address.
EQT4 Driver/Device Data as follows:
Bits Normal Setting and Meaning
15 = 0 DMA is dynamically assigned when needed.
14 = 0 Automatic output buffering is not used.
13 = 0 Driver will not process powerfail.
12 = 1 If driver is to process timeout.
11 = 1/0 Device did/did not time out (system sets this bit to zero
before each I/O request).
10-6 = O Last subchannel addressed.
5-0 = I/O select code for device.
EQT5 Availability Indicator in bits 15 - 14.
Equipment Type Code (72B) in bits 13 - 8.
Status Code upon completion of operation in bits 7 - 0.
EQT6 CONWD = user control word from 1/0 EXEC call.
EQT7 Data Buffer Address (IDBUF). IPRAM if Control request.
EQT8 Data Buffer Length (IDBL).
EQT9 Temporary Storage for Optional Parameter. If bit 12 of CONWD is set, EQT9 contains
the address of the Command Buffer (ICBUF).
EQT10 Temporary Storage tor Optional Parameter. EQT10 serves as a word counter for both
standard and special Read/Write requests.
EQT11 Driver Storage; contains terminal interrupt flag if bit 8 of CONWD is set.
EQT12 Driver Storage; contains Subfunction Code from Word 1 of IDBUF if I/O request is a
special Read/Write request.
EQT13 Driver Storage; contains address of ID Segment used for interrupt processing (Alarm
Program address).
EQT14 Device Timeout Reset Value.
EQT15 Device Timeout Clock.

Configuration Data 3-3

Utility Program DSCHD

DSCHD

Purpose: BASIC language interface to call EXEC 3. Selects the interrupt program
defined by IPROG for scheduling by a subsequent interrupt. DSCHD itself
does not schedule the program; it only places the ID segment address of the
program into EQT13.

Program Type: 7
Externals: EXEC, .ENTR

Method: The BASIC and FORTRAN calls to DSCHD are converted to an assembly
language call to EXEC, using the parameters of the original call.

Calling Sequence:
BASIC
CALL DSCHD (L,C,”PRNAM”)
FORTRAN

CALL DSCHD (LU, ICODE, IPROG)

where:
L =LU = Logical Unit of device driven by DVM72.
C = ICODE = Control Request Code, normally = 3.
"PRNAM” = IPROG = Address of a buffer containing a five-character program name. If

the name is less than five characters, use blanks to extend it to five.
The first word of the buffer contains the number of characters in the
name.

The buffer must reside in a non-swappable area of the system
memory map.

In RTE-6/VM, do not call DSCHD from an extended-background
program. The page containing the buffer (at IPROG) may become
remapped before entry into the driver.

Utility Program DSCHD A-1

	RTE Driver DVM72 Universal Interface Driver
	Table of Contents
	Chapter 1 - General Information
	Chapter 2 - Applications
	Chapter 3 - Configuration Data
	Appendix A - Utility Program DSCHD

