ﬁ

HP 9825 Desktop Computer
Operating and Programming Reference

Manual Part No. 09825-90200
Microfiche No. 09825-99200

© Copyright Hewlett-Packard Company, 1980
This document refers to proprietary computer software which is protected by copyright.
Allrights are reserved. Copying or other reproduction of this program except for archival
purposes is prohibited without the prior written consent of Hewlett-Packard Company.

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorpo-
rated at reprint do not cause the date to change.) The manual part number changes when
extensive technical changes are incorporated.

May 1980...First Edition.

June 1980...Updated pages: D-5, D-6, Disc Programming insert.

November 1880...Second Edition. Revised pages: v, 1-8, 1-10, B-1'thru B-23, C-1 thru C-10,
D-9, D-10.

June 1983...Third Edition.

09825-90200, rev: 6/83

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Your Operating and Programming Reference

This reference describes installing, operating and programming an HP 9825A or 98258 De-
sktop Computer. The 9825B contains all features of its predecessor, the 9825A. In addition,
the 9825B has many optional language modules (ROMs) built-in and can be configured with
up to 62 Kbytes of read/write memory.

This reference replaces these earlier 9825A manuals:

e 9825A Operating and Programming (09825-30000) omputer

Museum

e String Variables Programming (09825-90020)
e Advanced Programming (09825-90021)

e Systems Programming (09825-90027)

Although the information is the same, it's arranged here for easy access and allows us to
provide better documentation updating in the future. You'll find a complete index to topics in
both this reference and the I/O Control Reference at the back of each binder.

This reference also provides room for the optional language ROM manuals currently useable
with the 9825A and 98258:

e Matrix Programming (09825-30022)

o Disk Programming (09885-90000 or 09825-90220).

Since the 9825A and 9825B are often referred to as calculators, computers and desktop
computers, these terms are used interchangably throughout this reference.

We welcome your comments and suggestions for improving HP user documentation. You'll
find a card at the back of this reference. If it's missing, address your comments to:

Hewlett-Packard Company
3404 E. Harmony Road
Fort Collins, CO 80525
ATTN: User Documentation

Reference Preview
Chapter 1: Installation

Covers installing your new desktop computer and describes accessories and services
available for your computer.

Chapter 2: Keyboard Operations

Introduces you to the keyboard functions including editing keys, math operations, spe-
cial function keys and system command keys. If you are not familiar with the 9825, please
read this chapter before starting to program.

Chapter 3: HPL Programming

Describes the standard 9825 High-speed Programming Language (HPL). Each state-
mentand function is presented, along with typical example program lines. You'll also find
a brief introduction to pregramming in HPL.

Chapter 4: Advanced Programming

Explains the advanced programming language: for-next loops, subprograms with
parameter passing, split and integer data storage and program cross-referencing. Each
statement and function is covered, accompanied by many example program sequences.

Chapter 5: Tape Cartridge Operations

Shows how to use the built-in tape drive for program and data storage. The statements
and commands covered here can also be used to control external 9875A Tape Drives.

Chapter 6: String Variables

Describes the statements and functions available for handling alphanumeric data, using
either simple string variables or string arrays.

Chapter 7: Systems Programming

Covers the language extensions available with the large memory (9825T), including
remote keyboard operation, terminal emulation, and program self-modification.

You'll find reference tables, a complete list of HPL syntax, all error codes and an index at the
back of the reference. For a table of contents to each chapter, look under the appropriate
tabbed divider.

9825B User Documentation

The standard set of 9825B manuals is listed here. The first three manuals can be ordered as
the 9825B Manual Kit, 09825-87901.

Operating and Programming Reference (09825-90200) — Explains installation, keyboard and
tape cartridge operations, and the HPL programming language. Additional chapters cover the
Advanced Programming, String Variables and Systems Programming language extensions.

I/O Control Reference (09825-90210) — Describes the interfacing and peripheral-control op-
erations built into the 9825B: General 1/0, Extended /O, and HP 9862A/9872A Plotter control.
the 9825 Interfacing Concepts Guide is included with this reference. Space is provided for
keeping interface manuals and interface operating notes.

9825A/B Pocket Reference (09825-90012) — Lists all HPL syntax and error codes in a handy,
pocket-size format.

9825A/B System Test Booklet (09825-90037) — Explains how to run each mainframe and
peripheral test supplied on the 9825 System Test Cartridge.

9825A/B Error Codes Booklet (09825-90015) — Error codes listed in a small booklet kept
under the computer's paper-access lid.

Matrix Programming (09825-90022) — Describes the HPL language extensions available with
the optional Matrix ROM.

Disc Programming (09825-90220) - Explains controlling HP Disc Drives via the HPL language
extensions supplied with the optional 98217A or 98228A Disc ROM. This manual replaces the
9885 Disc Programming Manual, 09885-90000.

rev: 11/80

Vi

Peripheral Operating Notes

Each of the following notes is shipped when you order the appropriate interface card or HP
computer peripheral. Each 98032A Interface note shows the interface wiring configuration for
a particular interface application. Most notes contain detailed programming instructions for
the system application. These operating notes are currently available:

e 9863A Tape Reader Operating Note (09825-9004 1)

e 9864 A Digitizer Operating Note (09825-90042)

e 9866A/B Printer Operating Note (09825-90043)

¢ 9869A Card Reader Operating Note (09825-30044)

e 9871A Printer Operating Note (09825-90045)

e 9883 A Tape Reader Operating Note (09825-90046)

e 9884B Tape Punch Operating Note (09825-90047)

e 9881A Printer Operating Note (09825-90048)

e 6940A Multiprogrammer Operating Note (09825-90049)
@ 98035A Real Time Clock Operating Note (09825-90054)

e 9875A Tape Cartridge Memory Operating Note (09825-90075)

Interface Manuals

These 9800-series interfaces and manuals are currently available:

e 98032A Parallel I/0 Interface Installation and Service (98032-90000)
e 98033A BCD Interface Installation and Service (98033-90000)

| ® 98034A HP-IB Interface Installation and Service (98034-90001)
e 98035A Real Time Clock Installation and Service (98035-90000)

® 98036A Serial I/O Interface Installation and Service (98036-90001)
e HP 9878A 1/0O Expander Installation and Service (09878-90000)
A brief description of each interface is in your 9825B 1/O Control Reference. More complete

information can be found in the interfacing Concepts guide supplied with the 1/O Control
Reference.

09825-90200, rev: 6/83

Table Mounting

=

Chapter 1
Table of Contents

Inspection Procedure
PowerCords
Power Requirements
Fuses
Initial Turn-On Instructions
Computer Testing
Loading Printer Paper
Accessory ROMs

ROM Installation
Cleaning the Computer

Pre-recorded Programs
Service Contracts
Keyboard Magazine

Installation 1-ﬁ

Computer
Museum

09825-90200, rev: 6/83

1-2 Installation

Notes

Chapter 1

Installation

Inspection Procedure

The individual parts of your computer system were thoroughly inspected before they were
shipped to you. All equipment should be in good operating order. Carefully check the compu-
ter, plug-in ROMs and peripheral equipment for any physical damage sustained in transit.
Notify HP and file a claim with the carrier if there is any such damage.

Please check to ensure that you have received all of the items which you ordered and that any
options specified on your order have been installed. The options installed are listed on a label
under the computer's paper-access cover.

NOTE
The standard 98258 is configured with 24 Kbytes of read/
write memory and 9872 Plotter operation. If you wish to con-
figure the system for 9862A Plotter operation or a larger
memory, contact your HP Service Representative for assist-
ance.

Also inventory the items in the Manuals Kit (09825-87901) and the Miscellaneous Kit (09825-
80003). A pack list is supplied in each kit.

[f you have any difficulties with your system, if it is not operating properly, or if any items are
missing, please contact your nearest HP Sales and Service Office.

1-4 Installation

Power Cords

Power cords with different plugs are available for the calculator; the part number of each cord
is shown below. Each plug has a ground connector. The cord packaged with each calculator
depends upon where that calcutator is to be delivered. If your calculator has the wrong power
cord for your area, please contact your local HP sales and service office.

> CALCULATOR
K e POWER-INPUT
~. SOCKET
(oo
E
L
8120-1378' 812006882 81202104

L = Line or active Conductor (also called "live” or “hot").
N = Neutral or Identified Conductor.
E = Earth or Safety Ground.

To protect operating personnel, we recommend that the computer be properly grounded. The
computer is equipped with a three-conductor power cable which, when connected to an
appropriate power receptacle, grounds the computer. Do not operate the computer from an
ac power outlet which has no ground connection.

UL and CSA approved for use in the United States of America and Canada with calculators set for either 100 or 120 Vac operation.

2UL and CSA approved for use in the United States of America and Canada with calculators set for either 220 or 240 Vac operation.

Instaliation 1-5

Power Requirements

The 9825 Computer has the following power requirements.

e Line Voltage: 100 Vac + 5%, —10%
120 Vac + 5%, —10%
220 Vac + 5%, —10%
240 Vac + 5%, —10%

Switch Selectable

e Line Frequency: 48 to 66 Hertz

¢ Power Consumption: 100V @ 2.0A
120V @ 1.8A
220V @ 0.8A
240V @ 0.8A

1-6 Installation

Fuses

For 100 or 120 Vac operation, use a 3A fuse; for 200 or 220 Vac operation use a 1.5A fuse.

WARNING
TO AVOID THE POSSIBILITY OF SERIOUS INJURY, DIS-

CONNECT THE AC POWER CORD BEFORE REMOVING OR
INSTALLING A FUSE.

meAANE SELECTOR

Location of Fuse

The figure shows the location of the fuse under the paper cover. To change the fuse, first
disconnect the power cord to the calculator. Then remove the fuse cap by pressing inward
while twisting it counterclockwise. Remove the fuse from the cap and insert the correct re-
placement fuse (either end) into the cap. Finally, put the fuse and cap back into the fuse
holder. Press on the cap and twist it clockwise until it locks in place.

Initial Turn-On Instructions

1. With the calculator disconnected from its ac power source, check that the proper
calculator fuse has been installed for the voltage in your area (see previous section).

2. Next, ensure that the two voitage selector switches under the paper cover are set for the
correct powerline voltage. The figure below shows the correct settings for each nominal
line voltage. If it is necessary to alter the setting of either switch, insert the tip of a small
screwdriver into the slot on the switch. Slide the switch so that the position of the slot
corresponds to the desired voltage, as shown below.

100 volts 120 volts 220 volts

50811

240volts

Nominal Line Voltage Settings

Installation 1-7

3. The operating system module on the right-hand side of the 9825A calculator must be
inserted so that it is even with the side of the calculator.

4. Install the desired ROM cards and interface cards. See the next page and refer to the
appropriate manual for interface instaliation.

CAUTION
ALWAYS TURN OFF THE CALCULATOR WHEN INSERTING
OR REMOVING ROMS AND INTERFACES. FAILURE TO DO
SO COULD DAMAGE EQUIPMENT.

5. Connect the power cord to the power input connector on the back of the calculator.
Plug the other end of the cord into the ac power outlet.

6. Switch the calculator on using the switch on the right-hand side of the calculator.

o

Computer Testing

If you wish to test your calculator, or if there is any doubt that your calculator is operating
correctly, refer to the System Test Booklet for the calculator test procedure.

Loading Printer Paper

The internal printer uses special heat-sensitive (thermal) paper. When ordering paper, specify
the six-roli pack, HP part number 9270-0479.

To load a roll of paper:

1. Lift the paper cover and remove the paper spindle. Discard the old paper core and
remove any paper left in the printer using the paper advance wheel.

2. Install the new roll as shown in the following figure.

3. Insert the free end of the paper and advance it through the printer using the paper
advance wheel.

1-8 |Installation

Loading Printer Paper

CAUTION
HP THERMAL PRINTER PAPERS ARE DESIGNED SPECIFI-
CALLY FOR USE WITH HP DESKTOP COMPUTERS. USE
OF OTHER PAPERS MAY DAMAGE THE PRINTER. TO
MAINTAIN A VALID WARRANTY OR SERVICE CONTRACT
AND ENSURE PROPER PRINTER OPERATION, USE ONLY
HP THERMAL PAPER.

Accessory ROMs

Several ROMs (Read Only Memories) are available for your computer; each provides addi-
tional language capabilities to perform specific tasks such as plotting, controlling peripherals
or extending the programming capabilities. One or more ROMs are packaged in a ROM card.

ROM Installation

A ROM card can be plugged into any one of the four ROM slots on the bottom front of the
calculator as shown below.

ROM Installation

To install a ROM, first turn off the calculator. Then slide the ROM, with the label right-side-up,
through the ROM slot door. Press it in so that it is even with the front of the calculator.

rev: 11/80

' Installation 1-9
Computer’

Museum

The ROMs listed below are an internal part of the 98258 Computer. They can be purchased in
various combinations for the 9825A.

String Variables ROM

This ROM enables the calculator to recognize and operate on letters and words (*strings™) in
much the same way that it recognizes and operates on numbers. Some of the capabilities
which are provided include: single strings and string arrays, numeric value of a string of
digits, concatenation, and dispfaying or printing all special characters.

Advanced Programming ROM
This ROM extends the programming capabilities of the 9825 Calculator. For/next looping,
split and integer precision number storage, muitiparameter functions and subroutines, and

the cross reference statement are the operations provided by the Advanced Programming
ROM.

9862A and 9872A Plotter ROMs
These ROMs enable the 9825 to control HP 9862A and 9872A Plotters. Axes can be drawn and
labeled; functions can be plotted; and in the “typewriter’” mode, characters can be printed as

you type them from the keyboard. More than one plotter can be operated at the same time with
each ROM.

General /O ROM

The General /O ROM provides basic I/O capability with formatting. Most 9800 series
peripherals (not the 9862A Plotter) can be controlled using this ROM. Binary /O, status
checking, and limited control of instruments via the HP Interface Bus are also provided.

Extended I/O ROM

The Extended I/O ROM extends the 1/O capability of the calculator by providing complete

HP-IB control, bit manipulation and testing, auto-starting, error trapping, and interrupt
capabilities.

These ROMs are available for 9825A and 9825B Computers:

Matrix ROM

The Matrix ROM extends the language to include statements for manipulating matrices and
arrays. Addition, subtraction, multiplication, and division of arrays, as well as inversion, trans-
position, and determinants of matrices are only some of the capabilities provided by this ROM.

09825-90200, rev: 6/83

1-10 Installation

Disk ROMs

The HP 98217A Disk ROM adds HPL language statements and functions for controlling
HP 9885M and 9885S Flexible Disk Drives. Each 9885 Drive handles a ¥» megabyte flexible
disk. Both data and programs can be stored in a random-access, file-by-name structure. Up

to eight 9885M (master) drives can be accessed. Up to three 98853 (slave) drives can be
accessed via each 9885M.

The HP 98228A Disk ROM provides HPL language for controlling both HP 9885 and HP 9895
Disk Drives. Each 9895 handles one or two 1.2 megabyte flexible disks. The 98228A ROM can
be used only with a 9825T computer.

Systems Programming ROM

This ROM add capability for remote keyboard operation, program self-modification, intelligent
terminal emulation and run-time memory allocation. This ROM is available as the 98224A
plug-in card for 9825A. The ROM is added to the 9825B with the large memory option (9825T).

Cleaning the Computer

The computer case has been painted with a long lasting, water-based paint. It is both non-
toxic and environmentally safe. It will preserve the appearance of your computer for many
years. When you want to clean the case, follow the instructions below to sustain the quality
finish. If the case finish should become damaged, ask your local Hewleit-Packard sales and
service oftice for touch-up paints.

CAUTION

CHEMICAL SPRAY-ON CLEANERS USED FOR AP-
PLIANCES AND OTHER HOUSEHOLD OR INDUSTRIAL
APPLICATIONS MAY DAMAGE THE CASE FINISH. DO
NOT USE DETERGENTS THAT CONTAIN AMMONIA,
BENZENES, CHLORIDES OR ABRASIVES.

Before cleaning the computer, disconnect the power cord and any interconnecting cables.
Dampen a clean, soft, lint-free cloth in a solution of clean water and mild soap. Wipe the
soiled areas of the case, ensuring that no cleaning solution gets inside the unit. For cleaning
more heavily soiled areas, a solution of 80% clean water and 20% isopropy! alcohol may be
used. Then dry the case with a dry, soft, clean cloth. A non-abrasive eraser may be used to

remove pen and pencil marks.

09825-90200, rev: 6/83

Installation

Prerecorded Programs

Tape cartridges containing programs for solving problems from many disciplines are availa-
ble. A utility program cartridge is supplied with each calculator. For a complete list of pre-
recorded programs and for pricing information, contact any HP sales office.

Service Contracts

When you buy a Hewlett-Packard desk-top calculator, service is an important factor. If you are
to get maximum use from your calculator, it must be in good warking order. A HP Maintenance
Agreement is the best way to keep your calculator in optimum running condition.

Consider these important advantages:

e Fixed Cost— The cost is the same regardless of the number of calls, so it is a figure that
you can budget.

e Priority Service— Your Maintenance Agreement assures that you receive priority treat-
ment, within an agreed upon response time.

o On-Site Service— There is no need to package your equipment and return it to HP. Fast
and efficient modular replacement at your location saves you both time and money.

e A Complete Package— A single charge covers labor, parts, and transportation.

e Regular Maintenance — Periodic visits are included, per factory recommendations, to
keep your equipment in optimum operating condition.

¢ Individualized Agreements— Each Maintenance Agreement is tailored to your support
equipment configuration and your requirements.

After considering these advantages, we are sure you will agree that a Maintenance Agree-
ment is an important and cost-effective investment.

For more information please contact your local HP calculator sales and service office.

1-12 Installation

Table Mounting

Your calculator can be mounted to the top of a desk or table by following these steps:

1. Drill 5 holes in the top of your desk or table to accommodate #6-32 (National Coarse)
screws according to the diagram below.

2. Remove the Phillips head #6-32NC screws that hold the rubber feet to the bottom of the
calculator.

3. Use screws that are 12 inch longer than the thickness of the table top. This ¥2 inch allows
for the thickness of the rubber feet and the hole for the screw in the bottom of the
calculator.

11.840
l¢—5.920
ref to rear
¥ ¥

1.500 (1.500

| '.

| 1

| l

! :

10.705 : (dimensions :

| ininches) |

! ,

1 I

1 |

I !

1
—+—| i+ |7

7.300 ! !
ref to front \ ¢ : 7.300

4 L ront of calculator P

460 A.H———10.920——‘H~ 460

Keyboard Operations 2-1?

Chapter 2
Table of Contents

Before Using the Calculator 2-3
General INformation 2-4
The Keyboardo 2-4
Display and Line Length 2-5
Range ... 2-6
Significant Digits 2-6
MmOy 2-6
LaNQUAGE oot 2-8
Error Messages ... o 2-8
SV S M KB Y S . 2-9
Keyboard Arithmetic 2-10
Arithmetic Hierarchy ... o 2-11
Variables . . 2-11
Operating Modes 2-12
Basic EQItiNg 2-13
System Command KeYsS 2-14
Display Control Keys 2-16
Line Editing Keys . ..o 2-17
Character EQiting Keyso 2-18
Calculator Control Keys 2-19
Special FUNCHON KBYS oo 2-21
Immediate Execute Special Function Keys 2-22
Immediate Continue Special Function Keyso i 2-22
Keys with Multiple Statements 2-23
CoOMMANAS . . o 2-24
The Run Command (run) 2-24
The Continue Command (CoNt) 2-24
The Delete Line Command (del) 2-25
The Erase Command (Erase)t e 2-26
The Fetch Command (fetch) 2-27
Live Keyboard 2-28
How Live Keyboard Works 2-28
Live Keyboard Math 2-28
Statements in Live Keyboard 2-28
Subroutines from Live Keyboard 2-29

2-2 Keyboard Operations

Special function Keys in Live Keyboard 2-29
The Stop Key inLive Keyboard 2-30
Live Keyboard Limitations 2-30
The Display . ..o 2-31
The Live Keyboard Enable Statement 2-32

The Live Keyboard Disable Statement 2-32

Chapter 2

Keyboard Operations

This chapter introduces some of the operating characteristics of the 9825 Desktop Computer.
The keyboard, display, and range are a few of the topics covered.

Before Using the Calculator

There are a few things you should check each time you turn on the calculator.

if the calculator is turned off:

e Set the power switch on the right-hand side of the calculator to the “1” position:
o] i
i
e When the following display appears, the calculator is ready for use:

If the calculator is turned on and the display is blank:

e Press or

If the display still remains blank, first check the power connection and fuse as described in
chapter 1. If you still have a problem, call your HP sales and service office listed in the back of
this manual.

If the calculator is on and the display shows the “lazy T”, you can do keyboard operations or
arithmetic or you can enter programs and run them.

2-4 Keyboard Operations

General Information

The Keyboard

Special Function Keys
\

~

e o \

O © MmO E @
r A

B EEEH 060 DEEE O0eE® @

000000000000 [EE0D0
Jololololalololololole=s lelolclclo
SlololololololololclolcRilelo]olore
a@@@®0®@®®®aa@@@@

C BElcics | [Uolelel=l)

. {.

/ A

Alphanumeric Keys Numeric Keys

e Alphanumeric Keys - This area is very much like a standard typewriter keyboard. For
instance, to display a capital A, press the shift key and @ at the same time; or to
display a percent sign, %, press the shift key and at the same time.

e Numeric Keys - All the keys needed to enter numbers and do simple arithmetic are
located in this block. The numeric keys in the alphanumeric section of the keyboard can
also be used to enter numbers. The exponentiation and square root key, @ is located
in the alphanumeric key section.

e Special Function Keys - The keys in the upper right section of the keyboard, namely
through (v, provide additional calculator abilities. These keys are explained later in
the chapter.

Keyboard Operations

Keys of the same color have similar functions. For example, all the alphanumeric keys are the
same beige color; gold colored keys are control keys used to run programs, store lines, erase
programs, etc.

Below are a few more topics related to keyboard operations;

e Spacing - In general, spaces are not important. It makes no difference, for example if
you key in:

Both are interpreted the same. Spacing, however, is important when using text (charac-
ters within quotes) and when printing and displaying messages.

o Repetition of Keys - When a key is held down, its operation is repeated rapidly. This is
an especially useful feature with the editing keys.

e The - Symbol - When the display is clear and awaiting inputs, the “lazy T” symbol
appears in the leftmost character of the display. This symbol also indicates the end of a
stored line.

e The Run Light - A small red light in the left end of the display lights when a program is
running.

Display and Line Length

The 9825 Calculator has a 5 x 7 dot matrix, 32-character display. Even though only 32
characters can be displayed at one time, up to 80 characters can be keyed into the display.
After the 32nd character, additional characters which are keyed in cause the displayed line to
shift to the left. After 67 characters are keyed, a beep indicates that only thirteen more
characters can be entered. Up to 73 characters can be stored. This includes any spaces or
parentheses which the calculator may automatically insert in the line.

2-5

2-6 Keyboard Operations

Range

The range of values which can be entered or stored is —9.99999999999 x 1099 through —1 X
10799, 0, 1 x 10798 through 9.99999999999 x 10°°. However, the range of calculations is from
—9.99999999999 x 105! through —1 x 10751, 0, and 1 x 10 -%'* through 9.99999999999 x
10511.

Storage Range

—9.99999999999 x 10 -1x107% 0 1x10° 9.99999999999 x 1099
Calculating Range

T
—9.99999999999 x 105! -1 x103"" 0 1 x 105" 9.99999999999 x 105!

out of range D within range D
The extended calculation range is useful for calculations which have intermediate results

outside of the storage range, but which have final results within the storage range. For in-
stance:

(9.2 x 1023 x 8.6 x 108%)/(1 x 102%)
When the first two values are multiplied their resuit is:
(7.912 x 10109)

This intermediate result cannot be stored, but the final result, 7.912 x 1089 can.

Significant Digits

All numbers are stored internally with 12 significant digits in the mantissa and a two digit
exponent. The format used to display or print numbers (such as ¢
internal representation of a number.

=) has no effect on the

Memory

The 9825 Calculator uses two types of memory; Read/Write Memory, and Read Only Mem-
ory. Read/Write Memory is used to store programs and data. When you store a program or
data, you "Write” into the memory. When you access a line of your program or a data element,
you “Read"” from memory; thus the term Read/Write.

Keyboard Operations 2-7

Read Only Memory differs in that it is permanent. When the calculator is turned off, the
contents of the Read/Write memory are lost, whereas the Read Only Memory is unaffected.
ROM (for Read Only Memory) cards can be plugged into the ROM slots on the front of the
calculator. This makes it possible to expand the language.

Programs and data in Read/Write memory can be saved for future use by recording the
information on the tape cartridge.

A small amount of memory is sometimes required by a plug-in ROM. This area is called
“working storage”.

Read/Write Memory Organization

low addresses

Working Storage
This boundary is fixed atturn-on —»

Special Function Key Definitions

User's program

rd
r

r-variables
r2

Unused area
(Used as needed)

Execution Stack
(subroutine return pointers)

Arrays and simple variables

Loaded Binary program (if any})
Permanently fixed boundary —e

Reserved for internal use (flags)

high addresses

2-8 Keyboard Operations

Language

The language used by the HP 9825 Calculator is called HPL. The basic programming unit is
the statement. Statements are typed using lower case abbreviated mnemonics, such as &%
for print. Multi-statement lines can be stored by separating statements with semicolons.

Two other characteristics of this language are implied multiptication and the assignment
operator. Implied multiplication is a standard algebraic notation, such as 5X. The assignment

More mnemonics can be added to the language by adding ROM cards which plug into the
ROM slots on the front of the calculator.

Error Messages

When an error occurs, the calculator beeps and displays an error number. The number
references a description that will help pinpoint the cause of the error. For example:

\ J Indicates a syntax error.

If an error message is displayed during an attempt to run a program, the program line number
where the error occurs will also be displayed. For exampile:

[oy 1F e \J Indicates that a parameter is out of range in
line 3.

Pressing after some error messages will bring the line containing the error into the display
with a flashing cursor indicating the location of the error.

A complete list of the error codes is at the back of this manual.

Keyboard Operations 2-9

System Keys

The following keys are used often for keyboard operations and programming.

@ Clears the display; the i symbol remains to show that the calculator is ready for further
instructions:

Performs the operation in the display. For example, to add 2 + 2:
Press: (2)(+)(2) EEE \)
Press:

Stores program lines in the memory. For example, to store a program line:

Comecomxm

Type in: @) C ' @ L [\j
Press: L \j

This program line will assign the value 7 to the variable A.

e Runs the program in memory from tine 0.

*The @ indicates that the following key is shifted.

2-10 Keyboard Operations

Keyboard Arithmetic

To perform a math operation, such as 8 x 2, first you key in the expression as follows:
Then press: (

To raise a number to a power, such as 82, press:

DO [

Notice that an operation such as 8-2must appear as:

The value which is displayed after pressing the execute key is stored in a location called
“result”. This value can be used in other calculations. For example:

HEE0 C
OO e

If you execute an operation involving large numbers, such as:

Keyboard Operations

the calculator displays the result in scientific notation, with 9 digits to the right of the decimal
point:

(=

This is because the number is too large for the fixed 2 notation which is set when you switch on

the calculator.

Arithmetic Hierarchy

When an expression has more than one arithmetic operation, the order in which the operations
take place depends on the following hierarchy:
sguare root performed first
exponentiation
no operator implied multiplication
W multinlication and division
RIS addition and subtraction performed last

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator to the right has a higher priority, then that operator is compared to the
next operator on its right. This continues until an operator of equal or lower priority is encoun-
tered. The highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right. If
parentheses are encountered, the expression within the parentheses is evaluated before the
left-to-right comparison continues. This comparison continues until the entire expression is
evaluated. For example:

exponentiation
implied multiplication
multiplication
evaluate parenthesis
exponentiation
division

addition

result

Variables

A variable is a name of a location where data is stored. There are two types of variables:
numeric variables and string variables. Each data type can be stored in either simple or array
form. Numeric data can also be stored in r-variables.

2-12 Keyboard Operations

Simple Variables

Twenty-six simple variables, named A through Z, are used on the 9825 Calculator. Only the
upper case letters can be used for simple variable names.

To assign a value to a variable, the assignment operator is used. For instance, to assign the
value 4.5 to N, press:

OB/00H0)

The number always appears on the left, and the variable appears on the right side of the
assignment operation.

Now, N can be used in calculations. For instance, to multiply N by 2, press:

N is not changed. New values can be assigned to variables, such as:

HO000HO)

)

r-Variables

r-variables are designated by a lower-case “r” followed by a number {(e.g., r1i). They are
useful for one dimensional arrays and can be used in addition to the 26 simple variables.

In the following two examples, the value 12 is assigned to r10. Then the value 20 is assigned to
the register designated by the value of r10 (this is called indirect storage).

The value 12 is assigned to r10 directly.

The value 20 is assigned to r12 indirectly.

For more information about variables, see the next chapter and the String Variables chapter.

Operating Modes

The calculator can operate in any of three modes: the calculator mode, the program mode,
or the live keyboard mode.

e In calculator mode, no program is running, and the calculator is awaiting inputs or
calculating keyboard entries.

Keyboard Operations

e Inthe program mode, a program is running.

¢ In live keyboard mode, you can perform many calculator operations while a program is
running.

Basic Editing

If you make a mistake while entering lines into the display, you can use the character editing
keys for changing the line.

(A

For instance, suppose you want to type in this line:

10> A;12—->B

But, instead you type:

(J

Then type in an . To delete a “1" in 112, press once and press character (. The
resulting display would be:

BT)

with a flashing cursor on the 1" of 12. To execute the line, press:

As another example, maybe you want to execute this line:

10 + 18 + 22

But you typed this:

2-13

2-14 Keyboard Operations

be positioned on the 8. Next, press the key. This changes the replace cursor to the insert
cursor 4. Now, type in a 1. The display will be:

[T]

Note that the rest of the line shifted to the right 1 character. The insert cursor 4 will still be

flashing over the 8 indicating that more characters could be inserted if desired. To execute the
line, press .

System Command Keys

SYSTEM COMMANDS

ceeone

Returns the calculator and I/O cards to the power-on state without erasing programs or
variables. is executed immediately when it is pressed; it does not have to be followed by
6 . All calculator activity is halted and the line number of the current location in a program is
displayed if a program is running. The reset key should be used to reset the calculator when
no other key, such as or . will bring the calculator to a ready state.

Sets the print-all mode on or off. When it is pressed once, the word =+ appears in the
display. When it is pressed again, the word < appears in the display. In print-all mode,
displayed results, executed lines, and stored lines are printed.

While a program is running in print all mode, all displayed messages and error messages are
printed. Print-all mode can be turned on or off while a program is running.

@ Automatically rewinds the tape cartridge to its beginning. Other statements and com-
mands can be executed immediately without waiting for the cartridge to completely rewind. If
is pressed while a program is running or while a line is executing from the keyboard, the
cartridge rewinds at the end of the current line.

Keyboard Operations 2-15

Executes a program, one line at a time. Then, the line number of the next line to be
executed is displayed. When is pressed just after stopping a program, only the line
number of the next line to be executed is displayed. The next time is pressed, that line is
executed.

To step from a specific line, execute a gto X, where X is the line to start stepping from. For
example, to begin stepping through your program from line 30, type in gto 30 and press .
Then use the step key. E

@ This typing aid is used to erase all or part of the Read/Write memory.

E=(a)(
e ()]
= ()]

Erases the entire calculator memory.

(N

Erases only the variables.

Erases all the special function keys.

N

Erases programs and variables.
Erases the special function key represented by
‘Inll-

The Reset Table in the Reference Tables appendix lists things affected by the erase com-
mand.

This typing aid is used to load programs and data from the tape cartridge. For example
to load a program which is on file 3:

@ Loads the program from file 3 into the cal-
culator.
The display shows i:i (for “load file”) when this key is pressed. See the load file statement

in the Tape Cartridge chapter.

This typing aid is used to record programs and data on the tape cartridge. Before
recording on the tape cartridge, files must be marked (see the Tape Cartridge chapter). In the
following example, it is assumed that the file has been marked:

@ Record the calculator program on file 6 of the

tape cartridge.

The display shows .+ (for “record file"') when this key is pressed (see the record file
statement in the Tape Cartridge chapter).

2-16 Keyboard Operations

This typing aid is used to list programs, sections of programs, all special functions keys,
or individual special function keys. For example:

@ Lists the entire program.

@ @ Lists all defined special function keys in numer-
ical order.

Lists special function key, fo.

@@@ Lists the program from line 20 to the end.

@@@ @ | Lists the program from line 9 to 13, inclusive.

Display Control Keys

— DISPLAY —/

EBRES
EBNED

Brings the line with the next higher-valued line number into the display. If there are no
more lines in the program, [+ clears the display and allows new program lines to be ap-
pended to the end of the program.

Brings the line with the next lower-valued line number into the display. If aline number is
in the display, brings that line into the display. If a stop statement is executed from a
program, brings the line following the line with the stop statement into the display. After a
program error, brings the line containing the error into the display for editing.

Moves the line in the display to the left. This allows all the characters in a line to be
moved into the display. Each time it is pressed, the displayed line moves 8 characters.

Moves the line in the display to the right for viewing all the characters in a line. Each
time this key is pressed the displayed line moves 8 characters.

Keyboard Operations

Line Editing Keys

UNE

f)

This typing aid is used to bring program lines into the display and to fetch special
function keys. For example:

=) Brings line 20 into the display.

[omacrm|

Accesses special function key fa. If fa is de-
fined, its definition is displayed. Otherwise #
is displayed.

Deletes the program line in the display from the program. If no program line is in the
display, the calculator beeps and the key is ignored. To delete a program line, fetch the line
into the display and press .When a line is deleted from a program all subsequent line
addresses and all relative and absolute go to and go sub statements are renumbered to
reflect the deletion.

This is not the same key as the character delete key explained later. To delete several program
lines, the delete (del) command can be used. The delete command is explained later.

Inserts a line into a program. The inserted line is inserted before the fetched line. The
fetched line and higher line numbers are renumbered. The (=) (+], or (+] keys can be used
to fetch aline into the display. For example:

To insertthe line: [#

& between lines 20 and 21:

o R+iad
iy oata 25
L= e o’
Press: @
Typein: iri- iz 2ET A+1HA
214 TR+BE
Press: 2t oato D6

When aline is inserted into a program, the branching addresses of all relative and absolute go
to and go sub statements are adjusted to reflect the insertions as in line 22 above.

2-18 Keyboard Operations

Brings back, into the display, one of the two previous keyboard entries. Pressing
once brings back the most recent keyboard entry. Pressing it twice brings back the previous
keyboard entry.

Press after errors resulting from keyboard operations to recall the line containing the
error. For many errors, a flashing cursor indicates the location of an error in the line.

Character Editing Keys

CHARACTER

Lines which are fetched into the display using (+),(+),(=~J, or (==}, and lines which are typed
into the display can be edited using the character editing keys.

Two flashing cursors are associated with these keys: the replace cursor # and the insert
cursor 4,

m Moves the flashing replace cursor &, or the flashing insert cursor 4, from its current
position in the line in the display, toward the beginning (left) of the line. If the cursor is not
visible, (=) causes the cursor to appear on the right-most character in the line.

position in the display, towards the last character in the line. For a line which has just been
fetched or typed into the display, pressing causes the flashing cursor to appear on the
left-most character in the display.

Deletes individual characters which are under the insert or replace cursor. This is not
the same key as the line delete key explained previously.

The insert/replace key is used to change the flashing replace cursor to a flashing insert
cursor and vice versa. Use the or key to position the cursor in the display. When the
insert cursor is flashing, any characters entered from the keyboard are inserted to the left of

the cursor and the characters under and to the right of the cursor shift to the right.

When the replace cursor is flashing, any character entered replaces the existing display
character at the location of the cursor and the cursor moves to the character on the right.

Keyboard Operations

Calculator Control Keys Computer

l

This key is an immediate execute key which runs the program in the calculator begin-

Museuin

)

macom

ning at line zero. All variables, flags, and subroutine return pointers are cleared when
Q is pressed. The run light at the left end of the display indicates a running program.

The Reset Table in the Reference Tables appendix lists things which are affected by pressing

Stores individual program lines. Also, when a special function key is fetched and

defined, D is used to store the key’s definition. A program line can be a single
statement or several statements separated by semicolons. When an error occurs while at-
tempting to store a line, brings that line back into the display. A flashing cursor usually
shows where the error was encountered in the line.

@ @ are used to obtain shifted keyboard characters, such as
and .

is pressed, the small light above the key lights. locks the keyboard
for shifted characters. Press to release shift lock.

i and . When

Stops the program at the end of the current line. The number of the next program line to

be executed is displayed. When is pressed, list, tlist, and wait statements are
aborted but the rest of the line is executed. When is pressed in an enter statement, flag 13
is set and the enter statement is terminated.

There is also a stop statement. For details, see the next chapter.

Executes the single or multi-statement line which is in the display. The two most recently
executed (or stored) keyboard entries are temporarily stored and can be recalled by
pressing once or twice. The result of a numeric keyboard operation which is not
assigned to a variable is stored in Result (see key). For exampile:

OO0 =

m-comxm

m—comxm)

)

Pressing displays and stores the result. Pressing the execute key again repeats the same
operation.

mcom;

2-19

2-20 Keyboard Operations

Although multiple expressions such as:

are allowed, only the result of the last expression in the line is displayed and stored in Result.
In print-all mode, both results are printed.

Automatically resumes a program from where it was stopped. When a line

number is in the display (such as after pressing) resumes the program
from that line. However, after pressing (=), or after editing the program, the program con-

tinues at line 0 when is pressed. Pressing after an error also causes the program to
continue from line 0.

[n an enter statement, is pressed after entering data. If no data is entered and is
pressed, the variable maintains its previous value and flag 13 is set. See also the continue
command on page 2-24.

Accesses the storage location of the result of a numeric keyboard operation which was
not assigned to a variable. For example:

Press: @@@ f E \J
Press: F \ J

The answer, 18, is also stored in Result and can be used in other operations, such as:

Press: @ F B E gj

In a program, values cannot be stored in Result; but the value in Result can be assigned to

s o]

Press:

variables or used in computations.

For example:
g FAsres This is not allowed.
1% restleH This assigns the value of Result +2 to the vari-

able A.

Clears the display. If the clear key is pressed during the enter statement, a question

mark appears in the display, indicating that an entry is still expected. If this key is
pressed after a special function key has been fetched, the key number (e.g., ¥ %) appears in
the display.

Keyboard Operations

The assignment operator is used to assign values to variables (this is not the same as
the right arrow used for display control.) For example:

Press: C@ @@ C @ This stores the square root of 5 in X.

To enter the value of #, this key is pressed. The value entered is 3.14159265360.

@ This key enters a lower case = into the display, representing an exponent of base 10.
The unshifted @ key can be used in place of . For example:

Press: @@@@ [
Press: @@@@@ E

Note that there is no difference between pressing and pressing @

O d

Special Function Keys

CoJ T CJ ()))

There are 12 special function keys, which provide 12 unshifted functions and 12 shifted
functions. The special function keys can be used as typing aids, one line immediate execute
keys, or as immediate continue keys.

To define a special function key, press and the special function key to be defined. Then

enter a line in the display. Press to store the definition of the key and to exit key mode. For
example:

Press: £ is displayed if the key was not previously
defined.

Type-in: k. Enters &=+ in the display.

Press: This stores =it under fg, for use as a typing
aid.

If you decide not to define a special function key after fetching one, the key can also be
used to exit key mode.

To list all of the defined special function keys in numerical order, type in: 1 i:

i and press

@

2-21

2-22 Keyboard Operations

To list individual special function keys, press and then the special function key to be
listed.

Immediate Execute Special Function Keys

immediate execute key. This means that when the key is pressed, the contents of the key are
appended to the display and the line in the display is executed automatically.

For example:

Press: C@ Accesses fa3 (shifted f11).

Type-in: # et "y 4 The asterisk makes this an immediate execute
key.

Press: This stores the line entered in the display
under fas.

Whenever C@ is pressed and the display is clear, the following is printed:
. oL 14

Immediate execute keys are useful for executing selected segments of a program. Using the
continue command followed by a line number, you can make several entry points in your
programs. For example:

Each time is pressed, the program continues at line 5, or at line 10 if is pressed.

Immediate Continue Special Function Keys

If a line to be stored as a special function key is preceded by a slash (), it is an immediate
continue key for use with the enter statement. “Immediate continue” means that when the key
is pressed, the contents of the key are appended to the display and continue is executed
automatically. Immediate continue keys are used to enter often used values in enter state-
ments. For example:

Keyboard Operations

Press: Fetches special function key fio.

Type-in: This enters the value of e, the base of the

natural logarithms, into the display.
Press: This stores the line in the display under fio.

Whenever an enter statement is waiting for a value and the key is pressed, the approxi-
mate value for e (i.e., 2.71828182846) is entered and the program continues (see enter
statement in the next chapter).

Keys with Multiple Statements

By separating statements with semicolons, several statements can be stored under one spe-
cial function key. As an example, suppose you want to convert inches to centimeters. The
following line is stored under special function key (o).

Press:

Type-in:
Press:

Then key in a number, such as 6, and press (=). The display will show:

(

2-23

2-24 Keyboard Operations

Commands

Five commands are explained in this section. Commands can be executed only from the
keyboard; they cannot be stored as part of a program.

The Run Command

Lirt[line number or labet]

The run command clears all variables, flags, and subroutine return pointers and then starts
program execution. If a line number or label is specified, the program begins execution at the
specmed line number or label. Since Q is an immediate execute key equivalent to .

[
E

, the word + .53 must be keyed in to run from a line number or label.

mcon

Examples:

Run beginning at line 0. This is the same as
pressing O

Run, beginning at line 20.

Run, beginning at the label “third”.

The Continue Command

% [line number or label]

The continue key (cont) command continues the program without altering variables, flags, or
subroutine return pointers. If no line number is specified, then the program continues from the
current position of the program line counter. When a line number or label is specified, the
program continues at the specified line or label. If the program has been edited or an error has
occurred since the program ran, continue without parameters causes execution to begm at
line 0. Since \\J is an immediate execute key equivalent to ¢ Q the word .+
must be keyed in to continue at a line number or label.

Keyboard Operations

Examples:

@

Continue from current position of program line
counter. This is the same as pressing [exms.

Continue from line 3.

.w<crvmnm

Continue from the label “loop”.

a

The Delete Line Command

beginning line number [ending line number] [=]

The delete (del) command is used to delete lines or sections of programs. When one line
number is specified , only that line is deleted. When two line numbers are specified, all lines in

the block are deleted. To delete an entire program, and leave the variables, : can

be executed.

Examples:

Delete line 28.
Delete lines 13 through 20.

Delete program from line 18 to the end. (This
does not affect variables.)

An attempt to delete lines that are destinations of relative or absolute go to or go sub state-
ments (except labels) will cause error 36. To delete these fines, the delete command with the
optional asterisk parameter can be used. When the asterisk is used, any go to or go sub
statements which reference deleted lines are adjusted to reference the first line after the
deleted section. For example to delete line 24 in this program segment:

22t oent Usif
U=@Biatc 24

2ar HeT+Ti0+1=0
ato 22 e
qu E‘ " 1:' - Hlﬁ" ‘? n
Uzaae's 10

25: prt "Total
lleage =T

2-25

2-26 Keyboard Operations

Type-in:
Z2F oent Uiif
Press: UsBisto 24
238 UsTaTi0+103
5 to 22
Press: @@@@@Q 248 prt "Total
Hzase"s T

The Erase Command

i [0or s or i or special function key]

The erase command is used to erase programs, variables, and special function keys as shown
below.

Command Meaning

Erases program and variables.

Erases everything (like switching the calculator
off and then on again).
Erases all variables.

Erases all special function keys.
- Erases the indicated special function key.

Things atfected by the erase command are listed in the Reset Table (see the Reference Tables
appendix).

Keyboard Operations 2-27

The Fetch Command

4oy [line number or special function key]

The fetch command brings individual program lines into the display. This is useful for editing
lines or for viewing individual program lines. Fetching a special function key displays the
definition of the key or # followed by the key number if the key is undefined. Executing fetch
alone, fetches line 0.

Examples:

Fetch line 10.

o Fetch special function key ().

2-28 Keyboard Operations

Live Keyboard

The calculator's live keyboard mode provides additional power for executing single or multi-
statement lines while a program is running. Among other things, you can perform math opera-
tions, monitor program activity, and alter program flow in live keyboard mode. Two statements
described in this section permit the live keyboard mode to be turned on or off.

How Live Keyboard Works

While a program is running, a live keyboard operation is executed as follows:
e The live keyboard operation is keyed into the display and is pressed.
e Atthe end of the current program line, the live keyboard line is executed.

e The live keyboard operation is executed entirely before the program continues.

Live Keyboard Math

Any math operations can be executed from live keyboard. Thus, when a program is running
and a few calculations need to be made, key in the operation and press .

Statements in Live Keyboard

Math operations are just a small part of what can be done from live keyboard. If you want a

listing of the current program, press .

i and press

. The current value of the variable will be displayed.

To change a variable from live keyboard, enter the new value and assign it to the variable to be
changed. For example to reset a counter such as > + 1 =210 0, key in & -+ . and press .

Keyboard Operations 2-29

Subroutines from Live Keyboard

Parts of a program can be executed from live keyboard as subroutines using the go sub
statement. For example, the following section of a running program is used to monitor the
variables used in the program:

By executing = ", the values of the variables are printed and control returns to the

program.

After a subroutine is finished, control returns to the main program when the return (ret) or stop
(stp) statement is executed or when a stop flag at the beginning of a line is encountered.

Special Function Keys in Live Keyboard

Although the special function keys fo through f23 cannot be defined from live keyboard, they
can be used from live keyboard. In this example, the special function keys are used to alter the
flow of the running program.

The special function keys are defined as follows:

The program is:

nnitinstiuais .
Btz ine F :

! T
T sto “first’”
2 oate Csecopdt
SFoeto Uthird?
47 "firstiprt.

* {1 ;-'fﬂ_.:;_‘t_‘f"; EF*F': o
CAto THadrt oo
31 Vzecondiprt

second"1B+FT
Fto THaitt oo
gl Mthird tert
“third"i@=+Fi
ato "Waittoo

2-30 Keyboard Operations

When the program is run, wxiitirss is displayed until one of the immediate execute (line

preceded by) special function keys is pressed. Then the program branches to the line where
either +ivran, = A

4, or tivirod is printed. Although this is a simple example, it shows
one way that special function keys can be used in live keyboard mode.

The Stop Key in Live Keyboard

i Q is pressed during a live keyboard operation, the live keyboard operation is stopped, but
the program continues. Pressing a second time will stop the program.

Live Keyboard Limitations

Operations that modify the stored program or special function keys and operations that di-
rectly affect the execution of the program are not allowed in live keyboard mode. These
operations include the following:

Mnemonic Error
Commands:
run error 03
cont error 03
fetch error 03
erase error 03
del error 03
Statements:
ent error 13
end error 09
gto (allowed in a live key-
board subroutine) error 09
Idp error 64
ldk error 64
|df (program file) error 64

In addition, the following keys cause a beep and are ignored when pressed in live keyboard
mode.

Keyboard Operations 2-31

The Display

Lines which are typed in live keyboard mode will disappear from the display if the running
program uses the display. The live keyboard line is re-displayed after each keystroke so that
the line with the new character added can be seen.

If the running program continually uses the display, the live keyboard lines will not be visible
while the line is being typed. In this case, the line that is currently being typed, or the line
accessed by can be held in the display by pressing (_+ Jor [+). These keys will suspend
the running program for one second and display the line. If the key is kept depressed, the
program will be halted for one second after it is released. After the line is executed, the (*Jor
(_+) key will not re-display the line unless is pressed first. For example, suppose the
following program is running in the calculator:

Bi dz=p Liue

Fefﬁuﬁfd inoit
18

IEI
o3

1 T.-

o
)
ol

¥,

When the following line is typed in live keyboard, it will not be visible:

Press (+ J or(+]) and the line will be displayed for about one second. When is pressed,
the line will be executed and 5 will be stored in A and printed.

Results of calculations performed in live keyboard disappear from the display if a running
program uses the display. The (_*+] or [+] keys only hold the live keyboard line in the display
and not the result of the execution of a line. The result can be held in the display by appending
a wait statement to the end of the line (e.g. i

A special function key can be defined to preserve the displayed result long enough to be
viewed as in this example:

Press:

Press: D

As you type in a calculation such as

, press instead of ' The result of the calcula-
tion will remain in the display for about one second.

[m—camsem|

2-32 Keyboard Operations

The Live Keyboard Enable Statement

The live keyboard enable (lke) statement enables the live keyboard mode. For example:

212 lke Enable live keyboard.
Live keyboard is automatically enabled when the calculator is turned on, =+ 2 711 executed,
or is pressed. To disable live keyboard, the live keyboard disable (lkd) statement is used.

The Live Keyboard Disable Statement

The live keyboard disable (Ikd) statement disables live keyboard mode. For example:

geolkd The first line of this program disables live
keyboard.

To re-enable live keyboard during a program it is necessary to execute the live keyboard
enable (Ike) statement from the program.

, frewmo) - and are the only keys recognized while a program is running with live keyboard
disabled.

‘ﬁ

Programming 3-1

Chapter 3
Table of Contents

Computer
Museum

Programming CoNCePIS . . oot 3-3
SyNtax CoONVENTIONS e 3-6
Numeric Variables 3-6

Simple Variables 3-6

Array Variables 3-6

Y= T =1 o 1= 3-7

Variable AloCation 3-8
NUMbEr FOrmMats . .. 3-8
The Fixed Statement (fXd) 3-9
The Float Statement (flt) 3-10
Significant Digits 3-11
Rounding 3-11
The Display Statement (Asp) 3-12
The Print Statement (Prt) 3-12
The Enter Statement (ent) o 3-13
The Enter Print Statement (enD) 3-15
The Space Statement (SPC) ottt e 3-16
The Beep Statement (beep) o i 3-16
The Wait Statement (wait) 3-16
The Stop Statement (StP) 3-17
The End Statement (end) 3-17
HierarChy ... 3-18
OPErators . oo 3-19

ASSIgNMENt Operators (—)o 3-19

Arithmetic Operators (+, —, X, /, 1, mod)o 3-19

Relational Operators (=, >, <, =2, <=, #) ... i e 3-20

Logical Operators (and, or, xOr, NOt)o 3-21

Math Functions and Statements 3-22
General Functions(V/, abs, sgn, int, frc, prnd, drnd, min, max, md) 3-22
Logarithmic and Exponential Functions (In, exp, log, tnf) 3-24
Trigonometric Functions and Statements (deg, rad, grad, units, sin, cos, tan, asn, acs,
AN 3-25

Math Errors . .. 3-26

FlagS 3-28
The SetFlag Statement (sfg) 3-28

Q

=)

3-2 Programming

The Clear Flag Statement (cf@) o 3-29
The Complement Flag Statement (cmf) 3-29
The Flag Function (flg) 3-30
Branching Statements 3-30
Line ReNUmMbDEringo 3-30
LabElS 3-31
The Go To Statement 3-31
Absolute Go To (QO) .. oo 3-32
Relative Go To (gto+, gto—)o 3-32
Labelled Go To (QtO ") o o 3-32
The Jump Statement (JMP) 3-33
The Go To Subroutine and Return Statements 3-34
Absolute Go SUD (gSD) . . o o 3-34
Relative Go Sub (gsb+, gsb—) 3-34
Labelled Go SUDb (@Sh...) .. 3-35
Calculated Go Sub Branching (gsb...;jmp) 3-35
The If Statement (if) ... 3-36
N-Way Branching (gto...; if...; gto) 3-37
The Dimension Statement (dim) 3-37
Specifying Bounds for DIMensions 3-38
The Clear Simple Variables Statement (CSV) i 3-39
The List Statement (list) 3-39
Used and Remaining Memory 3-40
Program Debugaingot 3-41
Finding the Problem . . 3-41
Fixing the Problem .. o o 3-41
The Debugging Statements (trc, stp, nOr) ..o 3-43
Programming HINtS 3-46

Chapter 3

HPL Programming

This chapter introduces the statements, functions and operators comprising the HPL lan-
guage.

Programming Concepts

There are five basic steps in creating a program:

Define the Problem.

Decide how the problem is best solved.

Write out the statements for the program.

Key the statements into the computer memory.
Debug (correct) and run the program.

Step 1:

As a simple example, suppose you want to print the square root of each value that you enter.
Then, if the value entered is negative, print a message and continue on.

Step 2:

A common method used to solve a problem is flowcharting™. Using a few basic flowcharting
symbols, explained at the end of this chapter, we will flowchart the problem.

Enter a Display
value message

Is
the value
neg?.

No

Yes

Take square Print the
root of value square root

|

* Another method suitable for simple problems is to key in a few statements and try them out.

&

3-4 Programming

Step 3:

From the flowchart, write down the statements for the program:

Program Comments
“start”; entV V is the value to be entered.
if V<@, dsp "neg. V"; gto'start” Decide if V is negative: if so, display the
message and go back to the beginning.
Vs S is the square root of the value.
pris Print the square-root.
gto“start” Go to "start” for another value.

Note that the second line contains three statements separated by semicolons. All of the
statements used are discussed later.

Step 4:

The next step is to clear the calculator by executing = vims
exactly as above, one line at a time. Press at the end of each line to store that line in the

calculator memory. If you make a mistake before you store the line, press and type the
line over.

Step 5:

mcomsem|

After the program is stored, press | to get a printed listing. Then, to run the program

press . Each time that %" is displayed, type in a value and press 5. The calculator will
print the square root of each value.

55 et i lent ¥
1s if ¥adidsp
Tnemeo M teto
Yetart!
? a2 Ohas
3t pru =
dromin tetart!

Programming

For positive values, the program runs as expected, but if you enter a negative value you won't

see the message displayed. This is because the message is displayed for a very short period

of time before another display (i.e.,

YY) appears. Use a wait statement after the display

statement in line 1. This statement causes the program to pause long enough for you to see
the message. To change the program, press: C]@ . Then press the (=) key until it

is positioned on the semicolon just before the gto statement Press (=) and key in ¥ & 3
. Press D to store the new line at line 1. Then press IQ Here is a listing of the

completed program:

fr Ternartlient M
1 if ¥4Bidzp
Ymea, M iunit
S@BIato Yztart”

1 orWag

B omrpt %

4 ato Vataort’

Since the program is a continuous loop, press to stop the calculator. Then, to do another

program key in

i1 and press . This clears out the calculator memory.

Commonly Used Flowchart Symbols

Meaning

) Program beginning or end.

Program segment; usually one statement.
Decision block indicates that a decision for a
branchis made. Usually an if statementis used
for a decision.

Flowlines indicate the program flow.

Connectors indicate that the lines going to or
from them are connected.

3-5

3-6 Programming

Syntax Conventions

The statements, functions, and operators explained in this chapter are all programmable.
Most of these instructions can also be used in calculator mode.

Statements can be programmed or executed. Operators and functions must be part of a
statement in order to be programmed. This means that operations, such as 10 + 32 or V6

which can be executed from the keyboard must be part of a statement in order to be prog-
rammed. Thus, O e

i are valid statements.

The instructions explained throughout this manual use the following syntax conventions. A
complete list of syntax is near the back of the manual.

[] - items within square brackets are optional.
: - items in dot matrix must appear as shown.

- three dots indicate that the previous item can be duplicated.

Numeric Variables

The calculator uses two types of variables, numeric and string. Numeric data can be stored in
simples variables, array variables, and r-variables. As numeric variables are allocated, they
are initially assigned the value 0. Numeric variable elements each require 8 bytes* of memory.
String variables are covered in chapter 6.

Simple Variables

There can be 26 simple variables, named A through Z. A simple variable must appear in upper
case. Each simple variable can be assigned one value. For example:

-

CL L

‘4 H Assigns the value 12to A.
L H Prints the value of A on the printer.

": T

1:
5
Array Variables

There can be 26 arrays, named A through Z. Array names are followed by square brackets

which enclose the subscripts of the array (e.g., i

* A byte is the basic unit of data in the 9825. Eight bytes are required to store a number.

Programming 3-7

Before an array element can be used, the array must be declared in a dimension (dim)
statement. This reserves memory for the array and initializes all elements in the array to zero.
In the dimension statement, each dimension of an array can be specified either by specifying
the upper bound, in which case the lower bound is assumed to be one, or by specifying both
the lower and upper bounds. For example:

Reserves memory for the 20 elements of the
two-dimensional array A.

Reserves memory for the 20 elements of the
two-dimensional array P. (Lower and upper
bounds specified.)

An array can have any size and any number of dimensions within the limits of the memory size
and line length. The bounds must be between —32767 and 32767.

Anindividual element of an array is accessed by specifying the subscripts of the element. For
example:

4is assignéd to element 1,5,4,6 of array A.

3 is assigned to element —2,1 of array P.

Another Example:

B dinm BL18:181 Reserves memory for 100 elements of array Q.
12 2330[0¥s 10 Q[7,1]is assigned the value 3.
£i Sl The value 5 is assigned to the simple variable

Q. There is no connection between the simple
variable Q and array Q[10,10].

38 22ali.0] Q[1,5] is assigned the value 2.

r-Variables

r-variables are specified by a lower case “r’ followed by a value or expression. When an
r-variable is encountered, memory is reserved for all r-variables with smaller subscripts which
have not been allocated. As r-variables are allocated, they are assigned the value 0. Thus if
r10 is assigned a value, r0 through r9 are also automatically allocated and assigned the value
zero if they have not been previously allocated.

3-8 Programming

Examples:

[}
an
B o5
g

4 is assigned to r-variable 0.

EE]
L&,
4
=%
-
i
2y

2 is assigned to r-variable 4. rO= 4, therefore
2 — r4. This is known as indirect storage.

Variable Allocation

Simple variables and r-variables are allocated when a statement containing either is exe-
cuted. Array variables must be allocated using a dimension statement.

Before a variable is allocated, three cases are checked:

‘1. Before avariable is allocated by the dimension statement, a check is made to see if it is
already allocated. If so, an error results and execution stops.

2. When a simple variable is referenced in any other statement, a similar checkis made as
to whether it has been allocated. If not, it is allocated.

3. When an array element is referenced in any other statement, a similar check is made as
to whether the array has been dimensioned. If not, an error results.

Within one statement, variables are allocated in the same left-to-right order as they occur in
the statement.

Number Formats

Numbers can be displayed or printed in floating-point format (scientific notation) or in fixed-
point format. The calculator’s internal representation of numbers is unaffected by number
formats, therefore, accuracy is not changed.

When the calculator is turned on, is pressed, or s+ . is executed, the number format
is fixed 2 (fxd 2), and for very large numbers, the calculator temporarily prints and displays in

float 9(flt 9).

Programming 3-9

The Fixed Statement

¢ =i [number of decimal places]

The fixed (fxd) statement sets the format for printing or displaying numbers. In fixed-point
format, the number of digits to appear to the right of the decimal point is specified. Fixed 0
through fixed 11 can be specified.

To set the number format from floating-point to the current fixed-point setting, # =i without
parameters is executed.

Computer
Museum

When a number of the form:
A=Nx10°
where: 1sN<10,orN=0
is too large to fit in the fixed-point format, the number format temporarily reverts to the previ-
ously set floating-point (float 9 if no other floating-point format has been set) if:
D+E=14
where: D is the number of decimal places specified in the fixed statement.
E is the exponent of the number.

B oent A
To illustrate the reversion to a previous float 9 1 $wd Biprt B
setting, run this program # 2: fud liprt H
3t ofxd 2iprt A
41 fxd Zsrprt A
S end

If the value 1 &1 is entered when 7 ap-

pears in the display, this is printed #

3-10 Programming

For numbers too small to fit in the fixed-point format, zeros are printed or displayed for all
decimal places, with a minus sign if the number is negative. For example:

)

Bi fud Zidzp ~
LBERIESsunis (\j
Zaag
1: fxd Zides
. AE2R4 L)
Here are some numbers and their output format if < =4 7 is executed:
Number Fixed 3 Output
18
—.000006
-2.7532
4.5678
5.3111e3
1234567891234.5 i
(float 9 previously set)

The Float Statement

1% [number of decimal places]

The float (fit) statement sets floating-point format which is scientific notation. When working
with very large or very small numbers, floating-point format is most convenient. Float 0 through
float 11 can be specified. To set the number format from fixed-point to the current floating-
point setting, i = without parameters is executed.

A number output in floating-point format has the form:
—D.D...De-DD
e The left-most non-zero digit of a number is the first digit displayed. If the number is

negative, a minus sign precedes this digit; if the number is positive or zero, a space
precedes this digit.

e A decimal point follows the first digit; except in flt 0.

Programming 3-11

e Some digits may follow the decimal point; the number of digits is determined by the
specified floating-point format (e.g., in fit 5, five digits follow the decimal point).

e Then the character = appears, followed by a minus sign or space (for non-negative
exponents) and two digits. This is the exponent, representing a positive or negative
power of ten. The exponent indicates the direction and the number of places that the
decimal point would have to be moved to express the number in fixed-point format.

Here are some numbers as they would appear if 1% & is executed:

Number Float 2 Output

-3.2

271
26.377
.000004
2.482e33

Significant Digits

All numbers are represented internally with 12 significant digits regardless of the number
format being used. To illustrate this, execute ¢

B
then press and note the display:
C BN J

The 13th and 14th digits, 8 and 9, are not stored and zeros are displayed for those digits.

> then key in the number:

)

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of
the decimal point than the number format allows. The rounding is performed as follows: the
first excess digit on the right is checked. If its value is 5 or greater, the digit to the left is

incremented (rounded-up) by one; otherwise it is unchanged. The number remains un-
changed internally. For instance:

B fud 2 [\j
18 dem 1,735% -
walt 189A
21 odep 2,484
3 oend

3-12 Programming

The Display Statement

=: [any combination of text or expressions]
The display (dsp) statement displays numbers or text on the calculator display. Commas are

used to separate variables or text (e.g., = b e By)

Ouo;[es are used to indicate text. To display quotes within text, it is necessary to press C @
twice for each quote to be displayed. For example:

Type in:

Press: [\j

Displayed lines longer than 32 characters can be viewed using the display control keys, (<)

and (~).

Numbers and text which are displayed remain in the display until another display operation
(such as enter (ent) with a prompt) clears it.

The Print Statement

ix + 1. [any combination of text or expressions]

The print (prt) statement is used to print numbers or text on the calculator printer. For example:

| el 2.5}
"

=

i B}

Uhne
Thiz one

If an expression is to be printed, such as:

the expression is evaluated and the equivalent value is printed (and also stored in X in this
case).

Programming

To print a quote within text press C twice for each quote to be printed. For example:

Type in:

Press: Ent 1% o tp"

Commas are used to separate variables or text. For example: Computer ¥

Museum -

Type in:

. Eiret
Press: Heswt

When printing lines of text and values, the printout follows this format:

e mmm
L

.
| ool O x|
Tnd AN]

Ty =

e Text followed by a numeric is printed on the same line if it fits; otherwise the text is
printed and the number is printed on the next line.

e Each line of text separated by commas begins on a new line and folds over on succes-
sive lines if it is longer than 16 characters.

e Numerics separated by commas are printed one per line unless the format is fit 10 or flt
11 which requires two lines each.

When i1 is specified without parameters, no operation takes place. To space one line, use
the space statement.

The Enter Statement

@4 [prompt =] variable [[prompt :] variable...]

The enter (ent) statement is used to assign values to variables from the keyboard during a
program. The variable can be a simple variable, array variable, or an r-variable. For example:

dt-ent O
Stoent AeBLIT
r1d

When an enter statement is encountered in a program, key-in a number, variable (such as
) %) and press (o).

When many items are entered from the keyboard, it is often helpful to have a message called a
“prompt” displayed representing the variable being assigned a value. For instance:

ent S Hmaunt s

)

it S Temperat

S
-
Ay 4T
|
e
[

3-14 Programming

I'f no prompt is given, the calculator uses the name of the variable as the prompt. For example:

31 ent ALTI | (Arras)

w1 7 7yt the calculator retains any
previously displayed message, unless a print operation is between the display statement and
the enter statement. This is useful for variable prompts using the display statement. For

example:
i o l97esNifad 8
Biodep Nl ey [Sj
L‘?: E'?"t RF iy £ 8 5 H

You can calculate values from the keyboard while the program waits in the enter statement.
This is done simply by entering the calculation and pressing . If the value to be entered is

the result of pressing , press Q or then press . Pressing immediately

before pressing causes a default condition as if were pressed without entering a
value.

m—scom:

Complex lines can be entered as the response to an enter statement. For instance, run this

program:

B: ent E

1¢ ent A

2% prt A

3 end
When the display is: e (j
enter a value for B. Then when the display is: r \j

Then press . If the value that you entered for B is greater than 20, then
otherwise i is printed.

is printed,
[f is pressed without entering a value, the variable maintains its previous value and flag
13is set. When a value is entered, flag 13 is cleared. See flags later in this chapter.

To terminate a program during an enter statement, press Q The rest of the program line is
completed before the calculator stops.

Commands, such as are not allowed during an enter statement and cause

error 03.

Programming 3-15

The following example illustrates a unique case using the enter statement. Run the short
program:

diw RLZG]

441 ,
ent I:ALII : r‘" i D

Ty ek T
L o kR

Type in:

)

Press: D

Notice that the value of | when the enter statement is encountered is used, not the entered
value of |. To use the entered value of | as the subscript, use another enter statement. For the
above example, change line 2 to:

2i ent lient
ALII |
Even though you can have one enter statement that enters values for several variables, only
one value can be supplied at a time. For example:

H: ent AsB

The Enter Print Statement

v [prompt «] variable [:[prompt :] variable...]

The enter print (enp) statement is the same as the enter statement except that prompts and the
entered values are printed and displayed as they are encountered.

For example, type in this short program to calculate the area of a circle:

B: enp "rodius’s
1t 7REE*R

2t prt "oren’sH
3t end -

If 2 is entered for R when the program is run, the printout will be:

Pt
=
=
Pt
o
wy

oy
11
o
it
R
n
i

3-16 Programming

The Space Statement

=i [number of blank lines]

The space (spc) statement causes the printer to output the number of blank lines indicated.
The number of lines can be an expression with a range of 0 through 32767. If no parameter is
specified, one blank line is output.

Examples:
e zpo HAE Space the number of lines specified by A + B.
14 spc-5 Space 5 lines.

SR Space one line.

The Beep Statement

The beep statement causes the calculator to output a beep. For example, the calculator
normally beeps, displays = i, and stops when the argument of the square root ({")
function is negative. In the following short program, the value entered for A is tested. If it is
negative, the calculator beeps and displays a message, but the program continues entering
values.

B fud 4 "atart !

e U=atart”ient i "error’theep
"Argument "o H S5 dse "Toaf

20 1f AAEI=to nedy ho,
"ertaor” Erooait 2RE8

30 oprt FAisto Teoato Uatart?

The Wait Statement

. number of milliseconds

The wait statement causes a program to pause the specified number of milliseconds
(thousandths of a second). The wait statement is often used with display or enter statements to
display a message for a specified time. The number of milliseconds can be an expression. The
maximum wait is around 33 seconds, which is specified by the value 32767.

Programming 3-17

Since the wait statement takes time to be executed, small values in the wait statement are

actually longer than a millisecond. This becomes evident in a loop which is executed many
times.

Examples:

Pauses for 2 seconds.
Pauses for 2+l milliseconds.

2¥ ounit

ea]

#1

In the next example, a display statement is followed by an enter statement. To preserve the
first display for one second, the wait statement is used.

18: dep "Please The first display remains one second before
enter await ,
b h lay.
(@A the next display
115 ent Yualue
af H'eH

The Stop Statement

The stop (stp) statement stops program execution at the end of the line in which it is executed.

Pressing continues the program at the next program line. can also be used to
“step” through the program one line at a time. If any editing is performed after the program
stops, and cause the program to continue from line 0.

The stop statement can also be used for debugging. See the section on debugging state-
ments for details.

The End Statement

The end statement causes the program to stop like the stop statement. However, the end
statement resets the program line counter to line 0 and resets all subroutine return pointers
(see go sub statement). The end statement is usually put at the end of a program. The end
statement cannot be executed during an enter statement, nor in live keyboard mode.

3-18 Programming

Hierarchy

In a statement containing functions, arithmetic operations, relational operations, logical opera-
tions, imbedded assignments, or flag operations, there is an order in which the statement is
executed. This order is called the hierarchy, which is:

highest priority

Y

lowest priority

functions, flag references, r-variables

* (exponentiation)

implied multiply

----- (unary minus)

all relational operators (=, =,

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator on the right has a higher priority, then that operator is compared to the
next operator on its right. This continues until an operator of equal or lower priority is encoun-
tered. The highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right. If
parentheses are encountered, the expression within the parentheses is evaluated before the

left-to-right comparison continues. This comparison continues until the entire expression is
evaluated. In the following example, S1, Sz, Ss... indicate intermediate results:

implied multiplication
addition

evaluate parenthesis
exp function

implied multiplication
mod operator
subtraction

equality relation

final result

Programming

Operators

The four groups of mathematical or logical symbols, called operators, are: the assignment
operator, arithmetic operators, relational operators, and logical operators.

Assignment Operator

The assignment operator is used to assign values to variables. For example:

The value 1.4 is assigned to the variable A.

3t E+A The value of B is assigned to the variable A.

There are other ways to assign values to variables such as the enter (ent) statement or the load
file (df) statement.

To assign the same value to many variables, the assignment operator can be used as in this
example.

Multiple assignments can also take the form ::

-1+ 1+ I (which is the same as
+ 1 =+). This is called an imbedded assignment.

Arithmetic Operators

There are six arithmetic operators as follows:

Add (if unary, no operation) A+ Bor+A
----- Subtract (if unary, change sign) A—Bor-A
Multiply A+B
- Divide A/B
Exponentiate A®
Modulus A mod B is the remainder of A/B when

A and B are integers. A mod B is the
same as A —int (A/B)+B.

3-20 Programming

When A is much larger than B, there is a chance that a value of 0 could be returned for
.. This condition can be caught by examining the exponent of A/B when it is re-
presented in floating point notation with one digit to the left of the decimal point. If the expo-
nent is greater than 8, ¢

results in a value of 0.

Besides the # symbol for multiplication, implied multiplication can be used. In the following
instances, implied multiplication takes place:

e Two variables together (like AB).

e A variable next to a number (like 5A).

e Avariable or number next to a parenthesis [like 5(A + B)].
e A parenthesis next to a parenthesis [like (A + B) (X + Y)].

e A variable, number, or parenthesis preceding a function name (like 32 sinA).
For example:
A times B is stored in X,

5 times 5 is stored in X.
A times the sum B + C is stored in B.

5 times the absolute value of B.

Relational Operators

There are six relational operators as shown in the following table,

Symbols Meaning
e Equal to.
; Greater than.

Less than.
wie Qr Greater than or equal to (either form is acceptable).
we O Less than or equal to (either form is acceptable).
#or < or Not equal to (either form is acceptable).

The result of a relational operation is either a one {if the relation is true) or a zero (if it is false).

i, is true and results in a value of

one. All comparisons are made on 12 significant digits, signs, and exponents.

Programming 3-21

The relational operators can be used in any statement which allows expressions as argu-
ments. For example:

Assignment statement. If A and B are equal, a 1 is
stored in C: otherwise, a 0 is stored in C.

If statement. If A is greater than B, then continue in the
line; but if A is less than or equal to B, go to the next
line.

Jump statement. If A is greater than 3, jump 1 line,
otherwise jump to the beginning of the line (jmp 0).

Print statement. If A is greater than B, the value of A is
printed. If A is less than B, then the value of B is
printed. If A equals B, then 0 is printed.

Logical Operators

The tour logical operators, and, or, xor (exclusive or), and not are useful for evaluating Boo-
lean expressions. Any value other than zero (false) is evaluated as true. The result of a logical
operation is either zero or one.

Operation Syntax Truth Table

AND expression :ii expression A|BjAandB
FIF 0
FIT 0
TI|F 0
TIT 1

OR expression ::+ expression A|1B] AorB
F|F 0
FiT 1
TIF 1
TIT 1

3-22 Programming

Operation Syntax Truth Table
Exclusive OR expression =y expression Al Bl AxorB
F|F 0
FIT 1
T|F 1
TIT 0
NOT it expression A] notA
F 1
T 0
For example:
Program: Printout:
B: ,1+RA3A2E A oand B @, e
1t prt "H and A or B 1,58
B sH and B ; H o2or B 1.686
2: prt "H or B nat A i, BA
A or B
2t oprt "H o=or
E"sH =or B ;
4: prt "not Ay
rot H
5: end
Math Functions and Statements
The math functions and math statements are explained in this section.
Parentheses must enclose the argument of a function when a “+" or =" sign precedes the

argument. In the examples, parentheses are shown only where they are required.

General Functions

Syntax Description Examples (fxd 5)

I"expression Returns the sqguare root of a non-negative = 8.00000
expression. For negative expressions, see

the section on math errors.

alng expression Determines the absolute value of the ex- 1 = 3.09000

= 330.10000

pression.

Computer
Mllseunl

Syntax Description Examples (fxd 5)
=: expression The sign function returns a —1 for negative 18t = —1.00000
expressions, 0 if the expression equals 0, = = 0,00000
and 1 for a positive expression. =« = 1,00000
2 expression Returns the largest integer less than or equal .o i = 2.00000
to the expression. This is often referred to as L sty = —4,00000
the “floor” integer value of the expression.
expression Gives the fractional part of a number. It is "2 =0.71800
defined by: expression —:¢:% expression =t =0.76000
expression Returns the value of the argument rounded . i
rounding specification: | to the power-of-ten position indicated by the = 127.38000

wi texpression s
number of digits

=it flist of expressions
and arrays:

list of expressions
and arrays:

i [] expression

(continued)

rounding specification.

The digit round function rounds the argu-
ment to the number of digits specified. The
leftmost signiticant digit is digit number 1.

Returns the smallest value in the list. An en-
tire array can be specified by substituting an
asterisk for the array subscript list (such as

L)

Returns the largest value in the list. An entire
array can be specitied by substituting an as-
terisk for the array subscript list (such as

re),

The random number function generates a
pseudo-random number greater than or
equal to 0 and less than 1. When the argu-
ment is positive, the starting seed is 7/180
(which is .0174532925200). This seed is in-
itialized when the calculator is turned on,

is executed, or is pressed.
Each subsequent access to the rnd function
with a positive argument uses a seed based

on the previous result of the function.

127.375 is rounded to the
nearest hundredth (1072)

73.06300

~70000.00000
L 11 =0.06000

(i#3: =2.00000

= —3.00000

w1 = 9.00000
= 8.00000

il =0.67822

Programming 3-23

3-24 Programming

Syntax

Description

Examples (fxd 5)

To specify a starting seed other than #/180,
use a negative argument. The fractional part
of the absolute value of the argument is used
as the seed. To obtain a good seed use a
number less than 0 and greater than —1. The
more non-zero digits in the number, the bet-

ter. Last digits of 1, 3, 7, or 9 are preferable.

Logarithmic and Exponential Functions

Note that the wait state-
ment is used instead of
an assignment state-
ment to initialize the
starting seed. Line 1
generates a random
number based on .31317
instead of 7/180.

Syntax Description Examples (fxd 5)
T expression The natural logarithm function calculates the = 8.98732
logarithm (base e) of a positive valued ex- L= —5.95224
pression.
expression The exponential function raises the constant, =2.71828
naperian e, to the power of the computed = .04979
expression. The range of the argument is
approximately from -227.95 through
230.25.
expression The common logarithm function calculates = 2.48458
the logarithm (base 10) of a positive valued = —2.30980
expression.
“ expression The ten-to-the-power function raises the .= 500.00000
constant, 10, to the power of the computed =0.00100

The math errors and default value associated with the log and In (natural log) functions are

expression. The range of the argument is
approximately from —99 through 99.999.
This function executes faster than: 1i:% ex-

pression.

explained in detail in the next section.

Programming 3-25

Trigonometric Functions and Statements

The angular units: degrees, radians, or grads, are set by statements explained in this section.
Degrees are automatically set when the calculator is switched on, = 2 is executed, or

is pressed.

This statement sets degrees for all calculations which involve
angles. A degree is 1/360th of a circle.

This statement sets radians for all calculations which involve
angles. There are 27 radians in a circle.

This statement sets grads for all calcuiations which involve

angles. A grad is 1/400th of a circle.

i This statement displays the current angular units.

Syntax Description Examples (fxd 5)
T expression Determines the sine of the angle rep- 4 = 0.70711
resented by the expression in the current
angular units. = 0.50000
= -0.89101
expression Determines the cosine of the angle rep- == 070711
resented by the expression in the current R ERt A
angular units. = 0.86603
= 0.45399
1 expression Determines the tangent of the angle rep- %= 1.00000
resented by the expression in the current L
angular units. = 1.00000
= 1.00000
LR @Xpression Returns the principal value of the arcsine of 2t = 53.13010
the expression in the current angular units. 7 =0.92730
The range of the argumentis ~ 1 through +1. vt = 50.03345
The range of the result is —a/2 to +7/2 (ra-
dians), —90 to +90 (degrees), or —100 to
(continued) +100 (grads).

3-26 Programming

Syntax Description

Examples (fxd 5)

SALE expression Returns the principal value of the arccosine
of the expression in the current angular
units. The range of the argument is —1
through +1. The range of the resultis O to o
(radians). 0 to 180 (degrees), or 0 to 200
(grads).

11 expression Calculates the principal value of the arctan-
gent of the expression in the current angular
units. The range of the resultis —w/2 to +x/2
(radians), —90 to +90 (degrees), or —100 to
+100 (grads).

Math Errors

i

113.57818

i

1.98231

126.19798

87.13759
Pl 1.52084
ot = 96.81955

I

Errors 66 through 77 are displayed when a math error occurs. In this section, the default
values of math operations which result in an error are explained. Whenever a math error
occurs, flag 15 is set automatically. If you set flag 14, math operations which normally cause

an error to be displayed, result in a detault value.

When printing, displaying, or storing a default value outside the storage range, the value is

converted to an appropriate value of £9.99999399993%¢ 99.

Division by zero. The default value is +9.99999999999¢ 511 if the dividend is

positive and —9.99999999999%¢ 511 if the dividend is negative. For example:

= —9.99999999999%¢ 511

A mod B with B equal to zero. The default value is 0. For example:

example:

Square root of a negative number. The default value is V (abs (argument)). For

Programming

Tangent of (nx#/2 radians);

Tangent of (nX90 degrees);

Tangent of (nx 100 grads);

where n is an odd integer. The default value is 9.99999999999¢ 511 if n is
positive; and —9.99999999999¢ 511 if n is negative. For example:

I = -9.99999999999¢ 511
= 9.99999999999¢ 511
= 9.99999999999¢ 511

In or log of a negative number. The default is:
In (abs (argument)) or log (abs (argument))
respectively. For example:

L1 = 570711
i = —3.00000

In or log of zero. The default value is —9.99999999999¢ 511. For example:

£l = —9.99999999999%¢ 511
1= —9.99999999999¢ 511

asn or acs of a number less than —1 or greater than 1. The default value is
asn (sgn (argument)) or acs (sgn (argument))
respectively. For example (in degrees):

Negative base to a non-integer power. The default value is
(abs (base)) 1 (non-integer power) For example:

Zero to the zero power (5 1). The default value is 1.

)

Storage range overflow. The default value is 9.99999999999¢ 99 or
—9.99999999999¢ 99. For example:

; B will equal —9.99999999999%¢ 99.

‘Storage range underflow. The default value is zero. For example:

TE G 55 Awill equal O

3-27

3-28 Programming

Calculation range overflow. The default value is 9.99999999999¢ 511 or
—9.99999999999%¢ 511. For example:

" £ = 9.99999999999%¢ 511
= —9999999999996 511

Calculation range underflow. The default value is zero. For example:

Flags

Flags are programmable indicators that can have a value of one or zero. When a flag is set, its
value is one; when it is cleared, its value is zero. There are 16 flags, numbered 0 through 15.
The following flags have special meanings:

Flag 13 -is automatically set when (e is pressed without entering data in an enter statement

or when is pressed in an enter statement. Flag 13 is automatically cleared when
data is supplied in an enter statement.

Flag 14 -when flag 14 is set, the calculator ignores math errors such as division by zero and
supplies a default value shown in the preceding Math Errors list.

Flag 15 -is automatically set whenever a math error occurs, regardless of the setting of flag
14.

The Set Flag Statement

i [flag numbers...]

The set flag (sfg) statement sets the value of the specified flags to one. The flag number can
be a value or an expression. If a non-integer flag number is specified, the value is rounded to

an integer. If = = is executed with no flag number specified, all flags (0 through 15) are set.
For example:
Set flag 2.
g o=ta A+l Set the flag designated by A + 1.

1o oz2ft9 1lak Set flag 1 and the flag designated by X.

Programming

The Clear Flag Statement
o+ = [flag number: ...]

The clear flag (cfg) statement clears the specified flags to zero. The flag number can be a
value or expression. If a non-integer flag number is specified, the value is rounded to an

integer. If oz is executed with no flag numbers specified, all flags (0 through 15) are cleared.
Examples:
Clear flag 14.
21 ocfa fla2 Clear the flag designated by the value of flag 2

(either flag one or flag zero will be cleared).

Jioofag Clears all flags.

The Complement Flag Statement

o [flag numbers ..]

The compltement flag (cmf) statement changes {toggles) the value of the flags specified. If a
set flag is complemented, its new value is zero. If a cleared flag is complemented, its new
value is one. A value or expression can be given for the flag number. If a non-integer flag

number is specified, the value is rounded to an integer. To complement flags 0 through 15,
=t is executed without paramenters.

Examples:

Complement flag 1.

i

e,
Joeh
an

TR Complement the flag designated by X—1.

Peaoomt Sedab Complement flags 3, 4, and 5.

3-29

3-30 Programming

The Flag Function

flag number

The flag (flg) function is used to check the value of a flag. The result of the flag function is zero
orone. One indicates a set flag; zero indicates a cleared flag.

Examples:
dr 4y flafidme 5 Ifflag 2 is set, jump 5 lines.
S oflalssR If flag 15 is set, 1—A; if flag 15 is cleared,
0—A.

Branching Statements

Branching statements are used to alter the sequential flow of a program. Branching is used for
such operations as looping through a section of a program, executing a subroutine program,
and branching to different parts of a program based on a decision (if) statement. There are
three statements used for branching: the go to (gto) statement, the jump (jmp) statement,
and the go sub (gsb) statement.

The following three types of branching may be used for both go to and go sub statements:

Absolute Branching -branch to the specified line number (such as -

69),

Relative Branching - branch forward or backward in the program the specified number of
lines relative to the current line (such as - ‘

Labelled Branching -branch to the indicated label. This type of branching is generally the
most convenient to use since the programmer doesn't have to know line

.

numbers for a branch (such as -

Line Renumbering

Line numbers are automatically renumbered when a program line is inserted or deleted. As
lines are inserted or deleted in a program, the line numbers of relative or absolute go to or go
sub statements are changed as required to reflect the insertion or deletion. The address in the
jump statement is not changed. The entire program is checked before any deletion is made. If
aline being deleted is the destination of a relative or absolute go to or go sub statement, an

mand -
An error message is not displayed when the line containing a label name in a gto statement is

deleted.

Programming 3-31

If a line becomes too long due to line renumbering, the line number for that line will appear
followed by a ** when the line is displayed or listed. For example:

o 8

L

mioL annha Line 8 was stored with 73 characters.

Inserting aline at line 7 causes line 8 to be renumbered such that the branch is to line 100. The
line will appear as:

To view the entire line, delete an appropriate line to recover the original line numbering. The

fact that a line is too long to display or list does not affect the operation of the program when
the program is run.

More information on line renumbering is in the Program Debugging section.

Labels

Labels are characters within quotes located either at the beginning of a line, after a go to or go

sub statement, or after a run or continue command. Labels at the beginning of a line must be
followed by a colon.

Labels are used for branching and for remarks within a program. When used for branching,
the label in the go to or go sub statement is compared to the line labels in the program until a
match is found. Then, at the end of the line, a branch is made to the line containing the label.
The first time a branch is made to a label, the program is scanned beginning at line O until a
matching label is found. From then on, the branch is directly to the line with that label. When

comparing labels for branching, a comparison is made on all characters in the label, including
blanks.

Labels are often used to make remarks in a program for documentation purposes.
For example:

Note that a colon must follow a label even if nothing else is in the line.

The Go To Statement

The go to (gto) statement causes program control to transfer to the location indicated. When a
line contains more than one go to statement, only the last one encountered is executed.

3-32 Programming

Absolute Go To

=% line number

An absolute go to statement is used to branch to the indicated line. The line number must be
an integer (such as 5 or 13).

When an absolute or labelled go to statement is executed from the keyboard in calculator
mode, the program line counter is set to the specified line number. To view the line, press the

key.

Relafive GoTo

= number of lines

-number of lines

A relative go to statementis used to branch forward (+) or backward (—) the specified number
of lines, relative to the current line. The number of lines must be an integer.

Examples:
2HY atao +1 Go forward 1 line.
21 =@ato -3 Go back 3 lines.
at o +H#

- Go to the beginning of the current line.
ato ~E

[k]
Vi Pl

Labelled Go To

A labelled go to statement is used to branch to the line with the indicated label (see section on
labels). This is the most convenient type of branching since no line numbers have to be
considered.

Programming

Example:

Go to the line labelled by “Avg.”.

When a labelled go to statement is executed from the keyboard in calculator mode, the
program fine counter is set to the specified line number. To view the line, press the (+ J key.

Multiple go to statements in a line are useful for N-way branching when used with an if
statement. N-way branching is explained later.

The Jump Statement

&z number of lines

The jump (jmp) statement allows branching from the current line by the number of lines
specified. This statement is similar to the relative go to statement except that the number of
lines can be an expression. If the number of lines is positive, the branch is forward in the
program. If the number of lines is zero, the branch is to the beginning of the currentline. If the
number of lines is negative, the branch is backward in the program. If the number of lines is
not an integer, then it is rounded to an integer.

The go to statement executes faster than the jump statement. The jump statement can only be
at the end of a line, otherwise error 07 is displayed when you try to store or execute the line.

Examples:
Pgs dme 18 Jump forward 10 lines.
Iy dme A Jump the number of lines designated by the
value of A.
2 imp LZ=212 Jump forward 2 lines if Z=2; otherwise jump to

the beginning of the current line.

L3]

ees Hipr B+ Increment B and jump to the next line if B is
148128 greater than 20; otherwise jump to the begin-

ning of the current line.

3-33

3-34 Programming

The Go To Subroutine and Return Statements

The go to subroutine (gsb) statement allows branching to subroutine portions of a program.
Subroutines are useful when the same routine will be executed many times and called from
different places in the program. A return pointer is set up when the go sub statement is
executed. This pointer points to the next iine after the line containing the go sub statement.
The return (ret} statement returns the program execution to the pointer location. The return
statement is the last statement executed in the subroutine and must be the last statement in a
line. The depth of subroutine nesting is limited only by the amount of available memory. Each
subroutine return pointer requires eight bytes of memory. Subroutines should be entered only
by a gsb statement and should be exited only by a ret statement.

When a line contains more than one go sub statement, only the last one encountered is
executed. There are three types of go sub statements: absolute, relative, and labelied.

Absolute Go Sub

:line number

An absolute go sub statement is used to go to the subroutine at the specified line number. The
line number must be an integer.

Example:

Go to the subroutine at line 15.

=
ad
ol

i

Ly
ot
LIt

)
00
wa
%
!
P

End subroutine with return statement (program
returns to line 8).

Relative Go Sub

i -+ number of lines

- number of lines

A relative go sub statement provides forward (+) or backward (—) subroutine branching the
specified number of lines, relative to the current line number. The number of lines must be an

integer.

Programming 3-35

Examples:

Go to the subroutine at line 12.

=i
o1t
in
o
4=
Y

Go to the subroutine at line 5.

A %
el
It
g
¢
L

Labelled Go Sub

=it |abel

A labelled go sub statement is used to branch to the subroutine at the indicated label. This is
the most convenient form of subroutine branching since no line numbers need to be consi-
dered.

Example:

“subl” Go to the subroutine at the line labelled by
“sub1”.

il
.
]
1r
L

Multiple go sub statements in a line are useful for N-way branching when used with the if
statement. N-way branching is explained later.

Calculated Gosub Branching

By using the jump statement and the go sub statement together, calculated branching to
subroutines is possible. This form of subroutine branching is called the calculated go sub and
has the form:

dummy location : . =15 expression

The dummy location can be a line number, + or — a number of lines, or a label, but the
calculator branches to the subroutine designated by the computed jump expression. For

example:

BHi ent M

1t ash “H'iime M

28 prt "end’

Fr "Hliend

4: prt Csublts
ret

S opry Tzubf's
Fet

£6f prt Ysub3dts
Fet

If a 3 is entered for N, the program branches to the subroutine at line 4.

3-36 Programming

The If Statement

i ¥ expression

The if statement is used to branch based on a logical decision. When an if statement is
encountered, the expression following it is evaluated. If the computed expression is zero
(false), program control resumes at the next program line (unless the preceding statement
was a go to or go sub statement as explained later under N-Way Branching). If the computed
expression is any other value, it is considered true, and the program continues in the same
line. The if statement is most often used with expressions containing relational operators or

flags.
Example:
Hi: ent HE
1+ if A=Bigto
I |:I !'-l E‘ "
2% ato "zerao!
i anetidse
ki H: : ”w
4: =tp
93 "zern'idse
"HE#E"
Ef o oend

Whenever A and B are equal, *

<& is displayed. All other times,

Enter a value for A and B.

if A=B, go to “one”; otherwise go to ‘zero”.

At label “one”, display then stop.

At label “zero”, display then end the

program.

‘is displayed.

The if statement can be used with other statements besides the go to statement used in the
above example. The previous example could be shortened to:

B: ent H«E

1t if H=Bidse
"A=E istRm

21 dsp "HER"

2t end

Note that no go to statements are used.

Programming

N-Way Branching
The if statement used with a go to or go sub statement makes it possible to branch to any of
several locations. This type of branching is referred to as n-way branching, and has the

following forms:

or

If the first if statement is false, then the branch is determined by the first go to or go sub
statement. If the first if statement is true, the second go to or go sub statement determines the
branch. Go to and go sub statements can be mixed in the same line.

When a line contains more than one go to or go sub statement, only the last one encountered
is used. An if statement whose expression is zero can abort execution of the remainder of a
line (before subsequent go to or go sub statements are encountered).

Example:
2Bt ato 2451
ArdBiato D2vif
ardf@iato Taan
211

If X'is less than or equal to 30, the program branches to line 24. If X is greater than 30 and less
than or equal to 40, the branch is to line 32. If X is greater than 40, the branch is to the line

labelled “max’’.

The Dimension Statement

=41 item [:item:...]

item may be: simple variable
array variable idimension{: dimension:...]}

The dimension (dim) statement reserves memory for simple and array variables, and initializes
the indicated variables to zero. r-variables can not be dimensioned in a dimension statement.

3-37

3-38 Programming

In the dimension statement, the dimensions of an array can be specified by expressions. For
example:

A ent Halsrd
: dim AIMsIls Variables are used to specify dimensions.
BIlrZ2l Clde2#H]

Variables are allocated in the order that they appear. If a variable is allocated already, an error
results. All the variables dimensioned in any one dimension statement are stored in a contigu-
ous block of memory. This is important when recording data.

Dimension statements may appear anywhere in a program but any dimension statement can
only be executed once during a program. The number of dimension statements is limited by
memory size. The number of dimensions and the size of the dimensions of an array is limited
only by memory size and line tength. For example:

B: dim HI2:2329 Reserves 128 array elements.
Zeges 2l -
1i dim MIlBBE] Reserves 1000 array elements.

Specifying Bounds for Dimensions

A dimension may be specified by giving lower and upper bounds. The lower bound must be
specified before the upper bound. The two are separated by a colon. The bounds must be in
the range from —32767 through 32767. For example:

i odiv S[-32:8H. Reserves 12 array elements.
416l
This statement reserves the same amount of memory as:

g: dim ®ld4:31 Reserves 12 array elements.
The elements of array S are referenced as:

S[-3,4] S[-3,5] S[-3,6]
S[-2,4] S[-2,5] S[—2,6]
S[—-1,4] S[-1,5] S[-1,6]
S[0,4] S[0,5] S[0,6]

If a lower bound is not specified, as in X[4,3], it is assumed to be 1, the same as X[1:4,1:3].

Programming

The Clear Simple Variables Statement

The clear simple variables (csv) statement clears any allocated simple variables to zero. The
clear simple variables statement does not de-allocate variables. Therefore, an error results
when the following line is executed:

A: T+Aiczuidim A Not allowed. Cannot allocate A twice.

The List Statement

- [beginning line number [: ending line number 1]

t. special function key

The list statement is used to obtain a printed listing of a stored program, section of a program,
or special function keys. If no parameter follows the list statement, the entire program is listed.
if one line number is specified, the program is listed from that line to the end. If two tine
numbers are specified, the program segment between the two line numbers is listed. To list all
of the special function keys, execute ::

t L (for list keys). When list is followed by pressing
an individual special function key, then only that key is listed (this is not programmable). The
list statement must be the last statement in a line.

Examples:

Lists the entire program.

List lines 10 through 15.
Listline 4.

List the special function keys.

List special function key f10 (not programma-
ble).

At the end of a listing, a checksum is printed. This checksum is useful for detecting inter-
changed or omitted lines and characters. Any difference in the programs generates a different
checksum. In the following two programs, only the characters % in line 1 are interchanged.
Note that the checksums are different. There is no change in checksum from machine to
machine, with different memory sizes, nor with different ROMs.

Computer
"~ Museum .

3-39

3-40 Programming

et

£}

gl

(STt

1
e

e H
o0 o R |
e
T4

sy
- aw

i
)

P
i

e =

R
dart. 18 rrt "szatr,
of
=9 H 28 oprt Uis"eTH
2V end
FPAVIR
\ Different /

Checksums

Used and Remaining Memory

After a list operation, two numbers are displayed. The first number is the total length of the
program in bytes*. This number doesn’t include variables, subroutine return pointers, etc. The

second number is the

unused memory in bytes. For example:

[-

Program Length Unused Memory

(in bytes)

*A byte is the basic unit of data in the 9825. 8 bits make up one byte. 8 bytes are reguired to store a number.

Programming 3-41

Program Debugging

Debugging is the process of refining a program by editing, correcting, and updating. Like
programming, it is a creative process. Many operations are involved such as deleting and
inserting lines and changing, inserting, and deleting characters. Selective tracing and selec-
tive stopping are useful for locating lines which require changes. is useful for going
through a program one line at a time. This chapter explains some of the steps in editing a
program.

Finding the Problem

The first step in debugging is to find the lines which require changes. This can be done in
several ways. One way is to step through a program by pressing once for each line to be
executed. Then check the results after each executed program line.

Another way is to use the trace, stop, and normal statements. When program lines are traced,
the line number, and variables and flags which are assigned values are printed. This allows
you to monitor program activity in individual program lines. Using the stop statement, the
program can be stopped whenever a specified program line is encountered. The normal
statement is used to terminate tracing and stopping. Stop, trace,and normal statements are
explained later.

Fixing the Problem

The next step in debugging is fixing the problem. In many cases, this is as simple as changing
one character. Fixing the problem could, however, require rewriting many program lines.

To modify characters within a line, fetch the line by pressing the key followed by the line
number of the line requiring the change. Then press . The line will appear in the display.
Next press either (=), if the change is closer to the end[of the display, or (=), if the change is
closer to the front. Once a flashing cursor is over the location needing correction, you can
either insert characters, delete characters, or write over the existing characters. To insert
characters, press the key. This changes the flashing # to a flashing 4. Characters that are

typed-in are inserted at the left of this cursor. To delete characters, press character == for

the 4 is in the display, press to get &) and then enter the necessary characters.

3-42 Programming

To modify lines within a program, use the key or the (*] and (+) keys to bring the line
into the display. To delete the line, press the line =« key.

If aline being deleted has a line number referenced by a go to or go sub statement, an error 36
will occur. Either execute the delete command with the optional asterisk (%) parameter or
adjust the line reference in the go to or go sub statement accessing that line. In the following

example, line 25 is to be deleted; but line 25 is referenced from line 27. Two alternatives are
shown.

Program section:

25% prt ‘nunber”
s H
2B 1 H=ZPistre
Z27% H+lsMiato 25
Alternative 1:
Type in: =
Press: O Deletes line 25 only. The go to statement in line

27 still addresses line 25.
Alternative 2:

Change line 27 to:

=

Htl#+Miatao 25

it

Then fetch line 25 and press line (e,
or execute “

Toinsert aline, fetch the line that the inserted line is to precede. Then type the new line into the
display and press the line key to store it. All the lines from the fetched line on are
automatically renumbered (incremented by one). When a line is inserted, the line references
of go to or go sub statements are incremented to reflect the new line numbering. If the line
being inserted contains an absolute go to or go sub statement, it is assumed that the line
numbers reference the lines before they are renumbered. Thus, if a line inserted before line 30

contains a =t ¢ =, (The old line 45 is renumbered
to line 46.)

In this example, a line is inserted between lines 1 4' Ert U admber

14 and 15 ’ |:|+. dU'E‘ " k) D

127 =3to 19

Programming 3-43

First, fetch line 15, then type the line to be in-

serted into the display #

Then press the line key. The display will

be (1=+)

To see where the line was inserted, exe-

cute:

14: mrt “nusber

of davz o0

158 prt “number
e c H

16t ato 2@

Note that the line number in the go to statement in line 16 is incremented since old line 19 is
now line 20.

The branching address of the jump statement is not affected by adding or deleting lines in a
program,

The Debugging Statements

The trace, stop, and normal statements are used for debugging programs. The three state-

ments have dual roles in that their action depends upon whether any parameters are
specified.

To effectively use the trace, stop, and normal statements, the internal operation should be
understood. There is one master flag which enables and disables overall tracing and stop-
ping. In addition, each line has two flags. The trace flag enables and disables tracing of the

line. The stop flag enables and disables selective stopping at a line. These flags are unrelated
to flags O through 15 explained earlier in this chapter.

3-44 Programming

The Trace Statement

. <. [beginning line number [« ending line number]]

The trace (trc) statement sets the master trace flag. If line numbers are specified in the trace
statement, then the individual line trace flags are set on the designated lines. One line number
specifies that line only and two line numbers specify the block of lines from the beginning line
number through the ending line number.

During the execution of the program, a specific line is traced if both the master trace flag and
the individual line trace flags are set. When aline is traced, the number of the line is printed as
well as information describing any variable assignments and flag operations (involving flags 0
through 15).

The Stop Statement

The stop (stp) statement with line numbers sets the master trace flag and stop flags on the
designated lines.

Before each program line is executed, the stop flag for that line is checked. If this flag and the
master trace flag are set, the program is stopped before the line is executed. The number of
the current program line is displayed when the program is stopped. Execution of the program

The Normal Statement
12+ [beginning line number [: ending line number]]

The normal (nor) statement clears the trace and stop flags of the lines specified by the line
numbers. [f no line numbers are specified, the normal statement clears the master trace flag.

The use of a master trace flag in addition to individual line trace and stop flags makes it easy to
enable or disable selective tracing or stopping of parts of a program. This process is shown in
the following example.

Programming 3-45

A 100 line program contains three sections in which critical operations are performed. These
sections can be traced by executing the following statements:

The program is run and the tracing printout indicates that line 45 contains an error. The line is
modified and s+ is executed to clear the master trace flag. The program is again run, but this
time the assignments are not printed. At the conclusion of the program it becomes obvious
that the program still contains an error. The three critical sections of the program are again
traced by executing . This sets the master trace flag so that the lines 5-15, 40-50, and
70-85 are traced (the trace bits are still set on these lines). After the program is totally
debugged, the individual line trace flags are cleared by executing

The individual line trace and stop flags are not normally stored on the cartridge when a
program is recorded by the record file statement. These flags can be recorded on the tape
cartridge along with the program by inciuding the optional debug (‘DB”) parameter in the
record file statement. The master trace flag is not recorded. To have the program automati-

cally trace the lines when the program is loaded back into the calculator, put trc in line 0 to set
the master flag.

3-46 Programming

Programming Hints

There are usually several ways to write a program or section of a program to perform a specific
job, and the programmer is often faced with the choice of which of several methods to use.
Usually the goal is to save program space and execution time and at the same time maintain
readability. However, these goals are sometimes conflicting and the programmer must decide
which is the overriding concern.

This appendix is not intended to discuss programming techniques in general but to describe a
collection of hints for the programmer who wishes to save space or time. While by no means
complete, this list describes some of the trade-offs which are “machine dependent” and
therefore not necessarily obvious.

In most cases, the time savings are small and are not observable unless the statement is
executed thousands of times. The space savings usually only amount to a few bytes. To check
the amount of space used by a statement, execute i :

after storing the statement.

Method Method
Requiring With
Less Faster
Program Execution
Method A Method B Storage Time
Simple Variables r-variables A
r-variables one-dimensional array Same
variables
Multiple statements per One statement per line A A
line
gto +5 gto 5 Same Same
gto -5 gto 5 ‘Same Same
gto “5” (one ortwo char-{ gto 5 Same Same
acter label)
gto +5 imp 5 (Note 1) B A
VX X1.5 A A
XX | X712 (Note 2) | § A | Same

Programming 3-47

T T Method T Method
Requiring With
Less Faster
Program Execution

Method A Method B Storage Time
implied multiply explicit multiply Same Same
T 3.14159... A A
if fig 2=1 if fig 2 B B
ifflg2=0 if not flg 2 B B
it A#0 if A B B
if (A<B) or (B<C) if (A<B) + (B<C) Same A
if (A<B) and (B<C) if (A<B) ~ (B<C) Same A
J+5—K; K=3—>L (J+5-K)—3-L B B
J+1-J; if J<5 if (J+1>J)<5 B B
Specify lower bounds for | Use default lower bounds. B Same
array dimensions.
Use simple variable asa | flag (Note 3) B
flag (as 1—A).
Using both tracks alter- Using one track at a time, Same A
nately. sequentially.

Note 1: For computed branching, only jump statement can be used.
Note 2: X1Y is done by repeated multiplication if Y is an integer.

Note 3: If only one testis made, the flag method takes less room. If two tests are made, both methods

are the same. For more than two tests, the simple variable method takes less room.

3-48 Programming

Notes

\N

Advanced Programmin

Chapter 4
Table of Contents

For/Next Loops (for, next) ... o 4-3
SUDPIOGraAMS . 4-10
Subroutines (Cll, TeY) .. . 4-10
Passing Parameters 4-12
FUNCHIONS . . 4-13
P-nUMDErS . 4-16
Split and Integer Precision Storage 4-20
Split Precision Storage (fts, stf) 4-20
Integer Precision Storage (fti, itf) 4-26
SUMMATY .. 4-30
Cross Reference Statement (xref) 4-32

g 4-1ww

\-

4-2 Advanced Programming

Notes

Chapter 4

Advanced Programming

The Advanced Programming statements and functions enables you to —
e Use for/next loops to repeat sections of a program
e Pass parameters to subprograms including subroutines and functions.
e Store numbers in split and integer precision formats to conserve memory.
e Generate a list of the variables used in a program and the line numbers in which they

occur using the cross reference statement.

Advanced Programming (AP) is available in a plug-in ROM card for the 9825A and S Comput-
ers. The ROM card uses four bytes of read/write memory. AP is a permenent part of the 98258
Computer.

For/Next Loops

cimand i. statements enable you to repeat a group of statements within a program
as many times as necessary.

- step size value]

% same simple variable

and . statements, including the statements between them, form a loop within
aprogram. The + 1+ statement defines the beginning of the loop and the number of times the
loop is to be performed. The variable that follows the ¢+ . statements can be
any one of the simple variables A through Z.

The initial, final and step size values can be expressions. If the step size value is not specified,
the default value is 1.

4-4 Advanced Programming

Here’s an example of a for/next loop—

L]

[

S o far I=1tao.5

L]

]

]

L

18: rnext 1

[]

]
This for/next loop would be executed five times - when | = 1,2,3,4 and 5. Each time the

- 1. statement is executed, the value of | is incremented by one, the default step size value.

When the value of | exceeds the final value (when | = 6)* the loop is finished and the
program continues at the statement following the % statement.

The advantages of using for/next looping instead of an i ¥ statement are shown in the follow-
ing examples where the numbers 1 through 10000 are displayed in succession.

i ¥ statement for/next loop
B 1] B for I=1 to
1t dep 1 Taapa
Sroif PI+laTid=] 1t dsp I
BEAAs 9t] 28 onext 1
3% heer 3% beer
41 =g 45 ehd

The program that uses the for/next loop is easier to key in, takes less calculator memory (40
bytes) and is executed faster (25 seconds). With the i+ statement, the program uses 48
bytes of memory and is executed in 32 seconds.

The initial value of the variable assigned in the for/next loop does not have to be 1. The
following example totals the integers, 90 through 100, and prints the total (1045).

T
1 3
B,
3 |

G+ Total= 1645,

I+A+A
st]
prt "Totol=s"s

* This is an often overlooked aspect of for/next loops and is covered on the next page.

Advanced Programming 4-5

The next example illustrates that variables can be used in the # :: : statement. The variables B
and C are assigned values in the enter statement in line 1 and are used inthe { " statement
inline 3.
g: @-H B= .68
1: srnt B L L= 3. 08
2: mri "E=".H. Total= B, a8
2 !:: I q i
i for I=B to L , s
41 I+H+A B= S.58
50 onext ol L= e
Biorrt "Totals"s Total= EL 8
R
71 oend

B = 1and C = 3, thetotalof 1,2 and 3 (6)is printed. IfB = 55and C = 8.5, the total of
5.5, 6.5, 7.5 and 8.5 (28) is printed. In either case, the value of | is incremented by one after
each loop. If the value of B is greater than the value of C, the loop is not executed and the
program continues at the first statement following ::=:::% I, in this example the print state-
ment in line 6.

The following example illustrates an often overlooked aspect of for/next fooping. After each
loop is performed, the s =% statement increments the value of | by 1. Then the incremented
value is compared with the final value. If the incremented value is not greater than the final
value, the loop is repeated. When the incremented value is greater than the final value (when |
= 11) the loop is no longer repeated and the statement following the s 0% statement
(i)

value for | is 11 and the calculator retains this as the value of |,

is executed.* Although the final loop is performed when | = 10, the last incremented

B: for i=ldn 18
14 prt- 1

2ronent o Tiapd

e prn ol

45 emd

*Statements following a i i statement

precedes a i

1% statement are not executed until the entire loop is completed. If a %
i statement on the same line, the .7t or =% 7t isn't executed until the loop is completed.

4-6 Advanced Programming

The next program shows how the for/next loop can be used to assign values to arrays. In this
example, the array variables A[1] through A[4] are assigned values.

Bs oodim HI43 j.a8
I o Il o4 1. 806
R R R
It et IenDIds 2LER
e R 4,886
db et o]
4 oend £ s
S.H8

(A]

ot

fur
¥ i

For/next loops can be nested or located inside one another up to a depth of 26 (one for each
simple variable A through Z). However, one loop cannot overlap another. Before running the
following programs, set the print all mode by pressing (.

Correct Nesting

)
s
el

L

i
il 15
1

o
B

-

[t

¥ R iy I RV S RN
Wh mbomr wa s e

=

J
1. o8
koo BE
=4'¥

T
o 8
¥

R
L

T
"
o
ot

o
(% JE)

P
i

L)
=
]

)

o
s
Uil
i
a

X

3

T

e
umala’

O Do
[3
o
e B e
15

o]
u
R s |

T

a

l'l"

VR R

Advanced Programming 4-7

Incorrect Nesting

Bs o for Ismdote 3 1o
Profmr =gl & 4
2t omprt Ixdizpc
droneat 1 s
e pent 4 @5
Eioend
- HH

errabl HAZ irnod

In the incorrect nesting example, the | loop is activated first and then the J loop is activated.
The J loop is cancelled at the same time that ::# =t 1 is executed because it’s an “inner
loop”. When the | loop is completed and =% .iis finally accessed, &

displayed. This is because the J loop was cancelled and was not reactivated after the last |
loop.

For/next loops can be written in more than one line, as previously shown, or all in one line, like
this—

rrto COUOHE”

When the final value of | is reached, the last statement in the line is executed and .
printed.

If D is pressed while the program is running, the program halts when the current line is
completely executed. If a for/next loop is completely contained in one line and C) is pressed,
the calculator will not stop until the loop is completed. Only can stop the execution of the
line containing the loop, before its normal termination. This can be avoided by putting the
¢ mrand s statements on separate lines.

4-8 Advanced Programming

Each # ::+ statement can have only one associated :

<% statement. When a + i+ state-
ment is executed, and there is already an active loop using the same simple variable, then the
previous loop is cancelled and the new loop becomes active. In the following example, the
first I loop (in line 0) is activated and then cancelled when the second | loop is activated in line
2. When line 4 is executed, control returns to the latest | loop (in line 2).

Br o for Isl o to 11=
PREES o T

18 mrt o= S HER

2t fuo lz= 4. 6@

I L= 5.8

41 meut 2= by BB
2= FLEE
Ig= o B
12= i
Iz=

The optional step size value enables you to specify a step size other than 1, the default step
size value. For example—

dgr for I=8 to g, e
28 by 1 g, 6a
1o pre 1 S8 Ban
2% pext 1 TE LR
46,06
By adding the optional step size value to the ¢ :::" statement, the simple variable will be

incremented by that value each time the i % statement is executed. In the previous exam-
ple, the loop is executed six times — when | = 0,10,20,30,40 and 50. As soon as the
incremented value is greater than the final value, the loop is exited.

For/next loops can be decremented by using negative values for the optional step size value.

For example—
@ for I=38 to SEH.DH
B ohy —-180 40 . BE
e prri 1 IR, B
2 onewt SR EE
18,684

o8
1

.‘_

T
o
A
i
2y

Advanced Programming 4-9

The step size value does not have to be an integer; fractional numbers are allowed. For
example—

The initial value, the final value and the step size value can be variables or expressions. For

example—
S for I=A ta B
by [B-R1-188
|
[
*
18y rmext 1
Once the ¥ 3 statement is executed, the initial, final and step size values can be changed

without affecting the number of times the loop is repeated. In the following example, the
variables A and B can be used within the loop for other purposes, but the loop itself is
repeated only six times.

4
S

=¥
o
m
e s 3
oo By B |
= 5

e
™
L

|1 I

n
T A i, S £ |
D

MRS

£ 03 P o= 5
L B i S 3 S

I I

e A e O B

-
aat
-
m
wan

= g
u

5
A

a
[yl
¥
LN
o
w0

i1

A

ax ex |J'| =m 8@ @8 Bon me
L
el

=
by 1]
-
St
-
KA
vy
%)

1d

TN 1

1
A Tl a2
-
P I wonl
—
Y

sl

L

T
—
Jex o

AR

ot
)
N
o
el
[N

Wt

1

u
ol X e
B B e

1,
1,

L]
.
s
=
s

..
facy]
el i B

o
2

LR (]

=]
n
i

4-10 Advanced Programming

Subprograms

A subprogram is a programming routine that enables you o repeat an operation many times
substituting different values each time the subprogram is called. There are two types of
subprograms — subroutines* and functions.

Subroutines

A subroutine subprogram consists of one or more lines of programming which perform a
i) statement followed by the name of

specific task. A subroutine is accessed using a call (:
the subroutine, enclosed in single quotes (apostrophes). As many parameters as needed can
be used, within the limits of line length.

= 1 name * [{parameter [: parameterz:..]]

The first statement in the subprogram is its name, written as a label (enclosed in quotation
marks and followed by a colon). The last statement executed in a subprogram is always a

return (%) statement.

“Subroutine subprograms are similar to standard subroutines called by the gosub (*) statement within a mainframe program. Tp
eliminate confusing the two, subroutine subprograms will be referred to as subroutine subprograms and standard subroutines will

be referred to as mainframe subroutines in this chapter.

Advanced Programming

Here's a program with a mainframe subroutine which prints the sum of two numbers—

B: 13A32+E
i

gzh "hame "l
prt "DOHE®
2: end
3t ‘mame’:
4: pri A+EB
B ret

And here’s a program that uses a subroutine subprogram to do the same—

i

A look at both programs shows that the subroutines are identical, but the calling statements

are different. A -

: statement, followed by the name of the subroutine enclosed in quotes, is
used to access the mainframe subroutine, while a . i | statement, followed by the name of
the subprogram enclosed in apostrophes, is used to access the subroutine subprogram.

There’s another difference between the two. The subroutine subprogram is executed im-
mediately, but execution of the mainframe subroutine is delayed until all other statements in
that line are executed, as shown by the following printouts.

Mainframe Subroutine Subroutine Subprogram

i |
15

DOHE = 3. BE
: DOHE

el
i

With the mainframe subroutine, iiiikii is printed before the routine is accessed and executed
and program control returns to the line following the one containing the =::

- statement.

The subroutine subprogram is accessed and executed immediately so the sum is printed first.

Program control then returns to the statement following the call statement and
printed.

4-12 Advanced Programming

In addition to the immediate execute feature, the call statement can pass parameters to the
subroutine. In a subprogram, parameters are represented by p-numbers (parameter num-
bers). This enables you to call the subprogram repeatedly using different values for the
parameters each time. Here’s an example of this based on the previous two programs—

@i ent HE 12 w1l *"phome? (BB
10 cll *hnomet (A o
Eliprt “DOHE" .
E: E'.'-Id ®
.—_.: " _i___'ll: _1:. } !
‘-’r11+:gm- g i "hame " tRrt Rl4ARE

4: ret

Passing Parameters

Before covering functions, here's some general information about parameters. A detailed
explanation of parameters (p-numbers) is found later.

Parameters that follow the call statement are always enclosed in parentheses and as many
parameters as the length of the line allows can be used. These parameters can be constants,
simple variables, expressions, r-variables or single elements of an array; entire arrays,
strings, string arrays and text cannot be used as parameters. In the preceding example, p1
and p2 in line 3 correspond to parameters A and B.

Parameters can be passed back from subroutines to main programs by assigning a value to a
p-number which corresponds to a variable. For example, lines 1 and 3 in the previous program
can be changed to—

Ay Uromel tplé
pEdpd

Subprograms can be nested (called by another subprogram) as deeply as the calculator
memory allows. Each call statement requires a minimum of 26 bytes of memory when exe-
cuted. That memory is returned when & % is executed. |f parameters are passed, additional

memory is required.

Advanced Programming 4-13

Functions

A function subprogram consists of one or more lines of programming which perform a specific
task. A function is accessed using the name of the function enclosed in single quotes (apos-

trophes) within an expression or statement in the program. As many parameters as needed
can be used, within the limits of line length.

“name’ [iparameter 1[: parameter 2:...]1]

&L parameter

The first statement in the function itself is its name, written as a label (enclosed in quotation
marks and followed by a colon). The last statement executed in a function is always i &%
followed by a return parameter. The return parameter, like a parameter that follows call state-
ments, can be a simple variable, a constant, an expression, an r-variable or an element of an
array. In addition, a return parameter can be an array, a string, a string array or text.

Here's an example of a function based on the previous programs—

@i 14AiZ4E 3. B
13 prt *roms’s DOHE
prt COOHE”
28 end
3 "mame” s
41 ret R+E

When the program is run, the function is accessed as line 1 is executed. The result of the
function is automatically returned and substituted for the name of the function in the statement
(mrr ¥ &). This causes the value of A + B to be printed.

Like a subroutine, a function is executed immediately and program control returns to the
function (7 :

= ¥). A function subprogram can be used in a program wherever an expres-
sion can be used.

4-14 Advanced Programming

A parameter which follows a function call can be a simple variable, a constant, an r-variable,

an expression or a single element of an array. (Entire arrays, strings, string arrays and text
can't be parameters in a function call.) Parameters following a function call are always en-
closed in parentheses and as many parameters as the length of the line allows can be used.

Here's an exampie of a function that uses parameters—

If the return parameter is omitted from a function subprogram, =
parameter follows %

B: ent Ao B

1y omrr Phopet L0
Elipri 'DOHE"

21 oend

A Tnane s

4: ret pltps

1< results: if a return

in a subroutine subprogram or a mainframe subroutine, it's ignored
and no error is displayed.

Functions, like subroutines can be nested as deeply as the calculator memory allows. Each

function call requires a minimum of 26 bytes of memory when executed. That memory is

returned when

. is executed. If parameters are passed, additional memory is required.

Advanced Programming 4-15

A function subprogram can be used within another subprogram or within an expression. When
the function call is placed in the expression, the value returned by the function is used directly
in the expression.

Here's an example of a function subprogram that computes the factorial of a number (lines 7
and 8) and uses it in the calculation in line 4 to find the number of combinations of N items
taken R at a time.

B: fxd B8

1t ent "Ho, of
itemz? " H

25 oent Hoo toke

Chontoa VimeT R

a1

L
BEE “Lumblﬂat
z TaH e

s ktﬂiwﬂ s s

e
Ci
:‘j, "
1]
:;.

43 pri ”“rw
(PEY IRt L PR
Bilizpe 3

5: end

gt e o

7i A2p2ilepd

g if plE#riipZ+
l#pdipZpi+pdi
dmp O

Lumbltﬁ*lnf" ot

1z
itedns toker =
iy times

gy
T
o

4-16 Advanced Programming

P-Numbers

A subprogram (subroutine or function) enables you to repeat an operation using different
values each time the subprogram is called. This is accomplished by following the subprogram
call with a list of parameters. When these parameters are passed to the subprogram, a
parameter number or p-number is assigned to each parameter in the list. The p-numbers are
assigned to the parameters consecutively, starting with p1. The subprogram operation is then
performed using the values passed by the subprogram call.

In addition to passed parameters, there are local p-numbers. When allocated, a local
p-number is initialized to zero. Local p-numbers are used in a subprogram as needed. Here’s
an example that uses passed parameters and a iocal p-number.

@i ent HeE

18 prt Tpame? (Hs
Bl

24 ehd

3 "rowme"iplels

1

n2RpdF¥RAIrEt TRE

-

When this program is run, p1 and p2 correspond to the passed parameters A and B, but p6 is
alocal p-number which, when allocated, is initialized to zero. When the subprogram operation

is performed using p1 and p2, the result of the function ({" &) is returned and printed.

P-numbers are assigned to parameters consecutively, starting with p1. If you use a local
p-number that doesn’t follow the passed p-numbers in consecutive order, all p-numbers in
between are automatically allocated as local p-numbers. When allocated, these p-numbers
are initialized to zero. In the previous example, p3, p4 and p5 are initialized when p6 is
allocated and require memory space, even though they are not used.

PO is also a local p-number but it isn't initialized to zero. Instead, when the subprogram is
called, p0 is initialized to the number of parameters passed to the subprogram.

Subprograms can be nested (called by another subprogram) as deeply as the calculator
memory allows. In addition, a function subprogram can be used as the parameter for another
subprogram (function or subroutine) like this—

In the line above, A and B are parameters for the function * * and the result of the

function is the parameter for the subroutine *

Advanced Programming

When subprograms having parameters are nested, each set of p-numbers is independent of
the p-numbers in the next subprogram or level, even though the same p-numbers may be
used in each. To illustrate independent p-numbers in nested subprograms, the following
example converts a Fahrenheit temperature to Celsius and then outputs both temperatures.
Notice that each subprogram uses p1 without affecting the value of the other.

Br fwd B

12 "LUtent "Tenm
sroture iFIT"sT

Z2:ocll o Pluteutt
T+*CP (T iato
wy o

I tOutput

4: mrt "Fahrenhe
it="spls"Celziu
z="aps

Siospc dret

[

Tiopi-323p2

g ret OREST

When the trace mode is established (% . i+) to monitor the activity of the running pro-
gram, value assignments for each p-number used are not printed as they are for each simple
variable. Instead, as in line 7 of the following traced printout, all p-numbers are referenced by

ex = without indicating the specific p-number.

-,

Exd

= P P e (5

fant |

™

nnBr ne am {} a0 mp gp “ me nn

RGN I R R B

4-18 Advanced Programming

If a p-number is used as a parameter in a nested subprogram call, there may be some
interaction between the p-numbers used in each subprogram. The following program uses
nested subprogram calls with parameters to illustrate what happens to p-numbers, variables,
expressions and constants in a parameter list when their values are changed in a subpro-
gram.

i3
]

Be fae] G5 3R

1: cll '"Sub-1°1H
s S L#RD

2% prt "Hain' s
"H="iHisztp

2: "Sub-1"icll
PSub-27 [Asrls
5

rBrSs 1 2R

43 Ewi%pi

B: ZpZ *P: Pelsnd

Bfoprt "hughedt
plepfepdizsps 3
retl

Fr o tESyb-gls

g: Zplopl

Q: ApZepPidpidipld
i 2pdepdl Gpbhenk

18 prt "Sub-27
Flepdspdanpdsp

tEo osret

'!

A8

The main program (lines 0 through 2) contains the call for i:ikz - & with three parameters — A,
5and 1xA.
5 and 1xA.

the values. Program control returns to line 4 (=

= which has five parameters — A, p1, p0,

i (lines 3 through 6) calls

< (lines 7 through 10) tr|ples the value of each parameter and then prints
-~ 1) and the current value of each parame-

ter is doubled and printed.

Advanced Programming 4-19

Here's a chart that shows the values of the parameters during program execution. The shaded
chart below duplicates the chart at the top and shows values before

- is called.

Sub-1

Passed Initial | Corresponding

Parameters | Values p-numbers

Computer

“Museuin
A 2 p 2
5 5 p2
1xA 2 p3
Sub-2
Passed Initial | Corresponding | Values after| Values after "Since A and p1 (in
Parameters | Values p-numbers line 8 line 9 Sub-1) and p1 and
p2 (in Sub-2) are all
A 2 p1 6 8% different names for
p1 2 p2 6* 18 the same value,
pO 3 p3 3 9 when p1 (in Sub-2)
5 5 p4 5 15 is tripled in line 8, A
TxA 2 p5 2 6 and p1 (in Sub-1)
and p2 {(in Sub-2)
Sub- 2 ig are also tripled.
. 2 The same is true in
(= line 9 when p2 is
& tripled.
Sub-1 (Results before calling Sub-2) Results after return from Sub-2
Values after Values after | Values after
Sub-2 execution line 4 line 5
18 36 36
5 5 10
2 2 4

i
e
1
fica
et
]
SR RN

i
-

4-20 Advanced Programming

When program control returns to the main program, the final value of A is printed.

Main
A= TE

Although p-numbers can be used only within subprograms, they can be accessed in the live
keyboard mode or by stopping execution during a subprogram. A stop statement can be used
in a subprogram to stop execution of the subprogram. The current value of any of the

p-numbers in the subprogram can be displayed or changed, but new p-numbers can't be
created.

Split and Integer Precision Storage

With the AP and String Variables ROM installed in your HP 9825, you can compactly store
values in split and integer precision formats using string variables. In stored form, the values
cannot be used directly in calculations, although they can easily be converted back to
numeric values for that purpose. This enables you to store large amounts of data using half

(split precision) or one fourth (integer precision) as much memory as full precision storage
requires.

Split Precision Storage

Using split precision format, full precision numbers (twelve digit mantissa with sign and expo-
nent) are rounded to six digits and stored in string variables. Only values with exponents in the
range of £63 can be stored using split precision format.

The full to split (¢ % =) function stores a value in split precision format by encoding the value
into four characters* (or bytes) which can then be stored in a previously dimensioned string
variable. The tocation within the string variable (first and last characters) where the encoded
value is to be stored should always be specified to eliminate truncation of the rest of the string.
The value to be stored must be enclosed in parentheses.

¥ 1.3 {expression

*The first character contains the exponent and sign. Each of the three remaining characters contain two BCD (Binary Coded
Decimal) digits.

Advanced Programming 4-21

To unpack the value, the split to full (z %) function is used. The string variable must also be

enclosed in parentheses.

{string variable :

Here's a program that uses the + * = function to store a list of ten random numbers. (The +
function in line 4 generates the random numbers.) The numbers are packed into a string array
consisting of ten strings, each four characters long.*

% i 0= 5

g

#r mw Ty w8 s£w nx = mE

A R

ne

The rest of the program unpacks the stored values using the

-+ function and then prints the
numbers. The values being recovered are six digit numbers because they were rounded

before they were stored using the + . = function.

]

.
. ny
b

pte w0

ma an ,'"] s

—
2

[
f

Now press to start the program and compare these printouts with yours. (Press
before running any of the example programs in this chapter to get printouts identical to those

shown.)

STORIMG FECD
EI L] r_:'? I:‘I
KR 5]
G, 54 &
F,S5ES i
By S A
B, 2 A
A, &

P
s
T 1 o

]
i

*Normally the first and last characters of the string variable being used for storage (i.e., A${l,1,4]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in this program it's not needed, since each string
is only four characters long.

4-22 Advanced Programming

All values are rounded to six digits before they are stored. If you attempt to store a number with
an exponent outside the range of —63 to +63 (and flag 14 is clear), =+ ¢ i is displayed
and ftag 15 is set (to 1)*. To avoid this error, you can set flag 14 before the + % = function is
executed. This causes a default value to be substituted and stored. If the exponent is less than
—63, the underflow default value is 0; if the exponent is greater than +63, the overflow default
value is £9.99999e63. Flag 15 is set regardless of whether flag 14 is set or not.

To illustrate what happens when the exponent is less than —63 (underflow), execute these
statements~

And the display shows—

L

J

Then set flag 14, and the underflow value is automatically substituted. Key in and execute
these statements—

Which substitutes, stores and displays—

\J

To illustrate what happens when the exponent is greater than +63 (overflow), execute the
following statements—

And the display shows—

*Remember that flag 15 is set when any math error occurs.

Advanced Programming

By setting flag 14 first, the overflow default value is substituted. Key in and execute these
statements—

Which substitutes, stores and displays—

[

The next example uses split precision format to store four full precision numbers in each
simple string in a string array. As many numbers as the size of the memory and the size of the

string array allow, can be stored in split precision format. This means that you can use a string
array just like a chart or a table to store data (part numbers, temperatures, etc.) for easy
reference. This program also uses the
stored.

-4 function in line 4, to generate the values to be

o 1

1: AEld:16]
e Tml tood
2 demi oo 4
s i1i+Rinrt
H e
5 EHI+RFL] s
41, +1a24 4]
=1 diepe
i i

S 5

H

Notice that in line 5 three expressions are used to position the value in the appropriate string —
the string used for storage (1), the beginning character of the string where the value is to be
stored (4(J-1)+1) and the end character where the value is to be stored (4J).

To recall the numbers from split precision format, add these lines to the program and run it.

9 for k=l 1o 4
ifd: tor Lel Lo 4
11: stfifs ik
dil~11+ladl11s
His n s '

12: s Lizpe
138 A i

148 ey

4-23

4-24 Advanced Programming

And the printout looks like this—

BL.ETERZ1IIE60 G,
A, 2EE5 @,
8. 43452573 g,
G, SYEavel E.

F, A&7 o d M,

fL.ass RS =R =R=R|
f,818 o B.216T
E"-:_TJ 514]_3.;5:“'.'-‘51
S =21 @, 979

&, £ g4
. "1 .3

Some applications require that data be stored in a linear array. By storing data in a single
string instead of string arrays, numbers can be stored even more compactly by saving the
bytes of memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a simple string using the ¢ #::i function to generate

the values to be stored.

.

) d
o1
toF

v
Fried

fwn)

¥
o

[== 1705
as #m g4 se T ea —.| mn w@e as
[} L-—l

-]

— o Ty
— 1

H

—

4
a

g3 fts [(Ri2+RE[I:
+37]
S pmext I

i

e

To get these printouts—

— e
at)

L7 I Y RE R

oy T

(o o}
Ay

L o TN B R Ny

Sulidl

2y

%

0

A

3

o 4 A

0 a0
= =

—1
o]
K3

TR ol A

.Jk 4,

J

o =], g L

t
X

(I Oy R o B T NN]

a
xa

RNl
heS R Ww ¥ s pO LR

fc B e I e I et B s B T o B B ot B

[V I o B & R e LU B o 0l) 8 <N

o LTED
T T T e

Y
5
k'

be

-]

il

et]

P

oL wn |‘_,_'| ag =, |00

%

-1

A

]

o -

L] 4

L T i

T
=

A M WA

1T gy

et e T vy TR N A

e

e

il

"
"

Vet]
B U § 8 8]

Y

=] b

AHE P AN R AN

D) Qe B N

o

Ty 1

a
i

L

2,

(e

for

b

stf (REL

J=1
4

FaHA R

P

E«

Xy

£ A
Fd

J

To recover the numbers, add these lines and run the program.

s
A

Advanced Programming 4-25

2
gl
-
150
K
)
BN
2,

—
L N)

-
-

R
=,
T
—
LI

LA A
ey

=

Pacn
Ll

~—

o B 0

2

T T O
LI R I AL KR

|

o I o e O

|
oy

W I
)) iy

2,
K9
)

|

L

A

ALEIE o W G (R

R B I o o R O

e
—

L0 Tl
= Tt

=

1

_.
LA
e
L

[en g an

2
)
=,

=,
|

—
o) Lab £

o
T e A,

2
—
2

3o b I

U]
RPN S R Bt N S

gk

U U R =N |

A
g
1A
7

&

NI TRl I LSS W RN o

5

— .y
CURE S B I) I Y

R
AN

5, |
s
3!

b B e B o U ot B e B O I e

[e i

-

R
1

A
fax]
0 e
s I %

)
[7_1

L
LI)

%,
Joe TSy D

0

LI O

A

5L
8]

—

% JU N AN

i
[an]
ETa bt s
=X
—

Lt
n
—
=
-
]

[N}

I 1

[
DA
ECA) |
[

n

4-26 Advanced Programming

Integer Precision Storage

Using integer precision format, numbers in the range —32768 to +32767 can be stored as
integers in string variables even more compactly than split precision format.

The full to integer (¢ % i) function rounds a value to an integer and stores it in integer precision
format by encoding the value into two characters (or bytes) which can then be stored in a
previously dimensioned string variable. The location within the string variable (first and last
characters) where the encoded value is to be stored should always be specified to eliminate
truncation of the rest of the string. The value to be stored must be enclosed in parentheses.

{expression i

To recover or unpack the value, the integer to full (1 % ¢) function is used. The string variable
must also be enclosed in parentheses.

istring variable :
The following program uses the + % i function to store a list of ten random numbers. (The
104 function in line 4 generates the random numbers.) The numbers are packed into a string

array consisting of ten strings, each two characters long.*

Fogd

5 =
1e dim RELIG.Z]
2: prit CETORIMGS
3: #for I=l w0 18
d: PEBrndll]+Hs
Pt oH
G fti (HI=RELI]
Bt next]
fi ERC
The rest of the program unpacks the stored values using the i % 1 function and then prints the

numbers. The values being recovered are integers within the range previously stated because
they were rounded before they were stored.

pri TEECONERT
G0
far Jd=1 o
Ptd (RELIT 1R
rt H
pext

izl

e

]

G
I.-.I.

1

e Y

R S e L e R
Lt

I

Hi

ool it

W

“Normally the first and last characters of the string variable being used for storage (i.e., A$[I,1 ,2]) must be spg?ified, otherwisg the
remainder of the string may be truncated after the last character stored. However, in the following program it's not needed since
each string is only two characters long.

Advanced Programming

Now press \D to start the program and compare the listings.

STORIHG

RECOMERTHE

169,85 ERE G
5. 55
184,73 i a5
125,35 Tae 88
188, 94 TE6 . B8
12741 127,06
145 149,85
o ay .68
e

Gt T =4
u
R RS B

Fe e natE)
i

b O]
]

Pl o

Forad
O b
5

If you attempt to store a number outside the range —32768 to + 32767 using integer precision
format (and flag 14 is clear) = i ¢

is displayed and flag 15 is set.”

To avoid =+ i ., you can set flag 14 before the 1 % i function is executed. This causes
an overflow default value (—32768 or +32767) to be substituted. Flag 15 is set regardless of

whether flag 14 is set or not.

To illustrate overflow, execute these statements—

And the display shows—

: D

By setting flag 14 first, the overflow default value is substituted without displaying an error.
Key in and execute these statements—

And the default value is automatically substituted, stored and displayed—

= D

*Remember that flag 15 is set when any math error occurs.

4-27

4-28 Advanced Programming

If the value to be packed is between —.5 and .5, then it is rounded to zero as shown here—

)J

Here's an example that uses integer precision format to store eight values in each simple

string of a string array. As many numbers as the size of the memory and the size of the string
array allow, can be stored in integer precision format. This means that you can use a string
array to store data in a table or chart for easy reference. This program also uses the 1
function to generate the values to be stored.

ot

Pofxd 2
1: dim AEldaz]
2 forcl=1loro o4
I o far J=1oto 4
4t 25Frndili+H:
prt A
S fti fH)+ARFLLs
2ld=11+1e2.4]
B omext Jispo
7 omnext 1
S5 ompe 3

Notice thatin line 5, three expressions are used to position the value in the appropriate string -
the string being used for storage (1), the beginning character where the value is to be stored
(2(J-1)+1) and the last character where the value is to be stored (2J).

To recall the numbers from integer precision format, add these lines to the program and run it.

9 for K=1 to 4
16: for L=1 to 4
11: itf{AF LK
ZiL=11+1s2L11+R
iprt R

12: mext Lisec
12 hnext k

14: ernd

And the printout looks like this—

[y

WA N e

[RN

—

et et et
w B T

T
o T

-1 o

[y

-

Aavanced Programming 4-29

3.55 ive. g
5,55 SE.BE
4,749 1%, 84
5. 96 126, 66

5. 94 156, B8
3. 70 149,80
. 28 A7 .88
2.3
SERY
b jor]
Vag [0
g.77 TR a8
q.7 1@, 8i
4,32 1v4. 84

Some applications require data storage in a string or linear array. By storing data in a single
string instead of string arrays, numbers can be stored even more compactly by saving the
memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a single string using the

the values to be stored.

=10 function to generate

B fxd Z

12 dim RE[48]

2t for I=1 tao
39 by 2

3 2SBrnd 1) +Rs
prt H

4: fti (AY*A&[I-
I+11]

S5 next I

BE SRC

To recover the numbers, add these lines and run the program:

Ti for Jd=1 10
39 by 2

itfiRELLs I+
H

o frext
18: end

4-30 Advanced Programming

And the printout shows—

163,585 178,48
35,55 45, 80
a4, 74 185,88
125,395 126, 88
185, 84 128 GE
127.41 127,648
148,75 ida. 840
Gk, BE a9y .88
J2F. a8 2rE. B8
cHE. 78 IHZ.RE
2lg. .72 219,60
244,77 2A5, B0
181, 1% 181,88
TR, Ta T, a8

H.7Z2 14, 88
174,22 174,88
183,78 184,848
21801 216,88
247,64 48,60

1d.27 14, a5

Summary

Full precision numbers (twelve digit mantissa pius exponent and sign) can be compactly
stored in strings or in string arrays using one of two possible storage formats. Split precision
format packs data in half the memory space that full precision storage requires and integer
precision format packs data in one fourth the memory space that full precision storage re-

quires.

Storing a number using full precision format requires eight bytes of memory. Using split
precision format, only four bytes of memory are required to store a number. This is ac-
complished by limiting the range and precision of the numbers that can be stored. Using split
precision format, the number is rounded to six digits before storage. In addition, the exponent
must be in the range —63 to +63. If it's not in that range, then flag 15 is set (to 1) and & ¢+ o v
-+ is displayed (if + 1= i< is clear). To avoid =+ ¢ #i you can set flag 14 before
executing the + % = function, causing a default value to be substituted and stored. For an
overflow error, the default value is £9.99999e63; if it's an underflow error the default value is 0.

Advanced Programming

14 function internally rounds the value to be

The following program illustrates how the :::
packed to six digits before storage in split precision format.

todim HEL4]

Cfor I=loto 18

formd il +A

Yo fts LAIeAE

1oorf o drnd R

Eldstf (A st

Hs "Different §

Tt R ALL OFE

o 3P e 5

=
%V
Sk
L s ¥

i
>
[N

0K " &

e LA

L I T
)

12‘[it
oL S
=
i~

]

Using integer precision format, only two bytes of memory are required to store a number.
Integers in the range —32768 to +32767 can be stored using integer precision format. If you
attempt to store a number that's outside of this range using integer precision format, flag 15 is
setand = ¢ o P s displayed (if + 1 =

i “ is clear). To avoid = i+ ¢ i, you can set
flag 14 before executing the + % i function, causing an overflow default value (—32768 or
+32767) to be substituted and stored. If the value to be packed is between —.5 and .5, then it

is rounded to zero.

This program shows how the & -1 function internally rounds the value to be packed to the

nearest integer value before storage in integer precision format.

A dim AELZ]
2 ofor I=l wo 1D
2: FEVETrndillen
2 ft1 [RI=HE
4: if prrdifs
Al#itfiAElimrt
"] " A ol -T. n; .
:;JD1++htdh. : aLL ok
2 onext
g prt "RALL OE":
SRCE
Fioend
When storing numbers in a string variable using the + % = or # % i functions, the locations

where storage begins and ends within the string variable must be specified; otherwise the
string may be truncated after the last character stored.

4-31

4-32 Advanced Programming

Cross Reference Statement

The cross reference (= %) statement prints each variable used in your program followed by
the line numbers in which it appears.

For programs with many variables, the =+ =+ statement aids in keeping track of these vari-

ables and their locations in your program. The = ¥ statement can be executed from the

keyboard, in the live keyboard mode or within a program. The variables used in the program —
simple, numeric array, string and r-variables — are printed, in that order. Within each type, the
variables are arranged alphabetically.

When = @4 is executed, it searches the program once for each of the 79 possible variables
(26 simple, 26 numeric array, 26 string and r-variables*). The =+ ¢ statement does not list
references to p-numbers or variables used in Matrix ROM statements (see the Matrix ROM
Programming Manual).

=All r-variables are considered as one for this statement and they appear together at the end of the cross reference listing.

Advanced Programming 4-33

The following program finds prime numbers and their logarithms using simple, numeric array,

string and r-variables.

f: dim FELloGa=
BlsLirBo2erlils
ODL1s]

18 @slsz+ey

e M omap

At F not TRPiwm
Pinliatn "Hot
Srime”

R g
e
e

B ag g e 7T
i

3
e

o e oo EoL o L LY
it
o

]
& alkrlsl 013
v wel B3 "Frime
fatrilide e
Pl #DFE: fud 45
= $5#m£&9$“

[il
if dapiiato
"Hot Prime’
den “llome
ﬂ

i

e
i)
T e

5

Pt n ¢ i
Rl TN T e
o o
i
5
=

S N SN

b B 1 |
2
bt po S
e
e }
1
ki
i

ity

b e o e S I N T ek

o 4Ty e ey
o

TN R

ofie o
e
Fapse®.
a3
e
A
e
P

Y

Hn

4-34 Advanced Programming

By executing the =+ 4 statement, these variables are listed—
I ! 4 4
S e
) 14
A 14 15 F
s o
& v 11 1
le
LI#18 B 7
b B i 7
Fg 8 = 13

Tape Cartridge Operations 5-1ﬂ

Chapter 5

Table of Contents Wusaum
SpPeCIfiCatioONS .. o 5-3
Tape SIUCIUIE . .. o e 5-4
Tape Cantridge o 5-4
Inserting the Cantridge 5-5
Tape Care 5-5
The Rewind Statement (rwd) 5-6
The Track Statement (trk) 5-6
The Identify File Statement (idf) e 5-7
The Find File Statement (fdf) 5-8
The Tape List Statement (tlist) 5-9
Marking TapesS 5-10
The Mark Statement (Mrk) 5-10
Determining SizetoMark aFile 5-11
Tape CapacCily 5-12
Tape Capacity Calculations 5-12
Marking New Tapes oo 5-13
Marking Used Tapes oo 5-13
The Erase Tape Statement (ert) 5-15
The Record File Statement (rcf) 5-16
Recording Programs 5-16
RecordingData 5-16
The Load Program Statement (Idp) 5-18
The Load File Statement (Idf) 5-18
Loading Programs 5-19
Linking Programs 5-20
Loading Data 5-21
The Record Keys Statement (rck) 5-22
The Load Keys Statement (IdK) 5-22
The Record Memory Statement 5-22
The Load Memory Statement 5-23
The Load Binary Program Statement 5-23
File Verification 5-24
The Auto-Verify Disable Statement (avd) 5-24
The Auto-Verify Enable Statement (ave) 5-25
The Verify Statement (vfy) o 5-25

\

5-2 Tape Cartridge Operations

Tape Cartridge Ermors 5-26
File Body Read Ermor 5-26
Loading a Program File 5-26
LoadingaDataFile 5-26
File Header Read Error 5-27
Conditioning the Tape 5-28

Tape Life ..o 5-28

Chapter 5

Tape Cartridge Operations

The tape cartridge used with 9825 Calculator is a high quality, high density, digital storage
medium. The structure, care, and use of the tape cariridge are detailed in this chapter.

Specifications

Typical data transfer rate

(the rate at which information is loaded from or
recorded on the tape cartridge) 2750 bytes per second

Typical access rate

(the rate at which information passes over the
tape head when searching for afile) 14300 bytes per second

Typical rewind time

(from end to end) 19 seconds

Typical erase time

(one entire track) 40 seconds
Usable tape length (typical) 42.67 meters (140 ft.)

Number of tracks

5-4 Tape Cartridge Operations

Tape Structure

The structure of the tape is diagrammed below:

Track 0 0 1 ‘ 21 3 4 5
oo oo oo o 0o oo0o0
Track 1 0 1 H 2 3 411516
/L Files End of Tape
Beginning of Tape [
D Data or Program
[Z] Inter File Gap
An individual file has the following format:
File) File File
Gap File Header Body Gap

1 file

D Data or Program
D Inter File Gap

Tape Cartridge

The tape cartridge, shown below, is used to store programs, data, and the defined special
function keys.

CERTIFIED DATA CARTRIDGE

N
To record on the tape cartridge, the record EE”EWM” S SACKAR
slide tab must be in the rightmost position, that
is, in the direction of the arrow (as shown).

Tape Cartridge Operations

Inserting the Cartridge

Insert the tape cartridge so that the label on the cartridge faces the back of the calculator as

shown.

Inserting the Tape Cartridge

Tape Care

Cleaning the Tape Head and Capstan

Com'p“ut'cr.
_ Muséum - -

5-5

5-6 Tape Cartridge Operations

Dirt and dust are by far the greatest cause of cartridge related-errors. Several basic precau-
tions can reduce such problems substantially.

e Cleanthe tape head and capstan (drive wheel) of the tape transport after at least every
eight hours of use, or more frequently in dirty environments.

e Rewind the cartridge after each use.

e Keep the tape transport door clean.

e Keep the cartridge in the plastic container supplied with it.
Two other factors can affect the reliability of the tape cartridge. Strong magnetic fields can
erase data and programs stored on the cartridge. Physical damage to the tape, such as

wrinkled or folded tape can also cause record and load problems. A back-up copy should be
maintained for critical programs or data on a separate tape cartridge.

Information on tape error recovery is at the back of this chapter.

The Rewind Statement

The rewind (rew) statement is used to rewind the tape cartridge to its beginning. This state-
ment has the same function as [}, Operations which do not use the tape cartridge can take
place while the tape rewinds. To stop a tape while it is rewinding, press the tape cartridge
ejection bar. The rewind statement must be executed before marking a new tape.

The Track Statement

% b track number

The (trk) statement sets track 0 or track 1 of the tape cartridge. When the track statement is
executed, any following cartridge operations are performed on that track. Track 0 is automati-
cally set whenever the machine is switched on, is pressed, or . is executed. The
track does not change when the cartridge is removed nor when is pressed.

The track number can be an expression with a value of 0 or 1, only.

Tape Cartridge Operations 5-7

CAUTION

THE TRACK IS AUTOMATICALLY SET TO 0 WHEN (S
PRESSED, =+wza o 1S EXECUTED, OR WHEN THE CAL-
CULATOR IS SWITCHED ON. UNLESS A SUBSEQUENT
TRACK STATEMENT SPECIFIES TRACK 1, CARTRIDGE
OPERATIONS WILL BE PERFORMED ON TRACK 0. IF YOU
ARE UNAWARE OF THIS, YOU COULD LOSE IMPORTANT
PROGRAMS OR DATA.

The Identify File Statement

1oit [file number [+ file type [: current file size [: absolute file size [: track number]]]]]

The identify file (idf) statement is used to load the contents of the current file header into the
return variables specified. After the identify file statement is done, the tape is positioned in
front of the file just identified. Thus, the tape is positioned for easy loading or recording of the
identified file.

All five of the parameters are optional return variables. That means that a value is returned to
the variable specified when the statement is executed. If one variable is specified, as in:

i, then only the file number is returned. Two variables must be specified to get the file
type; three variables to get the current file size in bytes; four variables to get the absolute file
size in bytes; and five variables to get the track number. The return variables can be any
variable type.

The file type can be one of the following:

null* file

binary program

numeric data

string or string and numerics

memory file (from record memory statement)
key file

program file

track dump error recovery (disk)

single file dump (disk)

entire disk dump

O OO ~NO O WO

*A null file has an absolute size of zero.

5-8 Tape Cartridge Operations

The tape position becomes unknown when a tape cartridge is inserted into the tape drive, the
track is changed, is pressed, or
such as after switching tracks, at least one return variable must be specified or error 45 will

7 is executed. If the tape position is unknown

OCccCur.

Example:

) Identify the current file and return the file
number, file type, current file size, absolute file
size, and track number to A, B, C, D, and E,
respectively.

Return the current file size to A.

The Find File Statement

H4 [file number]

The find file (fdf) statement is used to find the specified file on the current track of the tape
cartridge. The tape is positioned at the beginning of the file specified. The file number can be
an expression. A find file statement without parameters finds file 0. Other statements can be
executed while the find file statement is executing.

NOTE
If a file number which does not exist is specified, the next
cartridge statement executed (except find file or rewind) will
result in error 65.

Examples of the find file statement:

Find file 8.
45 fdf HIE] Find the file specified by the value of A [3].

Tape Cartridge Operations

The Tape List Statement

The tape list (tlist) statement is used to identify the files on the tape cartridge. Starting from the
tape’s current position, the track, file number, file type, current file size in bytes, and absolute

file size are printed as shown below.

Track ——== % ¢k

File number —— =
File type —————

The file type can be one of the following:

OO WN =2 O

“A null file has an absolute size of zero.

%
#1

i

*3

g

null* file
binary program

numeric data

string or mixed string and numeric data
memory file (from record memory statement)
key file

program file

i ol
g

£

e

=

/ Current file size
BEG Absolute file size

5-9

5-10 Tape Cartridge Operations

If is pressed while tlist is being executed, the tlist will terminate. Otherwise it will halt when
the last file (null file) is reached.

A convenient way to determine the current track setting is to execute “tlist” then press Q
Alternately, use the identify file statement asin: &% T« T T 7w Te 7 .

mcam;

Marking Tapes
The Mark Statement

#1 number of files: file size in bytes [= return variable]

The mark (mrk) statement reserves file space on the tape cartridge. A file must be reserved
before a program or data can be recorded. One file more than the number of files specified is

marked. This file is the null file and is used as the starting point when marking more files. The
null file has an absolute size of zero.

The file size is specified in bytes. |f an odd number of bytes is specified, one more byte is
automatically marked. For example, if 111 bytes are specified, 112 bytes are marked.

In order to mark files, the position of the tape must be known. If the position is unknown,
execute a find file, or rewind statement to position the tape where you are going to start
marking. Executing a mark statement where the first two parameters are zero (e.g., mrk 0,0) is
a special case and is explained in the Tape Cartridge Errors section.

The number of files and the file size can both be expressions. If a return variable is specified,
the file number of the last usable file marked is stored in it. If the value of the return variable is
positive, all the files specified were marked. If the value is negative, an end-of-tape (eot)
condition occurred before all the requested files were marked. In either case, the absolute
value of the return parameter is the last usable file marked. The null file is one file beyond.

Example:

A tape is to be re-marked for 3 files with a length of 320 bytes each on track 0. The following
short program performs this operation.

BroorEi Rewind the cartridge.

1: trk 8 Set to track 0.

S ok SZp32Ha R Mark 3 files, 320 bytes long.
Aioeprtomel Erase the rest of track 0.

4: end End the program.

Tape Cartridge Operations 5-11

The tape will be positioned at the beginning of file 3 and the resulting tape structure will be:

/[
7
Track 0 0 1 2 3 Erased Tape
I
Beginning /‘-4——— Files——————w \. Null File
of Tape
Then, 2 files with a length of 80 bytes are to be marked. Execute:
New tape structure:
>Computer
., Museum
New Files 3
—
7 ,'
Track 0 0 1 2 3 4|5 Erased Tape
fL

T
Beginning Files J \ Null File
of Tape v‘

To mark 2 files, 300 bytes long beginning at file 4, execute: ¥

Determining Size to Mark a File

Program Files

When marking a file for a program which is currently in the calculator, execute i ::z% 1. The
number in the left-hand portion of the display is exactly the number of bytes needed to record

the program. It is advisable to mark the file larger to accommodate any future program
changes.

Data Files

Data files require 8 bytes for each data element to be recorded. For example, to record data
which is stored in the variables A and B, mark a file 16 bytes long.

Special Function Key Files

Special function key files require 1 byte for each character under the keys, plus 2 bytes for
each defined key. If the number of bytes for each key is odd, add one byte. The sum for all
keys is the minimum size to mark the file.

5-12 Tape Cartridge Operations

Memory Files

For a memory file (using record memory statement), mark the file for the size of your compu-
ter's available read/write memory. Refer to the label under the computer’'s paper-access lid.

Tape Capacity
Table of Typical Storage Capacities
File size Typical number of Bytes per
(bytes) files per track track
50 827 41350
100 656 65600
250 404 101000
500 239 119500
750 170 127500
1000 131 131000
2500 56 140000
5000 28 140000
7500 19 142500
10000 14 140000

Due to the overhead required by each file, the number of bytes per track is not the same for
different size files.

Tape Capacity Calculations

The number of files which can be stored on the tape cartridge depends on the size of the file.
Using the following calculations, the number of files that can be stored on the tape cartridge
can be calculated.

L=1.278 + .209 int (A/256 + .999) + .0105A
where: A = absolute file size in bytes.
L = length of the file in inches.
a) For typical capacity per track:
Number of files per track = int (1665/L)
b) For minimum capacity per track:
Number of files per track = (1498/L)

Tape Cartridge Operations 5-13

The following program can be used to mark more files and calculate the percentage of a track

used.

Broorpewsfad @
1 ent U Tracks
B oo i7" aTstrk
o
I
2% entoo UHenotare
T Mes=1 ooHosg e
e if oHiysto Har

BaFal
fdf Faidf Hs

| owE mi e mw lw

5

5 T
= .

g
i

(551
| %]
[
i
i
i
et
B
Rt
i
]

......

Mark!

IR B e

sl sl eE R wES
Ftsh

2 OMHark i

of Tope”
Pl AR Mark
alhsleeDelBEs

e
50

D AT

P
s {1

Prt "RLTOH

eato e

122 et "Hark
more files?
Yosazl Ho=gt.

Marking New Tapes

13

fl=@iato

D1 wm

e

S

b s
=

tde wnt U lhenath
of files"aHs
ek LT

158 dep "Humbsr
gfofiles vl

Topa’

igi ent

MES TN

PP if (rlslesass
o

Zye=lier

Tonaee s Ve That
O R
HSHEo ot
e ordalbsmrek Ia
Hakeif EiRidzg
T1HEY Marked™s
= T £ * T B
190 910 "Mark”
cE: Yoyt vdeR
"Thatfz 11 %3end
Sle ot b ETES
seEYIint (RS 256+
S99 4, ISR
et

Since no files are marked on a new tape, the rewind statement must be used to position the
tape before marking files. For example, to mark 4 files 200 bytes long on a new tape, execute

the following:

Marking Used Tapes

When re-marking a used tape, it is possible that some old files may remain on the tape. These
files can be accessed accidentally by changing tracks. For example, suppose track 0 has 4

files of 1000 bytes and track 1 has 2 files of 1500 bytes:

Track 0 0 1

4 (

Track 1 0

5-14 Tape Cartridge Operations

Then track 0 is re-marked from the beginning to contain 2 files of 200 bytes each:

Track O [C] 12 1) 2 3 4

Track 1 0 1 2 z

D Old invalid files

If the tape is positioned at file 1 on track 1, and ;i £ is executed, the tape will be positioned

in an old section of tape. Accessing file 1 on track 0 will result in using old file 1.

With slightly different conditions, it is possible to have missing files rather than multiple files.
For example, suppose that track 0 has 4 files of 1000 bytes each:

Track 0 0 1 2 3 4 ;

t1is executed, the tape would have a gap of missing

Ifthe tapeis rewound and v i & w
files:

missing files
res 9

Track 0 0 1 4 ;

To remove the old files, use the erase tape (ert) statement. Far the first example:

Rewind the tape on track 0.

Mark 2 files, 200 bytes each.

Erase the tape starting at the null file.

CAUTION
WHEN MARKING OVER A PREVIOUSLY MARKED TAPE,
USE THE ERASE TAPE STATEMENT TO REMOVE OLD
FILES.

Tape Cartridge Operations

The Erase Tape Statement

&+ 1 file number

the erase tape (ert) statement is used to erase everything on the current track starting from the
file number specified. It is usually executed after a mark statement (see Marking Used Tapes).

The erase tape statement:

1.

2
3.
4

Positions the tape in front of the file specified.

Marks that file as a null file.
Then, erases the track from the null file to the end of the track.

Finally the tape is positioned in the file gap in front of the null file.

The file number can be an expression.

For example, a tape has the following structure on track 1:

{(
A

Track 1 0 1 2 3 4 Erased Tape or Old Files

{L
ENA
Files N Null File

To erase everything on track 1 starting at, and including file 3, the following program is used:

Btk 4
T et 3
e e

After running this program, the tape’s structure is:

{L

7
Track 1 0 1 2 3 Erased Tape
]f}L
e— Files —— xNuII File

Track 0 is not altered.

5-16 Tape Cartridge Operations

The Record File Statement

The record file statement is used to store both data and programs. The syntax for each is
explained below.,

Recording Programs

~o ¢ [file number [beginning line number [: ending line number]] [:

To record a program or a section of a program the record file (rcf) statement is used. If no file
number is specified, the file is assumed to be file zero. If no line numbers are specified, the
entire program is recorded on the specified file. If the beginning line number is specified, then
the program from that line number 1o the end is recorded. If both line numbers are specified,
that program section is recorded from the first line number to the second line number, inclu-
sive.

The file number and ending line number parameters can both be constants, variables, or
expressions. The beginning line number can be a constant, or expression (such as 1A), but
must not be a variable. Using a variable as in 4 1:# records the value of “A” as data. To
record the program beginning at the line whose value is A, use i L+ iF

=" (for secure) follows at the end of the statement, the program is secured when stored
on tape. When the secured program is loaded back into the calculator, the program cannot be
listed or displayed, but can be re-recorded on a tape cartridge.

When i
corded with the program (see Program Debugging in chapter 3).

<" (for debug) follows the end of the statement, any trace or stop flags are re-

The tape file must be marked before recording a program. The file size must be greater than or
equal to the size of the program being recorded.
Example:

TR R R Record the program on file 8, starting at line 3
through the end.

Recording Data

o file number = data list

Tape Cartridge Operations

The record file (rcf) statement is used to record data when this syntax is used. The data list can
consist of simple variables, array variables, or r-variables. r-variables are stored in a different area
in memory which is not contiguous with array or simple variables. Due to this, r-variables
cannot be mixed with simple or array variables in the record file statement.

To record an entire array, the array name is followed by an asterisk in brackets. For example:

R Record the entire array S on file 2.

Simple and array variables must appear in the data list in the same order as allocated. If the

variables appear in a dimension statement, then they must appear in the same order in the
record file statement.

Example:

daodiwm ALIE 18] The array A is allocated 100 elements (800
bytes).

15, B The variable X is allocated 8 bytes.

£ be HA TR Doesn't affect memory allocated to X.

Frod] The variable | is allocated 8 bytes.

G2 rof oSeREx]a Ha The array A, and variables X and | are re-

e BE

corded in the same order as allocated (con-
tiguously) on file 5 (total of 102 numbers or 816
bytes).

If one r-variable is specified in the data list, all r-variables from rQ to that r-variabie are

recorded. If two r-variables are specified, all r-variables from the first through the second are
recorded.

Considerations for Recording Data

When recording data on the tape cartridge, the variables being recorded must be listed in the
same order as they are allocated in memory. For example:

B: ent H
fr2eHaE
Zryodimo Dedeyal

% 5

)

L
PEL o red BBy By
B i Ee

1

5-18 Tape Cartridge Operations

In the program, the variables A and B are allocated outside a dimension statement. Variables
C, X, Y, and Z are allocated in a dimension statement. But, if B were allocated before A in the
program, line 15 would cause error 56 to be displayed since the variables must be listed in the
same order as they are allocated. Because lines are not necessarily executed in numerical
‘order, it is sometimes difficult to know the order in which variables are allocated. For this
reason, when a group of simple or array variables is to be recorded on a single file, it is
recommended that they all be allocated in one dimension statement.

The Load Program Statement

i [file number [: line numbers [: line numberz]]]

The load program (idp) statement is used to load a program from the specified file on the
current track and run it automatically. The automatic run implies that all variables are erased,
all subroutine return pointers are cleared, and all flags (0 through 15) are cleared.

When the file number only is given, the program is loaded from the file, beginning at line zero,
and the program automatically runs from line zero. If the file number and the first line number
are specified, the program is loaded from that file, beginning at the specified line number and
runs from that line number. When all three parameters are specified, the program is lcaded
from the specified file number beginning at the first specified line number and is run beginning
at the second specified line number. [f no parameters are specified, zeros are assumed for all
three. All three parameters can be expressions.

If a program is loaded at the end of an existing program, go to and go sub branching line
numbers are not renumbered.

The load program statement can only be stored as the last statement in a line. This statement
is not allowed in live keyboard mode nor during an enter statement.

Examples:

Loads the program from file 2 beginning at line
0 and runs from line 0.

Loads the program from file 8 beginning at line
2 and runs from line 2.
Loads the program from file 16 beginning at

line 3 and runs from line 0.

The Load File Statement

The load file (Idf) statement is used to load both data and program files into the calculator
memory.

Tape Cartridge Operations

CAUTION
THE LDF STATEMENT LOADS THE PROGRAM OR VARI-
ABLE AREA OF MEMCORY DEPENDING ON THE FILE TYPE
ACCESSED. BUT THE LDP AND RCF STATEMENTS LOAD

ING ON THE STATEMENT. THUS, WITH THE LDF STATE-
MENT IT IS POSSIBLE TO ACCIDENTALLY LOAD A PROG-
RAM WHEN THE INTENT WAS TO LOAD VARIABLES OR
VICE VERSA.

Loading Programs

Loit [file number [line numbery [: line numberz1]]

The load file (Idf) statement loads programs from the specified file on the current track into the
calculator memory.

This statement is like the load program (Idp) statement except that Idf can be used to continue a
program, while the Idp statement causes the program to run.

From the Keyboard

This statement is executed from the keyboard as follows: When no parameters are given, the
program on file zero is loaded, beginning at line 0. If the file number is given, that file is loaded
beginning at line 0. If the file number and a line number are specified, then that file is loaded
beginning at the specified line number. When all three parameters are given, the specified file
is loaded beginning at the first line number, and the program automatically continues at the
second line number (all variables are preserved whereas Idp destroys the old variables; see
The Continue Command in chapter 3.

If a program is loaded at the end of an existing program, go to and go sub branching line
numbers are not renumbered.

In a Program

The [df statement is executed in a program as follows: When no parameters are specified,
the program on file zero is loaded beginning at line zero and continues at line zero. If the file
number is specified, then the program is loaded from the specified file beginning at line zero
and continues at line zero. When the file number and a line number are given, the specitied file
is loaded beginning at the specified line number and the program continues from that line

5-19

OR RECORD A SPECIFIED PART OF MEMORY DEPEND- C,V‘,’{,‘;gt‘,‘,ﬁ'

5-20 Tape Cartridge Operations

number. When all three parameters are given, the statement is executed the same as from the
keyboard. That is, a “‘continue” is performed from the second line number. All three paramet-
ers can be expressions.

This statement is not allowed in live keyboard mode nor during an enter statement to load a
program file. However, the Idf statement can be used to load a data file in live keyboard.

Example:

Load file 1 beginning at line 0 (executed from
keyboard).

o ldf 2 Load file 2 beginning at line 0 and continue
from line Q.

Linking Programs

Programs too long to store in the calculator memory can be segmented and stored in separate
files on the tape cartridge. Each segment can be loaded as needed by the program, and,
using the Idf statement, variables, flags, and subroutine return pointers can be preserved for
each segment.

In the following basic example, three segments are used. Each segment is (oaded as it is
needed by the program. The first segment loads the second and the second loads the third.

Program Segment on file O Beoprt Mrile B3
fi+H
LS By kN
Program Segment on file 1 ¢ Himpt o "6ile 174
prt R
Leodddy o2
Program Segment on file 2 # Be o omreotfils 27
lsewy
Press: @O f£ided
Filsd

Zuoldie

Tape Cartridge Operations 5-21

Loading Data

Lobf [file number [« datalist]]

The load file (Idf) statement loads data from the specified file on the current track. The data list
contains the names of variables separated by commas. r-variables cannot be in the same load
file statement with simple and array variables.

If no listis specified, data begins filling the r-variables from r0 until all the data has been loaded. If
one r-variable is specified, then the data begins filling r-variables from that r-variable untii all the
data has been loaded into higher r-variables. If two r-variables are specified, the data starts filling
from the first location specified (lower r-variable) to the second, higher, r-variable. If there is more
data than available or specified r-variables, no data is loaded.

When simple or array variables are specified, data begins filling the first variable until all
variables have assigned values. If there is more data than variables, no data is loaded. If there

is less data than variables, the data is loaded until all data is used. Variables must be contigu-
ous.

Examples:

Load r2 through r10 from data file 4.
Load the data file designated by r12 into the
variable A and array B.

Array and r-variable Recording

Array variables are recorded in the opposite order of r-variables. Thus, if r-variables are
recorded, then loaded back into an array, they will be in the opposite order. For example:

B olerladeros

ZAar3idardinarg 15— A[1] . aasaa
1: rof Bars 4= AL2] 4, BEEG
o TR B T S : . AREE
cr o 1dE BaBT#] VFS—A[S] SRR EY
41 141 s 12— Al4] Z.aeEaa
Aoert ALIlVime 1= A[5] l.ag@a
(I+1+11x6 DA
£ end i : ~~~:r~O—A[6] B oBaRa

Inline 1, r-variables O through 5 are recorded on file 0. Then in line 3, the array A is loaded from file
0. A[6] is loaded first, A[1] is loaded last.

5-22 Tape Cartridge Operations

The Record Keys Statement

ek [file number]

The record keys (rck) statement is used to record all the special function keys on the specified
file on the current track. If the file number is omitted, file zero is assumed. The file number can

be an expression. The specified file must be marked before the record keys statement is
executed.

Examples:

Record the special function keys on file 2.
2 orock RLLZ] Record the special function keys on the file de-
signated by the 12th element of array A.

The Load Keys Statement

Lrdi [file number]

The load keys (Idk) statement is used to load the special function keys exactly as they were
recorded from the specified file on the current track. If the file number is omitted, file zero is
assumed. The file number can be an expression. Executing the load keys statement from the
keyboard causes subroutine return pointers to be reset and causes the program counter to
reset to line zero.

This statement is not allowed in live keyboard nor during an enter statement.

Example:

Load the special function keys from file 4.

The Record Memory Statement

e [file number]

The record memory (rcm) statement records the entire read-write memory (program, data,
keys, pointers, etc.) on the specified file on the current track of the tape cartridge.

Tape Cartridge Operations

If the file number is omitted, file 0 is assumed. The file number can be an expression.

The presence of a binary program in memory is a special case. The information supplied with
each binary program explains the calculator operation when the record memory statement is
executed.

The Load Memory Statement

Leie [file number]

The load memory (Idm) statement is used to load a previously recorded memory file. When the
load operation is complete, the calculator is in the same state it was in when memory was
recorded. If the file number is omitted, file O is loaded.

If a program was running when the record memory statement was executed, that program will
continue with the next statement after the record memory statement when the load memory
statement is executed.

The record memory and load memory statements can be executed from live keyboard or from
a special function key. The record memory statement can be used to "freeze” the state of the

system without interrupting the running program. These statements can be especially useful in
areas where frequent power interruptions occur.

The file number can be an expression.

The Load Binary Program Statement

¢ [file number]

The load binary program (ldb) statement loads binary programs* into the calculator’s read/
write memory from the specified file on the current track of the tape cartridge. Binary prog-
rams can be loaded over other binary programs of equal or greater length at any time.

If no file number is specified, file 0 is assumed. The file number can be an expression.

Example:

Load the binary program from file 2.

A binary program is a machine language program which cannot be listed or displayed.

5-23

5-24 Tape Cartridge Operations

Since binary programs occupy a special place in memory, certain rules must be followed
when loading them:

1. Any binary program can be loaded at any time (from the keyboard or a running prog-

ram) provided there is room in memory for it and no simple or array variables are
allocated.

2. Once simple or array variables are allocated, a binary program cannot be loaded
unless space has been allocated for it by a previous binary program load operation.

The following procedure is suggested: Before any simple or array variables are referenced,
load the largest binary program file that will be needed. Then any variables can be allocated
and other binary programs can be loaded without concern about room for the binary program.

File Verification

File verification is used to compare a tape file against the calculator memory to detect record-
ing errors without losing the information in memory. If you get a verify error {error 44), try
re-recording the file. Repeated verify errors on a file may indicate damaged tape.

File verification requires a stronger tape signal than load; thus, it increases confidence that a
file will load properly at a later time.

When the calculator is turned on, 21 is executed, or is pressed, the calculator

automatically verifies files on all record operations. Two statements are used to control au-
tomatic verification.

The Auto-Verify Disable Statement

The auto-verify disable (avd) statement turns off file verification. For example:

Pabe aud o Turn-off automatic file verification.

Tape Cartridge Operations 5-25

The Auto-Verify Enable Statement

The auto-verify enable (ave) statement turns on automatic file verification. After ::x: is exe-
cuted, all record operations are automatically followed by a verify. When the calculator is
turned on, is pressed, or =
bled.

1 IS executed, automatic file verification is again ena-

Example:

Turn on Automatic file verification.

The Verify Statement

4 [return variable]

The verify (vfy) statement is used to compare a tape file with the calculator memory. If the
calculator memory is identical to the tape file, the value of the return variable is O after the
operation. If the two are different, the return variable is one. If no return variable is specified
and if the memory and tape file are not identical, error 44 occurs. The return variable can be
either a simple variable, array variable, or r-variable.

The verify statement can follow any record operation except the record memory (rcm) state-
ment. The record memory statement followed by vfy will result in error 44. Memory files can
only be verified using automatic verification.

With the verify statement, you can selectively verify files. This can be useful to save time when
recording many files. Another important use is recovery from verify errors using the return
variable parameter.

This statement does not alter the calculator memory.

5-26 Tape Cartridge Operations

Tape Cartridge Errors

File Body Read Error

If a file body read error {error 46) occurs, first clean the tape head and drive wheel as
explained earlier. Then execute the statement which caused the error again. If an error still
occurs, the next step depends on the type of file being loaded.

It will be informative at this point to explain something about the file structure of the tape. A file
is made up of one or more “partitions”. This structure makes it possible to recover portions of a
file even though a loading error has occured. Error 46 indicates that one or more partitions
may be erroneous.

File Header Partition Partition Partition File

Gap Gap

Loading A Program File

If error 46 occurs while Ioading a program file, one or more program lines may be lost. The

the point where the program lines are missing. These lines can be replaced by referring to a
previous listing.

Note that go to and go sub statement addresses are not adjusted during this editing. Thus, it
may be necessary to re-adjust the go to and go sub addresses after inserting the lost lines.

Loading a Data File

If error 46 occurs while loading numeric data, the partition in question is marked by a single
number replaced by .

“(in float 11 format) A partmon in a numeric
data file always contains 32 numbers. With one entry replaced by TR
, there are 31 numbers remaining which may be incorrect. To determine the bounds of the

affected partition:

Tape Cartridge Operations

e For r-variables, the 31 higher numbered r-variables may be incorrect.

e For simple and array variables, determine the order in which the variables in question
were allocated (see dimension statement). From the element that is replaced by

A i, go from right to left in the parameter list of the dimension
statement. For an array in the list, the first element in the lost partition will have the
largest subscripts. Decreasing the leftmost subscript first for an array reveals the mis-
sing values. For example, a partition is lost and the dimension statement was:

B dim HAeBEalo
OC03y18]

The value D[3,10] contains gquestion marks. All questionable values can be accessed in this

order:

D[3,10], D[2,10], D[1,10], D[3,9], D[29],
D[1,9], D[3.8], D[28], D[18], D[37] Gompute:
D[2,71, D[1,7], D[3,6], D[2,6], D[1,6],

D[3,5], D[2,5], D[1,5], D[3,4], D[2.4],

D[1.,4], D[3,3], D[2,3], D[1,3], D[3,2],

D(2,2], D[t1,2, Df3,1], D[2,11, D[1.,1],

C, B

File Header Read Error
If a file head read error (error 47) occurs, proceed as follows:

1. Clean the tape head and drive wheel as explained in the Tape Care section. This may
solve the current read error and prevent future read errors.

2. Execute the statement that caused the error again.

CAUTION
RE-MARKING A FILE HEADER IS A “LAST RESORT"” OP-
ERATION, SINCE ALL INFORMATION ON A FILE WITH A
RE-MARKED HEADER IS LOST AND THAT FILE CAN NO
LONGER BE USED. HOWEVER, THIS DOES PERMIT YOU
TO ACCESS FILES BEYOND THE BAD FILE.

3. If, after steps 1 and 2, the error still occurs, re-mark the tape-file header.

To re-mark the head of file N (file which cannot be loaded), execute:

Positions the tape.
Re-marks file header of file N.

5-27

5-28 Tape Cartridge Operations

For file 0, execute:

Positions the tape.

Re-marks file header of file 0.

After the file header has been re-marked the absolute size of the file is 2 bytes.

Conditioning the Tape

Repeated operations over a short length of tape (usually less than 4000 bytes or 5 ft.) can
cause slack. (Extreme changes in temperature can also cause this.) The outer layer of tape

can slip and rub on the cartridge, causing damage to the tape. If operation continues, the tape
may jam and be ruined.

NOTE
This condition is most likely to occur if exclusive use is made
of one file or two adjacent files near the beginning or end of
tape.

If a particular application requires such operation, this slack can be prevented by moving the
tape periodically 15 feet or more toward midtape. For example, for a tape with 80 files where
only files 0 and 1 are used, execute the following program segment after every 200 operations
on file 0 or 1:

Tape Life

The tape cartridge does not have an infinite life span. Many factors increase wear and de-
crease life. A high resistance to turning and continuous use for long periods of time (Y2 to 3
hours) both result in increased temperature in the cartridge. High humidity, high temperature
(above 45°C, 113°F for the cartridge itself) and a high duty cycle (percent of the time the tape
is accessed during the total time the computer is used) all increase wear.

Tape Cartridge Operations 5-29

Several things start happening to the cartridge which are danger signs:

e The tape begins to wear out and lose information.

e The capstan develops dark bumps due to slippage.

e The cartridge can stall, causing the capstan to wear a flat spot on the drive pulley.

e The cartridge sounds rattly, rather that making a constant hum when the tape moves.
e Errors 43 (indicating tape transport failure), 46 and 47 occur more frequently.

If any of these occur, replace the cartridge at once. If you continue to use it, you could lose all
the information on the tape and damage the drive itself.

CAUTION
NEVER OVERRIDE ¢ i+ <% INYOUR PROGRAMS. BY
OVERRIDING A TRANSPORT ERROR, YOU CAN EASILY
DAMAGE THE TRANSPORT AND BE FORCED TO RE-
PLACE IT.

5-30 Tape Cartridge Operations

Notes

String Variables m

Chapter 6
Table of Contents

~Computer
T -Museum

IO AU N .. e 6-3
NaMING StriNGS .. oo o 6-4
DIMeEnsioNiNg StriNgS ... 6-4
S OrING S NS .ot 6-5
PrINtNG SINgS o 6-5
SUDBSIIINGS . 6-6
NUI NG o 6-7

String Variable Modification 6-8
Destination Strings without Subscripts 6-9
Destination Strings with One Subscript o 6-10
Destination Strings with Two Subscripts 6-12

String Variable Functions 6-14
Length Function (I€N)o 6-14
Position FUNGHON (POS) ... i e 6-16
Value Function (val) 6-17
Sting FUNCHON (SIr) . o 6-19
Character Function (char) 6-20
Numeric Function (num) ... 6-21
Capital FUNCHON (CAP)o e 6-24

String Variable Operations 6-25
Relational Operators 6-25
Concatenation (&) Operatort 6-26

String Input and OULPUL ... 6-27
Enter Statement (ent) 6-27
Print Statement (Prt)o 6-29
Display Statement (dsSp)o e 6-30
Write Statement (Wrt) 6-30
Read Statement (red) 6-32

Loading and Recording Strings oo 6-33
Recording Data (rCf) 6-33
Loading Data (Idf)o 6-34

7,

6-2 String Variables

Notes

Chapter 6

String Variables

Introduction
The string Variable ROM enables you to —
e Do character manipulations, such as editing portions of strings.
e Use portions of strings as variables in arithmetic calculations.
e Perform character by character comparisons of these strings.
e Use alphanumeric data in input and output operations.

The String Variable ROM is a plug-in accessory which uses 52 bytes of read/write memory

when installed in a 9825 A or S Computer. This ROM is a permanent part of the 9825B
Computer.

A string is a series of characters, like —iiii 1 . Any number of characters, within the
limits of available memory, can be stored in a string variable. Each character requires one
byte of memory and some overhead, as explained later.

6-4 String Variables

Naming Strings

String variables are given names, like A3 or Z$. The dollar sign following the string variable
name differentiates strings from numeric variables. Up to 26 string variables, one for each
letter of the alphabet, can be used in one program. There are two kinds of string variables —
simple strings and string arrays. Each string of a string array can be used in exactly the same
way as a simple string.

In the diagram below, A$ is a simple string, nine characters long and Z$ is a 4 (row) by 10
(column) string array containing four strings, Z$[1] through Z$[4]. Each of the strings in this
example can be up to ten characters long. Strings have a dimensioned length and a current or
“logical” length. The dimensioned length of Z$[1] is 10; its current length is 6.

Z$[1]1|K e e p e r

Z$[2]fF u n ¢ t i o n
Z%[3]1{C a | ¢ u | a t o r
Z$[4]

Dimensioning Strings
Before characters can be stored in a string variable, the string variable must be dimensioned.

The :i 1 r: statement defines the type of string variable and the size of the string or strings. The
o4 4 1 statement also reserves storage space in memory for the string variable. To dimension

the strings shown in the previous example, execute —

The subscript 10 indicates that up to ten elements can be assigned to the simple string named
AS$. The subscripts 4 and 10 indicate that up to 4 strings, each 10 characters in length, (40
elements) can be assigned to the string array named Z$. Exceeding dimensioned limits by
assigning more characters than dimensioned, results in o+ =% . Both string and
numeric arrays can be included in the same «i i i statement.

String Variables 6-5

Storing Strings

Characters in quotation marks (7 % =%) are assigned to string variables in the same way
that values are assigned to numeric variables. To store the characters from the previous

example in the dimensioned strings, execute —

Text can't be stored in a string array. Executing

results in

Printing Strings

Using the print statement, strings and portions of strings can be printed. To print the strings
just stored, execute —

upction
iculatnr

Each string in the string array must be specified to be printed. To specify an entire array of
strings, a program loop of some kind must be used. Most programs in this chapter use the
Advanced Programming capability of for/next loops where needed.

Specifying a string longer than its dimensioned length results in =
execute —

@+ i For example,

And the display shows — [e b D

6-6 String Variables

Substrings

A substring is one or more contiguous characters within a string. Using the previous example,

il is a substring of A$ starting at the second character and ending with the fourth. This
substring is indicated by —

With string arrays, an extra subscript is required to indicate which string in the array is
specified. Expressions may be used as subscripts in strings or string arrays. So i+, which
is a substring of ¥ @ from the fourth character of Z$[1] to the sixth, can be specified
by-

' where the numeric variable A has the value 4.

Since there are no characters following =+ in Z$[(1], this substring {from the fourth character
to the end of the current length of the string) can also be specified by —

Since a different number of subscripts are required to specify different things, it's a good idea
to keep a record of the simple strings and string arrays you're using in a program. (The :: i ¢
statement can be used in this way.)

String Variables 6-7

Null String

The last string, Z$[4], in the string array is the null string, since it contains no characters. This
null string can be specified by executing —

Two quotation marks with no intervening characters are considered a null string, but a string
that is assigned spaces (“A"—A%[1, 80], where A represents a space) is not a null string.

The null string can be used when adding more characters to the current length of a string.
Using A% from the previous examples, execute —

And the display shows — L i

J

The null string can also be used to clear a string. For example, to clear A$ (from the previous
example) execute —

6-8 String Variables

String Variable Modification

A string or a substring can be modified by another string or substring. For example, a part of a
string can be changed or characters can be added or deleted. The string containing the modifica-
tion is called the modifying string; the string to be modified is called the destination string. For
example, in the statement i #, M$ is the modifying string and D$ is the destination string.
The modifying string can be a string, a substring or text.* The destination string can be a string
or substring; it cannot be text.

The length and content of the destination string after modification depend not only on the
characteristics (length and content) of the modifying string, but also on the number of sub-
scripts given for the destination string.

Each element or string of a string array can be used in exactly the same way as a simple
string. Therefore, the following examples show simple string modification only; string array
modifications are done in exactly the same way with an extra subscript (the first) to show
which string in the array is being modified.

(If you've just executed the statements from the previous section, press @ before
executing the statements that follow.)

Any modification made to a string or substring requires a temporary storage area as large as
the modifying string.

*Text is defined as characters within quotation marks.

String Variables 6-9

Destination Strings without Subscripts

When the destination string has no subscript (or one subscript for string arrays) the entire
destination string is replaced by the modifying string or substring, and its length and content
after modification are the same as those of the modifying string or substring. To illustrate this,
execute these statements —

[

~Coipguter’
< Museum -

J

When the destination string is longer than the modifying string, the modifying string replaces
the destination string. All characters of the destination string which are not replaced are
truncated. For example —

gllusather”+0F

T

—
s
—
i
)

The current length of C$ is now 7 characters; the dimensioned length is 11 characters.

If the modifying string is longer than the dimension of the destination string, &+ iy 5
occurs. For example —

]
1T
.
—
EE)
]
—
1]
!
£
+Fr

e
J
=T

T
—

)

String arrays require one extra subscript to indicate which string in the array is to be modified.

6-10 String Variables

Destination Strings with One Subscript

When the destination string has one subscript (or two subscripts for string arrays) the sub-
string is replaced by the modifying string or substring.

(If you've just executed the statements from the previous section, press @ before
executing the statements that follow.)

If the destination substring is equal in length to the modifying string or substring, the modifica-
tion will not affect the length of the destination string. When executed, these statements
illustrate this ~

A% i D

If the destination substring is longer than the modifying string, the modification causes the

destination string to be shortened; the characters not replaced by the modifying string are
truncated. These statements, when executed, illustrate this —

()

If the destination substring is shorter than the modifying string (or substring), the modification

causes the destination string to be lengthened (within the dimensioned length of the destina-
tion string). To illustrate this, execute these statements —

String Variables 6-11

Any attempt to lengthen a string beyond its dimensioned length causes = i1 o:¢7 %, For
example —

.
(1]
L
in
!
(]
H
i
et
Lt
[

if the destination substring is a null string (the current iength plus one), the modifying string is
attached to the end of the destination string. For example —

When characters of a modifying string (or substring) are added to a destination string (or
substring), they must be contiguous, that is, they must immediately follow the destination

string without any unassigned character spaces. If they are non-contiguous, & o ol
occurs. For example —

By assigning blank characters to the string, ¢ =3 is avoided. (A represents a space.)
For example, execute these statements —

"AAAAHL Einzon "t 20E
[5: 153
Rk

L i

String arrays require an extra subscript to indicate which string in the array is to be modified.

6-12 String Variables

Destination Strings with Two Subscripts

When the destination string has two subscripts (or three subscripts for string arrays), the
substring is replaced by the modifying string or substring. Since two subscripts define the
beginning and ending characters of the substring to be replaced, truncation of the remaining

(unreplaced) characters does not occur. Using an example from the previous section, exe-
cute —

(Press @ before executing the statements that follow.)

When the destination substring is equat in length to the modifying string or substring, the
modification won't affect the length of the destination string; the destination substring charac-
ters are replaced. For example —

,
—
1
]
£t
"~
-

s
J

String Variables

When the destination string has two subscripts, its length after modification will either be
greater than before, or remain unchanged. When the value of the second subscript is greater
than the current length of the destination string, the modification results in a lengthened string
(within the dimensioned length of the string).

Here's an example that illustrates this. (A represents a space.) Execute these statements —

. Catnputer
StAuseum

T

;

When characters of a modifying string (or substring) are added to a destination string {(or
substring), they must be contiguous, that is, they must immediately follow the destination
string without any unassigned character spaces. If they are non-contiguous & ¢ s 0
occurs. For example —

(&remr o0)

By assigning blank characters to the string, = o+ * % is avoided. (A represents a space.)
For example, execute these statements —

2

String arrays require an extra subscript to indicate which string in the array is to be modified.

6-13

6-14 String Variables

String Variable Functions

A string function returns a numeric or string value to an expression. String functions enable
you to determine the length and analyze the contents of a string. This is useful when strings
with different characteristics (length and content) are processed at the same time, as in
entering strings from the keyboard.

Length Function

The length (| =3) function returns the number of characters in a string or substring.
L=y istring variable or text

The current length of the string (or substring) is returned, which is not necessarily equal to the
length defined in the =i i : statement.

The following example uses a simple string to illustrate the length function. If you've run any of

the examples from the previous chapter, press @ before executing the following
statements —

imFAELa2]

“length#uidih="%

HE

&i? lenathswidt (T T Sj
lenifE [S]

String Variables 6-15

In the following example, the last character of A$ is replaced —

Here an addition to A$ is made —

The length of a part of A$ can be found using the length function —

String arrays require an extra subscript to indicate which string in the array is being used in
the function.

6-16 String Variables

Position Function

The position (::::::) function determines the pasition of a substring within a string.

e Lin string variable or text = of string variable or text :

If the second string is part of the first, the value of the function is the position of the beginning
character of the second string within the first starting from where you began searching. If the

second string is not a substring of the first string or if the second string is the null string, the
value of the function is zero.

Simple strings are used in the following example to illustrate the position function. Execute
these statements —

I3
+F

String arrays require an extra subscript to indicate which string in the array is being used in
the function.

String Variables 6-17

Value Function

With the value (:.:::) function, the numerical value of a string or a substring of digits can be
used in calculations. (Normally the elements in a string are not recognized as numeric data

and can’t be used in calculations.)

istring variable or text :

The first character to be converted in a string using the value function can be a digit, a plus or
minus sign, a decimal point or a space. Leading plus signs are ignored; leading minus signs
are counted. An odd number of minus signs is equal to a minus sign; an even number of minus
signs is equal to a plus sign.

Numerical data entries can be combined logically with input text. All contiguous numerics are
considered a part of the number until a non-numeric* is reached in the string. This means that
a string can contain more than one number. The first character after leading spaces, plus
signs or minus signs must be a digit or a decimal point. If the leading part of a string is not
valid as a number according to the rules of the enter statement, an error occurs, unless flag 14
is set. If flag 14 is set, the default value (zero) is substituted for the number to be returned and
flag 15 is automatically set (to 1) to indicate the substitution.

The value function requires a temporary storage area equivalent to the size of the portion of
the string used. If there is not enough memory for this temporary storage area, error 40 will
result.

Simple strings are used in the examples below to illustrate the value function. The simple

string (E$) contains a name (Atkinson), a social security number (094-30-6441) and a balance
due ($250).

“The = character is recognized as the “exponent of base 10”, when it follows a numeric.

6-18 String Variables

After a payment of $100, the balance due is $150, as shown below.

Other operations can be performed, using the value function —

\J

String arrays require an extra subscript to indicate which string in the array is being used in
the function.

The string function, covered next, is the opposite of the value function.

String Variables 6-19

String Function

The string (%) function converts a numeric value into an equivalent ASCII* string using the

current fixed or float setting. If the numeric value is positive, the resulting string has a leading

blank. The string function is the opposite of the value function.

=k r lexpression

The string function is illustrated using the simple string from the value function examples on
the previous pages. The examples use E$ which contains a name (Atkinson), a social security
number (094-30-6441) and an amount due ($250). Using the value function, the amount due is
located in E$. Then a payment of $100 results in a balance due of $150. To return the $250 to
ES$, the string function is used. Execute these statements —

or

Computer

s = . Museum

)

The destination string must be dimensioned to accommodate the digits added due to the
current flt or fxd setting and for the + or — sign.

* American Standard Code for Information Interchange.

6-20 String Variables

Character Function

The character (¢ 174) function converts a numeric value (modulo 256) to an ASCI character.
Any of the 94 alphanumeric characters and symbols from the 9825 keyboard, and 34 other
characters which are not on the keyboard can be output by executing the character function.
(See the complete character set in the Appendix.)

- texpression i

All of the 128 characters can be displayed using the following program.

B o fwd &

12 for I=8 1o
CfEE e
2t dap chorill
33 ownit 3EG

43 nmext 1

55 oEndg S

The character function can also be used to output control characters to devices like a tape
reader, 9871A printer or a digital voltmeter.

The character function is the opposite of the numeric function, which is covered next.

String Variables 6-21

Numeric Function

The numeric (i) function returns the ASCIl decimal value of a single character. The
numeric function is the opposite of the character function.

+: {single character of a string variable or text i

For example, execute these statements —

All 94 alphanumeric characters and symbols from the 9825 keyboard, and 34 others not on
the keyboard, have a decimal value (or code) for their binary equivalent. These decimal values

and the equivalent character or symbol are printed using the character function in the follow-
ing program.

B ofwd B

T wey =3 T
YEd : ;

E? priughgijE;I

Sioment 1 :

aroend

6-22 String Variables

Here's the printout of the internal character set and equivalent decimal codes. The internal
character set for decimal codes 128 through 255 is the same as for decimal codes 0 through
127, but are displayed with a flashing cursor.

4 &) 44 a a7
1 1 449 b o
M 3 2 | d a
o ¢ 4 52 & i
E = 5 53 ¥ z
r £ & 54 a 3
Fi v 7 55 ki 4
& 2 ; 56 i 3
T =) a BY g £
& 5 - 58 k I
% 1 ; a9 1 S
o 2 b4 e)
= 3 = = F

4 » Z e

3 2 B3 R

VI w

S T T B A A S o e e e ety il o B S e o 0 et O v B o O o B B Y ot o O 0 B ot B
L R SN TS o B)

(3 5 S AN
oo ks okt i it ks e+ oo e o s ekl ke’ e ok o ok ok ks ks e i ol e i

1
1
i
1
1
1 o
1& IC £4
0 17 A 65
& 15 E EE
& 19 Z BT 1 £
a o] 0 s u =
A 21 E 59 L &
i 2 F i ! E
N 23 13 71 5]
o 24 H e i
i 25 I ra I =
i 26 J 74 if =
i 2y K 7a | 4
i 22 L TE * =
£ 24 H 78 F 7
31] P
o ae F a0
| a3 [21
34 R 82
Ch = 53
% K1) T 2d
37 L o5
& ae W HE
! =29) ar
{ 4 # ai
1 41 s ng
+ 43 L 21
’ 44 r 22
- 45] a3
. 46 I G4
47 E 95
' 96

String Variables 6-23

The character and numeric functions can be used to store and retrieve numbers in the range 0
to 255 using only 1 byte of memory per number. Each number is represented in memory by
one of the 256 characters of the internal printer character set. For example, in the following
program the five test scores on the right are stored in T$ —

Student Score
gy odim THILS] : .
11 for I=1 to 5 1. Andy Atkins 88
2% ent W 2. Tom Atwater 78
A ocharlHE)*TELLs 3. Jim Belcher 65
4 I ! o I : 4. Jerry Hafford 100
5o oemnd 5. Rob Rood 99

To recover a test score, the numeric function is used. For example, the last score can be

displayed by executing ~

)

The length of the string used to store the values is limited by memory size only. However, only
values between 0 and 255 can be stored in this way.

String arrays require an extra subscript to indicate which string in the array is being used in
the function.

Computer-
. Mu%e’yr"n

6-24 String Variables

Capital Function

modifying the original string. This enables you to compare strings for sorting or alphabetizing
without regard to upper or lower case characters.

istring variable or text :

Strings or substrings of string variables can be converted using the capital function. For
example —

)
in
-§-
4

String arrays require an extra subscript to indicate which string in the array is being used in
the function.

A temporary storage area is required by the cap function equivalent in size to the portion of the
string used. If there is not enough memory for this temporary storage area, error 40 will result.

String Variables 6-25

String Variable Operations

Relational Operators

The i+ statement allows comparison of strings or substrings. All of the relational operators
allowed in numerical comparisons can be used for string comparisons.
i equal to
' greater than
less than
Lo greater than or equal to
S Qr less than or equal to
#or < or < notequalto

Here's an example that uses a relational operator to illustrate conversational programming —

Gl ve B 18]
i

grit Moo
et nl S antin

=

it
ESiyata d
A

x

der Lontinue
When the enter statement prompt is displayed, the answer is keyed in.

Within the computers memory, each character contained in a string is represented by a
standard ASCII* decimal equivalent code (see the Reference Tables appendix). When two
string characters are compared, the smaller of the two characters is the one whose decimal

code is smaller. For example & (decimal code 50) is smaller than ¥ (decimal code 82).

* American Standard Code for Information Interchange.

6-26 String Variables

In some cases, such as alphabetic sequencing problems, strings must be compared for
conditions other than “equal to” or “not equal to”. For example, to arrange a number of strings

in alphabetical order, the following type of string comparison is used —

g odis ASIEG)
BELZBI28120]
1i enmt REBEL3i¢
REBEista =
2 BESTEIRERES

ZEeHE
Fioprt RBEs iz
lezss than'B%

Strings are compared, character by character, from left to right until a difference is found. If
one string ends before a difference is found, the shorter string is considered smaller. For

example, execute these statements —

Eimszon’ s "Hi ki {

Concatenation Operator

The concatenation operator () links strings or substrings in order from left to right.
string variable or text #: string variable or text [#...]

The resulting string is the total number of characters in all of the strings. Strings or substrings
can be linked. Press @ . before executing the following statements —

String Variables 6-27

In general, the concatenation of N strings requires a temporary storage area equal to

2x(len (1) + len (2na) + ...) + len (Nm — 1)) + len (Nuw) strings. If insufficient memory is
available for this temporary storage, error 40 will result.

String Input and Output

Enter Statement

The enter (:7+7:1) statement allows string variables to be input from the calculator keyboard
during program execution. Up to 80 characters may be entered into a string at one time. To
enter a string longer than 80 characters, several substrings of up to 80 characters each may
be entered. For example —

i din HEL1e4]
12 ent AE[1-80]

Ztoent AFLEL
16

After the first 80 characters are entered, a second data request - ¥

displayed so the second 80 characters may be entered. A for/next loop (Advanced Program-
ming) can be used to enter very long strings.

String arrays require an extra subscript to indicate the appropriate string in the array.
Strings and numeric variables can be used together in an enter statement —

|
o dip CELDIRT
De{ial

Teoemto G DECDT

€
E:
,-.

6-28 String Variables

In conversational programming, the enter statement assigns text to string variables from the
keyboard while a program is running. The destination string follows the same rules as the
destination string in string assignment and modification. For example —

Gt din AEL1EM]
1,:, E‘ﬁt 1n HRﬂE '.:‘ T 5,,

When line 0 is executed, the prompt ¥
presses , that name is assigned to AS.

“is displayed. When the user types in a name and

If a literal prompt is not given, the destination string variable is displayed as a prompt. For
example —

1t ent A$L3:3]

When the line above is executed, the display shows —

D

When the user types in the appropriate data and presses the key, the data is assigned to
A3[3, 3].

String Variables

Print Statement

The print (&= + 1) statement can be used to print string characters. With the print statement, an
automatic carriage return-line feed (cr/If) occurs when a new string is output. The string
characters are left justified when output.

Here's a program that prints out the internal printer character set using the print statement.

B fxd B
1y dim 2501283
21 for I=@ ta
127
3 char(l1+2¢[1+
lsI+11
4% next 1 ,
af prt Z% - When executed, this is printed —
B: end :

1'Trnhrn-ﬂL'u¥fi
SEABA0AD0EeE £ %
! KI#I' (u! | l++5
@12J4q3rﬂﬂ .=‘”
@ﬁE!DEFFHIIFLHHH
FjF’THVHH?ZEr]?,
tabeodefashidklsmno
parstuvuxyzal+Ek

Strings, the rows of string arrays, numeric variables and constants may be included together
is a print statement, as shown in lines 6 and 7 of the following temperature conversion prog-
ram. (i represents the month, & represents the day and ¥ represents the Fahrenheit temper-
ature.)

_§a1ﬂ‘ I5 s

.,_.
fun]
o v

[

5w

ne

e T
wn mn

()]
e
LI gy

T
il

6-29

6-30 String Variables

Display Statement

The display (:i:
these characters can be viewed at one time. The display control keys (-) and (-)) are used
to shift the display to the left and right to view all 80 characters.

::) statement can be used to display a maximum of 80 characters. Only 32 of

Write Statement

The write (" %) statement is a General |/O ROM statement which allows strings to be output
to external devices, as well as to the internal printer.

The write statement works like the print statement, without automatic carriage return-line

feeds. The write statement outputs the entire string (as does #:+ %). Using the example from
the "% statement description, the write statement replaces print in line 5. The number
following =i+ % is the select code of the output device being used (18 is the internal printer

select code and O is the display select code). Compare the outputs —

G: fud @ g iRl Rar
1: dim Z$L[128] by EEOAAAAAOG00E
2t for I=8 tao
127 o
i ochart 201+
4 pext 1 o
S owrt 16 2%
g2i end

Characters 10 (line feed) and 13 (carriage return) cause a carriage return and line feed. When
the internal printer reaches the tenth character, a line feed occurs. Then the next 16 charac-
ters are output (except the thirteenth, which is a carriage return). Since line feeds are not
automatic, the characters following the carriage return are not printed.

The write statement can be used with free-field format or with format specifications. The
following exampie uses the write statement without format specs. Execute these statements —

String Variables 6-31

J

When format specifications are used, the spec that sets the width of a character field is -
followed by the width of the field in number of characters. (A value can precede . to indicate
the number of strings to be output.) The strings are right justified when output. Execute these
statements —

DAl
™

]
f

b
i
”
f
1
=
Y

=

When the string is longer than the specified field, an overflow condition exists and dollar signs
are output.

\J

Complete information about the write and format statements can be found in the I/O Control
Reference.

6-32 String Variables

Read Statement

The read (i) statement is a General 1/0 ROM statement used to input data. The read
statement can be used with free-field format or with format specifications.

Here’s an example using free-field format that reads A$ using an input device that responds to
select code 3 (the number following :¢d), such as a tape reader. Assume this string is on

tape — ABCDEFGHI ()

When format specs are used, as with the write statement, parts of a string can be read. Using
the previous example, the first three characters only can be read by executing these state-
ments —

)

Strings, string arrays, numeric variables and constants may be used together in a read state-
ment. Complete information about the read and format statements can be found in the /O
Control Reference.

String Variables 6-33

Loading and Recording Strings

Each character of a string requires 1 byte of memory for storage. Extra bytes of memory ,
called overhead, are required to store strings and string arrays on tape. For example, to store
an array dimensioned AS$[X, Y], it takes 6+2X bytes of overhead plus the data requirements of
XY bytes (plus 1 byte if XY is odd) to store X strings.

Recording Data

To store string variables on tape, first mark the number and size of the file or files required and
then use the record file (+ =.¢") statement.

«+ ¢ file number = string variable [= string variable...]

When the record file statement is executed, the strings found in the list of data items are
recorded into the file number specified, on the current track. Strings in the list must be entire

simple strings or entire string arrays. For example —

B dim ARELS]eEs
BED18: 28122 2
.
.
.
¥

6-34 String Variables

Loading Data

To load string variables into the calculator’'s memory from tape, the load file (i ¢
is used.

) statement

i it file number = string variable [¢ string variable...]

When the load file statement is executed the data in the file specified from the current track is
loaded into the calculator's memory. A i i 1 statement must be executed before the load file
statement. The list of variables in the load file statement must be in the same order as previ-
ously allocated in the =i i i statement.

String variables can’t be combined in the load file statement. For example, if A$ and B$ are
dimensioned and then linked later in a program (-
loaded as dimensioned —

#), they must be recorded and

i dim AEL5]
BEflol.-C#015]

.
*
.

4: AFLEFHCE

Gt orof 1sA%E.REE
*
®
®

Systems Programming 7-1ﬂ

Chapter 7
Table of Contents

- Computer
useum

9825A/S ROM ReqUIremMENTS o 7-3
Intelligent Terminals 7-4
Intelligent Terminal INSIrUCHIONS 7-5
Keyboard Interrupt Service Enable (onkey)o o 7-6
Key Buffer Empty Function (Key) o 7-8
Keyboard Interrupt Routine Return (kret) o 7-9
Keycode to ASCIlI Code Conversion (asc) ... 7-9
Read Transfer Buffer Function (bred) 7-10
End-of-Line Specification (€0i) 7-12
Serial Interface Control Instructions 7-14
Write Serial Control Word Statement (WsC) i 7-14
Write Seriai Mode Word Statement (wsm) 7-15
Read Serial Status Word Functon (rss) 7-16
Remote Keyboard Statement (rkbd) 7-17
Power-Up Remote Keyboard Operation 7-19
Systems Programming Instructions 7-21
Store Statement (SIOre) 7-21
Next Available Line Function (nal) 7-24
Free Text Syntax Prefix (%) 7-25
Available Memory Function (avm) 7-27
Current Line Number Function (CIn) ... 7-28
Execution Priority Diagram 7-29
Program Execution Flowchart 7-29
On Key Execution Flowchart 7-30
On Key Service Routine and Kret Flowchart 7-30
98036A Register Access Flowchart 7-31
Octal Keycode Flowchart 7-31
PTAPE Example Program 7-32
Asynchronous Data Formats 7-34
Mode word Finder Program e 7-36

\

\

7-2 Systems Programming

Notes

Chapter 7

Systems Programming

The Systems Programming ROM extends the 9825 language to include capabilities for remote
keyboard operation, program self-modification, run-time read/write storage allocation, and
intelligent terminal emulation. This ROM is available as a plug-in acessory (98224A) for 9825A
and S computers. The ROM is included with the 9825T.

The Systems Programming ROM uses 160 bytes of user read/write memory when installed in
the 9825A or S. The Systems Programming ROM and the 98211A Matrix ROM cannot be used
simultaneously in a 9825A or S. If the Matrix ROM is installed, it must be removed before
installing the Systems Programming ROM. Both ROMs can be operated simultaneously with
the 9825T.

9825A/S Requirements

Several of the Systems Programming statements require the presence of other ROMs. The
relationships of the statements and their requirements are shown in the following table:

Mnemonic — ROM Option Requirements

ROM Option
Mnemonic Description Necessary

Keyboard Interrupt Routine enable None

Key Buffer Empty function None
Keyboard Interrupt Routine return None
Keycode to ASCII Conversion function| None

Read Transfer Buffer function Extended I/O?
and General 1/0
End-of-Line specification General I/O
Write Serial Mode Word statement General /O
Write Serial Control Word statement General /0O
Read Serial Status Word function General /0
Remote Keyboard Enable General /O
Next Available Line function None

Free Syntax prefix None

Store String instruction String?
Available Memory function None

Lol Current Line Number function None

1 Extended 1/O Binary Tape can not be used.

2 The String Programming ROM is not necessary if only literals are to be stored.

7-4 Systems Programming

With the 9825A Option 003 (32K R/W memory), it is necessary to load Extended 1/0 as a binary
tape. The Systems Programming ROM will not operate properly if the Extended 1/0O binary tape
is loaded into the 9825A. Do not use the Systems Programming ROM and the Extended 1/O
binary tape concurrently, as erratic and unpredictable calculator operation will result.

Intelligent Terminals

An intelligent terminal should represent a logical extension of the capabilities of a basic data
terminal. The minimum facilities of a basic data terminal usually include a keyboard for
operator entry, a printer or CRT display for data records and communications link status
information, and a serial interface to the central processor. An intelligent terminal should
include the minimum terminal functions and be user programmable.

The programmability of an intelligent terminal allows the user to define key functions, set
special formats, establish communication formatting, and in the case of the 9825, perform
off-line computing as well. Some of the features an intelligent terminal makes possible include:

e Extension of the throughput capabilities of an overloaded central processing system;

e Faster effective turnaround time with much of the data processing done locally;

e Local formatting of input and output data records;

e Local concentration of data, with high speed block data transmission;

e Local content error correction and editing;

e Appending local, variant data, such as operator code, date and security information;

o Reduction of repeated communication link transfers due to local message correction and

verification.

Use of the Systems Programming tanguage can provide all of the features of an intelligent
terminal and additional features that aren’t usually available. The 9825 contains a high speed
data cartridge for temporary off-line data storage if the communication link goes down, and an
internal printer to list operator instructions and prompt messages.

The internal printer and the display can be treated as external devices by the program, and
can be used to list two different message levels simultaneously. For example, the display
could be used to list the data as typed by the operator and the printer utilized to update the
communications link and system status.

Systems Programming 7-5

Intelligent Terminal Instructions

The Intelligent Terminal Instructions facilitate segmentation of the internal 9825 computer
“peripherals” into program controllable modules. With the three instructions “on key”, “key”,
and “kret” the programmer can set up the 9825 keyboard as an external peripheral input
device. The “asc” function returns the ASCI! code equivalent of a 9825 keycode (which can be
output to an ASCII coded printing device such as a teletype). The “eol” specification extends
the generality of the communication format by allowing the programmer to specify output line
delimiters other than the standard carriage return/line feed.

9825A/S External ROM Requirements

Mnemonic Required ROM Option Description
None Keyboard interrupt directive
None Key buffer empty function
None Keyboard interrupt routine return
None keycode to ASCIl conversion
Extended 1/0 ROM
and General I/O ROM Read transfer buffer function
General I/O ROM Line delimiter specification

7-6 Systems Programming

Keyboard Interrupt Service Enable

The “on key" statement enables the programmer to establish the 9825 keyboard as an exter-
nal input device, operating on an interrupt service level.

“Routine Name "~ [: Flag Number]

The routine name parameter may be either a string or a literal, and the flag number parameter
either a fixed value or an expression.

Routine Name: Specifies the label of the keyboard service routine that is to process
keyboard interrupts.

Flag Number: (Optional) specifies which flag to set if the key buffer overflows. If a flag
number is specified, error C5 will not be issued for a key buffer overflow.
The flag number may specify any one of the 16 system flags, however flags
14 and 15 should not be used if any math processing is being performed.

When activated by an “on key" statement, a dedicated 16 character circular buffer is estab-
lished, as well as a link to the “on key" service routine. This routine (specified in the Routine
Name parameter) changes the status of the system keyboard from calculator controfier to
input device (with the exception of the RESET key).

Thereafter, when a key is pressed, the keycode is placed into the 16 character circular buffer
and end-of-line interrupt service is requested. If no other interrupts are pending, program
control is passed to the keyboard service routine for processing. If any interrupts other than a
keyboard interrupt occur before the end of the current line, they will be processed in descend-
ing order by select code until all pending interrupts have been processed. (Refer to the “on
key" execution chart, execution priority block diagrams, and program execution flowchart
shown later.) The 16-character key buffer allows for execution of long program lines and
multiple interrupt processing before the key buffer overflows.

Systems Programming 7-7

A key buffer overflow results if more than 16 keys are pressed before program control trans-
fers to the "on key’service routine. An overflow is indicated either by error C5 or by setting the
“on key' flag (use the optional Flag Number parameter).

The “on key” statement specified without parameters disables the on key service routine,
clears the key buffer, and returns the 9825 to normal keyboard operation. The “on key”
optional flag (if used) is not affected, and it should be noted that “on key” cannot be disabled
from live keyboard. (The "on key” statement effectively disables live keyboard.)

NOTE
Whenever the “on key” statement is executed the key buffer
is cleared and any data remaining in the buffer will be lost.
This applies to the “on key" statement with or without
parameters.

NOTE
Do not execute a branch command (! :i#,

=4, ete.) from within the “on key’” routine if program
execution will branch from the routine without executing a
kret. The result will be that no more keys will be processed
from the keyboard.

7-8 Systems Programming

Key Buffer Empty Function

Parameters are not required for the “key" function.

The “key” function returns the earliest entered unprocessed keycode in the key buffer. When
all keycodes have been processed by the “on key” routine, & v returns a value of zero and
“ vt execution is allowed. If an exit from the subroutine is attempted (by a “kret") with any
remaining keycodes in the key buffer, the “on key” routine will be restarted. (See the “kret”
execution flowchart Iater in this chapter.)

Example:

Bt 0 0,1: Enable on key service routine

", and hang in loop.

S : 2: on key routine label.

3: Display each consecutive keycode in
bufter.

21 ; : : 4: When buffer is empty, return.

NOTE
The “kret” will cause an immediate routine reentry unless
the key buffer has been emptied.

Systems Programming 7-9

Keyboard Interrupt Routine Return

Parameters are not required for the “kret” syntax.

The “kret” statement serves to return program execution to the main program after emptying
the key buffer. The reentry point of the main program is the program line that would have been
executed before control was passed to the keyboard service routine.

It kret is executed before emptying the key buffer, control is not transferred to the main
program, and the keyboard service routine is restarted. (See the on key execution flowchart.)

Keycode to ASCII* Code Conversion Function

The "asc" function provides a single statement conversion from 9825 keycodes to an ASCI|
equivalent code. It is useful when outputting 9825 keycodes to an external ASCII device.

keycode

The keycode parameter may be either a fixed value or an expression.

The “asc” function returns the ASCII equivalent of a 9825 keycode, including the system
control keys and special function keys. The value returned by the “asc” function for the shifted
function keys will be greater than 127 decimal, and therefore out of range of the ASCII
character set. If the Extended 1/O ROM is present, the “asc” function will return an octal or
decimal value depending on the oct/dec mode of the calculator. If the octal mode is set, the
value returned by “asc” will be in octal, which is an improper format for the “char” function of
the Strings ROM. (In this case use the octai-to-decimal function to restore the “asc” value to
decimal; refer to the Binary I/0 chapter of the /O Control Reference.

Example:

Typing a key on the keyboard will result in
the ASCII character and code shown in the
left of the display and the 9825 internal
character and code to the right.

* ASCIl: American Standard Code for Information Interchange.

7-10 Systems Programming

Read Transfer Buffer Function

The “bred” function facilitates use of the 9825 over a high speed data link, offering a means
of reading an active interrupt input buffer without having to wait for the buffer transfer to run to
completion.

..... & oh 17 Buffer Name 7

Buffer Name: A string or literal parameter specifying the name of the transfer buffer to be
emptied. The buffer specified must be an active*, interrupt type, byte input
buffer (type 1) as implemented by the Extended {/O ROM. An error (C4) is
displayed if “bred” is executed specifying a non-interrupt type or non-busy
buffer. If the "bred” function is used to read a transfer buffer, the General
I/0 “red” statement should not be used. Using both “bred” and "“red” onthe
same buffer disrupts the buffer pointers and incorrect data is read from the
buffer. A more detailed discussion of the transfer buffer pointers is in the I/O
Controf Reference.

Use of the “bred” function in conjunction with the Extended 1/O transfer buffer facilitates
9825 data communications on a high“speed data link. The “bred” function allows the pro-
grammer to implement a high speed input buffer which is emptied at memory speed without
having to run the buffer transfer to completion. This input scheme presents a broader data
input window to incoming messages than does a double buffer input scheme of alternating

input transfer buffers. The double buffer input method offers only limited control over the time
window between buffer available periods, due to the necessity of completing the current
program line before acknowledging a buffer completion interrupt. It a long program line is
being executed when a buffer terminates, the time delay encountered before reenabling
another input buffer may be too large to insure reception of all incoming data when operating
at high data rates.

* The transfer operation must be in effect.

Systems Programming

When high speed data communication is implemented on the 9825, use of the “bred” buffer
read function on a frequent basis is suggested. Interrupts are disabled by “bred” for a time
span dependent upon the number of bytes in the buffer to be read out, so it is suggested that
the program be designed to execute a “bred” periodically. If a buffer overflow occurs, possi-
ble alternatives are to add more “bred” instructions to the program or to execute i i i within
a subroutine which is called from several program locations.

"M
Example: ="

Line 1 establishes a type 1 buffer of 200
bytes (“Buff").

Line 2 enables the peripheral on select code
12 for a full buffer interrupt routine (= i+

“).1t also locates the proper service

£

r
3

e B e

it
i

routine for this interrupt (i

.

Line 3 starts the transfer operation into
“Buff”.

Line 4-14 are program lines that process the
incoming data.

Line 15 initiates a i

i operation on
“Buff”, specifying the contents of the buffer
to go to BS.

Line 16 returns to “loop”.

Line 17 is executed on a buffer completion
interrupt. If this happens, “bred” must be
executed more frequently.

Computer 3

7-12 Systems Programming

End-of-Line Specification

The end-of-line sequence specification furnishes the programmer with a means of substituting
any character sequence (up to seven characters) for the General I/QO carriage-return/line-feed
for tailoring output to the needs of the external device.

@71 1 [eol Character] [# eol Characterz]...[+ eol Characters] [- eol Sequence Delay]

From zero to seven eol Characters may be specified; each may be a fixed value or an expression.
The Sequence Delay parameter (if specified) must be given as a negative value, and may be
either a fixed value or an expression.

eol Character: Is the numeric value of each character code to be output as an end-of-line
delimiter. The maximum value that may be specified for an eol character is 127
decimal, as only 7-bit characters are transmitted. The ecl characters are fixed
at the time the «:: | specification is executed, and the octal/decimal mode
setting of the calculator will determine the interpretation of the eol character
value. This value is not reevaluated when the octal/decimal mode is
switched subsequent to the #:: & specification.

eol Sequence Delay: Specifies the milliseconds of delay between output of the last character
of an eol sequence and the start of the next line of output. The maximum
possible delay is 32768 milliseconds (decimal value), allowing a flexible
approach to a peripheral’s physical requirements. (For example, some tele-
type printers require about 200 msec after performing a carriage return
before being ready for new characters.)

The end-of-line specification is useful for formatting output to specialized devices such as the
HP 2640 Terminal. The 2640 terminal requires specific codes in an end-of-line sequence to
keep the display in the special enhancement mode on the next display line. Since the “eol”
sequence specification may be executed at any time, it is possible to extensively reformat
output to a device by specifying tabs, spaces, double spaces, or whatever sequence is
desired, as necessary.

Systems Programming 7-13

In operation, the eol sequence is substituted for the carriage-return/line-feed delimiters of the
General I/O format. This substitution affects output to any device using the statements “list#"
and "wrt” (General I/O), and “cat” (mass storage).

The General I/O format statement (“fmt™) is also affected by the eol sequence specification.
The slashes (new line) will cause an eol sequence to be output to the specified device instead

output.

Examples:

Changes format to carriage return, line feed,
and five spaces.

This format will output two eol sequences and
a twenty character string.

7-14 Systems Programming

Serial Interface Control Instructions

9825A/S External ROM Requirements

Mnemonic Required ROM Option Description
General 1/0O Write Serial Mode Word statement
General I/O Write Serial Control Word statement
General /O Read Serial Status Word function
General 1/O Remote Keyboard Enable/Disable

Write Serial Control Word Statement

The "wsc” statement insulates the programmer from the complex control register access
sequence for the 98036A Serial Interface. A single statement is all that is necessary to access
the 98036A control word, making the implementation of specialized /O formats a much sim-
pler task with the Systems Programming ROM.,

s Select Code = Control Word
Parameters specified may be either fixed values or expressions.

Select Code: Specifies a 98036A Serial Interface select code set to the range [2 = select
code = 15]. If the interface specified by the select code is not a 38036A, or
if no interface is set to the specified select code, error C9 is issued. Ex-
tended 1/O device names are disallowed.

Control Word: Specifies a bit pattern to be written into the control register (R4D) of the
98036A Serial Interface. Note that the value of the control word (mod 256)
follows the octal/decimal mode setting of the calculator (for Extended I/O
ROM only), and is interpreted accordingly. {Bit 6 is masked out to avoid
resetting the 98036A.)

Systems Programming

Write Serial Mode Word Statement

The “wsm’ statement accesses the mode register of the 98036A Serial Interface with a single
statement, reducing the programming necessary to reconfigure the 98036A mode word. This
function is useful when temporarily logging on to a serial 1/O link which uses a word format
different from the one set by the 98036A mode switches.

Select Code : Mode Word [= Control Word]
Parameters specified may be either fixed values or expressions.

Select Code: Designates a 98036A select code with the same specifications and limitations
as described for the “wsc" function.

Mode Word: Specifies a bit pattern to be written into the R4C register of the 98036A Serial
Interface. Note that the value of the mode word follows the octal/decimal
mode setting of the calculator (Extended [/O ROM only), and is interpreted
accordingly.

Control Word: (Optional; default value = 5) If a value different from the default value is
desired, it can be specified as a parameter to the “wsm’ syntax. See the
“wsc” syntax for the 98036A control word (R4D) details.

7-16 Systems Programming

Read Serial Status Word Function

The “rss” function returns the contents of the 98036A status register, giving the programmer
easy access to the current status of the serial 1/0 link.

= un Select Code
Parameters may be specified as either fixed values or expressions.

Select Code: Designates a 98036A select code with the same specifications and limitations
as described for the “wsc” function.

The 98036A status word (register R4E) is accessed by the “rss” function and returned as a
value interpreted according to the octal/decimal mode setting of the calculator. The following
table describes the bit position functions of the R4E status word:

NOTE
When using the "“wsc”, or “wsm’ commands, a parameter
error could leave the 98036A in an undefined state. Use
care when selecting the parameters for these functions, as
data loss could result if the interface locks up. If this state is
encountered, it is necessary to reset the 98036A.

Systems Programming 7-17

Remote Keyboard Statement

The “‘rkbd” statement enables a remote keyboard to control the 9825A over a serial data link
through the 98036A interface.

it Select Code [: Code Type]

Parameters may be either fixed values or expressions.

Select Code: Must specify the select code of a 98036A Interface, and must be in the range
[2 < select code = 7].

Code Type: Specifies the remote keyboard code interpretation as follows:

Code Type = 0: ASCII keyboard
Code Type = 1. 9825 keycode keyboard

If code type is not specified, a default value of zero is assumed (ASCII).

The “rkbd" statement operates in conjunction with the 98036A Serial Interface to enable full
duplex remote operation of the 9825. This capability allows the 9825 to be used with a multiline
display and to be controlled remotely while the calculator is operating in a hostile or inacces-
sible environment. All characters sent to the 9825 from the remote keyboard are echoed to the
remote display, allowing contiual monitoring of the data link status.

When operating with a remote keyboard, the local keyboard is not disabled and characters
generated by the 9825 keyboard are not transmitted to the remote display. Error messages
are treated as local data and are not transmitted to the remote display. To enable error
message monitoring on the remote display, the error trapping facility of the Extended I/O ROM
must be used in conjunction with the “wrt” statement. (Note that an “rkbd" interface may be
written to, but not read from, by the 9825.)

Example:

7-18 Systems Programming

The error recovery routine “traperr” outputs the error number and the line it occurs in to the
remote keyboard set to select code 6.

Pressing the calculator “Reset” key will take the calculator out of the remote keyboard mode.

To prevent erroneous character transmission over the data link, the interface character format
(#0f stop bits, parity, #character bits) should be identical for the remote keyboard and the
9825. When the calculator is operating in the ASCII mode, the input characters are masked
to seven bits. When operating in the 9825 keycode mode, the interface should be configured
for 8 bit characters, or the shifted special function keycodes will be inaccessible.

Some: peripherals, such as the HP 2640 Terminal, have block output capability and can
tranSmif'a'line or more of characters at atime. [If block transmission is to be used with a 9825
enabled fo-r remote keyboard operation, a data rate of not higher than 110 baud should be
used. (For large block transmissions use 50-75 baud.)

NOTE
Buffered |I/O operations should not be used with a 98036A
configured as a remote keyboard interface, as erratic cal-
culator operation will result.

Limited editing of 9825 program lines is possible from the remote keyboard by using the
“list#" statement to output selected program lines to the remote terminal, however the 9825
cursor position is not accessible and it is necessary to retype the entire program line. The
remote edit sequence for line 7, interface select code 6 becomes:

(typed at remote keyboard)

@ (line-feed = "“execute”)

(typed at remote keyboard)

(line-feed = “execute")

(Retype edited version of line.) (typed at remote keyboard)

(carriage-return = ‘‘store”)

Systems Programming 7-19

Although remote control of 9825 operation is possible with the “rkbd” statement, remote
keyboard editing is awkward (as demonstrated above) and not recommended for extensive
program development.

The ASCII to keyboard function chart in the appendix relates ASCII control codes to 9825
functions, and is included for reference when using an ASCll coded remote keyboard with the
9825. ASCll control codes do not generate locally displayable characters, and it may be
difficult to keep track of calculator operations. Typing out commands is therefore recom-
mended so the operator can have a record of calculator operation for reference.

Power-Up Remote Keyboard Operation

Upon power-up, the 9825 checks select codes 2 through 7 (in descending order) for a 98036A
Interface configured for remote keyboard operation. The interface with the highest select code
configured for remote keyboard operation will be used for the system remote keyboard.

To set up the 98036A Interface for power up remote keyboard operation, two jumpers must be
located and changed as described below:

1. Disassembly of the 98036A Interface:

o

Remove the four screws that hold the rear housing to the front housing.

b. Pull the rear housing off the front housing slightly, disconnect the cable connector
from the PC assembly and remove the rear housing.

¢c. Remove the remaining four screws in the front housing and separate the front
housing cases.

d. Carefully separate the printed circuit assemblies.

7-20 Systems Programming

2. Locate the 98036-66502 printed circuit board and orient it as shown in the figure
labeled “Component Side”.

3. Locate and identify the two wire jumpers on the board corresponding to J1 and J2 in the
figure.

4. For power-up remote keyboard operation, cut jumper 2 (J2) and slightly spread the wire
pieces so no electrical contact is made.

5. If the remote keyboard is to be an ASCIl coded keyboard, cut jumper 1 (J1). If the
remote keyboard is a 9825 type keyboard, leave J1 connected.

6. Toreassemble the interface, reverse procedures 1d through 1a, being careful that the
pins on the A2 assembly are properly seated in the connectors of the A1 assembly.

These jumpers affect only power-up remote keyboard operation. Programmable remote
keyboard using "'rkbd” is independent of the jumper configuration.

R S |
a—Ro1e #—RI—=

Jumper 2
(remote keyboard) Jumper |
(ASC! 1/ Keycode)

98036-66502 Diagram

Pressing the reset key of the 9825 takes the calculator out of the remote keyboard mode,
regardless of the state of the 98036A jumpers J1 and J2. Turning power off then on will put the
9825 back into remote keyboard mode (as set by jumpers J1 and J2).

Systems Programming 7-21

Systems Programming Instructions

The System Programming Instructions extend the 9825’s capability to generate or modify
programs under program control. The “store”, “%"”, and “nal” statements enable the 9825 to
handle string text (regardless of its source) and store the text at designated program lines.
The string text can be obtained from any source, such as mass memory, external systems, or
another 9825. The "avm” function returns the amount of available memory remaining in user
read/write memory, and “cIn” returns the current program line number.

9825A/S External ROM Requirements

Mnemonic| ROM Option Description
None Next available line.
None Free-text prefix.
String ROM* Store string statement.
None Available memory function.
None Current program line number.

* String ROM is not required for literals.

Store Statement

The “store” statement provides the capability of storing program lines from an executing
program.

&% e String Name or “Literal " [= Line Number]

The string name parameter may be either a string or a literal. The line number parameter may
be either a fixed value or an expression.

7-22 Systems Programm

ing

String Name: Names a string containing any valid HPL program line, specified as a string

Line Number: If

variable or a literal. If a string is specified, the String Programming ROM
must be present in the system. If the syntax of the line to be stored is invalid,
an error message is issued and program execution halted. It is possible,
however, to recover from this type error and disable syntax checking by
concatenating the free text prefix to the beginning of the line. A further
discussion of this concept and an example are included under the “%" free
text syntax.

included in the = = gtatement, the line number must specify a line
number less than the last program line number plus one. If the specified line
number is greater than this value, the default (nal) value will be substituted.

(Refer to the priority list below.)

To determine which program line the “store” text will actually be stored at, consider the
following priorities:

(Highest Priority)

3. Line number*
Example:
2. Line number*

Example: =% oes

i (default

(Lowest Priority)

There are four cas
is stored:

(parameter of “store” staterment);

(prefix of text;)

value if no others are specified;)

es to consider in determining the actual program line number where the text

1. If the Line Number syntax parameter is not given, and no line number prefixes the

program line text — the text will be stored at the default value (next available line).

* If a line number is specified, but is a number greater than the value of the last program line number plus one, the default
value (i+: 1) will be substituted.

Systems Programming 7-23

2. Ifthe Line Number syntax parameter is not given, but there is a line number prefix to the
text — the text line number is compared to the value of the last program line number
plus one (“nal”). If the line number is greater than the “nal” value, the line number prefix
is stripped from the text and the text is stored at the next available program line. If the
text line number prefix is within the program line limits, the text is stored at the specified
program line.

3. If both a prefix Line Number and the line number parameter are given — the text is
stored at the program line specified by the line number parameter, conditional on the
parameter designating a line number less than or equal to the “nal” value. Otherwise,

the text is stored at the next available line and the prefix line number is stripped from the
text.

4. If there is no prefix Line Number, and the line number parameter is given — the line
number parameter is checked against the “nal” value. If the line number is within the
range of the program, it then specifies the program line at which to store the text.
Otherwise the text is stored at the next available line (“nal”).

The store instruction must be the last statement of an HPL program line, and can be executed
from either an idle keyboard or a running program. It may not be executed from the live
keyboard, or error C7 is issued. (This includes a “store” within a subroutine executed from live
keyboard.)

There are some programming considerations to take into account when using the “store”
instruction, as this instruction can significantly alter the execution flow of a running program.

e When a ‘“store” is executed and the line is stored at a lower line number than any
subroutines or interrupt routines, they will be disabled, as will any “for...next™ links.

Example:

e Interrupts are disabled for a period of several hundred milliseconds when a “store”

instruction is executing; “store” should not be used during high speed data transmis-
sions.

e When storing an executable expression or a string literal, the “store” instruction will
actually store the interpreter representation of the expression or literal, and the resulting
line will have “dsp” appended to the beginning of the text.

7-24 Systems Programming

The store statement is a powerful programming tool, and should be used with discretion. The
principal use for the store statement is in conjuction with the “‘nal” function given as a line
number parameter. If the store statement is to be used to modify a running program, the
potential consequences as mentioned above should be carefully considered.

CAUTION
USING THE STORE INSTRUCTION TO MODIFY THE
PROGRAM AT A LINE NUMBER LOWER THAN THE CUR-
RENTLY EXECUTING PROGRAM LINE CAN CAUSE UN-
PREDICTABLE PROGRAM EXECUTION.

An expanded example of the “'store” capabilities is listed and explained in the appendix. The
example provides the 9825 with externally stored program loading capability. A shorter
example of the “store” statement used to input a program listing from an external source is
included here to demonstrate the basic operations necessary.

Example:

Line 1 reads one line of text into AS.

ESE AR IR Line 2 stores the text at the next available
line.

o Line 3returns to read a new line of input text.

Next Available Line Function

The =2 & function returns the value of the last program line number plus one. For example, if
the resident HPL program has lines numbered O through 54, 2 & will return the value 55.
When specified as a “store” statement parameter, the “nal” value overrides the line number
prefix (if present) of the string to be stored, and the result is to store the line after the last
program line.

Systems Programming

Examples:

Ex. 1 Ex. 2
Before Execution

g

Example 1 loads the specified file into program memory beginning with the next available
program line number, allowing program editing (line insertion and deletion) without requiring
modification of the load statement.

Example 2 demonstrates the use of i i to override the line number prefix of the literal, and
the result is to store the literal at successive lines after the last program line.

Free Text Syntax Prefix

= String or text to be stored

Any text following a “%"” symbol prefix is stored into program memory with no syntax checking
performed. Note however, that the percent symbol prefix eliminates all blanks in the line
except those occurring within quotation marks, and that a semicolon in the line masks all
following statements in the line from the free text prefix protection. The semicolon specifies the
end of the program line when it is encountered in a free text syntax. Execution continues at the

next program line, not at the next statement. Use of the free text syntax prefix does not permit
storing text with unmatched quotes.

7-25

7-26 Systems Programming

Example 1:

Line 0, the literal is stored but the blanks are removed because the interpreter causes blanks
to be removed from the string.

Line 1, the blanks in the text are preserved by surrounding it with quote marks.

Example 2.

1 Enter the input line to AS.

2 Enable the error recovery routine “insert
%"

3 Try to store the string.

s 4 Return to enter another line if no errors.

5 If an error occurred, append the free text
prefix to the front of the string and return to
line 2 to store the text. (This will not work if
the statement contained an error after a
semicolon. The example on page 7-32 re-

solve this problem by replacing all semico-
lons with % signs.)

Systems Programming 7-27

Example 3:

The free syntax prefix enables the programmer to write end-of-line comments for a program.

o EXAMPLE OF COMMENTED HPL"

1: dim A$(85] ; . ,

2:-ent “WEXT LINE...",AS5:% " Input one line of text"

3: on-err "insert %";3 " . Enable the errcr recovery routine”

48" . Store the line if possible”

5:-store AS, nal , - -

6:gto 2:% " - ~ Input ancther 1line"

7: "ingert ¥": ... =« .
8 "y"eAS+AS;gto 358 " ~ Append the percent sign to invalid lines"

Available Memory Function

The “*avm” function returns the number of unused bytes remaining in the 9825's read/write
memory. This feature enables a program to allocate storage based on remaining memory. For
example, a listing routine can use as much memory as possible in creating a list buffer, or an
edit program can allocate as large an edit string as is currently available in the machine.

Note
Since the 9825 system memory requirements change dur-
ing program execution, the amount of available memory is
constantly changing and a several hundred byte safety fac-
tor should be allowed for (to prevent an insufficient-memory

error) and subtracted from the 7 value. (Useable

memory = i — safety factor.)

7-28 Systems Programming

Current Line Number Function

No parameters are required for the cin function.

The “cIn” function returns the value of the current line number at the point of execution. Note,
however, that the value returned by “cin” will be different when executed from within a prog-
ram than when executed from live keyboard. When “cIn” is executed within a program, it
returns the line number of the current program line. When executed from live keyboard, "cIn”
will return the line number of the next program line to be executed. This is because “cin” is
incremented after the end of the program line and before the live keyboard statement is
executed.

The “cIn” function makes possible an absolute computed gosub or go to, and a relative store.
Examples of these functions follow:

Example 1, computed gosub to absolute line number:

Line 6 “computes” the line number of the
desired subroutine.

Line 7 executes the computed go sub to the
line number in A.

SR R R e e R Line 3 stores the string A$ at the program

+ line four lines down.

Example 1 enables a program to branch to an absolute line number that has previously been
computed and placed into a variable. It is not necessary to perform a subroutine branch, as it
is possible to simply jump to the computed location. Example 2 allows editing of the program
(inserting or deleting program lines) before the “store” program line without having to modify
the line number parameter of the “store” statement.

Systems Programming 7-29

Execution Priority Diagram

Hardware Priorities Software Priorities
1 “oni routines” Routines, Select Codes
Select Codes 8-15 “oni Routines, Select Codes 2-7
Increasing Priority | | Keyboard, Select Codes 2-7 “on key” Routine
Main Program

Hardware Interrupt Source Software Interrupt Source

Program Execution Flowchart

Run or
End-of-Line

Interrupl ont &1
Yes
From Select Codes Isl'\;i:‘r;):l
152
815 Routine
on” 2-7
Interrupt Interrupl
From Select Codes Service
2-7? Rouline
on ke
Keyboard Keybo;rd
Interrupt?
Service
(S.P. ROM) Routine

Process
Next
Program
Line

7-30

Systems Programming

“on key” Execution Flowchart

Keyboard
Interrupt

Key Buffer SetFlag or
Overhiow? Error C5

Request
End-ol-Line
Service, Place
Keycode In
Bufter

Return

“on key” Service Routine and ‘kret” Flowchart

Restart
on key

Routine ’

Key Bufler
Empty?
("key” = 0)

“key” (Process
Nex| Character
In Butifer)

]

Return To
Main Program

98036A Register Access Flowchart

Systems Programming 7-31

START
® ° Py
{ i 1 1
Write Controf Read or Write Read Status Write Interface
== Stalemenl Stalement Statement 6 Stalement
From Calculalor From Calculator From Calculator From Calculator

l

—

Read Inlerface
6 Statement
From Calculator

I

A5 OUT S ed)
| f Conrol R5 IN s Accessed] R6 OUT RE IN '
nterface Contro Intertace Slatus s Accessed
Word Accessed Word i1s Read Accessed
Go To
Go To Start
Go To Start
RS OUT B0 =0 R4A and R4B are Start
Bit0o =07 Accessed Data Can
Be Read or Written

Bro =1
Either R4D or
R4E are Accessed
Write Byle = R4D
Read Byte = R4E

8 maE UsamrT | GO O

Write Binary Start
or fead Binary Slatus Word d
Read Binary is Read
?
Write Binary
R4D 1s Accessed
The USART
Controt Word o
s set A1 Mode Word . CO‘fnpute
4 lode Wor: . hM Y
s Set Museum
Write Binary
R4C 1s Accessed Write Binary Read Binary R4E USART
The Mode Word or Slatus Word
Can Be Changed Read Binary 1s Read
?
e 230) (22 ™™ =) 301 202 303 304 205 206
23 2 101 102 109 105 108
236

235 237
35 37

226)

307 311 312 313 314
107 1 112 13 14

afelelelololojololelololNcl=Tolole
SololololololololololesNolalololo
clojojojojojojojojojejololojolojo
clojejolojojololelelelc

240

—

a0

201 231
1 n

21

mAcomxm

12

olojojo

117
316

@@@.

7-32 Systems Programming

“PTAPE”

This program is offered as an example of the capabilities of the “store” instruction when
augmented by the free text prefix and error recovery facilities. The program takes input from
an external source which has previously recorded a program in the “list#" format. it requests
a cartridge track and file number for recording the input program, or it can mark a file the size
of the input program (allowing 500 bytes for expansion) at the last unused file (null file) on the
cartridge. (If a negative file number is entered, "PTAPE” will mark its own file.) The file number
at which the program is recorded is printed out for future reference.

e

T)

SV E WD O
£ ve waine
.

b
W
bt s 8

i "Program Loader or PTAPE": -

ent "Input Select Code = 2 ,ent "Record on Track# P Trent "Fileg 2", F

f4on err "err“;stcre A$ nal

if avm<250; beep; dsp "INSUFE’ICIENT,,MEMORY" stp fffff :

cgto. Tinput™
Tout iAcavmsAstrk Tiif F>~'0,gto "rec“
o for F=0 to 9999

£G4 Fidf F,Y¥,C,0sif Oinext ¥

somrko L, A+500 Z3if Z<0; beep prt "Not enough tape, ", A, “bytes needed“,stp

Yreclircf F, lN iprt. "PROGRAM ON FILE#",F, stp

14y Merp" -"°/"&A$->A$; ‘

,,,,, 15+ if not (pos(AS.":")aX): gw,,e,,,, e
16: "%"-ASKX,X]igto u ; -
s , .

Line 1. Input interface select code and the cartridge track and file number for storing the
program. If given a negative file number, the routine (lines 10-12) will search
for the last cartridge file (null file) and mark it to the correct program size
allowing 500 bytes for expansion.

Line 2: Saves the available memory and next available line values into variables A and X.

Line 3: Inputs one program line, rejects lines consisting of only carriage-return/line-feeds.

Line 4: Checks for the asterisk at the end of the program listing.

Line 5: Strips null lines from the input.

Line 6: Enables the error recovery routine “err” and attempts to store the program at the next

available line.

Systems Programming 7-33

Line 7: Checks for enough remaining memory to input more source program.
Line 8: Returns to line 3 for more input.

Line 9: Computes the source program size in bytes, and checks the file number specified for
a negative value. If negative, it proceeds to find and mark the null file.

Lines 10-12: Find the null file (last file} and mark it to the size of the source program plus 500
bytes for modification and expansion.

Line 13: Records the program on either the specified or the marked file, and prints the file
number used.

Line 14: The error recovery routine appends a “%"” (free text prefix) to the beginning of the
program line.

Lines 15 and 16: Check for semicolons in the source line, substituting them with %’s, be-
cause a semicolon will mask the following line statements from free text
protection. This avoids a possible locp from illegal statements after a
semicolon in the source line.

This program (with slight modification) makes possible an interesting method of program
editing using the HP 2640 terminal’s block output capability. It is possible to list a program to
the HP 2640 terminal, inspect and edit it from the terminal as desired, then place the program
back on the cartridge at the specified track and file number. The necessary modification is a
write byte (wtb) statement inserted at line 3, which now becomes (assuming the 2640 set up
for single line transmission blocks, with select code 2):

The program now reads the text from the HP 2640 terminal a line at a time, beginning with the

first character after the cursor, then records it on the specified track and file of the HP 9825
data cartridge as a program.

7-34 Systems Programming

Technical Appendix On
Asynchronous Data Formats

Asnychronous 1/0 is a serial mode of communication that in its simplest form requires no
handshaking (“I'm ready, are you ready?”) signals. This is made possible through special
codes that are added to each character being sent. These extra codes are the “Start Bit” and

the “Stop Bits”. An additional bit, the “Parity Bit” may be added for purposes of error detec-
tion.

For example, the ASCI! character “T" looks like this in binary:
(most significant bit}y 1010100 (least significant bit).
When the start, parity and stop bits are added, the character *'U" looks like this:
(msb) 11010101000 (Isb).
The number of bits per character is not changed by adding the start, parity, and stop bits, as
these bits are not considered when looking at character bits.

The start bit is always a “0"”, and comes before the least significant bit of the character. The
parity bit is setto a 1" or “0” to make the sum of the ‘1" bits of the character plus the parity bit
either odd or even, depending on whether odd or even parity is selected. (The “1” character
bits are added to the parity bit, yielding an odd or even sum.) The character “T" above has
odd parity. The two leftmost bits of the above character are stop bits, and the stop bits are
always a “1”.

Each bit is transmitted at a specific time, controlled by an extremely accurate crystal timer.
The rate at which bits are transmitted is referred to as the bit rate, sometimes known as the
baud rate. The bits can be sent and received at the clock frequency, 1/16 the clock frequency,
or 1/64 the clock frequency. The 1/64 rate provides the highest degree of accuracy in timing,
and is used whenever error-free communications is a must.

A diagram of a single character (“T" again) being transmitted asynchronously looks like this:

i | I i

, | Parity | Stop | Stop
I
]

1
| Start
1 26 1 Bit ! 8it 1 Bit

1 1 ; l
1 1
1
Bt | 20 lo2 122 o1 0 o2s | oo

“Mark”

1
i
i
I
) ‘Mark”
|
1
|

Timg ——————»

The start bit is the first bit transmitted, and when received means ““‘wake up, get ready for a
new character”. The next bits are the data bits of the character “T", beginning with the least
significant (2°) bit and ending with the most significant (2°) bit. The next bit is the parity bit
(odd parity), which is used for error checking. The last two bits are the stop bits, which mean
“end of this character”.

Systems Programming

By using the 98036A Mode Word, we can change the format of the ASCH character, so let’s
send two “T”’s, but this time with only one stop bit selected. The diagram looks like this:

Start! ! Parity Stop ! Start! 1 Parity Stop!
[| | ! . |
e Bit + 20| 20 22 23 24 25 28 Bit Bit Bit |‘ 20 : 2! 22 23 24 2° 28 Bit Bit
I I . p —
"Mark" : : “ : : Mark'
1 I | ! |
o | . i { \ 3 |
j i [! I
Time

The 98036A Status Word can give us some clues about the incoming data on the serial 1/0O
link. These are the "framing”, “parity”, and the "overrun” status bits of the 98036A Status
Word. The “framing” bit will be set to a “1" if our interface doesn’t find all the stop bits that it
expects. There is no way for the interface to detect too many stop bits, but if too few are
received then the framing error bit is set. (The interface looks for a “1” in the stop bit time slot.)
Some causes of framing errors are incorrect number of data bits, no parity, or too few stop
bits.

The “parity” bit of the 98036A Status Word will be set if the incoming parity bit is wrong. This
can be caused by an incorrect number of data bits, having the wrong parity selected, or no
parity bit being received.

A**overrun” error simply means that the incoming data is coming in faster than it is being taken
from the interface. If the baud rate being operated at is too high, it may not be possible to read
the data from the interface before a new character is received. A lower baud rate or buffered
}/O can alleviate this problem. (The baud rates for the sender and the receiver must always be
the same.)

Two examples showing how the same error can be generated in two completely different ways
are shown below. Assume the interface is configured to expect seven data bits, odd parity,
and two stop bits.

Start !) Parity | Stop Starl

I
I
e Bit | 2° b2 22 o 2 2° . B . Bt B
———)
. B . 1 | t
Mark 1 : ! : (Second Character)
[) 1
o - L
T ! ! L Framing Error (expected second stop bit)
'me Parity Error (expected a "0 for odd parity)
Start | Parity | Stop | Stop Start
3 Bit + 20, 2 22 23 24 25 Bit | Bit t Bi Bit
! ! t +
“Mark” | ! ! !
| ' : : (Second Character)
| 1
% | Lo
Time ———» L L— Framing Error (expected second stop bit)
Parity Error {expected a "0’ for odd parity)

7-35

7-36 Systems Programming

The first example is simple: the sender is sending the wrong parity and only one stop bit.
Changing the interface parity and stop bits will clear the problem. The second example is also
simple, but wouldn't be corrected by changing the parity and stop bit format. The fewer data
bits sent (6) will-always generate a framing error, and only sometimes generate a parity error.
This is a difficult problem to track down from the receiver end.

Hopefully, this discussion has served to introduce the reader to the purpose of the change-
able asynchronous data format, and to the necessity of accessing the status bits of the
98036A Serial Interface. In a typical system, both sender and receiver data formats are known
and accessible, making interfacing a simple task.

A program which could be used to establish the correct number of stop bits and the correct
parity setting is included as an example of how the 98036A control statements can be used.
The program makes two assumptions for the purpose of simplification: first, an ASCII format
is assumed — that is, seven data bits per character; second, it assumes that a parity bit is part

of the character and not disabled (if no parity bit is present, this program cannot get a correct
frame count).

Mode Word Finder Program

Line O sets the mode variable (M) to 8 data
bits, no parity, 2 stop bits (to avoid parity
checking).

Line 1 configures the interface mode.

Line 2 inputs one byte and reads the status.

Line 3 checks for framing error.

Line 4 reconfigures the interface to 7 data
bits, odd parity.

Line 5 checks for parity error, and prints the
mode value if no error.

Line 6 sets even parity if a parity error was
detected.

Line 7 resets to 8 data bits, no parity if a

parity error still exists.

Print
Mode
Word

Read — A%
Print A$

(Exit ,

Yes

Parity
Error?

Yes

Flag = 37 No

Yes

Flag = 4 No

No Go

Systems Programming

Line 8 stops execution if all combinations
have been tried.

Line 9 sets the interface to 1 stop bit on the
first framing error,

Line 10 goes back to 8 if a framing error still
exists with only 1 stop bit.

Set Mode To
8 Data Bits
No Parity

2 Stop Bits

Read Byte

Framing
Error?

No

Flag = 27

Flag = 1

Flag =17 Stop Bits = 1

Flag = 2
Odd Parity
7 Data Bits

L

Flag=3
Even Parity

Flag = 4
No Parity
8 Data Bits

Flowchart For Mode Word Finder

7-37

7-38 Systems Programming

Notes

Reference Tables A-

Appendix A
Table of Contents

J.7;£C6?hputer

Calculator Status Conditions A-3
Extended /O Status Conditions e A-4
ASCIlI Character Codes i A-5
Octal Keycode Chart A-6
Keyboard/ASCII Function Chart ... A-7
ASC Conversion Values A-8
Keyboard/ASCIH Control Codes e A-10
9825 and 9820/21 Compatibility A-11

Entering Programs A-11

RUNNING Programs e e A-12

1\\

7,

A-2 Reference Tables

Notes

Appendix A

Reference Tables

Calculator Status Conditions

The following table shows the calculator status conditions when the indicated operations are
performed. For details about the status condition of modes, variables, etc., see the appro-
priate section in the manual.

Erase all
or Continue

Power after
on editing Continue

Variables R X
Flags O through 15

Result

Binary program

Subroutine return pointers
Print-all mode

Verify mode

Live keyboard mode

Secure mode

Cassette select code
Cassette track

Angular units for trig functions
Fixed/Float setting

Random number seed

Trace mode

Restored to power-on value
Unchanged

A-4 Reference Tables

Extended I/O Status Conditions

The following table shows status conditions for various Extended /O operations and modes.
Notice that the Erase, Erase All-Power on, and Run columns from the previous table are
combined into one column here. R = restored to power-on state; X = unchanged.

Calculator Operation
Power On | Reset | Continue Continue

Extended /O ROM Erase (after edit) [(after Stop)
Operation or Mode Erase All
Run

Conversion and parity tables
Binary mode (reset to decimal)
I/0 buffer area

Service name list

Equate name list

Buffer select code for tfr
Interrupt parameters

Error recovery routine

D I I D W DIV DV D D
X I T W X X X X X
X D IJW D X X X X X
X OX X X X X X X X

Timeout routine

Reference Tables A-5

ASCII Character Codes

ASC“—r EQUIVALENT FORMS j EQUIVALENT FORMﬁ ASCH EQUIVALENT FORMS EQUlVlﬂ.ENT FORMS
Char. Binary | Octal | Decimal Blnary m Decimal Binary Binary | Octal| Decimal
NULL j 00000000 | 000 0 space | 00100000 ' 040 32 @ 01000000 01100000 | 140 96
SOH | 00000001 | 001 1 ! 00100001 | 041 33 A 01000001 | 101 65 [01100001 | 141 97
STX | 00000010 | 002 2 ” 00100010 | 042 34 B 01000010 | 102 66 01100010 | 142 98
ETX | 00000011 | 003 3 # 00100011 | 043 35 c 01000011 | 103 67 (‘) 01100011 | 143 99
EOT | 00000100 | 004 4 $ 00100100 [044 36 D 01000100 | 104 68] 01100100 | 144 100
ENQ | 00000101 | 005 5 % 00100101 | 045 37 E 01000101 | 105 69 ‘ [e 01100101 | 145 101
ACK | 00000110 | 006 6 & 00100110 | 046 38 F 01000110 | 106 70) } f 01100110 146 102
BELL | 00000111 | 007 7 ’ 00100111 | 047 39 G 01000111 | 107 71 J g 01100111 147 103
[BS | 00001000 | 010 8 { 00101000 | 050 40 H 01001000 | 110 72 J ‘ h 01101000 150 104
/ HT 00001001 | 011 9 } 00101001 | 051 41 1 01001001 | 111 73 i 01101001 | 151 105
LF 00001010 | 012 10 * 00101010 | 052 42 d 01001010 | 112 74 } ‘ j 01101010 152 106
vT 00001011 | 013 11 + 00101011 | 053 43 K 01001011 | 113 75 ‘ } k 01101011 | 153 107
1
FF 00001100 | 014 12 y 00101100 | 054 44 L 01001100 | 114 76 ‘ 1 01101100 | 154 108
CR 00001101 | 015 13 - 00101101 | 055 45 M 01001101 | 115 77 [f m 01101101 | 155 109
SO 00001110 | 016 14 . 00101110 | 056 46 N 01001110 | 116 78 ' n 01101110 | 156 110
SI 00001111 | 017 15 / 00101111 | 057 47 o] 01001111 | 117 79 o 01101111 157 111
DLE | 00010000 | 020 16 4] 00110000 ' 060 48 P 01010000 | 120 80 P 01110000 160 112
DC1 | 00010001 | 021 17 1 00110001 | 061 49 Q | 01010001 | 121 81 q | 01110001 | 161 113
DC2 | 00010010 | 022 18 2 00110010 | -062 50 R 01010010 | 122 82 T 01110010 162 114
DC3 | 00010011 | 023 19 3 001i0011 063 51 S 01010011 | 123 83 s 01110011 | 163 115
DC4 | 00010100 | 024 20 4 00110100 | 064 52 T 01010100 | 124 84 t 01110100 | 164 116
NAK | 00010101 | 025 21 5 00110101 | 065 53 u 01010101 { 125 85 u 01110101 { 165 n7
SYNC | 00010110) 026 22 6 00110110 | 066 54 v 01010110| 126 86 v 01110110} 166 118
ETB | 00010111 | 027 23 7 00110111 | 067 55 w 01010111 | 127 87 w 01110111 | 167 119
CAN | 00011000 | 030 24 8 00111000 | 070 56 X 01011000 | 130 88 X 0111100¢ | 170 120
EM 1} 00011001 | 031 25 9 00111001 | 071 57 Y 01011001 | 131 89 y 01111001 | 171 121
SUB | 00011010 | 032 26 . 00111010 | 072 58 Z 01011010 | 132 90 z 0111101¢ [172 122
ESC | 00011011 | 033 27 y 00111011 | 073 59 [01011011 133 9 { 01111013 { 173 123
FS 00011100 | 034 28 < 00111100 | 074 60 \ 01011100 | 134 92 8 0111110C) 174 124
GS 00011101 | 035 29 = 00111101 | 075 61 1 01011101 | 135 93 } 01111101 | 175 125
RS 00011110 | 036 30 > 00111110 | 076 62 A 01011110 | 136 94 { - 01111110 | 176 126
00011111 § 037 ? 00111111 | 077 63 _ 010111111 137 95 { DEL | 01111111 | 177 127

A-6 Reference Tables

Octal Keycode Chart*

SYSTEM COMMANDS DISPLAY
— 202 =0} (220 21

301 302 303 304 305
101 105 108
307 313 314
107 13 114
251 257
51 57
327 252

175 125 126 127

@@@@@@@@@@..
@@@@@@@@@@@ Sfojolc

DO

75 122 123 124
72 70 343 366 342 356 ass * 254 256 2 2 "7 320 320
x
172 170 143 168 142 158 155 54 56 77 f: uz 120 121
u
240 201 23 : 316 330 33 207
: :
1?2
40 1 31 118 130 13t 7
SYSTEM LINE
18 (9 8 11 m 140 141 142 143 144 145

30 27
30 27

4] %) 2 18 95 40 41 47
49 50 18 101 40 4 47
81 125 55 56 57 42
13 125 55 56 57 42
85 61 52 53 54 45
a7 115 100 102 103 104 196 107 108 50 94 81 52 53 54 45
% 88 .14 86 6 76 77 80 82 58 10 43 50 51 43
122 120 98 118 98 110 100 4 46 €3 49 50 51 43
1 2 48 46 44 7
C J 10 @
a2 1 25 48 46 44 7

*Unshifted code shown below key; shifted code shown above key.

Keyboard/ASCII Function Chart

Reference Tables

Control* 9825A Command Octal Code Decimal Code
] erase 35 29
- Idf 37 31
1 rcf 36 30
[list 33 27
S prt all 23 19
B rewind 2 2
X step 30 24
P i1 20 16
Q 0 21 17
N - 16 14
© - 17 15
| del 11 9
H ins 10 8
K recall 13 11
\ fetch 34 28
T back 24 20
u fwd 25 21
W del 27 23
V ins/rep 26 22
L RUN 14 12
M STORE 15 13
Y CONTINUE 31 25
A STOP 1 1
J EXECUTE 12 10
R clear 22 18
G result 7 7

Alternate ASCIlI Code Functions:

Carriage-Return (15 Octal): Store

Line-Feed (12 Octal):

Execute

* The Control Key and the specified character key are pressed simultaneously.

A-7

A-8 Reference Tables

ASC Conversion Values

Display Key ASCII
Char Code Dec Oct
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 10
9 g k|
10 10 12
" 11 13
12 12 14
13 13 15
14 14 16
15 15 17
16 16 20
17 17 21
18 18 22
19 19 23
20 20 24
21 21 25
22 22 26
23 23 27
24 24 30
25 25 31
26 26 32
27 27 33
28 28 34
29 29 35
30 30 36
31 31 37
32 32 40
33 33 41
34 34 42
35 35 43
36 36 44
37 37 45
38 38 46
39 39 47
40 40 50
41 41 51
42 42 52
43 43 53
44 44 54
45 45 55
46 46 56
47 47 57
48 48 60
49 49 61
50 50 62
51 51 63
52 52 64
53 53 65
54 54 66
55 55 67
56 56 70
57 57 71
58 58 72
59 59 73
60 60 74
61 61 75
62 62 76
63 63 77

Display Key ASCII

Char Code Dec Oct
64 64 100
65 128 200
66 129 201
67 130 202
68 131 203
69 132 204
70 133 205
71 134 206
72 135 207
73 136 210
74 137 211
75 138 212
76 139 213
77 0 0
78 48 60
79 49 61
80 50 62
81 51 63
82 52 64
83 53 65
84 54 66
85 55 67
86 56 70
87 57 71
88 46 56
89 44 54
90 90 132
H 91 133
92 92 134
93 93 135
94 94 136
95 g5 137
96 101 145
97 97 141
98 98 142
99 99 143
100 100 144
101 101 145
102 102 146
103 103 147
104 104 150
105 105 151
106 106 152
107 107 153
108 108 154
109 109 155
110 110 156
111 111 157
112 112 160
113 113 161
114 114 162
115 115 163
116 116 164
117 117 165
118 118 166
119 119 167
120 120 170
121 121 171
122 122 172
123 123 173
124 124 174
125 125 175
126 126 176
127 127 177

ASC Conversion Values

Reference Tables A-9

Display Key ASCHl

Char Code Dec Oct
128 0 0
129 1 1
130 2 2
131 3 3
132 4 4
133 5 5
134 6 6
135 7 7
136 8 10
137 9 1
138 10 12
139 11 13
140 12 14
141 13 15
142 14 16
143 15 17
144 16 20
145 17 21
146 18 22
147 19 23
148 20 24
149 21 25
150 22 26
151 23 27
152 24 30
153 25 31
154 26 32
155 27 33
156 28 34
157 29 35
158 30 36
159 31 37
160 32 40
161 33 41
162 34 42
163 35 43
164 36 44
165 37 45
166 38 46
167 39 47
168 40 50
169 41 51
170 42 52
171 43 53
172 60 74
173 45 55
174 62 76
175 47 57
176 39 47
177 33 41
178 34 42
179 35 43
180 36 44
181 37 45
182 38 46
183 64 100
184 N 133
185 93 135
186 0 0
187 59 73
188 0 0
189 61 75
190 0 0
191 58 72

Display Key
Char Code
192
193
194
195
196
197
198 145 221
199 146 222
200 147 223
201 148 224
202 149 225
203 150 228
204 151 227
205 0 0
206 48 60
207 49 61
208 50 62
209 51 63
210 52 64
211 53 65
212 54 66
213 55 67
214 56 70
215 57 71
216 46 56
217 44 54
218 0 0
219 0 0
220 0 0
221 0 0]
222 92 134
223 0 0
224 95 137
225 65 101
226 66 102
227 67 103
228 68 104
229 69 105
230 70 106
231 71 107
232 72 110
233 73 111
234 74 112
235 75 113
236 76 114
237 77 115
238 78 116
239 79 117
240 80 120
241 81 121
242 82 122
243 83 123
244 84 124
245 85 125
246 86 126
247 87 127
248 88 130
249 89 131
250 90 132
251 124 174
252 92 134
253 125 175
254 94 136
255 95 137

A-10 Reference Tables

Keyboard/ASCII Control Codes

ASCH EQUIVALENT FORMS 9825A Key
Char. Binary |Octal | Dec Equivalent
NULL | 00000000 | 000 0 *
SOH [00000001 [001 1
STX | 00000010 § 002 2 FEwD)
ETX 100000011 { 003 3 *
EOT | 00000100 | 004 4 *
ENQ | 00000101 | 005 5 *
ACK | 00000110 | 006 | 6 *
BELL | ooooot11 | 007 7
BS | 00001000 | 010 8
HT 00001001 | Ot 9 (ELETS
LF loogototo | o2 | 10
Viss 100001011 | 013 | 11
FF] 00001100 | 014 | 12
CR | 00001101 | 015 | 13
so | oooo1110 | 016 | 14
sT |oooot111 | 017 | 15
DLE | 00010000 | 020 } 16
DCi | 00010001 | 021 | 17
DC: | 00010010 | 022 | 18
DC; | 00010011 | 023 | 19 (AT ALL
DCs | 00010100 | 024 | 20
NAK | 00010101 | 025 | 21 FWD
sync | oooto1t0 | 026 | 22 SRR
ET8 | ooot0111 | 027 | 23
CAN | 00011000 | 030 | 24
EM { 00011001 | 031 | 25
suB | ooot1010 { 032 | 26 *
EsC | coortott | o33 | 27
Fs | 00011100 | 034 | 28
GS | 00011101 | 035 29
RS | 00011110 036 30
us | ooot1111 | o3y 31

* = No direct 9825A key equivalent.

Reference Tables A-11

9825 and 9820/9821 Compatibility

In general, any program which is used with the HP 9820A/9821A Calculators can be entered
into the HP 9825 Calculator with only minor changes, such as changing E (enter exponent)
and statement mnemonics to lower case.

The following is a list of subtle differences between the 9820A/9821A and the 9825 Cal-
culators. The list is divided into two sections; those differences which occur when entering a
program and those which occur when running the program.

Entering Programs

e Aline label must be followed by a colon. The 3820A/9821A requires a semicolon.

e Parentheses must be used to indicate which relational operator to apply first:

L. mustbeenteredas: i (¥ owm B ow 0i onthe 9825 (not the
same as ii FiomoBooird BDow 1)

e Storing a line with an end statement does not delete higher numbered lines in memory
on the 9825.

e The enter (ent) statement is syntax checked by the 9825 Calculator. The items in an
enter statement must be text or variables. Expressions, such as =
allowed on the 9825; the equivalent on the 9825 would be ¢4

= i are not

e A string of unary operators such as - - is not allowed on the 9825.

e File sizes in the mark statement are given in bytes instead of registers. Therefore, |

iz ~inthe 9821A becomes #: ¢ & 1= ik in the 9825.

e Linking programs is done differently on the 9825; i Y becomes it
Y s on the 9825,

e b il kY onthe 9820A/9821A must be typed as ¥ . = Y on the

A-12 Reference Tables

The TBL function of the 9820A/9821A Math Block has been replaced as follows:

9820A/9821A 9825
Function Replacement

TBLO units
TBL1 deg
TBL2 rad
TBL3 grad
TBL4 no replacement
TBL5 csv
TBLG cfg

Running Programs

Relational comparisons are made to 12 significant digits on the 9825. The 9820A/

9821A rounds to 10 significant digits and then compares. The 9825 equivalent

of: i om Y oss:

Floating point numbers are rounded on the 9825 instead of truncated as on the 9820A/
9821A when an integer value is required.

Some implications of this are shown in these examples for the 9825:

r(4.9) refersto rb
jmp 2.9 is the same as jmp 3.

sfg 5.95 is the same as sfg 6 (and similarly for cfg, flg, and cmf).

A gto or gsb to a label requires an exact match in the 9825 instead of a match on the last
4 characters as on the 9820A/9821A.

The 9820A/9821A returned a0 for0 1 0. On the 9825, 0 1 O results in error 73 (default
is1).

A number, expression, or statement are valid replies on the 9825. However, if @5

is the enter statement and a statement such as i+ is entered, flag 13 is set and A
retains its previous value. For example, no value is entered by the enter statement and

flag 13 is set in the following.
Print statement.

Assignment statement.

Reference Tables A-13

These are valid entries:

Expression.

T Imbedded assignment.

Flag 13 is cleared when a number or expression is supplied during an enter statement.

On the 9820A/9821A Calcuiators if the run program key is pressed without entering a

value for: EOL , the value for X would not be incremented and RX
would not be modified. On the 9825, the expression, @+ % <= ! is executed even if

no value is entered.

The 9825's integer (int) function is defined as the largest whole number less than or
equal to the argument. The 9820A/9821A definition is the largest whole number less
than or equal to the absolute value of the argument, with the sign of the result being the
same as the sign of the argument.

On the 9825, if an error occurs during the execution of a statement, the entire line is
aborted. On the 9820A/9821A the rest of the statements in the line are performed.

Implied storage to Z is replaced by implied storage to result (res). Z is no longer
different from other simple variables. A statement with implied storage cannot be stored
- a variable must be given explicitly. A program can access the value of result (res), but
the value in res cannot be altered by the program.

Branching to the line which is numbered one higher than the last line of the program no
longer treats that line as if it were an end statement.

Flags are not cleared by the end statement on the 9825.
The stop (stp) statement does not destroy subroutine return information.

On the 9825, the identify file (idf) statement always positions the tape before the
header of the identified file. Thus, repeated idf statements do not advance the tape.
Also an idf statement followed by a mrk statement marks the identified fite (any informa-
tion on the identified file will be lost).

A-14 Reference Tables

Notes

Appendix B

HPL Syntax

P-Computer

sMuseum
i’;{‘w_’ - .

Introduction

The following pages are a compilation of all current 9825 HPL syntax. More information on
each operation can be found by referring to the indicated manual and page. The manual titles
are abbreviated here:

D Disk Programming, 09825-90220 (or 09885-90000).
10 1/O Control Reference.

M Matrix Programming.

O&P Operating & Programming Reference.

The HPL programming language utilizes four basic types of syntax constructions: statements,
functions, operators and commands. Operators, such as + and mod, are used with numbers
and variable names to construct expressions (like A+5). Expressions can be included in many
statements and executed from the keyboard. Each statement can also be preceded by a line
number and stored as a program line (like 10: prt A). Most functions can include expressions,
and can be executed from the keyboard. Functions can also be treated as expressions when
constructing a statement (like prt sinA). Commands are operator aids that can only be exe-
cuted from the keyboard; they're not programmable.

rev: 11/80

B-2 HPL Syntax

Operators

The available operators are summarized here. For more details see the HPL Programming

chapter, page 3-19.

Arithmetic
+ Add
— Subtract, unary —
* Multiply
/ Divide

Exponentiate
mod Modulus

Logical

and
ior inclusive OR
xor exclusive OR
not

Relational

Assign
Greater than
Less than

9 AV |

>=
<=or =< Less than or equat to
or < > or > < Not equal to

=> Greater than or equal to

String

& Concatenation

Math Hierarchy

highest priority functions, flag references, r-variables

A

1 (exponentiation)

implied multiply

— {unary minus)

*], mod

¥, -

all relational operators (=,>,<,<=,>= # —)
not

and

lowest priority or, xor

Operators of the same level in an expression are executed from left to right. Any operations

within parentheses, however, are performed first. For more details, see page 3-18 in your

Operating and Programming Reference.

HPL Syntax

Syntax Conventions

These terms and conventions are used in the following listing:

bold type — all key words and characters appearing in bold type must appear exactly as
shown. These items are shown in dot matrix in the referenced manuals.

[] — elements enclosed in brackets (not key characters or parentheses) are optional.

. — an ellipsis indicates that the preceding parameter or sequence in the syntax can be
repeated.

variable name — a numeric or string variable name (like A or R5 or A$). Subscripts are
allowed (like A7]).

array name — an array variable name, with or without subscripts.

string variable — a string variable name (like A$ or B$ {1,4]).

string — either a string variable or text within guotes (“text”).

line number — an expression from 1 through 999 referring to a program line.

line label — a unique name assigned to a program line. It's enclosed in quotes, follows the
line number, and is followed by a colon. For example: 5: “print”: ...

expression — a logical combination of numeric variable names, constants, operators and
functions (including user-defined functions) grouped within parentheses as needed. The
evaluated expression yields a numeric result.

constant — a fixed number within the computer’s range, like 2.23467.

character — a letter, number or symbol.

item list — a series of constants, expressions and/or strings separated by commas, for
example: prt 5,A,"was” A+7

subscripts — numbers within brackets which are attached to variable names to designate a
particular variable element or boundary. For example: A[10,5]or B$ [1,10]

B-4 HPL Syntax

file number — an expression indicating the tape or disk file.
file name — a string indicating the disk file name.
select code — an expression indicating the device's interface select code setting (an integer

from 0 through 16). For example: wrt 6
These select codes are assigned to internal devices:

0 Keyboard.
1 Tape drive.
16 Printer.

device address — a two-digit number appended to the select code, indicating a device’s
HP-IB address. Device address range is from 01 through 31. For example: wrt 711 outputs to
device 11 via the HP-IB interface set to select code 7.

format no. — a number from .1 through .9 appended to the select code to reference a
corresponding fmt statement. For example: wrt 7.3 references fmt 3.

return variable — a simple numeric variable name (A or R4) where information is stored after
the operation.

flag no. — an expression from 1 through 15 indicating a programmable flag.

A

abs expression
Returns the absolute value of the expression. O&P, 3-22.

acs expression
Returns the principal value of the arccosine of the expression in the current angular units.
0&P, 3-25.

add (expression , expression)
Returns the sum of the expressions, added in the current numeric mode, decimal (mdec)
or octal (moct). i/0, 3-15.

aprt array variable [, array variable [, ... 1]
Prints the specified array’s elements on the internal printer. M, 8.

HPL Syntax B-5

ara array variable, [

+
. f array variable,] — array variable,

Performs the arithmetic operation, element by element, on arrays 1 and 2. The result is
stored in array 3. (Example: ara A+B—C). Arithmetic operations can be performed on
arrays in place (ara A+B—A), arrays can be copied (ara A—B) and implied multiplication
is allowed (ara AB—C). M, 11.

ascC expression
Returns the ASCI equivalent of the specified 9825 keycode. O&P, 7-25.

asgn file name , file number [, drive number [, return variable]]
Assigns a number (1 through 10) to an existing disk file name and indicates optional
drive number and a return variable (values below). D, 3-5 (or 36).

0 File available and assigned. 5 Memory file.

1 File doesn't exist. 6 Binary program file.

2 Program file. 7 File type not defined.

3 Special function key file. 8 File number out of range.

4 File not defined by 9825. 9 Data file, but logical records not

256 bytes long (28228A ROM only).
asn expression

Returns the principal value of the arcsine of the expression in the current angular units.
O&P, 3-26.

expression — variable name, [— variable namez2[—> ...]]
Assigns the value of the expression to the variable(s). O&P, 3-19.

atn expression
Returns the principal value of the arctangent of the expression in the current angular
units. O&P, 3-26.

avd
Disables automatic tape verification. O&P, 5-24.

ave
Enables automatic tape verification (default setting). O&P, 5-25.

avim
Returns the size (bytes) of unused read/write memory. O&P, 4-27.

axe X coordinate , Y coordinate [, X tic[, Y tic]]
Draws axes through the X,Y point, drawing optional tic marks at X tic and Y tic intervals.
9862 Plotter ROM only. I/O, 7-18.

rev: 11/80

B-6 HPL Syntax

B

band (expression, expression)
Returns the 16-bit result of ANDing the expressions. I/O, 3-12.

beep
Sounds the computer's beeper. O&P, 3-16.

bit (expression, , expression,)
Returns the binary value of the bit position in expression 2 indicated by expression 1. 1/0,
3-15.

boot
Loads 98217A Disk ROM bootstraps from a disk tape to an initialized disk. D, 1-8 (or 67).

bred (buffer name)
Returns the contents of the specified, active, interrupt buffer. O&P, 7-10.

buf “name’” [, buffer size or string variable , buffer type]
Sets up and names a data buffer of either type read/write (no type specified) or the
specified type (see below). 1/O, 6-6.

Buffer Type Word Byte
interrupt

fast read/write 2 3
DMA 4 —

C

cap (string)
Returns an equivalent string of uppercase characters. O&P, 6-24.

cat|[select code or buffer name]
Prints a catalog of files on the specified disk or default drive. File types listed below. D,

1-16 (or 20).

B Binary program file. M Memory file.

D Datafile. O Other file (not created via 3825).
K Special function keys file. P Program file.

cfg(flagno.[, ...1]
Clears either all 15 program flags or only the specified flags. O&P, 3-29.

rev: 11/80

HPL Syntax B-7

chain file name [, 1st line number [, 2nd line number]]
Loads a program from the specified disk file. Same optional line numbers as get. D, 2-7
(or 25).

char (expression)
Returns the ASCII equivalent character. O&P, 6-20.

:Compu‘ter:

CMuseum -

cli select code
Sends the abort message to all devices on the HP-IB, 1/0, 2-27.

cll ‘name’ [(variable, [, variable, [, ... 1) 1]
Calls the subroutine having the specified label, passing the value of any optional vari-
ables as pass-parameters. O&P, 4-10.

cln
Returns the current program line number. O&P, 7-28.

clr select code
Sends the clear message, either the all devices or to only a selected device by including
the device address in the select code. 1/0, 2-17.

cmd select code , “address parameters” [, “string”]
cmd “‘device name(s)” or select code [, “string”]
Sends the string of data characters to the specified HP-IB device. 1/0, 2-31.

cmf[flagno. [, ...]]
Complements either all 15 program flags or only the specified flags. O&P, 3-29.

cmp (expression)
Returns the 16-bit binary one’s complement of the expression. I/O, 3-13.

cont [line number or “line label’”]
This command continues program execution, either from the current point or from the
specified point. O&P, 2-24.

conv [expression, , expression, [, expression, , expression,] ...]
Sets up a conversion table (up to 10 sets of expressions) referenced by red and wrt
statements. Each expression represents an ASCII character. conv (no parameters) can-
cels any existing table. 1/0, 1-23.

copy [source drive number [, select code],] “t0”
[, destination drive number [, select code]]
Duplicates the contents of the source disk to the destination disk. Disks must be the
same type, either single-sided or double-sided. D, 4-7 (or 60).

rev: 11/80

B-8 HPL Syntax

Copy source file name [, drive number [, select code]]
[, destination file number [, drive number [, select code]]
Copies a file to another disk. Omitting an address accesses the default drive. D, 4-7 (or
60).

COPY source file number , record number ,
destination file number , record number , no. of records
Caopies only the specified number of records, beginning at the specified record numbers.
D, 4-10 (or 60).

COS (expression)
Returns the cosine of the expression. O&P, 3-25.

Cplt [character-space widths , character-space heights]
Moves the pen the specified distance away from the current point. 1/Q, 7-41.

CSiz [height [, aspect ratio [, paper ratio [, angle of rotation]1]]
Specifies the size, shape and lettering direction for Ibl statements. Defaults are:
height = 1.5% of paper height; aspect ratio = 1; paper ratio = 1; angle = 0 (left to right
lettering). /0, 7-38.

csv
Clears simple variables A through Z. O&P, 3-39.

ctbl [string variable]
Sets up a conversion table; the value of each string character represents ASCII; the
character position represents the foreign code + 1. ctbl with no parameters cancels the
table. /0, 4-6.

D
deg

Sets degrees units for angular calculations. O&P, 3-25.

del line number [, 2nd line number [,* 1]
This command deletes either the specified program line or all lines through the optional
2nd line number specified. Including the » changes all remaining references to the
deleted lines to the next remaining program line, preventing error 36. O&P, 2-25.

dev “name” , select code
Assigns a name for use in place of the select code in I/O operations. 1/0 2-9.

dig X, Y [, return variable]
Reads, computes and stores the current pen position in user units. Return variables:
0 = pen up; 1 = pen down. 9872 Plotter ROM only. I/O, 7-48.

dim variable name [, variable name [, ... 1]
Reserves memory for specified variables. Use subscripts to indicate size of each vari-
able. O&P, 3-37.

rev: 11/80

HPL Syntax

dirc
Copies the spare 9885 disk directory (default drive) to the main directory. 98217A ROM
only. D, 4-16 (or 65).

drive unit no. [, select code]
Sets the default unit (0 through 3) and, optionally, the select code for disk drives. Defauit
is 0,8 for 98217A ROM and 0,707 for 98228A ROM. D, 1-14 (or 17).

drnd (expression , expression)
Returns the value of the first expression, rounded to the number of digits indicated by the
second expression. O&P, 3-22.

dsp item list
Displays the items listed. To display quotes use double quotes within the string (e.g., 1:
dsp "Display’“test”in quotes.”). O&P, 3-12.

dto (expression)
Returns the octal equivalent of the decimal value expressed. IO, 3-12

dtrk
Dumps a bad 9885 track during the disk error recovery routine. 98217A ROM only. D,
4-15 (or 65).

dtype
Returns a code indicating the type of drive, disk and data format at the defauit disk
address. 98228A ROM only. D, 1-15. Return values are:

0 Unable to access default disk controller.
Drive door is open or drive not present.

N =

Drive door closed, but door was opened since last disk operation. File pointers are
cleared.

9895 drive, single-sided disk, HP format.

9895 drive, double-sided disk, HP format.

9895 drive, single-sided disk, unknown format.

9895 drive, double-sided disk, unknown format.

9895 drive, single-sided disk, 1BM 3740 format.

9885 drive, single-sided disk.

O N O O W

dump [file name , tape file name][, expression]
Transfers the contents of the default disk to a tape cartridge. The optional file names
indicate to only dump a specified file. The expression can be 1 or 10, indicating the
number of disk records to put in each tape file. A positive expression automatically marks
the tape. A negative expression suppresses marking the tape. D, 4-12 (or 62).

rev: 11/80

B-9

B-10 HPL Syntax

E

eir select code [, byte]
Enables an interrupt from the specified select code. Specitying byte = 0 disables the
interrupt. /O, 5-6.

end
Halts program execution and sets the program counter to 0. O&P, 3-17.

enp [“prompt”,] string variable
Enters and prints data entered from the keyboard. O&P, 3-15.

ent [“prompt”,] variable name
Enters data from the keyboard. O&P, 3-13.

eolcode[,[,...11[,— delay in milliseconds]
Specifies up to seven optional ASCIll characters for an end-of-line sequence for wrt
operations (replaces CR/LFs). The optional delay occurs after the last eol character in
the sequence. O&P, 7-12.

eor (expression , expression)
Returns the 16-bit binary result of the exclusive ORing of the expressions. 1/0, 3-13.

equ “name;” , “string:" [, “‘name,”, “'string.” [, ... 11
Equates the ASCII character string with the name, for use with cmd. 1/0, 2-33.

erase [letter or key]
Erases either all programs and variables or the specified areas listed below. O&P, 2-26.
a Erase entire memory.
k Erase all special function keys.
Y Erase all variables and flags.
fn Erase specified key definitions.

ert file number
Erases the current tape track, beginning with the specified file. O&P, 5-15.

exp (expression)
Returns e (2.71828...) raised the expressed power. O&P, 3-24.

F

fdf file number
Positions the tape at the specified file on the current track. O&P, 5-9.

fetch [line number or key]
Displays the specified program line or special function key detinition. O&P, 2-27.

files “ file names ” [s unitno. 1, “ file name2 " [: unitno.][, ...]
Assigns names up to 10 disk files. Substituting an * for a file name allows an asgn

statement to assign a file name via a string variable. D, 3-3 (or 34).
rev. 11/80

HPL Syntax B-11

fig (flag no.)
Returns flag status: 1 = set; 0 = clear. O&P, 3-30.

flt expression
Sets floating point notation; from 0 through 11 places allowed. O&P, 3-10.

fmt [format no. , 1[spec, [, spec, ... 1]
Sets up a list of format specs for red and wrt operations. Format number can be from 0
through 9. Format specs are listed below. Omitting specs cancels specified format.
Omitting format no. sets format 0. A repeat factor can precede each spec. I/0O, 1-8.

b Single-character binary output. X Blank space.

Ccw String character data. z Suppresses auto CR/LF.
ew.d Exponential format. / Outputs CR/LF.

fw.d Fixed-point. “text” Outputs text.

fzw.d Fixed point with leading zeros.

w = field width.
d = number of digits to right of decimal point.

for simple variable = initial value t0 value [by step value]
Defines start of a for-next loop. O&P, 4-3.

frc (expression)
Returns the fractional part of the expression. O&P, 3-22.

fti (expression)
Rounds and changes the expression to integer precision. The result can be stored in a
two-character field. O&P, 4-26.

fts (expression)
Changes the expression to split precision for storage in a four-character field. O&P, 4-20.

fxd expression
Sets the fixed-point format; from O through 11 places are allowed. O&P, 3-9.

G

getfile name[, 1stline no.[, 2nd line no.]]
Loads the program from the specified disk file. The lines are stored, beginning either at
line O or at the optional 1st line number. The optional 2nd line number indicates where
program execution should begin. D, 2-4 (or 23).

getb file name
Loads the specified disk binary program file. D, 2-11 (or 64).

getk file name
Loads the special function keys disk file. D, 2-9 (or 29).

rev: 11/80

B-12 HPL Syntax

getm file name
Loads the specified disk memory file. D, 2-10 (or 57).

grad

Sets the grads units for angular calculations. O&P, 3-25.

gsb line number or line label
Branches program execution to the specified subroutine. O&P, 3-34.

gsb + or — no. of lines
Branches to the subroutine beginning the number of lines relative to the current line.
Q&P, 3-34.

gto line number or line label
Sends program execution to the specified line. O&P, 3-31.

gto + or — no. of lines
Sends execution to specified line relative to the current line. O&P, 3-31.

idf file number [, file type [, current size [, absolute-size or { , track]111]
Returns info on the current tape file. See tlist for file types. O&P, 5-7.

idn array name [, array name [, ... 11

Creates identity (square) matrices. All elements are 0 except major diagonal elements
which are 1. M, 22.

if expression, = expression,
If the equation is true, the rest of the line is executed. If false, execution immediately
branches to the next line. Any relational operator can be used (<, #, >=, etc.). When

both expressions are strings, the characters are compared using ASCII values. O&P,
3-36.

ina array variable [: number or simple variable]
[, array variable [: number or simple variable] ...]

Initializes each element of the array to the specified value (number or variable). Omitting
the value initializes each element to 0. M, 8.

init
Runs the 9885 disk initialization routine and loads bootstraps. 98217A ROM only. D, 4-2
{or 90).

init drive number , select code [, interleave factor |

initializes disks in either 9885 or 9895 drive. 98228A ROM only. The interleave can be an
integer from 1 thru 29. D, 4-3.

rev: 11/80

HPL Syntax

int (expression)
Returns the integer value of the expression. O&P, 3-22.
inv array variable, — array variable, [, simple variable]
Stores the inverse matrix of array 1 in array 2. If the simple variable is specified, the
determinant of array 1 is returned. M, 24.
iof select code
Returns interface flag state: O if peripheral busy; 1 if ready. I/O, 4-12.

ior (expression , expression)

Returns the 16-bit result of the inclusive OR operation on the expression. /0, 3-13.
i0S select code

Returns interface status: 0 if in error condition; 1 if operational. I/O, 4-12.

iplt X increment, Y increment [, expression]
Moves the pen the number of X and Y units from its current position. The expression is for
pen control; see plt. I/O, 7-29.

iret
Ends an interrupt service routine and returns to main program. /O, 5-7.

itf (string variable)
Returns a full-precision number from the packed, integer-precision number (a two-
character string). O&P, 7-26.

J

jmp expression
Jumps program execution the relative number of lines forward (+ expression) or back
(— expression). jmp O returns execution to the beginning of the current line. O&P, 3-33.

K

key
Returns the earliest, unprocessed keycode in the keyboard buffer. 0 indicates no
keycodes in the buffer. O&P, 7-8.

kill file name

Purges the specified disk file from the default disk. D, 1-18 (or 27).
killall

Purges all disk user files. 98217A ROM only. D, 1-18 (or 67).

killall drive number, select code
Purges all user files from the specified disk. 98228A ROM only. D, 1-18.

kret
Returns execution to the main program after the key buffer is emptied. O&P, 7-9.

rev: 11/80

B-14 HPL Syntax

L

Ibl expression or “string” [, expression or “string” [, ... 1]
Prints characters on the plotter. /O, 7-36.

Icl select code
Sends the local message to all HP-IB devices or, if the select code includes a device
address, sends a clear lockout/local message. l/O, 2-20.

Idb file number
Loads a binary program from the specified tape file. O&P, 5-23.

Idf [file number [, line number; [, line numberz 17]
Loads the specified tape file into the appropriate area of memory. The optional line
numbers indicate where to start loading (line number 1) and continuing (line number 2) a
program. Omitting the file number loads file 0. O&P, 5-18.

Idf [file number [, data list]
Loads data from the specified tape file into the listed variables. O&P, 5-21.

Idk [file number]
Loads the special function key file into memory. Omitting the file number loads tape file C.
0&P, 5-22.

Idp [file number [, line number, [, line number,]]
Loads a program from either file O (file number omitted) or the specified file. The optional
line numbers indicate where to start loading (line number 1) and were to start running
(line number 2). O&P, 5-18.

len (string variable)
Returns the character length of the string. O&P, 6-14.

lim [X lower left , X upper right , Y lower left, Y upper right]
Restricts plotter pen movement to the stated bounds in user units. If bounds are omitted,
movement is limited to the mechanical limits. 9872 Plotter ROM only. /O, 7-34.

line [pattern number [, pattern length 1]
Specifies the type of line plotted with plt, iplt, xax and yax. 9872 patterns are listed below.
Pattern length is percentage of the total line length; default is 4%, 9872 Plotter ROM only.

i/0, 7-32.

T 5 — —_ - -
2 — - - = = - = — - 6 — —— ——
3 — - o — omit number —

HPL Syntax B-15

list [# select code][line number [, line number 1]
Lists the entire program on the internal printer (no parameters) or lists the program to the
specified select code. The line numbers indicate starting and ending lines for the listing.
0&P, 3-39 and I/0O, 1-23.

list @D or listk
Lists the special function key definition (list &3 or all definitions (list k). O&P, 3-39.

Ikd
Disables live keyboard mode. O&P, 2-32.

lke > Computer

Enables live keyboard mode. O&P, 2-32.
llo select code

useum

Sends the local lockout message to all HP-1B devices. I/0, 2-19.

In (expression)
Returns the natural log (loge) of the expression. O&P, 3-24.

load [disk file name , tape file number]
Loads files previously dumped to a tape back onto the disk. Omitting all parameters
loads the entire dump back onto the disk. Including parameters loads only selected data
files back onto the disk. D, 4-13 {(or 63).

log (expression)
Returns the common log (logro) of the expression. O&P, 3-24.

Itr X coordinate , Y coordinate [, HWD]
Moves the 9862 plotter pen to the specified point and specifies dimensions for lettering.
H and W can be from 1 through 9. D is lettering direction and can be from 1 through 4.
9862 Plotter ROM only. I/O, 7-47.

itrk
Returns corrected data to a reinitialized track during disk error-recovery routine. 98217A
ROM only. D, 4-15 (or 65).

M

mat array variable,* array variable,—> array variable,
Array multiplication (arrays must have correct dimensions). M, 19.

max (expression [, expression[, ...1])
Returns the largest value in the list. O&P, 3-22.

rev. 11/80

B-16 HPL Syntax

mdec
Sets the decimal mode (default) for binary operations. 1/0O, 3-11.

min (expression [, expression{, ...1])
Returns the smallest value in the list. O&P, 3-22.

moct
Sets the octal mode for binary operations. /O, 3-11.

mrk number of files , file size [, return variable]
Marks the number of files, beginning at the tape's current position. The last file number
marked is returned in the optional return variable. O&P, 5-10.

N

nal

Returns the last program line number plus one; used with store to store strings. O&P,
7-24.

next simple variable
Terminates for-next loop and tests for loop completion. O&P, 4-3.

nor [line number [, line number]]
Clears the master program flag, either while executing all lines (omit all parameters) or
only for the specified line numbers. O&P, 3-44.

num (“character’ or substring)
Returns the ASCli-decimal value of the character. O&P, 6-21.

O

ofs X coordinate , Y coordinate
Offsets the origin (0,0) to point X,Y. 1/O, 7-27.

on end file number , line specifier
Enables a branch to the specified line or label when a disk EOF or EOR mark is encoun-
tered during read and write operations. D, 3-19 (or 50).

on err “line label”
Enables an error-trapping routine. The program branches to the label and the erl, ern and
rom functions are assigned values when an error occurs. 1/0, 4-4.

rev. 11/80

HPL Syntax

on key [“line label” [, flag no.]]
Enables a keyboard interrupt routine. The program branches to the label and optionally
sets the flag when the keyboard buffer overflows. Omitting all parameters disables the
keyboard interrupt. O&P, 7-6.

oni select code , “label”
References an interrupt service routine associated with the peripheral’s select code. I/O,
5-5.

open file name , number of records
Creates a disk data file of the specified size (256-byte records). D, 3-2 (or 33).

otd (expression)
Returns the decimal equivalent of the octal value expressed. I/O, 3-12.

P

par (expression)
Sets the parity type (listed below) used for I/O checking. 1/0, 4-9.
0 Parity disabled. 2 Even parity.
1 Parity = 1. 3 0dd parity.

pcir
Sets default plotter values except scale units, select code, P1, P2, pen location and
pen#. 9872 Plotter ROM only. I/O, 7-10.

pct select code
Passes active control to the specified HP-IB device. 1/O, 2-26.

pen
Raises the plotter pen. /O, 7-22.

pen# [expression]
Selects the plotter pen (1 through 4). 9872 Plotter ROM only. I/O, 7-22.

% string [@]
The % free-text prefix allows storing text without syntax checking. Free text is terminated
with a semicolon or end of line. O&P, 7-25.

plt X coordinate , Y coordinate [, expression]
Move plotter pen to specified X,Y point. Optional expression controls pen (see below).

110, 7-22.
even lowers pen. positive action before plotting.
odd raise pen. negative action after plotting.

rev. 11/80

B-18 HPL Syntax

pol select code
Conducts a parallel poll on the HP-IB. I/O, 2-25.

polc select code , byte
Sets parallel poll bits on the specified HP-IB device. 1/0O, 2-26.

polu select code
Clears parallel poll bits on the specified device. I/0, 2-26.

pos (string, , string,)
Returns the character position of the second string within the first. O&P, 6-16.

prnd (expression , expression)
Returns the first expression rounded to the power of ten indicated by the second expres-
sion. O&P, 3-22.

prt expression or string [, expression or string [, ... 1]
Prints the list of items on the internal printer. To print quotes use double quotes (e.g.,
3: prt “print"“text""in quotes.”). O&P, 3-12.

PScC select code
Sets the select code for all plotter ROM operations. psc 0 causes either the program to

ignore all plotter operations (9872 ROM) or the computer to suppress output to plotter
(9862 ROM). I/O, 7-5.

ptyp
Sets a plotter lettering mode. Press STOP key to terminate mode. /O, 7-45.

R

rad
Sets radians units for angular calculations. O&P, 3-25.

V" (expression)

Returns the square root of the expression. O&P, 3-22.

rcf [file number [, line number [, line number 11[, “SE” or “DB” 1]
Records either all program lines onto the specified tape file (no line numbers) or only the
specified block of lines. Including SE prevents the program from being listed or dis-
played when reloaded. Including DB records all trace and stop flags with the program for
debugging. O&P, 5-16.

HPL Syntax B-19

rcf file number , variable list
Records the listed variables onto the tape file. O&P, 5-16.

rcK file number
Records the special function key definitions on the tape file. O&P, 5-22.

rcm file number
Records the entire computer memory on the specified tape file. O&P, 5-22.

rdb (select code)
Returns one 16-bit binary character code from the specified device. /O, 3-4.

rdi (register number)
Returns a status byte from the interface specified by wti 0. 1/0, 4-12.

rdm array variable [, array variable [, ... 1]
Redimensions the array(s) to the specified dimensions. M, 16.

rds (select code)
Returns the current status word from the specified interface. 1/0, 3-5.

red select code[. format no.], variable list
Reads and stores data from the specified device. /O, 1-5.

rem select code
Sends the remote message to either all HP-IB devices or only one device when its
address is included in the select code. I/0, 2-18.

renm old file name, new file name
Renames a disk file on the default disk. D, 1-17 (or 28).

repk
Repacks files on the default disk. D, 4-5 (or 58).

res
Returns the result of the last keyboard operation not stored in a variable. O&P, 2-20.

resave file name [, 1st line number [, last line number]]
Stores a program (or only the specified lines) in an existing disk file. D, 2-9 (or 28).

ret

Ends a subroutine and returns program execution to the main program (line after gsbj).
O&P, 3-34.

rew
Rewinds the tape. O&P, 5-6.

rev: 11/80

B-20 HPL Syntax

rkbd select code [, expression]
Enables a remote keyboard to control the computer. The expression indicates the
keycode interpretation: 0 = ASCI! (default) or 1 = 9825 keycodes. O&P, 7-24.

rnd (expression)

Returns a pseudo-random number from 0 to (less than) 1. A negative expression is used
as a new seed. O&P, 3-22.

rot (expression, , expression,)
Returns the result of binary rotation of the 16-bit equivalent of expression 1, rotated the
number of bits indicated by expression 2. I/0, 3-13.

rprt file number , record number [, data list][,“end” or “ens”]
Prints the list of data items on the disk file, starting at the specified record. Including
“end” prints an EOF mark after the data. Including "“ens” suppresses the automatic EOR
mark printed after data. D, 3-12 (or 43).

rqs select code , byte
Reqguests service from the HP-IB system controller and sends the serial status byte upon
response to a serial poll. /O, 2-21.

rread file number , record number [, variable list]

Reads data from the disk file, starting at the specified record. Omitting the variable list
just repositions the file pointer. D, 3-15 (or 46).

rss (select code)
Returns the 98036 Interface status register byte. O&P, 7-16.

run [line number or “label”]
Begins program execution, either at line 0 or at the specified line. O&P, 2-9.

S

save file name [, 1st line number [, last line number]]

Creates a program file and stores either the entire program (no line numbers) or only the
specified lines. D, 2-2 (or 18).

savek file name
Creates a key file and stores all special function key definitions. D, 2-9 (or 29).

savem file name
Creates a memory file and stores the computer’s read/write memory. D, 2-10 (or 57).

scl Xp1, Xp2, Yp1, Yp2
Locates the origin and specifies user units for plotting operations. 1/0, 7-7.

rev: 11/80

HPL Syntax B-21

sfg[flagno.[, flagno.[, ...11]
Sets either all 15 program flags to 1 or only the specified flags. O&P, 3-28.

sgn (expression)
Returns sign of expression: 0 = zero; 1 = positive; —1 = negative. O&P, 3-22.

shf (expression1, expression ,)
Returns the result of right-shifting the 16-bit binary equivalent of expression 1, the
number of places indicated by expression 2. A negative expression 2 shifts the byte to
the left. 110, 3-14.

sin (expression)

Returns the sine of the expression. O&P, 3-2. Cﬁ&%ﬂ‘{f}r :
SMpYy number or simple variable [+] array variable,—> array variable,

Multiplies each element of array 1 by the scalar number. The * can be omitted. M, 13.

Spc { expression]
Outputs the expressed number of line feeds on the internal printer. O&P, 3-16.

sprt file number , data list[, “‘end” or “ens”]
Prints the list of data items on the disk file. Including “end” prints an EOF mark after the
data. Including “ens” suppresses the automatic EOR mark printed after data. D, 3-7 (or
38).

sread file number , variable list
Reads data from the specified file into the listed variables. D, 3-10 (or 41).

stf (string variable)
Unpacks and returns a split-precision number from its four-character string. O&P, 4-20.

store string name or “string” [, line number]
Stores program lines from an executing program. O&P, 7-21.

stp [line number, [, line number, 1]
Stops program execution either immediately or, optionally, at the specified line (line 1).
Specifying both line numbers indicates a block of lines to stop at. O&P, 3-17.

str (. expression)
Returns the ASCII character equivalent to the expression. O&P, 6-19.

T

tan (.expression)
Returns the tangent of the expression. O&P, 3-25.

rev: 11/80

B-22 HPL Syntax

tfr source name , destination name [, expression [, last character]]
Transfers data between an I/O buffer and a peripheral device. Optional expression
indicates the total number of bytes to transfer. Optional last character expression is the
decimal value of the character to terminate the transfer. 1/0, 6-8.

time (expression)
Causes an I/0 operation to wait for a device to become ready for the specified number of
milliseconds. 1/O, 4-4.

tinit
Reinitializes a bad 9885 track during disk error recovery. 98217A ROM only. D, 4-15 (or
65).
tlist
Catalogs tape files on the internal printer (file types below). O&P, 5-9.
0 Null file. 4 Memory file.
1 Binary program. 5 Special function key file.
2 Numeric data file. 6 Program file.
3 String or string/data.

tn 1 (expression)
Returns 10 raised to the specified power. O&P, 3-24.

trc [1st line number [, last line number 1]
Sets the master flag and, optionally, trace flags for specified program lines. O&P, 3-44.

trg select code
Sends the trigger message to the specified HP-IB device. I/0, 2-17.

trk expression
Specifies the tape track (0 or 1) for successive operations. O&P, 5-6.

trn array name — array name
Transposes rows and columns between arrays. M, 23.

type ([—] expression)
Returns a value indicating the next data-item type in a disk file. A positive expression
causes any encountered EORs to be skipped (like with sread). A negative expression
causes any EORs to be identified (like with rread). D, 3-20 (or 51). Return values are:

0 Unidentified type. Indicates string overlapping record boundaries:
1 Full-precision number. 2,1 Start of string.

2 String (within record). 2.2 Middle of string.

3 EOF mark. 2.3 End of string.

4 EOR mark.

rev: 11/80

HPL Syntax B-23

U

units
Returns the currently-set angular units. O&P, 3-25.

vV

val (string)
Returns the numeric value of the string. O&P, 6-17.

vIy [return variable]
Verifies the contents of a tape file with the original in memory. Return variable: 0 = no
error: 1 = error. O&P, 5-25.

viyb
Checks 98217A bootstraps on disk with those on the disk system cartridge. 98217A ROM
only. D, 4-14 (or 67).

voff
Disables data-verification with disk print and copy. D, 4-6 (or 58).

von
Enables the disk data verification (default). D, 4-6 (or 59).

W

wait expression
The program waits for the specified time in milliseconds (from 1 to 32767). O&P, 3-16.

wrt select code [. format no.][, item list]
Outputs the items to the specified device. /O, 1-3.

WSC select code, expression

Outputs a control word (expression) to the specified interface. O&P, 7-14.

WSM select code, expression [, expression]

Outputs a mode word and, optionally a control word (second expression) to the specified
98036 Interface. O&P, 7-15.

Wtb select code , expression [, expression [, ... 1]

Outputs the byte representing each number or character to the specified device. /O,
3-3.

rev: 11/80

B-24 HPL Syntax

WIC select code , expression
Qutputs a control byte to the specified interface. 1/0, 3-9.

wti O, select code
Specifies an interface for successive wti or rdi operations. /O, 4-11.

wti expression, , expression,
Outputs a control byte (expression 2) to a specified interface register (expression 1). 1/O,
4-11.

X

Xax Yoffset [, tic interval [, start[, end [, no. of tics/label }]]]
Draws an X axis with optional tic marks and labels. 9872 Plotter ROM only. [/O, 7-11.

xref
Prints a cross reference of program variables and line numbers, using the current pro-
gramin memory. O&P, 4-32.

Y

yax Xoffset [, tic interval [, start [, end [, no. of tics/label T]1]
Draws a Y axis with optional tic marks and labels. 9872 Plotter ROM only. I/O, 7-11.

Appendix C

Subject Index

Plcomputer
“'a;‘ ‘Mklse\l n‘

This index references subjects in these 9825 manuals:

Title Part No. Abbreviation

9825 Operating & Programming Reference 09825-80200 0O&P
9825 1/0 Control Reference 09825-90210 e
9825 Disk Programming Manual 09825-30220 D
Matrix Programming Manual 09825-90022 M

The index does not list subjects in the Interfacing Concepts guide or manuals supplied with

computer peripherals or interfaces. Page references for the old 9825/9885 Disk Programming
Manual, 09885-90000, are listed in parentheses.

rev: 11/80

C-2

Index

Subject Index

abortive interrupts I/0 5-11
abort message (cli) 110 2-27
abs (absolute value) O&P 3-22
absolute branching O&P 3-30
accessories ... O&P 1-8
acs (arccosing) O&P 3-25
ASCllcodes O&P A-3
ASCIl conversions 11O 3-18
add (binary add) /O 3-15
addition (+) O&P 3-19
addresses, device 110 2-6
Advanced Programming ROM
O&P 1-9,4-3
alphanumeric strings O&P 6-3
alternate plotter character sets 1/0 7-37
and (binary AND operator) O&P 3-21
aprt(array print) M 8
ara (array arithmetic) M 11
arithmetic:
hierarchy Q&P 3-18
operations O&P 2-10
operators O&P 3-19
arrays:
arithmetic(ara) M 11
copying(ara)................... M 13
dimensioning Q&P 3-7
elements M 4
loading O&P 5-21
matrix operations M 1
NUMENC ..o O&P 3-6
printing (aprt) M 8
recording O&P 5-17
string ... O&P 6-4
asc (ASCll keycode) O&P 7-9
asgn (assign disk file name) D 3-5(36)
asn(arcsing) O&P 3-26
assignment operator (=) O&P 3-19
atn (arctangent) O&P 3-26
automatic interrupt /O 5-3
autostart routine /0 4-3
avd (auto-tape verification disable)
O&P 5-24
ave (auto-tape verification enable)
O&P 5-25
avm (available memory) O&P 7-27
axe (plotaxis) 110 7-18

BACKkey.................. O&P 2-18,3-41
band (binary AND function) /O 3-12
beep.......... ..., O&P 3-16
bformatspec 110 1-17
binary:
coding and conversions /0 3-17
notation I/0 3-10
operations, /O 3-3
program files (disk) D2-11 (17)
program files (tape) O&P 5-23
bit (binary bit} /0 3-15
boot (load disk boots) D 4-4 (67)
boundaries, platen /0 7-23
bounds, variables O&P 3-7
bracketsinsyntax O&P 3-6
branching:
absolute O&P 3-32
mp O&P 3-33
labelled O&P 3-32
N-WAY e O&P 3-37
relative..................... O&P 3-32
subroutine O&P 3-34
bred (read buffer) O&P 7-10
buf (setup buffer) I/0 6-6
buffer:
DMA ... 1/0 6-6
fastread/write /0 6-5
interrupt ... L 1/0 6-5
overflow L /O 6-6
pointers /0 6-11
status /0 6-10
YPES o /0 6-4
underflow /O 6-6
buffered /O I/0O 6-3
calculated gosub O&P 3-35
calculatingrange O&P 2-6
cap (uppecase string) O&P 6-24
carriage-return line-feed:
outputwithfmt/ /O 1-11
suppress withfmtz /O 1-11
withred 110 1-7
withwrt 110 1-4

rev: 11/80

cat (disk catalog) D 1-16 (20)
cfg(clearflag) O&P 3-29
cformatspec /O 1-9
chain (chain disk program files) . D 2-7 (25)
char (string character) 0O&P 6-20
character sets:
display 1O 1-17
plotter O&P 7-37
printer (internal) /O 1-14
CLEARKkeyo it O&P 2-9
clearflag(cfg) 0O&P 3-29
clear:
HP-1B interface (abort) I/0 2-26
message (clr) i/O 2-17
plotter /1O 7-10
simple variables 0O&P 3-39
cli(cally........................ O&P 4-10
cln (current line number) O&P 7-28
clr (clear message) /1O 2-17
cmd (HP-IB commands) 11O 2-31
cmf (complementflag) O&P 3-29
cmp (complement binary) /O 3-13
commands. O&P 2-24
commoniog (log)............... O&P 3-25
compatibility (9820/21 & 9825) .. O&P A-10
computer I/Oscheme /O iv
concatenation (&) O&P 6-26
cont (continue) O&P 2-24
CONTINUEKkey................. 0O&P 2-20
control bits (98032A) /0 3-9
conv {(conversion) /O 1-23
copy (copy disk file) D 4-7 (60)
cos(cosine) O&P 3-25
cplt (character plot) 1/O 7-41
conversion table (ctbl) 1/0 4-6
cross reference (xref) O8&P 4-32
csiz (charactersize) /O 7-38
csv (clear simple variables) O&P 3-39
ctbl {conversion table)............. /0 4-6
cursor controls (display) O&P 2-16
data input operations /0 1-5,3-4
datal/Oformat /O v
data output operations /0 1-3,3-3
data;
input operations /O 2-5,3-4
/Oformat....................... /O v
messages (HP—=1B) /O 2-4
ouput operations........... /O 1-3,3-3

rev. 11/80

Index C-3

data transfer:

input ... 1/0 6-9

output ... 110 6-8
debug ('DB™), O&P 5-16
debug programs O&P 3-41
default:

computer conditions O&P A-3

/O formats..................... HO vii
decimal mode (mdec) /O 3-11
default:
deg (degrees units) O&P 3-25
del (delete line) O&P 2-25
DELETEkeys O&P 2-17,2-18
delimiters: ‘

input(read) /0 1-6

buffer transfer (tfr) /0 6-8

terminal /O (eol) O&P 7-12

write (wrt) ... 110 1-3
determinant, array M 24
dev (devicename) /O 2-9
device address (HP-IB) /O 2-6
dig (digitize) 1/O 7-48
digit rounding (drnd)............ O&P 3-22
dim (dimension variables) O&P 3-37
dimensioning strings O&P 6-4
dirc (copy disk directory) D 4-16 (65)
direct memory access I/O 6-6
diskdrive D 1-1(2)
disk operations D 4-1 (15)
display:

characterset /O 1-17

controlkeys O&P 2-16

dsp ... O&P 3-12
divide (/) O&P 3-19
division, array M12
DMAbuffer /0 6-6
dot matrix insyntax O&P 3-6
drive (set disk drive) D1-13(17)
drnd (digitround) O&P 3-22
dsp(display)................... O&P 3-12
dto (decimaltooctal)........... .. /O 3-12
dirk (dump disk track) D 4-16 (65)
dtype (disktype) D1-15
dump (dump disk to tape) D 4-11 (62)
eformatspec /O 1-9
editing......................... O&P 2-17
edit specifications................. (/O 1-9
eir (enable interrupt) I/O 5-6
end ... O&P 3-17

C-4 Index

enp (enterprint) Q&P 3-15 figflag) O&P 3-30

ent(enter) O&P 3-13 flowcharting, program............ O&P 3-3
ENTEREXPkey Q&P 2-21 fit (floating-point format) O&P 3-10
enter exponent(e) O&P 3-10 fmt (/O format) /O 1-8
EOF mark (disk) D 1-10(51) for(for..next) O&P 4-3
eol (end-of-line sequence) Q&P 7-12 formats:
EOR mark (disk) D 1-10(51) free-field /O 1-5,1-6
eor (exclusive OR) 1/0 3-13 WO o 110 1-3
equ(equate) 1/O 2-33 numeric (fxd, flt) O&P 3-9
equalto(=).................... O&P 3-20 fmt specifications 170 1-9
equipment supplied (see packing lists) fre (fraction) O&P 3-24
ERASEkey..................... 0&P 2-15 freetext (%) O&P 7-25
erase (erase memory) O&P 2-26 fti (full tointeger) O&P 4-26
erl (error-line variable) 11O 4-4 fts (futttoshort) O&P 4-20
ern (error-number variable) /O 4-4 functions, mathematical O&P 3-22
error recovery (onerr) {10 4-4 fuses, power O&P 1-6
errors: fformatspec 170 1-9
math Q&P 3-26 FWDkey O&P 2-18
Codes ... Q&P D-1 fxd (fixed-point format) O&P 3-9
tapedrive O&P 5-26 fzformatspec 110 1-9
ert (erase tapetrack) Q&P 5-15
evenparity 1/0 4-9
exclusive OR(xor) Q&P 3-21
EXECUTEkey Q&P 2-9 g
e ovomontial) T Capase GenerallOROM ... 08P 1-9, 110 i
exponential format O&p 3-8 get(getdisk programfile) D 2-4 (23)
exponential functions O&P 3-22 getb (get binary disk file) ... D 2-11(64)
exponentiate (1) O&p3-19 getk(getdiskkeysfile) D 2-9(29)
expressions, numeric O&P 3-18 getm (get disk memory file) ... D 2-10 (57)
extended device address 110 2-8 grad (grads units) O&P 3-25
Extended /OROM O&P 1-9,y0iii 9raphics language (HP-GL) ... /0 7-3,7-50
extended read status (rds) 1/O 2-34 greaterthan (>) O&P 3-20
greaterthan orequalto (>=or=>)
O&P 3-20
f grounding, equipment O&P 1-4
gsb (go subroutine)............. O&P 3-34
) gto(goto) ... O&P 3-31
fast read/write buffer 1/0O 6-5
fdf (find tapefile) O&P 5-8
FETCHkey O&P 2-17
fetch (fetchline) O&P 2-27
files:
files statement (disk) D 3-3 (34) hierarchy, math O&P 3-18
disk D1-9(11) hints, programming O&P 3-43
sting o D 3-20 (51) HP-GL (graphics language) ... 1/0 7-3,7-50
tapefilesize................ O&P 5-12 HP-IB:
findfile(fdf) O&P 5-8 functions, I/0 2-40
fixed-point format (fxd) O&P 3-9 interrupts ... I/O 5-8
flags: lines 110 2-37
debugging O&P 3-43 MESSAQES .« v oo /O 2-4
flags 13 through 15 O&P 3-28 operations 1/0 2-1
programmable flags O&P 3-28 HPL programming O&P 3-3
statusflags 110 4-12 HPL syntax Q&P B-1

rev: 11/80

.
WO format /0O iv
idf (identify tape file) O&P 5-7
idn (identity matrix) M 22
if (if..then) O&P 3-36
immediate execute keys O&P 2-22
immediate continue keys O&P 2-22
implied multiplication O&P 3-20
ina (initialize array) M8
inclusive OR (ior) I/0 3-13
incremental plotting /O 7-29
indirect storage O&P 3-8
init (initialize disk) D 1-6, 4-C (90)
inspection, equipment O&P 1-3
int (integer) O&P 3-22
integer-precision storage O&P 4-26
interface:
OVEIVIEWoiiiiiienn, 1/O vi
registers L 1/O 4-10
internal peripherals /O iv
internal printer;
characterset /O 1-14
loading paper O&P 1-8
] 1 O&P 3-12
interrupt:
abortive L 1/0 5-11
buffer I/O 6-5
end-of-line (EOL) I/0O 5-4
HP-IB 1/0 5-8
keyboard O&P 7-6
lockouts, I/0 5-14
peripheral IO 5-3
programmable I/O 5-3
vectored (EOL) /0O 5-4
interrupt enable (eir) /O 5-6
interrupt return (iret) /O 5-7
inv (inverse matrix) M 24
installation, computer O&P 1-3
/Obusandformat.................. l/O iv
iof (interfaceflag) /O 4-12
ior {(inclusive OR function) /O 3-13
ios (interface status) 1/0 4-12
iplt (incremental plot) I/O 7-29
iret (interruptreturn) I/O 5-7
itf (integertofull) O&P 4-26
a
mp(ump) ... O&P 3-33

Index C-5

K

key (key bufferempty) O&P 7-8
keyboard operations O&P 2-1
keyboard (ASCIl) O&P A-7
keycodes, decimal O&P A-6
key repetition............ ... O&P 2-5
kill (purge disk file) D 1-18 (27)
killall (purge all disk files) D 1-18 (67)

kret (keyboard interrupt return) ... O&P 7-9

labeled branching O&P 3-30
labelingaxes /0 7-36
labels, line O&P 2-8
lazy T(F) ..o O&P 2-5
bl (plotfabels) /0 7-36
Icl (local message) /O 2-19
Idb (load binary program from tape)
O&P 5-23
Idf (foad file from tape) O&P 5-18
Idk (load key file from tape) O&P 5-22
ldp (load program file from tape) . O&P 5-18
len (string length) O&P 6-14
leading spaces, suppressing 170 1-9
leadingzeros 110 1-9
lessthan (<) ...t 0O&P 3-20
less than or equal to (<= or =<) O&P 3-20
lim (plotter pen limit) /O 7-34
line (plotter line type) 1/O 7-32
line length (display) O&P 2-5
 linerenumbering O&P 3-30
linking programs O&P 5-20
list (list program on display) O&P 3-39
list# (list to device) 110 1-23
list fn (list function) O&P 3-39
listener (HP-IB) I/O 2-8
listk (listkeys) O&P 3-39
tive keyboard O&P 2-28
lkd (live keyboard disable) O&P 2-32
ke (live keyboard enable) O&P 2-32
llo (local lockout message) /O 2-19
n (naturallog) O&P 3-24
load data:
from disk (rread, sread) D 3-10 (41, 46)
fromtape (Idf) O&P 5-21
load keys:
from disk (getk) D 2-9(29)

fromtape (Idk) O&P 5-22

C-6 Index

foad memory; null field:
from disk (getm)........... D 2-10 (57) inent ..., O&P 3-14
fromtape (Idm) O&P 5-23 instrings L, O&P 6-7
load program: null tapefile O&P 5-7
from disk (get) D 2-4 (22) num (string numeric value) Q&P 6-21
fromtape (Idp) O&P 5-18 numeric formats O&P 3-8
local parameters O&P 4-12
logarithms:
common log (log) O&P 3-24 O
natural log (In) O&P 3-24
:oglcal operators O&P 3-21 octal mode 1O 3-11
tr(letterplot) I/O 7-47)
itrk (update disk track) D 4-16 (57) oct (octgl todecimal)............. /0 3-12
"""" oddparity1/104-9
ofs (offsetplot) /O 7-27
onend, D 3-19 (50)
I I I onerr(onerror) /O 4-4
oOnkey O&P 7-6
mark tape (mrk), O&P 5-10 oni(oninterrupt) 1/O 5-5
mat (matrix multiplication) M19 open (opendisk file) D 3-2 (33)
math functions Q&P 3-22 operating system module O&P 1-7
math hierarchy O&P 3-18 operators:
Matrix ROM O&P 1-10,M 1 arithmetic O&P 3-19
max (maximum) O&P 3-22 assignment................. O&P 3-19
mdec (decimal mode) /O 3-11 logical Q&P 3-21
memory: relational 0O&P 3-20
organization O&P 2-7 string concatenation O&P 6-26
USAQE . . oo O&P 3-40 OR functions (ior,eor) IO 3-12
messages, HP-IB control /0 2-4 OR operators (or, xor) O&P 3-21
min (Minimum) O8&P 3-22 otd (octaltodecimal)............. /O 3-12
minussign (<) ... O&P 3-19 out-of-limits conditions (plotting)
mod (modultus) O&P 3-19 /0 7-23
mounting, computer Q&P 1-12 overflow, buffer /O 6-6
moving the origin (plotting) 110 7-27 overhead, recording strings O&P 6-33
mrk (mark tape) 0&P 5-10
multiple listeners /0 2-6
multiply ()o O&P 3-19
multiplication, implied........... 0&P 3-20
% (freetext) O&P 7-25
par (parity check) 1/O 4-9
n parallel polling 110 2-25
parity checking /O 4-9
N-way branching O&P 3-37 passing parameters O&P 4-12
natural log (In) O&P 3-22 pclr (reset plotter) /0 7-10
nal (last programline) Q&P 7-24 pct (pass HP-IB control) 170 2-26
next (for.next) O&P 4-3 pen (controlpen) 170 7-22
nesting: pen# (selectpen) /O 7-22
for..nextloops O&P 4-6 peripheral:
subprograms O&P 4-16 control ... 170 vi
non-active controller /0 2-26 interrupt ... /0 5-3
nor(normal) O&P 3-44 status (rds) 170 3-5
not (operator) O&P 3-22 plotter operations /O 7-2
not equalto (#, > <or><)0&P 3-20 plotter ROMs O&P 1-9,1/0 7-3

rev: 11/80

plt(plot).......... ... |10 7-22
plussign(+) O&P 3-19
R O&P 2-21
p-numbers Q&P 4-16
pol (parallelpoll) I/0 2-25
polc (poll configure).............. (/O 2-26
polling:

parallel 110 2-25

serial L 110 2-22
polu (poll unconfigure) 110 2-26
pos (string position) O&P 6-16
powercords, O&P 1-4
power reguirements O&P 1-5
prerecorded programs O&P 1-11
printall O&P 2-14
print arrays (aprt) M8
printstrings O&P 6-29
printer paper O&P 1-8
printer operations 110 1-14
printer (internal) status I/0 3-5
prnd (power-of-ten round) O&P 3-22
programming O&P 3-3
prompts:

nent....................... O&P 3-13

nNenp O&P 3-15
prt(print) O&P 3-12
psc (plotter selectcode) I/O 7-5
ptyp (plotter typewriter mode) I/O 7-45
quote marks (" '):

NAsp ..o O&P 3-12

inprt.. ..o O&P 3-13

instrings O&P 6-5
r-variables, O&P 3-7
rad (set radians units) O&P 3-25
radical sign (V') O&P 3-22
random numbers (rnd) O&P 3-23
range, computing................ O&P 2-6
rcf (record file on tape) O&P 5-16
rck (record keys on tape) O&P 5-22
rcm record memory on tape) Q&P 5-22
rdb (read binarydata) /O 3-4
rdi (read interface) 1/0 4-12
rdm (redimensioning arrays) M 16
rds (read status) |/O 3-5

rev: 11/80

index C-7

read binary (rdb), /0 3-4
read interface {rdi} /O 4-12
read only memory (ROM) O&P 1-8,2-7
read only variables (with on err)1/0 4-4
read/write memory (RWM) O&P 2-6
RECALLkeyt O&P 2-18
RECORDkey.... ...t O&P 2-15
record data:

on disk (rprt, sprt) d 3-7 (38, 45)

ontape (rdf) O&P 5-16
record keys:

ondisk (savek) D 2-9 (29)

ontype(rck)................ O&P 5-22
record memory:

ondisk (savem) D 2-10(57)

ontape (rcm) O&P 5-22
record programs:

ondisk(save) D2-2(18)

ontape (rcf) Q&P 5-16
RECORDtabontape O&P 5-4
red(read data) /0 1-5
redimensioning arrays (rdm) M16
relational operators O&P 3-20
relative branching O&P 3-30
rem (remote message) 1O 2-18
remarks (labels) O&P 3-31
renm (rename disk file) D 1-17 (28)
repk (repack disk) D 4-5 (58)
require service message (rgs) /O 2-21
res(result) 0&P 2-20
RESETkey O&P 2-14
resave (re-save disk file) D 2-9 (28)
RESULT key O&P 2-20
ret(return) O&P 3-34
rew (rewindtape) O&P 5-6
REWINDkey 0&P 2-14
rkbd (read keyboard) O&P 7-17
md (random number) 0&P 3-22
rom (ROM error variable) 110 4-4
ROMs, overview O&P 1-8
ROM memory usage:

Advanced Programming O&P 4-3

Disk ... D 1-1(3)

Extended I/O /O iii

General /O /O iii

Matrix ... M3

String Variables O&P 6-3

Systems Programming O&P 7-3
rot(rotate) /O 3-13
rounding ... O&P 3-22
rort (random disk pring) D 3-12 (43)
rgs (request service) 1/0 2-21
rread (random disk read) D 3-15 (46)

C-8

Index

rss (read serial status) O&P 7-16
MUN L Q&P 2-24
RUNKey O&P 2-9
save (save program on disk) D 2-2 (18)
savek (save keys on disk) D 2-9 (59)
savem (save memory on disk) .. D 2-10 (57)
scientific notation (flt) O&P 3-10
scalar multiplication (smpy) M13
scl(scaleplot) /O 7-7
secure programs O&P 5-16
select code:

recommended settings /0 A-8

syntax ... 1/O vii
selectingpens 110 7-25
serial polling 110 2-22
service contracts O&P 1-11
servicerequests /O 2-20
stg(setflag) Q&P 3-28
sgnisign).................. ... O&P 3-22
shf (shift) /0 3-14
SHIFT and SHIFT LOCK keys O&P 2-19
significant digits O&P 3-11
sin(sine) Q&P 3-25
single characteroutput /10 1-17
smty (scalar multiply) M 13
SpPaACiNgo O&P 2-5
spc{space) O&P 3-16
special function keys:

defining and using O&P 2-21

in live keyboard 0O&P 2-29
split-precision storage O&P 4-20
sprt (serial disk print) D 3-7 (38)
square root ... O&P 3-22
sread (serial diskread) D 3-10 (41)
statements, HPL O&P B-1
status conditions, computer O&P A-3
status bits:

HP-IBinterface 1/O 2-34

KDP (internal) 1/O 3-5

98032 Interface 1/0O 3-8

read status (rds) 1/O 3-5

tape drive (intemal) {10 3-7
status byte message:

receiving (serial polling) 1/Q 2-22

sending ... (/O 2-22
status bytes /O 2-34
STEPkey L. Q&P 2-15
STOPKkeycooooiiiii it Q&P 2-19

stf (splittofull) O&P 4-20
storagerange O&P 2-6
STOREkey...................... O&P 2-9
store (storelins) Q&P 7-21
store programs O&P 5-16
stp(stop) ... Q&P 3-17
str(string) O&P 6-19
string operator (&) O&P 6-26
String Variables ROM, .. Q&P 1-9,6-3
string variables operations O&P 6-1
subprograms O&P 4-10
subroutines:

gosub ... O&P 3-34

from live keyboard O&P 2-29
subscripts:

array ... Q&P 3-6

sting ... Q&P 6-6
substrings L O&P 6-6
subtract (=) O&P 3-19
suppressing leading spaces /0 1-9
syntax:

brackets[] O&P 3-6

conventions O&P 3-6

HPLlisting Q&P B-1
Systems Programming ROM Q&P 7-19
tan (tangent) Q&P 3-25
tape drive, internal Q&P 5-1,1/1O 3-7
testing the computer Q&P 1-7
tfr (transfer) o oL /O 6-8
tic marks, plotting o 7-7
time (timeout) /O 4-4
tinit ... D 4-15 (65)
tlist (tape list) O&P 5-9
tnf (tentoapower) O&P 3-24
transfer parameters /O 2-8
transfer (tfr)..................... .. /O 6-8
transposition (trn) ... L. M 23
trc (trace) O&P 3-44
trg (trigger message) /O 2-16
trig functions O&P 3-25
trk (tape track) O&P 5-6
trn (transpose) ... M 23
truth tables:

binary functions I/0 3-12

logical operators O&P 3-21
type (disk datatype) D 3-20 (51)
types of buffers /O 6-4
typewriter mode (plotting) I/O 7-45

rev: 11/80

Index C-9

UNATY = oot O&P 3-19 yax (Yaxis) ... /O 7-11
underflow O&P 3-28
underflow, buffer /0 6-6
unlisten command 1/O 2-8 Z
units, scale statement VO 7-7
units {trig units) O&P 3-25 2 format Spec .. oovr o 1O 1-11
val (stringvalue) O&P 6-17
variables:
allocation O&P 3-8
array .o O&P 3-6
efasing O&P 2-15,2-26,3-39
loading fromtape O&P 5-21
read only (withonerr).......... 11O 4-4
recordingontape........... O&P 5-16
String ..o O&P 6-3
vectored interrupt, 11O 5-4
vectors M3
viy (verify data) O&P 5-25
viyb (verify disk binary) D 4-4 (67)
voff (disk auto-verify off) D 4-6 (58)
voltage setting, computer O&P 1-5
von (disk auto-verifyon) D 4-6 (59)
wait ... O&P 3-16
word (16 bits) /O 6-7
wrt (write) /O 1-3
wse (write serial control) O&P 7-14
wsm (write serial mode) O&P 7-15
wtb (write binary) I/0 3-3
witc (write control), /O 3-9
wti (write interface) 110 4-11
xax (X axis), /O 7-11
xformatspec /O 1-11
xor (exclusive OR) O&P 3-21
xref (cross reference) O&P 4-32

rev. 11/80

C-10 Index

Notes

f; Error Codes D-m
Appendix D
Table of Contents
Mainframe Errors (00 thru 77) ... D-3
Advanced Programming ROM Errors (AOthru A9) i D-7
9885 Binary Disk Errors (BOthruB8) D-8
Systems Programming ROM Errors (COthru C9) ... D-8
Disk ROMErrors (DO thru D9 and dOthrud9) ... D-9
Extended /O ROM Errors (EOthru EQ)o D-10
9885 Disk Hardware Errors (FOthru FO) o D-10
General /O ROM Errors (GOthru GO)ot D-11
Matrix ROM errors (M1 thru M5)o D-11
9862A Plotter ROM Errors (P1thru P8) e D-12
9872A Plotter (HP-GL) ROM Errors (P1 thru P8 and pOthrup®) D-12
String Variable ROM Errors (SOthruS9) ... i D-14
\ »)

D-2 Error Codes

Notes

Appendix D

Error Codes

An error in a program sets the program line counter to line 0. Press the continue key to

continue the program from line 0. Execute the continue command with a line number to
continue at any desired line (such as: cont 50).

00

o1

System error.
Unexpected peripheral interrupt.
Unterminated text.

Mnemonic is unknown.
Mnemonic not found because disk may be down.

System is secured.

Operation not allowed; line cannot be stored or executed with line number.
Syntax error in number.

Syntax error in input line.

Internal representation of the line is too long (gives cursor sometimes).

gto, gsb, or end statement not allowed in present context.

Attempt to execute a next statement either from keyboard while for/next loop
using same variable is executed in program or from program while for/next
loop using same variable is executed from keyboard. Attempt to call function
or subroutine from keyboard.

gto or gsb statement requires an integer.
Integer out of range or integer required; must be from —32768 thru +32767.

Line cannot be stored; can only be executed.

* Press the @D key to position the cursor at the location of the error.

D-4 Error Codes

13
14
15

16

17
18
19

20

21
22
23
24
25

26

27
28
29
30
31

32

ent statement not allowed in present context.
Program structure destroyed.
Printer out of paper or printer failure.

String Variables ROM not present for the string comparison. Argument in
relational comparison not allowed.

Parameter out of range.
incorrect parameter.
Bad line number.

Missing ROM or binary program. The second number indicates the missing
ROM. In the program mode, the line number is given instead of the ROM
number. Displayed number and missing item:

1 Binary Program 10 Matrix ROM

4 Systems Programming ROM 11 Plotter ROM

6 Strings ROM 12 General /O ROM
8 Extended /O ROM 17 Disk ROM

9 Advanced Programming ROM

Line is too long to store.

Improper dimension specification.

Simple variable already allocated.

Array already dimensioned.

Dimensions of array disagree with number of subscripts.

Subscript of array element out of bounds.
P-number reference is negative.

Undefined array.

ret statement has no matching gsb statement.

Cannot execute line because a ROM or binary program is missing.
Special function key not defined.

Non-existent program line.

Improper data type.

Non-numeric value in for statement or in fts or fti function.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48

50

51 or 52

rev: 6/80

Error Codes

Data types do not match in an assignment statement.

P .Gomputer
L. Museum

Display overflow due to pressing a special function key.
Improper flag reference (no such flag).

Attempt to delete destination of a gto or gsb statement.
Display buffer overflow caused by dsp statement.

Insufficient memory for subroutine return pointer. Memory overflow during
function or subroutine call.

Insufficient memory for variable allocation or binary program.
Dimensioned string cannot exceed 32,766 elements.

Insufficient memory for operation.
Memory overflow while using for statement or while allocating local
p-numbers.

No cartridge in tape transport.
Tape cartridge is write protected. (Slide record tab to right for recording.)

Unexpected Beginning-Of-Tape (BOT) or End-Of-Tape (EOT) marker encoun-
tered. Tape transport failure.

Verify has failed.

Attempted execution of idf statement without parameters or mrk statement
when tape position is unknown.

Read error in file body.
Read error in file head.

End-Of-Tape (EOT) encountered before all files were marked.

File too small.

ldf statement for a program file must be last statement in the line. get or chain
statement should be the last statement in a line.

Memory configuration error for attempted |dm statement. For example, a ROM
present when memory was recorded is now not present (see error 20), or
attempting to load a memory file recorded on a 9825 into a 9825B.

D-5

D-6 Error Codes

53

54

55
56
57
58
59
60

61

62

63

64

65

Memory files are not compatible between the 9825A and 9825B. Only the
program portion can be recovered by loading the memory file into the original
machine and doing a rcf. This program file can then be loaded into any 9825
with the |df statement.

Negative parameter in cartridge statement,

Binary program to be loaded is larger than present binary program and vari-
ables have been allocated.

lllegal or missing parameter in a cartridge statement.

Data list is contiguous in memory for a cartridge statement.

Improper file type.

Invalid parameter in rcf statement; “SE" or “DB” expected.

Attempt to record a program or special function keys which do not exist.
Attempt to load an empty file or the null file (type = 0).

The line referenced in an Idf or Idp statement does not exist. [f the line contain-
ing the Idf or Idp statement has been overlaid by the load operation, the line
number in the display may be incorrect.

Specified memory space is smaller than cartridge file size.

Cartridge load operation would overlay subroutine return address in program;
load not executed.

Disk load operation would overlay gsb return address; load not executed.
Attempt to execute Idk, Idf (program file), or Idp during live keyboard state-
ment.

get, chain or getk not allowed from live keyboard mode or during an ent
statement.

File not found.
File specified in the previous fdf statement does not exist.

Default values associated with errors 66 thru 77 when flag 14 is set are explained in the

programming chapter of the operating and programming manual.

66

Division by zero.
A mod B, with B equal to zero. rev: 6/80

67

68

69

70

71

72

73

74

75

76

77

AQ

Al

A2

A3

A4

A5

A6

A7

A8

A9

Error Codes

Square root of negative number.

Tan (n = 7/2 radians).

Tan (n + 90 degrees).

Tan (n « 100 grads).
where n is an odd integer.

In or log of a negative number.

In or log of zero.

asn or acs of number less than —1 or greater than +1.
Negative base to non-integer power.

Zero to the zero power (010).

Storage range overflow.

Storage range underflow.

Calculation range overflow.

Calculation range underflow.

Relational operator in for statement not allowed. No closing apostrophe.
A for statement has no matching next statement.

A next statement encountered without a previous for statement.
Non-numeric parameter passed as a p-number.

No return parameter for a function call.

No functions or subroutines running.
Improper p-number.

Attempt to allocate local p-numbers from the keyboard.

Wrong number of parameters in fts, stf, fti, or itf function. stf or itf parameter

must be a string (not a numeric). stf or itf parameter contains too few charac-
ters.

Overflow or underflow in fts function.
Overflow in fti function.

String Variables ROM missing for stf or itf functions.

D-7

D-8 Error Codes

Errors BO thru B8 may result during the binary disk initialization and disk error recovery

routines.

BO
B1
B2

B3

B5

B6

B7

B8

co
C1
c2
C3
C4
C5
Ceé
c7
c8

C9

Wrong syntax, argument out of range or variable not properly dimensioned.
More than six defective tracks on the disk.
Verify error. Boots on the disk not identical to boots on the cartridge.

dtrk or tinit not atlowed because error information lost or error notd5, d6, d7 or
ds.

Attempt to access record for error correction which isn't part of data fite.
Improper string length (inconsistent with length given in header).

Not enough space in computer buffer for data item. Item can’t be placed in
this part of buffer.

Missing Disk or String ROM.

Track still bad after tinit.

Missing General I/O or Extended 1/O ROM.
Incorrect number of parameters.

Improper parameter specified.

Wrong parameter type.

lllegal buffer type for bred statement.

Key buffer overflow.

Too large or wrong sign of parameter.
Improper execution of store statement.
Illegal use of kret.

Missing 98036A Interface card.

Do
D1

D2

D3
D4
D5
D6
D7
D8
D9

Error Codes

Improper argument.
Argument out of range.

Improper file size; must be an integer from 1 thru 32767. No lines to store for

save or savek.

Invalid file name.

File not found.

Duplicate file name or attempt to copy non-data file to existing file.
Wrong file type.

Directory overflow.

Insufficient storage space on disk.

Verify error. Disk controller detected no read errors, but the data read back
doesn’t compare with the original. Reprint data. If the problem persists, ser-
vice the drive, interface or the computer.

DISK IS DOWN (98217A ROM)

UNABLE TO ACCESS DISC CONTROLLER (98228A ROM)

do

d1
dz2
d3

d4
d5
dé
d7
ds
d9

rev: 11/80

Computer cannot access the disk controller. If control is not restored (e.g.,
power on) press RESET or STOP to cancel operation.

Firmware/driver out of synchronization.
Too many defective tracks within it (press GEs®).

All drives in system not powered on.
Door opened while disk being accessed or during dump, load or copy.

Disk not in drive or no such drive number.
Door open on 9895 drive.

Write not allowed to protected disk.

Record header error (use error recovery routine.)
Track not found (use error recovery routine.)

Data checkword error. (use error recovery routine.)
Hardware failure (Press @Esm).

Verify error. Data is readable under normal margins but not under reduced
margins. Reprint data. If problem persists, back up disk (new media) or ser-
vice drive.

D-9

D-10 Error Codes

EO General I/0 ROM missing.
HP-IB error under interrupt.
E1 Wrong number of parameters.
E2 Improper buffer device or equate table usage.

Multiple-listeners error.
Buffer busy.

E3 Wrong parameter type.

E4 Timeout error.

ES Buffer underflow or overflow.
E6 Parameter value out of range.
E7 Parity failure.

E8 Improper use of iret statement.

Attempt to DMA with HP-IB.
Buffer or select code is busy.

E9 lllegal HP-IB operation.
FO File overflow when read or print executed.
F1 Bootstraps not found (98217A ROM) or wrong memory configuration for

98228A Disk ROM (9825T required).

F2 String read but wrong data type encountered.

F3 Attempt to read data item but type doesn’'t match.

F4 Availability table overflow (repack).

F5 Attempt on end branch from other than running program.
F6 Unassigned data file pointer.

F?7 Disk is down; line cannot be reconstructed.

F8 Disk is down and pressed.

F9 System error (save files individually and reinitialize).

rev: 11/80

Error Codes D-11

G1 Incorrect format numbers.

G2 Referenced format statement has an error.
G3 Incorrect /0O parameters.

G4 Incorrect select code.

G5 Incorrect read parameter.

G6 Improper conv statement parameters.

G7 Unacceptable input data.

G8 Peripheral device down.

G9 Interface hardware problem.

M1+ Syntax error.

M2 Improper dimensions. Array dimensions incompatible with each other or im-

compatible with the stated operation.

M3 Improper redimension specification. New number of dimensions must equal
original number; new size cannot exceed original size.

M4 Operation not aliowed. An array which appears to the left of ' cannot also
appear on the right.

M5 Matrix cannot be inverted. Computed determinant = 0.

" Press the key to position the cursor at the location of the error.

D-12 Error Codes

9862A Plotter ROM Error Codes

P1

P2

. P3

P4

P5
P6

P7

P8

PLT
DOWN

Wrong state.
Statements executed out of order.

Wrong number of parameters.

Wrong type of parameters. Parameters for an Ibl statement must be expres-
sions, text, or string variables.

Scale out of range. Maximum value is less than or equal to the minimum value.

Integer out of range. Pen control parameter is out of the range —32768 thru
+32767 or the select code is not 0 or in the range 2 thru 15.

Character size out of range. Width or height in letter statement is zero or there
is an integer overflow in csize calculations or results.

Not used.

Axes origin off-scale. X, Y specified for axis statement doesn'’t fall on plotter
surface.

Check interface connection and select code setting; be sure LINE and
CHART HOLD are on.

9872A Plotter ROM (HP-GL) Error Codes

P1

P2

Attempt to store into constant. Occurs when one or more parameters in a dig
statement are constants rather than variables.

Wrong number of parameters. Occurs on instructions with numeric-only
parameter lists (scl, ofs, plt, iptl, cplt, xax, yax, lim, dig, csiz, line, pen#, and
psc). In certain unusual cases where a parameter list contains user-level
function calls, an instruction having an incorrect number of parameters may
be executed.

P3

P4

P5

P6
P7

P8

po

p1

p2

p3

p4

p5

p6

Error Codes

Wrong type of parameter or illegal parameter value.

No HP-IB device number specified. Occurs when psc parameter is from 0
thru 14 and an HP-IB card is at the corresponding select code.

Pen control value not from —32768 thru 32767. Hardware transmission error
occurs between plotter and computer.

No HP-iB card at specified select code.
axe or Itr statement encountered; 9872 ROM cannot execute them.

Computer key cancelled operation. Occurs when the plotter fails to re-
spond-for three seconds after the key has been pressed.

Transmission error. The calculator has received an illegal ASCII input from the
plotter.

Instruction not recognized. The plotter has received an illegal character
sequence.

Wrong number of parameters. Too many or too few parameters have been
sent with an instruction.

Bad parameter. The parameters sent to the plotter with an instruction are out
of range for that instruction.

lllegal character. The character specified as a parameter is not in the allowa-
ble set for that instruction.

Unknown character set. A character set out of the range 0 thru 4 has been
designated as either the standard or alternate character set.

Position overflow. An attempt to draw a character or perform a cplot that is
located outside of the plotters numeric limit of —32768 thru +32767.

Errors generated by write (wrt) and read (red) statements will typically be displayed in the next
executed plotter ROM statement. This can be avoided by using an output error command (wrt
select code, “OE";) followed by a read statement {red select code, variable) to check for
errors after read or write statements that address the plotter.

D-14 Error Codes

SO
S1
S2
S3

sS4

S5

S6

S7
S8

S9

SPARE
DIR.

Invalid set of strings in data list of Idf statement.

Improper argument for string function or string variable.

More parameters than expected for string function or string variable.
Accessing or assigning to non-contiguous string, num function of null string.

Trying to find the value of non-numeric string or null string.
Exponent too large.
Exponent format invalid (e.g., 1e+ +).

Invalid destination type for string assignment.

Parameter is zero, or negative, exceeded dimensioned size.
Invalid sequence of parameters for string variable.

String not yet allocated.
String previously allocated.

Maximum string length exceeded; additional string length must be specified
in dim statement.

Printed when the spare disk directory (backup track) automatically replaces
the main directory.

