Matrix Programming

HP 9825A Desktop Computer

Hewlett-Packard Computer Systems Division
Herrenberger StraBe 110/130, 7030 Biblingen, West Germany

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Table of Contents

Chapter 1: Introduction
ROM Description
Inspection & Installation
SV AX L
Error Messages

Chapter 2: General Information
Description
Dimensioning Arrays

Specifying Bounds for Dimensions
Array Elements ...
Range of Values of Array Elements

Types of Operations

Chapter 3: Input and Output of Array Data
Data INPUL . e
Array Initialization
Array OUIDUL . ..o
Other Methods of Inputand Qutput e

Chapter 4: Array Operations
Array Addition
Array Subtraction, Multiplication, and Division i
COPYING AITAYS . oo e e
Scalar Multiplication of Arrays
Redimensioning AfTaYS i

Chapter 5: Matrix Operations
Matrix Multiplication
The ldentity Matrix
Transposition of Matrices
Matrix Inversion and Determinant e

Appendix
Array OperationS
Matrix Operations
X L

Error Messages ... Inside Back Cover

Preface

Before using this manual, you should be familiar with the 9825A Calculator and the HPL
programming language described in the HP 9825A Operating and Programming Manual.

Chapter 1
Introduction

ROM Description

The Matrix ROM (Read Only Memory) provides additional statements to the HPL language for
performing mathematical operations on matrices and arrays. The Matrix ROM uses no read/
write memory when installed in the HP 9825A Calculator.

Inspection and Installation

The Matrix ROM can be plugged into any one of the four ROM slots located on the bottom front
of the calculator, as shown below.

ROM installation

To install your ROM card, firstturn the calculator off. With the label right side up, slide the ROM
through the ROM slot door. Press it in until the front of the ROM card is even with the front of
the calculator. Then turn your calculator on.

Refer to the HP 9825A System Test Booklet to check the operation of the Matrix ROM.

2

Introduction

Syntax

The following conventions apply to the syntax for the Matrix ROM statements found in this

manual.

weihow 4w - Allitems in dot matrix are required, exactly as shown.

[] - All items in square brackets are optional, unless the brackets are in dot matrix.

- Three dots indicate that the previous item may be duplicated.

All Matrix ROM statements can be executed from the keyboard, in live keyboard mode, and

within a program.

Error Messages

The Matrix ROM adds error messages M1 through M5. Explanations of these errors can be
found inside the back cover of this manual.

Chapter 2
General Information

Description

An array is a collection of data elements having any number of dimensions. Two special kinds
of arrays are called matrices and vectors. A matrix is a two-dimensional table of data or any
collection of data elements arranged in rows and columns. A vector is a collection of data
elements arranged in a single column or row. The terms array and array variable are used

interchangeably to specify an entire array; array element or element is used to specify a single
itemin an array.

Here is an example of a matrix:

Grade Boys Girls

1 10 7
2 9 8
3 9 10
4 7 9
5 7 10
6 9 11

Here is an example of a vector:

Test Scores

93
85
79
89
68
95
100

4 General Information

Dimensioning Arrays

An array must initially be defined in a dimension (dim) statement. A dim statement reserves
storage space for arrays. Array names can be any single upper case letter from A through Z.

The following statement dimensions three arrays:

Array A is a vector with 100 rows containing 1 element each, for a total of 100 elements.
Array B is a matrix with 30 rows of 5 elements each, for a total of 150 elements.

Array C is three dimensional array whose dimensions are given by the values of the
simple variables X, Y, and Z.

When a dimension statement that defines an array is executed, all elements of that array are
initialized to zero.

The working size of an array can be smaller than its defined size (the memory space reserved
for it by the dim statement). For example, A[20,20] can store fewer than 400 data elements; the
dim statement specifies only the maximum number of elements. The dimensions of an array
can be redefined; see Redimensioning Arrays on page 16.

Specifying Bounds for Dimensions

A dimension may be specified by giving lower and upper bounds. The lower bound must be
specified before the upper bound. The two are separated by a colon. The bounds must be in
the range from —32767 through 32767. For example:

This statement reserves 12 matrix elements §

The same amount of memory is reserved by #

Computer ¥

Museum

General Information 5

The elements in array A can be referenced as follows:

A[1976,1] A[1976,2] A[1976,3] A[1976,4]
A[19771] A[1977.2] A[1977,3] A[1977,4]
A[197811 A[1978,2] A[1978,3] A[1978.4]

If a lower bound is not specified, as in & EX: <1, it is assumed to be 1, as in

Array Elements

Array elements are specified by the array name followed by brackets which enclose the

numbers specifying the array element. For example, X[1] specifies element 1 in vector X;
X[23] specifies element 23 in vector X.

Range of Values of Array Elements

The internal representation of numbers used in the 9825A is floating-point format, with one
digit to the left of the decimal point (scientific notation).

The Matrix ROM does not require that its final results be within the storage range as in the

basic calculator. Results can have any values within the calculation range (exponents of 0 +
511).

Final results, therefore, are treated the same as results in the calculation range with one
exception: whenever a matrix or array operation generates a final result outside the normal
storage range, the ROM sets flag 15. (Note that the operations of copying an array or transpos-
ing a matrix do not generate any new results, but only relocate existing values; these opera-
tions do not affect flag 15.)

Whenever attempts are made to use these out-of-range results in non-matrix operations, they
are treated just like any other out-of-range results. For example, an attempt to print or display
such a result without setting flag 14 will result in error 74 or 75. If flag 14 is set, the storage
range default value is printed (the actual stored value is not changed to the default value,
however).One way to view the digits contained in such out-of-range quantities is to multiply or
divide the values by some constant to bring the result into the storage range.

6 General Information

Types of Operations

The operations performed by the Matrix ROM can be divided into two classes: matrix opera-
tions and array operations. The matrix operations (inv, mat, trn, & idn) can be performed only
using arrays having 1 or 2 dimensions. All others are array opefations, and can be used with
arrays having any number of dimensions.

Each statement of the Matrix ROM can perform only one operation, except in those cases such
as aprt (array print), where a single statement can be used to cause the indicated operatlon to
be performed on more than one array. Thus, an operatlon such as: f

allowed. Such an operation requires two steps:

Chapter 3

Input and Output of Array Data

Methods for storing data in an array and for printing data from an array are described next.

Data Input

Values can be assigned to array elements by individual assignment statements or by a single

assignment statement within a loop.

Here's an example that uses individual assignment statements.

a: dim RIS Z]

1: 1»A01s1152+RL
152]

2t AL 1)545R1L
2221

N J*H[-il]! c+A [
J3a 2]

Values can also be assigned to array elements using a loop.

i dim BI[Z«+214
11
1 I*BLIs1]+BLIs

IR 0 I W I R - X
dmp ~1 '

With the for/next loop capabilities of the Advanced Programming ROM, values can be as-

signed as shown:

Be dim CLE2]
1: for I=1 o 3
20 for J= 'r: :
S8 I+d+C 0D Jd]
4! next J

next 1

8

Input and Output of Array Data

The enter (ent) or enter print (enp) statements can also be used to assign values to array

elements as in this example:

A dim LIS]

1* for ¥=1 ta 5
2: ent LI¥]

37 next X

4: end

Array Initialization

An array can have all of its elements set to a single value specified by a number or simple
variable A through Z using the initialize array (ina) statement.

Syntax: i ri array variable [i number or simple variable]
[= array variable [: number or simple variable]...]

If a number or simple variable is not specified, zero is assumed. Multiple arrays can be

initialized in a single statement:

This statement initializes each element of array A to zero; each element of array B to 4; and
each element of array C to the value of the simple variable X.

Array Output

The array print (aprt) statement is used to print each element of an array on {he QQQQA'S

printer.

Syntax: 7711 array variable [= array variable...]

Any number of array variables can be printed using a single aprt statement, as in g 7% Fis

Input and Output of Array Data

In the following example, the array A is printed.

Array A
4
2 5
3 6
B dim HIZZI A[1,1] 1. a8
1: 1+RA01s1332+RL A[2,1] 2 AR
21133 1] A[3,1] 2 AE
2% 43f01.21:5+R1L
Fr2liE+AIE2] A[1,2] 4 BB
2t oaprt A Al2,2] 5.648

Notice that the leftmost subscript increments most rapidly.

All array elements are printed using the current fixed or float setting. The elements are printed
column by column with a space after each column. For arrays with more than two dimensions,
an additional space is inserted each time the third subscript is incremented. The aprt state-
ment also inserts a space before an array is printed and three spaces following the end of the
array.

Other Methods of Input and Output

With the General 1/O ROM, data for arrays can be entered from peripherals such as tape
readers, card readers, and digital voltmeters using the read (red) statement. This is often the
quickest method for entering data into large arrays.

in the following example, data is entered into an array X from a paper tape reader set at select
code 3.

The tape has this format #

10 Input and Output of Array Data

The following program segment is used to

@: dim X[4]
enter and print data from the tape » 1: 141
2t red 3sH[I]s
Jmp (I+1311>4
3: arrt ¥
The printout is #» 1,.58R
2,64
1,78
2,88

Data in many different formats can be entered using the read statement with the format (fmt)
statement. For more details, see the General I/O Programming Manuali.

To output an array to a peripheral device, the aprt statement cannot be used. The write (wrt)
statement from the General I/0 ROM must be used. In the following example, all of the data
from array X (above) is printed on the HP 987 1A Printer at select code 6.

Execute this program segment » 141

Powrt EaH[ITG
drp [IT+131) =
HI N A =

3
b
&
The following printout is obtained:
1.50
2.60

l.70
2.80

The element from an array can be output in many different forms using the write statement in
conjunction with the format statement. For details, see the General I/O Programming Manual.

Chapter 4
Array Operations

The operations described in this chapter can be performed on arrays having any number of
dimensions. Those operations that can be performed only on matrices are described in Chap-
ter 5.

Array Addition

The corresponding elements of two arrays can be added together using the array arithmetic
(ara) statement.

Syntax: 71741 array variable -+ array variable -+ array variable

Each element in the first array is added to the corresponding element in the second array and
the result is stored in the corresponding position in the third array. The dimensions of the three
arrays must be the same: the subscripts need not be the same, but the number of elements
in each dimension must be the same. The number of dimensions must also be the same, even
if some of the dimensions are 1. Thus A cannot be added to B if A is dimensioned [3] and B is
dimensioned (3,1].

in the following example, matrices A and B are added together and stored in C. All three
matrices are dimensioned as:

Matrices A and B have the following elements:

Matrix A Matrix B

11

12 Array Operations

After executing i i, matrix C contains:

Matrix C
5 6 4
5 14 12

Calculator memory space can be saved if the result is accumulated in one of the arrays
already containing data, as with X in the line:

Array Subtraction, Multiplication, and Division

The corresponding elements of two arrays can be subtracted, multiplied, or divided using the
array arithmetic (ara) statement. The rules which apply to addition also apply to these three
operations.

Syntax:-

Note that two forms are allowed for multiplication. The # sign can be omitted for implied
multiplication.

As an example, these three operations are performed on matrices A and B and the result is
stored in matrix C:

Matrix A Matrix B

Array Operations

Matrix C
-1 1 -3
3 2 1
20 2 4
28 15 2

0.80 2.00 0.25
1.75 1.67 2.00

Two other statements involve multiplication: scalar muitiply (smpy, below) and matrix muiti-
ply (mat, page 19).

Copying Arrays

The data elements in one array can be copied into the corresponding positions in another array .

Syntax: <141 variable name -+ variable name

To copy array C into array A, execute:

The two variables must have the same dimensions, as described under Array Addition on
page 11.

Scalar Multiplication of Arrays

Each element of an array can be multiplied by a number or by the value of any simple vari-
able A through Z by using the scalar multiply (smpy) statement. The number or simple variable
must precede the array variable.

The array variable being multiplied and the array variable where the result is stored must both
have the same dimensions, as in array addition.

13

14 Array Operations

In the following example, matrix X is multiplied by the scalar 4 and the result is stored in matrix

Y.
Matrix X
4 2
3 5 3
After executing the statement =8 & % = -+ % the matrix Y contains:
Matrix Y
16 8 4

12 20 12

Example

Below are two tables containing the Math, Science, and Reading grades achieved by five
students during two quarters of one school year.

First Quarter
Student
No. Math Science Reading
1 80 85 78
2 71 80 72
3 97 92 83
4 77 82 98
5 93 94 98
Second Quarter
Student
No. Math Science Reading
1 78 81 80
2 73 82 88
3 93 90 85
4 81 88 94
5 91 90 84

Array Operations 15

We will use the grades in the first quarter for array A, and in the second quarter for array B:

Array A
80 85 78
71 80 72
97 92 83
77 82 98
93 94 98

If the statement 1+ 12

158
144
190
158
184

166
162
182
170
184

78
73
93
81
91

Array B

158
160
168
192
182

81
82
20
88
90

+1. is executed, array C contains:

80
88
85
94
84

The grades for each student in each class have been added. We can now find the average of

the two term grades for each student in each class by executing:

The result in C is now:

79
72
95
79
92

83
81
91
85
92

79
80
84
96
91

The array now represents the average grade for each student in each of the three subjects:

Average Mid-Year Grades

Student No. Math Science Reading
1 79 83 79
2 72 81 80
3 95 91 84
4 79 85 96
5 92 92 91

16 Array Operations

Redimensioning Arrays

Arrays previously dimensioned using a dim statement can be redimensioned using the redi-
mension (rdm) statement, with these limitations: In each array, the number of elements
cannot exceed the original number, and the number of dimensions must be the same as the
original number.

Syntax: eoiitem [item...]
where item is:
array variable I [number or simple variable : Jnumber or simple variable

If an array is redimensioned more than once, the number of elements is limited only by the
number of elements defined in the original dim statement; subsequent redimensioning to a
smaller size does not further limit the size available.

Redimensioning an array does not change the amount of memory space reserved for the
array; it merely permits the user to use the allocated space (or part of it, if the new size is
smaller) in a different way. If the element values are to be recoded in a data file on the tape
cartridge, the tape file size must be large enough to record the number of elements specified
in the original dim statement.

In the following example, the 2 x 3 matrix A is redimensioned several times. The value
associated with each element in the matrix represents its location in the original matrix (e.g.,
21 represents A [2,1]).

g: dim RIZ»3] 4 Dimensions matrix and

1: 11+Al1s1]

Zr {23A01s2] : stores element values.

3t 132Al1s3

4: z21+A[2:1]

S Z2+ALE.2]

61 23+R(2.31

7i oprt "HIZ»3]3" Al2s31:

iaprt A
11.a88
21.868
12,48
22,448

-
51

(3 02
Lo N
5

) s

Array Operations

g rdm H[i‘? 1919 AL1971:1976+1) ¢
TExllim "Hi13

?1:1??&- 1]:"3 1.68
arrt H L Bn

-
=
facx

[N S A
£a) L2 D2 D e
- -
o
Dot o BB sox it

; AL3s 113

b ThE e

Fud e
-

Lo B 3)

o

Notice in all cases that by incrementing the Ieftmost subscript most rapidly the values are
revealed in the same order as in the original matrix.

17

18 Array Operations

Chapter 5
Matrix Operations

The operations described in this chapter can be performed only with matrices and vectors
(arrays having either one or two dimensions). Other restrictions on the dimensions apply to
each of the operations, as stated below.

Matrix Multiplication

Matrices can be multiplied only when the number of columns in the first matrix equals the
number of rows in the second matrix; the resulting matrix must have the same number of rows
as the first matrix and the same number of columns as the second matrix.

Syntax:

The matrix to the left of the assignment arrow must not appear to the right of the assignment
arrow, (i.e., you cannot say it 5T #),

For a matrix, the left subscript represents the row and the right subscript represents the
column. Thus, in a matrix A, A[4,2] represents the element in the 4th row, 2nd column.

In matrix multiplication, for it # % & - I the elements in each column of Matrix B are
multiplied by the corresponding elements in each row of Matrix A. The row products are then
added together and stored in the appropriate row and column of Matrix C.

19

20 Matrix Operations

Mathematically, the product of two matrices, 1%

i, is represented as follows:

N

C(IK) = E A(ILJ)+«B(J,K)

J =1

Where N is the number of columns in Matrix A, and rows in Matrix B.

In Summary

For any matrix multiplication, 1. =1, if the dimensions of A are [M,N] and the dimen-
sions of B are [N,P], the result is a matrix of dimensions [M,P]. For example, a 5 by 4 matrix
multiplied by a 4 by 1 matrix results in a 5 by 1 matrix. The value of N, above, must be the same

in the two matrices. Also, the result of ot |

. is not necessarily the same as %

Following are examples of matrix multiplication:

Below is a table of ticket sales for four bus routes, and a table of ticket prices for the three
kinds of tickets. Matrix multiplication can give you the totat sales for each route.

Table A. Ticket Sales By Route Table B. Ticket Prices
Single Round
Route | Trip Trip Commuter Price
1 143 200 19 Single Trip .25
2 49 97 24 Round Trip .45
3 314 77 22 Commuter 18.00
4 82 65 16

~-Computer -

. Museum . Matrix Operations

Here are the instructions to enter the values into Arrays A and B, respectively, and perform the

matrix multiplication:

Without Advanced
Programming ROM

g dim AL4:3]
EL21.C[4]
SN
ert RLIsdld
me [I+121)s4d
12I8if [0+

!

-~

.

With Advanced
Programming ROM

dim ALdy 3]s

s [3) 0041

for I=1 to 4:
ar J=1 to 3
ent ALI»J1}
*1 Jinext 1

By e o
4w O mw

L RO L s S
m

: 21 ent BL1YsB[Z2]
41 ent BILI1sELZ] B3] :

BL3] 41 mat RB*CYfad
] mat ABCFfud 2iaprt o

J
1+Ji<diinpe -1
3

2iorprt C

After A and B have been multiplied, Matrix C contains the total sales, in dollars, for each
route: C[1] contains sales for route 1, C[2] contains sales for route 2, and so forth.

467.75
487.90
509.15
337.75

Matrix C

(.25+143+.45+200+18.00+19)
(.25*49+.45*97+18.00+24)
(.25*314+.45*77+18.00+22)
(.25+82+.45+65+18.00+16)

In the preceding example, A, a 4 by 3 matrix, is multiplied by B, a 3 by 1 matrix, giving C, a 4

by 1 matrix.

Suppose a price change is being
prices:

considered and matrix B contains two columns of ticket

Old Price New Price

Single Trip
Round Trip
Commuter

.25 .30
.45 .50
18.00 17.00

21

22 Matrix Operations

Then A, a 4 by 3 matrix, muitiplied by B, a 3 by 2 matrix, results in C, a 4 by 2 matrix:

467.75 465.90
487.90 471.20
509.15 506.70
337.75 329.10

Here are the instructions to perform this:

Without Advanced With Advanced
Programming ROM Programming ROM
B: dim Al4:31s B: dim AL4:31,
BL3s2]aC0402] BEL3s21:C04,21
1: 141+] 1: for I=1 to 4}
2t oent ALI»dls For J=1 ta 2
dwmp [I+1+11x4 2t ent ALINJI3
e 1alsif LJ4 next Jinext I
1+d)<dvime ~1 2 far I=1 to 33
: 131+ _ for J=1 to 2
St ent BLIsJI13 4t ent BLI,JT3
dmp [T+1+T153 next Jinegxt I
gi 1313if [+ 5: mat AB+CH fuxd
1241 <33 dwp —1 “yaprt C
7 oot AB*CSfxd

2iaprt L

The Identity Matrix

The identity matrix is a square matrix containing zeros with the principal diagonal containing
all ones. Use the identity (idn) statement to define a square matrix as an identity matrix.

Syntax: + ciarray variable [: array variable ..

i results in:

If matrix B has been dimensioned [3,3], the statement i :i

100
010
001

Matrix Operations

In order to create an identity matrix using the idn statement the matrix must have been
previously dimensioned as a square matrix.

The identity matrix is defined as the matrix which, when multiplied* by any matrix A, results in
matrix A.

Transposition of Matrices

The transposition (trn) of a matrix causes the rows in the matrix to become columns, and the
columns to become rows:

Syntax: % vy array variable -+ array variable
The same matrix cannot appear on both sides of the assignment arrow. The dimensions of the
transposed matrix must be equal to the reverse of the dimensions of the original matrix; that is,
if the dimensions of B are [P,Q], transposition of Matrix B results in a matrix of dimensions

[(Q,P].

The transposition of:

results in:

Row 1 in the first matrix becomes column 1 in the second. Then row 2 becomes column 2 and
SO on.

*That is, matrix multiplication, not array multiplication.

23

24 Matrix Operations

Matrix Inversion and Determinant

The inverse (if it exists) of a matrix can be computed and stored in another matrix and the
determinant of the matrix can be assigned to a simple variable using the matrix inversion (inv)
statement.

Syntax: i riidarray variable -+ array variable [= simple variable]

The determinant is stored in the simple variable if it is specified. If no simple variable is
specified for the determinant value, the determinant is computed but the value is not stored.
Both matrices must have been previously dimensioned as square matrices of the same size. If
desired, the result can be stored in the original matrix variable. {e.g., i io#L).

If an inversion is attempted and the 9825A computes a determinant value of exactly zero,
indicating that an inverse cannot be computed, the calculator fills the result matrix with all
zeros, sets flag 15, and gives error M5. If flag 14 is 1 (set) when this occurs, the error is not
given, and operation continues.

In performing the inversions and calculating the determinant, the 9825A uses an internal work
area of 12 N+4 bytes (for an N by N matrix). Thus, the maximum size of matrix which can be
inverted is:

Memory Size Dimensions
Standard 6844 bytes 28 x 28
Opt. 1 15036 bytes 42 x 42
Opt. 2 23228 bytes 53 x 53

Opt. 3 31420 bytes 61 x 61

Computer

Matrix Operations 25

The inverse of a matrix A is a matrix B which, when multiplied by matrix A, produces an identity

matrix. Only square matrices can be inverted. The determinant of an N by N matrix A is defined
mathematically as:

E + A[1,1] A[2,J] A[3.K] A[N.R]

where the second subscripts [, J, K, ...,R form a permutation of the integers 1 to N, and the
sign of each product depends on the order of the permutation. If the determinant of a square
matrix of simultaneous linear equations is not zero, the system of equations has a solution; that
is, the inverse of the matrix can be obtained. However, if the determinant is zero, the system
has no solution, the inverse does not exist; and the matrix is termed "singular’.

The Matrix ROM employs a modified Gauss-Jordan reduction technique using the maximum
pivot strategy. This method is superior to the standard Gauss-Jordan elimination or the
diagonal pivot strategy since it will successfully invert all but singular or very near-singular

matrices. Also, by using maximum elements as the pivots, the accuracy of the results is
maximized.

Matrix inversion can be used in solving sets of simultaneous linear equations. For example:

3X + 4Y = 47
2X +2Y = 28
(n the notation of matrix algebra:
3 4 X 47

2 2 Y 28

Multiplying both sides of the equation by the inverse of A (denoted by [A “]) gives:

{ -] H

This can be accomplished by creating matrices A, B, and C, followed by:

26 Matrix Operations

The printer output is: ¢

Thus the solution to the problem is:

L Yy

&5

ey Rion)

Matrix Operations 27

Notes

28 Matrix Operations

Notes

= Computer

o Useig

Appendix 29

Array Operations

Dimension Dimensions arrays as specified, reserving

memory as required. Arrays may have any
number of dimensions.

Redimension Redimensions previously dimensioned arrays.

The number of dimensions must be the same
as the original number. The new size cannot
exceed the original size.

Array print Prints entire arrays on the 9825A Printer. Ar-
P rays are printed column by column.

Array arithmetic and Performs the indicated operation using cor-
assignment responding elements from each of the arrays

specified. Arrays must have identical dimen-
sions. The same array may appear on both
sides of —.

Scalar multiplication Multiplies each element of an array by a scalar.

R E The scalar may be a number or a simple vari-
able. The same array may appear on both
sides of —.

Initialization of Arrays Initializes arrays to the values specified. Val-

ues may be numbers or simple variables. If a

value is not specified, zero is used.

30 Appendix

Matrix inversion and
determinant

Matrix multiplication

Matrix transposition

Identity matrices

Matrix Operations

Inverts matrix A and puts the inverse into ma-
trix B. The determinant of matrix A is put into
the simple variable D, if specified. Matrices
must be the same size and square. The same
matrix may appear on both sides of —.

if the dimensions of A are [M,N], then the di-
mensions of B and C must be [N,P] and [M,P],
respectively. The same matrix cannot appear
on both sides of —.

The dimensions of B must be the reverse of the
dimensions of A. The same matrix cannot ap-
pear on both sides of —.

Matrices listed become identity matrices. Mat-
rices must be square.

Appendix 31

Subject Index

Addition(ara)........................ 11 Matrix. ... 3
Array .o 3 operations 6,19
bounds ...l 4 Multiplication:
elements 4 array(ara) ... 12
workingsize 4 matrix (mat) 19
Array Arithmetic Statement (ara) 11 scalar (smpy) ... 13
Array Print(aprt) 8
Advanced Programming ROM 7,21,22 O
b Operationscciiin. 6
Array ..o 11,28
Bounds, array 4 Matrix, 19,29
Brackets L 2 OutputfromArrays 8,10
Copying Arrays (ara) 13 Printing Arrays (aprt) 8
Description, ROM 1 Range 5
Determinant 24 Read Statement (red) 9
Dimension Statement (dim) 4 Redimension Statement (rdm)......... 16
bounds 4
Division(ara) 12
DotMatrix 2 S
Scalar Multiplication (smpy) 13
e Subtraction(ara) 12
Syntax Conventions 2
Error Messages 2,Inside Back Cover
g Transposition {trn) 23
General IOROM 9
: V
Vector ... 3
Identity Matrix (idn) 22
Inputto Arrays 7,10
Inspection 1 W
Installation 1

INVEISION © e o4 Write Statement (wrt) 10

32 Appendix

Matrix ROM Error Messages

= 1 Syntax errofr.

Improper dimensions. Array dimensions are incompatible with each other or
are incompatible with the stated operation.

Improper redimension specification: New number of dimensions must equal
original number. New size cannot exceed original size.

1™ Operation not allowed. An array which appears to the left of — cannot also
appear on the right.

Matrix cannot be inverted. Computed determinant equals 0.

*These errors give a cursor when is pressed, showing the location of the error.

