FComputer
-“?‘M useum

Microprogramming 21MX Computers
operating and reference manual

I

HEWLETT ﬁ PACKARD

LIST OF EFFECTIVE PAGES

Pages Effective Date
Title August 1974
ftovil ... August 1974
-1to -2 August 1974
2-1t02-4 August 1974
3-1t03-24 August 1974
4-1t04-26 August 1974
5-1t05-17 August 1974
6-1to6-7 August 1974
A-1toA-3 August 1974
B-1 .. August 1974
CltoC-2.. August 1974
D-1toD-4 August 1974
E-1toE-19 August 1974
I-ltol-4 August 1974

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

PREFACE

This manual is a complete reference source for microprogramming the Hewlett-
Packard 21MX Computer Series. With the facilities of the HP 12978A Writable
Control Store the use: can expand the already powerful capability of his 21MX
Series Computer by adding custom-tailored instructions to the existing set of
microprogrammed basic instructions.

The HP 12978A Writable Control Store is provided with two options. The
12978A option 001 provides software that operates in the DOS-III operating
system. The 12978A option 002 provides software that operates in the Basic
Control System. Refer to Section VI of this manual for a complete description
of the options.

This manual is written for an individual who already has considerable
experience as an assembly language programmer. HP 21MX Computer Series
microprogramming is no more complex than normal assembly language pro-
gramming on larger computers. Thus, with little more investment that learning
a new assembly language, large computer capability can be had for small com-
puter expense.

RELATED DOCUMENTATION

It is assumed that the microprogrammer has read the HP 21MX Computer
Series Reference Manual (HP 02108-90002) and that he knows how to use his
operating system, DOS-IIT (HP 24307B), or the Basic Control System (HP
20855A). These operating systems are described in the following publications:
HP 24307B DOS-III Disc Operating System (HP 24307-90006)
Basic Control System (HP 02116-9017)
During the process of writing, debugging, and using a microprogram, the user

should also have access to and be familiar with the following additional
publications.

The assembler used with the DOS-ITI-B system is described in:
Assembler Reference Manual (HP 24307-90014)

The assembler used with the Basic Control System is described in:
HP Assembler (HP 02116-2014)

The 21MX computer is described in:

HP 21MX Computer Series Operator’'s Manual (HP 02108-90004)

HP 21MX Computer Series Installation and Service Manual (HP
02108-90006)

The HP 12909B pROM Writer, which is used in conjunction with the six mask

tapes produced by the Micro Debug Editor, and installing pROMs is described
in:

HP 12909B pROM Writer Operating and Reference Manual (HP
12909-90009)

HP 12909B Programmable ROM Writer Interface Kit Installation and
Service Manual (HP 12909-90005)

i’

Preface

HOW TO USE THIS MANUAL

This manual is intended to be used in the following way:

a. Read Section I for the introduction to user microprogramming.

b. Study Section II to learn the structure of the system that is being con-
trolled by microprogramming. Section II explains the relationship between
the Control Section and the other sections of the computer.

c. Become familiar with the reference material in Sections IV, V, and VI so
that when the time comes to use the material, it may be found easily. These
sections describe the microprogramming language, the Micro-assembler,

the Micro Debug Editor, and the 12978A Writable Control Store.

d. Study Section III to learn how to write a microprogram.

CONTENTS

Section I Page
INTRODUCTION TO USER
MICROPROGRAMMING
Conventional Control Section 1-1
Microprogrammed Control Section 1-1
Limitations of HP 21MX Microprogramming 1-1
SUumMmary 1-2
Section I1 Page
THE MICROPROGRAMMABLE COMPUTER
Relationship Between Sections 2-1
Control Section 2-1
The Control Processor 2-2
The Microprogrammer’s Roadmap 2-2
DataPaths....... 2-3
Main Memory i, 2-3
I/0Section 2-3
Arithmetic And Logic Section. 2-4
FrontPanel 2-4
Section I11I Page
WRITING A MICROPROGRAM
AnExample. 3-1
Comparison Between Assembly and
Micro-assembly Language Programming 31
The Instruction 31
Data Source and Data Destination 3-1
Data Modification., 31
DataTestand Branch 3-3
Micro-instruction Formats 3-3
Statement Characteristics 3-3
Fields 3-3
CharacterSet......... 34
Label Symbol. 3-4
Asterisk Comment 34
Micro-orders: Fields 2 through6........... 34
OperandsinField6.. 34
Coding the Four Word Types 34
Coding with Word Type 1 — Common 34
Coding with Word Type 2 — Immediate Data 3-5
Coding with Word Type 3 — Conditional Jump 3-5
Coding with Word Type 4 — Unconditional Jump . . .3-6
From Code to Execution Summary 3-6
Access to microprograms in Control Store 3-7
User Function Code in Assembly Language 37
Control Store Modules Available to User 3-10
Mapping toa Module Address 3-10
Microprogramming Input and Output Functions3-11
Synchronizing with the I/0 System 3-11
I/0 Signal Generation 3-11
Memory Protection in Relation to 1/0
Microprogramming. 3-12
I/0 Control Routine 3-12
170 Output Routine 3-12
I/OInput Routine. 3-12

Section III (Continued) Page
Interrupt Handling 3-12
Normal User Interrupt Handling Applications. 3-13
Micro-orders Affecting Memory Protect 3-13
The Effect of the Dual Channel Port Controller
on Microprograms. 3-14
Summary of Special Timing Rules 3-14
Sample Microprograms 3-15
Swap Memory Locations 3-15
Block Move Microprogram 3-16
Input, Sum, and Sum of Squares Microprogram 3-17
Read a Word froma Loader ROM. 3-23
Section IV Page
MICROPROGRAMMING LANGUAGE
Word Typel — Common. 4-1
Op Micro-orders 4-2
Special Micro-orders, 4-7
ALU Micro-orders. 4-10
Store Micro-orders 4-12
S-bus Micro-orders 4-14
Word Type 2 — ImmediateData 4-16
“IMM’ Micro-order 4-16
Modifier Micro-orders (Bits 19 and 18 of the
Micro-instruction) 4-16
Operand Micro-order 4-18
Word Type 3 — Conditional Jump 4-18
“JMP” Micro-order 4-19
“CNDX" Micro-order. 4-19
Condition Micro-orders 4-19
Jump Sense Micro-order 4-21
Operand Micro-order 4-21
Word Type 4 — UnconditionalJump........ 4-22
“JMP” and “JSB" Micro-orders 4-22
Jump Modifier Micro-orders 4-22
The Operand Micro-order 4-24
Pseudo Instructions 4-24
EQU 4-25
ONES 4-25
SKP ... 4-26
ZEROES 4-26
Section V Page
MICROPROGRAMMING SOFTWARE
Microprogramming Software Summary 5-1
Micro-assembler 5-1
Hardware Environment 5-1
Micro-instruction Source Record 5-1
Micro-assembler Control Record 5-2
Micro-assembler Output
Binary Object Output........................... 54
Symbol Table Listing 5-4
Micro-assembly Listing 5-5
Micro-assembler Error Message 5-5
DOS-11I Operation of Micro-assembler 5-5
BCS Operation of Micro-assembler. 5-7

CONTENTS (continued)

Section V (Continued) Page Section VI (Continued) Page
Micro Debug Editor 5-8 Installation 6-1
Hardware Environment 5-8 Unpacking and Inspection. 6-1
Initialization Program 5-8 Installation 6-3
Using the Micro Debug Editor 5-9 Reshipment 6-4
Input Commands 5-10 Programming 6-5
LOADLXY ..o 5-10 Program Example: Loading WCS 6-5
READ, X 5-11 Programming Example: Reading WCS 6-5
Edit Commands 5-11 Program Example: Loading WCS by Dual Channel
SHOW, xxxx[,yyyy]l 5-11 PortController 6-5
MODIFY, xxxx[,yyyy] .- 5-11 General Theory of Operation 6-6
Output Commands 5-11 WCS Module Identification. 6-6
DUMPLXY. ... 5-11 WCS Connection, ... 6-6
WRITE, X 5-11 WCS Addressing. L. 6-6
PREPARELX) 5-11 WCS Loading Timing Diagram 6-7
VERIFY[,X] 5-12
Termination Command 5-13
FINISH 5-13
Debug Commands. 5-13 Appendix A Page
BREAK,yyyy - >13 OBJECTTAPEFORMATS Al
CHANGE[,m] 5-14
Relocate MDE WCS-resident Microcode 5-14
MOVE,yyy ... o 5-14 Appendix B Page
MDE Error Messageso >4 MICROCODINGFORM B-1
DOS-111 Operationof MDE 5-14 :
WCS I/0 Utility Subroutine 5-16
Appendix C Page
MICRO-ORDER SUMMARY C1
Section VI Page Appendix D Page
WRITABLE CONTROL STORE FUNCTIONAL BLOCK DIAGRAM D-1
General Information 6-1
Identification. 6-1
Interface KitContents 6-1 Appendix E Page
Contents of Interface Kit Options. 6-1 BASIC INSTRUCTION SET MICRO-
Specifications 6-1 PROGRAMULISTING E-1
ILLUSTRATIONS
Title Page Title Page
Four Major Computer Sections 2-1 Swap Microprogram 3-15
A Microprogram Implements One Macroprogram Block Move Microprogram 3-16
Instruction. 2-2 Input, Sum, and Sum of Squares Microprogram 3-18
Front Panel Displays and Switches 2-4 Reading From A Loader ROM 3-23
Microprogram Segment on the 21MX Word Type 1 Micro-assembler Mnemonic format. 4-1
Microcoding Form 3-2 Word Type 1 Binary Format 4-1
Microprogram Implementation Process 3-6 Word Type 2 Micro-assembler Mnemonic Format 4-16
Processing the Instruction Register 3-8 Word Type 2 Binary Format 4-16
Allocation of Control Store by Modules 3-10 Word Type 3 Micro-assembler Mnemonic Format4-18

vi

ILLUSTRATIONS (continued)

Title Page Title Page
Word Type 3 Binary Format 4-18 WCS Terminal Board for Selecting Module
Word Type 4 Micro-assembler Mnemonic Format4-22 Number Position, 6-3
Word Type 4 Binary Format 4-22 Installation of Flat Cable Assembly 6-4
Micro-instruction Card source Record 5-2 WCS Loading Timing Diagram 6-7
SymbolTable...... 5-5 Format of Standard Object Tape A-1l
Micro-assembly Listing 5-5 Format of SRCASE Object Tape A-3
General Format of Initialization Program 5-8 Microcoding Form B-1
Test Program Call to Microprogram 5-9 Functional Block Diagram D-1
Writable Control Store Interface Kit 6-2
TABLES

Title Page Title Page
User Function Code Mapping 3-10 Interface KitContents 6-1
1/0 Control Signal Generation Determined by Additional Material for Interface Options 6-1

IRBits11-6 3-11 Writable Control Store PCA Specifications. 6-3
Micro-assembly Error Messages 5-6 WCS PCA Jumper Removal on Terminal Board
Micro Debug Editor Commands 5-10 for Various Module Selections 6-4
Alphabetical List of MDE Error Messages 5-15 Summary of User Micro-order C-2

vii

TO USER MICROPROGRAMMING| |

INTRODUCTION

The Control Section of a computer contains circuitry
which decodes each machine instruction and then executes
the required sequence of operations. Machine instructions
can be decoded and executed by either a conventional
Control Section or a microprogrammed Control Section.

1-1. CONVENTIONAL CONTROL
SECTION

In a conventional computer Control Section, specific hard-
ware is dedicated to each function performed by the
instruction set. The major advantage of this specially
designed hardware is speed for the instruction set. The
major disadvantage is the loss of flexibility for special
applications or for enhancements. Changes and additions
to hardware components are required to implement
changes and additions to existing capabilities.

This is no problem for a conventional computer if no new
machine instructions are required. The hardware has been
designed to minimize timing for the instruction set. Rarely
however, does a computer manufacturer produce an in-
struction set that fully meets the requirements of most
potential users. Hence, the manufacturer must either focus
his attention on one group of users (specialize) or widen his
scope and generalize the hardware design to meet the
needs of a number of user groups. In the latter case, the
user must modify his discipline to some extent to meet the
limitations of his hardware.

1-2. MICROPROGRAMMED CONTROL
SECTION

In the microprogrammed computer, all distinct logical
functions are separated from the sequence in which those
functions are performed. Hardware redundancy is thus
reduced. The logical functions are defined by a bit pattern
or micro-instruction held in Control Store. Each machine
instruction in Main Memory is performed by a sequence of
micro-instructions in Control Store that defines the logical
functions to be performed. This sequence of micro-
instructions is called a microprogram and is often referred
to as firmware, because it lies somewhere between
hardware and software in origin and permanence.

Software can execute much faster with the application of
microprogramming. This speed is achieved by two factors:
the ratio of Control Store speed over Main Memory and
the relative flexibility of a micro-instruction over normal
machine instructions. The HP 21MX Control Store, where
micro-instructions reside, cycles more than twice as fast as
Main Memory, where normal machine instructions reside.
Control Store words are 24 bits whereas Main Memory
words are 16 bits. In addition, micro-instructions have
access to many internal registers and logical functions
that Main Memory programs cannot use.

For example, the 21MX floating point software
subroutines were identified as being very time consuming.
They were then microcoded by a Hewlett-Packard micro-
programmer and made available in Read Only Memory to
users. Implementation of the floating point firmware
requires no change to user programs. The micro-
programmed floating point instructions run about 20
times faster than the corresponding software subroutines.

As in the floating point microprogram, the user can study
his software, determine the most time consuming
functions performed, and then microprogram those
functions, that is, execute them in Control Store using a
single Main Memory instruction instead of a sequence of
Main Memory instructions. Any software that uses those
microprogrammed functions will execute at a higher
speed.

1-3. LIMITATIONS OF HP 21MX MICRO-
PROGRAMMING

The user should be aware of the following limitations
imposed by HP 21MX microprogramming:

a. Since the origin of a microprogram is specified during
micro-assembly, HP 21MX microprograms are not
relocatable.

b. Since there is only one register available to the micro-
programmer to save subroutine return addresses, the
HP 21MX design allows for no more than one logical
microprogram subroutine level. This limitation can be
circumvented by using other registers or Main
Memory to simulate subroutine nesting.

¢. The microprocessor cannot be interrupted. If the
microprogram execution time exceeds the interval
between interrupts (75us. is the maximum interval

11

Introduction To User Microprogramming

allowed by Hewlett-Packard instruction set micro-
programs), the microprogram must test for pending
iterrupts or they can be lost. When a pending inter-
rupt is detected, the microprogram must yield control
to the interrupt handler. For a discussion of micro-
program interrupt handling, refer to sections 3-32 and
3-33 in this manual.

1-4. SUMMARY

The advantages of microprogrammed control are:

1-2

21MX

The user can use a fully-supported general purpose
computer to aid in the generation and debugging of
extensions to the computer’s own instruction set.

. The user can speed up the overall execution time of his

software by microprogramming its most time con-
suming or repetitious routines.

The wuser can implement enhancements of the
instruction set and special purpose processors
produced by the manufacturer with little impact on his
existing software.

THE MICROPROGRAMABLE COMPUTER

SECTION

To successfully implement microprograms, the assembly
language programmer must learn more about the
computer. This section of the manual is the introduction to
the structure of the computer. A functional block diagram
of the microprogrammable machine is provided in
Appendix D. This diagram describes what paths data can
follow. Control commands or micro-instructions spell out
what paths the data does follow and what modifications
and tests are performed in the process.

Functionally, a computer consists of four major sections:

e Control
Main - Memory
Input and Output

Arithmetic and Logic

2-1. RELATIONSHIP BETWEEN

SECTIONS

These four sections and the Front Panel are interconnected
by a network of signal paths. Data processing programs

and data are stored in the Main Memory. Parameters,
status, commands, and processor results (data) are
exchanged with external devices such as teleprinters,
magnetic tape units, and line printers via the Input and
Output (I/O) section. Add, subtract, and other
mathematical functions and shift, ‘“‘or”’, “and’’, and other
logical functions are performed in the Arithmetic and
Logic section. The Front Panel registers and switches pro-
vide direct operator communication.

Each section executes under the direction of the Control
Section by means of a microprogram. The Control Section
reads the user’s program stored in Main Memory and
directs the appropriate hardware in each of the other
sections.

Figure 2-1 shows the four major sections of the computer.

2-2. CONTROL SECTION

To write a microprogram an understanding of the Control
Section is required. The Control Section takes an instruc-
tion from Main Memory and stores it into the Instruction

THE COMPUTER

MAIN
MEMORY

PROGRAMS AND DATA

CONTROL

ARITHMETIC
AND LOGIC

CONTROL
SECTION

1/0

EXTERNAL
DEVICES
INTERFACE

MATHEMATICAL
AND LOGICAL
FUNCTIONS

Figure 2-1.

Four Major Computer Sections

2-1

The Microprogrammable Computer

21MX

CONTROL SECTION

INSTRUCTION REGISTER

MACROPROGRAM
INSTRUCTION

‘f—\\

-CONTROL STORE

MICROPROGRAM

MACROPROGRAM
| t .4~ INSTRUCTION

MAIN MEMORY

MACROPROGRAM

Figure 2-2. A Microprogram Implements One
Macroprogram Instruction

Register (IR), as shown in figure 2-2. An appropriate
microprogram is executed whose Control Store entry point
address is determined by the IR. View, then, each program
instruction in Main Memory as a jump to a micro-
programmed routine, which resides in Control Store.

The storage area for these microprograms is Control Store
which may be either a Read Only Memory (ROM) or
Writable Control Store (WCS). In this manual, to dis-
tinguish programs in Main Memory from microprograms
in ROM, Main Memory programs are called macropro-
grams. We refer to a Control Section that executes
microprograms from ROM, as a Control Processor.

2-3. THE CONTROL PROCESSOR

A microprogram in the Control Processor is in command of
the computer at all times. A microprogram which is part of
the basic 21MX instruction set microprogram takes pro-
gram instructions from Main Memory and stores them
into the Instruction Register. The upper eight bits of the
Instruction Register determine the microprogram address
within one of the following instruction groups:

2-2

Basic Instruction Set

Extended Instruction Group
Floating Point Instruction Group
User Microprogram Group

Since the user is mainly interested in writing and exe-
cuting his own microprograms, he can regard the Basic
Instruction Set microprogram as a supervisor micro-
program that determines when a user microprogram is
called and then passes control to the user microprogram.

When the Instruction Register holds an octal 101rrr or
1051 (see table 3-1 for possible values of rrr), a branch is
made to the user microprogram area of Control Store.

When a microprogram has run to completion, it returns to
location 0 in Control Store to take the next instruction
from Main Memory and store it into the Instruction
Register.

24. THE MICROPROGRAMMER’'S ROADMAP

Appendix D holds the fundamental diagram of the com-
puter required by the microprogrammer. This functional

21MX

block diagram is the “roadmap’ that is used to determine
possible data paths and to determine where logical
decisions can be made. This diagram can be unfolded and
referred to while reading other parts of the manual. Note
that the four sections of the computer, illustrated in
figure 2-1, are shown in more detail in the functional block
diagram.

To read the functional block diagram, begin with a 101rrr
or 105rrr instruction in the Instruction Register. The rrr
specifies the octal Control Store entry point address
according to the description in section 3-24, Mapping to a
Module Address. This address is moved into the ROM
Address Register (RAR). With a first address specified,
the user microprogram begins execution. The contents of
the Control Store location given in the ROM Address
Register are moved into the ROM Instruction Register
{RIR). The ROM Instruction Register now holds a 24 bit
micro-instruction. The micro-instruction is decoded and
the specified control functions are executed.

Successive micro-instruction addresses are determined in
the following way. The ROM Address Register is incre-
mented at the start of execution of each micro-instruction.
When a jump is executed, the ROM Address Register is
loaded with the jump target address. When a jump to sub-
routine is executed, the ROM Address Register is stored
into the SAVE Register (save return address) and the
jump target address is stored into the ROM Address
Register. When a return from subroutine is executed
(RTN), the SAVE Register contents are transferred into
the ROM Address Register and the SAVE Register is
cleared. Thus at the completion of execution of each micro-
instruction, the ROM Address Register holds the address
of the next micro-instruction.

2-5, DATA PATHS

The central data transfer path is the S-bus. The contents
of all regesters except the following can be directed onto
the S-bus: L-register, RAR, SAVE Register, Extend
Register, and the Overflow Register. The following
registers can receive data from the S-bus:

M-register
T-register
L-register
Counter Register
Display Register
Display Indicator

Instruction Register

The T-bus receives data only from the Rotate/Shifter
(R/S) but can pass data to these registers:

A-register

B-register

Scratch Pad Registers (S1 through S12)

The Microprogrammable Computer

X-register
Y -register
P-register

S-register (Front Panel Switch Register)

The 1/0-bus serves to transfer data to and from external
devices under programmed control.

Note in Appendix D, the functional block diagram, that
the arrows are significant. For example, the B-register
contents can be sent to the S-bus and thence to the
M-register. However, the contents of the B-register cannot
be sent to S12 (Scratch Pad 12) without passing through
the ALU.

2-6. MAIN MEMORY

The M-register is a 15 bit register which holds memory
addresses for reading from or writing into Main Memory.
When storing from the M-register, bit 15 is clear (0). The
T-register or Transfer register holds the data being
transferred to or from memory. Contents of both these
registers are transferred to and from the S-bus. Four
loader ROMs, selectable by Instruction Register bits 15
and 14, each can contain a 64 word Main Memory program
which may be loaded into Main Memory and used to load
Main Memory from a peripheral device or to perform any
other function desired by the user.

Two flags are associated with memory: the A-register
Addressable Flag {AAF) and the B-register Addressable
Flag (BAF). These flags are required to allow the A- and
B-registers to be addressed as locations 0 and 1,
respectively, of Main Memory.

2-7. 1/0 SECTION

The Central Interrupt Register (CIR) is a 6 bit register
associated with the I/0 interrupt circuitry. It is loaded
with the Select Code of the interrupting device under
program control and passed to the S-bus. Whenever the
Central Interrupt Register is loaded, an Interrupt
Acknowledge (IAK) signal is issued to the I/0 device.

The I/0-bus transfers data to and from external devices.
Two flags are associated with I/0: the Interrupt Pending

flag and the I/0 Skip Condition Met (Main Memory
instructions SFS and SFC) flag.

The Interrupt Enable Register is used to disable or enable
the recognition of all interrupts, except Memory Protect,

Parity, and Power Fail interrupts.

2-3

The Microprogrammable Computer

2-8. ARITHMETIC AND LOGIC SECTION

This section consists of the Arithmetic and Logic Unit
(ALU), the Rotate/Shifter (R/S), 22 registers and six
flags.

The ALU and R/S are the only units that execute
functional modifications on the data. The ALU receives
input from the S-bus and from the L-register (Latch
Register). Output from the ALU goes to the R/S which
places its output on the T-bus.

Output from the ALU and R/S can be stored in one of the
following registers via the T-bus:

A-register
B-register
Scratch Pad Registers (S1 through S12)
X-register
Y -register
P-register

S-register

Remember that the P-register holds the macroprogram
(Main Memory) address. The P-register must be under
control of the microprogram which must insure that it
contains the proper address after the microprogram is
complete. When the microprogram is complete, the
resulting P-register value is the address of the next macro-
instruction to be executed. Note that the Basic Instruction
Set fetch routine (at Control Store address 0)
automatically increments the P-register after the macro-
instruction is fetched. Thus for one word wuser
macro-instruction function codes, no further incrementing
of the P-register is necessary in the user microprogram.

The S-register is reserved for internal storage of the Front
Panel switch register. Note that all of these registers can
also be sent along the S-bus for storage into memory,
passage to an external device, or input to the ALU.

21MX

The Extend Register is a one bit register used in shift
operations to link the A- and B-register or to indicate a
“carry’’ arithmetic result out of the A- or B-registers. The
Overflow is a onebit register used to indicate an
arithmetic overflow from the ALU. {See 21MX Computer
Series Reference Manual, where Overflow and Extend
Register arithmetic results are fully explained.) These two
registers can also be used as flags.

The 8 bit Counter Register, which passes to and from the
S-bus, is used for repeat instructions, for Loader ROM
addressing, and other general purposes, such as looping in
a microprogram.

There are six flags dedicated to the Arithmetic and Logic
Section. The CPU Flag is a general purpose flag. Four
others signal output results from the ALU and one indi-
cates the last T-bus value. ALU Ones is set when all ones
are output from the ALU. ALU Carry Out is set when an
ALU function produces a “‘carry’’ out of bit 15. ALU Bit 0
and ALU Bit 15 flags represent the last value of the
specified bit in the ALU output. T-bus Zero flag is set if all
bits of the T-bus are zero.

2-9. FRONT PANEL

Two registers and two flags are associated with the Front
Panel Section. The Display Register holds the contents of
the register A, B, M, T, P, or S, indicated by the Display
Indicator. The Display Register and the Display Indicator
are displayed on the Front Panel, as illustrated in figure
2-3.

The Run Mode flag indicates that the computer is in a Run
or Halt condition. The Run Enable flag indicates whether
the four position key-operated switch on the front panel is
in Lock or Operate mode.

REGISTER DISPLAY

LOCK

[O
N
OPERATE A OVERFLOW EXTEND

FOUR POSITION

STANDBY
KEY-OPERATED
SWITCH

Q210D
JHbHbE

= RN ‘/n;‘l‘,—x‘ N

[y
7

ngJ bl o000
HHHHHHEEEE

B H o

HALT IBL

[) { .
RUN PRESET INTERRUPT PARITY POWER FAIL/
BATTERY

DISPLAY REGISTER

(R AR U R S

- - INSTR INC

A B M T P STEP M STORE
CLEAR DEC DISPLAY
DISPLAY M

Figure 2-3. Front Panel Displays and Switches

2-4

WRITING A MICROPROGRAM

SECTION

This section introduces the basics of writing and
debugging a microprogram in the micro-assembly
language.

An assembly language programmer who codes programs
for Main Memory may shun microprogramming because
he regards it as too complex, mysterious, and the exclusive
field of the computer designer.

However, Hewlett-Packard has especially designed the
HP 21MX series computers to enable assembly language
programmers to quickly get to the microcode level of
computer logic so that they can attack the most
time-consuming and least efficient parts of the software.
Execution times can be cut with the proper application of
microcode.

3-1. AN EXAMPLE

Figure 3-1 illustrates a segment of a microprogram. Ten
micro-instructions are shown coded on the 21MX Micro-
coding Form. The second micro-instruction shaded in
figure 3-1 consists of the following four codes:

COV PASSM P

Each of the four codes are called micro-orders:

a. P takes the 16 bits in the P-register and puts them onto
the S-bus.

b. M stores the 16 bits on the S-bus into the M-register
(bit 15 of M-register is always 0).

c. PASS passes the 16 bits on the S-bus through the ALU
without modification.

d. COV clears the Overflow Register.

Note in figure 3-1 that the various micro-orders of the
micro-instruction begin in certain columns of the
micro-coding form. These columns define the location of
fields of the micro-instruction and each field holds a
certain type of micro-order. In the case of the example
micro-instruction, field 3 holds the special operation COV,
field 4 holds the ALU operation PASS, field 5 holds the

store operation M, and field 6 holds the data source P, that-

is, the data placed on the S-bus.

Section IV of this manual gives a full explanation of micro-
instruction formats and micro-orders.

3-2. COMPARISON BETWEEN AS-
SEMBLY AND MICRO-ASSEMBLY
LANGUAGE PROGRAMMING

The assembly language programmer is already familiar
with the basic concepts of programming: the instruction,
data source, data destination, data modification, data test,
and branch. These concepts hold in microprogramming.

3-3. THE INSTRUCTION

The normal macro-instruction in Main Memory is 16 bits
long. Most macro-instructions consist of one operation
command (for example Add to A-register) and a data
source or destination (for example Memory Location
1237). Thus there are usually two orders in a
macro-instruction [Add to A-register] [Memory location
1237). This is coded in Assembly Language as ADA
VALU, where VALU is the label of memory location 1237.

The micro-instruction in Control Store is 24 bits long,
which allows more control and flexibility to be coded into
each instruction. A micro-instruction consists of up to five
orders called micro-orders. Section 3-1 gives an example of
four micro-orders coded into a micro-instruction.

There are four micro-instruction formats. Each format
defines a micro-instruction Word Type (Word Type 1,
Word Type 2, etc.) and determines a set of micro-orders
which may be coded into the format. Micro-instruction
Word Types and micro-orders are described in Section IV.

3-4. DATA SOURCE AND DATA DESTINATION

Both assembly and micro-assembly language instructions
specify data source and data destination. In assembly
language one of these is usually a Main Memory address
and the other is a register, as in ADA VALU where the
A-register is the destination of the data and VALU is the
source of the data. With microprogramming both data
source and data destination are usually registers, as more
registers are available to the microprogram than to the
assembly language program.

3-5. DATA MODIFICATION

Add, shift, set flag, and logical functions are performed
similarly in both types of programming. In micropro-
gramming, a wider range of basic operations, especially
logical functions, is available. Complex operations, such as
divide, multiply, and byte move, are performed by micro-
programmed subroutines and are available in the Basic
Instruction Set and Extended Instruction Group
microprograms.

31

21MX

Figure 3-1. Microprogram Segment On the 21MX Microcoding Form

Writing A Microprogram

e) A
T T
N A b ! | |
e _ L T
| AN - W v EEEE NN |
e i ,,
e | |
” | | | |
R | f L , | ,
| G X9owaN 0Nt STTEN T S JLM
EVE :1§$v aogc 029988V VvY Wyod TS| ANVN
et] HIX=RILND T[SVl LN T
OIXAIND TS NU RXXXDD3aaeavv vy Reod TS| TaNv[| v
, | T T HKERIND 1SSVl INDT
TEX=AIN TS NI XXXXe8aRvYvXXXX Wa 0T | ISEREARREE
” T T T ek 1 S vd[IND L
TTRRINGTE DINT XXXV XXX 5574 TS/ SSvidl | [T 1400
YA ¥Ed0 ON = AN0 MIDN NI v L | W Ssvd | ADD
T (o7 yaay Wou) §INT avE SN Mo T[T
IREAN | EMEREEEERETNE R , R , EEE | L LE NEEEEN NS AR R
e R R T TN TR LR

{(.G°0T X .,G'ZT :3Zis Jen)dy)

WHO4 ONIGODOHIIN XWILZ dUHVIOVd-L13TMIH

3-2

21MX

3-6. DATA TEST AND BRANCH

These operations are quite similar in the two languages.
Many tests occur automatically in the course of trans-
ferring data in a microprogram. A test and branch out of a
line of macro-instructions in normal assembly language,
however, requires two instructions (4.6 us): a test instruc-
tion and a skip instruction.

For example:

SLA skip if LSB of A=0

JMP OUT branch out of code sequence
A test and branch out of a line of micro-instructions
requires only one micro-instruction (.325 us}.

For example:
JMP CNDX ALO OUT branch out of code sequence

if bit 0 of last ALU out-
put = 0

3-7. MICRO-INSTRUCTION FORMATS

Just as in normal assembly language coding, micro-
assembly language source statements are coded in
mnemonic form to define an instruction. Each source
language statement defines a micro-instruction and
consists of an optional label, five micro-order fields some of
which may be left blank, and a comment field. The label is
used when needed as a reference by other micro-instruction
statements. The micro-orders consist of one to four
mnemonic characters and specify functions to be per-
formed by the Control Section. According to the type of
micro-instruction being defined, one of the micro-orders is
sometimes interpreted as an operand. When an operand is
specified, it defines an integer or an address, depending on
the type of micro-instruction being defined.

3-8. STATEMENT CHARACTERISTICS

Micro-assembly language source statements are divided
into four formats, according to the function the
micro-instruction is to perform. Each format is called a
Word Type.

e Word Type 1 is the most commonly used micro-
instruction format and specifies data transfer and
modification. Word Type 1 source statement fields are:

Label
Op
Special
ALU
Store
S-bus

Comments

Writing A Microprogram

o Word Type 2 is used to send an 8 bit constant
(immediate data) specified in the micro-instruction to a
register. Word Type 2 source statement fields are:

Label
“IMM”
Special
Modifier
Store
Operand

Comments

e Word Type 3 is used to specify a conditional branch in
the microprogram. Word Type 3 source statements
fields are:

Label
“IJMP”
“CNDX"
Condition
Jump Sense
Operand

Comments

o Word Type 4 is used to specify an unconditional branch
in the microprogram. Word Type 4 source statement
fields are:

Label

“JMP” or “JSB”
Jump Modifier
Operand

Comments

3-9. FIELDS

As shown in figure 3-1, the fields are fixed for micro-
assembly language source statements. ‘An entry in any
field (except comments) must begin in the first column of
that field.

e Field 1 begins in column 1 and holds a label that is no
longer than eight characters.

e Field 2 begins in column 10 and contains a micro-order
no longer than four characters. This field can also hold a
Pseudo Instruction (refer to section 4-21 for the
explanation of Pseudo Instruction mnemonic codes).

e Field 3 begins in column 15 and contains a micro-order
no longer than four characters.

¢ Field 4 begins in column 20 and contains a micro-order
no longer than four characters.

3-3

Writing A Microprogram

e Field 5 begins in column 25 and contains a micro-order
no longer than four characters.

e Field 6 begins in column 30 and contains a micro-order
no longer than four characters (Word Type 1) or an
operand (Word Types 2, 3, and 4).

e Field 7 begins in column 40 and contains comments
only; comments may begin and be placed anywhere
from column 40 to column 80 (if column 39 contains the
last character of the field 6 operand, field 7 must begin
in column 41).

3-10. CHARACTER SET

The characters that may appear in a source statement are
as follows:

A through Z
0 through 9
(period)

* (asterisk)

+ (plus)
- (minus)

(space)
Any ASCII character may appear in the comments field.

A space may only begin a field if no micro-order is
specified in that field.

3-11. LABEL SYMBOL

A label may be one to eight characters consisting of A
through Z, 0 through 9, and a period. The first character
must be a letter.

Each label must be unique within the microprogram.
Names which appear in $EXTERNALS micro-assembler
control input statements {refer to section 5-5) may not be
used as statement labels in the same microprogram.

3-12. ASTERISK COMMENT

An asterisk in column one of the source statement
indicates that the entire micro-assembler source statement
is a comment.

3-13. MICRO-ORDERS: FIELDS 2 THROUGH 6

The micro-order fields define operations that are to be
performed by the Control Section of the computer. The
micro-orders applicable to each field are determined by the
source statement Word Type. Section IV describes the
micro-orders that apply to each Word Type and describes
the operations that they specify.

3-4

21MX

3-14. OPERANDS IN FIELD 6
Word Types 2, 3, and 4 contain an operand in field 6.

In Word Type 2, the operand must be either a decimal or
octal number. It cannot be an expression (refer to section
4-10 for definition of a Word type 2 operand).

In Word Types 3 and 4, the operand is a decimal number,
octal number, or a number computed from an expression
which can include a label (refer to section 4-16 for the
definition of a Word Type 3 operand. Refer to section 4-20
for the definition of a Word Type 4 operand).

3-15. CODING THE FOUR WORD TYPES

The following sections describe how to code source
statements in micro-assembly language. The reader should
be familiar with Section IV of this manual before pro-
ceeding with these descriptions. Section IV describes the
micro-orders that can be used with each Word Type. By
referring to Section IV, the reader can see the options that
are available to him as each Word Type is described. The
reader will also need to refer to the functional block
diagram in Appendix D.

3-16. CODING WITH WORD TYPE 1 — COMMON

This word type specifies data transfer and modification.
The format of Word Type 1 is shown in section 4-1. As an
example, a micro-instruction is developed that executes
the following control functions:

e Store the A-register contents into the M-register

e Perform a memory protect check on the A-register
contents

o Transfer the A-register contents to the ALU, increment
this value in the ALU, and store the result into the
P-register

a. Specify the register that is to be placed on the
S-bus; the A-register is specified in the example:

oP SPEC ALU STORE S-BUS

A

b. Specify the function of the ALU; the increment
function is specified in the example:

oP SPEC ALU STORE S-BUS

INC A

21MX

¢. Specify the Op field function; no Op field function is
specified in the example. When no Op function is
required, the standard operation is specified by
either leaving the field blank or inserting NOP into

the field:
oP SPEC ALU STORE S-BUS
NOP INC A

d. Specify a Special function, if required; a memory
protect check is specified in the example:

opP SPEC ALU STORE S-BUS

NOP MPCK INC A

e. Finally, specify where the resulting data is to be
stored. Two store operations are required in the
example. The unmodified A-register value on the
S-bus must be stored into the M-register and the in-
cremented A-register value on the T-bus must be
stored into the P-register. The micro-order PNM
performs both of these store operations and serves
to illustrate that data stored from the S-bus is
unmodified data and data stored from the T-bus can
be modified by the ALU or R/S:

oP SPEC ALU STORE S-BUS

NOP MPCK INC PNM A

PNM is a unique micro-order. No other micro-order
provides the ability to store into two registers in the
same micro-instruction.

3-17. CODING WITH WORD TYPE 2 — IMMEDI-
ATE DATA

This word type sends an 8 bit constant (immediate data)
specified in the micro-instruction to a register. The format
of Word Type 2 is shown in section 4-7. As an example, a
micro-instruction is developed that specifies the following
control function:

® Repeat the micro-instruction following this one ten
times

Writing A Microprogram

b. Specify the octal or decimal data to be placed on the
S-bus; a decimal -10 is specified in the example:

“IMM” SPEC MODIF STORE OPERAND

IMM -10

If an octal -10 is specified, it is written -10B.

c. Specify one of the four possible data modifiers (refer’
to section 4-9); LOW (place the 8 bit operand in the
lower half of the S-bus and ones in the upper half) is
specified in the example:

“iMM” SPEC MODIF STORE OPERAND

IMM Low -10

d. Specify where the resulting data is to be stored; the
Counter Register is specified in the example:

“IMM” SPEC MODIF STORE OPERAND

IMM LOW CNTR -10

e. Specify any special operations required; RPT
(repeat the micro-instruction foliowing this one the
number of times specified in the Counter Register)
is specified in the example:

“IMM” SPEC MODIF STORE OPERAND

IMM RPT LOW CNTR -10

3-18. CODING WITH WORD TYPE 3 — CONDI-
TIONAL JUMP

This word type specifies a conditional branch in the micro-
program. The format of Word Type 3 is shown in section
4-11. As an example, a micro-instruction is developed that
specifies the following control function:

e Jump to the microprogram address labeled ERR2, if
the last data on the T-bus was not zero.

a. Specify JMP and CNDX in the Op Code and Special

a. Specify IMM in the Op Code field: fields:
“IMM” SPEC MODIF STORE OPERAND “JMP” “CNDX” COND JUMP SENSE OPERAND
IMM JMP CNDX

b. Specify the condition that must be tested for the
jump to take place; T-bus equal to 0 is specified in
the example:

“JMP” “CNDX” COND JUMP SENSE OPERAND

JMP CNDX TBZ

c. Specify, if required, RJS (Reverse Jump Sense),
which establishes whether the Condition code
“true” means jump or ‘‘false” means jump. The
TBZ used in the example means the test condition is
T-bus equal to 0. If RJS is specified, T-bus not equal
to 0 means perform the jump. If RJS is not specified
(blank in the field), then T-bus equal to 0 means
jump. RJS is specified in the example:

“JMP” “CNDX” COND JUMP SENSE OPERAND

JMP CNDX TBZ RJS

d. Specify the target address of the jump. The target
address must have the same most significant three
] '

ot e o ot T

address label ERR2 (an address label in the current
page) is specified in the example:

“JMP’ “CNDX” COND JUMP SENSE OPERAND

JMP CNDX TBZ RJS ERR2

3-19. CODING WITH WORD TYPE 4 — UNCONDI-
TIONAL JUMP

This word type specifies an unconditional branch in the
microprogram. The format of Word Type 4 is shown in
section 4-17. As an example, a micro-instruction is
developed that specifies the following control function:

e Jump to a microprogram subroutine whose address is
derived by the following: the address labeled CLSUB
supplies all bits of the subroutine address except bits
3-0; bits 3-0 are supplied by the Instruction Register.

a. Specify JSB in the Op code field:

“JMP” OR “JSB”” JUMP MODIFIER - - OPERAND

JSB

b. Specify a target address (to be modified) of the
jump anywhere within the Control Store (0-7777);
CLSUB is specified in the example:

3-6

“JMP” OR “JSB” JUMP MODIFIER -- OPERAND

JsB CLsuB

c. Specify any modification to the target address; J30
(replace bits 3 to 0 of the operand with bits 3 to 0 of
the Instruction Register) is specified in the

example:
“JMP” OR “JSB”* JUMP MODIFIER -- -- OPERAND
JsB J30 CcLsuB

3-20. FROM CODE TO EXECUTION
SUMMARY

Figure 3-2 helps to illustrate the process of implementing a
microprogram. Writing a micro-assembly language pro-
gram is essentially the same process as writing an

NV 0 o

combined to form a microprogram. The microprogram is
punched onto cards or paper tape and this source is read
by the Micro-assembler. The Micro-assembler produces a
listing and an object tape.

PUNCH CARDS

{or TAPE) /
=)
. =TI 8/

“INTERIM
PUNCHED
TAPE
{or DISC FILE)

MICRO-
DEBUG
EDITOR

WRITABLE
CONTROL
STORE

PROGRAMMABLE ROM

I INTEGRATED CIRCUITS

USER PROGRAMS » < PROM
IN MAIN MEMORY, W WRITER

Figure 3-2. Microprogram Implementation Process

21MX

The object tape is loaded into Writable Control Store
(WCS), executed, and debugged interactively using the
Micro Debug Editor (MDE). When the microprogram is
debugged, the source is corrected and the microprogram is
reassembled. The microprogram can be loaded in two
ways. It can be loaded into WCS by a call to the WCS 1/0
Utility subroutine from the user’s Main Memory program
or it can be burned into a programmable Read Only
Memory. In the latter case, the object tape of the
debugged microprogram is loaded into a buffer in Main
Memory, using the Micro Debug Editor, and a set of six
mask tapes are punched. These tapes are used by the HP
12909 pROM Writer to create (‘‘burn’) the programmed
Read Only Memory (pROM) chip. The pROM chip is
installed on an HP 12945A User Control Store board that
is set by jumper wires to specify the proper Control Store
module number.

3-21. ACCESS TO MICROPROGRAMS IN
CONTROL STORE

The control processor microprograms are divided into
three groups.

a. The 21MX Instruction Set microprograms including
the Basic Instruction Set, the Extended Instruction
Group, and Floating Point.

b. Hewlett-Packard supplied special microprograms (for
example, the 12977A Fast FORTRAN Processor
option) if installed.

¢. User microprograms, if installed.

The control processor reads a 16 bit instruction from Main
Memory into the Instruction Register (IR), decodes it, and
then determines which microprogram is called for by the
instruction. This reading, decoding, and address determi-
nation is performed by microprograms that are an integral
part of the Basic Instruction Set. The Basic Instruction
Set microprogram is in some ways analogous to system
software in a normal Main Memory operating system,
since the Basic Instruction set performs the general
control functions and passes control to the user
microprogram area when the Instruction Register calls for
a user microprogram. This enables the user-
microprogrammer to concentrate effort on his special
application.

For the purposes of decoding and implementing
macro-instructions, the 21MX Instruction Set is divided
into groups according to the general functions they
perform. As shown in figure 3-3, there are five groups that
encompass the 21MX Instruction Set. A sixth group
called the User Instruction Group consists of the
macro-instructions that allow the user to access the micro-
programs which he writes. Most instruction set
enhancements or special microprograms will be accessed
by the general classification of ‘‘user’” macro-instructions.

Writing A Microprogram

Figure 3-3 summarizes the processing of the Instruction
Register. A microprogram within the Basic Instruction
Set reads an instruction from Main Memory into -the
Instruction Register and determines to which macro-
instruction group (Alter/skip, Memory Reference, etc.)
that instruction belongs. This is accomplished by a ROM
table branch command (SPECIAL micro-order “JTAB”’)
that uses the upper eight bits of the Instruction Register
to jump, via the fixed ROM Main Look Up Table, to a
Control Store microprogram address, according the value
of those eight bits. Once the general instruction group is
determined, the Instruction Register is further decoded
and the logic implemented by the microprogram designed
to implement that macro-instruction.

For example, if the instruction in the Instruction Register
is in the Extended Arithmetic Unit (EAU) Group, the
EAU Group microprogram address is found in the Main
Look Up Table based on the Op Code of the instruction.
Then the EAU Group microprogram executes the EAU
instruction. Provided in the micro-instruction set are
special jump parameters, such as “JEAU”, to branch
within the EAU Group microprogram according to which
member of the group is being processed. Jump parameters
are explained in Section IV of this manual.

3-22. USER FUNCTION CODE IN ASSEMBLY
LANGUAGE

The assembly language program calls a microprogram
using mnemonic codes that are assigned in the assembly
language program. The pseudo op “MIC” is used to assign
the mnemonic code. Refer to the HP Assembler Reference
Manual {HP 24307-90014) for the use of the MIC pseudo

op.

Using the MIC instruction, a binary function code is
assigned to the mnemonic so that whenever the mnemonic
appears, the function code is written into that location of
the assembled program. The number of parameters is also
specified.

The octal function code that calls the user microprogram
is:

105rrr if bit 8 of the IR = 0
101rrr or 105rrr if bit 8 of the IR = 1

The value of rrr (bits 8-0) determines the Control Store
module address. rrr is defined in table 3-1. Bit 11 in the
third digit (5 or 1) is used by micro-instructions which test
data in the Instruction Register, where the function code is
interpreted. For example, see the “CAB” S-bus
micro-order.

3-7

Writing A Microprogram

21MX

ANY INSTRUCTION

TO NEXT PAGE

INSTRUCTION REGISTER

Address of first
micro-instruction
for particular

/O instruction

INSTRUCTION REGISTER

INSTRUCTION REGISTER
15]14|1312[11|10| 9| 8} 7| 6]|5]4]|3]2]1]|0
JTAB VIA
MAIN LOOKUP
TABLE
L Address of first
ALTER/SKIP micro-instruction
GRQOUP for Alter/Skip type
N instructions
\)
Address of first
SHIFT/ROTATE micro-instruction
GROUP for Shift/Rotate type
A instructions
__
Address of first
MEMORY REFERENCE micro-instruction
GROUP for Memory Reference
- type instructions
1/0 INSTRUCTION
1/0 GROUP
A 15]14|13]12|11]10] 98] 7|6] 514 3|2] 1]0
JMP
10G
\
EAU INSTRUCTION
EAU JUMP
GROUP
- 15(14|13|12[11|10| 9| 8] 7|6 |54 |3|2]|1]0
JMP
JEAU
—— Address of first
EAU DIRECT micro-instruction for
GROUP DLD,DST, or DIV
EAU instructions

Address of first
micro-instruction
for all but three

EAU instructions
(See EAU Direct Group)

Figure 3-3. Processing the Instruction Register (Sheet 1 of 2)

3-8

21MX Writing A Microprogram

\.

USER GROUP
MODULES 3-7,14

-

\

L USER GROUP

USER TYPE INSTRUCTION

15{14]13[12|11[10{ 918 7[{6(|5|4}{3|2[1}0

MODULES 2,8-13,15

q%////?////////////////////// /

JMP J74 Address of 21MX
. JMP ; .
via JUMP DIRECT instruction set
TABLE microprogram
or or

Address of user
microprogram

USER TYPE INSTRUCTION

15[14[13112|111|10|9| 8| 7|6 |5]4

w
N
-
o

Address of 21MX
instruction set
microprogram

JMP via
jg”g JUMP
TABLE or

Address of user
microprogram

AN AN

Figure 3-3. Processing the Instruction Register (Sheet 2 of 2)

Writing A Microprogram

3.23. CONTROL STORE MODULES AVAILABLE
TO USER

The 4096 words of ROM are divided into sixteen 256-word
modules, module 0 through module 15. Modules 0, 1, 14,
and 15 hold the 21MX Instruction Set and are not
available to the user microprogrammer. Modules 12 and 13
are reserved exclusively for user microprograms. Any
other Control Store space, not filled by a micropro-
grammed option, is available to the user micropro-
grammer. Figure 3-4 summarizes the allocation of Control

Store.
MODULE ALLOCATION
NO. _
o INSTRUCTION SET NOT AVAILABLE
1 (NOT OPTIONAL) TO USER
2
3 THE HP 12977A
FAST FORTRAN
a PROCESSOR OPTION
5
6 AVAILABLE TO
USER IF OPTION
7 NOT INSTALLED
8 FUTURE HP
9 OPTIONS
10
1
12 RESERVED FOR USER | AVAILABLE
13 MICROPROGRAMS TO USER
14 INSTRUCTION SET NOT AVAILABLE
15 (NOT OPTIONAL) TO USER

Figure 3-4. Allocation of Control Store by Modules

3-24, MAPPING TO A MODULE ADDRESS

Function codes available to the user are listed in table 3-1

together with the module address to which these function

codes map. Some of these user function codes are assigned

to the microprogrammed processors and options produced

By Hexglett—?ackard. The following function codes cannot
e used:

105000 through 105137
105740 through 105777
101740 through 101777

3-10

21MX

1f the HP 12977A Fast FORTRAN Processor is installed,

the following function codes are not available to the user:

105140 through 105277
105700 through 105737
101700 through 101737
If the function code maps to a Control

Store module which is not present, the
micro-instruction

Note:

JEAU PASS S S

is executed for each non-existent Control
Store location. The ROM Address Regis-
ter is incremented after each execution of
the above micro-instruction until an
installed module is encountered. No
notification is given to the user or system
that a non-existent module is being
executed.

Table 3-1. User Function Code Mapping

Function codes 101rrrg and 105rrrg map to the
module address given:
RANGE OF
RANGE OF OCTAL
rer VALUES MODULE | ADDRESSES
-~
140 to 157 3 1400
160 to 177 3 1400 to 1417
200 to 217 4 2000
220 to 237 4 2000 to 2017
1055 J 24010 257 5 2400
only 260 to 277 5 2400 to 2417
300 to 317 6 3000
320 to 337 6 3000 to 3017
340 to 357 7 3400
% 360 to 377 7 3400 to 3417
400 to 417 8 4000
420 to 437 8 4000 to 4017
440 to 457 9 4400
460 to 477 9 4400 to 4417
500 to 517 10 5000
520 to 537
10trrrg 0 10 5000 to 5017
or 2 540 to 5567 11 5400
106rrrg 560 to 577 1 5400 to 5417
600 to 617 12 6000
620 to 637 12 6000 to 6017
640 to 657 13 6400
660 to 677 13 6400 to 6417
700 t0 717 2 1000
[720to0 737 2 1000 to 1017

21MX

3-25. MICROPROGRAMMING INPUT
AND OUTPUT FUNCTIONS

Microprogramming Input and Output (I/0) functions
requires more care than any other type of micropro-
gramming, because there are strict timing dependencies.
The microprogram described in section 3-40is an example
of I/0 microprogramming.

To maintain integrity of the 1/0 system, every control
signal which goes to the I/0 devices is generated in a
specific time period (T-period). All micro-instructions,
except those containing READ or WRTE micro-orders,
are executed in one 1/0 T-period, where T = 325 ns. READ
and WRTE each require two I/O T-periods. An I/0 time
cycle consists of five T-periods labelled T2, T3, T4, T5, and
T6. Specific I/0 activity is restricted to certain T:periods
in order to synchronize setting of data flags, latching of
data, and resolving of multiple interrupt requests.

The microprocessor must synchronize with T2 before
initiating an I/0 cycle. Thereafter, special consideration
must be given to the order and timing of the I/0
micro-instructions given.

3-26. SYNCHRONIZING WITH THE /O SYSTEM

To initiate an I/0 cycle, the IOG micro-order must be
specified. When this occurs, the processor ‘‘freezes’”
(ceases executing micro-instructions) until time T2. The
next micro-instruction is executed during time T3, the

Writing A Microprogram

next during T4, etc. IOG may occur with any
micro-instruction which does not require some other
Special or Jump Modifier (Field 3) micro-order.

Examples:
a. READ I0G INC PNM P
b. 10G PASS 1R S3

3-27. 1/0 SIGNAL GENERATION

When IOG is specified, the I/0 system generates control
signals to the I/0 devices starting at the next T2 time and
according to the contents of the Instruction Register (IR).

IR bits 5-0 hold a Select Code {SC) signal (SC = The I/0
slot number on the backplane or in I/0 extenders) that
determines which device will respond to the control signal.
IR bits 11-6 determine which I1/0 signals are sent, as
shown in table 3-2. The IR must be loaded prior to or
during occurrence of the IOG to insure that the correct
signals are generated to the proper SC.

Select Codes 0, 1, 2, 3, 4, and 5 have special functions con-
cerning, respectively, the interrupt system, the Front
Panel, the Dual Channel Port Controller (DCPC), Power
Fail, and Memory Protect/parity. The ‘‘Interrupt and
Control summary” table in the Appendix of the HP 21MX
Computer Series Reference manual (HP 02108-90002)
holds a description of the effect of these select codes (S.C.
in the table).

Table 3-2. I/O Control Signal Generation Determined by IR Bits 11-6

IR*

11 10 9 8 7 6 1/0 SIGNAL TIME GENERAL USE

X X X 0 0 0 none T3 Turns off the Run Flag on the CPU.

X X X 0 0 1 STF T3 Set device flag.

X X 1 X X CLF T4 Clear device flag.

X X X 0 1 SFC T3-T5 SKPF condition is true if and only if the device
flag is clear.

X X X 0 1 1 SFS T3-T5 SKPF condition is true if and only if the device
flag is set.

— — — — — - 101 T4-TH5 Buffer the input data latch on the device onto the
1/0-bus; this command must be stated explicitly in
micro-code during these times.

X X X 1 1 0 100 T3-T4 Store the 1/O-bus into the input data latch on the
device.

0 X X 1 1 1 STC T4 Set device control flag.

1 X X 1 1 1 CLC T4 Clear device control flag.

*Bits marked with x are not significant for the 1/O signal specified.

311

Writing A Microprogram

3-28. MEMORY PROTECTION IN RELATION TO
1/0 MICROPROGRAMMING

When the Instruction Register is loaded, the Memory
Protect (MP) feature (12892A) records information on the
instruction (from Main Memory) being stored in the IR.
When an 10G micro-order is specified, MP checks the
select code. If it is not equal to 1 {Front Panel) and MP
control is set, MP will inhibit any 1/0 signals and prevent
the CPU from altering memory or the P- or S-registers,
and will generate an interrput request. The micropro-
grammer cannot prevent this function, so the software
operating system maintains security of I/0 programming
with MP in the microprogramming environment.

3-29. 1/0 CONTROL ROUTINE

This type of I/0 function requires no data transfer. The IR
must specify:

STF
CLF
SFS
SFC
STC
CLC

Note that CLF can be generated in conjunction with any
other signal by merely letting bit 9 of the IR equal one. To
simulate a CLF macro-instruction, specify CLF with STF.
Once I0G has been given in an 1/0 control routine, there
are no limitations in using micro-instructions because 1/0
signals are generated automatically.

For SFS and SFC, the state of the flag on the device may
be tested with a “JMP CNDX SKPF” instruction. SKPF
is true only when SFS is being executed and the flag is set,
or when SFC is being executed and the flag is clear. The
SKPF test should occur during T4 or T5 of a SFS or SFC
routine. Any operation desired may be implemented as a
result of this test. To cause a macroprogram skip, simply
increment the P-register contents.

3-30. 1/0 OUTPUT ROUTINE

This routine is characterized by generation of the I00
micro-order. The 10O sends data from the I/0-bus into the
input data latch on the device. The microprogram must
put the proper data on the S-bus, then direct it onto the
1/0-bus. The detailed timing requirements are:

a. During T3, the S-bus must be driven by the register
containing the output data to prepare for the transfer
to the I/0 bus.

b. During T4 and T5, the S-bus must be driven by the
same register and 10O must appear in the Store field.
This insures valid data on the I/0 bus.

3-12

21MX

For example, the sequence for a standard OTA macro-
instruction is:

(Time T2) 10G

(Time T3) PASS CAB
(Time T4) 100 CAB
(Time T5) RTN I0OO CAB

3-31. 1/0 INPUT ROUTINE

This routine is characterized by use of IOI in the S-bus
field. IOI is used in the I/0 cycle during T4 or T5 to input
data from the 1/0 device PCA onto the I/0-bus and then
onto the S-bus. Any normal Word Type 1 instruction may
be used to store the data input from the S-bus.

For example:

{Time T2) 10G
(Time T3) NOP
(Time T4) NOP
(Time T5) RTN PASS CAB 101

It can be seen that during some parts of some 1/0
routines, there are instruction times which are unused.
Caution is required when using these times. Do not use
micro-instructions which may cause the processor to freeze
(listed in section 3-36), until all 1/0 related code has been
executed for that I/0 cycle. In the above example, if the
T3 and T4 NOPs were replaced by READ and T (S-bus
field) micro-orders, the CPU would freeze in the middle of
T4 and 101 would not be executed until T6 — too late to
correctly handle the data transfer. On the other hand,
during a control type routine which is not performing an
SFS or SFC, many kinds of micro-instructions can be
performed after the IOG. These include READ or even
another I0G, since the I/0 system requires no further
assistance from the microprocessor.

3-32. INTERRUPT HANDLING

The presence of a pending interrupt or halt request may be
detected by microcode in two ways:

a. Performing a test with JMP CNDX on INT, NHOI, or
RUN.

b. Attempting to JMP or RTN to location 0 in Control
Store; a pending interrupt or halt will cause Control
Store address 4 to be loaded into the RAR.

The interrupt device select code (SC) can be read onto the
S-bus (high order bits = 0) by specifying CIR in the S-bus
field. This freezes the CPU until T6 and then sends IAK to
the interrupting device. In the Basic Instruction Set
microprogram, the select code from the CIR is loaded into
the M-register and the Main Memory instruction at that
address is executed. Note that the P-register is not altered
during this process.

21MX

3-33. NORMAL USER INTERRUPT HANDLING

APPLICATIONS

If a long microprogram is entered, the program itself has
complete control over when it is terminated or suspended
for a detected interrupt. It is not desirable to hold off
interrupts very long. Magnetic tape, for example, might
request an interrupt every 27 microseconds, if not trans-
ferring data by way of the Dual Channel Port Controller.

It is up to the microprogrammer to decide how long to wait
before testing for an interrupt. When an interrupt is
detected, a jump should be made to a routine to save
whatever is necessary to allow the microprogram to
continue after the interrupt is serviced or to provide for
complete restart of the microprogram. The P-register must
be reset to point to the Main Memory address of the
macro-instruction interrupted. If parameters are saved, a
test must be made at the beginning of the microprogram
to determine if it was interrupted or if it executes from the
beginning.

When the interrupt servicing is started, a JMP or RTN is
made to Control Store location 4 where the Basic Set
microcode takes the trap cell address from the Central
Interrupt Register and then gives control to Main Memory
programs which service the interrupt. After the interrupt
routine is complete, the interrupted microprogram is
restarted (assuming the P-register was reset upon
interrupt detection).

3-34. MICRO-ORDERS AFFECTING
MEMORY PROTECT

To fully use the level of protection afforded by the 12892A
Memory Protect feature, some conventions must be
followed in microprogramming to assure proper communi-
cation between the processor and the Memory Protect
feature (MP).

Note that MP can only be enabled and disabled by the 1/0
system. There are no microcode commands for it. Refer to
the Memory Protect Interrupt section in the HP 21MX
Reference Manual for further discussion. The micro-orders
which communicate with MP are listed below together
with a description of their rules and functions:

a. FTCH (Special field). This reads the M-register into
the MP Violation register, clears out the MP Violation
flag and resets the Indirect counter. It should be given
when the address of the current instruction from Main
Memory is being read (READ micro-order) or
immediately after. FTCH occurs in the following places
in the Basic Instruction Set Microprogram:

1. At location 0, the Fetch routine.

2. At the location MGOOD+1 in the Halt routine to
reset the MP Violation flag and to enable alteration
of P-register, S-register, and Main Memory from
the Front Panel.

s Museum

COmoutey Y

Writing A Microprogram

3. Atlocation SCAN+12 as part of the single instruc-
tion fetch routine, where it serves the same purpose
as at location 0.

b. IR (Store field). Whenever the IR is specified in the
Store field, MP records whether the instruction is a
Halt, JMP, or neither, and whether or not IR bits 5-0
equal 01 or not. The IR must be loaded prior to
initiating an I/0 cycle with IOG to insure that the
signal decoding logic will take effect.

¢. INCI (Special field). This micro-order should be used
whenever another level of indirect addressing is
detected by a microprogram. After 3 counts of the
Indirect Counter, an ION (enable interrupts) micro-
order is effectively performed by the Memory Protect
option. A microprogrammed IOFF micro-order will
have no effect after this occurs until after the next
FTCH is executed.

d. MPCK (Special field). There is no need to use this
memory protect check micro-order if the Memory Pro-
tect feature (HP 12892A) is not installed. This micro-
order should be used to insure that a microprogram will
not alter protected memory. When this micro-order is
used and a MP violation is detected:

1. All future READ instructions put invalid data into
the T-register.

2. No WRTE instructions are performed.
3. All attempts to alter the P- or S-registers fail.

4. All 1/0 signals from the processor are inhibited
until after the next FTCH or CIR is executed.

e. 10G (Special and Jump Modifier). If Memory Protect
has been enabled, this micro-order will set the Memory
Protect Violation flag if the select code (IR bits 5-0) is
not equal to one. If a MP violation is detected, the
actions 1 through 4 described in d. MPCK take place.

f. CIR (S-bus field). This micro-order causes a freeze until
T6 and then issues an IAK to acknowledge the
granting of an interrupt to the requesting device. If the
select code is 5, the Parity indicator on the Front Panel
is cleared and the Memory Protect Violation flag is
cleared. Whenever CIR occurs, special logic on the
Memory Protect PCA determines whether or not the
MP should be disabled (Clear the Control bit). This
determination is made six micro-instructions after the
last CIR:

1. MP is not disabled if an I1/0 instruction (IOG) is
executed that is not a halt.

2. MP is disabled if no I/0 instruction (I0OG) is exe-
cuted or a halt is executed.

To re-enable Memory Protect, an STC 5 is required.
3-13

Writing A Microprogram

3-35. THE EFFECT OF THE DUAL CHAN-
NEL PORT CONTROLLER ON
MICROPROGRAMS

The Dual Channel Port Controller (optional hardware)
steals full 1/0 cycles to perform direct transfers between
external devices and Main Memory. This process is
essentially transparent to the microprogram. The Dual
Channel Port Controller (DCPC) is a hardware function
that does not employ microcode. If the microprogram
interferes with a DCPC cycle, the Control Processor
freezes until DCPC completes its cycle. If DCPC takes a
sequence of consecutive I/0 cycles for input transfers, any
attempted IOG, READ, or WRTE micro-orders will freeze
the processor until DCPC is finished. If DCPC takes a
sequence of consecutive 1/0 cycles for output transfers,
the Memory Reference Group, the Alter/skip Group, and
Shift Rotate Group macro-instructions can still proceed at
between 40% and 60% normal execution rate; 10G will
still freeze the Control Processor.

If DCPC takes as much as 50% of all 1/0 cycles, the
overall efficiency of the basic instruction set execution is
60% to 70% for input or output transfers. Non-main
Memory and I/0 micro-instruction execution are only

frozen 20% of each DCPC cycle. Thus arithmetic and

logical micro-instructions execute at 80% efficiency, when
DCPC takes every 1/0 cycle.

3-36. SUMMARY OF SPECIAL TIMING
RULES

a. Always load the M-register before specifying WRTE in
the OP micro-order field.

b. Load the M-register before or during micro-
instructions containing READ in the OP field.

c. Do not alter the T-register unless initiating a WRTE,
since the T-register is internal to the Main Memory
system and is used by DCPC and the CPU. The
T-register is not intended to be a general purpose
register, but to be used in referencing Main Memory.

d. Load the T-register with data to be written in the same
instruction as WRTE appears, or DCPC could alter it
before WRTE is executed.

e. The T-register must be placed on the S-bus no later
than two micro-instructions after a READ is specified
or the T-register will be disabled by the Memory
system.

f. When an 1/0 cycle (using 10G) is in progress, a READ
or WRTE must not be initiated before T6 in the cycle
under either of the following conditions:

3-14

21MX

1. An input or output routine {refer to sections 3-29
and 3-30) is in progress.

2. A skip flag test of the 1/0 system is taking place.

g. Do not specify a READ or WRTE micro-order in the
same micro-instruction that is transferring data from
the T-register (T or TAB micro-order in the S-bus
field). The reason is that if a freeze occurs as a result of
such a READ or WRTE micro-order (see i. below) the
data in the T-register will be invalid after the freeze.

For example, a sequence of micro-instruction similar to
the following must not take place:

READ — INC PNM P
- — DPASS sS4 L
READ — INC M TAB

h. Do not start an 1/0 cycle (using 10G) before data is

transferred from the T-register following a READ
operation. The reason is that if the IOG results in a
freeze {see i. below), the data in the T-register will be
invalid.

For example, a sequence of micro-instructions similar
to the following must not take place:

READ — INC PNM P
— IOG PASS 54 TAB

i. The following conditions always cause a micro-
processor freeze:

1. The CIR micro-order is in the S-bus field and either
the I/0O cycle time is not T6 or the Dual Channel
Port Controller is stealing a full 1/0 cycle.

2. The I0G micro-order is in the Special field and
either the 1/0 cycle time is not T2 or the Dual
Channel Port Controller is stealing a full 1/0 cycle.

3. AT or TAB micro-order is in the S-bus field and a
READ or WRTE micro-order memory cycle is still
in progress.

4. A READ or WRTE micro-order is in the Op field
and one of the following conditions is true:

(a) The semi-conductor Main Memory is being
refreshed (two micro-instruction cycles are
required every 32.5 microseconds for this
purpose).

(b) The Dual Channel Port Controller is stealing an
1/0 cycle.

(¢) A READ or WRTE memory cycle is still in
progress.

21MX

3-37. SAMPLE MICROPROGRAMS

While reading the sample microprograms, the reader may
find it useful to refer to the fold out functional block
diagram in Appendix D. This diagram and the micro-order
definitions in Section IV are the two basic sets of
information used by the programmer in writing a
microprogram.

3-38. SWAP MEMORY LOCATIONS

The sample microprogram illustrated in figure 3-5 swaps
the contents of two Main Memory locations that are
pointed to by the A- and B-registers (no indirect
addresses).

Micro-instruction Commentary

READ INC M A

a. Put the address in the A-register onto the S-bus.
b. Store the S-bus into the M-register.

c. Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

d. Read the location in Main Memory pointed to by the
M-register (this requires 2 micro-instruction cycles).

Writing A Microprogram

PASS Sl TAB

. The read is complete and data from the memory

location is in the T-register unless the AAF or BAF
Flagis set. If AAF is set, the data is in the A-register.
If BAF is set, the data is in the B-register.

. Put memory data on the S-bus.

Pass S-bus through the ALU and R/S to the T-bus.

. Store data on T-bus into Scratch Pad Register 1 (S1).

READ INC M B

. Put the address in the B-register onto the S-bus.

. Store S-bus into the M-register.

Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

. Read the Main Memory location pointed to by the

M-register.

MPCK PASS M

MPCK PASS M

a. Put the M-register onto the S-bus.
b. Pass the S-bus through the ALU (output not used).

c. Since READ requires two cycles, an instruction cycle
is available before data is available from memory. And
since the M-register holds the address of the location
that will eventually be written into, this cycle is used
for the memory protect check.

. Put M-register (memory address) onto the S-bus.

. ,Pass the S-bus data through the ALU.

Test the address for a Memory Protect violation.

PASS S2 TAB

. Put memory data (T-, A-, or B-register contents) onto

the S-bus.

Op Code Special ALU Store S-bus

Comment

INC N]
URTE RTH PASS TAB 82
S$END

$ORIGIN=20008
$SYNTAB
READ INC N A
MPCK PRSS L
PASS S1 TAB
READ INC N 8
NPCK PRSS L
PASS 52 TAB
WRTE PRSS TAB S1i

READ WORD POINTED TO BY A
CHECK ADDRESS

STORE DATA IN S1

READ UORD POINTED TG BY B
CHECK ADDRESS

STORE DATA IK 82

BEGIN WRITE

LOAD X MITH A

WRITE AND RETURN

Figure 3-5. Swap Microprogram

3-15

b. Pass S-hys through the ALU and R/S to the T-bys,

¢. Store data on th
(S2).

e T-bus into Scratch Pad Register 2

a. The contents of the
S1 onto the S-bus,

first memory location is in S1. Put

b. Store the S-bus in

to T-register (or A- or
AAF or BAF, res

B-register if
pectively are set).

¢. Pass S-bus data through the ALU.

d. Write T-register contents into Main Memory at
address pointed to by the M-register. Note that the
M-register stil] holds the second memory location
address. It wag loaded during last read operation,

A-register contents gpto the S-bus,

) Store the Sbus into the M-register.

c. Pass S-bus data through the ALU and increment data
‘ enabling the A- or B-register addressable test.

21MX

Put S2 onto the S-bys,

- Store the S-bys into the T-register

{or A- or B-register,
if AAF or BAF, respectively, are

set).

Pass S-bus data through the ALU.

d. Write the T-register contents in

to Main Memory at the
address pointed to by the M-

register,

e. Exit (RTN micro-order),

3-39. BLOCK MOVE MICROPROGRAM

assumed that:

® The negative valye o

f the number of words to be moved
Is in the A-register

in two’s complement form

¢ The FROM address is in the B-register.

e The TO address is in the Main Memor}_r lo'cation pointed
to by the P-register and cannot be indirect.

Op Code Special ALU Store S-bus Comment

SORIGIN=2PR0Q
$SYMTAE LMoV
FILEsFI MOVE
- e A 1 A WORD COUNT = 0 ; 10 Moyt
MOvE :;;S ° ouT IF ZERO, THEN G

" CNDX
* . P GET "TO" ADDRESS

NEAD g:gs 22 TAB PUT IT IN 52

A DATA WORD

L PA%S . ;2 GET "TO" ADDRES: DRESS

o i:é g2 o INCREMENEA:IOHORg TO MEMORY

" WRITE A
"RTE e B - INCREMENT "FROM" ADD:$SS
I 8 gl INCREMENT lNORDuggg
DX igg :}8 LOOP GO TO ;gogg; §£R0

e COUNT EXIT

5 cC P P INCREMENT THE P REG AND
RTN IN

oul
SEND

Figure 3-6. Block Move Microprogram

3-16

21MX

The HP assembly language calling sequence is as follows:

LDA — (number-of-words)
LDB FROM-address

OCT 105200

DEF TO-address

Note: This microprogram is a translation of the
Block’ Move microprogram shown in
Section VI of the HP 2100 Computer
Microprogramming Software manual (HP
02100-90133). Thus it can be used to com-
pare HP 2100 microprogramming to HP
21MX microprogramming.

Micro-instruction Commentary

MOVE — — PASS S1 A
JMP CNDX TBZ — ouT

Store the contents of the A-register in Scratch Pad
Register 1. If the contents of the A-register are zero, then
go to OUT address and return to the calling program.

READ — INC M P
PASS S2 TAB

Get the TO address and store it in Scratch Pad Register 2.
The TO address cannot be indirect.

LOOP READ — INC M B
PASS S3 TAB

Read a data word from the Main Memory location pointed
to by the FROM address and store the data word in
Scratch Pad Register 3. Note that a Control Processor
freeze will occur.

INC M S2
INC S2 82
PASS T S3

WRTE —

Write the data (in Scratch Pad Register 3) into memory.
Increment TO address pointer.

— — INC B B
— — INC 81 S1
JMP CNDX TBZ RJS LOOP

Increment the FROM address pointer. Increment the word
count. If the word cound is not zero, go to LOOP.

ouT — RTN INC P P

Increment the P-register beyond the word containing the
TO address and exit.

Writing A Microprogram

3-40. INPUT, SUM, AND SUM OF
SQUARES MICROPROGRAM

The sample microprogram illustrated in figure 3-7 loads a
16 bit word from a device specified by its select code
“SC". 1f the word is equal to 177777 {end of transmission
word), the microprogram is finished and this is signalled
by executing the next instruction in Main Memory; other-
wise:

a. The word is stored in memory location “DATA”
indexed by the X-register.

b. The word is added to a running total kept in memory
location “SUM"

¢. The word is squared and added to a running total of
squares in memory location “SQUAR".

d. Another input is initiated from the specified device
(STC SC,C).

e. The next instruction in Main Memory is skipped to
indicate that 177777 was not input from the specified
device.

Conditions:

a. All numbers are 16 bit positive integers.

b. If SUM exceeds 2!°-1, the Extend Register is set.
c. If SQUAR exceeds 2'°-1, the Overflow Register is set.

d. 1f both SUM and SQUAR are less than 2'¢-1, the
Extend and Overflow Registers are clear.

e. Memory protect check is performed on addresses used
for a write into Main Memory.

Microprogram storage:

The microprogram resides in module 12 starting at
octal address 6017.

Microprogram initiation:

Entry into the microprogram is caused by the exe-
cution of the following 5 words in Main Memory:

105637 USER CALL TO CONTROL STORE

ADDRESS 6017
nn = SELECT CODE ''SC”

“DATA” STORAGE ADDRESS (a table
holding all input data)

Obbbbb “SUM"” STORAGE ADDRESS
ccceee “SQUAR” STORAGE ADDRESS

(end of transmissionreturn) SUMMING TERMI-
NATED BY EOT

SUMMING CONTINUES

0000nn

Qaaaaa

(normal return)

3-17

Writing A Microprogram 21MX
Op Code Special ALU Store S-bus Comments
$ORIGINm6G178B
READ INC PNM P @Y1/READ SC, INC P, SET UP TAB LOGIC
IMM CMLO Si 1378 22/000500 INTO S1<-USE FOR INP COM LATER
PASS L TAB A3/STORE SC INTON L
10R S11 Si P4/CREATE INPUT COM @RA5NN IN S11
READ INC PNM P A5/READ DATA ADR,INCR P,SET UP TAB LOGIC
IMM L4 CMLO 81 3o38 #6/0017908 INTO St FOR SET CONT COM LATER
PASS S3 TAB #7/3STORE DATA ADR INTO 83
PASS IR S11 @8/L0AD IR WITH INPUT COMMAND
Io6 IOR St1@ 81 a9/
«09/ FREEZE YILL T2,START 1/0, CRFATE SET CONTROL COMMAND B017NN IN 819
PASS L S3 18/73 STORE DATA ADDRESS INTO L
ADD 83 X 11/T4 ADD INDEX TO L, STR INTO S3
ASG PASS A 101 12775 GET DEV WRD FROM I,0 BUS, ST INTO A
* 12,5/CLEAR E (IR6mY)
JMP CNDX ONES ouT 13776 JUMP OUT TF ALL ONES IN DEV WORD
READ INC PNM P 14/READ SUM ADR, INCR P, SETUP TAB LOGIC
INC X X 15/INCR INDEX
INC M TAB 16/ STORE SUM ADR IN M, PREPARE TAB LOGIC
READ 16,5/ READ 8SUM
IMM LOW CNTR 0B 17/CLEAR CNTR Tg PREPARE FOR REPEAT
PASS L TAB 18/STORE SUM INYO L
ENVE ADD S§7 A 19/ADD DEVICE wORD TO T, ENBL ORE,ST INS?
MPCK PASS M 20/MEMORY PROTELT TEST ON SUM ADDRESS
WRTE PASS TAB S7 21/WRITE TOTAL INTO SUM ADDRESS
cov PASS IR S10 22/CL 0OV,PUT SEYT CNTRLCL FLG COM INTO IR
106 PASS L A 23/FRZ TILL T2, ST A INTO L, START 1/0
MPCK INC M S3 24/T33S3I(DATA APDRAEX) 8T INTO M,MEM PROT
WRTE PASS TAB A 25/T4tWRITE DEV WORD INTO (DATARYX
READ INC PNM P 26/75,T6tREAD ADR OF SQUAR, SETUP TAB LOG
INC M TAB 26,5/ PREPARE TaB LOGIC
READ INC P P 27/INCR PsNORMA|L RETURN, READ SQUARE
RPT PASS B TAB 28/STORE SQUAR INTO B, SETUP REPEAT
MPY Rt aDD B B 29/
*29/ (A TIMES L)RB, STORE RESULT INTO B,A
JMP CNDX TRZ NO,OVER 38/JMP IF MPY RESULTED IN Ba@ (MSB IN B)
sov 31/8ET OV BITS:RESULT GR TH ACCEPTABLE
NN ,OVER MPCK PASS M 32/MEM PROT CK ON SGUAR ADDRESS
WRTE RTN PASS TAB A 33/WRITE RESULT INTO SQUAR LOCATION, RTN
auT INC P P 34/INCREMENT P
RTN INC P P 35/INCR P TO INDICATE EOT RETURN, RETURN
SEND
Figure 3-7. Input, Sum, and Sum of Squares Microprogram
The above instruction is coded in assembly language by SSI SC DATA SUM SQUAR
defining the mnemonic SSI, function code, and four (end of transmission return) SUMMING TERMI-

parameters:

a. Use the MIC pseudo op in the assembler to define the
five word instruction by its mnemonic and number of
parameters: MIC SSI,105637B,4

b. Code the following when calling the SSI microprogram:
3-18

NATED BY EOT

(normal return) SUMMING CONTINUES

**DATA ARE A ¥okokokokokok sheok ook o ok ook ok

SC EQU nnB SELECT CODE OF DEVICE

DATA BSSmm BUFFER ARE TO HOLD ALL
INPUT DATA

SUM OCT 0 “SUM” STORAGE LOCATION

SQUAR OCT 0 “SQUAR” STORAGE LO-
CATION

21MX

Micro-instruction Commentary:

Writing A Microprogram

READ — INC PNM P

READ — INC PNM P

a. Upon entry into the microprogram, P is the address in
Main Memory that follows the instruction that calls
microprogram. Hence P is the address of the address
containing the select code.

b. Place the P-register contents on the S-bus. Store the
S-bus into the M-register. Pass the S-bus contents
through the ALU incrementing the data in the ALU
and store the result (from the T-bus) into the
P-register. The address on the T-bus is tested by the T-
or-A-or-B logic for use by the TAB micro-order.

¢. Read the contents of the location in Main Memory
specified by the address in the M-register. The read
requires two cycles.

IMM L1 CMLO S1 137B

a. While the read is still in progress, a memory cycle is
used to construct an input command to be used later.

b. Place an octal 137 in bits 7-0 of the S-bus. Bits 15-8 are
automatically filled with ones.

c. Pass the S-bus through the ALU complementing the
data. Shift the data left one bit as it passes through the
Rotate/Shifter inserting a zero into bit 0.

d. Store the T-bus result into Scratch Pad Register 1. The
result in S1 = 000500,

- - PASS L TAB

a. Store the result of the read from Main Memory (con-
tents of T- or A- or B-register) onto the S-bus (the
select code nn was read).

b. Store the S-bus into the L-register and pass the S-bus
contents through the ALU (the PASS is effectively a
non-operation since the T-bus data is not stored).

— — IOR S11 S1

a. Place Scratch Pad Register 1 on the S-bus. Perform an
“inclusive or’”’ of L-register and S-bus in the ALU and
store the result in S11.

b. S1 = 00050

L = nn (select code)} IOR = 0005nn in S11

The result in S11 is the complete input command for
select code = nn.

1. The P-register now points to the DATA address.

. Place the P-register on the S-bus. Store the S-bus into

the M-register. Increment the S-bus contents as it
passes through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

Read the contents of the address in Main Memory
specified by the M-register (read the DATA address).

IMM L4 CMLO S1 303B

. While the read is still in progress, the memory cycle is

used to construct a set control-clear flag I/0 command.

. Place an octal 303 in bits 7-0 of the S-bus. Bits 15-8 are

automatically filled with ones.

Pass the S-bus through the ALU complementing the
data. Rotate the data left four bits as it passes through
the Rotate/Shifter.

. Store the T-bus result into Scratch Pad Register 1. The

result in S1 = 001700.

- — PASS S3 TAB

. Place the result of the read from Main Memory (con-

tents of T- or A- or B-register) onto the S-bus (the
DATA address was read).

. Pass the S-bus data through the ALU and store it into

Scratch Pad Register 3.

— — PASS IR S11

. Place Scratch Pad Register 11 on the S-bus and store

the S-bus into the Instruction Register (IR). IR now
holds the input command 0005nn, where nn is the
device select code.

- 10G IOR S10 S1

10G commands the microprocessor to freeze until time
T2. At time T2 the input command in the Instruction
Register is executed (transmitted to the device).

. The L-register still holds the select code of device.

Place Scratch Pad Register 1 (holding 001700} on the
S-bus. Perform an “inclusive or’’ with the L-register in
the ALU. Store the result (0017nn) into Scratch Pad
Register 10.

3-19

Writing A Microprogram

d. The net result in S10 is the completed set control —
clear flag command.

— PASS L S3

a. Place Scratch Pad Register 3 (holding DATA address)
onto the S-bus and then store S-bus into the L-register.

b. The PASS is essentially a non-operation.

— ADD S3 X

a. Place the X-register (index to the number of words so
far input from the device) onto the S-bus.

b. Add the S-bus to the L-register (now containing DATA
address).

c. Store the result in Scratch Pad Register 3.

ASG — PASS A 101

a. The time is T5. Take the word input from the Device
from the I1/0-bus and place it on the S-bus.

b. Pass the S-bus data through the ALU and store it into
the A-register.

c. The IR = 0005nn, where nn is the device select code.
Perform an Alter/Skip Group instruction (ASG)
according to bits 7 and 6 in the IR. Since bits 7 and
6 = 01, perform a CLE (Clear Extend register bit).

JMP CNDX ONES — our

If the word last passed through the ALU (see previous
micro-instruction) was all ones (end of transmission), jump
to the location with the label OUT.

READ — INC PNM P

a. The P-register now points to the SUM address.

b. Place the P-register onto the S-bus. Store the S-bus
into the M-register. Increment the S-bus contents as
they pass through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

c. Read the contents of the address in Main Memory
specified by the M-register (read the SUM address).

— - INC X X

Increment the X-register, which is an index to the number
of words input from the device.

3-20

21MX

— INC M TAB

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
address of the SUM was read).

b. Store the data on the S-bus into the M-register.
c. Increment the data in the ALU and place it on the

T-bus so that the data is tested by the T-or-A-or-B
logic.

READ — — — —

Read the contents of the address in Main Memory
specified by the M-register (the present SUM value).

IMM — LOW CNTR 0B

a. While the read is still in progress, the memory cycle is
used to clear the Counter Register in preparation for
the RPT used later in the microprogram.

b. Place zero on the lower eight bits of the S-bus. All ones
are automatically stored in the upper eight bits.

c. .Store the S-bus into the Counter Register.

PASS L TAB

a. Place the result of the read from Main Memory
{contents of T- or A- or B-register) onto the S-bus (the
present SUM value was read).

b. Store the S-bus into the L-register.

ENVE — ADD S7 A

a. The A-register still contains the word input from the
device. Place the A-register onto the S-bus.

b. Enable the Overflow test and Extend Register test in
this micro-instruction only.

¢. Add the L-register (current SUM value) to the S-bus in
the ALU.

d. Store the result in Scratch Pad Register 7.

- MPCK PASS — M

a. The M-register still holds the Main Memory address of
SUM. Place the M-register onto the S-bus.

b. Pass the S-bus through the ALU.

21IMX

Perform a memory protect check on the address since
this address will be used for a write into Main Memory.

WRTE — PASS TAB S7

Place Scratch Pad Register 7 (holding the current
DATA total) onto the S-bus.

. Store the S-bus into the T-register (or A- or B-register
according to AAF or BAF flags).

Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the new total of data words from the device back into
the Main Memory address of SUM.

Writing A Microprogram

Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the word input from the device into the Main Memory
table of DATA values.

READ — INC PNM P

— Ccov PASS IR S10

Scratch Pad Register 10 holds the set control-clear flag
command, 0017nn, where nn = the select code. Place
Scratch Pad Register 10 onto the S-bus.

. Store the S-bus into the Instruction Register.

Clear the Overflow Register.

— 10G PASS L A

. I0G commands the microprocessor to freeze until time
T2. At time T2 the set control-clear flag command in
the Instruction Register is executed (transmitted to
the device).

. Place the A-register (which still holds the word input
from the device) onto the S-bus.

Store the S-bus into the L-register.

- MPCK INC M S3

. Place Scratch Pad Register 3 (which holds DATA
address + index X) onto the S-bus.

. Store the S-bus into the M-register.

Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

. Perform a memory protect check on the S-bus data.

WRTE — PASS TAB A

Place the A-register (which still holds the word input
from the device) onto the S-bus.

. Store the S-bus into the T-register {or A- or B-register
if the AAF or BAF flag is set).

. The P-register now points to the SQUAR address.

Place the P-register onto the S-bus.

. Store the S-bus into the M-register.

Increment the S-bus data as it passes through the
ALU and then store the T-bus into the P-register.

. Read the SQUAR address pointed to by the

M-register.

— — INC M TAB

SQUAR address just read from Main Memory ont

. Store the S-bus into the M-register.

Freeze until last READ is complete, then place

S-bus.

Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

READ — INC P P

. Place the P-register onto the S-bus.

. Increment the data as it passes through the ALU and

store it into the P-register. The P-register now contains
the normal Main Memory return address.

Read the SQUAR contents from Main Memory
(contains the current total of data squares).

— RPT PASS B TAB

. Place the SQUAR contents (in the T- or A- or

B-register) onto the S-bus.

. Pass the S-bus through the ALU onto the T-bus and

then store the T-bus into the B-register. The B-register
now holds the current total of device input word
squares.

Repeat the following micro-instruction incrementing
the Counter Register after each repeat. When the
Counter Register is equal to 377, execute the next
micro-instruction.

MPY R1 ADD B B

3-21

Writing A Microprogram

Perform a multiply step where the multiplier is in the
L-register and the multiplicand is in the A-register.

. Both the A- and L-registers hold the last word input
from the device. The B-register holds the current total
of word squares. Thus the result of 16 repeats of this
multiply step is to square the word input from the
device adding the result to the past total of squares
[(A x L) + B].

The 32 bit result is in the B- and A-registers with the
most significant bits in the B-register.

JMP CNDX TBZ — NO.OVER

. Jump to the location in the microprogram with the
label NO.OVER if the last value that passed onto the
T-bus was equal to zero.

. In a multiply step operation, the last data to go along
the T-bus is the data that is stored into the B-register.
Since the B-register holds the most significant bits of
the multiplication result, if the result exceeds 2!¢-1,
bits will be set in the B-register.

— sov — - -

Set the Overflow Register. The result of the multiplication
operation (added to the B-register) exceeds 2!°-1.

NO.OVER — MPCK PASS — M

a. Place the M-register (the SQUAR address) onto the

S-bus.

3-22

21MX

. Perform a memory protect check on the address on the

S-bus. {To prepare to write the multiplication result
back into the Main Memory data location (SQUAR.)

- WRTE RTN PASS TAB A

Place the A-register (the current total of squares) onto

the S-bus.

. Store the S-bus into the T-register (or A- or B-register,

if AAF or BAF flag is set).

Write the contents of the T-register into Main Memory
at the address given in the M-register (the address of
SQUAR).

. Return to the Control Store address held in the SAVE

Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

ouT - — INC P P

. This micro-instruction (label OUT) is branched to, if

the end of transmission character (177777) has been
received from the device.

. Increment the P-register.

- — RTN INC P P

Increment the P-register again to point to the end of
transmission return address in Main Memory.

. Return to the Control Store address held in the SAVE

Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

21IMX

3-41. READ A WORD FROM A LOADER
ROM

The sample program segment illustrated in figure 3-8
reads four 4-bit bytes from a Loader ROM, constructs a 16
bit word, and then stores the word into Main Memory.

Conditions:

a. The A-register holds the Main Memory address into
which the 16 bits read from the Loader ROM are to be
stored.

b. The Loader ROM is selected by bits 15 and 14 of the
Instruction Register. The particular Loader ROM
selected does not affect the example.

c. The Counter Register is set to address the first location

in the Loader ROM at the beginninng of the micro-
program segment.

Micro-instruction Commentary:

- IMM — LOW CNTR 0B

a. Place a 0 onto the S-bus in bits 7-0; bits 15-8 are auto-
matically filled with ones.

b. Store the S-bus into the Counter Register. Since the
Counter Register is eight bits long, only bits 7-0 of the

S-bus are stored into the Counter Register.

c. The Counter Register is now zero.

PASS M A

a. The P-register holds the Main Memory Address into
which 16 bits are to be stored from the Loader ROM.

b. Place the P-register contents onto the S-bus.
c. Store the S-bus into the M-register for use later in the

write to Main Memory of the word from the Loader
ROM.

Writing A Microprogram

LOOP1 — L4 PASS S1 LDR

a. The LOOPI label is used to identify this microprogram
segment in the Basic Instruction Set microprogram.

b. Place a 4-bit-byte, addressed by the Counter Register,
onto the S-bus. The Counter Register is equal 0; thus
addressing byte 0 (there are 256 bytes addressed octal
0-377 in each Loader ROM). Note that each byte is
stored on the S-bus in complemented form. Thus before
a 16 bit word is stored into Main Memory, it must be
complemented. This is taken care of by the next to last
micro-instruction in this program segment.

c. Pass the S-bus through the ALU to the Rotate/Shifter.
Left shift the data four bits.

d. Store the data on the T-bus into Scratch Pad Register 1
{S1). S1 now holds 16 bits of the form:

XXXXXXXXAAAAXXXX

where AAAA is the 4 bit byte just read.

INCT PASS L S1

a. Place Scratch Pad Register 1 onto the S-bus.
b. Store the S-bus into the L-register.

¢. Increment the Counter Register to address Loader
ROM byte 1.

- - L4 AND S1 LDR

a. Place byte 1 of the Loader ROM onto the S-bus.

b. Perform a logical ““and” of the S-bus and the L-register
in the ALU.

c. Left shift the data four bits in the Rotate/Shifter.

Op Code Special ALU Store S-bus Comments

1NN L0d CHIR ® CLEAR CNTR (KON ADDR RZIGD
ey PASS ¥ f PUT SA IN M

LOOP! L4 PASS 31 LD% PRES XXXXXXXXARAAXXXX INTOD 581;CNTR=X0D
ITNT PR35S L 5t CKTR=X01}
L4 ARHD 5t LDR FCRM XXXXAAARBRRERBXXXX IN S1:CNTR=X(1
I1CNT PASS L 31 CRTR=X10
L4 AND 51 LDR EFCRM ARAABBREBCCCCXXXX IN S1;:CHTR=X10
ITCNT PASS L 5t CRTR=X11
NAND 31 LDR FGRM ARAABBRBCCCCODDD (CHMPL FORM)
YRTE FASS T s1 WRITE IRTO MEMQRY

Figure 3-8. Reading From a Loader ROM

3-23

Writing A Microprogram

d. Store the T-bus into Scratch Pad Register 1. S1 is now

of the form:
xxxXxAAAABBBBxxxx

where BBBB is the 4-bit-byte just read.

21MX

a. Place S1 onto the S-bus.
b. Store the S-bus into the L-register.

c. Increment the Counter Register to address Loader
ROM byte 3.

— — INCT PASS L S1

— — — NAND S1 LDR

. Place the contents of Scratch Pad Register 1 onto the
S-bus.

. Store the S-bus into the L-register.

Increment the Counter Register to address Loader
ROM byte 2.

— — 14 AND S1 LDR

. Place byte 2 of the Loader ROM onto the S-bus.

. Perform alogical ““and” of the S-bus and the L-register
in the ALU.

. Left shift the data four bits in the Rotate/Shifter.

. Store the T-bus into Scratch Pad Register 1. S1 is now
of the form:

AAAABBBBCCCCxxxx

where CCCC is the 4-bit-byte just read.

— — INCT PASS L S1

3-24

a. Place byte 3 of the Loader ROM onto the S-bus.

b. Perform a logical ‘‘nand” of the L-register and the
S-bus (L ‘“‘and” S, the result complemented) in the
ALU.

c. Store the T-bus in S1. S1 is now of the form:

AAABBBCCCDDD

where DDD is the 4-bit-byte just read. S1 now holds
the completed 16 bit macro-instruction.

— WRTE — PASS T S1

a. Place S1 onto the S-bus.

b. Store the S-bus in the T-register (the Main Memory
Data Register).

c. Initiate a write to Main Memory (address in the
M-register) of the data in the T-register.

This completes the reading of 4 bytes from the Loader
ROM, constructing a 16 bit macro-instruction, and storing
the macro-instruction in Main Memory.

MICROPROGRAMMING LANGUAGE

SECTION

v

This section serves as a reference to micro-instruction
word definitions and formats.

There are four micro-instructions word types. Their
general uses are defined below:

e Word Type 1 executes

a. Data transfers between Main Memory, 1/0, and
arithmetic and logic sections.

b. Logical and arithmetic functions on data.

e Word Type 2 specifies octal data to be transferred to a
specific register.

e Word Type 3 executes a conditional jump based on
flags or data values.

e Word Type 4 executes an unconditional jump or sub-
routine jump.

In addition, there are five Pseudo Instructions recognized
by the micro-assembler.

Each word type has two formats. One format is the 24-bit
Binary Instruction Format. This is the machine-language
format; the format of the micro-instruction as it is stored
in the ROM. The second format is the Mnemonic Format.
This is the micro-assembler source format; the mnemonic-
character representation of the micro-instruction.

Each micro-instruction consists of a number of
micro-orders, which define the control steps to be executed
within the system. The binary representation of the micro-
orders falls within certain bits of the 24-bit Binary
Instruction. The mnemonic representation of each
micro-order falls within seven fields of the micro-
instruction input record (e.g. a card). The binary and
mnemonic formats are defined for word types in the
following sections.

Common to all word types are the LABEL (Field 1),
COMMENTS (Field 7), and “*” (column 1).

¢ LABEL
This optional field is a string containing any ASCII
characters except +, -, or a space. The string of

characters can be one through eight characters long and
must always start in column one with a *‘.”” {period) or a
letter. A maximum of 256 locations address labels are

allowed in any microprogram.

¢ COMMENT
This optional field can be any string of up to 30
characters.

o *

The asterisk indicates that the entire input record
(card) is a comment field.

4-1. WORD TYPE 1 — COMMON
Charactor
Column:
1 10 15 20 25 30 40 80
A
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL opP SPECIAL ALU STORE S-BUS COMMENTS

Figure4-1. Word Type 1 Micro-assembler
Mnemonic Format

BitNo. [2322|2120 19| 18| 17| 16| 15| 14 | 13

12|11 [10;9 | 8 7165|432 (1}]0

Fields oP ALU

S-BUS

STORE SPECIAL

Figure 4-2. Word Type 1 Binary Format

4-1

Microprogramming Language

There are five micro-order classifications in Word Type 1:

e OP — 12 operations
e SPECIAL — 32 special operations
e ALU — 32 ALU functions

STORE — 32 destinations of data generated by the
micro-instruction

S-BUS — 32 sources for data to be used by the micro-
instruction.

21MX

4-2. OP MICRO-ORDERS

Many operation codes require specific micro-orders in
other fields of the micro-instruction. Those that do will be
defined in terms of all required and optional micro-orders
in the fields of the micro-instruction.

oP

ARS

Required micro-instruction mnemonic fields:

oP SPECIAL ALU STORE S-BUS

Micro-orders for Word Type 1 are defined in the following
paragraphs. The mnemonic code is defined first, followed ARS L1orR1 PASS B B
by its binary equivalent, the meaning, and any special
conventions in the use of the micro-order. Equivalent micro-instruction binary fields:

23] 22{21(20(19| 18| 17| 16| 15| 14| 13| 12| 11| 10{ 9 8 7 6 5 4 3 2 1 0

oP ALU S-BUS STORE SPECIAL
0 0 0} 1 1 1 1 1 1 0] 1 0|1 0 0 1 0|1 0 L1or R1 Code

Meaning: Perform a single bit Arithmetic shift of the A-
and B-register combined, with the A-register forming the
low-order 16 bits. The direction of the shift is specified in
the SPECIAL field: L1 for left, R1 for right.

ARITHMETIC LEFT SHIFT: SPECIAL=L1

If L1, a 0 is shifted into bit 0 of the A-register; bit 14 of the
B-register is lost, but the sign bit remains unchanged. The
overflow register bit is set if bits 14 and 15 differ before the
shift operation.

B-Register A-Register
151 14 Y Y . . . Y 1 0 |« 15| 14 1 0 j4— Zero
Lost
If R1, the sign is copied into bit 14 of the B-register and bit
0 of the A-register is lost.
ARITHMETIC RIGHT SHIFT: SPECIAL=R1
B-Register A-Register
15|14 | « 1 0 »f 15| 14| « 1 0 » Lost

ALAA

4-2

A A

21MX
oP BIT NO. 23| 22|21 20
ASG CONTENT 1 0 ol o

Meaning: Let bits 6 and 7 of the Instruction Register
determine which of the following functions is to be
performed; then clear the L-register.

Microprogramming Language

Conventions: This micro-order is used by the Basic
Instruction Set microprograms which implement the
Alter/skip Macro-instruction Group.

oP

CRS

Required micro-instruction mnemonic fields:

IR Bit No. 7|6 OoP SPECIAL ALU STORE S-BUS
CLE| O | 1 Clear Extend Register CRS L1or R1 PASS B B
CME | 1 | 0 | Compliment Extend Register | Alter/Skip
instruction
CCE | 1 | 1 | Setthe Extend Register Equivalent micro-instruction binary fields:
23| 22(21|20(19} 18|17 | 16| 15| 14{ 13| 12| 11| 10| 9 8| 7 6 5|1 413 2|1 0
OoP ALU S-BUS STORE SPECIAL
0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 L1 or R1 Code
Meaning: Perform a single bit circular Rotate Shift of the
A- and B-registers combined, with the A-register forming
the low order 16 bits. The direction of the shift is specified
in the SPECIAL field: L1 for left, R1 for right.
If L1, bit 15 of the B-register is transferred to bit 0 of the
A-register.
CIRCULAR LEFT SHIFT: SPECIAL=L1
B-Register A-Register
15| 14 1 0 |« 151 14| . . . “e . 1 0
kR _/ k_/R_/ R_R_/ R _k_/
If R1, bit 0 of the A-register is transferred to bit 15 of the
B-register.
CIRCULAR RIGHT SHIFT: SPECIAL=R1
B-Register A-Register
15| 14| o 1 0 1 15| 14| ¢ 1 0
ANA A ANA \AA

4-3

Microprogramming Language

opP

DIV

Equivalent micro-instruction binary fields:

21MX

Required micro-instruction mnemonic fields:

opP SPECIAL ALV STORE S-BUS

DIV L1 sus B B

23| 22| 21|20 19| 18{17|16| 15|14 |13 |12]11]|10]| 9 | 8 7|6 51413 211 0

oP ALU S-BUS

SPECIAL

0}o0 1 011 0| o0]O0 0o 1 0

Meaning: Perform a divide step where the divisor is in the
L-register and the 32 bit dividend is in the A- and
B-registers (least significant bits in the A-register). This
micro-order is repeated (16 times for a full word divisor) by
specifying the Special micro-order RPT in the preceding
micro-instruction. This performs the successive sub-
tractions required in a divide algorithm.

The divide step is executed as follows:

a. Subtract the L-register from the B-register (ALU = B
-L).

b. If borrow is required to complete the subtraction, the
ALU Carry Out Flag is clear (0). This Carry Out result
means that the divisor (L-register) is too big. The ALU
result is not stored. The A-register and B-register are
left shifted one bit and the divide step is complete.

c. Ifaborrow is not required to complete the subtraction,
the ALU Carry Out Flag is set (1). This Carry Out
result means that the divisor is small enough. The
result of the subtraction is contained in the ALU and is
left shifted one bit and stored back into the B-register.
Bit 15 of the A-register shifts into bit 0 of the
B-register and bit 0 of the A-register is set to 1 (the
Carry Out result). The divide step is complete.

Usage: The base set divide operation is shown in the Basic

Instruction Set microprogram in Appendix E at the label
= DIV.

Initial Contents:

B-register A-register L -register
Dividend Dividend
16 Most 16 Least

Significant bits Significant bits

After Repeat 16
Times of Divide
Step:

I Remainder I

Divisor
(unchanged)

16 Bit Quotient
of (B,A}/L

op BIT NO. 231222120

ENV CONTENT | 1 0 11{0

Meaning: Enable the overflow test for the current ALU
operation.

Usage: To detect an overflow condition (that is, set the
Overflow register bit), ENV or ENVE (see below) must be
specified as the OP Code of the micro-instruction in which
the condition is to be tested. Overflow is set if the S-bus
and L-register bits 15 are the same and bit 15 output from
the ALU is different.

Caution: Caution is advised in the use of DEC (decrement)
or INC (increment) in conjunction with ENV. The
L-register is always compared.

oP BIT NO. 23| 22| 21| 20

ENVE CONTENT 1 0 1 1

Meaning: Enable the overflow test and the extend test for
the current ALU operation.

Usage: To detect an Overflow condition (that is, set the
Overflow register bit), ENV (see above) or ENVE must be
specified as the OP Code of the micro-instruction. To set
the Extend Register as a result of the ALU operation, the
ENVE micro-order must be specified as the OP code of the
micro-instruction. The Extend Register bit is set if there is
a carry generated by the ALU (ALU Carry Out = 1).

opP

LGS

Required micro-instruction mnemonic fields:

oP SPECIAL ALU STORE S-BUS

LGS L1 or R1 PASS B B

21MX

Required micro-instruction binary fields:

Microprogramming Language

23|122| 21|20 |19 |18]17 16| 15 131211

10

ALU S-BU

SPECIAL

L1 or R1 Code

Meaning: Perform a single bit Logical Shift of the A- and
B-registers combined, with the A-register forming the low
order 16 bits. The direction of the shift is specified in the
SPECIAL field: L1 for left, R1 for right.

If L1, a 0 is shifted into bit 0 of the A-register and bit 15 of
the B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL=L1

B-Register

A-Register

Lost 15| 14| » . . . 0 1 0 |«

15114 | » . . . [4— Zero

k_R_ k_/k_/

If R1, a 0 is shifted into bit 15 of the B-register and bit 0 of
the A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL=R1

B-Register

k_/R_ k_k_/

A-Register

15| 14

15| 14 . . o o

¥ Lost

Zero —p

\ A AA

oP BIT NO. 23|22 | 21

s

LWF CONTENT

Meaning: Perform a one bit rotational shift of a 17 bit
operand in the Rotate/Shifter where bit 17 is formed by
the CPU Flag. The rotate moves left one bit, if L1 is the
SPECIAL code, or right one bit, if R1 is the SPECIAL
code. 1f neither L1 or R1 are specified, LWF has no effect.

ROTATIONAL RIGHT SHIFT: SPECIAL=R1
ALU Contents

AL

ROTATIONAL LEFT SHIFT: SPECIAL=L1
ALU Contents

15| 14| »

1514 ¢ o o o o e |

A A AA

K_/R_/ R_R_/

F

«

CPU Fiag

F

CPU Flag

4-5

Microprogramming Language

oP

MPY

Required micro-instruction binary fields:

21MX

Required micro-instruction mnemonic fields:

oP SPECIAL ALU STORE S-BUS

MPY R1 ADD B B

23| 22|21|20|{19|18|17{16]| 1514 |13|12]11|10| 9| 8| 7| 6| 5] 4 | 3|2 |1 0

oP ALU

S-BUS

Meaning: Perform a multiply step where the multiplier is
in the L-register and the multiplicand is in the A-register.
The multiply step is executed as follows:

a. Test bit 0 of the A-register.

b. If the test bit is a one, the L-register is added to the
S-bus (B-register value) in the ALU. The result is
shifted right one bit and stored back into the B-register
with the ALU Carry Out bit forming bit 15.

c. If the test bit is a zero, the S-bus (B-register value) is
shifted right one bit and stored back into the B-register
with the ALU Carry Out bit forming bit 15.

d. In either case, the A-register is shifted right and ALU
bit 0 fills vacated bit position 15. Bit 0 of the A-register
is lost. The multiply step is complete.

Usage: This micro-instruction, repeated 16 times by
specifying the SPECIAL code RPT in the preceding
micro-instruction, performs the successive additions
required in a multiply algorithm. The base set multiply
operation is shown in the Basic Instruction Set
microprogram in Appendix E at the label =MPY.

Each step of the multiply algorithm effectively multiplies
the L-register by the A-register bit that corresponds to the
step; that is, step one multiplies the L-register by bit 0 of
A-register, step two multiplies the L-register by bit 1 of
the A-register, etc. Thus to multiply the L-register by all
16 bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts
and additions as described under ‘‘Meaning’’, the initial
contents of the B-register are added to the final result of
the multiply algorithm. If the B-register is not zero before
the multiply steps are begun, 16 multiply steps will yield
‘the 32 bit result in the B- and A-registers (where the Least
Significant Bits (LSB’s) are in the A-register):

(B,A) = [{AxL) + B]

This may be useful in some computational procedures. For
example: X(2) = X(1) + (YxZ).

4-6

Initial Contents:

B-register A -register L -register
Value to be added Muitiplicand Multiplier
to the final result
After Repeating the
Muitiply Step 16 Times:

{AxL)+B (AxL)+B Multiplier
16 Most 16 Least (unchanged)
Significant bits Significant bits

oP BIT NO. 23|22 | 21| 20

READ CONTENT | 1| 01{ 0| 1

Meaning: Read data into the T-register from the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy.

Usage: The data must be removed from the T-register two
micro-instructions after the READ instruction. Note that
the M-register must be loaded (M, PNM, or CM in the
Store field) prior to or during the Read micro-instruction.
The A- or B-register Addressable Flags (AAF or BAF,
respectively) are set, according to data present on the
T-bus when the M-register is loaded. Specify INC in the
ALU field when the address being stored into the
M-register could be a 0 or 1 (A- or B-register addressed).
This assures that data is extracted from the proper
register when TAB micro-order is used in the S-bus field.

T-bus when M Register Referenced By
Store is specified AAF BAF TAB in S-bus or Store Field
1 1 0 A
2 0 1 B
any other value 0 0 T

21IMX

opP BIT NO. 23(22121 |20

NOP CONTENT 0 0 0 0

Meaning: Standard Operation. No operation is specified
for the Op Code field.

Usage: This is the default micro-order when the OP Code
Field is left blank.

opP BIT NO. 231221 21| 20

WRTE CONTENT (0 |1/ 1] 1

Meaning: Write data from the T-register into the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy. Two micro-
instruction times are required to complete the write.

Usage: The T-register should be loaded during the write
instruction and must not be altered by the next sequential
micro-instruction; otherwise the Dual Channel Port Con-
troller data-transfers could destroy the data.

4-3. SPECIAL MICRO-ORDERS

SPECIAL BIT NO. 4 31211 0

CLFL CONTENT [g | 1| o0} 0| 1

Meaning: Clear the CPU Flag.

Microprogramming Language

SPECIAL BIT NO. 413|210

ICNT CONTENT | 1 | g [0 |1 |1

Meaning: Increment the Counter Register by one.

SPECIAL BIT NO. 4 3] 2|1 0

INCI CONTENT | 1 | g [1 | 0] 1

Meaning: Increment the Indirect Counter in the Memory
Protect Option (if installed) by one.

Usage: Used by microprograms that implement indirect
addressing. If INCI is executed three times within the
same microprogram, the Interrupt Enable Flag is set to
allow the CPU to recognize interrupts. Used to prevent
multiple indirect addressing levels from holding off
recognition of I/0 interrupt requests.

SPECIAL BIT NO. 4| 3| 2 1 0

IOFF CONTENT | o |0 |0 |0]| 0

Meaning: Turn off the Interrupt Enable flag to disable
recognition of normal interrupts (does not disable memory
protect, parity, or power fail interrupts).

Usage: After three occurrences of INCI (see INCI Usage)
in the SPECIAL Field, interrupts are again recognized
and cannot be disabled until a FTCH micro-order occurs.
The ION micro-order is normally used to re-enable
interrupt recognition.

IOFF should be used with caution, since holding off
interrupts could cause the loss of input and output data.

SPECIAL

BIT NO.

cov

CONTENT

SPECIAL

10G

BIT NO.

CONTENT

3

2

1

0

0

0

1

0

Meaning: Clear the Overflow Register bit.

SPECIAL BIT NO. 4|1 32|10

FTCH CONTENT { g1 |0 | 1] 0

Meaning: Move the Main Memory address contained in
the M-register (usually the address of the next macro-
instruction to be executed) to the Memory Protect
Violation Register. Clear out the Memory Protect
Violation flag and reset the Indirect Counter.

Usage: This micro-order must be used during, or one
micro-instruction after, the initiation of a READ from the
address of the next macro-instruction to be executed. This
micro-order must be used if the Memory Protect feature is
installed on the computer.

Meaning: Freeze the CPU until time period T2. Then
execute the base set I/0 macro-instruction that is in the
Instruction Register.

Usage: Microprogrammed input and output require
cooperation between the I/0 Section and microprogram
control. Familiarity with the 1/O system is mandatory.
The user may execute input or output in micro-code by
loading a standard base set 1/0 macro-instruction into the
Instruction Register and then executing the following
micro-instruction:

JSB 10G — — IOCNTRL

where IOCNTRL = octal 62

See section 3-25 and the following sections for a more
detailed description of I/0 microprogramming.

4-7

Microprogramming Language

SPECIAL BIT NO. 4|1 312|1}0

ION CONTENT 0 ol 1 ol 1

Meaning: Turn the Interrupt Enable flag on to enable
recognition of interrupts. Allow the CPU to recognize
standard device interrupts until the micro-order IOFF is
executed.

Usage: After ION has been executed, the CPU can detect
an interrupt from any I/0 device in two ways:

a. If a JMP or RTN to location 0 of Control Store (the
macro-instruction read and decode routine) is executed
and an interrupt is pending or the Run flag is clear,
execution is forced to location 4 in Control Store, which
is the interrupt handler routine.

b. A test for interrupt pending or Run flag clear can be
performed by the executing microprogram by
executing INT, NHOI, or RUN in the Jump Condition
field.

ION allows interrupts to be recognized. However
interrupts are not generated by the interrupt system until
a STF 0 1/0 control command is executed. Refer to the
discussion of the interrupt system in the HP 21MX
Computer Series Reference Manual.

SPECIAL BIT NO. 41 3[21]o0

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram, based on the eight most
significant bits (bits 15 through 8) of the Instruction
Register. This is accomplished via a table look-up of the
address in the main jump table for the basic instruction set
(see figure 3-2).

The Save Register is cleared to 0. JTAB overrides the
effects of JMP or JSB in the OP code field.

SPECIAL BIT NO. 4| 3| 2|1 0

L1 CONTENT 0 0 0 1 0

Meaning: Left one bit command to the Rotate/Shifter.

Lost€] 15| 14| e | 1 0 |4 Zero

k_R_ k_/x_/

Usage: See MPY, DIV, CRS, LGS, ARS, LWF. Without
one of the previous Op Codes, L1 performs a one bit logical
left shift on data leaving the ALU.

4-8

21MX

SPECIAL BIT NO. a4 (3] 2|1 0

L4 CONTENT 0 0 0 1 1

Meaning: Four bit circular left shift command to the
Rotate/Shifter (R/S).

l

ToRss |15

18 [1

w

FZIHI‘IO'9[8]7'6[514.|31211[0

Tl Tl s Te o Te Te T+ TsT:T o]

TO T-BUS

Usage: Used in conjunction with the shift and rotate
operations.

SPECIAL BIT NO. 4 324} 1 0

MPCK CONTENT | 1 | g0 | 0|1

Meaning: Check the address placed on the S-bus for a
memory protect violation.

Usage: An S-BUS micro-order must be used in con-
junction with MPCK.

This check should be performed before any write to Main
Memory (WRTE OP-code), if the memory protect feature
is installed. Refer to section 3-27 for details on use of
MPCK with the I/0 system.

SPECIAL BIT NO. 4 3| 2|1 0

NOP . CONTENT 0 0 1 1 1

Meaning: No SPECIAL operation is performed.

Usage: This is the default operation if none is specified in
the SPECIAL field.

SPECIAL BIT NO. 4 31 2|1 0

RPT CONTENT 0 1 1 0 1

Meaning: Repeat the following micro-instruction incre-
menting the Counter Register after each time the repeat is
executed. When the lower four bits of the Counter Register
are set, execute the following micro-instruction once. The
lower four bits of the Counter Register are set at the
completion of the repeat sequence. Thus, the repeat is
executed the number of times specified in the lower four
bits of the Counter Register in two’s complement form.

21MX
SPECIAL BIT NO. 4132|170
R1 CONTENT (0 (0 |1 |0]| O

Meaning: Right one bit command to the Rotate/Shifter.

Zero»] 15| 14| » o | 1 0 [Lost

A\ A A

Usage: Used in conjunction with the shift and rotate
instructions. See MPY, DIV, ARS, CRS, LGS, LWF.
Without one of the previous micro-orders, a single bit
logical right shift is executed.

SPECIAL BIT NO. 4 (3|1 2|1 0

RTN CONTENT 1 1 1 1 0

Meaning: Return from subroutine. Jump to the address
held in the Save register and clear the Save register.

Usage: No more than one subroutine level is permissable.
The second RTN encountered causes a jump to ROM
address 0 (the address contained in the Save register)
where the macro-instruction pointed to by the P-register is
read. RTN overrides the effect of a JMP or JSB in the OP
code field.

SPECIAL BIT NO. 4| 3| 2 1 0

SHLT CONTENT |1 (0| 1|00

Meaning: Clear the Run Flag (request a CPU halt).

Usage: The Run Flag is actually cleared at the completion
of the micro-instruction following the one specifying
SHLT. This micro-order should be used with caution by
the microprogrammer. Once the Run Flag is clear, the halt
request (SHLT) is detected:

a. when a RTN or JMP to address 0 in Control Store
{fetch routine) is executed

b. when the Run Flag is tested by RUN or NHOI Jump
Condition micro-order.

SPECIAL BIT NO. 4 (3 2|1 0

sov CONTENT | 0|1 |0 |1 |1

Meaning: Set the Overflow Register

SPECIAL BIT NO. 4 3121 0

SRGE CONTENT 0 1 1 1 0

Meaning: If Instruction Register bit 5 is set, clear the
Extend Register bit.

Conventions: This micro-order is used by the Basic
Instruction Set that implements the Extend Register
instructions.

Microprogramming Language

SPECIAL BIT NO. 4 3|1 2|1 0

SRG1 CONTENT | 0o f O 1}1] O

Meaning: Execute the Shift/Rotate function specified by
bits 6 through 9 of the Instruction Register (Shift/Rotate
instruction in the first position; see HP 21MX Computer
Series Reference Manual.) The Shift/Rotate function is
performed on the data that leaves the ALU. The function
performed in the R/S is determined by IR bits 6 through 9
as follows:

Bits .
9876 Function Performed In R/S
1000 Arithmetic left shift one bit
1001 Arithmetic right shift one bit
1010 Rotational left shift one bit
1011 Rotational right shift one bit
1100 Arithmetic left shift one bit, clear sign
bit 15
1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)
1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)
1111 Rotational left shift four bits
0xxx No shift (bits 8, 7, and 6 can have any
setting)
SPECIAL BIT NO. 4 3 2 1 0
SRG2 CONTENT 0 0 0 0 1

Meaning: Execute the Shift/Rotate function specified by
bits 0 1, 2 and 4 of the Instruction Register (Shift/Rotate
instruction in the second position; see HP 21MX
Computer Series Reference Manual). The Shift/Rotate
function is performed on the data that leaves the ALU.
The function performed in the R/S is determined by IR
bits 0, 1, 2 and 4.

4B2“iso Function Performed in R/S

1000 Arithmetic left shift one bit

1001 Arithmetic right shift one bit

1010 Rotational left shift one bit

1011 Rotational right shift one bit

1100 Arithmetic left shift one bit, clear sign
bit 15

1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)

1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)

1111 Rotational left shift four bits

0xxx No shift (bits 8, 7, and 6 can have any
setting)

4-9

Microprogramming Language

SPECIAL

BIT NO.

SRUN

CONTENT

Meaning: Set the Run Flag (remove the CPU halt

ALU

INC

BIT NO.

19

18

17

16

15

CONTENT

21MX

Meaning: Increment the data on the S-bus by one; pass
the result to the Rotate/Shifter.

ALU

I0R

BIT NO.

19

18

17

16

15

CONTENT

request).
SPECIAL BIT NO. 4 3 2 1
STFL CONTENT 0 1 0 0
Meaning: Set the CPU flag.
44. ALU MICRO-ORDERS
ALU BIT NO. 1918 |17 |16 | 15
ADD CONTENT 0 1 0 0 1

Meaning: Logical inclusive or of L-register and S-bus
(L+S); L-register contents are not disturbed; pass result
to Rotate/Shifter.

ALU BIT NO. 1918117 |16 | 15

NAND CONTENT |1 ol 1|0 0

Meaning: Logical nand of L-register and S-bus (L-S); pass

Meaning: Add the data placed on the S-bus to the
contents of the L-register; the L-register contents are not
disturbed; pass the result to R/S.

Usage: The L-register must be loaded in a previous micro-
instruction.

result to Rotate/Shifter.

ALU

NOR

BIT NO.

CONTENT

19

18

17

16

15

ALU

AND

BIT NO.

CONTENT

19

18

17

16

15

0

Meaning: Logical and of L-register and S-bus (LS); the
L-register contents are not disturbed; pass the result to
R/S.

Usage: The L-register must be loaded in a previous micro-
instruction.

ALU BIT NO. 1918 |17 [16] 15

CMPL

CONTENT 1 0 1 011

Meaning: Ones complement the L-register; pass the result
to Rotate/Shifter.

ALU

CMPS

BIT NO.

CONTENT

19

18

17

16

15

1

0

0

0

0

Meaning: Logical nor of L-register and S-bus (L+S); pass
result to Rotate/Shifter. .

ALU

NSAL

BIT NO.

CONTENT

19

18

17

16

15

Meaning: Logical and of the complement of the S-bus and
the L-register (S-L); pass result to Rotate/Shifter.

ALU

NSOL

BIT NO.

CONTENT

19

18

17

16

15

Meaning: Ones complement the data on the S-bus; pass
the result to Rotate/Shifter.

ALU BIT NO . 19|18 |17 |16 | 15

DEC CONTENT 0 10141 1

Meaning: Decrement the data on the S-bus by one; pass
the result to the Rotate/Shifter.

4-10

Meaning: Logical or of the complement of the S-bus and
the L-register (S+1); pass result to Rotate/Shifter.

ALU BIT NO. 191817 |16 15

ONE CONTENT 1 11110 o0

Meaning: Set all 16 bits (logical one) and pass them to the
Rotate/Shifter.

21MX

ALY

oP1

Meaning: Perform the following logical function in the

BIT NO.

CONTENT

19

18

17

16

15

ALU with the L-register and the S-bus:

{S+L) plus 1

where ‘4"’ means logical function “or”.

ALU

oP2

BIT NO.

CONTENT

19

18

17

16

15

0

0

0

1

0

ALY

OP6

BIT NO.

CONTENT

Microprogramming Language

19

18

17

16

15

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S°L)

where

ALY

oP7

T2
-

means the logical function “and”.

BIT NO.

CONTENT

19

18

17

16

15

- Computer
oM

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus 1

where “‘+”’ means logical function “or’’ and L means the
ones complement of the L-register (not L).

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S-L)
where “+’’ means logical function “or”’, “~’’ means logical
function “‘and”’, and L means the ones complement of the
L-register (not L).

ALU

orP3

Meaning: Perform the following logical function in the

BIT NO.

CONTENT

19

18

17

16

15

0

0

1

0

0

ALY

oP8

BIT NO.

CONTENT

19

18

17

16

15

ALU with the L-register and the S-bus:

S plus (S'L) plus 1

YR
.

where means logical function “and” and L means the
ones complement of the L-register (not L).

ALU

oP4

Meaning: Perform the following logical function in the

BIT NO.

CONTENT

19

18

17

16

15

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

{S'L) minus 1

0

0

1

0

1

where ‘‘»”’ means the logical function “‘and”.
ALU BIT NO. 19(18 |17 16|15
oP9 CONTENT 0 1 1 0|0

ALU with the L-register and the S-bus:

(S+L) plus (S-L) plus 1
where ‘‘+” means logical function “‘and”, “4+''means logical
function ““or”’, and L. means the ones complement of the
L-register (not L).

Meaning: Perform the following logical function in the
ALU with the S-bus:

ALU

oP5

BIT NO .

CONTENT

19

18

17

16

15

S plus S
ALU BIT NO. 1918117 | 16|15
OP10 CONTENT | 0] v | 1701

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S'L)

1
[N

where means the logical function ‘“‘and” and L means
the ones complement of the L-register (not L).

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus S

where ‘“+”’ means the logical function “or”.

411

Microprogramming Language

ALY 8IT NO . 1918117 |16} 15

OP11 CONTENT 011 1 110

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+f) plus S

where “+" means the logical function “or” and T means
the complement of the L-register (not L).

ALU BIT NO . 1911811711615

PASL CONTENT 1 1 0|10

Meaning: Pass the L-register to the Rotate/Shifter.

ALY 8IT NO. 1918 |17 {16 |15

PASS CONTENT 1 1 1 1 1

Meaning: Pass the S-bus data to the Rotate/Shifter,

ALU BIT NO. 1918117 |16 | 15

SANL CONTENT 1 ol 1 1 1

Meaning: Logical and of the S-bus and the complement of
the L-register (S-L); pass the result to the Rotate/Shifter.

ALU BIT NO. 19|18 | 17116 | 15

SONL CONTENT 1 1 1 0 1

Meaning: Logical or of the S-bus and the complement of
the L-register (S+L); pass the result to the Rotate/
Shifter.

ALU BIT NO. 1918 |17 (16 [15

sus CONTENT 001 1 0

Meaning: Subtract the L-register from the S-bus and pass
the result to Rotate/Shifter.

ALV BIT NO. 1918 17|16 15

XNOR CONTENT 1 1 o0 1

Meaning: Logical exclusive nor of the L-register and the
S-bus; (L®S) and pass it to the Rotate/Shifter (¢ means
“exclusive or’.)

ALV BIT NO. 19|18 |17 {16 | 15

XOR CONTENT 1 01 1 4]

Meaning: Logical exclusive or of the L-register and the
S-bus (L®S); pass the result to the Rotate/Shifter (&

“

means ‘‘exclusive or’’.)

4-12

21MX

ALV BIT NO. 1918|171 16 15

ZERO CONTENT | 0| 0| O 1|1

Meaning: Pass All zeros to the Rotate/Shifter.

4-5. STORE MICRO-ORDERS

STORE BIT NO. 9

A CONTENT [o | 1|0l 1] 1

Meaning: Store the data on the T-bus in the A-register.

STORE BIT NO. 98| 7|65

B CONTENT | ol 1101 1] o

Meaning: Store the data on the T-bus in the B-register.

STORE BIT NO. 9| 8| 716l s

CAB CONTENT | g | ol 0| o | 1

Meaning: Store the data on the T-bus in the A- or
B-register according to the value of IR bit 11:

IR bit 11 set means B-register
IR bit 11 clear means A-register

STORE BIT NO. als| 7]lsels

cm CONTENT | ol 4| 1| 0| 1

Meaning: Store the data on the S-bus in the M-register, if
the IR holds any Memory Reference instruction except a
direct jump (JMP). Refer to the HP 21MX Computer
Series Reference Manual, for a description of the Memory
Reference instructions.

AAF or BAF is set as described under Usage for the M
Store micro-order, whether or not the IR holds a Memory
Reference instruction.

STORE BIT NO. 91 8] 7 6|65

CNTR CONTENT 0| o 1 0 1

Meaning: Store the lower eight bits of the S-bus (bits 0-7)
in the Counter Register.

21MX

STORE BIT NO. 91 8 716165

DSPI CONTENT 0 0 1 1 1

Meaning: Store the lower six bits of the S-bus in the
Display Indicator on the front panel.

Display Indicator Bit 5 4 3 2 1 0

Register Displayed S P T|{M|B|A

Usage: The six indicators on the front panel, labelled A, B,
M, T, P and S are lit according to the bit(s) cleared in the
Display Indicator. At power-up all bits are set until pro-
grammatically changed.

STORE BIT NO. 9|1 8(7]16]|65

DSPL CONTENT [ol ol 1| 1] 0

Meaning: Store the data on the S-bus in the Display
Register on the Front Panel.

STORE BIT NO. 9| 8 71615

100 CONTENT | g1 0| 1] 0} 0

Meaning: Direct the S-bus onto the I/0-bus.

Usage: This micro-order when used must be in the second
and third instructions (T8 and T4) after IOG Special
micro-order. See section 3-25 and the following sections for
a description of 1/0 microprogramming.

STORE BIT NO. 9181} 7 6| 5

IR CONTENT 0 1 [V] 0

Meaning: Store the data on the S-bus in the Instruction
Register. Record the type of macro-instruction stored
there in the Memory Protect hardware for use in
determining error conditions during Instruction Register
execution. See sections 3-28 and 3-34 for a description of
Interfacing With Memory Protect feature.

STORE BIT NO. 91 8 716]65

L CONTENT ololo]1]1

Meaning: Store the data on the S-bus in the L-register
(Latch).

Microprogramming Language

STORE BIT NO. 9| 8 716165

M CONTENT 0 1 0 0 1

Meaning: Store the data on the S-bus in the M-register.

Usage: An ALU micro-order (for example, INC) should
also be specified in the micro-instruction. This will activate
an A- or B-register addressable test. If bits 14 through 0
on the T-bus equal 1 or 2, the AAF or BAF, respectively,
will be set. The M-register may be stored into immediately
after a READ or WRTE Op micro-order.

STORE BIT NO. 98| 7|65

NOP CONTENT ol 1 1 1 1

Meaning: No store operation is performed; this is the
default micro-order when the Store field is left blank.

STORE BIT NO. 9|/ 8|7]|6|s+s

P CONTENT 1 1 1 1 0

Meaning: Store the data on the T-bus in the P-register
(Program Address Register).

STORE BIT NO. 9| 8 7]161(65

PNM CONTENT 0 1 1 1 0

Meaning: Store the data on the T-bus in the P-register
(Program Address Register), and the data on the S-bus
into the M-register (Memory Address Register).

Usage: Useful in microprograms which perform multiword
READ operations from Main Memory, where the
P-register points to the address in Main Memory to be
read. In a single micro-instruction the microprogram can
store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an
application is the following:

READ - - INC PNM P

The A- or B-register addressable test is activated. See
Usage under M micro-order, above.

STORE BIT NO. 9 8 7 6 5

S CONTENT 1 1 1 1 1

Meaning: Store the data on the T-bus in the S-register
(Switch Register).

4-13

Microprogramming Language 21MX
STORE STORE| g7 NO. alsgl7]6]s SBUS| BITNO. 1413|1211 {10
THRU
s1 s12 CONTENT |1 {nln]|n]|n B CONTENT [o| 1| 0| 1] 0

nnnn is binary representation of decimal number 0 + 11

Meaning: Store the data on the T-bus in the indicated
Scratch Pad Register S1 to S12.

STORE| BIT NO. 9|1 8]7]|6]|5

T CONTENT o(O0fo0 1 0

Meaning: Store the data on the S-bus in the T-register
{Memory Data Register).

Usage: This micro-order should occur concurrently when a
WRTE micro-order is used. The T-register is internal to
the Memory System. It must not be used as a working
register.

STORE BIT NO. 91 8 7161|656

TAB CONTENT 0 0 0 0 0

Meaning: Store the data on the T-bus in the A-register if
the AAF (A addressable Flag) is set; store the data on the
T-bus in the B-register if the BAF (B addressable Flag) is
set; store the data on the S-bus into the T-register
(Memory Data Register) if neither AAF nor BAF is set.

Usage: Same as T micro-order.

STORE BIT NO. 9| 8 7161|695

X CONTENT 1 1 1 0 0

Meaning: Store the data on the T-bus in the X-register.

STORE BIT NO. 9| 8 7(/6 165

Meaning: Store the data on the T-bus in the Y-register.

4-6. S-BUS MICRO-ORDERS

SBUS | giT NO. 141131121110

A CONTENT 0|1 0 1 1

Meaning: Direct the data in the A-register onto the S-bus.

S-BUS BIT NO. 14 (13|12 [11]10

ADR CONTENT 0 1 0| 0 0

Meaning: An address is formed on the S-bus using IR bits
0-9 and M-register bits 10-14; if IR bit 10 is clear, bits
10-14 of the address formed on the S-bus are clear. Bit 15 is
always clear. IR bit 10 is the zero page/current page flag.

4-14

Meaning: Direct the contents of the B-register onto the
S-bus.

S-BUS BIT NO. 141131211)10

CAB CONTENT [o[of 0| o} 1

Meaning: Direct the contents of the A- or B-register onto
the S-bus according to the value of IR bit 11:

IR bit 11 set means B-register
IR bit 11 clear means A-register

S-BUS BIT NO. 14131211110

CIR CONTENT [oi 0| 0 1 1

Meaning: At I/0 time T6 place the contents of the Central
Interrupt Register onto the S-bus and generate an IAK
(Interrupt Acknowledge) signal to the 1/0 device. {See
section 3-33 for CIR description in relation to Interrupt
Handling).

Usage: This micro-order must be used after detection of an
1/0 interrupt to determine the select code of the inter-
rupting device and to acknowledge that the interrupt is
being serviced.

S-BUS BIT NO. 14 (13 (12(11]10

CNTR CONTENT ol o 1 0 1

Meaning: Direct the contents-of the Counter Register onto
the S-bus. The 8 bit Counter Register is placed onto the
low 8 bits of the S-bus; the upper 8 bits are set to ones.

S-BUS BIT NO. 14 13|12 11|10

DSPI CONTENT [o | ol 1|11

Meaning: Direct the six bits of the Display Indicator from
the Front Panel to the S-bus.

Usage: See DSPI Store field definition for Display
Indicator bit significance.

S-BUS BIT NO. 14|13 (127111}10

DSPL CONTENT | ¢ ol 1 1 0

Meaning: Direct the contents of the Front Panel Display
Register onto the S-bus.

21MX

SBUS BIT NO. 1411351211 |10

Te)] CONTENT | 0 | O | 1 0} 0

Meaning: Direct the I/0 bus onto the S-bus. (See section
3-25, Microprogramming Input and Output Functions.)

Usage: This is used to transfer data from an 1/0 device to
the S-bus. When not in use, the I/0 bus is all zeros.
However, do not try to use the I/0 bus for a source of zero
data, since it is used by the Dual Channel Port Controller
at indeterminate times.

S-BUS BIT NO. 14 (13 (121110

LDR CONTENT |0 (1|1 (0[O0

Meaning: Place one 4-bit-byte from a Loader ROM on the
S-bus. The 4-bit-byte address is contained in the Counter
Register. Determination of which Loader ROM, of the four
Loader ROMs available, is specified by bits 15 and 14 in
the Instruction Register.

INSTRUCTION REGISTER

Sl [wls [o[7[s[s [[3[2[[0

15|11

S

afn

~———

i————DSe!ec! Loader BOM nn, where nn s between inary 00 and 11

COUNTER REGISTER ROM nn
7]s]s BEBRE LO 017123 Octal addresses range
LOADED ROM ADDRESS a a|s5(6|7 from 0 1o 377

Each addressed locanon

10111213 contains a 4-bit-byte
ol data.
— 0

rrer was conients ol
ROM nn, address a

SBuUS

Usage: See sample microprogram in section 3-41 for an
illustration of the use of the LDR micro-order.

S-BUS BIT NO. 14|13]|12 11110

M CONTENT 0|1 0[O0}

Meaning: Direct the 15 bit contents of the M-register onto
the S-bus. Bit 15 of the S-bus is cleared.

S-BUS BIT NO. 1413|112 (11|10

NOP CONTENT | o0 | 1 1] 1 1

Meaning: The S-bus holds all ones.

Usage: This is the default micro-order when the S-bus field
is left blank.

Microprogramming Language

S-BUS BIT NO. 14 (131121110

P CONTENT 1 1 1 (1 0

Meaning: Direct the contents of the P-register onto the
S-bus.

S-BUS BIT NO. 1413|1211]10

S CONTENT 1 1 1 1 1

Meaning: Place the contents of the S-register (Front Panel
Switch Register) onto the S-bus.

S-BUS S-BUS BIT NO. 141311211110

S1 THRU| S12 CONTENT 1 n n n n

nnnn is binary representation of decimal numbers 0 to 11

Meaning: Place the contents of the indicated Scratch Pad
Register S1 to S12 onto the S-bus.

S-BUS BIT NO. 1413|1211 |10

T CONTENT [o | o0 | 0|1] 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus.

Usage: Data in the T-register that resulted from a READ
operation must be removed within two micro-instructions
afer the READ or the Dual Channel Port Controller could
alter the data.

S-BUS BIT NO. 14113112111)10

TAB CONTENT | 0jJ O] Of[O0] O

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus if neither AAF (A
addressable Flag) nor the BAF (B addressable Flag) is
set; read the A-register onto the S-bus, if the AAF is set;
read the B-register onto the S-bus if the BAF is set.

Usage: See T-register Usage description.

S-BUS BIT NO. 1413112]11]10

X CONTENT 1 1 1 o|o

Meaning: Direct the contents of the X-register onto the
S-bus.

S-BUS BIT NO. 14 (131211110

Y CONTENT | 1 1 1 01

Meaning: Direct the contents of the Y-register onto the
S-bus.

4-15

Microprogramming Language 21MX
4-7. WORD TYPE 2 — IMMEDIATE
DATA
Charactor
Column:
1 10 15 20 25 30 40 80
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL “IMM SPECIAL MODIFIER STORE OPERAND COMMENTS
Figure 4-3. Word Type 2 Micro-assembler
Mnemonic Format
i
Bit No. | 23| 22 21J 20(19} 18|17 |16 {1514 |13 }{12| 11|10} 9 8 7 6 5 4| 3 2 1 0
Fields op CODE OPERAND STORE SPECIAL
i i’
MODIFIER

Figure 4-4. Word Type 2 Binary Format

There are five micro-order classifications in Word Type 2: 4-9. MODIFIER MICRO-ORDERS (BITS 19 AND
18 OF THE MICRO-INSTRUCTION)
e “IMM” — OP Code specifying Word Type 2.
PECIAL — ial ti d difiers.
* SPEC Special operations and modifiers Bit 19 Set: specifies complement the S-bus data in the
e MODIFIER — A special modifier for the Immediate ALU.
Operation. Bit 19 Clear: specifies pass the S-bus data through the
ALU.
® STORE — Destination of the data. Bit 18 Set: specifies OPERAND goes in bits 7-0 of the
S-bus.
e OPERAND — Binary data that is to be placed on the "

S-bus.

The STORE and SPECIAL micro-orders applicable to
Word Type 2 are exactly the same as those defined for
Word Type 1. Consequently, only the other three
micro-order groups are defined in the following sections.
The “IMM” and MODIFIER micro-order groups are
defined by the mnemonic, by its binary equivalent, and
finally, by the meaning.

Bit 18 Clear:

specifies OPERAND goes in bits 15-8 of
the S-bus.

MODIFIER BITNO. |19 18
4-8. “IMM” MICRO-ORDER CMHI CONTENT | 1 | 0
“IMM”’ BIT NO. 23| 22(21 |20
MM CONTENT | 1] 11 1] o Meam‘ng: The 16 bits received by the S-bus consist of the
following:
Meaning: Place 16 bits onto the S-bus consisting of the 8 Bits 15-8 = OPERAND
bit binary OPERAND and another 8 bits of all ones. Bits 7-0 = all ones

Determination of which 8 bits of the S-bus receive the
OPERAND and which 8 bits receive all ones is made by
the MODIFIER.

4-16

The S-bus is then complemented as it passes through the

ALU.

21MX

Microprogramming Language

BITNO. [15)1a|13(12{11] 0] 9 7l6]5|4a|l3]2/1]0
S-Bus
CONTENT OPERAND 1 1 1 1 1 1 1 1
BIT NO. 15114} 13;12|11| 10| 9 7 6 5 4 3 2 1 0
Out of ALU
CONTENT OPERAND Complemented 0}o0 o|o 0 ol o0 0
MODIFIER BIT NO. 19| 18
CMLO CONTENT | 1 1
Meaning: The 16 bits received by the S-bus consist of the
following:
Bits 15-8 = all ones
Bits 7-0 = OPERAND
The S-bus is then complemented as it passes through the
ALU.
8IT NO. 15(14 (13|12 |11|10| 9 716|565 41 3| 2 1 (4]
S-Bus
CONTENT 1 1 1 1 1 1 1 OPERAND

BIT NO. 15(14 |13[12 11| 10| 9

Te]>

4F 2L1 0

CONTENT | O O] O|O]O]O|O

Out of ALU (

OPERAND Complemented

MODIFIER BITNO. [19 (18

HIGH

CONTENT | 0| O

Meaning: The 16 bits received by the S-bus consist of the
following:

Bits 15-8 = OQOPERAND
Bits 7-0 = all ones

i

The S-bus is then passed through the ALU without
modification.

S-Bus and BIT NO. 15(14(13({12]{11}10] 9

Out of ALU

CONTENT OPERAND

4-17

Microprogramming Language 21MX
4
MODIFIER BIT NO. 19118 o
Low CONTENT | O | 1
Meaning: The 16 bits received by the S-bus consist of the
following:
Bits 15-8 = all ones
Bits 7-0 = OPERAND
The S-bus is then passed through the ALU without
modification.
BIT NO. 1511413112 |11}10]| 9 8 7 6 [} 3 2 1 0
S-Bus and
Out of ALU CONTENT | 1 1 1 1 1 1 1 1 OPERAND
4-10. OPERAND MICRO-ORDER
OPERAND BITNO. |19 (18 [17| 16|15 |14 13|12 11|10
integer CONTENT Binary Integer Equivalent
The Integer can be an octal number or decimal number:
e Decimal number in range 0 to 255.
e Octal number in range 0 to 377, followed by “B”.
Examples:
117B, 117, 198, 5, 10B
4-11. WORD TYPE 3 — CONDITIONAL JUMP
Charactor
Column :
1 10 15 20 25 30 40 80
Field 1 Fieid 2 Fieid 3 Field 4 Field 5 Field 6 Field 7
*or LABEL “JIMP “CNDX " CONDITION JUMP SENSE OPERAND COMMENTS
Figure 4-5. Word Type 3 Micro-assembler Mnemonic Format
BitNo. | 23| 22| 21| 2019|1817 | 16|15} 14|13 |12|11|10]| 9| 8 7 6 5| 4| 3 2 1
. “JM) ”
Fields CONDITION P CNDX
op CODE OPERAND SPECIAL CODE
N’
JUMP
SENSE

4-18

Figure 4-6. Word Type 3 Binary Format

21MX g

There are five micro-order classifications in Word Type 3:

e “JMP"” — Op Code used in conjunction with “CNDX"”
specifies Word Type 3, a conditional jump.

e “CNDX" — SPECIAL Code specifying Word Type 3.

o CONDITION — Condition that must be satisfied
before jump is executed.

e JUMP SENSE — Optional code to invert the jump
condition.

e OPERAND — Target address of jump.
All micro-order groups, except the OPERAND, are

defined by the mnemonic, its binary equivalent, meaning,
and, where necessary, by conventions in their use.

4-12. “JMP” MICRO-ORDER
“IMP” BIT NO. 23| 22| 21} 20
JMP CONTENT | 1|1 | o1

Meaning: Used in conjunction with the SPECIAL Code
“CNDX", the CONDITION code specifies the condition
under which a jump to the address specified in the
OPERAND will take place. If the JUMP SENSE code
“RJS"” is specified, the CONDITION code specifies the
condition under which no jump will take place.

4-13. “CNDX"” MICRO-ORDER
“CNDX” | BIT NO. 4 3 2 1 0
CNDX CONTENT 1 1 0 0 1

Meaning: Used in conjunction with the Op code “JMP”,
this micro-order specifies a conditional jump and Word
Type 3.

4-14. CONDITION MICRO-ORDERS

The ALU and T-bus condition flags are set after each
Word Type 1 or 2 micro-instruction. They are not changed
during JMP or JSB micro-instructions {Word Types 3 and
4). Thus, several different jump tests can be made without
losing the flag results.

CONDITION BIT NO. 19118117 (16 | 15

ALO CONTENT 0 o0} 1

Meaning: Bit 0 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1
or 2 micro-instruction.

Compute) 3
useunt’

CONDITION

AL15

Meaning: Bit 15 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1

BIT NO.

CONTENT

or 2 micro-instruction.

CONDITION

ASGN

Meaning: Alter/skip macro-instruction condition is not

satisfied.

CONDITION

CNT4

Meaning: The right (least significant) 4 bits of the Counter

BIT NO.

CONTENT

BIT NO.

CONTENT

Register are all ones.

CONDITION

CNT8

Meaning: All eight bits of the Counter Register are ones.

CONDITION

cout

Meaning: The ALU Carry Out Flag bit was set by the last
ALU operation (tested before the Rotate/Shifter) of the

BIT NO .

CONTENT

BIT NO.

CONTENT

Microprogramming Language

19

18

17

16

15

0

0

1

0

0

19

18

17

16

15

19

18

17

16

15

19

18

17

16

15

19

18

17

16

15

last Word Type 1 or 2 micro-instruction.

CONDITION

E

BIT NO.

CONTENT

Meaning: The Extend Register bit is set.

CONDITION

FLAG

BIT NO.

CONTENT

Meaning: The CPU FLAG bit is set.

CONDITION

FPSP

Meaning: A special signal is present issued by certain non-

BIT NO.

CONTENT

19 (18 17|16 | 15
0|1 0O 1
19(18 |17 (16} 15
01 o;0(0
19(18 (1716 |15
0|0 1 1 1

standard CPU Front Panels.

Microprogramming Language

CONDITION | giTng, 19|18 | 17|16 | 15
INT CONTENT 1 1 0|1 0
Meaning: An Interrupt is pending.
CONDITION BIT NO. 19181716 |15
1R2 CONTENT 0 1 1 1 1
Meaning: Instruction Register bit 2 is set.
CONDITION BIT NO. 19/18 17 16 [15
NDEC CONTENT 1 0 01 1

Meaning: The “DEC M” (Decrement M-register) button

on the Front Panel was not actuated.

CONDITION

NHOI

BIT NO.

CONTENT

19

18

17

16

15

CONDITION

NMLS

BIT NO.

CONTENT

19

18

17

16

15

0

0

1

0

1

Meaning: Memory was not lost as

power down or power failure.

CONDITION

NOP

Meaning: No condition test is made; no jump occurs.

Usage: This is the default micro-order if none is specified

BIT NO.

CONTENT

in the condition field.

CONDITION

NRST

Meaning: The DISPLAY button on the Front Panel was

not actuated.

CONDITION

NRT

BIT NO.

CONTENT

BIT NO.

CONTENT

a result of the last

19

18

17

16

15

1

1

1

0

1

19

18

17

16

15

1

0

1

1

1

19

18

17

16

15

1

0

1

0

0

Meaning: The RUN/HALT switch on the Front Panel is
set to “Run’’ and there is no interrupt pending (i.e. no halt
and no interrupt).

Usage: This micro-order is recommended for use in long
microprograms. (75 microseconds or longer is the criterion
vsed by Hewlett-Packard produced microprograms.) This
is necessary since microprograms cannot be interrupted. A
pending interrupt or halt condition is not detected unless a
specific test is made for them.

Meaning: The “ - REGISTER SELECT RIGHT button

CONDITION

NINC

Meaning: The “INC M”’ (Increment M-register) button on

BIT NO .

CONTENT

19

18

17

16

15

0

0

the Front Panel was not actuated.

CONDITION

NLDR

Meaning: The “IBL” (loader) button on the Front Panel

BIT NO.

CONTENT

was not actuated.

CONDITION

NLT

Meaning: The “«<” REGISTER SELECT LEFT button

BIT NO.

CONTENT

19

18

17

16

15

19

18

17

16

15

on the Front Panel was not actuated.

4-20

on Front Panel was not selected.

CONDITION

NSFP

Meaning: A standard Front Panel is not installed on the

BIT NO.

CONTENT

19

18

17

16

15

1

1

0

0

1

CPU.
CONDITION BIT NO. 1918 |17 |16 | 15
NSNG CONTENT (1 | 0| 0|0} 1

Meaning: The INSTR STEP (Instruction Step) button on

the Front Panel was not actuated.

CONDITION

NSTB

Meaning: None of the following Front Panel buttons were

actuated:

INSTR STEP (Instruction Step)
“->"” REGISTER SELECT RIGHT

BIT NO.

CONTENT

19

18

17

16

15

1

1

0

0

0

“<«” REGISTER SELECT LEFT

DISPLAY

IBL (Binary Loader)
INC M (Increment M-register)
DEC M (Decrement M-register)

STORE
RUN
PRESET

21MX
CONDITION BIT NO. 1918 |17 {16 | 15
NSTR CONTENT (1 0|1]|1] 0

Meaning: The STORE button on the Front Panel was not
actuated.

Microprogramming Language

4-15. JUMP SENSE MICRO-ORDER
JUMP SENSE BIT NO. 14
RJS CONTENT | O

CONDITION

BIT NO.

ONES

CONTENT

19

18

17

16

15

0

0

0

0

1

Meaning: All 16 bits of the last output from the ALU were
set (tested before Rotate/Shifter) as a result of the last
Word Type 1 or 2 micro-instruction.

CONDITION BIT NO. 1911817 |16 | 15

OVFL CONTENT o i1 |0 |10
Meaning: The Overflow Register bit is set.

CONDITION BIT NO. 19|18 (17116 | 15

RUN CONTENT 0 1 0 1 1
Meaning: The CPU is in RUN mode (the Front Panel
RUN flag is set).

CONDITION BIT NO. 19118117 |16 | 15

RUNE CONTENT | 1 [t | 1100

Meaning: The four position STANDBY/OPERATE/
LOCK/R switch on the Front Panel is not in the LOCK
position.

CONDITION BIT NO. 19(18 (17| 16| 15

SKPE CONTENT [0|1 | 1] 0}

Meaning: The I/0 signal SFS is present (1/0 time is T3 to
T5) and the addressed 1/0 device Flag is set or the 1/0
signal SFC is present (I/0 time is T3 to T5) and the
addressed 1/0 device Flag is clear.

Usage: See section 3-25, Microprogramming Input and
Output Functions, for the use of the micro-order SKPF.

CONDITION BIT NO. 19|18 |17 (16| 15

SRGL CONTENT | 1 {1]| 0f 1] 1

Meaning: Bit 3 of the Instruction Register is set and bit 0
of the last output from the ALU was cleared as a result of
the last Word Type 1 or 2 micro-instruction.

Usage: This micro-order is used by the Basic Instruction
Set microprogram which implements the SLA and SLB
macro-instructions of the Shift/rotate Group.

CONDITION BIT NO. 19(18117116(15

TBZ CONTENT (g | 0| 0{ 0] 0

Meaning: The last output from the Rotate/Shifter onto
the T-bus was equal to zero as a result of the last Word
Type 1 or 2 micro-instruction.

Meaning: Perform the jump, if the jump condition is not
met. The CONDITION micro-order specifies the condition
under which a jump can take place; the RJS micro-order in
effect reverses the sense of the jump. For example, if a
conditional jump is specified if the Flag bit is set (jump if
Flag bit set), the RJS micro-order will reverse the
condition so that the jump occurs if the Flag bit is not set.

4-16. OPERAND MICRO-ORDER
OPERAND
An Address
BIT NO. 13(12j11|(10| 9 8| 7| 6| 5
CONTENT Binary Address Equivalent

The address can be an octal, decimal or computed number:
Decimal number, d, in the range 0 to 511

Octal number, kB, in the range 0B to 777B, where the
B signifies octal.

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB f. LABEL-kB
b. *-kB g. LABEL+d
c. *+d h. LABEL-d
d. *-d i. LABEL

e. LABEL+kB

where * means ‘‘this address” and LABEL means a
micro-instruction or pseudo-instruction label that is
defined elsewhere in the microprogram.

The target address of the jump is not relative and must be
within the current 1000 octal locations (two modules). The
complete absolute address must be specified. For example,
if a conditional jump micro-instruction is within Control
Store addresses 3000 and 3777, no target address may be
outside the range 3000 to 3777. A target address of 3377B
would initiate a jump to the octal address 3377.

Examples:

1005, 2632, 2632B, START, START -11B, END-11
4-21

Microprogramming Language 21MX

4-177. WORD TYPE4 — UNCONDITIONAL JUMP

Character Column:

1 10 15 20 25 30 40 80
A
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
JUMP
Content: *or LABEL | “JMP" or “JSB”" MODIFIER {blank) {blank} OPERAND COMMENTS

Figure 4-7. Word Type 4 Micro-assembler Mnemonic Format

g8|7|6|5|a4a|3]2]1]0

BitNo: [23|22)21{20|19 (181716 (1514 |13 [12[11 |10} 9

“ IMP”* . JUMP
Fields: "J"S“g"” oopr Code (zero) binary OPERAND MODIFIER
Figure 4-8. Word Type 4 Binary Format
Word Type 4 consists of three micro-order classifications: 4-19. JUMP MODIFIER MICRO-ORDERS
e “JMP” or “JSB” — Operation, code used in BIT NO. 4l 32110

i JUMP IF
conjunction with the JUMP MODIFIER, specifies MODIFIER

Word Type 4, an unconditional jump or subroutine
jump.

IOFF CONTENT [0| 0|0 |00

Meaning: Disable recognition of normal interrupts (does
not disable memory protect, parity, or power fail
interrupts). Perform an unconditional jump. No modifi-
cation is made to the jump OPERAND.

¢ JUMP MODIFIER — Specifies modification to the
OPERAND jump address.

e OPERAND — Target address of jump, prior to any
modification,

JUMP MODIFIER BIT NO. 413[2]1]0

Micro-orders, except the OPERAND, are defined by the
mnemonic, binary equivalent, meaning, and, where 10G
necessary, by conventions in their use.

CONTENT 1 0/l 0]1 0

Meaning: Freeze the CPU until time period T2. Execute
the I/0 function according to the base set 1/0Q macro-
instruction that is in the Instruction Register. Perform the
JMP or JSB modifying OPERAND bits 2 and 3 according
to the I/0 instruction jump table (bits 6, 7, and 8 of the
1/0 macro-instruction in the Instruction Register actually
determine the OPERAND address modification):

4-18. “JMP” AND “JSB” MICRO-ORDERS

“JMP”" or "JSB"’ BIT NO. 23| 22|21 | 20
OPERAND
JMP CONTENT | 9| 1|0 | 1 IR Contains IR Bits Bits 3 & 2
I/0 Macro-instruction 876 Replaced By:
Meaning: Jump unconditionally to the address specified in
the OPERAND, modified according to the JUMP MIA or MIB 100 11
MODIFIER micro-order. LIA or LIB 101 10
OTA or OTB 110 01
HLT 000 00
“JMP”" or “JSB” BIT NO. 2322|121 {20
CLO or CLF 001 00
Js8 CONTENT |1 [1]0 0 STO or STF 001 00
SFC or SOC 010 0
Meaning: Perform a subroutine jump unconditionally to 0
the address specified in the OPERAND, modified SFS or SOS 011 00
according to the JUMP MODIFIER micro-order. The STC or CLC 111 00

return address is stored in the Save register and recalled

by the RTN micro-order (see section 4-3, SPECIAL
Micro-orders for RTN definition).

4-22

See section 3-25 and those following for a more complete
description of the use of the IOG micro-order.

21MX
JUMP MODIFIER 8IT NO. 41 3(2]1]o
JEAU CONTENT |+ 1| 1 [1] 1|1

Meaning: Enable the EAU jump table. According to the
particular EAU macro-instruction held in the Instruction
Register, the least significant three bits (0-2) of the
OPERAND are replaced by EAU jump table bits (bits 4-9
and 11 of the Instruction Register actually determine the
OPERAND address modification):

EAU Three LSB’s
Macro-instruction of Address
RRR 000
ASR 001
LSR 010
{not used) 011
RRL 100
ASL 101
LSL 110
MPY 111
JUMP MODIFIER BIT NO. 4 3 2 1 0
JIo CONTENT | 1 (1[0 |1}0

Meaning: Perform the JMP or JSB modifying OPERAND
bits 2 and 3 according to the I/0 instruction jump table
(bits 6, 7, and 8 of the I/0 macro-instruction in the
Instruction Register actually determine the OPERAND
address modification):

OPERAND
IR Contains IR Bits Bits 3 & 2
I/0 Macro-instruction 876 Replaced By:
MIA or MIB 100 11
LIA or LIB 101 10
OTA or OTB 110 01
HLT 000 00
CLO or CLF 001 00
STO or STF 001 00
SFC or SOC 010 00
SFS or SOS 011 00
STC or CLC 111 00

Microprogramming Language

JUMP MODIFIER BIT NO. 4 (3|1 211 0

JTAB CONTENT | 9 | 1| 0| 1] o

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram based on the eight most
significant bits of the Instruction Register. This is
accomplished via a table look up of the address in the Main
Jump Table for the basic instruction set. This micro-order
is executed independently of word types; hence JMP or
JSB need not be specified.

JUMP MODIFIER BIT NO. 4 3(2] 1 0

J30 CONTENT | ¢ [1| 1| 0] 1

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 3 through 0 of the Instruction
Register.

JUMP MODIFIER BIT NO. 4 31 211 0

J74 CONTENT | 1 111 |0 0

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 7 through 4 of the Instruction
Register.

JUMP MODIFIER BIT NO. 4 3 2 1 0

RTN CONTENT 1 1 1 1 0

.

Meaning: Return to the address stored in the Save
Register as a result of a subroutine jump (JSB); if the
Save Register is equal to zero (no subroutine is active),
return to address 0 of Control Store to initiate the reading
of the next macro-instruction from Main Memory.

JUMP MODIFIER | giT NO. al 3210

STFL CONTENT [0 | 1 o|o0]oO

Meaning: Set the CPU Flag and then perform the JMP or
JSB to the OPERAND address. No modification is made
to the OPERAND address.

JUMP MODIFIER BIT NO. 4 3| 2 1 0

UNCD CONTENT |1 1110 ol o

Meaning: Perform the JMP-or JSB to the OPERAND
address. No modification is made to the OPERAND
address.

Usage: This is the default micro-order if no JUMP
MODIFIER is specified.

4-23

Microprogramming Language

4-20. THE OPERAND MICRO-ORDER

OPERAND

An Address
BIT NO. 16 | 15 ® o 6 ® o 0 & o o 6 5
CONTENT Binary Address Equivalent

The ADDRESS can be a decimal, octal or computed
number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

*+kB
*-kB

o TP
*
+
(=9

*—d
LABEL+kB
LABEL-kB
LABEL+d
LABEL-d
i LABEL

5 @ ™

where * means “‘this address’’ and LABEL means a
micro-instruction label that is defined elsewhere in the

21MX

The DEF statement creates a 24 bit micro-instruction
word in ROM the contents of which is a 12 bit binary
address defined by “ADDRESS” in the micro-assembler
input record (Field 6). The binary address is associated in
the microprogram with the optional LABEL, if defined.

The ADDRESS can be a decimal, octal or computed
number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B, where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

*+kB
*—kB

IS

a0

*—d
LABEL+kB
LABEL kB
LABEL+d
LABEL-d
LABEL

=@ oo

—

where * means ‘‘this address” and LABEL means a
micro-instruction label that is defined elsewhere in the
microprogram.

microprogram.
Examples:
*+11B, *+9, HERE+5, START
Examples of DEF statements:
Character
4-21. PSEUDO INSTRUCTIONS copm o \
0
There are five pseudo instructions recognized by the
micro-assembler: DEF, EQU, ONES, SKP, and Zeroes. Fields: Field 1 Field 2 Field 6
DEF SRF+150
Content: AD1 DEF ASGNOP
4.22. DEF DEF 416B
Character
Column:
1 10 15 20 25 30 40 80
1 1
Fields: Field 1 Field 2 Fields 3-5 Fleld 6 Field 7
LABEL
Content: (optional) “DEF" {blank) ADDRESS COMMENTS

4-24

21MX Microprogramming Language
4-23. EQU

Character

Column:

1 10 15 20 25 30 80
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL “EQU"” {blank) (blank) {blank) ADDRESS COMMENTS
The EQU statement associates the stated LABEL with a f. LABEL-kB
12 bit add‘ress. This statement does not result in an g. LABEL+d
address being stored in ROM. The ADDRESS can be a
decimal, octal or computed number: h. LABEL-d
i. LABEL

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B, where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from

where * means ‘‘this address’”” and LABEL means a
micro-instruction label that is defined in the micro-

program before this statement.

Examples of EQU statements:

octal or decimal values, of the form: Character
Column:
a. *+kB 1 10 30
b. *-kB .
Fields: Field 1 Field 2 Field 6
c. *+d
HALT EQU 4008
*—d Content: RELO EQU 6000B
e. LABEL+kB START EQU RELO
4-24, ONES
Character
Column:
1 10 15 20 25 30
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL “ONES” (blank) {blank) (blank) (blank) COMMENTS

The ONES statement creates a 24 bit micro-instruction

word in ROM consisting of ones in all 24 bits.

Example of a ONES statement:

Character
Column:
1 10
Fields: Field 1 Field 2
Content: NEG 1 ONES

4-25

Microprogramming Language 21MX
4-25. SKP
Character
Column:
1 10 15 20 25 30 40 80
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: {blank) “SKP” {blank) {blank) {blank) {blank) COMMENTS
The SKP statement commands the micro-assembler to
skip to the Top of the next page (TOP OF FORM
command) during the listing of the microprogram. No
locations in ROM are used, when this statement is
specified.
Example of a SKP statement:
Character
Column:
1 10
Fields: Field 1 Field 2
Content: SKP
4-26. ZEROES
Character
Column:
1 10 15 20 25 30 40 80
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL ~“ZERQS” {blank) {blank) {blank) {blank) COMMENTS

The ZEROES statement creates a 24 bit micro-instruction

word in ROM consisting of zeroes in all 24 bits.

Example of a ZEROES statement:

Character
Column:
1 10 40
Fields: Field 1 Field 2 x Field 7
Content: NULL ZEROS NO BITS

4-26

MICROPROGRAMMING SOFTWARE

SECTION

v

Two sets of programs are provided to assemble, debug,
and implement microprograms. One set operates in the
BCS (Basic Control System) environment and the other
operates in the DOS-III (Disc Operating System)
environment.

5-1. MICROPROGRAMMING SOFT-
WARE SUMMARY

The following microprogramming software is provided:

® A two-pass micro-assembler, which converts the user’s
source microprogram record into an object tape and
microcode listing.

e A Micro Debug Editor, which reads the object tape into
Main Memory, outputs it to Writable Control Store
(WCS), and allows the user to run the microprogram
in WCS. The user can set breakpoints, change micro-
instructions, change registers, etc. This program also
provides the ability to punch the paper tapes that are
used to create (‘‘burn”) programs into the ROM.

e A WCS 1/0 Utility subroutine, callable from FOR-
TRAN and ALGOL libraries, that allows a micropro-
gram, stored in a regular FORTRAN, ALGOL, or
Assembler program buffer (in Main Memory), to be
written into WCS.

5-2. MICRO-ASSEMBLER

The Micro-assembler accepts 80-character fixed-field card
format records from a card reader, paper tape reader, or
disc (using the DOS-II1 JFILE directive). Each record
contains one micro-instruction coded in mnemonic format
as described in Section IV of this manual. The
micro-assembler processes input records and produces an
object program paper tape which contains micro-
instructions in binary format. Optionally output is a
microprogram listing in both mnemonic and binary
format, a symbol table, and error messages.

5-3. HARDWARE ENVIRONMENT

The BCS version requires the following as the minimum
hardware:

a. An HP 2105 or HP 2108 Processor with 8K of Main
Memory.

b. A Teleprinter.
This minimum system means that the assembly of the

microprogram will be slow, since all input, listing, and
punching must take place on the teleprinter.

The following additional hardware is supported:

Paper Tape Reader for source microprogram input.

a.
b. Paper Tape Punch for binary object tape output.

e

Card Reader for source microprogram input.

&

Line Printer for microprogram assembly listing and
symbol table listing.

e. 7970 or 3030 Magnetic Tape Unit for temporary stor-
age of source microprogram that is input to Pass 2 of
the micro-assembler.

The DOS-III version of the micro-assembler requires the
same hardware as the DOS-IIT system.

5-4. MICRO-INSTRUCTION SOURCE RECORD

A micro-instruction source record has the following
characteristics:

a. Length <80 characters.

b. If not on a punched card, terminated by RETURN
and LINE FEED.

¢. Seven fields with the starting column of each field as
follows:

Field Number Character Column

1
10
15
20
25
30
40

IO O AW N -

Figure 5-1 shows a card record.

Refer to Section 1V, “Microprogramming Language,” for
a description of the micro-orders appropriate to the seven
fields.

5-1

Microprogramming Software

21MX

Card
Column:

e
—_
o
_
o
N
o
N
(&2}

FIELD

FIELD

FIELD FIELD

Figure 5-1. Micro-instruction Card Source Record

5-5. MICRO-ASSEMBLER CONTROL RECORD

Control statements are interspersed with micro-assembler
language statements and specify control over the
assembly process. For example, they may define the
logical unit number of an input or output device or
suppress listings.

There is one control statement per Control Record. If not
on a card, it must be terminated by RETURN and LINE
FEED.

Two control statements are required for every micropro-
gram:

a. $ORIGIN statement
b. $END statement

All control statements start with a ‘$”” (Dollar character)
in column 1. No intervening spaces are allowed in any
control statement other than as specified. Details on each
statement text and meaning are given below.

$END

General Form: $END

Meaning: End of microprogram
Purpose: Required as the last statement in
every microprogram
Example: $END
SEXTERNALS

General Form: $EXTERNALS = namelbaddressl,
bnamebaddress2,
b. . .namenbaddressn

5-2

A comma and a space (b) separate each external name and
address pair. Each “name’’ conforms to the Label defini-
tion in Section 4-1 and ‘‘address’’ means an octal address
in the range 0 - 7777.

Define the following label names:
namel refers to addressl
name2 refers to address2

Meaning:

namen refers to addressn

Each $SEXTERNALS control state-
ment provides for one or more branch
(JMP or JSB) target addresses out-
side of the microprogram.

SEXTERNALS = OUTPUT 1012,
CHAR 736.

Purpose:

Example:

$FILE (Used by DOS-III systems only)

General Form: $FILE = filename

The filename must be in accordance
with DOS-III file name requirements.

Meaning: The object output file name for this
microprogram is ‘‘filename.”
Purpose: Provides the DOS-III micro-
assembler with the name of the disc
file into which the binary object code
is to be stored.
Example: $FILE=MOBJ
Note: Prior to assembling a microprogram with

a $FILE control statement, the user must
have reserved a disc file using the DOS-
IIT *:ST,B, ...” directive.

21MX

$INPUT

General Form:

Meaning:

Purpose:

Example:

SLIST

General Form:

Meaning:

Purpose:

Example:

$3ORIGIN

General Form:

Meaning:

Purpose:

Example:

(Used by BCS systems only)

$INPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the device
through which all subsequent input
(to the next SEND statement) is to be
read is “lun.”

When the assembly process is begun
in BCS systems, the micro-assembler
expects the first source statement to
be entered through the system con-
sole device (logical unit number 5).
The user may enter the whole source
program through the system console
device. Normally, however, the user
enters a $3INPUT command speci-
fying the logical unit number of the
card reader or paper tape reader from
which the rest of the source program
is to be read.

$INPUT = 12

$LIST = lun
The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the listing
device is “lun”.

To cause the assembly listing to be
printed on the device having the spec-
ified unit number. If omitted, logical
unit number is assumed to be 6
(standard list device).

$LIST = 16

$ORIGIN = nnn

The origin, nnn, must be octal and in
the range 0 - 7777.

Set microprogram origin at octal
address nnn in Control Store.

Every microprogram must have its
program address origin defined. New
origins may be specified within the
microprogram,

$ORIGIN = 427

Note:

SRCASE

General Form:

Meaning:

Purpose:

Example:

$OUTPUT

General Form:

Meaning:

Purpose:

Example:

$PASS 2

General Form:

Meaning:

Purpose:

Microprogramming Software

$SRCASE

Punch a special 32-micro-instruc-
tions/record object tape.

This special object tape is reserved for
system maintenance. Refer to Section
5-6 Micro-Assembler Qutput for a
description of this special object tape.

$RCASE

$OUTPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74. This
statement may come anywhere before
the $END statement.

lun is the logical unit number of the
output device.

To specify the device on which the
micro-assembler object code is to be
output. If this statement is omitted,
logical unit of 4 is assumed.

$OUTPUT = 10

(Used by BCS systems only)

$PASS2 = lun

The logical unit number, lun, must be
octal and in therange 1 - 74. If present,
this must be the first statement in the
source deck or tape.

lun is the logical unit number of the
magnetic tape unit onto which all sub-
sequent micro-assembler input is to be
written.

To cause all source input to be
recorded on magnetic tape for use as
input to Pass 2 of the micro-assem-
bler. If this control statement is
omitted, the computer halts at the end
of Pass 1 to allow the operator to re-
load the microprogram source into
the “$INPUT” device.

The only magnetic tape units supported

by the micro-assembler are the HP 3030
and HP 7970.

Example:

$PASS2 = 23
5-3

Microprogramming Software

$SUPPRESS

General Form: $SUPPRESS

Meaning: Suppress all warning error messages.
Purpose: To cut down the volume of messages
to the console device. Fatal error mes-
sages will still be printed.
Example: $SUPPRESS
$SYMTAB
General Form: $SYMTAB

Meaning: Print symbol table

Purpose: To provide the user with label names
and corresponding octal addresses
used in his microprogram.

Example: $SYMTAB

5-6. MICRO-ASSEMBLER OUTPUT

This section describes all forms of output from the micro-
assembler. They are:

e Binary Object

e Symbol Table

e Source and Binary Microprogram Listing
o Error Messages

5-7. BINARY OBJECT OUTPUT

The Standard Object Tape output by the micro-assembler
to paper tape or a disc file consists of one or more
Instruction Records, the format of which is shown in
Appendix A, Figure A-1. One Instruction Record holds up
to 27 micro-instructions and five words of header
information. Each micro-instruction requires 32 bits or two
words in the format: an eight bit address and 24 bits for the
micro-instruction. Hence the length of the record =

-5w0rds of header

2n words for n micro-instructions (2 words for each
micro-instruction)

54+2n words for one Instruction Record

No more than 27 micro-instructions are written into an
Instruction Record. Hence the maximum length =
5-+(2x27)=59 words. The last object record is a four word
End Record. When the microprogram consists of more
than 27 micro-instructions, a series of Instruction Records
are produced with the last one holding 27 or less micro-
instructions. For example, if 57 micro-instructions have
been assembled, three Instruction Records and an End
Record are required consisting of the following:

5-4

21MX

a. Instruction Record 1 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions

59 words

b. Instruction Record 2 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions

59 words

c. Instruction Record 3 holds 3 micro-instructions and
consists of

5 words of header
6 words for 3 micro-instructions

11 words

d. The End Record consists of

4 words
133 words for the entire microprogram Binary Object.

The Standard Object format is accepted by all programs
which accept standard relocatable format. Thus a
Standard Object tape can be stored in a DOS-III file using
the “:STORE,R,...” directive. However, if the DOS-III
user wants the Binary Object stored automatically in a
disc file by the micro-assembler; the DOS-III directive
“STORE,B,...” must have previously been used to
reserve a disc file.

The Micro-assembler can also produce a non-standard
object as the result of the inclusion of the $RCASE control
statement. This optional object is the HP ROM Simulator
Object tape. The format of this tape is shown in Appendix
A, Figure A-2.

5-8. SYMBOL TABLE LISTING

If the user has a $SYMTAB control statement in his
microprogram source input, then the micro-assembler will
print a symbol table on the device with logical unit number
6 or on the device defined by the $LIST control statement,
if present.

An example of a symbol table is shown in Figure 5-2.

On the left are the symbols or labels in the microprogram.
On the right is the value of the symbol; that is the six digit
absolute octal address of the symbol. Where X follows the
address, the symbol has been defined by a $EXTERNAL
control statement.

21MX
SYMROL TARLE
4OVE 00ez4l1?PX
GOTO 003421K
RET 002427X
LAST 002717X
ouT ooze11l
ERK1 0020172
Figure 5-2. Symbol Table
5-9. MICROASSEMBLY LISTING

Unless suppressed by the $NOLIST control statement, the
micro-assembler provides a listing like the one shown in
Figure 5-3. This listing is associated with the symbol table

Microprogramming Software

5-10. MICRO-ASSEMBLER ERROR MESSAGES
During the assembly process the micro-assembler checks
each instruction for errors. If an error is detected, an error
message of the following general form is printed in the
Micro-assembly Listing.

*ERROR eeee IN LINE nnnn

where
eeee
is an Error Code defined in Table 5-1 and

nnnn

is a line number in the Micro-assembly Listing.

Table 5-1 gives the meaning of each error code and the
recovery procedure. Note that Figure 5-2 holds examples
of two error messages in lines 9 and 11.

5-11. DOS-III OPERATION OF MICRO-

ASSEMBLER

Before using the DOS-III version of the Micro-assembler,
the following items must be available.

a. A current DOS-III system.

b. A source microprogram, on cards, paper tape, or in a

illustrated in Figure 5-2.

source file on disc.

0001 FORIGIN=2000R FIRST ANDDRESS OF MODULE 4
vo02 $SYMTAR PRINT SYMHOL TABLF
0003 SEXTERNAL=MOVE 26412+ GOTO 3421s KET 2427+ LAST 2717
0004 #* P2=ALP]
00US 2000 220 074457 READ INC M P READ ADDEND P
0006 2001 017 126157 PASS L [PUT AUGEND IN L AND ENABLE E & O
0007 2002 264 101557 FNVE ADND S12 TAR ADD MEMORY TO L AND STURE IN Sl12
000R 2003 324 140531 JMP CNDX E ERR1 IF £ SETy GO TO ERRI
#eFRROKF 0008 IN LINE 0009
0009 2004 320 000030 JMP CNDX OVFL ERRZ2 IF 0 SETs GO TOU ERRZ2
0010 200% 000 075717 INC P P RUMP P FOR NEXT PARAMETER
#eFRROK 0003 IN LINF 0011
0011 2006 017 136757 RFAD INC M P KFAD NEST PARAMETER P2 ADDRESS
0012 2007 000 000646] MPCK INC M TaR PUT IN M AND CHECK FOk ™ P ERR
0013 2010 177 166017 WRTE PASS TAR S12 PUT ADD RESULT INTO MEM ADD P2
0014 2011 017 136776 OUT RTN THE RETURN
0015 2012 344 0017S7 ERR1 IMM LOW S 0 SET UPPER RYTE FOR E ERR
0016 2013 320 100470 JmP ouT RETURN
0017 2014 340 001757 ERRZ IMM HIGH S 0 SET LOWER RYTE FOR 0 ERR
0018 2015 320 100470 JMP ouT FETURN
0019 $END
#e 0002 FRRORS#®
Nt e e, ! N St
Line ROM Bits Bits Field Field Field Field Fieid Field Field
Number Address 23-16 16-0 1 2 3 4 5 6 7
| R
Binary
Micro-instruction
Figure 5-3. Micro-Assembly Listing

5-5

Microprogramming Software

The Micro-assembler program named MICRO stored
in the DOS-1II user library. If MICRO still is on re-
locatable object paper tape (HP 12978-160001), it can
be loaded in the same way as any other relocatable
object program.

21MX

a. If there is a $FILE control statement in the micropro-

gram source, a binary file must be reserved on the disc
before beginning the micro-assembly process to hold
the relocatable object. The name of the reserved disc
file must be the same as the one specified in the $FILE
control statement.

_ Place the microprogram source in the input device;

turn the device on; turn on the paper tape punch and

For the detailed description of DOS-III operation, see HP
24307B DOS-III Reference Manual (HP 24307-90006).

the list device.

Table 5-1. Micro-assembly Error Messages

Meaning/Recovery

Duplicate Label. The statement label of the micro-instruction in line nnnn is the same
as another statement in the microprogram or the same as a declared SEXTERNAL

Illegal Control Statement. Correct control statement in line nonn and reassemble.

Illegal Field 2 Micro-order. A NOP is inserted in field 2 and assembly continues. Cor-

Illegal Field 3 Micro-order. A NOP is inserted in field 3 and assembly continues. Cor-

Illegal Field 4 Micro-order. A NOP is inserted in field 4 and assembly continues. Cor-

Illegal Field 5 Micro-order. A NOP is inserted in field 5 and assembly continues. Cor-

Illegal Field 6 Micro-order. A NOP is inserted in field 6 and assembly continues. Cor-

Illegal JMP or JSB Address. Address is outside permitted range, or target label
address is undefined. A value of 0 will be inserted into address field of line nnnn and

Microprogram Too Large. The last relative address in the program is 400 or greater. A
$ORIGIN statement must be changed or the program broken up into smaller parts

Missing $ORIGIN Control Statement. At least one $ORIGIN control statement is

Illegal Word Type 2 Operand. Operand of the IMM micro-instruction is outside the
permitted range. A value of 0 is inserted into the operand and assembly continues.

Insufficient DOS-III File Space Reserved. Reserve a binary file with more sectors for
storage of the file named in the $FILE control statement (aaaa is an address in the
micro-assembler and can be disregarded). See DOS-III manual section 15 under

Error Code
1
symbol. Assign a new statement label and reassemble.
2
3
rect line nnnn and reassemble.
4
rect line nnnn and reassemble.
5
rect line nnnn and reassemble.
6
rect line nnnn and reassemble.
7
rect line nnnn and reassemble.
8
assembly continues. Redefine address and reassemble.
9
before reassembly.
10
required. Insert $ORIGIN statement and reassemble.
11
Correct line nnnn and reassemble.
OR aaaa
Error Conditions.
ABORT! An irrecoverable error has occurred; correct error and reassemble.

5-6

21MX

¢. Summon the Micro-assembler with statement
:PR,MICRO,[p1,p2,p3,p4,99]

where
pl = the input device logical unit number
p2 = list device logical unit number
p3 = paper tape punch device logical unit number

p4 = maximum number of lines-per-page on the list
device.

If 99 is entered for any of the above parameters, that
parameter and all those that follow are defaulted to
“standard” values.

d. The program title
MICRO-ASSEMBLER

is printed and Pass 1 begins. If a $SYMTAB control
statement is in the source microprogram, the symbol
table is printed at the conclusion of Pass 1. Pass 2
begins immediately (from disc) and the listing and
relocatable object tape are output. Micro-assembly is
complete.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

5-12. BCS OPERATION OF MICRO-ASSEMBLER

Before proceeding, the following items must be available:

e An absolute BCS binary tape.

® A reloctable object tape of the Micro-assembler pro-
gram MICRO (HP 12978-160003).

® A source microprogram either on cards or paper tape.

For a detailed description of BCS usage, see the Basic Con-
trol System manual (HP 02116-9017).

The following procedure need be performed only once.
When an absolute binary tape of the Micro-assembler is
punched, it is used as described in the procedure
“Executing the Micro-assembler.”

Making an Absolute Micro-assembler tape:

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Register
and clear all other Switch Register bits.

Microprogramming Software

c. Place the MICRO relocatable object tape in the paper
tape reader. Check that the paper tape reader and the
console device are on. Turn on the paper tape punch.
Press PRESET and RUN on the CPU front panel.
MICRO reads in and absolute binary tape is punched.

d. The message
*LOAD

is printed and the computer waits. Set Switch Register
bits 2 and 14 leaving all others clear. Load BCS
Library tape into the paper tape reader. Press RUN.

e. The BCS Library tape reads in and the rest of the abso-
lute binary tape is punched. Linkage information is
printed on the console device.

This is the absolute binary tape of MICRO, used for input
to the next step.

Executing the Micro-assembler:

a. Load the MICRO absolute binary tape using the Basic
Binary Loader.

b. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-ASSEMBLER

is printed followed by a request for the logical unit
number of the source input device.

¢. Enter the logical unit number followed by carriage
return/line feed. Pass 1 now begins. If a $SYMTAB
control statement is in the microprogram source, the
symbol table is printed at the conclusion of Pass 1.
(See Section 5-5 for a description of the $SYMTAB
control statement.)

d. Turn on the paper tape punch.

e. Pass 2 begins immediately. If no $PASS2 control
statement was included in the source, the message

RELOAD SOURCE, PRESS RUN

is printed. Reload the source microprogram into the
input device and then press RUN on the front panel of
the computer.

Note: 1If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

If a teletype is used for both listing and punching, the
computer halts (M-register = 102052) so that the oper-
ator can press the paper tape punch ON button to
punch the microprogram object tape. The operator
then presses RUN on the computer front panel.

5-7

Microprogramming Software

When the paper tape is punched, another halt (M-
register = 102053) occurs, so that the paper tape punch
button can be set to OFF. Press RUN on the computer
front panel.

f. Pass 2 completes micro-assembly. The microprogram
object tape is complete. To assemble another micro-
program proceed from step b.

5-13. MICRO DEBUG EDITOR

The Micro Debug Editor (MDE) makes it possible to load
the object microprograms output from the Micro-
assembler into a Writable Control Store module. It also
provides the ability to debug microcode stored in the WCS
and to “burn” microprograms into ROM chips.

Before using the Micro Debug Editor to debug micro-
programs, the Writable Control Store PCAs must be set to
the required control store module numbers. This is
accomplished by the installation of a module selection
Jumper Assembly (HP Part Number 5060-8342). Refer to
Section 6 of this manual for installation of the module
selection Jumper Assembly and the WCS PCAs.

21IMX

5-14. HARDWARE ENVIRONMENT

The BCS version requires the following minimum
hardware:

a. HP 21MX Series Computer with 8K of Main Memiory
b. A console device
c. A paper tape reader

d. One or more WCS PCA's, depending on the size of the
microprogram to be debugged.

e. If a ROM program tape is to be punched, a paper tape
punch is also required.

The DOS-III version of the MDE requires the same mini-
mum hardware as the DOS-III system.

5-15. INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run for debugging
purposes (as opposed to being run merely to punch ROM
program tapes), the user must supply an Initialization
program. The initialization program is an assembly lan-
guage program that prepares the necessary parameters in

ASMB,R,B,L,T

NAM TEXT,6
... ENT TEST,MACRO
TEST NOP

MACRO OCT 105xxx

DEF P1
DEF P2

DEF Px
JMP TEST, I

P1 (parameter 1 value)
P2 (parameter 2 value)

Px (parameter x value)

END

Assembly parameters
Program name (DOS-III)
Entry points

Any initialization procedure re-
quired by the microprogram

(or 101lxxx) Instruction that calls
the user microprogram

Parameter addresses required by
the microprogram

Return to calling program (MDE)

Parameter values

Figure 5-4. General Format of the Initialization Program

5-8

21MX

Main Memory and then executes a 101xxx or 105xxx
macro-instruction.

The name of the initialization program must be TEST
(required in BCS systems, is a NAM TEST statement; in
DOS-III systems a NAM TEST, 6 statement). The
program must also have the symbol “MACRO” declared
as an entry point where MACRO is the symbolic address
(label) of the macro-instruction (101xxx or 105xxx) which
calls the microprogram under test. Note that there must
only be one such macro-instruction in the TEST
initialization program.

Figure 5-4 holds the general structure of the initialization
program.

This initialization program is called as a relocatable sub-
routine by MDE. Thus, its name is one of the references
that must be satisfied when loading MDE.

A note of caution: a microprogram cannot be debugged
using MDE unless the microprogram has:

a. An entry point which is a “JMP”’ micro-instruction of
Word Type 4 (described in Section 4-17).

b. The micro-instruction jumped to by the JMP at the
entry point must not contain a “READ’’ micro-order.

An example of a short initialization program is shown in
Figure 5-5.

Microprogramming Software

5-16. USING THE MICRO DEBUG EDITOR

Section 5-37 describes how to execute MDE using the
DOS-III operating system. Section 5-38 describes how to
execute MDE using the BCS operating system.

Before using the Micro Debug Editor to debug a micro-
program, the Writable Control Store PCAs must have the
correct terminal board plugged in, to establish the Control
Store module number. Refer to Section VI of this manual
for a description of setting module numbers in a Writable
Control Store PCA.

When the module number has been set in the Writable
Control Store PCA and it is plugged into the correct I/0
slot, the user loads the microprogram object tape
(produced by the Micro-assembler) using the Micro Debug
Editor LOAD command. The microprogram is then output
to the Writable Control Store using the WRITE
command.

When the user is ready to execute his microprogram, the
EXECUTE command is used. For the microprogram to
execute properly, the following conditions must hold:

a. The module that the microprogram was written into
matches the range of addresses used by the micropro-
gram. For example, a microprogram whose addresses
are in the octal range 2400 to 2777 must be stored in
a Writable Control Store PCA which has been set to
module 5.

Macroprogram in Main Memory

P Computer
& Museum

Microprogram to be executed in WCS

NAM TEST LABEL OP SPEC ALU STOR S-BUS
ENT TEST,MACRO
MACRO OCT 105200 $ORIGIN=2000B
JMP TEST,I —~—— — JMP START
END $ORIGIN=2020B
START NOP CLFL INC M p
RTN A 512
$END

Figure 5-5. Test Program Call to Microprogram

59

Microprogramming Software

b. The macro-instruction in the TEST program must ini-
tiate entry into Control Store at the proper address of
the microprogram to be tested.

Micro Debug Editor results are unpredictable if either of
the above conditions are not met.

When MDE is executed, it prints the input prompt
COMMAND?
on the system teleprinter.

Respond by entering one of the input, edit, output, or
debug commands described in Table 5-2 and the following
pages. In most cases, the first letter of the command is
sufficient to specify it to MDE. The two commands,
“MOVE” and “MODIFY”, require at least three letters to
identify the command. After MDE has performed the
specified operation, it again prints COMMAND? to repeat

the cycle.

Terminate an MDE run by entering the FINISH
command.

There are 13 MDE commands which are summarized in
Table 5-2. A detailed description of each command follows.
Whenever a logical unit number (lun) is called for, it must
be entered in octal.

Note that the last octal 45 words of the lowest numbered
WCS module loaded with a microprogram are used by
Micro Debug Editor for its own resident microcode. If
these locations are required by the user microprogram
under test, use the MOVE command to relocate the MDE
microcode before loading the user microprogram.

The Micro Debug Editor uses a Main Memory buffer to
hold the microprogram object code. When the micropro-
gram is loaded from an object tape, it is stored into this
buffer. Most MDE commands make modifications or
transfers to and from this buffer.

Use of the PREPARE command to punch the six ROM
microprogram mask tapes has the following restriction.
This buffer must have been loaded using an object tape
produced by the micro-assembler and the buffer must not
have been modified.

5-17. INPUT COMMANDS
5-18. LOAD[,X]

Meaning:Load the object microprogram produced by the
Micro-assembler from disc or paper tape into the MDE

buffer. The logical unit number (lun) of the input device is
X.

Usage: The Micro-assembler control statement $FILE can
be used to specify (during assembly) the name of the
DOS-III file into which the object code is to be stored. In
the DOS-III version of MDE, if the logical unit number

5-10

21MX

entered is that of the disc, MDE will respond with a
request for the name of the file in which the object code is

to be stored:
FILENAME?

Enter the file name given to the object code by the $SFILE
control statement.

When loading the object microprogram
for output to WCS (instead of punching
ROM tapes), the LOAD command must
be followed immediately by a WRITE
command to the appropriate WCS PCA.
No intervening commands are allowed.
This allows the Micro Debug Editor to
build a table relating microprogram
addresses to WCS logical unit numbers.

Note:

Table 5-2. Micro Debug Editor Commands

INPUT
Commands: LOADI[,X]
READ,X
EDIT
Commands: SHOW xxxx[,yyyy]
MODIFY xxxx[,yyyy]
ouTPUT
Commands: DUMP[,X]
WRITE,X
PREPARE[X]
VERIFY[,X]
TERMINATION
Command: FINISH
DEBUG
Commands: BREAK,yyyy

CHANGE[,mnemonic]
EXECUTE,0 or yyyy]

RELOCATE MDE WCS-RESIDENT
MICROCODE

Command: MOVE,yyyy

Note

The brackets indicate that the parameter may be
omitted.

21MX

5-19. READX

Meaning: Read the contents of a WCS into the Micro
Debug Editor buffer. X is the logical unit number of the
WCS.

Usage: If no WCS is on the specified logical unit, the
MDE buffer is unchanged. No notification is made to the
user that the buffer is unchanged or that no WCS is on the
logical unit specified. Thus, if READ or SHOW is being
used to insure that a previous WRITE executed properly
to the same (non-WCS) logical unit, the MDE buffer will
still hold the data that was assumed to be written to that
logical unit. The user could incorrectly assume that the
non-existent WCS holds the proper data.

5-20. EDIT COMMANDS

5-21. SHOW xxxx[,yyyyl

Meaning: Display the WCS contents on the console
device, where xxxx is the beginning address and yyyy is
the ending address. Only the contents of the address xxxx
are displayed, if yyyy is omitted.

Usage: See Usage under 5-19, READ,X.
The display format of each 24-bit word is:
aaa mmm nnnnnn

where aaa is the control store address of the location being
displayed, mmm is the octal representation of bits 23-16 of
the location, and nnnnnn is the octal representation of bits
15-0 of the location.

5-22. MODIFY,xxxx[,yyyyl

Meaning: Change the contents of the MDE buffer and the
WCS where xxxx is the beginning WCS address and yyyy
is the ending WCS address. Change WCS address xxxx if
yyyy is omitted.

Usage: See Usage under 5-25, WRITE X.

“MOD”’ is the minimum input required to initiate the
modify command. xxxx and yyyy must be absolute WCS
addresses in a single WCS module. One at a time, the
contents of each location are printed on the console device
in the same format as the SHOW command above.
Following the location contents, the operator enters the
new location contents followed by a CARRIAGE
RETURN and LINE FEED.

If fewer than 3 digits are entered for mmm or fewer than 6
digits are entered for nnnnnn, the number entered is right
justified with zeros automatically filled to the left. To
specify that no change is to be made, enter an asterisk (*),
instead of mmm or nnnnnn.

Microprogramming Software

Example:

MOD,4000,4003
4000 123 456777 *,123456

leaves bits 23-16 unchanged and sets bits 15-0 to 123456 in
WCS location 4000.

4001 123 456777 6,123

is equivalent to entering 006,000123; bits 23-16 are set to
006 and bits 15-0 are set to 000123 in location 4001.

4002 123 456777 123,*

sets bits 23-16 to 123 and leaves bits 15-0 unchanged in
location 4002.

4003 123 456777 **
makes no change to location 4003.

5-23. OUTPUT COMMANDS
5-24. DUMP[,X]

Meaning: Punch the entire contents of the MDE buffer on
the paper tape punch. X is the logical unit number of the
paper tape punch. If X is omitted, it is assumed to be 4.

Usage: The DUMP command must be preceded by a
READ or LOAD command to fill the MDE buffer. The
tape produced is in the same format as the object tape
produced by the Micro-assembler. If the tape is reloaded
into the MDE buffer, the buffer cannot be used to punch
(PREPARE command) a set of six pROM mask tapes.
The primary use of this tape is to enable the user to save
the results of a microprogram debug session for
resumption later.

525. WRITEX

Meaning: Write the contents of the MDE buffer into the
WCS. X is the logical unit number of the WCS.

Usage: Since the Micro Debug Editor addresses the WCS
by logical unit number, it is the responsibility of the user
to insure that a WCS is installed with logical unit number
X and that it is set to the proper module for the micro-
code to be stored. If no WCS is on the specified logical
unit, no notification is given to the user that a WRITE or
MODIFY command failed to transmit data to the non-
existent WCS.

5-26. PREPARE[,X]

Meaning: Punch a set of six pROM mask tapes each
headed by three lines of 1.D. and a checksum on the paper
tape punch. X is the logical unit number of the device. If X
is omited, it is assumed to be 4.

5-11

Microprogramming Software

try of the PREPARE command, a

. Following en
Usage s erator and the

cycle of dialogue is initiated between the op :
console device. In the following procedure, the underlined
characters indicate operator input is required at the
console device. Fach entry must be followed by a
CARRIAGE RETURN and LINE FEED.

a. Turn on the paper tape punch. The message cycle

starts with:

GENERATION OF MASK BITS 23-20

where 23-20 represents the 4 bit range of bits to be

punched into the first mask tape.

ENTER 3 LINES OF 1.D. INFORMATION
LINE 1 — key in first line of tape LD.
LINE 2 — key in second line of tape 1.D.
LINE 3 — key in third line of tape LD.

Enter up to 72 characters of identification information
in each line.

b. Following entry of the third 1.D. line, the mask tape is
punched for mask bits 23 to 20. This is for ROM chip
number 6. The following cycle of dialogue is repeated
for each of the remaining five mask tapes:
GENERATION OF MASK BITS UU-LL
UU - LL is the range of bits to be punched.

ANY CHANGE OF L.D. INFO IN LINE 1? key in N
{no) or Y(yes) and new line 1 I.D.

LINE 2? key in N or Y and new line 2 LD.
LINE 3? key in N or Y and new line 3 L.D.

¢. The next mask tape is punched. When all six mask

tapes have been punched, the following message is
output:

GENERATION OF TAPES COMPLETED

The six mask tapes have the following characteristics:

For M
UU-LL Punch Sequence C}(l)i(:)ull\?ol.{OM
23-20 First tape 6
19-16 Second tape 5
15-12 Third tape 4
11-08 Fourth tape 3
07-04 Fifth tape 2
03-00 Sixth tape 1

Conventions: Line 1 I.D. holds module number, ROM chip

number, number of bits (4), ROM si
information. ' size, and other L.D.

5-12

21MX

For example:

LINE 1-1,005, 4, 1025 REENTRY FACTOR

Line 2 1.D. holds part number or other central reference
number. For example:

LINE 2-MT 38-0226 REVISION C

Line 3 1.D. holds date and any other L.D. information. For

example:

LINE 3-04/01/75 PVT. D.M. BULMAN

527. VERIFY[X]

Meaning: Compare the contents of the pROM mask tapes
to the contents of the MDE buffer. The logical unit
number of the paper tape reader is X.

Usage: Following entry of the command, the console
device requests the range of bits in the pROM mask tape
to be compared to the MDE buffer (underlined characters
indicate operator entry).

TAPE NUMBER: uull

Enter CARRIAGE RETURN and LINE FEED after the
bit range uu (upperlimit) and 11 (lowerlimit). Refer to 5-26
PREPARE],X] for valid bit ranges.

For example, the entry 2320 specifies verification of bits
93 to 20. The paper tape then reads the mask tape and
compares its contents to the specified bits in the MDE
buffer. As the tape is being read, the three lines of I.D. (see

PREPARE command) and checksum are printed on the
console device.

Note: If the DOS-III operating system is being

used, and no errors were encountered, an

1/0 “‘error”’ message is printed at the con-
sole device:

1/0 ERR ET EQT #n

Where n is the EQT number of the paper
tape reader. This message notes a charac-
teristic of the mask tape that DOS-II1
normally interprets as an error condition
but the message in fact, connotes no errorj

If no errors were detected, the message

TAPE VERIFIED

is printed. Enter another bit range as before. The VERIFY

command completes only after the bit ran
e 03 ot
been entered and verified. ge 03 ot 00 has

21MX

Errors: If errors are detected, dialogue between the
console device and the operator is initiated. Follow each
operator entry with CARRIAGE RETURN and LINE
FEED.

a. The message CHECKSUM ERROR OR BAD MASK
TAPE is printed followed by a tape repunch
request:

DO YOU WANT TO REPUNCH THIS TAPE?
enter Y or N

b. If N is entered, another bit range request with the
message

TAPE NUMBER?

Enter another bit range as before. The VERIFY com-
mand completes only after the bit range 03 to 00 has
been entered and verified.

c. If Y is entered, the following request is made:

ENTER PUNCH LOGICAL UNIT # enter octal
logical unit number of paper tape punch

The message

ENTER THREE LINES OF I.D. INFORMATION
is printed.

Enter up to 3 lines of tape I.D. information according
to the procedure given in 5-26, PREPARE[,X]. The

new mask tape is punched, headed by the I.D.
information.

Special DOS-I11 operation: When a series of bit ranges are
being verified, specification of each successive range at the
console device (as a result of the message TAPE
NUMBER?) will bring about the prompt character “@ .
To verify the specified bit range on paper tape:
a. Enter the following command

:UP,n

where n is the EQT number of the paper tape reader.
b. Then enter:

:GO

The next tape to be verified will read in as above.

Verify sequence: The mask tapes may be verified in any
order with exception that the last tape verified must have
the bit range 03 to 00.

Microprogramming Software

528. TERMINATION COMMAND

5-29. FINISH

Meaning: Terminate the current MDE run.

5-30. DEBUG COMMANDS

5-31. BREAK,yyyy

Meaning: Set a Breakpoint at location yyyy and clear the
previous one. If yyyy = 0, no breakpoint is set and the
previous one is cleared.

Usage: Microcode execution is initiated by an EXECUTE
command. When the Breakpoint address yyyy is reached,

REG’S?
is printed and microprogram execution ceases (breaks).
Enter the mnemonics of the flags or registers that are to be
displayed, separated by commas. The mmnemonics are
described under the CHANGE command. The entry is of
the form

REG’S? ml,m2,m3,...mn

where m1 through mn are register and flag mnemonics.
The resulting display is of the form

ml =cl, m2=c¢2, m3 =¢3,...... , mn = ¢n

when cl through cn are octal contents of the requested
registers and flags.

Example of a display request:
REG'S A,B,1,2,3,4,14

The resulting display:

A = 00004, B = 103005, 1 = 000447,
2 = 00012, 3 = 00000, 4 = 00000,
14 = 034716

Enter “!” to display all registers and flags. Enter ““/” to
return to command entry mode.

Restrictions: Do not set a breakpoint
a. in the WCS entry point address of the microprogram

b. in a microprogram subroutine (within the JSB...RTN
code limits)

c. in an address where the micro-instruction passes
information to or from the T-register immediately fol-
lowing a WRITE or READ micro-order.

5-13

Microprogramming Software

5-32. CHANGE[,m]

Meaning: Alter the contents of one or more registers and
flags. If the mnemonic m is specified, alter the con'tfents of
the register or flag which it specifies. It not specified, all
registers and flags are displayed in sequence to prompt the
user to make required changes.

Mnemonics: The list of register and flag mnemonics

follows:
Mnemonic Stands For Mnemonic Stands For

A A-register 9 S9-register
B B-register 10 S10-register
S S-register 11 S11-register
P P-register 12 S12-register
1 *S1-register X X-register
2 S2-register Y Y -register
3 S3-register 0 Overflow Register bit
4 S4-register E Extend Register bit
5 S5-register F CPU Flag bit
6 S6-register CN Counter Register
7 S7-register L L-register
8 S8-register

*Scratch Pad Register 1; similarly for §2, S3, etc.

Usage: Upon entry of the command, the message
m XXXXXX =

is printed, where m is the register or flag mnemonic and
xxxxxx is the octal representation of the contents. Enter
the new contents or an asterisk (*} if no change is to be
made.

Example of a CHANGE request:

CHANGE,6
6 173777 = 173770

This is a request for a change to S6-register (Scratch Pad
Register 6). The original contents were octal 173777. The
new contents are octal 173770.

5-33. EXECUTELyyyyl]

Meaning: Execute microprogram.

1f yyyy = 0, the TEST initialization program is run, which
carries execution to the microcode in WCS. This is the
normal mode of initiating microcode.

Note: If the entire system goes dead after
entering an EXECUTE,0, the reason may
be that the WCS with the correct module
nlumber is not plugged into the correct
slot.

If yyyy = an absolute WCS address, execution of micro-
code begins at that address.

5-14

21MX

If yyyy is omitted, execution resumes from the last break-
point with registers and flags set

a. according to their setting when the breakpoint was
encountered, or

b. modified by the CHANGE command.

Usage: Execution will continue until a breakpoint is
encountered or until the microprogram is completed.
When complete, the command entry mode is repeated.

Before initiating a microprogram execute (other than
EXECUTE,0), make sure that all registers and flags are
preset using the CHANGE command, if necessary.

534, RELOCATE MDE WCS-RESIDENT
MICROCODE
5-35. MOVE,yyyy

Meaning: Move the octal 45 word WCS-resident
microprogram portion of MDE from the usually resident
locations to locations beginning with yyyy.

Usage: “MOV” is the minimum input required to initiate
the move operation, MDE requires a portion of WCS for
register dump and register restore microprograms. These
MDE microprograms are initially stored in relative octal
locations 333 to 377 of the first WCS loaded. If the user
requires these locations in Writable Control Store, he can
move this resident MDE microcode elsewhere.

No check is made to see if a portion of the user microcode
has been overlayed. The reason is that the user may
actually want to situate the dump and restore
microprograms on top of his own microcode as he debugs
another portion of his code.

The actual relocation of the MDE microcode does not
occur until the EXECUTE command is given.

5-36. MDE ERROR MESSAGES

During the use of MDE, commands, parameters, and
processing functions are monitored. If an error condition is
detected, an appropriate message is printed. Table 5-3
holds the list of MDE error messages plus their meaning
and the recovery procedure.

5-37. DOS-III OPERATION OF MDE

Bef.ore using the DOS-III version of the Micro Debug
Editor (MDE), the following items must be available.

a. A current DOS-III system

b. A relocatable object tape of MDE (HP 12978-16002).

21MX

C.

A relocatable object tape of the TEST initialization
program if a debug run is to be made.

d. A microprogram object tape output by the Micro-

assembler.

The following is an example of how the user can proceed.
For details on additional DOS-III options, see DOS-III
manual (HP 24307-90006).

a.

Store the two tapes, MDE and TEST, on the disc using
the DOS-III store command

:ST,R, filename, lun

where filename is any suitable label and lun is the log-
ical unit number of the paper tape reader from which

Microprogramming Software

Respond as follows:
MDE filepame, TEST filename, /E

where MDE filename and TEST filename are the
chosen file names used with the “ST" store command
(step A), and /E specifies end of entry.

If MDE is being used only to load WCS with a micro-
program, the TEST filename may be omitted. The
loader then reads the two files into main memory.
If the TEST initialization program has been omitted,
the message

UNDEFINED EXTS

is printed indicating TEST is an undefined external to
the MDE program.

the tapes are entered.

To proceed, enter

Make sure the list device is on. At the console device

enter
:PR,LOADR,2

DOS-III responds with

ENTER FILE NAMES OR /E

:GO,1
When loading is finished, the message
LOADER COMPLETE

is printed.

Table 5-3. Alphabetical List of MDE Error Messages

Message

Meaning/Recovery

CAN'T FILL MORE THAN

16 MODULES!

ILLEGAL COMMAND

ILLEGAL DIGIT

ILLEGAL PARAMETER

ILLEGAL REG.

MNEMONIC

ILLEGAL TAPE #

MISSING PARAMETER

NO BREAKPOINT HAS

BEEN SET!

WCS NOT LOADED

User has tried to write microprograms to more than the maximum of
16 WCS modules. The user can debug no more than 16 WCS modules
at a time.

Command just entered is not an MDE command; re-enter command.

An “8” or ““9” was entered in the previous command that called for
an octal digit; re-issue the entire command.

An unacceptable parameter was entered in the previous command;
re-issue command.

Register or flag mnemonic just entered is not one of those listed under
the CHANGE command (section 5-32); enter correct mnemonic.

Bit range entered is not one of those listed under PREPARE command
(section 5-26).

A required parameter was omitted from the previous command;
re-issue command.

An EXECUTE-from-breakpoint command was given without having
set a breakpoint logically beyond the execute address.

The Writable Control Store PCA corresponding to the logical unit
specified in the command just entered, has not been loaded with a
microprogram during this MDE session; load the WCS.

5-15

Microprogramming Software

d. Save the loaded MDE program with
:ST,P
To summon MDE from now on, enter

:PR,MDE

e. The program title is then printed followed by command

request:

MICRO-DEBUG EDITOR
COMMAND?

Now enter the MDE commands required as described

beginning in Section 5-16.

5-38. BCS OPERATION OF MDE

Before proceeding, the following items must be available:
a. An absolute BCS binary tape.

b. A relocatable object tape of MDE (HP 12978-16004).

c. A relocatable object tape of the TEST initialization
program, if a debug run is to be made.

d. A microprogram object tape.

e. A BCS Library tape (HP 24145-60001), Revision B.

The following is an example of how the user can proceed.
For details on additional BCS options, see the Basic
Control System manual (HP 02116-9017).

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Reg-
ister and clear all other Switch Register bits.

c. Place MDE relocatable object tape in the paper tape
reader and insure that the paper tape reader and the
console device are on. Turn on paper tape punch. Press
PRESET and RUN on the CPU Front Panel.

The MDE tape is read and an absolute binary tape is
punched.

d. The message
*LOAD
is printed on the console device and the program halts.

If required, load the relocatable TEST Initialization
Program tape into the paper tape reader. Press RUN.

The TEST tape is read and another absolute binary
tape is punched.

5-16

e. The message

*LOAD

is printed on the teleprinter and the program halts.

Set Switch Register bits 2 and 14 leaving all others
clear. Load BCS Library tape into the paper tape
reader. Press RUN.

. Library tape is read and more absolute binary tape is

punched.

Linkage information is printed on the Teleprinter.
m punch. This is the complete

Remove paper tape fro ' ‘
absolute binary tape of the Micro Debug Editor in-

cluding the TEST Initialization Program.
g. Load this tape using the Basic Binary Loader.

h. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-DEBUG EDITOR
COMMAND?

is printed.

Now enter the required MDE commands as described
heginning in Section 5-16.

i

5-39. WCS 1/0 UTILITY SUBROUTINE

This library subroutine provides the capability of writing a
microprogram into and reading a microprogram from a
WCS using a buffer in an Assembly Language,
FORTRAN, or ALGOL program and operating in a BCS
or DOS-III environment. This avoids the necessity of
running MDE every time it is necessary to access a WCS.
This subroutine is in the standard BCS and DOS-III
libraries for 21MX Series Computers.

Unlike a ROM chip, whenever the computer power is
turned off, the WCS contents are lost. Thus the WCS must
be loaded before access can be made to microprograms.
This WCS 1/0 utility has been provided to serve that
purpose.

Besides the calling sequence, a buffer is required in the
.calhng program large enough to hold the number of micro-
instructions being transferred in or out.

Initially, the microprogram is stored on an object paper
tape, in an object file on disc, or as octal data stored in the
Main Memory program. In the case where the micro-
program is in the form of octal data in the Main Memory
program, the octal data area serves as the buffer when the
WCS I/0 Utility is used to write the microprogram into
the WCS.

21MX

In the case where the microprogram resides on disc or
paper tape, the control system (BCS or DOS-III) must be
used to read the tape or disc file into a buffer in the Main
Memory program. It must be remembered that the
microprogram object contains header and end record infor-
mation that must be deleted before storing the micropro-
gram in the buffer. (Header and end record information
must not be written into the WCS.)

Refer to Section 5-7 for a description of the Binary object
output by the micro-assembler. Appendix A illustrates the
binary object format.

When the microprogram has been stored in the Main
Memory program buffer, a WCS I/0 Utility WRITE
calling sequence is used to write the microprogram into the
WCS.

To read the contents of the WCS, a WCS I/0 Utility
READ calling sequence is used.

The assembly language calling sequences are the
following:

Microprogramming Software

READ
JSB WREAD Branch to WCS read subroutine
DEF *+5 Return address
DEF lun Logical unit number of WCS
DEF BUFF Address of microprogram buffer
DEF LENGTH Number of words of transfer
DEF ADRS WCS relative address

WRITE
JSB WWRITE Branch to the WCS write sub-

routine

DEF *+4 Return address
DEF lun Logical unit number of WCS
DEF BUFF Address of microprogram buffer
DEF LENGTH Number of words of transfer

Where lun contains the logical unit number of the WCS
being accessed and BUFF contains the first word of a
word pair that holds a micro-instruction,. LENGTH
contains the octal number of words in the transfer; if
LENGTH is positive, the number of 24 bit words is
specified; if LENGTH is negative, the number of 16 bit
words is specified. ADRS contains the WCS relative
address (between octal addresses 0 and 377) of where to
start reading.

5-17

WRITABLE

SECTION

Vi

CONTROL STORE

This section covers general information, installation, pro-
gramming, and general theory of operation for the HP
12978A Writable Control Store Interface Kit. Options 001
and 002 for the interface kit are also covered in this
section.

6-1. GENERAL INFORMATION

The Hewlett-Packard 12978A Writable Control Store
Interface Kit provides the HP 21MX Computers with the
necessary logic to dynamically change the instruction set
of the computer. The printed-circuit assembly and flat
cable assembly contained in the interface kits are shown in
figure 6-1 and listed in table 6-1.

6-2. IDENTIFICATION
Hewlett-Packard uses five digits and a letter (12978A) for
standard kit designations. If the designation of your kit

does not agree with this number, there are differences
between your kit and the kit described in this manual.

6-3. INTERFACE KIT CONTENTS

Table 6-1. Interface Kit Contents

INTERFACE
KIT CONTENTS HP PART NO.

12978A Writable Control Store | 12908-60006
PCA
Flat Cable Assembly 5060-8393
5 Connectors
Microprogramming 02108-90008
21MX Computers
Diagnostic Paper Tape | 24359-16001
Diagnostic Manual 12908-90009

6-4. CONTENTS OF INTERFACE KIT OPTIONS

There are two 12978A Interface Kit Options. They contain
material in addition to that contained in the basic interface
kit. Option 001 provides all the software required for use of

the writable control store in the DOS-III system. Option
002 provides all the software required for the use in the
BCS system.

Table 6-2. Additional Material for Interface Options

ADDITIONAL

OPTION MATERIAL HP PART NO.

12978 A-001 | DOS-IIT WCS Driver 24278-60001

DOS-IIIWCS1/0 Utility | 24333-60001
DOS-III Micro-assembler | 12978-16001

Dos-111 Micro Debug
Editor

12978-16002

12978A-002 | BCS WCS Driver 24277-60001

BCSWCS I/0 Utility 24283-60001
BCS Micro-assembler 12978-16003

12978-16004

BCS Micro Debug Editor

6-5. SPECIFICATIONS

Table 6-3 lists the characteristics and specifications of the
writable control store PCA.

6-6. INSTALLATION

6-7. UNPACKING AND INSPECTION

If the shipping carton is damaged upon receipt, request
that the carrier’s agent be present when the kit is
unpacked. Inspect the kit for damage (cracked, broken
parts, etc.). If the kit is damaged and fails to meet specifi-
cations, notify the carrier and the nearest HP Sales and
Service Office immediately. (Sales and Service Offices are
listed at the back of this manual.) Retain the shipping
container and the packing material for the carrier’s
inspection. The HP Sales and Service Office will arrange
for the repair or replacement of the damaged item without
waiting for any claims against the carrier to be settled.

6-1

Writable Control Store 21MX

Figure 6-1. Writable Control Store Interface Kit

21MX

Table 6-3. Writable Control Store PCA Specifications

CAPACITY
Words Available: 256 per module

Maximum WCS Modules: one per HP 2105; two per
HP 2108

Word Size: 24 bits

MICRO-INSTRUCTION TIME
Access: 162 ns.

Full Micro-instruction Cycle: 325 ns.

INSTALLATION

One writable control store PCA requires the use of one
Input/Output slot (slot 10). Writable control store
may be used as any module, except module 0.

DATA STORAGE

Input/Output Group instructions or an HP 21MX
Dual Channel Port Controller are used to load the
WCS.

DATA READBACK

Input/Output Group instructions only are used to
read data from the WCS.

INTERFACE CURRENT SUPPLIED
BY COMPUTER

0.15A (~2V supply); 4.6A (+5V supply)

PCA DIMENSIONS
Width: 7-3/4 inches (196.8 mm)
Height: 8-11/16 inches (220.7 mm)

PCA WEIGHT
Net Weight: 18 oz (511.2 gm) (card and cable only)
Shipping Weight: 4 1b (2.27 kg)

PCA INPUT LEVELS
“1” state: 1.9 volts minimum

0" state: 1.1 volts maximum

PCA OUTPUT LEVELS
“1” state: 2.4 volts minimum

“0” state: 0.7 volts maximum

Writable Control Store

6-8. INSTALLATION
Install the writable control store kit as follows:

a. Ensure that the computer operates properly prior to
installing the writable control store interface kit.

b. Turn off power at the computer.

c. Remove the bottom and back access covers from the
computer.

d. On the writable control store remove the appropriate
jumper wires from TB1 to select the desired module
number (see figure 6-2 for pin number configuration).
Refer to table 6-4 for the desired module number and
jumper removal.

e. On the writable control store PCA place the WCS
module 0 enable switch S1 in the OFF position.

f. Place the first writable control store PCA in slot
number 10 (select code 10) of the I/0 section of the
computer. Any additional writable control store PCAs
should be placed in slot 11.

Note: When WCS PCAs are installed, computer
software must be reconfigured because of
the changed I/0 slot usage. If adding
WCS PCA(s) will overburden the Power
Supply of the computer, it may be
necessary to move some I/0 PCAs to an
I/0 Extender, HP 2156A.

8910111213

Figure 6-2. WCS Terminal Board for Selecting
Module Number Position

6-3

Writable Control Store

Table 6-4. WCS PCA Jumper Removal on Terminal
Board for Various Module Selections

MODULE JUMPERS TO BE REMOVED

None

Pins 6,9

Pins 5,10

Pins 6,9; 5,10

Pins 4,11

Pins 6,9; 4,11

Pins 5,10; 4,11

Pins 6,9; 5,10; 4,11
t'ins 3,12

Pins 6,9; 3,12

Pins 5,10; 3,12

Pins 6,9; 5,10;, 3,12
Pins 4,11; 3,12

Pins 6,9; 4,11; 3,12
Pins 5,10; 4,11; 3,12
Pins 6,9; 5,10; 4,11; 3,12

© 00 3 O Uk WD~ O

e T o S = S Sy ey
ST W =D

g. Remove the ROM-CPU Interconnect assembly, part
no. 5060-8344. Install the connectors of the flat cable
assembly, part no. 5060-8393

1. on J1 of the ROM Control PCA 1, A7
2. on J2 of the CPU Al
3. on J1 of each WCS PCA

as shown in sideview on figure 6-3.

21MX

Note: If an I/O PCA is installed immediately
above the WCS (refer to figure 6-3) that
requires a cable (hood) connector on the
back, then it may be necessary to double
the flat cable assembly back or cut it to
make room for the I/0 cable connector.

h. Replace the bottom and back access covers on the
computer.

i. Turn on power at the computer and perform the
diagnostic test as outlined in the Diagnostic Program
Procedures (part no. 12908-90009) shipped with the
12978A Interface Kit. If the diagnostic program is
completed without error, the PCA is installed and
operating properly. If the diagnostic program indicates
errors, halt the computer, turn off power, and recheck
all of the above installation procedures. Correct where
necessary, then recheck and repeat the operating
procedures of the diagnostic.

6-9. RESHIPMENT

If an item of the kit is to be shipped to Hewlett-Packard
for service or repair, attach a tag to the item identifying
the owner and indicating the service or repair to be
accomplished. Include the model number of the kit.
Package the item in the original factory packaging
material, if available. If the original material is not
available, standard factory packaging material can be
obtained from a local Hewlett-Packard Sales and Service
Office. If standard factory packaging material is not used,
wrap the item in Air Cap TH-240 Cushioning (or
equivalent) manufactured by Sealed Air Corp.,
Hawthorne, N.J. and place in a corrugated carton (200
pound test material). Seal the shipping carton securely
and mark it “FRAGILE” to ensure careful handling.

WCS #2 if installed

J1
No connection here S
if one WCS is installed {IRT

(see note under g.)

opening in chassis /

— i
- GAASITRITTTRTTTTIITIRIRISTITIRTRTITINNNOSSYS Chassis

WCS #1 PCA

CPU A1

ROM PCA1,A7

flat cable assembly

Figure 6-3. Installation of Flat Cable Assembly

6-4

21MX

Note: In any correspondence identify the kit by
model number. Refer any questions to the
nearest Hewlett-Packard Sales and Ser-

vice Office.

6-10. PROGRAMMING

Two methods exist for writing data into (loading) a WCS
module: under program control and under control of the
Dual Channel Port Controller (DCPC). Under program
control, prior to initiating the load routine, the data to be
loaded must be stored in the computer memory. This
requires a block of up to 512 words per module. The load
routine will send two words from memory (32 bits which
are mapped into an 8 bit address and a 24 bit
micro-instruction) to the WCS module, issue a write
command to that module and cause the data to be stored
there. The load routine will repeat this process until the
desired number of words have been stored in the WCS
module.

Once loaded, the contents of the WCS module may be read
back under program control via the I/0 bus and compared
with their counterpart in memory.

Timing sequences for flags used in the following examples
are shown in figure 6-4.

6-11. PROGRAM EXAMPLE: LOADING WCS

The following is an example of the program sequence
necessary for loading a WCS under program control. This
example does not include block pointers, counters, etc.,
which are necessary for proper control.

Note: “SC” indicates select code of the WCS
PCA.
STF SC Initializes the Direction FF (flip-
flop or flag)

OTA SC Loads the first computer word
into first WCS buffer and toggles
the Direction FF. This word com-
prises the 8 bit address and the 8
most significant bits of the micro-
instruction.

OTB SC Loads the second computer word
into the second WCS buffer and
toggles the Direction FF. This
word comprises the 16 least sig-
nificant bits of the micro-
instruction.

STC SC Provides the write pulse to load
the WCS buffers into the RAM.

The OTA, OTB, and STC instructions are normally in a
loop that is repeated until the desired number of micro-

Writable Control Store

instructions have been stored. OTA/OTB was chosen as
an example; any combination of these instructions is
allowable.

6-12. PROGRAM EXAMPLE: READING WCS

An example of reading from WCS under program control
via the I/0 bus is shown below. This example is shown
without regard to the block pointers, counters, etc., which
are necessary for proper control.

STF SC Initializes the Direction FF.

OTA SC Sends the 8 bit address to the
WCS module from the 8 most
significant bits of the A-register.
(B-register could be used, as
well).

STF SC Re-initializes the Direction FF.

LIA SC Places eight zeros into the 8 most
significant bit positions of the A-
register and places the eight most
significant bits of the micro-
instruction into the eight least
significant bit positions of the A-
register.

LIB SC Places the 16 least significant
bits of the micro-instruction into
the B-register.

The STF, OTA, STF, LIA, and LIB sequence is normally
in a loop that is repeated until the desired number of
micro-instructions have been read in from WCS. LIA/LIB
was chosen as an example; any combination of these
instructions is allowable.

6-13. PROGRAM EXAMPLE: LOADING WCS BY
DUAL CHANNEL PORT CONTROLLER

Under Dual Channel Port Controller (DCPC) control, the
load routine must send only the three DCPC control words
to the selected channel. When the channel is turned on,
DCPC will utilize every I/0 cycle until the entire block of
data is sent to the WCS module (maximum of 512 cycles).
DCPC will transfer these words at a rate of 1.62 us/word
(512 words will take 830 us to transfer).

The following is an example of the program sequence
necessary for loading WCS via DCPC. This example does
not include block pointers, counters, etc., which are
necessary for proper control.

6-5

Writable Control Store

LDA CwWi Get the first DCPC control word.

OTA 6 Send the first DCPC control word
to the selected DCPC channel
(DCPC channel 1 has been
selected here for demonstration
purposes only).

CLC 2 Prepare the selected DCPC
channel to receive the second
DCPC control word.

LDA CW2 Get the second DCPC control
word.

OTA 2 Send the second DCPC control
word to the selected DCPC
channel.

STC 2 Prepare the selected DCPC chan-
nel to receive the third DCPC
word.

LDA CW3 Get the third DCPC control word.

OTA 2 Send the third DCPC control
word to the selected DCPC
channel.

STC 6,C Turn on the selected DCPC
channel.

STF SC Initialize the Direction FF.

CLF ’ SC. %.. Start DCPC transfer.

SFS 6 Test for the completion of the
transfer.

JMP *-1 Loop until done.

CW1 OCT 12000SC

CW2 OCT (Starting address of the block to be
transferred)

CW3 OCT (Two’s complement of the number of com-

puter words to be transferred.)

6-14. GENERAL THEORY OF OPERATION

Writable Control Store (WCS) consists of a bipolar semi-
conductor Random Access Memory (RAM) containing 24
integrated circuit (IC) packages mounted on a 2100-size
printed-circuit assembly (PCA). Also included is the flat
jumper cable assembly necessary for complete mechani-
zation within the HP 21MX Computer. The WCS PCA
should be installed only in slots 10 (standard) and 11 of the
computer 1/0 slots. Each IC package is configured in 256
bits and organized as one bit per word. Thus one module of
WCS is capable of storing 256 words of 24 bits each.

6-6

21MX

For the purpose of execution of WCS instructions, WCS
can be configured to be addressed as any one of the
computer's ROM modules except module 0. One WCS
module can be installed on an HP 2105 Computer. Two
WCS modules can be installed on an HP 2108 Computer.

6-15. WCS MODULE IDENTIFICATION

For proper addressing of WCS, an integrated circuit
comparator and terminal board (with jumpers) on the
WCS PCA is used to identify the PCA as a particular
module of Control Store. For example, if the terminal
board is configured for module 2, the PCA will be enabled
when the ROM Address Register (RAR) contains the
pattern “0010” in its four most significant bits (11-8), and
disabled otherwise. When enabled, the word in wCS
addressed by RAR bits 0 through 7 will be sent to the
ROM Instruction Register (RIR} as signals ROMO
through ROM23. The computer will then execute this
word (micro-instruction) as though it came from a
standard ROM PCA. The access time of data from WCS
{162 ns.) allows the computer to operate at its normal clock
rate. If it is desired to replace any module already existing
in ROM with a WCS module, that ROM module must be
removed in order to prevent unwanted “‘or” conditions on
the data lines.

Note: The ON position of switch S1 (figure 6-2).
is not intended for use in the 21MX
computers. All Control Store is disabled,

if S1 is set to ON.
6-16. WCS CONNECTION

WCS is connected to the computer central processor
through the 1/0 structure (for loading and checking), and
also through a 50 wire flat cable connector. It is this
connector that enables WCS to be used as an extension of
the computer’s basic control store. The cable connects one
or two WCS PCAs to ROM control PCA 1,A7 and to CPU
A1l. The ROM address register on the CPU sends a 12 bit
address to the WCS PCA or PCAs through this cable, and
the addressed PCA then sends its data (micro-instruction)
from that address back through this cable, where it is
merged with the outputs of ROM. From there the data is
sent to the ROM instruction register as though it was from
ROM.

6-17. WCS ADDRESSING

To load the WCS RAM circuits, the WCS PCA must be
addressed through the I/0 interface structure of the com-
puter. A 32 bit format is necessary and requires that a 2
word transfer be used in the loading procedure through the
computer A- and/or B-registers. Two computer words and
thus two transfer operations are required for one WCS
word. The eight most significant bits of the first computer
word transferred is the WCS RAM circuit address. The
remaining eight bits of the first computer word and all 16
bits of the second computer word (total of 24 bits) are
stored in WCS at the address specified.

Once loaded, WCS becomes an extension of the ROM.
Thus the WCS may be used to alter the computer instruc-

21MX Writable Control Store

tion set while the computer is in an operating condition. 6-18. WCS Loading Timing diagram
This feature permits dynamic expansion of the computer
instruction set. Figure 6-4 illustrates the WCS timing.

- « - *

STF OTA/B OTA/B \ STC
]T21T31T4|T5|T6ITZIT3'T4'T5!TBITZ]T3lT4]T5LTBJiZIT3IT41T5[T5l

enel | [L 1 1 i
sin 1 J 1 [L I L
*coor]

ste] L
oRFr | 1

OTA/8 I I I 'I
(100) st WORD 2nd WORD

TRANSFER TRANSFER

TGL FF J l I L

STC

CTL FF

LOAD WCS
RAM

P.-Computer”
*NOTE THAT BETWEEN EACH OF THE 1/0 CYCLES SHOWN A FULL ADDITIONAL Museum
1/0 CYCLE IS REQUIRED TO FETCH THE INSTRUCTION FROM MAIN MEMORY. :

Figure 6-4. WCS Loading Timing Diagram

APPENDIX

OBJECT TAPE FORMATS [—,

WORD 0 WORD 1 WORD 2
BitNo. — 15 87 015 13 6 0 15 0
e & o & o s e & » o

— N——— —— "

Leader Record length = Nult Ident 1 Checksum = sum of contents
total no. of 16- =011 of alt words in record excluding
bit words in record length and checksum
record (including itself.
this word).

Min. record

length = 5;

max. =59,

WORD 3 WORD 4 WORD 5 WORD 6
15 0 15 0 15 87 015 0
Micropraogram origin Tape flag: 0 = ‘Punched by Address relative High bits of first Low bits of first
$ORIGIN value, Microassembler’; if Debug to base address microinstruction. microinstruction,
Editor punches an aobject of module.

tape, this field = 1.

15 0 15 0 15 8 0
etc etc
Low bits of last micro- Record length of
instruction in record. next record; same

format as previous.

Figure A-1. Format of Standard Object Tape (Sheet 1 of 2)

A-1

Appendix A 21MX

15 0 15 8 7 015 13 12 0 15 0
—
Low bits of last micro- Record length of Null Ident Null End record checksum =
instruction on. End record, =101 120000.
always = 4.
15 0

Null Trailer

Figure A-1. Format of Standard Object Tape (Sheet 2 of 2)

21MX Appendix A
Bit No. — 15 8 7 15 8 7 015 8 7 0 15 8 7 0
® & & o o o o
—— —— " — — N, — “t— —— “~m— p—— “m— p—“— p— —— ——emm— —
Leader # of 16-bit Null Bits 23-16 of Bits 15-8 of Bits 7-0 of Bits 23-16 of Bits 15-8 of Bits 7-0 of
words in record, 1st micro- 1st micro- 1st micro- 2nd micro- 2nd micro- 2nd micro-
including this instruction instruction, instruction. instruction instruction. instruction.
word. Is always in st record. in 15t record.
64g = 52,q.
15 0 15 15 0 15 0 15 0
1
etc. ...
Bits 15-8 of 32nd Bits 7-0 of 32nd Checksum: computed in Null
micro-instruction. micro-instruction. following way:
a. sum of all bytes in
record excluding
this checksum.
b. the sum is ones comple-
mented and then rotated
8 bits.
15 0 15 8
NOTE: If last record contains less than
32 micro-instructions, then remainder of
micro-instruction space on tape is filled
et . . . with all bits set (—17s}.
e — e’
Null # of 16-bit Trailer
words in record
= 64g.

Figure A-2. Format of the $RCASE Object Tape

A-3

APPENDIX

MICROCODING FORM

w0 SurpoooIdIy “1-g eandrg ~
2 YHJIV = 2 omL =2 O VHIIVY = O B
98EL°1565 JWHdTY =1 3NO - 1oy ou3z-g
08 oYy 0t Sz oz Gl oL L
i
i i , | i |
N |
! T i : M
| P , C ! | | | !
| | . ﬁ I i
| RE , |
| i { ; !
ﬁ H i | I it) ; | + Lr
! A i f , T i i
. | D ; ! | | ! !
| DLty L] 8 |
, | f %7 B , N , [. , |
P _ D | , . i ,
I i A,ﬂ i L i | I { 7 | ‘
i I | ! i | ! . ! : .] ; [
! i B i . i i] i i
i 7 D i | | i
N L - ; _
: i i , i i !
by , |
| ﬁ S EEERE R - L
! | ! 1
! I I *
[W Lo i
N ! L !
i | 1
i i W W {
;] j | | i
; i T T 1 "
; | | . [
| ! g | b | | o
. L - P
EEAREEEREENERARANREE T
! ; P I
i H i
| it } | | 4W |
I . I ; .
‘ NN
| ! i L
e ! T _ R B
| w b P | _
| . L’W ! |-
;] T] T
| P | i ! . |
j i ! i !
; I ; W |
ﬁ o D L BB ,
7 : ! 7 : P [C
+ il 1 n | |
1 T T , i .
i | | I ! ,_ : i |
Lo , | U I i !
L EEEREE | | L] _
08 013 or 941314 %l sa1313 % varms %] caras °| zavas @ R EIF] L
adAL pIo, 931 1G0W ~asr.,
¥ 3dAL piom SINIWNOD ONvH3d0 a0 Sy 138w
€ adA1 piom SINIWNOD aNVH3O 3sn3s dwnr | norianos | xana,, LW 138v
Z 3dAL prom SINIWNOD ONVH3H0 IHOLS ¥IdIdoW | TvI0ads LWL 138v1
| 3dAL prop SINIWNOD snas IHOLS niv 1v1934S 40 138v1
40 39vd I1Nnaow WYHOOHJOHDIN Jlva HIWWVYHOO U

WHO4d 9NIAGODOUIINW XWIZ AHVIIVH-113ITM3IH (.gOT X .§'2T 2215 1EN12Y)

APPENDIX

C

MICRO-ORDER SUMMARY

C1

21MX

Appendix C
Table C-1. Summary of User Micro-orders
JMP IMMEDIATE
MICRO-ASSEMBLER —» OP SPECIAL ALU COND MODIFIER STORE RJS S-BUS
CARD COLUMN —— 10 15 20 20 20 25 25 30
BITS (ROM) — 20-23 0-4 15-19 15-19 18-19 10-14 14 5-9
Corresponding
Bit Pattern
00000 *NOP :IOFF ' : INC TBZ HIGH TAB RJS TAB
00001 ARS SRG2 OP1 ONES LOW CAB CAB
00010 CRS L1 (0)] CcOouT CMHI T T
00011 LGS L4 ZERO ALO CMLO L CIR
00100 MPY R1 oP3 AL15 100 101
00101 DIV ION oP4 CNTR CNTR
00110 LWF SRG1 SUB CNT8 DSPL DSPL
00111 WRTE OP5 DSPI DSPI
01000 ASG STFL OP6 FLAG 1R ADR
01001 READ CLFL ADD E M M
01010 ENV FTCH oP7 OVFL B B
01011 ENVE SOV).} RUN A
01100 JSB Ccov 10)2%} NHOI
01101 JMP RPT OP10 SKPF
01110 IMM SRGE OP11 ASGN PNM
01111 (not used) *NOP DEC IR2 *NQP *NOP
10000 1 CMPS NLDR S1 S1
10001 MPCK NOR NSNG S2 S2
10010 10G NSAL NINC S3 S3
10011 ICNT OP12 NDEC S4 S4
10100 SHLT NAND NRT S5 S5
10101 INCI CMPL NLT S6 S6
10110 XOR NSTR S7 ST
10111 SRUN SANL NRST S8 S8
11000 #*UNCD NSOL NSTB S9 S9
11001 CNDX XNOR NSFP S10 S10
11010 Ji0 PASL INT S11 S11
11011 JTAB AND SRGL S12 S12
11100 J74 ONE RUNE X X
11101 J30 SONL *NOP Y Y
11110 RTN I0R P P
11111 (not used) JEAU *PASS S S
*default micro-order
** JMP default
(10% screen) not normally used by user microprogrammer.
(20% screen) included here for completness only; reserved for exclusive use of system microprogrammers.

C-2

FUNCTIONAL BLOCK DIAGRAM

APPENDIX

D-1/D-2

Appendix D

: s1 ja= :
: Scratch :
:]l 52 [l o :
: Regi .
: o [N S :
: < s4 [o= :
ol e :
[y S6 O :
o =l 57 | 3
: <= ss | :
: <=l 59 [:
: <=t 510 | :
: }<H s11 | CRS, :
: i 512 | ARS, A :
o] x| Register <] Register
ia R
P-Register k<nf P [<lufl PNM
Sw.itch s |
Register
TaB, TAB,
CAB, CAB,
B A
ALU Rotete/shifter
: L1, ARS, DIV, b
. S-bus Ly ARS, DIV, T-bus
B Y VAN b—>1 Rl CRS, LWF,
[ASG, L4, LGS,
MPY,
Lot F
‘ ol ENVE J
A4 ALU .
L-Register Output <A extend Register 18Z,
ICNT 12s
~ s Tests
c CNT4, - T-Bus
ounter CNTB ONES Zero
== =2
wsst AlLU
1 Ones
ENV,,
ENVE,
Overflow Register
covy, LwE,
SOV, STEL
OVFLC C—LFLsp
FLAG,

Figure D-1. Functional Block Diagram
D-3/D4

: IR G :
: = : . L
: : . FTCH“a
: JTAB g, : : INCle,
N RTN : .
: ple—] save |
: y [Memory
: : Protect
: . . Option
N Increment RAR . N
. Address : : Main Mem.
£8, oo an Wemory Inhibit
. . WRTE
. Maps Address to . : o
. i p Control Store : : Address READ
: o 7y
: Micro- ROM . . JABs st Memory
. instruction . . Address
: Clock : Selection
. Cycle . AAF 4
: y
: Address : : F
: IS8 RIR : : L%er M
N =%'o ROMS TABs’ st Register
D 0o
: o BAF
: ! : : MPCK.,
: ADR¢ : LDR,
Decode : : ADR;
: " instruction : TAB; 5 M, o
. MM, Execute . 4
. Control . Is,st PNMg;
: . CM,,
......... O | | S-bus
<
z 3 T T o,
Y
immediate Data CMH); T | S | T T
HIGH; :
LOW;
MLO:
EMLO; interrupt IAK
Disol Acknowledge
isplay
Register Esﬂ-s,st 100,
i 7
: =4 = A= 1/0-bus
NOTES: . {/
ﬁ = Data path .
. Teleprinter INT
~——————— = Control path : Display DSPI —c
. : Indicator | ——sst
Underlined characters = Micro-order .
Subscripts:
s =» S-bus field . Line Printer
st 2» Store field o RUNE, :
¢ = Jump Condition field . RUNC — :
sp = Special field : NHO| . :
o => Op field : Mw :
i => Immediate Modifier field : SHLT gy : | centra
Interrupt S:LF.‘;
Example: Register
CNTRg ; => Micro-order “CNTR"
’ in $-bus or Store fields
: h:
: vil

: FRONT PANEL SECTION

g |

Other
Peripherals

SECTION

BASIC INSTRUCTION SET |
MICROPROGRAM LISTING || €

co0t
aooz
apaz
0004
[tk
agfe
ago?
000g
QRG]
(PR
ag1l
0a12z
[
0014
001LGE
agte
aaty
0013
oole
ap20
agel
ez
opaz
aaga
opzs
0026
g2y
(p23
ap2s
QO30
0031
o3z
@a33
0034
0033
ag 3¢
aQ3y
Go3g
003%
agdn
[GUER
(RO
0043
Q44

Gaoeg
a0k
goie
[CRRON]

aucd

>

at

rn

,.
L2

1=y

[A=R S}

o

[T]

¢
C
[
Q

D -

[AR)

P
coez

20273

XN N

By ey ot Ry) P
- -

SRR - AN
£0 08 ee 00 PO s PO R ny -
o=l

DR SN N o]

~

fanl

d

-

[~ RS EEN]

vy ey

1Ca45¢
[
1Ced4i7
04003
164400
QEa67 3

Q22457
(XA
100465
Q457 ¢
azedve
I R

Eon IR I e B A

o b

This appendix holds a full micro-assembly listing of the 21MX Computer Basic
Instruction Set microprogram. Due to the size of this microprogram, a special micro-
assembler was used. Minor differences can be seen between this micro-assembly listing
and a listing produced by the micro-assembler described in this manual. The major
difference to be noted is that octal numbers are preceded by a ““%” symbol in this
listing. Other differences are self explanatory.

$IRISIN=C
R Y R N R]

*
*
*
*

2IMX MIZRO-CODE
MODULE O

LR E R R E P R R R L R R E R R R R R E R R E R R E R E R R

HALT
FADD
F3UR
FHPY
Folw
IFIR
FLORT

Equ %0400
EQY 4v1e%
EQU %7126
Egu “wrzzl
EQu “rvzee
Eay svQaon
Eqy 57025

I EEE R R R R R R N Y RN R R E R R R R R R E R R R L

*

FETCH ROUTINEZ

R R R R R R R R R N R R Y P P Y R Y E T RN

Fe1cCH

READ FTLH IND &N 7 M<=P; PC=Ptl; RERD NEW INSTR
138 ENABRLE JHISRRUPT RECOGNITION
GJLEL PR3E IR TR TR¢= T/A/B: LR FLAG F*
READ JTAR IND €N ABR JUNP THRU TAXLE: LOAD ¥ JF MRG INSTR

LR R P R R E R N R LN E R E R E R R E R EE R EE R AR FEEEEE R N R

HUR1

JMe CNDY RUN RIS HALT KUK MODE IMPLIES AN INTERUMT

IR R R EF E R E PR R R e P R N R R R L R P E L S PR R R EE P E R PR R EE LR R EE R LS

* IKTERIUPT HEGPAONEE 2OUTIHE
R R R L R R N R Y]
INTERUPT READ DLFL PARSS M SR MC=CIRS READ TRAP CELLY CLR FLAG FF
Jpe S Ted wds INTOK CHECK 17 C€I® 1§ ¥ALlD
RERD REE ¥ TIR Mc=CIR: READ TRAP CELL
JHEOONDR TRY FETCH 1F NG THT BY N{W. IGHORE
INT 0K I0FF Pass Ik T IR(= TRAP CELL, DISABLE INT RECOS.
REGD JTaR INT CW ALR JUNP THXU TARLE; LOAD ¥ TF MRC INGTR.

R R O R R R L R R R

*®

INDIRELT ROQUTINE

IR R T P R R R R T P R P P T N EF L R T R N T Y E LY E R E R

INDLEIVZL RE®D ML RS M k| RERD MWEXTY LEYEL
Ine WHED *35 1KD2 AELT OGR INTERRUPTY
INDIRECST iC1 PAass oM 1483 BC=T/R78: INCR IRDIRECT COUNT
WM ONDX ALILG INDLEYEL CHECK FOR ANUTHER LEYEL OF ITHDIRECT
READ ®TY IND N M READ SF-ECTIVE RDDRESS3, RETURN
INDZz INDY PR3S M THe MC=T/ARSAR: INCR INDIRECT COUNT
dRE DKDY NGMG RAZ O INDIRELT+#1JUMP BACK FOR SINGLE INMRTRUTTION
DEL P 3 RESET 7
IME HORT HALT OR IMNTERUPT

Appendix E 21MX

0045 IR L E R E L R R R R R R P Y R R R R R R P E R N E E P R R E L EE P E R EE PR Y]
Qg4é * ALTER-SK1? GROUP

004? IR R E R E RS R R R RS R R E P E R R R R R S P R R E R R R E R R R L R E R L E PR R E R
0048 0024 017 162757 ASGNOP PASE Cha SEY uP SXIP TEST

0049 002% 327 (142431 JHZ CNOX ASGH ASSHSKP JUMP IF ASG IKIP HOT N2

aUs50 CQ26 20¢ 075717 /83 INC 7 v P{=Pt]: ENARLE RSG HARDWARE

0031 0927 327 100021 iR, kel CNDX IR2 RJ3 FEICH DOKRE IF HWOT INAR/B

Q052 G030 260 002076 ENYE RTHN INZ CR3 ChAg R/BE (= A/B PLUS I

0033 ®

0054 0231 €01 136037 ASGCL= ZERDO CRa CLEAR A/B REGISTER

gOs3 0932 327 042431 JIue ONDX AGHEN ASGHSKP JUMP IF ASEG SKIP NOT MET

00%6 CU3I3 200 CG7YS7Ly A53% INT 14 P P(=P+1; ENARBLE R56 HARDWARRE

0057 0934 327 103031 JMP INDX IRZ RJ3 FETCH DONE IF HOT INA/B

Q0358 0033 260 QC20G76 ENYE QTN IND Cag Ch3 A/B (= a/B PLUZ 1

0059 *

goel Q836 (10 OC2ZOST R5GCN* CMPs Chg CrE RAR (= HOT 4#/R

06061 Q037 327 042431 dJM? CHDX AGEH SGHSKP JUMP 15 RSE GX1IP KOT NET

Quéz CUdl 200 Q75717 /S5 INE 7 v P{(=Pt1; ENRBLE ASG HARDUWARE

G062 €941 3I2? 10003 JMP DNDX TRZ2 RJI5 FETCH DONE 1F HOT INR/H

064 Q042 260 002076 ENYE TN INZ €hH3 Ck3 AR (= A/B PLUS |

0065 *

U066 0043 016 036057 ARSGCCH CLR & COMP A/B REGISTER

Q067 €D44 327 (42431 JHP ASGNSKP JUNP IF ASG SXKIP HOGT MeT

62 0045 200 O0FSFLIT RSS NI P F{=Ptl; EMNRBLE ASG HARDWARE

au69 0dd46 327 1€G203) dM? INDX IRZ RJ3 FEVCH DONE 1F HOT JINA/R

0070 CD47 260 0C2076 ERYE ®TN INT €A% ChkE R/B <= A/B FLUS |

Q7 *

0072 Q030 217 136757 ASGNSX® ASS HC SKIP; ENABLE ASG HARDUWARE

Q73 0351 327 1eD02) JMP ONDX IR RJIF FETCH DCNE 1F HOT INA/B

cOv4 03%2 260 0CIQVe ENYE RTN INT CRR CGR AR (= a/B #LUS& 1

gavs R R R R N R R N R RN T RN
[dilrg * SKIFT/RITATE GrROUP

[v AR AR RA AR TR R RN R AR ERT R F KB RE R RR R AR RS G R B KRRk Rk Rk AR Bk bRk kR
0073 Q0053 017 102046 SRG FRE1 PASS CR3 Cre FIRST SHIFT

0072 Q354 €17 10Z0Gw SRGZE PASS CRa Chg CHECK FOR CLERR E;- SET &LA TEST
QUa0 €055 RIT 103031 dMP DHDX GREL RIS #+3 §REGL IS SLA TEGTY

Q081 03%% £17 102043 3X52 PR3S LAy CRE SECOND SHIFT

0082 CUD7 €QUQ 075730 RTH INHD 7 ® #{=P+1, WHEN LSB = 0

083 00&l €17 102041 3REZ PR3IS CAX CAR SECOND SHIFT

0084 0061 C17 136776 RETURN XTN

(BN I EEES EFE RS R ERE S E R E L N L e R R s R E I R R L R L E R EE R R EE R RN E R RS EEEE R N
0086 * 1.0 GROGUP

nOoar MK TR K ok R K K A N A N A R R Rt o K A e T R ok ok o o ek R o ko R Tk Ak kR R K K
QO8% UGz @17V 136737 TOCKTRL NG? ALLOW TIWE TO GET SKIP FLAG

LoR3 0Del 326 10003 dJMP DNDX GKPF RIS FETCH CRECK G<1P FLAC

U2t 4064 00 OPRT7IN RTN IND P u 7 o(= v ob |

0091 Cas: ¢!7 LIGTAT NP

G2z *

0393 Q66 01V 102757 10.0T« PRES CRB GET UP G-RUS

0034 Qdey 017 leeayy PRET 100 Ced 1/0-BHS <= A/F

a{3s Covd 01V 1Qz23¢ ¥TN PR3S 100 CeR HOLD 1/0-BUS VvRLID

ag9e COT1 ©IT 136757 ¥0?

o9y *

0092 COyz 1V 136757 19 Lix NO? SYNCHRONIZE 101 PULSE

aose Cavi 0iv 136 NOF

Q100 CcO07d €17 110G RTN 2a3% LaB 101 R/B <= 1/0-TUS

€101 G37VH €1V 136757 NGF

0102 *

Q103 Qa76 017 136757 IO . MIw NQ? SYNCHRONIZE 101 PULSE

0104 CGOF7 Q17 102157 PRES L ChE L (= A/8 FQR ALL OPERATION

0105 CGI00 €17 010G7e YN T0R ez 101 A/ BC= (A/BY + (170 BUSH

0106 *

0107 LE R R R R R A R L R E R E P E P E T E NS Y]
0103 * 1C GROUA/ ErU SROUPS MAC GROUP JUMPS R
0iQs I EE EEEF R RS R R R R R R N R L P R Y R E L R E L E R R R EE R A R R EE P EE R N
Q110 €121 320 003122 106 UL - S Y TOUNTRL

0111 Q182 320 015437 EAU UL R R EAUTARELE

0112 0133 320 016034 MaCQ UL E MATTRELD

G113 €104 320 (17034 Mol JME 4T e HALTARRELL

E-2

21MX Appendix E

0114 A etk A d ok O i ok o Ak N SR i ok e sk o ok A A ok e R ok e R sk itk kool e ok ok ok Rk kA kb ko X Kk
(G E: * MENORY REFERENCE GROUP

Q116 I R L N P E PR EE L
0117 €103 300 QCaevy AND LT G5 INDIRECT

0tta 0106 C17 1280157 AND 7R85 L L} L= A

011% €1ay €19 1C057e TN AND A TAZ R (= T/0/8B AHD L

atao *

G121 €110 306G OCOevQ Cew, 1 URE- INDIRECT

0122 CGttl ¢17 tce1s7 CP* PASS L caR L (= A/R

0123 olte €13 0COQ7S7 xoz TRa T-8U8 <= T/A°8B XCR L

0124 G113 320 040031 ¥ SNDX TBY FETLH JUNP TO FETCH IF EQUAL

0125 Ctid CO0 QY5736 Ty IND 7 P P{= P+t IF NOT EQUAL

0126 b

0127 G113 300 GCJe670 XOR.1 $33 INDIRECT

012& Ctle 017 126157 XOH PR5E L i L (=8

0129 01817 C13 0CUSVE ATH XU’ A ThEY A (= T/a/8B XOGR L

Q130 *

0131 cl1zd 300 QCcuera IoR.1 JUR:E:] INDIRECT

0132 €121 01?2 126157 I0R PAass L f

0133 CG1ee €17 QCOSTé 2T8 108 A T#& A (= T/6/8 10R L

0134 *

0135 G123 300 0CU670 ST=*.1 d&8 INDIRECT

0136 G124 €17 122?61 5T* MPIK PR5S) HEM PROTECT CHECK QF ADDREGS
137 otz 1Yy 102036 YETE RTY PASS T2 Cek TARAR ¢+ A/H, WRITE

0133 *

0133 *

0140 €126 30C 0COEYD ADw, | JE3 INDIRECT

0141 €127 Q17 f€2157 Ad* PHSE L caa L (= //%

0147 C130 2ed4 1002076 EN7E RTHN ADD Che The A/B (= T/8/3 PLUS L

0143 *

0144 G131 300 0CO840 5B, 1 JB3 10FF IHDIRECT DISABLE 1HTERRUPT RECOGHITION
014% 0132 €17 122761 J38 MPLK FRSE N MEN PKROTECT CHECKS THIS sDDR
(r4e G133 1P7 174017 WRTZ PASS Th3 3 T/8/B <+ RETURN AODDREGI: WRITE
0147 0134 00 Q2373¢ T4 IND P | (= 4 ¢+ 1

(143 *

014% Q132 300 gCO6V 0 152.1 J &y INDIRECT

0150 Q136 €17 122761 152 NPOK PR3S bl MEH PKQTECT CHECXS THIS RDDR
01%1 C137 Q00 0C1O17 INC 3 Th3 §1 (= T/R/8B + 1

0152 ©014D 177 140017 YRTE RREZ THaX 31 T = 31: WRITE

0152 G141 320 0COO3) JMP CNDY TBZ Re3 FETCH ZERD? NO, DUNE.

0154 Cld4z COO 075736 <TH INT 4 ? YES, P (= P«)

0153 *

01386 C143 300 0CC670 LO+*.1 458 INDIRECT

0157 C144 C17 100070 L RTY PRES CHY ThE R/R (= T/pre

0138 0143 017 136765 JMP,1 INEI CCUNT ONE INDIRECT LEVEL

0139 0146 €17 101050 10FF PA3S 81 TAB DISABLE INT RECOGNITION:S1<(=T/A/3
0160 0147 322 046531 JRP CNDX ALLS JINDL JEP IF ANOTHER LEVEL OF INDIRECT
0161 0130 Q17 140761 MPEK FRSS s1 BEN PROT CHECKS DESTINARTION ADDR
0162 0151 017 14173¢ RTH PRSS P 51 P (= DESTINARTION ADDR

0163 »

0164 0152 220 040457 JINDL REAQD INC M4 51 READ NEXT LEVEL

0165 0133 326 007031 JRP? CNDX HHDI RJU3Z HORQICK JEP IF HALT OR INT

0166 0154 017 §01025 INCI PASS 51 ThB 8§51 (= T/A/B; COUNRT INDIRECT LEVEL
0167 0155 322 046531 JNP CTHDX ALSS JINDL JEP IF AMOTHER LEYEL OF INDIRECT
0168 0156 017 140761 MPCK PARSS S1 MEM PROT CHECKS DESTINATION ADDR
0169 0137 017 141736 "TN PASS 7 31 P (= DESTIHATION RDDR

0170 "

017 0160 Q17 §01025 MHORICK INCI PASS 81 ThE 81 <= T/R/B; COUNT THDIRECT LEVEL
0172 0161 330 106671 JRP TNOX HSNG RIS JINDL+S JUNP BARCK FOK SINGLE INSTRUZTIOH
0173 0162 007 175717 DEL P P RESET P

0174 0163 320 000230 Jnp HOR T HALT OR INTERUPT

0175 0164 017 121021 JMP MPCK PASS S1 ADR S1¢(=DESTINATION ARDDR; CHECK WITH M. P,
0176 0165 017 141736 RTN PARSS P St P (= DESTINATION ADDRESS

E-3

21MX

Appendix E
01?7 .".‘**“‘.“."#‘l‘#“.‘l)*l‘."".‘*.'.*".*l.."*‘**“.‘**““*‘#‘**‘
0178 . EAU NICROPROGRANS
0172 ‘*'.‘Q......‘.."‘l*ﬂ".‘.l*l'."‘.....'.."..4*.'*...‘.*l"‘l“‘.#*l*l#
0180 0166 010 021017 RRR CHPS §1 ADR
0181 0167 €00 041017 INZ 51 5 §1 ¢= TUO’S CONP OF SHIFTS
0182 0175 €17 140235 xPT PASS CNTR 51 SET UP COUNTER FOR REPEAT
0183 0171 057 124534 CRS 1 PR3 8 B DUUBLE-WORD SHIFT REPEAT
0184 0172 017 136776 RTH
0185 *
6186 0173 010 021017 ASR CNPS 51 ADR
0187 0174 000 041014 cov INC S1 81 §1 ¢= TUO’S CONP OF SHIFTS
0188 0175 017 140255 RPT PASS CHTR SI SET UP COUNTER FOR REPERT
0189 0176 037 124504 ARS 1 PA3S B B DOUBLE-WORD SHIFT REFEAT
0190 0177 017 136776 RTH
0131 *
0132 0200 €10 021017 LSR CHPS S1 ADR
0133 0201 000 041017 INC s1 51 $1 (= T¥0’5 CONP OF SHIFTS
0194 0202 €17 149%55 RPT PASS CNTR Si SET UP COUNTER FOR REPEAT
6195 0203 077 124594 LC5 =R1 PASS & B DOUBLE-WORD SHIFT REPEAT
0196 0204 €17 136776 RTH
0197 .
6198 0205 €10 021017 RRL CNPS S1 ADR
0139 0206 €00 041017 INS S1 51 §1 <= TUO’S CONP OF SHIFTS
0200 0237 017 140255 RFT PASS CNTR §1 SET UP COUNTER FOR REPEAT
0201 0210 €57 124592 CRS i1 PRSS B3 B DOUBLE-UORD SHIFT REPEAT
0202 0211 €17 136776 RTH
0203 .
0204 0212 010 021017 ASL CHPS S1 ADR
0205 0213 000 041014 cov INC s1 S1 §1 (= TWO’S CONP OF SHIFTS
0206 0214 017 140253 2PT PASS CNTR SI SET UP COUNTER FOR REPEAT
0207 0215 037 1245)2 ARS L1 PASS & B DOUBLE-WORD SHIFT REPEAT
0208 0216 017 136776 RTH
0209 ’
0210 0217 €10 021017 LSL CH?S S1 ADR
0211 0220 00C 041017 INC 51 Sl $1 <= TUO’5 COMP OF SHIFTS
0212 0221 €17 140255 RPT PASS CTNTR 5t SET UP COUNTER FOR REPERT
0213 0222 077 124532 LCS L1 PASS 8 B DOUBLE-WORD SHIFT REPEAT
0214 0223 017 136776 RTH
0213 »
0216 0224 220 074457 DLD READ INC NP READ WEMORY ADDRESS
0217 0225 300 000640 J§8 13FF INDIRECT JGB TO GET M<=RDDR OF EIRST WORD
0218 0226 000 023017 ING S1 M §1 (= ADDRESS OF SECOND WORD
0219 0227 €17 100557 PA3S & TAB A (= FIXST DATA WORD
0220 0230 220 040457 READ ING M 5l M¢xADDR OF SECOND .WORD; RERD
0221 0231 €00 075717 ING 2 @ P (=P + 1
0222 023z G17 100536 RTH PASS B TAE B <= SECOMD DATA WORD
0223 *
0224 0233 220 074457 D3T READ INC WP READ MEMORY ADDRESS
0225 0234 300 000640 J83 10FF INDIRECT JSB TO GET M <= RDOR O0F FIRST WORD
0226 0235 000 023021 NPCK INT 51 M MF CHECX FIRST ADDR: S1(=SECOND ADDR
0227 0236 177 126017 VRTE PASS TRY A STORE A INTO FIRST LOCATION
gggg ggf; ?gg ?40461 NPCK INC M 81 MP CHECX §1; M(=81
24017 RTE PASS TA3 B 5§70 c
0230 0241 000 075736 ary ags Tas b STORE 8 TNTO SECOND LOCATION
0231 0242 220 074457 NPY READ INC WP N (= P; READ
3 300 000640 J§8 10FF IN 1 5 = 7
0233 0244 000 075717 e p T IRECT S T ol " (7 ADDR OF ORERAND
0234 0243 017 101037 _pass 32 Tas §2 (= WULTIPLIER
127114 WPYX cov PASS 53 A SIC=ACNULTIPLICAND); CLEAR OVFL
0236 0247 001 136517 2ER0 B CLEAR B FOR MULTIPLY
0237 0250 017 142157 PASS L §2 L ¢= 52 CNULTIPLIER)
0238 0251 017 124255 RPT PASS CNTR B CLEAR COUNTER: SET REPEAT FF
0239 0252 104 124304 NPY R1 ADD B B NPY STEP (X160 (B.AX<=A TINES L
0240 0253 017 144757 PASS $3 TEST HULTIPLICAND PLus ®
0241 0254 322 012731 JNP CHDX AL1S RJS *+2 JUNP IF POSITIVE
0242 0253 003 024317 sUB B B UNDO LAST NPY STEP IF WEGATIVE
0243 0256 017 142757 PRSS 52 TEST MWULTIPLIER
0244 0257 322 003071 JHP CNDX AL1S RJS RETURN JUNP IF POSITIVE
0245 0260 012 144157 PASS L &3 L <= NULTIPLICAND
0246 0261 003 024836 RTN 5U8 B 8 B<=B MINUS L C(CORRECTS FOR NEG. NULT)
0248 *

E-4

21MX

0249
0250
02351
0232
0232
0234
0235
0236
0237
0238
0239
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0273
0276
0277
0278
0279
0280
0281
0282
0283

0330
0331
0332
0333
0334
0333
033¢
0337

220
300
000
c1o0
010
322

‘000

017
0190
322
017
Q10
000
321
000
003
322
077
€01

123
157
¢10
320
€13
322
000
017?
013
322
e17
@17
324
010
Qoo

320

321

074457
000640
0735717
001157
047017
013471
047017
140157
025117
054071
144317
027037
042357
014071
044517
0247353
000031
124502
1370654
142253
024502
144142
027017
155071
047057
014671
040357
142157
026757
015071
1367353
124504
040031
024517
024536

007330
007570
010030
800030
010270
010530
010770
012130

145270
145330
151070
133130
140030
141270
060030
060035
100030
100035
120030
120035
140030
140033
160030
1€0035

D1V READ
J&8

JNP

DIVS
NP
LGS

DIV
LWF

JNP

NP

QZERD
JNP

$0RIGIN=33038

10FF

CHOX

CNDX

CNDX

30%
CNDX
coy
RPT
HY
L1
CNDX

CNDX

CHDX
sov

CNDX

INC

INC

CHPS
CHPS
ALL1S
INC

PASS
CHPS
ALLS
PRSS
CHPS
INC

cour
INC

sU8

AL1S
PRSS
ZER0O
PRSS
sus

PASS
CNPS
ONES

ALLS
INC
PRSS
X0
ALLS

PASS
FLAG
CNPS
INC

P
54
51

RJ3

[~

-]
INDIRECT
P

TAB
sS4
e
S54

S1

B
DIVS
33

A

§2
DIVS
33

8
FETCH
8

§¢
B
53
R
RZERO
54
*+2
sl
52
(]

L X ¥4

ETCH

oW Mo

Appendix E

M (= P; READ
J88 TO GET M <= ADDR 0F OPERAMND
UPDARTE *©
54 (= DYSR(CM)::SAVE ORIG SIGN
§1 <= DYSR
JMP IF DYSR HEGRTIVE
$1 <= DYSR(2CN)
L <= AB3 VALUE(DVYSR)
83 (= DYNDHI(2CH)
JNP IF DYND POSITIVE
IF DYND IS MEGATIVE...
FORN DYND(2CH)
IN B,A-REGISTER
.
.
CHECK FOR DY3R T0O0 SMALL
(=DYHD T00 LARGE)
SHIFT OUT SIGH BIT OF FULL WORD
CLEAR OYFL,32.&%& CNTR
AKD SET RPTFF
DIV(16X); A(=QUO(POS); B(=REMN#*2
L <= FLG <= DYND SICGN(CN>
§1 <= QUO(CM>
IF QuQ=0,THEN N0 FURTHER TESTING
$2(15> (= EXPECTED SIGN OF QU0
JNP IF POSITIVE WARS EXPECTED
ELSE A <= @lo(2CM)
L{15) <= EXPECTED SIGN OF QUO
COMPARE TO FINAL SIGN 3F QUO
JNP IF BK
ELSE INDICRTE OVERFLOW
B (= (REN#*2)/2
CHECK SGN OF DVND
IF NEG.THEN FORM 2-CONP OF
REM & STORE 1N B

o Computer
o Museum

IR R R R R R R N A R R A R PR R AR R R R R R R R R 2
. ERU TABLE
IR RIS R LR R R R R R R R R R Rl R s R R R R R AL R R LR X

EAUTABLE JNP
JNP
Py 14
JN?
JNP
[2.14
NP
NP

RRR
ASR
LSR
FETCH
RRL
ASL
LSL
NPY

ILLEGAL JR CUDE FOR ERU GROUP

R L e L e R Ly
* MAC TABLE
BERABIAARDERRAA ARSI BEARARIR AR AR RARRRRRSTRABIIARS RS RN RS R R4S 0488334

MACTABLO JNP
(3,14
02,14
JNP
JNP
J NP
NP
NP
P). 1
JNP
JHP
JNP
NP
NP
NP
NP

430

433

139

FADD
FSUR
FNPY
FDI1V
1F1X
FLOAT
%1400
%1400
%2000
%2000
%2400
%2400
%3000
%3000
%3400
%3400

FLOATING POINT
FLOARTING POINT
FLOATIRG POINT
FLOATING POINT
FLOATING PUINT
FLCATING POINT
#s+ PROBRBLE FUTURE HP USE
#»% PROBABLE FUTURE HP USE
#s% PROBABLE FUTURE HP USE
#s% PROBABLE FUTURE HP USE
#+* PROBABLE FUTURE HP USE
*%% PROBABLE FUTURE HP USE
®«s% PROSABLE FUTURE HP USE
*s% PROBABLE FUTURE HP USE
*+% PROBDABLE FUTURE HP USE
*%% PROBABLE FUTURE HP USE

e e 8

(2R R R R R R R IR P L P R R R R R R R R R R R R R R R R PR E R R R 2

E-5

21MX

Appendix E

0316 0365 321 000030 MACTABLL JNP %4000 aws PROBABLE FUTURE HP USE
0317 0361 321 000035 NP 43D %4000 ses PROBABLE FUTURE HP USE
0318 0362 321 020030 J NP %4400 +»s PROBABLE FUTURE HP USE
0319 0363 321 020035 Ju? 430 24400 ses PROBABLE FUTURE HP USE
0320 0364 321 040030 N7 %5000 s#s PROBABLE FUTURE HP USE
0321 0365 321 040035 JHP 13D %5000 +#s PROSABLE FUTURE HP USE
0322 0366 321 060030 JN? %5400 sss PROBABLE FUTURE HP USE
0323 0367 321 060035 JHP J3D %5400 sss PROSABLE FUTURE USE
0324 0370 321 100030 JHP x6000 + ++RESERVED FOR CUSTOHER ONLY
0325 0371 321 100035 JNP 430 %6000 +++RESERYED FOR CUSTONER ONLY
0326 0372 321 120030 JNP %6400 ¢+++RESERVED FOR CUSTOMER ONLY
0327 0373 321 120033 JuP 430 %6400 +++RESERYED FOR CUSTOMER ONLY
032& 0374 320 040030 J NP %1000 , RESERYED FOR HP USE

0329 0375 320 040035 P 939 %1000 ; RESERYED FOR HP USE

0330 0376 321 160035 Jup 430 %7400 ; BAGE 3ET EXTENSION

0331 0377 321 1€1035 JNP 430 X7420 /, BASE SET EXTENSION

0332“.“i‘.“..".31"“&“..‘..‘.‘.‘..".....‘t.t.i..t“‘."'..t.i.‘.
0333 $END

%% NO ERRORS»*»

0001 SORIGIN=4008
0002‘....‘..........‘............‘.....‘.....’..............‘.‘.‘.ﬁ.“.
0003 .
0004 . 21M% WICRO-CODE
0005 . NODULE 1
0006 .
0007‘....‘..‘.....‘...#.‘....‘.....“.‘.‘.‘.“.‘.‘...‘.....‘..‘.‘.“
0008 DISPLAYA EQU x376
0009 DISPLAYT EQU X367
0010 DISPLAYS EQU %337
0011 INTERUPT EQU X000%
0012‘..........‘.‘.“'..“.‘.....‘...........‘.‘........‘...‘....‘....‘
0013 N NENORY INITIALIZATION ROUTINE
001‘ “...“....““““.“..‘.““‘....‘...‘..‘.‘.".‘.........‘.“...‘....‘
0015 0400 322 161171 WALT JNP CHDX WNLS NG0OD JUNP IF NENORY NOT LOST
0016 0401 341 004617 18 HIGH NEU X102 ENABLE SYSTEN NAP
0017 0402 347 101017 1N Loy S1 %340 31 (= 2°8 CONP OF 32
0018 0403 001 137057 2ERO §2 CLR §2 (MAP ADDR)
0019 0404 017 142357 PASS A 82 CLR A-REG
0020 0405 017 142517 PASS B §2 CLR B-REG
0021 0406 017 142117 PASS T 82 CLR 7 REC
0022 0407 353 077117 188 cHMl 83 X337 $3 (= *LOAD ADDR REG® COMMAND
0023 0410 347 076264 LOSTLOOP INM SHLT LOW CNTR X337 CNTRC=CONP OF 32; CLEAR RUN FF
) 144617 PASS NEU 83 LOAD O IHTO ADOR
0025 0412 017 142620 NAPLOOP WESP PASS NEU §2 LeAD AP IN HE: REG OW MED
0026 0413 000 043063 ICNT INC 82 82 INC MAP ADDR
0027 0414 323 020531 JNP CNDX CNT8 RJS NAPLOOP LOOP(#32)
gg:; 0415 00t 137717 2ERO0 P CLR P REGC
0416 160 074717 URTE INC PHR P . .
0030 0417 322 020731 JNP CNDX AL1S RJS -1 :éo:;u:§1:';:o::;;; ZERD DATA
0031 0420 00D 041017 INC S1 81 INC HAP CMTR
003z 0421 320 020431 JNP CNDX TBZ RJS LOSTLOOP LOOP (#32)
0033 000617 188 NIGH NEU X100 DISRBLE ALL MAPS WOV. ..
XS SRR AR RS RRE R R R R R R R RRRRR R XX
003 SOV IIVEBIBRERNBR S
0036 :t‘t.tt::EEIt::!f:tfzﬁrE:RD SCAN RouTiMes
0037 0423 334 165531 NG0OD INP CNDX NSFP .‘..;;;;.;.......‘...‘....‘.‘.‘..‘..‘....#.‘..‘
0038 0424 017 115752 FIOH PASS 8 DEPL PONIR LI St ot B Subir e
S e T s yp LToH $¢=DISPLAY; INITIALIZE MEN. PROTECT
0039 0423 330 121371 Jne NSWG Rus VAlT JUNP IF "INSTR STEP® PRESSED
D041 0427 300 024270 WAIT 488 skl 353"“*’ ACTIVATE *T° INDICATOR IN DEPI
0042 0430 334 021431 IS e myg UPPATE UPDATE DISPLAY WITH PROPER DaTh
0043 0431 325 164231 ane CHOX WSt - VAIT FOR BUTTON RELEASES
0044 0432 334 061471 JMP CHDX MSTB .-1
0045 0433 017 136737 SCAN No?
0046 s 8cAM FOR SUITCH PRESSED
0047 0434 332 122571 owP CHOX LT RS LEFT NE CYCLE TO SET SUITCH CONDITIONS
31 023431 JNP CNDX NINC RJS INC.M
0043 0436 331 123531 JNP CNDX NDEC RJS DEC.M
0030 0437 333 023471 JNP CNDX NSTR RJS STOREX
1 0440 333 121374 JNP CHDX NRST RIS WAIT

i
og:§ 0441 332 032231 3CQNRT JNP CHDX NRT RJS8 RIGHIR JUNP 1F "RIGNT" TO TEST FOR ENTRY
INTO SPECIAL DISPLAY ROUTINE.

E-6

21MX

0034
0033
0036
0037
0038
0039
0060
0061
0062

0063
0064
0063
0066
0067
0068
0069
0070
0071
0072
0073
0074
0073
0076
0077
0078
0079
0080
0081
0082
0083
0084
0083
0086
0087
0088
0089
0090
0091
0092
0093
0094

0093
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
01253

0442
0443
0444
0445
0446
0447
0450
0451
04352

0433
0434
0433
0456
0437
0460
0461
0462
0463
0464
0463
0466
0467

0470
0471
0472
0473
0474

0475
0476
0477
0500
03501

0302
0503
03504

0505
03506

0507
0510
0s11
0512
03513
0314
0515
0516
0517
0520
0521
0522

330
323
330
333
01?7
220
017
017
220

017
321
017
320
347
320
347
017
320
137
320
347
320

000
320
00?7
017
320

017
327
347
017
320

017
320
347

017
320

177
000
000
320
000
e17
017
017
347
017
320
017

026171
164231
161431
040271
176317
074712
136743
100411
020673

117004
122774
140337
021370
076337
021370
076137
016730
123331
117002
022470
174337
021370

023017
023370
123017
140437
021370

116417
122371
166357
142317
033130

116417
024035
076337

116417
0250353

114017
023017
040457
021430
014476
115776
114336
114376
136137
016757
164631
115736

Appendix E

JHP CNDX NLDR RJS LOADER

JMP CNDX RUN RUN
JHP CHDX HNSNG WAl T+ JHP IF "INSTR STEP* NOT PRESSED
JMP CHOX INT INTERUPT SERYICE ANY PENDING INTERRUPI
PASS DSPL § DISPLAY (= §
READ FTCH INC PNN P D¢ STANDARD FETCH ROUTINE
108

CLFL PA5SS IR ThB
READ JTAB INC CHM ADR

00350823508 LLXR UL V0SS LLELLLEULSSESELSE LRV HURESXOSE LR LSS0 S

. DISPLAY INDICATOR SHIFT ROUTINES
LA AR AT R d R R R TR 2 R I TSI RS2 222222222212 Y)
LEFT R1 PASS 81 DSPI 81¢(=DSPI SNIFTED RIGNT ONE

JHP CHDX ALD RJB LEFTR JUMP IF DSPI WRAP-AROUND REQUIRED
LEFTSB PABS DSPI S1 DSP] (= DSPI SNIFTED RIGNT ONE

NP VAIT JUNP TO STANDARD SCAN ROUTINES
LEFTH IR, L) LO¥ DSP] DISPLAYS DSPI YRAP-AROUND A TO S

JNP VAIT JURP TO STANDARD SCAN ROVUTINES
RIGHT (L) Low L DISPLAYS

STFL 10% bSP1 SET FLAGs TEST DSPI

JHP CKDX ONES RJ8 RIGHTA JUNP 1F URAP-AROUND OF DSPI REQD

LWF L PABS 51 bSP1 S$1¢(=DSPI SNIFTED LEFT ONE

JHP LEFTSB
RICHTA 1NN LO¥ DOSPI DISPLAYA DSPI VURAP-AROUND 5 TO A

JNP ¥AlT JUNP TO STANDARD SCAN ROUTINES
(AR R I R A2 A2 A A2 a2 2 A AR R 2RI 212 R 2R 22222 X2 2
[INC H. DEC M ROUTIMNES
SELREBISEESSSS4000L LU UNSI NN RE0SEIRLHSSRLINNNSISSIEEESINIER0000002
INC. N INC 81 L} Bl (= N ¢ 1}

JNP DEC.NM+1
DEC.N DEC §1 L} §1 <= N - |

PASS M 51 K (= 81

JHP UNCD VAlT JUNP TO STANDARD SCAN ROUTINE
SESEB 0B BI00LBUBBA0RSSSS0040082 208284 SISS0NSSSORESRENSERSRSRRNSL
L SPECIAL TEST TO EXIT SPECIAL DISPLAY LOOP
P5055002308838888808828804508004 200N BUSBALEIBINNNNSENENSEIEESHNENSNNIRES
LEFTR PASS IR DSP1 CHECK FOR "N* DSPI

JNP CHDX IR2 RJS LEFT JUNP IF "N" T0 LEAVE SPECIAL CODE.

N LO¥ DSPI %373 DEPI <= *N® (SHIFT FRON °*T*)

PASS DSPL 82 SHOV POINTER ON DISPLAY
JNP UNCD YAITR WAIT FOR BUTTON RELEASE IN SPECIAL CODE

S80S0 20BSS SRSV SL2SBBESSEXLRISESNNSBIBSELLEBB0IS2I024B22280082088%2

. STORE AND UPDATE ROUTINES
SEEHEIIEIIIBENSSRSS0 22 4SS S22 AN LSRRS5BS LSH2240882808820002
. TNE REGISTER IMDICATED IN DSP1 IS THE BIT POSITION UNICH IS5

- LOW. ALL OTHER BITS ARE 1. THE ORDER (MSB TO LSB> I5B

. 8 P T N B A

- THE INDICATED REGISTER IS DETERMINED BY LOADING DSPI IHTO
. THE IR, AND JUMPING USING J30 TO GET TO TNE APPROPRIATE

. STORE 02 UPDATE ROUTINE. OTHER CODE IS INTERSPERSED

. FOR MAXIMUM CONTROL STORE EFFICIENCY

S

TORE PASS IR d§P1
JHP J30 ¥0500 JHP TO STORE SELECTED REGISTER
RUN NN LO¥ DSPI DISPLAYS DSPI (= "§". THE SAYE REGISTER IS
. ZERO AT THIS POINT SO THE NEXT RTN
* VILL INITIARTE THE FETCH ROUTINE
SEUSBS SN2 SSSAS IS LSS PIT SRS IVEISB NSRS IBHBUBNRBILSEEA428E0400084
UPDATE PABS IR DSPI
NP J30 %320 JHP TO DISPLAY SELECTED REGISTER
SEBS2 200262 SSSELVISLNBEBEREPNAINEISSSS282802I2BBALFREARBHEHISS024080084
WURTE PASS TAB DSPL STORE T
INC 81 N
INC N 81 INCREMENT N, SET TAB LOGIC
JNP UNCD VAIT+Y
RTN IHC M DSPL STORE M
STORES RTN PASS § DSPL STORE $8
RTN PASS B DSPL STORE B
TN PASS A DSPL STORE A
JLL) L0 L %357 P OR 8 TO BE DISPLAYED
108 DSP] MASK OUT *S§*
JHP CNDX ONES STORES JUMP IF *S8" INDICATED
RTH PASS P DSPL STORE P

MApypviivana =

0126

0127

0128 0523
0129 03524
0130 0523
0131 0526
0132

0133 03827
0134 0530
0133

0136 0531
0137 0532
0138

0139 0533
0140 0534
0141 0535
0142 0536
0143 0537
0144 0540
0145 0541
0146 0542

o147
0146

0149

0130
6131
0132
0183
0154
0153
0136
0157
01358
0159
0160
0161
0162
0163
0164
0163
0166
0167
0168
0169
0170
017}
0172
0173
0174
0173
0176
0177
0178
0179
0180
0181
0182
0183
0184
0183
0186
0187
0188
0189
0190
0191

0343
0544

0549
0346
0547
05350
03351
03%2
063353
0554
0553
0536
0357
0360

0361
0562
0563
0564
0965
03566
0567
0570
0371

0372
0373

0374
0575
0376
0377
0600
0601
0602
0603
0604
0603
0606
0607
0610

E-8

017
321
017
a17

115013
165331
1367354
136776

022457
100336

220
017

024130
021370

300
320

122336
176336
124336
126336
347 136157
017 016757
320 165631
017 174336

017
a1?
017
017

177083
137017

341
353

000157
143717
075217
081217
142437
161371
150117
140137
043057
150157
004737
026271

347
0193
010
000
017
320
17?7
017
223
017
013
320

347
347
017
017
017
013
347
004
322

600157
164257
176417
177135
147144
147157
160157
147133
061371

0600257
174454

131003
140163
131083
140163
131023
140163
031017
140117
023063
142457
000157
022737

127631

......‘.........‘....

sssens OVFL REG. §TORE--PART OF SPECIAL
S0V

C....C..O.‘....‘...

--ooooo.--ooo.o.oo.--ooooooooooo
DISPLAY ROUTINES POPTYTRITIR AL L)

STORDO PASS S DSPL CHECKX DISPLAY
JNP CNDX ALOD .2
cov CLEAR OVERFLOV
.....O‘.0.0.‘.:I.:..OO‘....C..OO.....0..‘.‘....0‘...l..o....t..‘........t
READ INC N N UPDATE T, RERD N, §ET TAB LOGIC
RIN PA3S dSFL TAB DSPL (= MNENM DATA
....“0....“‘..‘...‘0.0..!..‘.C‘O..‘....‘OO..!..‘....O.‘..O..C‘...C.‘..C
STOREX J88 STORE §TORE ROUTINES END WITH RTN
CONTFP JNP UAlTY JUNP TO STANDARD SCAN ROUTINES
.....““..l..‘.l“..‘....!..‘.l.O.“.“‘..O‘.C“‘..O...l....C‘...C‘...C
RIN PASBS pSPL N UPDATE N
UPDATES RIN PASS DSBPL] UPDATE S
RTN PASS psSPL B UPDATE 8
RTN PAES DSPL A UPDATE A
L] Lov L 3578 P OR § INDICATED
10R pSP1 NASK OUT *"S°
JNP CNDX ONES UPOATES
RTIN PASS pseL P UPDATE P
..0..'#.0.0#000.3000030000“‘..‘““"""'ll'Ill.l!##‘.“##.t.###‘###ot
ENORY LOARDER ROUTINE
* 214% R0M BOOTSTRAP NEW reesessrasasananh

‘.‘..‘."'.‘l‘l‘.'!‘!t‘tltt

LOADER 1Nn 30V WIGH 82 xn
L1 cuNl 81 1337
essnes DETERNINE NEMORY
81ZE LI Lew L x300
AND P 82
CHPS S3 [4
IJNC 83 83
PASS W 82
JHP CNDX ONES WAIT
WRTE PASS T $%
PASS L -3}
READ SUB S2 §2
PASS L $3
X0R T
JHP CNDX TBZ RJS SI12E
sseese CHECK SELECY CODE 1IN 8 REG
ML LOY L X300
L L LOW CNIR X372
PASS IR S
RPT PASS 84 S
Ri PASS S4 84
3ANL 54 sS4
NN Loy L X370
s0Y ADD 84 S4
JAP CNDX AL1S YAlTY
sssees PREPARE FOR
1NN LOW CNTR X0
cCOY PA3S N P
seenns TRANSFER CONTENTS OF LOADER RONM
LOOPI1 L4 PABS 31 LDR
TICNY PASS L 81
L4 AND 81 LDk
ICNT PASS L s1
LY AND §1 LDR
ICNT PASS L §1
NAND S1 LDR
WRTE PASS T 81
ICNT INC 82 L}
PASS M 82
1NN Loy X0
10R L]
JHP CNDX ONES RJ53 LOOPI

Ot‘llt‘l“‘l“"ll‘#“‘l‘ttl

S8IZE, STARTING ADDR FOR LOA

FORM TN (WAX ADDR)
FORN 0001000000000000 (10k) IN S

DER sessedsndsdisnssld

FORM 1111111111000000 1IN L

FORN STARTING RDDR IN P

FCRN TVO’8 CONP

OF 8A IH 83

PUT LAST ADDR INTO M

TEST FOR NO READ/URTE CAPABILITY
PASS INTO T

UPDATE LAST ADDR BNILE WAITING

TO RETRIEVE DATH

COMPARE BHAT WAS READ FROM MEM.

T0 DATA WRITTEN (§3)

IF IT CHECKS, WE HAVE CORRECT STRT ADDR
ST IR IR R L R AL A2 2 22 Rad
FORM 1111331111000000 IN L

CNTR GE18 -6

SEY UP LOADER SELECT BITY

SET UP S-REC FOR SHIFTY

SHIFT SELECY CODE INTO BITS{(0-5)
NASK OFF SEL. CODE

FCGRM 1111111311111000 <=-108B) IN L
3U8 108 FROM SEL CODE; SAVE IN SJ
1F NEG RESULY., SCB < 10B; RIN ¥/ OVF ON

LOADER TRANSFER #0000 0000000000000 208400002020382

CLEAR CNTR (ROM ARODR REG)

PUT SA IN MICLR OVF = NO OPER ERR

:0 NENORY #0220 00000800000580002
ASS XXXXXXXXAAAAXXXX INTO S1;CN

CHNTR=X01 FONTRE=X00

FORN XXXXAAARABBBBXXXX IN S1iC

CNTR=X10 NrRexoL

FORN AARABBBBCCCCXXXX IN S1iCH

CNTR=X11 CHTREX10

FORN AAARABBRBCCCCDDDD (CHPL FORNM)

WRITE INTO HEMNORY

UPDATE MEM ADDRICNTR=X00

PASS WEW ADDR INTO N

FORM 11111111000000600 IN L

NASK N TO SEE IF LAST WORD OF LDR

1F M(0-8)=11113111, DON’TLOOP

21MX

0192
0193
0194
0193
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
o211
0212
0213
0214
0213
0216
0217
0218
0219
0220
0221
0222

0223
o224
0223
0226
0227
0228
0229
c230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0243
0246
0247
0248
0249
0250
0231
0232
0233
0234
0235
0z36
0237
0238
0239
0260
026!
0262
0263
0264
0265
0266

0611
0612
0613
0614

0613
0616
0617
0620
0621
0622
0623

0624
0625
0626
0627
0630
063!

0632
0633
0634
0635
06386
0637
0640
0641
0642
0643

0644
0645
0646
0647
06350

0651
0652
0633
0654
0655
0656
06357
0660
0661

0662
0663
0664

0665
0666
0667
0670
0671
0672
0673
0674
0675
0676
0677
0700
0701
0702
0703
0704
0705
0706
0707
0718
0711

017

320

cL?

[3

200
334
325
334

017

220

320
320

0enas?
077110
143192
175017

140457
026157
105057
143017
166157
040757
171531

023023
030671
146154
143051
142117
621370

144137
042757
171231
016157
142757
071231
146157
143057
142117
031230

116417
163071
115057
0623071
156357

042157
074671
007093
141057
142417
073071
037035
033130
036035

033131
164231
073171

136757
123671
073531
043057
034030
174231
000157
142757
033771
143057
143057
116417
1724714
142317
033130
134031
074471
116417
125471
032470
022070

Appendix E

SEABEAEBRABB LSRRI BB RER AR AR L22BR0B08822822828008880804

SET UP COUNY TO FIND LAST WORD
FORM 1111111000111111 1IN 83

PRSS 8§ INTO S1

1/0 TYPE sssssassssssssasssssssss
PASS 8A INTO M & RERD FIRST INSTR
FORM CONP OF 1111010000000000 IMN L
SAVE WORD IN 82

MASK UPPER BITS FOR 1/0 TYPE

FORM 01111021131013113111 IN L

NOW CHECK FOR 1/0 TYPE

IF MATCH OCCURS., JUWP OUT OF LOOP

BESBEBEBASRESERBERBEBEL BRSNS RERESELRESERRIXRAREBREEREREERRBSL80804

NN LO¥W CNTR %300
INN STFL LOW 83 X037
LWF L1 PASS 53 §3
PASS 51 P
sss33% CHECX INSTRUCTION IN MENORY FOR
NUURD READ PASS X 81
1NN HIGH L X013
PABS §2 T
SANL 81 82
8.1} HIGH L X173
X0R 51
JHP CNDX OMES HYST
UPDT IENT INC 61 L]
JHP CRDX CHT8 RJS NUWURD
COVY PASS L 84
CLFL ADD 82 s2
WRTE PASS ¥ sS2
JHP YRLTY
ssesss UPDATE SELECT CODE IN
HTST PASS L 83
NSOL s2
JHP CNDX ONES UPDT
NN Loy L x307
SANL 32
JHP CHODX TBZ UPDTY
PASsS L sS4
ADD 82 §2
WRTE PASS T s$2
NP UPDTY

OTHERWYISE UPDATE M IN 51
LOOP BACK

PASS (SCB-10B) INTO L

CHHG SC OF DCPC CHTRL VORD
SAVE IN MEN

RETURN TO SCAN ROUTINE

170 INSTRUCTION #rsssssssssstastssnsissnnte

PASS 1111111000111111 INTO L
BLEND 7O CHECK FOR...000...0F HLY
1F FOUMD GET NEXT INSTR

FORM 1111111111000111 IN L

MASK BITS T8 CHECK FOR SC < 10B
IF 80, RTR TO LOOP

PASS (SCB-10B) INTO L

ADD TO SC FROM INSTR

PASS INTD T AND URITE INTO MEMORY
RTN T0 LOOP

BEBAAIBAAINBABAZN BRI RBBINE BB REBBIBRAIANABANBBES B REIBRIRRABREBRB L8202

* SPECIAL DISPLAY ROUTINES
BABARBRANRARBBRARNABALERRNERABALNIBNR R RN BRI BE LRI ARR ARSI RSN 0408883
RIGHTR PASS 1R dS§P1 "RIGHT*® PRESSED: IR <(= DSPI
JN? CNDX IR2 RIGHT JUNMP IF M NOT SELECTED BY D3PI
PASS 52 DSPL §2 (= D3PL (POINTER)
JN? CNDX AL1S RIS KIGHT JEP 1F DSPL BIT 15 WASNT SET
1.1] LO3 DSPI %367 DSPLl (= "T*
B2 ARIIRNNIRISABLBABREINRRIBARRBSRBISSSSL IS SRS RR RIS BIIBNIRN R0
UPDATR oP3 L s2 CHECKX DSPL BIT 14, STORE S2 JH L
JHP TNDX ALIS NEUMAPS JUMP I1F 82 B1T 14 = | TO UPDATE MNEU
INY L4 Cudl 81 %003 S1 <= NASK FOR REGISTERS = 140017B
AND §2 81 §2 <= 82 MASK OUT UNUSED BITS
PASS IR 52 SET REGISYER SELECTION
JNP CRDX NSTR READREG JUNP 1F STORE BUTTON NDT PRESSED
JSB J3D STOUREG SELECTED REGISTER <= DISPLAY
JNP URCD WRITR VAIT FOR NEXT BUTTON
KEADREG JS38 433 DSFLREG DISPLAY <= SBELECTED REGISTER

AEAANREAXEENRENRE R BLENIBEZEBREIABBENERBERRLBEEBE XA IBRERIEBEBIRNE

WALTR JHP CNDX NSTB RJ3 =
JHP TNDX RUN RUN
JH? CNDX NSTB -1
*
NOP
JNP CNDX NLT RJS LEFTR
JNP CNDX NINC NOTINC
INC 52 §2
JNP UNCD DECNR+1
NOTINC JNP TROX NDEC NOTDEC
InM HIGH L X000
AND §2
JHP CNDX TBZ RJ3 DETMR
0Py 32 82
DECHR DEC 82 s?2
PABS IR DSPI
JHP THDX IR2 UPDATR
PR3S DdSPL 82
JHP UNCD $R1TR
NOTDEC JNP CNDX NRBT RJ3 DECNR+!
JHP CHNDX NSTR std
PASS IR DSPI
JHP CNDX IR2 RJ3 STUREX
JNP UNTD UPDATR
JHP UNCD SCANRT

WAlT
JUNP
JUNP

FOR BUTTON RELEASE

1F RUN INDICATOR LIT

BACK 1F NO BUYTOMN PRESSED
VAIT ONE CYCLE FOR SETTVTING SVUITCH
JUMP 1F "LEFT" PRESSED

JUMP IF "INCM™ NOT PRESSED
INCREMEHT POINTER

COND1TY

CHECK FOR

DECREMENT OF

ZERO COUNT

2 OR L PLUS 1 (WURAP AROUND COUNT + 1)
DECRENEHT POINTER

IR <= D3P]

JUMP IF M NOT IMDICATED

UPDATE DISPLAY

Y1TH NEW POINTER YALUE AND JUMP

JUMP IF "DISPLAY" PRES3ED

JUNP 1F STORE NOT PRESSED

JUNP IF M SELECTED. LEAVE SPECIAL MODE

M HOT SELECTED
JUNP 10 STD ROUTIMES

B9

0267

0268 0712
0269 0713
0270 0714
02?1

0272

0273 07195
0274 0716
0273 0717
0276 0720
02?7 0721
0278 0722
02?9 0723
0280 0724
0281 0723
0282 072%
0283 0727
0284 0730
0283

0286 0731
0287 0732
0288 0733
0289 0734

0290
0291
0292
0293
0294
0293
029%6
0297
0298
0299
0300
0301
0302
0303
0304
0303
0306
0307
0308
0309
0310
0311
0312
0313
0314
0313
0316
0317
0318
0319
0320
0321
0322
0323
0324
0323
0326
0327
0328
0329
s

0740
0741
0742
0743
0744
0743
0746
0747
0730
07351
0732
0733
0734
0733
0736
0757

0760
076}
0762
0763
0764
0763
0766
0767
0770
0771
0772
0773
0774
0773

a77¢6
0777

1Y

E-10

347
017
017

346
013
340
016
343
016
017
333
017
320
017
320

344
017
017
Q17

017
017
017
017
017
017
017
017
017
01?
017
017
017
320
343
343

017
017
017
017
01?7
01?7
017
017
017
a17
e17
017
017
e17

320
320

172417
11474}
136776

000137
143017
176157
141037
076137
141017
140617
0673371
114620
033130
134320
033130

010417
136762
136737
110336

170336
172336
112336
144336
146336
130336
132336
154336
156336
16033¢
162336
164336
166336
035470
176336
176336

115636
11367¢
114276
113136
119176
113236
11527¢
11333¢
113376
11543¢
113476
115336
113576
106336

023170
034330

ERRORSs»

S440ER 4SS ICAINSSSAERRBLARRIFSILRSNENRRRR RIS A 4RARASR L0054 83802
STOREE 1M8 Loy IR X373 SET UP 3RG TYPE ER® SHIFT

BRG2 PASS bSPL SET E ACCORDING TO DSPL BIT O

RTH
SESASANARR SRS REAASSLSS ARV RLESVEIREREE02220082325042003428804030020
seseen NEU MAP NANIPULATIONS #25242028909088820282588333280300808080004082

NEUNAPS INM Loy t X200 81 (= NASK OF LOW 7 BITS
sANL 81 S2
M9 HICH L X077 L <= 0377778
8ONL §2 81 82 (= MASK OUT BITS 13 10 8
Ly HIGH L x337 OR IN BIT 13
SONL §1 51
PASS NEVU 81 SEND WAP HO. TO MEU
JNP CNDX MSTR READNAP JUMP IF STORE HOT PRESSED
NESP PASS MEV DSPL WEU NAP (= DISPLAY
JNP UNCD ¥AITR
READNAP WESP PABS DSPL MEU DISPLAY <= MEU NAP
JNP UNCD ¥AITR
ssesse SINULATED LIA 4 1/0 INSTRUCTION TUO READ CIR SRS BERE RSN 0 4004
DSPLCIR IMNN Lov IR X004 SET UP SEL CODE 4 IN IR
108 INITIATE 1/0 CYCLE AT TINE T2
NOP VAIT FOR TINE T4
RTN PASS DSPL 101 CIR 10 DISPLAY. DONT ISSUE 1AK
SORICIN=7408

SR EL LB LRSS LSRRV ELR LR 4208820000000 040800800800¢

. SHORT SUBROUTIMNES TO STORE/DISPLAY SELECTED RECISTERS
SESSEALEEELEESLEE LSRR ANRIRNNRAIANELOIRS 408N ESINREINRSS

DSPLRES RTN PABS DSPL X PASS REC TO FRONT PAREL AND RETURN
RTN PABS DSPL Y
RTN PASS DSPL CHTR
RTN PASS DSPL S3
RTN PABS DSPL B¢
RTN PASS D8PL 85
RTN PASS DSPL 86
RTN PABS DSPL §7
RTH PARSS DSPL 88
RTN PRBS DSPL §9
RTN PABS DSPL §10
RTN PABS DSPL §1t
RTN PASS DSPL 8§12
JNP UNCD OSPLCIR
INN RTN HIGM DB®L 377B
INN RTH MIGH DSPL 3778

.‘“““...“‘..‘....0.““.“‘0‘...‘..“‘....J‘.“..“.‘.‘.“‘...0..‘.0

STOREG RTHN PASS X% DSPL 8
24 baes ¥ ity TORE INTO REC FROM FRONT PANEL
RTN PASS CNTR DSPL
RTN PASS 53 DSPL
RTN PASS 54 DSPL
RTN PASS §3 DSPL
RTN PASS 86 08PL
RTN PasS §7 D8PL
RTN PaS8S S8 DSPL
RTN PASS 89 DSPL
RTN PASS 810 DSPL
RIH PARSS 811 DSPL
RTN PASS 812 DdSPL
. RTH PABS DSPL CIR LOAD CIR FROM INY. REQUEST LINES
NP UNCD $70R00 AND I1SSUE INTERRUPT ACKNOWLEDGE
JNP UNCD BTOREE
:;;;.‘.“‘.‘.“.‘....‘..“0“.‘0.“““““.“J“‘...““.‘..0““““.‘

21MX

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
o012
0013
0014
001%
0016
0017
0018
0019
0020
ooat
0022
0023
0024
0025
0026
oc27z
0028
0029
0030
003}
0032
0033

0034
0033
003¢
0037
0038
0039
0040
0041
0042
0043
0044
0043
004¢
0047
0048
0049
0030
0031
0032
0033
0034
003S
0038
0037
0038
0039

0060
0061
0062
0063
0064
0063
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080

7000
7001
7002
7003

7004

7003
7006
7007
7010
7011
7012
7013
7014
7815
7016
7017
7020
7021
7022
7023
7024

7023
7024
7027
7030

7038
7032
7033
7034
7033
7036
7037
7040
7041
7042
7043
7044
7043
7046
7047
7030
7051

7032
7053
7954
7053
7056
70%7
7060
7061
7062
7063
7064
7065
7066
7067
7070
7071
7072
7073
7074
7075

017
321
001
017
344
013
01s
013
347
004

017
322
017
320
000

017
001
387
321

0t?
000
340
220
013
017
013
0:3
013
321
346
004
017
321
348
(2]
017

017
001
017
320
346
037
325
07?7
000
321
322
007
017
003
321
340
240
3238
017
000

125414
100171
136576
126317
000137
1603537
161437
161404
140137
161413
140771
005231
061417
160259
124504
126137
124554
017631
062737
057631
024376

126317
136337
141417
142330

101317
023017
0001357
040437
125417
101217
125437
131237
151204
102271
000157
131217
161404
102471
000137
161417
127336

126154
137457
024757
037631
0033517
124742
043231
124502
063457
142770
043331
163817
164134
026357
004171
000157
0243517
003771
124504
061414

Appendix E
$O0R1GIN=70008
333 I R I R PV R IR S PR R PR R R RIS IR 2SRRI SRR RSS2 R 22 2
]
. 218% NICRO-CODE
. MODULE 141 FLOATING POINT INSTRUCTIONS
»
I 2222 2RI 2 2R YR RS YR SIS RS R ARSI RIS RS I RS EEE SRS RS R RS R 22 2
INDIRECT EQU X001%
NPYX EQU X0246
SRBRNBLGEERR RS RALR R LLRRR AR D AR R AR SRR AR SR DICRR AR AR AR XX R AR LRERRE
*
IFIX oy PASS 89 B CLERR TNE OVFL AND PUT EXP IN 59
JHP CNDX ALO RJYS *+2 TEST FOR NEG EXP
RTN ZERO A IF EXP<O VE CAN’T FIX
PASS B f PUT HIBITS IN B-REG
1NN Lov L X000 PUT *UP-8’ WASK IN L
AND A 89 MASK LERST SIC. 8 BITS INTOD A
AND S1D0 S SAVE BITS FOR ROUND-OFF
R1 3AHL 59 89 MRSK EXP INTO 3% WITHOUT SIGN
L) Loy L X360 PUT -20¢88) INTO L
S0Y ADD 59 S§9 CHECK TO SEE IF EXP TOD LARGE
JNP CNDX ONES NOSMIFT OR IF NO SNIFT REQUIRED
JHP CHNDX AL1S RJS OVER IF S0 THEN NE CAN’T FIX
INC 89 89 START LOOP TO SHIFT DIGITS
RPT PASS CNTR 39 PASS 8 OF SNIFTS INTO CHTR
ARS R1 PASS 8 8 32-BIT SHIFT
NOSHIFT PASS L A HOLD LEFTOVER BITS IN L
cov PASS A 8 PUT INTEGCER INTO A-REG
JHP CHDX AL1S RJS RTHFP TEST FOR MEG INTEGER
10R 810 1F NEGC THEN CHECK FOR TRUMC. BIT3
JHP CNDX 182 RTNFP IF ALL 2ERDS WE ARE DONE
RTH INC A 8 DTNERWISE INC TNE INTEGER & RTN

SESSBREBERS SNSRI RIS AR ES AR RSN RRAB AL LRI RR NI LR R LR RSN RSRNS

AR AL R A R A R R S R R R R R PR PR IR R SIS RSS2 R R 2

FLOAT PRES B] PUT TNTEGER IN B-REG
ZERO A CLEAR A-REG
1NN CHLC S9 X360 STORE +13(B10) IN EXP REC
JNP PRCK

AR R LR LA I A A A e L L P L R L R PR I N R I Y PRI YLy
*

FLD PRES §7 TR8 STORE HIBITS 1IN S7
INC 81 L} INC ADDRS FOR NEXT REARD
Inn HIGH L X000 ETORE ’LO-8° WASK IN L
RERD INC N 81 READ SECOMND HALF OF WRD
AND B9 8 MEANVHILE,.NASK EXP OF URD! INTO 89
PRBS 83 TRS8 STORE W&GD2 LOBITS/EXP 1IN S9%
SANL 510 B MASK LOBITS OF URDI INTO 81D
SANL 86 $3 MASK LOBITS OF URD2 INTO 86
R1 AND S5 83 MASK EXP OF URD2 INTO S11 UITHOUT SON
JHP CHDX ALD RJ3 #+3 IF SIGH YAS POS, NP
NN LoV %200 OTHERWISE PUT -200¢BB) INTO L
ADD 83 53 ADD TO EXP OF WRD2
Rl PASS 89 893 MASK EXP OF ¥RD! IKRTO $9 UITHOUT SIGH
JHP CHOX ALD RJUS #+3 1F SIGN WUARS POS, JNP
ny Loy L %200 OCTHERUISE PUT -200(B8) INTO L
ADd 39 33 ABD TO EXP OF #RDI
RTH PASS 511 A PUT HIBITS OF URD! INTO 83 & RTN

LRSS0 RRSSLIBARNEBRIRISUNRRESHSBRSESSISEBSIIRNSRSERREBANRLISSSRSR0RA

AN ESSNS VSRR BLXRE LN NSSLRRRBENSESINERRILBRB4 SRR INERRLES0RE0S0RE

PRCK Cov PASS L] CLR OVFL AND PUT WRD! LOBIT3 IHTO L
ZERD S13 CLERR COUMNTER REG
10% B PASS THIU ALU WITH HIBITS
JHP CNDX TBZ RTNFP IF A/B IS ZERO,RTN
L) Loy s11 %2201 STORE -177¢(B&)> IN 81
NRNLZ ARS L1 PA3S B TES5T IF HUNMBER 1S NORMALIZED
JHP CNDX OVFL RND IF 80, JMP TO ROUNDING ROUTINE
Les 1 PASS B8 8 IF NOT, DO 32-BIT LEFT-SHIFT
ING 810 S10 IRC THE EXP CHIR
NP NRNLZ G0 BACK TO CHECK FOR NORMAL HUMBER
RND JHP CNDX ALIS 42 SINCE B ¥UnS JUST PASSED THRU ALY
DEC S11 511 CHECKX 36N & ADJUST ROUND OFF
COY PASS L 811 PUT ‘ROUND’ INTO L
SU8 #] ACTUALLY; ADD 200(B8) TO LOBITS
JHP CHDX COUT R4S XPNT IF NO COUT FROM LOBITS. OK. JWP
Inn HIGH L x0 CLR LC13) FOR OVERFLOW
ENY INC 8 B IF COUT, INC HIBITS AND CHECK FOR OVFL
JHP CNDX OVFL RIS #+4 IF R0 OYFL, OK. JHP
Rl PASS B -] OVFL INPLIES B/A= 1000...
Coy INC 89 39 50 UE SHIFT 8 TO FORM 0100...%

E-11

0081 7076 321 144170 JNP XPNT BUMP EXP, THEN JNP

0082 7077 037 124742 ARS L1 PASS 8 IF B NEQ 100...,CHECK IF B=111t..
0083 2100 325 044171 JAP CNOX OVFL XPNT 1F NOT, JMP

0084 7101 077 124302 LGS L} PASS B B RE-NORMALIZE

0083 7102 000 063437 INC S10 S10

0086 7103 017 162133 XPNT S0¥ PR3S L S10 CLR OVFL AND PUT EXP INTO L
0087 7104 003 061417 sys 89 39 SUB CALC EXP FRON ORIG EXP
0088 71035 346 000137 InN Low L X200 PUT -200¢(B8) INTO L

0089 7106 003 060737 3U8 59 TEST FOR EXP UNDERFLO

0030 7107 322 043131 JHP CNDX AL1J UNFLO 1F 80, JNP

0091 7110 004 160737 ADD 39 TEST FOR EXP OVERFLOW

0092 7111 322 017671 JNP CNDX ARLIS RJ3 OVFLO 1F 80, NP (10 7373)

0093 7112 157 160742 LVF L1 PASS 89 PASS EXP SIGN INTO FLARG-REG
009¢ 7113 157 161402 LUF L1 PASS 89 39 BHIFT EXP WITH SIGH

0093 7114 340 000137 13,1 HIBH L %000 STORE *LO-8’ MASK IN L

0096 7115 015 161457 AND 810 82 MRSXK EXP INTO 510

0097 7116 013 127417 SANL 59] MA5K LOBITS INTO S9

0098 7117 017 124357 PA3S A 8 PUT HIBITS INTO A-RECG

0093 7120 017 160154 goy PASS L 33 PUT LOBITS 1HTO L

0100 7121 017 062336 RTN 10% B S10 COMBIHE WITH EXP AND STORE IN B-REG
0101 7122 @O1 136357 UNFLD ZERO # CLEAR R-REG: OVFL=1

0102 7123 001 1363536 RTN ZERO 8 NOW CLR B-REG AND RTN

0103 *

0104 7124 341 176576 OVER IN% RTN HISH 8 X177 SEV UP ERROR CONDITION IN A
6105 ‘#‘3#“““#‘#“#“#‘#““J‘t“##“‘#““““a)aaaata“aa“t‘#‘ﬁ“l‘t‘at

tttti‘tiiiiilliilil“!‘iiltlill‘lllllllll#llll#111¢t!tttttttt¢!t!t¢tttt¢

0107 7125 017 136750 FARD ST
0108 i :
0109 7126 220 074457 FSUB READ ING N P PaSS P INTO N TO READ ADDR OF e
488 INDIRECT CHECK FOR INDIRECTS
0110 7127 300 000670 REG
0111 7130 301 141470 V58 FLD UNPACK YRDS INTO SCRATCH REGS
0112 7131 017 154517 PASS 8 37 CHECK FOR WRD2=0
0113 7132 320 005631 JNF CNDX TBZ RJ3 ¢2 IF NOT,CONTINUE
0114 7133 346 001217 ILL] Loy S5 X200 IF SO,MAKE EXP NOBT NEGC (-200,88)
0115 713¢ 017 164757 PASS 11 CHECK FOR ¥RD1sO
0116 7135 320 005771 JNP CNDX TBZ RU3 s+Z IF NOT,CONTINVE
0117 7136 346 001417 L Lo¥ 89 X200 IF 80, MAKE EXP NOST NEG ¢(-200,88)
0118 7137 324 045531 JHP CNDX FLAG DIFR IF DOING ADD,SKIP AHERD
0119 7140 010 024517 CHPS B B FORN 2-CONP OF HIBITS IN B
0120 7141 010 053257 tW?PS 56 86 FORN 2-CONP OF
0121 7142 000 053257 IND 86 86 LOBITS OF WRD2
0122 7143 321 006331 SNP CNDX COUT RJ3 DIFR IF COUT OCCURS
0123 7144 000 024517 INC 8 B BUNP HIBITS
0124 7145 322 006531 JNP CNDX ALIS RJS OIFR CHECK 3GNJ IF POS,JnP
0125 7146 017 124742 L1 PASS B IF NEG,CHECK FOR NOST
0126 7147 320 006531 JNP CNDX TBZ RJ3 DIFR NEG #(100...)
0127 7150 017 124504 21 PASS B B IF 30, 84IFT BACK (010...)
0128 7151 000 051217 INC 85 8% LBUNP EXP o
0129 7152 017 152557 DIFR PASS A 86
0130 7153 017 150157 PASS L s
0131 7154 003 061351 CLFL SU3 88 33 :l#ga:xir s6) FLo
a3 TS 0 ¢ s N 585 FLC=0
20 047731 JNP CNDX TBZ aDb2
0132 113 IF DIFF=0,JNP TO ADD STEP
6 322 047131 JNP CNDX ALIS RYR
8 IF NEG,WRD2)>WRDI
0134 7157 010 037357 cHPS 38 38 FORM -DIFF
0135 7160 000 037357 ING S8 38 t STORE -DIFF
0136 7161 321 147430 ane SUANPCHK ee
0137 7162 017 124157 RYRS PASS L 8
0138 7163 017 164517 3 o ot
013 PRSS B 511 WRDICURD2: FILL B.A
139 7164 017 162557 PASS 4 810
0140 7165 015 037517 PASL § yITh 811,810
Sla) T1e3 oz 037aLT PasL .:; . ALSO0 FILL 811,510,589
)
0142 7167 017 151417 PASS 89 §S viTh 8.36.83
0143 2170 34 :
0144 7171 003 036737 o M Py S -
0145 7172 322 050671 JNP CNDX ALIS outT ::r-ggFgégil'RTu o 1 LARGER 4
0146 7173 037 124504 SHIFT ARS R1 PASS B B SErLe
0147 7174 000 057357 INC 58 S8 ?5: 233:; g IFT ook
gl4g 717 ER
s14e 5 320 007571) SMP CNDX TBZ RJS SHIFT LCOP UNTIL DONE
0130 w499 CONTINUED ON NEXT PAGE #848088088808 4000040080000 s80s888008080008d

E-12

21MX

0131
0132
0133
0134
01933
0136
0137
0138
0133
0160
0161
0162
0163
0164
0163
0166
0167
0168
0169
0170
0171

0172
0173
0174
0173
0176
0177
0178
0179
0180
0181
0182
0183
0184
0183
0186
0187
0188
0189
01%0
0191
0192
0193
0194
0193
0196
0197
0198
0199
0200
0201
0202
0203
0204
0203
0206

0207
o208
0209
0210
o211
0212
0213
0214
0213
0216
0217
o218
0219
0220
o221
0222
0223
0224
0225
0226

7176
7177
72900
7201
7202
7203
7204
72035
7206
7207
7210
7211
7212
7213
7214
7215
7216
7217
7220

7221
7222
7223
7224
7223
7226
7227
7230
7231
7232
7233
7234
7233
7236
7237
7240
7241
7242
7243
7244
7245
7246
7247
7230
72351

7232
7233
7234
7233
7236
7257
7260
7261

7262
7263
7264
7263
7266
7267
7270
7271
7272
7273
7274
72735
7276
7277
7300
7301
7302
7303
7304

220
300
301
000
017
004
o17?
01?7
300
017
017
017
017
300
017
004
321

000

017
004
017
300
017
017
244
322
3239
007
301
oco
000
301
000

220
300
301
010
320
322
000
017
003
0co
017
017
037
301
017
017
321
007
001

162154
126337
010171¢
000157
024317
164151
124317
010371
050431
136730
124304
126544
061417
142330
075736
164317
162557
142330
073736

074437
000670
141470
061417
1501357
161417
162344
135037
012330
125217
165037
127317
13523544
012330
1261357
164337
012171
024317
1241357
151317
1354337
012330
126544
126154
164342
012671
032771
124517
142330
073736
024317
142530
073736

0744357
000670
141470
0343554
156131
033471
027313
130137
061417
061417
162357
1643517
124304
156370
127217
124757
114231
124317
136357

.
Adb2

JHP
L
ENY
ENY
JHP
JNP

LWF
LYF

PXsus 488
ouT

488

coy

CNDX

CLFL
CNDX
CNOX
3TFL

R

RTN

RTN

PASS
ADD
couy
HIGH
INC
PASS
ADD
ovFL
ALLS

PASS
PASS
INC
INE
PA3S
PASS

INC

P

§10

*+3
%0

PKSUB
$+2

8

a

59
PACK
p
s1!
810
PACK
3

Appendix E

PASS LOBITS INTO L

ADD & CHECK FOR COUT

1F HOT.JNP

CLR LC15> FOR OVFL

IF S0,INC HIBITS & ENABLE OVFL
FLG=O

ADD HIBITS AND ENABLE OVFL

IF NO OVFL,RETURMW

OVFL INPLIES SGN CHMG

80 FLG=U IF ALUI3=0

DO FULLMRD S3HIFT

URING FLC REGC TO INJECT SGN
BUNP EXP

REPACK A,B REGS

IKC P AWD RETURM

PASS MUCN LARGER WRD INTO B.AR

.‘.........‘..‘.".‘......‘.......“..........J‘...‘.....‘...‘..........

SESRERBS SRS INSERSASESISE SIS ABERISESSLSRIBINESREBSESERINNERRESERS82

FHPY READ
Jg8
J83

J§8

58

JHP

458

ENY
J NP
JNP

J88

JSB

R1

R1

CNDX

]1
coy
Lt
CHOX
CNDX

RTH

RTN

INC

INC
PRssS
ADD
PASS
PASS

PASS
PASS
PASS
PASS

PASS
AbDD
cout
INC
PASS
ADD
PASS

PASS
PASS
AdDD
ALLS
OVFL
DEC

INE
1N

INE

89
L
§9
A
s2

83
32
811
f

nDr>»

P
B

p

[
INDIRECT
FLD
89S
83
§9
§$10
3?7
NPYX
B
311
L]
11
NPYX
A
St
$+2
8
B
85
37
NPYX
f
f
sl
43
s+4
8
PACK
[
8
PACK
14

PASS P IHTO M TO READ ADDR OF WRD2
CHECX FOR INDIRECTS
STORE ARGS IN SCRATCHN REGS

FORM EXP1+EXP2+%

AKD SAVE IN §9

FORM (WRD1 LOBITS)/2 IN A
PASS WRD2 HIBITS INTO 82
JHP TO MPY 3UB & RTN WITN
HIBITS IN Bs SAVE IN S3J
PASS WRDI HIBITS INTO 82
LOBITS INTO A; SAVE 1IN S11
FORM (WRD2 LOBITS)/2 IN A
JHP TO MPY 3UB & RTN WITHN
LOBITS IN A; PASS INTO L
ADD BOTH LOBITS & CHK FOR COUT
CELSE TRUNCATE DIGITS)

1F COUT,BUMP HIBITS

ADD NIBITS AND SAVE IN Sii

PRSS WRD2 HIBITS INTO A

JMP TO0 MPY 3UB & RTH VITH
LeBITS IN fA; SAVE LOBITS/2
ADD LOBITS/2 TO HIBITS SUM &
SHFT L1 TO REORIENT

CHECX FOR CARRY INTO OR
BORROW FROM HIBITS &

ADJUST ACCORDINGLY

CAN'T OVFL FROM HIBITS

SN INI IRV RENINRIR ISR IBINNEN NN N AN NI NN IN NN NINNESISSNSL

I R PRI RIS IR TR YRR FRNIRRNR IR RIRIRR RN LN R RS R A2 SRR 22 2]

FDIV READ
488
488

NP
JHP

AR3
488

J NP

coy
CNDX
CHDX
30V

L3

CHOX

INC

CHFsg
ONES
aLLs
INC

PRA3S
3us

INE

PABS
PASS
PASS

PASS
PASS
ALd
DEC
ZERD

P
INDIRECT
FLD

37

DBYZR
"2

PASS P INTO N TU READ ADDR OF WRD2
CHECKX FOR INDIRECTS

PASS WRD2 NIBITS & CHECK

FUR DIV BY ZERC

SINCE VE USE SAME DVSR, MAKE POS
NOW & SAVE SGCN IN OVFL

FORM EXP1-EXP2+1

& SAVE IN 39

FILL B.A WITH WRDI AS DVND
& PRESHIFT TO AVOID OVFL

JHP T0 SPECIAL DIV SUB

SAVE QUCE IN S3%

PASS QUO & CHECX FOR ODD/EVEM
10 SINULATE FIRST

LEFT SHIFT 1IN DIV ROUTINE

CLR DVYHD LOBITS: DVSR SANME

E-13

Appendix E

pz27 730% 301 156370
o228 7306 017 1273517
0229 7307 017 152304
0230 7310 017 124304
0231 731t 001 136557
0232 7312 301 156370
0233 7313 010 026537
p234 7314 000 026337
0235 7313 017 1510387
0236 7316 300 012330
0237 7317 017 128317
0238 7320 001 136317
0239 7321 017 164757
0240 7322 322 013231
0241 7323 016 036317
0242 7324 017 1547587
p243 7323 322 013371
0244 7326 007 124517
0243 7327 017 133302
0246 7330 017 154342
0247 7331 017 1261357
0248 7332 004 164537
6249 7333 321 0135671
0250 7334 000 0243517
o231 733% 077 124502
0232 7336 037 150157
02%3 7337 004 124317
0254 7349 301 142530
02953 7341 000 073736
0256 7342 001 136837
0257 7343 352 000317
0258 7344 017 125417
02%9 7345 301 142330
0260 7346 000 0757386
0261

0262

0263

0264

0263

0266

0267

0268

0269

0270

0271

0272 7347 344 000257
0273 7350 137 124742
0274 7351 322 016771
02?3 7332 010 024317
0276 7333 010 026337
0277 7334 000 026337
02?8 7333 321 016771
02?9 7356 000 024317
0280 7357 017 154433
0281 7360 123 024302
0282 7361 017 124304
0283 7362 324 017271
0284 7363 010 24317
0285 7364 000 024317
0286 7365 323 037471
0287 7366 324 017631
0288 7367 010 026337
0289 7370 000 026376
0290 7371 324 057631
0291 7372 010 026337
0292 7373 000 026376
0293
0294
0293 7374 017 136776
0296
0297 7373 016 036344
0298 7376 347 174336
0299
0300
[1]

NO ERRORSs»

E-14

JSB

J88

JS8

i1t

JNP

INP

LGS

Jg8

pBYZR
3L}

J58

.0“0.“#‘.‘“..“..‘0"““"'!"“

“.“..‘.‘....‘......“.‘.....

PaSS 81l
PASS B
PRES B
ZERO A

R1
1

cHPsS R
INC A
PASS 82

PASS 87
2ERD B
PASS

CNDX AL1S RIS
ONE

PASS
CHDR AL1S RIS
DEC
pPASS 87
PASS A
PASS L
AbDD A
CNDX COUT RSB
INC
pasSS B
PASS L
add @

[
L1

L1

INC P
ZERO R
CHHl B
pasSS 89

RTN

RIN INC P

HPYX

sti1
s+2

37
2
8
87
87
R
811
e
8
8
83
8
PACK
P

%200
B
PACK
P

Lo LLIVRLD

JNP 10 3PEC DIV sSUB

3ayE QUO2 IN S11

FORN (URD2 LOB1T8)/4 IN
B(=DYND Hi1B11S)

CLR DYND LOB1TSs DYSR 3anE
Jup Yo 3PEC plv SUB

FORN 2-CONP OF Quo3

fAS MPLR

pASS GQUO1 RS HCND

JNP 10 WPY SUB

SAVE PRDD H1B8ITS IN 83
PRE-CLR B

CHECK 8GN OF Quo
& EXTEND #S ALL
QR aLL 1°8(NEG)
CHECK 3GN OF -Quo12QUO3
1F REG,SUB 1 FRON B

2
3 8(POS)

REURIENT PROD (ADJUST EXP, REALLYD

apb 10 QUO2

1F cOUY OCCURRED

BUNP WIBITS OF RESULTY

SHIFT FULLURD T0 ORIENT RESULY

apb QvO1 TO HiB11S

CLR LOBITS
FORMN 0111111100000000 IN HIBI11S

ALS0 PA3S INTO EXP

"“““‘#‘“‘“.“"‘.“li.'.l"‘sl

..“““.“‘.‘..l‘..‘....".'..“.""..'O

|]
. THIS 18 A SPECIAL 3UB FOR F.P. DIV
. 1T ASSUMES THAT DVSR 15 ALUAYS POS
M THAT ORIG DVSR 8GN 18 IN OVFL RES
. THAT YOU WAVE PREVIOUSLY DONE FIRST LEFT BHIFY
. AND THAT ND ERROR COND WEED BE CHECKED
. (BUT IT 1§ FAST)
| 4
;;;;‘.‘“‘.‘."“‘l..t......‘..‘..l“““.““l.“..‘.“““‘l..l‘ll.“l
:::) LOM CNTR X0 CLR CNTR
! PASS) CHECK FOR NEG D
JNP CNDX ALIS RJS READY IF POS. WE ARE :::n: SAVE SEN TN LG
gnrs B B CONP HIBITS
1:;3 : : CONP LOSITS
FORN 2-CONP
JNP CNDX gaur RJZ READY IF WO cou:,o:F LoBITS
t 8 B ELSE BUN
READY P HIBITS
- t:w ;sgs ; 87 PASS DVSR INTO Li SET RPYFF
L1 sus s 8 PERFORM DIV STEP(16X)
o o e FORN REN IN B
X E;:: :Jo .3 IF REN 3GN IS TG BE WEG
chPy 8 B CDETERMINED BY DVND), THEN
JHP CHDX OVFL e E:::,"°°"' I8
or1
JNP CHDX z:nc R4S RTHFP LOOK FOR 353'§5n§°"‘ 1 pos.
RTH INZS : f UHICH NEANS FORN
e oM INC f NEC QUO IN & & RTN
FLAE RTHFP ELSE IF NEG.LOOK FOR POS DVND
aTe ohes A : ::éc:uneaus FORN
I IR EER RN] 0 I“ At R
. ".‘“““.“““‘““““."“.““““.“.“I:““““.‘..“.
RTNFP RTN
L]
OVFLO R1 ONE 8
L S v376 PUT WOST POS # AND NOST POS EX?

SEND

IRTO A,B-REGSs OVFLO=1

A28 0009002008
V4200222005005 5080
AR RRNAN AN N
848820202004

21IMX

0001
0002
0003
0004
0003
0006
0007
0008
0009
0010
0011
0012
0013
0014
0013
0016
0017
0018
0019
0020
o021
0022
0023
0024
0023
0026
0027
0028
0029
0030
0031
0032
0032
0034
0033
0036
0037
0038
0039
0040
0041
0042
0043

0044
0045
0046
0047
0048
0049
00350
0031
0032
0033
0034
0035
0056
0037
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
007t

0072
00?3
0074
0073S
0076
0077

7400
7401
7402
7403
7404
7403
7406
7407
7410
7411
7412
7413
7414
7413
7416
7417
7420
7421
7422
7423
7424
7425
7426
7427
7430
7431
7432
7433
7434
7435
7436
7437

7440
7441
7442
7443
7444
7445
7446
7447
7450
7451
7452
7453
7454
7455
7456
7457

7460
7461
7462

7463
7464
74635
7466

321
017
321
321
Q17
321
321
321
321
017
321
321
017
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321
321

000

220
017
o117
322

163170
103636
163170
163030
170076
163030
163030
164070
163630
103676
163630
163030
172076
163030
163030
164230
164370
164670
177070
1723530
171630
173230
175130
174030
1643530
165030
177370
167330
167330
166630
170230
171030

022461
102036
100076
0224861
170036
101636
100157
171636
022461
102036
100076
022461
172036
101676
100157
173676

074717
165630
162035

074717
170157
100457
023471

Appendix E
$ORICIN=7400
ety e e T L R R T T A R L R AR AR R R AR Rl it il ay
L
. 214X MICRO-CODE
. MODULE 13: EXTENDED INSTRUCTION CROUP

.

T e e e T R R L R R I I A R LA AL PR LA LAl L
FETCH EQY %0000

T L T e T R TR PR A L PR TR A S A LI L R A AL AL 2
L JUNP TABLES - ENTERED FROM BASE SET
e R R R PR R R AL R A A R A A it)

JNP EADRX SAX/8BX
RTH PASS X CAB CAX/CBX
J NP ERDRX LAK/LBX
J NP EADR STX
RTK PASS CAB X cXa/Cx8
JHP EADR LBX
JHP EADR ADXR
JHP XABX XAX/XBX
J NP EADRY SAY/8BY
RTR PASS Y CAB CAY/CBY
J NP ERDRY LAY/LBY
J NP EADR 8TY
RTH PASS CAB Y CYA/CYB
JMP ERDR LoY
J NP EADR ABY
JUP KABY XAY/XBY
JNP I15%
JNP D8X
JUP Ly
JHP LBT
JNP S8BT
JNP NEBT
JHP CBT
JNP SF8
JuP 1sY
NP DSY
J NP JPY
J WP SBSCBS 88§
JHP §BSCBS ces
J NP T8§
NP cne
J NP L3l]

BESIRI2BIBIRABSLBIRILBL LIRSS IIBEBRC SIS R LSRRI EIC SN NEBUESISREBISSS
» INDEX REGISTER IMSTRUCTIONS
B4R LB424BIVBEBINBEARPBAIRSBECREBLIEERINSNEINSISABIL SIS BREN082S

* DISPLACEMENT FRON FINISH CORREPONDS TO
* DISPLACEMENT FROM 74008 FOR INSTRS. LISTED
* IN COMMENT FIELD SELOV.
FINISH MPCK INC M L} SAX/SBX
WRTE RTN PRSS TAB CAB
RTN PASS CRB TAHEB LRX/LBX
MPCK INC L] STX
WRTE RTN PASS TA8 X
RTH PARSS X TAB LDX
PASS L ThB ADY
ERYE RTN ADD X X
MPCK INC M L} SRY/SBY
WRTE RTN PASS TAB CAB
RTN PASS ChAB TAB LAY/LBY
MPCK INC M N STY
WRTE RTN PASS TAB Y
ATH PASS ¥ TA8 Loy
PASS L Th8 RDY

EXNYE RTN ADD ¥ Y
BIBRSSABIIABIL LB EBIVBIARIBESBIAABRIRSRIRNIHIBEHS BRI BESIIESIIS4EIN S R2N

. ERDR 15 COMMON TO LD#,5Ts,ADs
EADR READ INC PNN P READ WURD 2 P(=ADDR OF NEXT IHSTR.
JSsg INDBIT CHECK FOR INDIRECT,.GET OPERAND
JMHP J3D FINISH JUMP TO COMPLETE INSTRUCTION
BESILBEEIEBAIIEB LRI 4240448885222 84330888383483838388823888838884
b4 ERDRX DOES EFFECTIVE ADDR FOR
* SAK, 8BX., LAK,LBX INSTRS.
EADRX READ IRE PNN P READ ADDRESS OF WORD 2
PRSS L X
PRSS N TRB M<¢=CONTENTS OF WORD 2.
JEP CNDX AL1S RJS DIRECT JUNP IF NO INDIRECT.

E-15

Appendix E 21MX

ap78 BAAAIRASAIAABAIBABABRERIBREBIBRIARRRIEIRRIRBRBEIRBALRNBRARI0BER R0 REBER 04
0079 * IRKDIRECT ROUTIME FOR INDEXED INST
0080 7467 220 Q22457 ERDRI READ INE N L} READ INDIRECT ADDRESS

0081 7470 301 165630 J§38 INDBIT 3B TO IHDIRECT ROUTIMHE

0082 BEISBREB BB EXLILBREB RSB EBILRENRBILERBRELBARERPEBERBABBIBANESERR IR S
0083 » COMPUTE IMDEXED RDDRES3 THEN JUMP
0084 7471 Q04 §23017 DIRECT ADD §% L} S1¢(=TRRGET RDDR. + X OR VY.

0085 7472 220 DAD&ES? READ INZ N sl REARD INDEXED ADDRESS.

0086 7473 321 162035 JH? 43D FINISH JUMP 70 COMPLETE THE INSTRUCTION
. 0087 BESSIEIIRIIDIIBBRESIRBEBIBREINRBERRNB ARSI ELIBERLBRBAIRNEREISAN S
0088 » EARDRY COMPUTES EFFECTIYE ADDRESS

0089 . FOR SAY.SBY,LAY,LBY IN3TRS.

0090 7474 220 074717 EADRY READ INC PHN P

0098 7473 017 172187 PASS L Y

0092 7476 017 100457 FPASS N TRS H¢= COWTYEHWT3 OF WORD 2.

0093 7477 322 02347) JHP CKDX AL1S RJ4S DIRECT JUNP IF NO INDIRECTS.

0094 7500 321 163370 N2 ERDRI JUNP TO DO INDIRECT ROUTINE

0093 CEEEAREENSNENNRNEHRSR L0 S2B0BI2R2S20RN NSRRI 2080028853883288804
0096 7501 017 103017 XABX PASS 61 CRB EXCHANGE A/B VWITH X

0097 7502 017 170057 PASS CAB X

0098 7503 017 141636 RTN PASS X St

0099 SRSAESAVNBREISEHLNOSBERSSSESBIBABURRISIBSANBSS LRSI RISIRIBRSIBRIRINNRNS
0100 7504 017 103017 XABY PASS 81 CRB EXCHANGE A/B WITH Y

0108 73035 017 172057 PRSS CAB Y

0102 7506 017 141676 RTN PARSS Y 81

0103 SEERLFEBRIIE LSS RSSSBB0II2RBER2S28BB08BFLRSS0E22S8808350808888084
0104 73507 000 071617 18X INC X X INCRENENT X, SKIP 1F ZERO

0105 7310 320 067271 JNP CNDX TB2 SKIP

0106 7511 017 136776 RETURN RTN

0107 SERPRABEB RIS SIS0 SL 2023083308338 880203028BR2ERS228834808330848388488884
0108 7512 000 0736357 1I8Y INC ¥ 4 INCREMENT Y, SKIP IF ZERO.

0109 7513 320 06727) JHP CNDX TBZ SK1P

0110 7314 017 136776 RTN

0111 SEBIRFB IS SEBSAE 2030832308202 B0BIRBA0IBISIABBHAILILLIBRIB20BE30884
0112 7513 007 171637 DSX DEC X - X DECRENENTY X, SKIP 1F ZERO.

0113 7516 320 067271 JNFP CNDX TB2 SKIP

0114 7517 017 136776 RTN

0113 I T T T I I Y I T R P R T Y IR PR R TR I T Y Y
0116 73520 007 173657 DSY DEC ¥ 4 DECREMENT Y, SKIP 1F 2ERO.

0117 73521 320 067271 JNP CNDX TBZ 5KIP

0118 7522 017 136776 RTN

0119 e e e e R Y R N T R R R AR R A RS PR RS R R AL 2 L)
0120 L GENERAL INDIRECT ROUTINE FOR INDEX BIT INSTR

0121 L] COMMON ROUTINES FOR VORD/BYTE INSTRUCTIONS

0122 e e e e N N R T R R T PR R R SRR R L 2L
0123 L] INITIALIZATION FOR WORD,BYTE

0124 7523 000 075217 INITCHM INC 85 P §3¢(= ADDRESS OF WORD 3.

0125 7524 220 050457 READ INC N 83 READ ADDRESS OF VWORD 3.

0126 7323 000 0511357 INC 84 83 S4¢= ADDRESS OF NEXT INSTRUCTION.
0127 7526 017 101187 PASS 53 THB 83(= CONTENTS OF WORD 3.

012B 7527 320 065531 JNP CNDX TBZ +3 JUNMP IF YORD 3 = 0 (NO INTERRUPT)
0129 7530 000 073717 INC P P P{«ADDRESS OF WORD 3 (FOR EXIT)
0130 7531 001 1353336 RTN 2ERO 57 87 57¢(=0 AND RETURN 70O CALLER.

0131 7532 220 074710 READ STFL INC PKM P READ ADDRESS OF WORD 2. P(=P+].
0132 7533 001 153317 ZERD §7 87 87 (= 0.

0133 L L L T T T P R Y PR R P NI R R PRI R SR SR AL L L
0134 . COMMON IMNDIRECT IMBEDDED IN IHITCHM
0135 7534 017 100457 INDBIT PASS M TAB N (= CONTENTS OF LAST READ ADDRESS.
0136 7335 322 026271 JNP CNDX AL1S RJS CONTBIT JUNP IF MO INDIRECT.

0137 7536 220 0224635 INDLBIT READ INCI INC W L] READ ADDRESS IH N

0138 7537 326 063631 JHNP CNDX NHOI INDBIT JUMP 1F NO HALT OR INTERRUPT PEHDING
0139 7540 017 100437 1IND2BIT PASS M TAB N{= COMNTENTS OF LAST READ ADDRES3
0140 7541 330 123671 JNP CNDX MSNG RJB INDBIT+#1 JUNP IF SIHGLE-IHSTRUCT. MODE
0141 7542 007 1735717 DEC2 DEC ¥ P

0142 7543 007 173717 DEC 7 P P (= ADDRESS OF WORD 1.

0143 7544 320 000030 JHP FETCH ATTENPT JUNP TO FETCH ROUTIMNE.
0144 7545 324 066371 CONTBIT JNP CNDX FLAG 42 FLAG IDEMTIFIES CALLER TO INDBIT
0145 73546 220 02247¢ READ RTN IHC N N READ ADDRESS AND RETURM.

0146 ESEINBBILRSSS0ERSSRINIBBAASSE20003808023082I800088808830084880884838383
0147 7547 220 02243} READ CLFL INT N N CALLER=IMITCM--REBET FLAG,READ COUNTY
0148 7350 017 1031257 PASS S§¢6 T#B 86 <= COUHT FOR THIS INSTRUCTION
0149 7551 320 026371 JNP CHDX TBZ RJ3S RTNCNT JUNP 1F COUNRY WOT ZERO.

01350 7?3552 301 176730 J88 EXIT END THE INSTRUCTION.

0131 7553 037 133136 RTYNCNT RTH PASS 53 86 §3 (= COUHT, RETURN TO CALLER.
E-16

21IMX

0132
0153
0134
01355
0136
0157
0158
0159
0160
0161
0162
0163
0164
0163
0166
0167
0168
0169
0170
0171
0172
0373
0174
0173
0176
0177
0178
0179
0180
0181
0182
0183
0184
0183
0186
0187
0188
0189
0190
0191
0192
0193
0194
0193
a196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207

0208
0209
0210
0211
0212
0213
G214
0z1S
021e
0217
0218
0z19
0220
gz2l
0222
0223
0224

7554
7535
7556
7557
7360
7561
7562
7563
7564
7365

7566
7567
7570
7574
7572
7573
7574
7575
7576
75?7
7600
7601
7602
7603

7620
7621
7622
7623
7624
7625
7626
7627
7630
7631
7632
7633

7634
7635
7636
7637
7640
7641
7642
7643
7644
7643
7646
7647
7650
7651

220
301
017
220
301
0135
013
320
€00
000

220
301
017
220
301
327
017

177
000
013
000
177
000

301
220
017
220
000
003
320
000
007
320
335
321

301
220
000
017

017
177
oo
(g
320

321

340
015
157
220
324
013
321
015
Q17
Q17
617
017
000
177

074717
165630
100157
074457
165630
101017
041017
067271
075717
075736

074717
165630
100157
074457
165630
170031
001017
022461
140017
075736
101017
022461
140017
075736

165170
026457
100157
024437
024517
001017
036431
026357
145117
076731
030271
176130

165170
026457
0263557
101017
024457
122761
140017
024517
145117
076731
031071
176130

000157
127017
125244
052461
03z171
101417
172330
101417
141033
141093
160157
041017
024517
140036

Appendix E

BERBRRRRARE BN AR RBALRRIAIRBERLSREAIRRE AR BN ESRERBEHENEBASBEXRBI6883488882858

. BIT INSTRUCTIONMS
ARSI ANRBRBANALRRRBLANRBIRBIRSRSNBENBAARERAAINNRAIBRRNB R RENSN RN RENRBRERRN DRSS
788 READ INC PNN P
488 INDBIT GET MASK
PABS L TAB L (= HASK.
READ INC N P
488 INDBIT CET WORD T0 8E TESTED
AND S1 TRE LEGICAL AND OF MASBK., WORD UNDER TEST.
X0% 81 51 §1 (= 0 IF ALL MASK BITS SET IN BORD
JHP CNOX TBZ 3K1P SKIP IF ALL MASK BITS SET IN BORD.
INC P 4 SKIP NEXT MACHINE INSTRUCTION.
8KI1P RTN INC P P ADJUST P, JUMP TO FETCH ROUTINE.
SRR RABRRSBANAERRALENRBIRARRELNNNRRBRARSRARIBNSRERRNRSRRRBENSNRLSERBLES0B40SD
§8SCBS RERD INC PNN P
488 INDBIT OBTAIN BIT MASK
PASS L TRB L (= BIT MASK
RERD INC N P
458 INDBIT OBTAIN UWORD TO BE OPERARTED ON.
JNP CNDX 1IR2 CBS JUMP IF INSTRUCTION 1S5 CBS.
10R 81 TAB SET BIT3 IN BORD,PUT IN S1

MPCK INC M L} MEMORY PROTECT CHECK.

WRTE PRASS TRB S1 REVRITE WORD TO MEMORY. RETURN TO0 FETCH.

RTN INC P P
-3 SANL S1 TAB §1 (= MZNORY WORD VITH BITS CLEARRED

MPCX INC % N

WRTE PRASS TR3 Si REWRITE WORD TO MEWORY.

RTN INC ? P RETURNH 10 FETCH ROUTINE.
ARRAEBAAIBASEBABERBRBERRAREBBIRENBRAERAERRAIAASBARBRR RN RREBEBENNEBE24350 0323580
. WORD INSTRUCTIONS
BB ARANRBENNRBERSRNLBRRRESRRREBARBANIBNRBANSINRARININBERANERBAILIIRBENRBRI28S
CHY J88 INITCN IRITIALIZE

RERD IND N [} READ FROM ARRAY A,
PASS L TRB L (= MORD FROM ARRAY A
RERD INC N B RERD ADDRESS IN ARRAY 8.
INC B B INCREMENT ARRAY B POINTER.
sys S§1 TRB SUBTRACT RRRAY WORDS B - A.
JNP CNOX TBZ RIS CHALIS SUNP IF UNERUAL.
INC A [} INCRENENT ARRAY A POINTER.
DEC 83 83 DECRENMENT COUNT.
JNP CNDX TBZ EXIT JUNP TO EXIT IF COUNT IS ZERD.
JHP CNDX INT RIS CHUel JUNP IF HOT INTERRUPTED.
JNP INTPEND
BB BA SIS NNRIARRRLBRABL A B AL AR ALR RIS ARNEER BRI NSRRI ARRLBRNSL ARSI SR 2%%2
NYY JsB INITCH INITIALIZE.
READ INC N f RERD FROM ARRAY R
IKC A [} INCREMENT ARRRY R POINTER.
PASS §1 TRB §1 (= CONTENTS OF WORD OF ARRAY 4
INC M 8 M (= ADDRESS FROM ARRAY B
MPCK PASS L} MENMORY PROTECT CHECK-- BIT 15 LOW.
WRTE PR5S TR8 81 WRITE WORD INTO ARRAY B.
INC 8 8 ADYANCE ARRAY B POIHTER.
DEC 83 S3 OECREMENT COUNT.
JHP CROX TBZ €X17 EXIT IF COURT 1S ZERO.
JMP ENDX INT RJI3 MYU+) JUNP JF HOT IHTERRUPTED.
JHP INTPEND

AANRNBEB AR A ANABEB RIS INRN IS AR BASNS B SSERIB BRI LABINIRNBEBIBRFIILIRNIENINIL 202080282

. BYTE INSTRUCTIONS
EARAEEAEARAERAARESRRIEIRRRE T AR RIS A NEN AR RSN BB ILIARBIB B RA RS AL 2B AFL A2 TS 2083838
S§B1 L] HIGH L %ooQ L <= Q003778.
STBYTE AND 51 f §1 (= RIGHT BYTE OF A REG.
LWF Rl PR35S 56 8 §¢ <= WGRD ADDRESS. FLAG SET IF BYTE ODD
READ MPCK INC M S6 READ WORD ADDRESS,CHECK FOR MP YICGLATION
JMP CHDX FLAG RJI3 STEVEN JUNP 1F STURE 70 EVEN BYITE.
IANL 59 TR8 MASK QUT EVEN BYTE OF MEMQORY WORD.
I NP MERGE
STEVEN AND 39 TR8 MaSK OUT ODD BYTE OF MEMORY WORD,
Ld PASS 51 §1 EXCHANGE BYTES IN REGISZTER CONTAINIKG
L4 FRSS 51 51 BYTE T0O BE 3YORED.
MERCGE PASS 39 L <= MEXORY WORD WITH TARGET BYTE CLEARED
102 S§1 31 §1 <= WORD WITH BYTE3 MERGED.
INC & B INCRENENT BYTE ADDRESS.
WRTE RTN PR35S Tay 31 VKITE MEV VORD BACLK INTO WORD ADDRESS.

E-17

Appendix E

0225
0226 7652 017 125057
@227 7633 000 624517
0228 7654 340 0001ist
0229 765% 157 143244
0230 7656 22C 052457
0231 7657 324 073171
0232 7660 013 100543
0233 7661 017 126543
0z34 7662 017 136776
1235 7663 019 100776
0236
0237 7664 30! 165170
0238 7665 017 127057
p239 7666 301 172630
0240 7667 000 043051
o241 7670 30! 171670
0242 7671 007 145117
0z43 7672 320 033671
0z44 7673 017 142557
0245 7674 321 176730
0246 7675 33% 033331
0247 7676 017 1423557
0248 7677 321 176130

0249

0250 7700 340 000157
0251 7701 015 127117
0252 7702 013 127143
0253 7703 017 147143
0254 7704 017 127357
025% 7705 301 172330
0236 7706 017 126157
0237 7707 013 0435257
0238 7710 320 034571
0239 7711 017 136357
0260 7712 007 124336
0261 7713 013 047017
0262 7714 320 034771
0263 7715 017 156357
0264 7716 000 073736
0265 7717 333 034271
0266 7720 01?7 1363357
0267 ?72% 007 175736
0268

0269 7722 301 163170
0270 7723 017 1427357
0271 7724 017 137057
0272 7725 301 172630
0273 7726 017 127417
0274 7727 000 043337
0275 7730 301 172330
0276 7731 017 160157
0277 7732 003 027017
0278 7733 320 036331
0279 7734 007 143117
(1280 7735 320 036031
0281 7736 017 136357
0282 7737 321 176730
0283 7740 333 03523t
0284 7742 017 156357

E-18

ﬁ#'tli'ﬁt""#*“'l"#'l'#'

E

21MX

#"'3I""J"#'l""l""l""l"“l"'

ARAUERARRRNED : . 1
58 3 g2 (= BYTE RDDRES
Lo ::33 Ez g INCREMENT BYTE ADDRESS FOR NEXT 1HSTRUCT.
; v ARG .
CLF 3 %000 L ¢(= 0003778. CLERR CPU FL G .
LoRvIE Lur ;ﬁrL 21:: ;6 ;gd(g6 (= WURD aDDRESS OF BYTE;BaET FLRG 1F O
;:;D IN; n St DD RYTE. RERD WORD ADDRESS.
JN? CSHNDX FLARG Ludb JUMP 1F BYTE 18 obbD . ¢ oo BYTE
:4 “ANL f ThY waSK QUT EVEN BYTE AND NOV
:4 3ﬂSS fi f Te EVEN BYTE OF A REG.
ETN ' RETURN TO CALLER OR FETCH. U
RT“ AND A TRE NRSK OUul EVEMW BYTE.LORD lng‘i;'ii'.";“
&323*tt‘*“"‘.t;t"‘tl“‘l#ﬁ‘tl““l““#.'tt#t;“t“t'#“t‘l“‘
1TCN 1RITIALIZ
meT +o8 PRSS 52 LN §2 (= ADDRESS §TART OF ARRAY f.
2 |
d LeAD BYTE FRUM ARRAY A.
)8 TLF NT 82 ;gSYTE RESET FLAG, 82 <= NEXT BYTERQDDR N :RRQY
pLe T STBYTE STORE BYTE I{NT0 BYTE ADDRESS 1M 8 REG.
's8 DEC 83 53 DECRENENT cg$N:01 2620
P) b JUNP TF COW ! . .
npEn lzzs 2J3 :gTDQN f (= 1 ¢ LAGT ARRAY B BYTE ADDRESS MOVED
b 2
e I3 i:;l? JUMP IF NOT INTERRUPTED.
HoTORM ine s ::ES :\o 32 n (= 1 + LAST pRRAY A ADDRESS MOYED
23
JHP IRTPEND

“‘.‘t“..‘0"O'lt.“#““#...‘l“““‘

"‘.“.O‘.‘.*.“.".“l"“l““l.““'.‘

SFB 1NN HISH L %000 L <= 0003778.
AND 53 A 53 (= TEST BYTE 1IN LOW-ORDER BYTE
L4 SANL 84 A 54 (= TERNINATION BYTE IN
L4 PASS S4 S84 LOW-DRDER BYTE
PASS 38 A g8 (= SAVE ORIGIHAL CONTENTS OF & REG.
CONTSF3 4S8 LBT LOAD BYTE INTO A REG FRON ADDRESS INW 8.
PRSS L L] L ¢= BYTE 710 TESTED IN LOW BYTE.
x02 s6 83 CONPARE BYTE 1O TEST BYTE.
JHP CHDX TBZ R4S WONATCH JUNP IF UNEQUAL.
. PASS A 88 RESTORE ORIGINAL CONTENTS OF A REG
RTN DEC B B B ¢(= BYTE ADDRESS OF MATCH. GO T0 FETCH
NOWATCH XOR S1 B4 CONPARE BYTE TO TERMINATION BYTE.
JNP CNDX TBZ RdJ5 INTTST JUNP IF UNEQUAL.
- ::gs : 58 RESTORE ORIGINAL CONTENTS OF R REG.
P 8K1P NEXT MACHINE INSTRUCTION AND
INTTST JNP CNDX INT RJ5 CONTSFE JUNP 1F HOT INTERRUPTED. FETEN:
T ;:gs : ge RESTORE ORIGCINAL CONTENTS OF R REG.

P (= INSTRUCVION ADDRESS. F
“.‘..‘.“‘.‘.‘ll“‘““‘l#“0.0‘...O‘.“".’.J“‘.*‘.“‘....O“‘EEOIEQOEIE:;‘.‘
8t 438 oass INITCN IRITIALIZE.

388 A 88 (= POINTER FOR ARRAY A
. PASS 32 S8 §2 (= NEXT BYTE ADDRES3 IN ARRAY &.
LDBYTE LOAD ARRAY A BYTE INTO A REG.
PASS 89 A 89 (= ARRAY A BYTE.
is INC s8 82 INCRENENT ARRAY A POINTER.
, LBT A ¢= BYTE FRON ARRAY B (ADDRESS IH B REG)
sc:s ;1 29 L <= BYTE FRON ARRAY A
SUBTRACT BYTE FRON ARRAY B -
JHP CHDX TBZ RJ5 CHALISE JUNP IF BYTES HOT EQUAL. oo
DEC §3 33 DECREMENT THE COUNT.
JMP CHDX TBZ RJS CONTCBT JUNP IF COUNT IS NOT ZERGC.
- PASS A gng EQUAL EXIT... A <= 1+LAST MOVED BYTE ADDR
CONTCBT JWP CKDX INT RJS CBT+2 JUNP JF NOT INTERRUPTED.
PASS A 58 A ¢= NEXT BYTE ADDRESS OF ARRAY A T0 TEST

21MX

0304
a305

0311
0312

0314
0313
0316
037
0318
0319
0320
0321
0322
0323
0324
0323
0326
0327
0228
43 N

7742
7743
7744
7743

7746
iTe47
7799
77351
775
7753
7754
77535

7761
r762
7763
7764
7765
7766

7767
77To
Tl
TR
7773
7774
7775

7776
v

gao

L3 g

220
301
340
e17
017
¢17

220
e17
e04
340
e17
c1v
e17

377
377

050457
144017
175717
173736

1565357
141017
0363531
047157
047157
143117
144157
124317

050457
154017
147736

074717
1659630
120417
122461
173657
12373¢

074717
172157
101017
120417
140457
122761
123736

177777
177777

G ERRORS=»»

Appendix E

LER R EER SRR R R PE R ENE R R R R LR R E LR PR R EE R R L ERE R E R EE R EEEE R LR E R IR E R R E R R R EE LR L)

* COMMON ROUTINES TO MQOVE, CONMPARE INSTRUCTIGHNS
AXAARSEARAAERRRRR ARSI T AR AR R L AR RN SR RRR AR R AR AR SRS RIS IR IR AR IR ARSI SR AR A IR KA NN
* INTERRU®ST EXIT
INTPEND ING M 339 M (= ADDRESRE OF WORD 3
YRTE PASE TAB 33 WRITE REMRIRINE COURT INTO $URD 2.
PEL P P

%*TH DEC ? 4 P <= ADDRESS OF WOKD 1, GO 70 FETCH.
LRy Y LRV E LY 2
. EXIT TE3TS FOR CRT,CHW
CHAL1S3 DEC A 38 A (= BYTE ADDRESS OF MNISMATCH.

PASE 31 31 CHECKX REGULT OF COMPARE
CHatl 1S dHP OONDX ALLS RUF BKIFY JUMP IF SIGN BIT 1S ZERD.

1IN 354 34 SKIFP ONE MARCHINE INSTRUCTION.
SX1P1 INT 34 34 SX1P QNS MACHINE INSTRUCTION.

DEZ 83 33 DECREMTNT THE COUNT.

PASE L 33 L <= COUHT REMAINING

ALDd & 4 & (= FIRST ARDDR. 1N ARXAY B + CODUNT
Ly e P R LY E R Y
* CUNPLETION EXIT
EXIT INC M 3% M (= ADDRESS OF WORD 3

WRTE PASS TAR &7 WORD 3 (= ZEXO,

XTN PASS 7 3d P (= NEXT MRCHINE TH3T%. TD EXECUTE.FETCH
P R L R R LR D]
) GJUMP INSTRUCTIONS
L R Ry Y E P PN T
JLY READ ING PHY P READ ADDREGS OF WOGRD 2.

J&3 7 JNDBIT CHECK FOR INDIRECT.MC= DESTINATION ADOR.
1M 15H 1R %850 MACKHINE JNP INTO IR TO SET LOUW NP BOUNDS

MPCK /PASS M N DO MP CHECK QN JUMP TARGET ADDRESGS.

PASS ¥ 7 Y (= ADIKESE OF FOLLAWING MACHIRE INSTR.

RIN | PRSE 7 L] P (= DESTINATICN ADDREZ&, JUMP 70 FETCH.
L T LV P Ve YRR P Y
JRY RERD NT PHW P READ ADDREGS OF WORD 2

PASS L Y L <= INDEX REG. Y.
abDd 81 TASB S1 <= INDEXED JUMP ADDRESS.

1NN HIGH 1K z850 MACHINE JUNP INTC IR 70 SET LCOW M7 BOUNDS
PARE M 51 M(= INDEXED ADDRESS, WITH BIT 15 LOW

MFCK PASBS ¥ WP CHECX ON 15-8IT DESTIHATION ADDRESS.

TN PASS 7 L] ? (= DESTINATION ADDRESS. GO TO FETCH.

L R N PP R P PP VRN E YRS FETE ¥)
ONES
ONES

$END

E-19

INDEX

A micro-order
as S-Bus micro-order, 4-14
as STORE micro-order, 4-12
AAF (A-register Addressable Flag)
What it does (in brief), 2-3
ADD micro-order, 4-10
ADR micro-order, 4-14
Advantages
of microprogramming, see ‘“Microprogramming”’
ALO micro-order, 4-19
AL15 micro-order, 4-19
ALU (Arithmetic and Logic Unit)
What it does, 2-4
ALU micro-orders, 4-10
AND micro-order, 4-10
A-register Addressable Flag, see “AAF”
Arithmetic and Logic Unit, see “ALU”
ARS micro-order, 4-2
ASG micro-order 4-3
ASGN micro-order, 4-19

B micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
BAF (B-register Addressable Flag)
What it does (in brief), 2-3

Binary object tape output by Microassembler, 5-4, A-1

BREAK command, 5-13
B-register Addressable Flag, see “BAF”

CAB micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
Central Interrupt Register, see “‘CIR”
CHANGE command, 5-14
Character Set for source statements, 3-4
CIR micro-order, 4-14
CLFL micro-order, 4-7
CM micro-order, 4-12
CMHI micro-order, 4-16
CMLO micro-order, 4-17
CMPL micro-order, 4-10
CMPS micro-order, 4-10
CNDX micro-order, 4-19
CNT4 micro-order, 4-19
CNT8 micro-order, 4-19
CNTR micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
Comments, in source statements, 3-4, 4-1

Conditional jump micro-instruction (Word Type 3), 4-18

CONDITION micro-orders discussion of,
in Word Type 3, 4-19

Control Processor, 2-2

Control records (for Microassembler), 5-2

Control Section of a Computer
Conventional 1-1
Microprogrammed, 1-1, 2-1

Control store, 1-1
How microprograms are accessed, 3-7
Modules available to user, 3-10

COUT micro-order, 4-19

COV micro-order, 4-7

CRS micro-order, 4-3

Data paths, brief description of, 2-3
DEC micro-order, 4-10
DEF pseudo instruction explanation of, 4-24
DIV micro-order, 4-4
DSPI micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13
DSPL micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13
Dual Channel Port Controller Effect
on microprograms, 3-14
DUMP command, 5-11

E micro-order, 4-19
E register, 2-4
$END control record, 5-2
ENV micro-order, 4-4
ENVE micro-order, 4-4
EQU pseudo instruction explanation of, 4-25
Error messages

Microassembler, 5-5

Micro Debug Editor, 5-15
Examples of microprograms, 3-15
EXECUTE command, 5-14
Extend register, see “E register”
$SEXTERNALS control record, 5-2

Fields, in source statements
Where each begins and no. of characters, 3-3, 5-1
$FILE control record, 5-2
FINISH command, 5-13
FLAG micro-order, 4-19
Flags, 2-4
FPSP micro-order, 4-19
Front panel
Registers and flags associated with, 2-4
FTCH micro-order, 4-7

I-1

Index 21MX

HIGH micro-order, 4-17 L micro-order, 4-13

L1 micro-order, 4-8

L4 micro-order, 4-8

Label, in source statements, 3-4, 4-1
LDR micro-order, 4-15

LGS micro-order, 4-4

$LIST control record, 5-3

Listing optionally output by Microassembler, 5-5
LOAD command, 5-10

LOW micro-order, 4-18

L-register, relation to S-bus, 2-3
LWF micro-order, 4-5

ICNT micro-order, 4-7

INCI micro-order, 4-7

IMM micro-order, 4-16

“Immediate” data, see “Word Type 2"

INC micro-order, 4-10

Initialization program for use with Micro Debug
Editor, 5-8

$INPUT control record, 5-3

Input/Output, see “I1/0”

INT micro-order, 4-20

Instruction Register, see “IR”

Interrupt Enable Register M micro-order
What it does, 2-3 as S-BUS micro-order, 4-15
Interrupt handling, 3-12, 3-13 as STORE micro-order, 4-13
I/0, How to code 1/0 functions, 3-11 Macro instructions (Assembly language) Mappings to
1/0 bus, what it does, 2-3 ROM and/or WCS addresses, 3-10
I/0 Utility Subroutine for WCS, 5-16 MACRO (label in TEST program used with Micro
IOFF micro-order Debug Editor), 5-9
as SPECIAL micro-order, 4-7 MDE (see ‘“Micro Debug Editor’’)
as JMP modifier in Word Type 4, 4-22 Memory protection
I0G micro-order in relation to I/O microprogramming, 3-12
as SPECIAL micro-order, 4-7 micro-orders, 3-13
as JMP modifier in Word Type 4, 4-22 MICRO (see ‘‘Microassembler’’)
IOI micro-order, 4-15 Microassembler, what it does, 5-1
ION micro-order, 4-8 BCS version:
100 micro-order, 4-13 Hardware required, 5-1
IOR micro-order, 4-10 Software required, 5-7
IR2 micro-order, 4-20 How to use, 5-7
IR (Instruction Register) DOS-III version:
How processed, 3-8 Hardware and software required, 5-5
What it does, 2-1 How to use, 5-5
IR micro-order, 4-13 Micro Debug Editor

BCS version:
Hardware required, 5-8
Software required, 5-16
How to use, 5-16
DOS-III version:
Hardware required, 5-8
Software required, 5-14

J30 micro-order, 4-23 How to use, 5-14
J74 micro-order, 4-23 Micro-order, meaning of, 3-1
JEAU micro-order, 4-23 Microprogramming, Advantages, 1-2
JIO micro-order, 4-23 MODIFIER micro-orders
JMP micro-order, discussion of, for JMP in Word Type 4, 4-22
in Word Type 3, 4-19 for IMM in Word Type 2, 4-16
in Word Type 4, 4-22 MODIFY command, 5-11
JSB micor-order, discussion of, in Word Type 4, 4-22 Modules available to user, 3-10
JTAB micro-order M-register, what it does, 2-3
as SPECIAL micro-order in Word Type 1, 4-8 MOVE command, 5-14
as JMP modifier in Word Type 4, 4-23 MPCK micro-order, 4-8
Jump-Sense micro-order (RJS), 4-21 MPY micro-order, 4-6

I-2

21MX

NAND micro-order, 4-10

NDEC micro-order, 4-20

NHOI micro-order, 4-20

NINC micro-order, 4-20

NLDR micro-order, 4-20

NLT micro-order, 4-20

NMLS micro-order, 4-20

NOP micro-order (in CONDITION set of
micro-orders), 4-20

NOP micro-order (in OP micro-order set), 4-7

NOP micro-order (in SPECIAL micro-order set), 4-8

NOP micro-order (in STORE set of micro-orders), 4-15

NOR micro-order, 4-10

NRST micro-order, 4-20

NRT micro-order, 4-20

NSAL micro-order, 4-10

NSFP micro-order, 4-20

NSNG micro-order, 4-20

NSOL micro-order, 4-10

NSTB micro-order, 4-20

NSTR micro-order, 4-21

O register, 24

ONES micro-order, 4-21

ONE micro-order, 4-10

ONES pseudo instruction explanation of 4-25
OP1 micro-order, 4-11

OP2 micro-order, 4-11

OP3 micro-order, 4-11

OP4 micro-order, 4-11

OP5 micro-order, 4-11

OP6 micro-order, 4-11

OP7 micro-order, 4-11

OP8 micro-order, 4-11

OP9 micro-order, 4-11

OP10 micro-order, 4-11

OP11 micro-order, 4-12

OP micro-orders, 4-2

$ORIGIN control record, 5-3
$OUTPUT control record, 5-3
Overflow register, see ‘O register”
OVFL micro-order, 4-21

P micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13
P register, 2-4
PASL micro-order, 4-12
PASS micro-order, 4-12
$PASS2 control record, 5-3
PCA jumper on WCS how module no.’s are set, 6-3
PNM micro-order, 4-13
PREPARE command, 5-11
Pseudo instructions, 4-24

Index

R1 micro-order, 4-9
RAR (ROM address register), 2-3
$RCASE control record, 5-3
READ command, 5-11
READ micro-order, 4-6
RJS micro-order, 4-21
“Roadmap”’, D-1
ROM, see “Control store”
RPT micro-order, 4-8
RTN micro-order
as SPECIAL micro-order, 4-9
as JMP modifier in Word Type 4, 4-23
RUN micro-order, 4-21
RUNE micro-order, 4-21

S micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13
S register, 2-4
S1 thru S12 micro-orders
as S-BUS micro-orders, 4-15
as STORE micro-orders, 4-14
Sample microprograms, 3-15
SANL micro-order, 4-12
SAVE register, relation to S-bus, 2-3
S-bus, 2-3
S-BUS micro-orders, 4-14
SHLT micro-order, 4-9
SHOW command, 5-11
SKP pseudo instruction, explanation of, 4-26
SKPF micro-order, 4-21
SONL micro-order, 4-12
Source records, Microassembler format, 5-1
SOV micro-order, 4-9
SPECIAL micro-orders, 4-7
SRG1 micro-order, 4-9
SRG2 micro-order, 4-9
SRGE micro-order, 4-9
SRGL micro-order, 4-21
SRUN micro-order, 4-10
STFL micro-order
as SPECIAL micro-order in Word Type 1, 4-10
as JMP modifier in Word Type 4, 4-23
STORE micro-orders, 4-12
SUB micro-order, 4-12
Subroutine microinstruction (Word Type 4), 4-22
“‘Suitcase” ROM simulator, Microassembler control
record to generate object tape for, 5-3
Symbol table optionally output by Microassembler, 5-4
$SYMTAB control record, 5-4
$SUPPRESS control record, 5-4

I-3

Index

T micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
T-periods, 3-11
T-register, 2-3
TAB micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
T-bus, 2-3
TBZ micro-order, 4-21
TEST program for use with Micro Debug Editor, 5-8
Timing, Summary of timing rules, 3-14

UNCD micro-order, 4-23
Unconditional jump micro-instruction (Word Type 4), 4-22

VERIFY command, 5-12

WCS (Writable Control Store)
Hardware information, 6-1
Theory of operation, 6-6
Installation, 6-3
How to load microprogram in WCS, 5-9, 5-10, 5-11
1/0 Utility Subroutine, 5-16

No. of words in special microprogram which MDE auto-

matically loads in WCS, 5-10, 5-14
Modules and
equivalent absolute WCS address, 3-10
equivalent PCA jumper requirements, 6-4
mappings from Assembly language macro
instructions, 3-10

I-4

Word Type 1
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-4
Uses (in brief), 4-1

Word Type 2
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1

Word Type 3
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1

Word Type 4
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-6
Uses (in brief), 4-1

Writable Control Store, see “WCS”

WRITE command, in Micro Debug Editor, 5-11

WRTE micro-order, 4-7

X micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
X register, 2-3
XNOR micro-order, 4-12
XOR micro-order, 4-12

Y micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
Y register, 2-3

ZERO micro-order, 4-12
ZEROES pseudo instruction, 4-26

21MX

HEWLETT ﬁ PACKARD

Printud: AUG 1974

MICROFICHE PART NG, 02 1)) Pristed in U.5.A

