N EdE AadE S e e e -

ENTENTRNTESTEN RS RS TR RS TER S . -1 =~] ' 1 'Y
s (AN e) @S e G
D () (2D (50 G50 G2 (2 (el L) e L) L2 & e
& L)) O e L) G \ ERTENTENY - |

:) () T RN

Advanced Programming

e Computer

seMuseum
-

HP 9825A Calculator

Hewlett-Packard Calculator Products Division
P.O. Box 301, Loveland, Colorado 80537, Tel. (303) 667-5000
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1976

Table of Contents

Chapter 1: General Information
Description
Inspection and Installation
Syntax
Error Messages
Requirements

Chapter 2: For/Next Loops

Description

Chapter 3;: Subprograms
Subroutines
Passing Parameters
Functions
P-numbers

Chapter 4: Split and Integer Precision Storage Functions

Split Precision Storage
Integer Precision Storage
Summary

Chapter 5: Cross Reference Statement

Description

Appendix

Advanced Programming Syntax
Sales and Service Offices
Subject Index

Error Messages can be found on the inside back cover.

W WP D =

13
15
16
19

25
31
35

37

40
42

44

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

e

0
S
.

@

-
-

-

Chapter 1 .
General Information

Description

The Advanced Programming ROM (Read Only Memory), when in the HP 9825A Calculator,
enables you to—

e Use for/next loops to repeat sections of a program.

Pass parameters to subprograms including subroutines and functions.
Store numbers in split and integer precision formats to conserve memory.

Generate a list of the variables used in a program and the line numbers in which they
occur using the cross reference statement.

The Advanced Programming (AP) ROM uses four bytes of user RWM (Read Write Memory)
when installed in the HP 9825A.

The AP ROM is packaged with another ROM in a single ROM card. The Advanced Program-

ming Manual (P/N 09825-90021) is supplied with the AP ROM. This manua! describes AP
operations only.

2 General Information

Inspection and Installation

Refer to the HP 9825A System Test Booklet for the procedure to verify the operation of your
ROM.,

Your AP ROM can be plugged into any one of the four ROM slots located on the bottom front of
the calculator, as shown below.

Installing the ROM

Toinstall your ROM card, first turn off the calculator. With the label right side up, slide the ROM
through the ROM slot door. Press it in until the front of the ROM card is even with the front of
the calculator. Then turn your calculator on.

Syntax

The following conventions apply to the syntax for the statements and functions found in this
manual.

. - All items in dot matrix are required, exactly as shown.

[] - All items in square brackets are optional, unless the brackets are
in dot matrix.

See the Appendix for a list of the syntax of all AP statements and functions.

General Information

Error Messages

The AP ROM adds error messages A0 through A9 and special meanings to five mainframe

errors of the calculator error message list. Explanations of these errors can be found on the
inside back cover of this manual.

Requirements

Before using this manual you should be familiar with the calculator and the HPL programming
language described in the HP 9825A Operating and Programming Manual.

omputer

Museum

4 General Information

Chapter
For/Next Loops

Description

% statements enable you to repeat a group of statements within a program
as many times as necessary.

 simple variable = initial value final value [i:+ step size value]

same simple variable

The + and

=1 statements, including the statements between them, form a loop within
a program. The + =+ statement defines the beginning of the loop and the number of times the
loop is to be performed. The variable that follows the +

statements can be
any one of the simple variables A through Z.

o
- %:
e
. »:ggﬁ%‘%s&w
o

The initial, final and step size values can be expressions. If the step size value is not specified,
the default value is 1.

.
Here's an example of a for/next loop—

o

.

e |
-
-

S
o

=

L . e
B e
i &

.

6 For/Next Loops

This for/next loop would be executed five times - when | = 1,2,3,4 and 5. Each time the
r w1 statement is executed, the value of | is incremented by one, the default step size value.
When the value of | exceeds the final value (when | =
program continues at the statement following the

6)*, the loop is finished and the
i. statement.

The advantages of using for/next looping instead of an i ¥ statement are shown in the follow-
ing examples where the numbers 1 through 10000 are displayed in succession.

1 ¥ statement

for/next loop

;
P I I

The program that uses the for/next loop is easier to key in, takes less calculator memory (40
bytes) and is executed faster (25 seconds). With the i ¢
bytes of memory and is executed in 32 seconds.

statement, the program uses 48

The initiat value of the variable assigned in the for/next loop does not have to be 1. The
following example totals the integers, 90 through 100, and prints the total (1045).

*This is an often overlooked aspect of for/next loops and is covered on page 7.

k1 H+H Toatal= 45,88
l: §for =98 1o
188
2: I+A+A
3 omewxt I
4: mrt "Total="
A
5Eoend

For/Next Loops 7

P-Computer
SeMuseum

The next example illustrates that variables can be used in the # «:+ statement. The variables B
and C are assigned values in the enter statementin line 1 and are used in the ¥ :+ statement
in line 3.
B: B+H BE= 1.
1: ent B L= a
2t prt "B=":H Tatal= =
1 : - " f I:.
S: for I=B otao i B
4: I+A+A E= =
St opext] L= i
£2 prt "Total=" Total= ca
A
¥i et

fB = 1andC = 3, the total of 1,2 and 3 (6) is printed. IfB = 5.5and C = 8.5, the total of
5.5, 6.5, 7.5 and 8.5 (28) is printed. Iin either case, the value of | is incremented by one after
each loop. If the value of B is greater than the value of C, the loop is not executed and the
program continues at the first statement following :
ment in line 6.

- 1, in this example the print state-

The following example illustrates an often overiooked aspect of for/next looping. After each
loop is performed, the 4.7 statement increments the value of | by 1. Then the incremented
value is compared with the final value. If the incremented value is not greater than the final
value, the loop is repeated. When the incremented value is greater than the finat value (when |
= 11) the loop is no longer repeated and the statement following the % statement
(s 520) is executed.” Although the final loop is performed when | = 10, the last incremented
value for I is 11 and the calculator retains this as the value of I.

B: for I=1 1o i8 1.
l: =rt I =z
21 next lizec 3.
3 oert I !
4: end b

£

VRN R

e
-
!

*Statements following a ™
precedes a i g

. statement are not
=%, statement on the same line, the

uted until the entire loop is completed. If a =

: statement
or “#% 1 isn’t executed until the loop is completed.

8 For/Next Loops

The next program shows how the for/next loop can be used to assign values to arrays. In this
example, the array variables A[1] through A[4] are assigned values.

For/next loops can be nested or located inside one another up to a depth of 26 (one for each
simple variable A through Z). However, one loop cannot overlap another. Before running the
following programs, set the print all mode by pressing (=~J.

Correct Nesting

W8 Tl e

r.
L

n

P

e I

) el

1 40

For/Next Loops 9

Incorrect Nesting

Lo 03 [— O

In the incorrect nesting example, the | loop is activated first and then the J loop is activated.
The J loop is cancelled at the same time that :
loop”. When the | loop is completed and i

. 1 is executed because it's an “inner
1is finally accessed, F
displayed. This is because the J loop was cancelled and was not reactivated after the last |
loop.

is

For/next loops can be written in more than one line, as previously shown, or all in one line, like
this—

OOHE

When line 0 is executed, the numbers 1 through 5 are printed as | is mcremented by one.

When the final value of | is reached, the last statement in the line is executed and i
printed.

If is pressed while the program is running, the program halts when the current line is
completely executed. If a for/next loop is completely contained in one line and is pressed,
the calculator will not stop until the loop is completed. Only can stop the execution of the
line containing the loop, before its normal termination. This can be avoided by putting the
“ o and rrso o statements on separate lines.

10 For/Next Loops

Each + 2+ statement can have only one associated i i % statement. When a + ::+ state-
ment is executed, and there is already an active loop using the same simple variable, then the
previous loop is cancelled and the new loop becomes active. In the following example, the
first | loop (in line 0} is activated and then cancelled when the second | loop is activated in line
2. When line 4 is executed, control returns to the latest | loop (in line 2).

[

-
]
i

I P N
T

v

s

The optional step size value enables you to specify a step size other than 1, the default step
size value. For example—

b
1 omry 1
2 onext]
By adding the optional step size value to the + ::+ statement, the simple variable will be

incremented by that value each time the + i statement is executed. In the previous exam-
ple, the loop is executed six times — when | = 0,10,20,30,40 and 50. As soon as the
incremented value is greater than the final value, the loop is exited.

For/next loops can be decremented by using negative values for the optional step size value.

For example—
b for =38 1o)
g by —-iH 4
18 mri 1 S
2 next | 26

N
o)

—
o

For/Next Loops

The step size value does not have to be an integer; fractional numbers are allowed. For
example—

The initial value, the final value and the step size value can be variables or expressions. For
example—

St for I=RH to B
by [B-R) 186
L J
L J
L J
18: next I
Once the + ::+ statement is executed, the initial, final and step size values can be changed

without affecting the number of times the loop is repeated. In the following example, the
variables A and B can be used within the loop for other purposes, but the loop itself is
repeated only six times.

18 +ar 8 1o B
28 A-1

R+

4 et LaFsEo
TR

T I

g1 oend

ot
p—

i

u
e
S o

.
.
e
-
L

11

12 For/Next Loops

Subprograms

A subprogram is a programming routine that enables you to repeat an operation many times
substituting different values each time the subprogram is called. There are two types of
subprograms — subroutines* and functions.

Subroutines

A subroutine subprogram consists of one or more lines of programming which perform a
specific task. A subroutine is accessed using a call (i | i) statement followed by the name of
the subroutine, enclosed in single quotes (apostrophes). As many parameters as needed can
be used, within the limits of line length.

“name * [iparameter 1[= parameter 2 :

The first statement in the subprogram is its name, written as a label (enclosed in guotation
marks and followed by a colon). The last statement executed in a subprogram is always a
return () statement.

*Subroutine subprograms are similar to standard subroutines called by the gosub (statement within a mainframe program. To
eliminate confusing the two, subroutine subprograms will be referred to as subroutine subprograms and standard subroutines will
be referred to as mainframe subroutines in this manual.

14 Subprograms

Here's a program with a mainframe subroutine which prints the sum of two numbers—

B: 1A

e ol i
R ok "

2% end

3 "rmawme N

41 Bre A+E

S ret

A look at both programs shows that the subroutines are identical, but the calling statements
are different. A =z :i: statement, followed by the name of the subroutine enclosed in quotes, is
used to access the mainframe subroutine, while a

~ statement, followed by the name of
the subprogram enclosed in apostrophes, is used to access the subroutine subprogram.

There's another difference between the two. The subroutine subprogram is executed im-
mediately, but execution of the mainframe subroutine is delayed until all other statements in
that line are executed, as shown by the following printouts.

Mainframe Subroutine Subroutine Subprogram

a

OORHE

u
e
1.
j—

T, aE OOHE

is printed before the routine is accessed and executed
: statement.

With the mainframe subroutine, i.
and program control returns to the line following the one containing the -

The subroutine subprogram is accessed and executed immediately so the sum is printed first.

Program control then returns to the statement following the call statement and
printed.

Subprograms

In addition to the immediate execute feature, the call statement can pass parameters to the
subroutine. In a subprogram, parameters are represented by p-numbers (parameter num-
bers). This enables you to call the subprogram repeatedly using different values for the
parameters each time. Here’s an example of this based on the previous two programs—

A 1 clli s B
i: °
s .
2 snd .
= RS "rwmrt \ . " o
pl+ed - o s FiTRe
43 ret

Passing Parameters

Before covering functions, here’s some general information about parameters. A detailed
explanation of parameters {p-numbers) is found on page 19.

Parameters that follow the call statement are always enclosed in parentheses and as many
parameters as the length of the line allows can be used. These parameters can be constants,
simple variables, expressions, r-variables or single elements of an array; entire arrays,
strings*, string arrays* and text cannot be used as parameters. In the preceding example, p1
and p2 in line 3 correspond to parameters A and B.

Parameters can be passed back from subroutines to main programs by assigning a value to a

p-number which corresponds to a variable. For example, lines 1 and 3 in the previous program
can be changed to—

18 oll Frome? (Hs
Bsliipri L

®

'y

.

EE- figme " Pald
FoFRD

Subprograms can be nested (called by another subprogram) as deeply as the calculator
memory allows. Each call statement requires a minimum of 26 bytes of memory when exe-
cuted. If parameters are passed, additional memory is required.

*The String Variables ROM is required to use strings or string arrays in a program.

15

16 Subprograms

Functions

A function subprogram consists of one or more lines of programming which perform a specific
task. A function is accessed using the name of the function enclosed in single quotes (apos-

trophes) within an expression or statement in the program. As many parameters as needed
can be used, within the limits of line length.

“name’ [iparameter 1[: parameter 2:...]3]

it parameter

The first statement in the function itself is its name, written as a label (enclosed in quotation
marks and followed by a colon). The last statement executed in a function is always i i %
followed by a return parameter. The return parameter, like a parameter that follows call state-
ments, can be a simple variable, a constant, an expression, an r-variable or an element of an
array. In addition, a return parameter can be an array, a string*, a string array* or text.

Here's an example of a function based on the previous programs—

? DOHE

When the program is run, the function is accessed as line 1 is executed. The resuit of the
function is automatically returned and substituted for the name of the function in the statement
(g% F = ©). This causes the value of A + B to be printed.

Like a subroutine, a function is executed immediately and program control returns to the
function (7 &

=). A function subprogram can be used in a program wherever an expres-
sion can be used.

*The String Variables ROM is required to use strings or string arrays in a program.

Subprograms

A parameter which follows a function call can be a simple variable, a constant, an r-variable,
an expression or a single element of an array. (Entire arrays, strings*, string arrays* and text
can't be parameters in a function call.) Parameters following a function call are always en-
closed in parentheses and as many parameters as the length of the line allows can be used.

Here's an example of a function that uses parameters—

e

%3
i,
ai wn

S
ws we we PP

.

It the return parameter is omitted from a function subprogram, : <t results; if a return

parameter follows

-iin a subroutine subprogram or a mainframe subroutine, it's ignored
and no error is displayed.

Functions, like subroutines, can be nested as deeply as the calculator memory allows. Each

function call requires a minimum of 26 bytes of memory when executed. If parameters are
passed, additional memory is required.

*The String Variables ROM is required to use strings or string arrays in a program.,

17

18 Subprograms

A function subprogram can be used within another subprogram or within an expression. When

the function call is placed in the expression, the value returned by the function is used directly
in the expression.

Here’s an example of a function subprogram that computes the factorial of a number (lines 7
and 8) and uses it in the calculation in line 4 to find the number of combinations of N items
taken R at a time.

....

R

:
-

,_
LE R AR 1]

']
- =
T T

F T Y T

- i
"
P SRl e
-
-
.

....
i

-
car e
T

e
il

n

4. bt um BN nE ue
TR

b = 1
kN1
o rv— TR ram
. B
I3 om

T

e 4

1
T e R

- e

9:

(113
—+
1

For 12 items taken 3 at a time the number of combinations is—

Combinations of

Subprograms 19

P-Numbers

A subprogram (subroutine or function) enables you to repeat an operation using different
values each time the subprogram is called. This is accomplished by following the subprogram
call with a list of parameters. When these parameters are passed to the subprogram, a
parameter number or p-number is assigned to each parameter in the list. The p-numbers are
assigned to the parameters consecutively, starting with p1. The subprogram operation is then
performed using the values passed by the subprogram call.

In addition to passed parameters, there are local p-numbers. When allocated, a local
p-number is initialized to zero. Local p-numbers are used in a subprogram as needed. Here's
an example that uses passed parameters and a local p-number.

Bi ent Hs«E

17 prt *rame Ha
Bl

2 e

When this program is run, p1 and p2 correspond to the passed parameters A and B, but p6 is
alocal p-number which, when allocated, is initialized to zero. When the subprogram operation
is performed using p1 and p2, the result of the function (" #:4:) is returned and printed.

P-numbers are assigned to parameters consecutively, starting with p1. If you use a local
p-number that doesn't follow the passed p-numbers in consecutive order, all p-numbers in
between are automatically allocated as local p-numbers. When allocated, these p-numbers
are initialized to zero. In the previous example, p3, p4 and p5 are initialized when p6 is
allocated and require memory space, even though they are not used.

PO is also a local p-number but it isn’t initialized to zero. Instead, when the subprogram is
called, p0 is initialized to the number of parameters passed to the subprogram.

Subprograms can be nested (called by another subprogram) as deeply as the calculator

memory allows. In addition, a function subprogram can be used as the parameter for another
subprogram (function or subroutine) like this—~

°

L

28: oll PEUBYICF
UH* TRSED)

®

®

In the line above, A and B are parameters for the function * “ and the result of the

function is the parameter for the subroutine * *

20

Subprograms

When subprograms having parameters are nested, each set of p-numbers is independent of
the p-numbers in the next subprogram or level, even though the same p-numbers may be
used in each. To illustrate independent p-numbers in nested subprograms, the following
example converts a Fahrenheit temperature to Celsius and then outputs both temperatures.
Notice that each subprogram uses p1 without affecting the value of the other.

When the trace mode is established (% . : &) to monitor the activity of the running pro-
gram, value assignments for each p-number used are not printed as they are for each simple
variable. Instead, as in line 7 of the following traced printout, all p-numbers are referenced by

« = without indicating the specific p-number.

: e
L

il
]

30 0

LA A I S

Subprograms

If a p-number is used as a parameter in a nested subprogram call, there may be some
interaction between the p-numbers used in each subprogram. The following program uses
nested subprogram calls with parameters to illustrate what happens to p-numbers, variables,

expressions and constants in a parameter list when their values are changed in a subpro-
gram.

.,._
oy
a
-t
[
-
L2

i fud @3Z+R
1: cll PSubk-1710H
s 52138 r-Computer
o= N o~
b= o hac

-

38 8 W R

The main program (lines O through 2) contains the call for =:i:k:- 1 with three parameters — A,
5and 1xA. =:uikz~ 1 (lines 3 through 6) calls i::ii: = which has five parameters — A, p1, p0,
5 and 1XA. =i (lines 7 through 10) triples the value of each parameter and then prints
the values. Program control returns to line 4 (= 1) and the current value of each parame-

ter is doubled and printed.

21

Subprograms

Here's a chart that shows the values of the parameters during program execution. The shaded
chart below duplicates the chart at the top and shows values before *::.

- is called.

Sub-1
Passed Initial | Corresponding
Parameters | Values p-numbers
A 2 p1
5 5 p2
1XA 2 pP3
Sub-2
Passed Initial | Corresponding | Values after | Values after "Since A and p1 (in
Parameters | Values p-numbers line 8 line 9 Sub-1) and p1 and
p2 (in Sub-2) are all
A 2 p1 6 8% different names for
p1 2 p2 6* 18 the same value,
pO 3 p3 3 9 when p1 (in Sub-2)
5 5 p4 5 15 is tripled in line 8, A
1XA l 2 p5 2 6 and p1 (in Sub-1)
and p2 (in Sub-2)
Subk-2 ig are also tripled.

The same is true in

— line 9 when p2 is
& tripled.

Results after return from Sub-2

Sub-1 (Results before calling Sub-2)

Values after

Values after

Values after

Sub-2 execution line 4 line 5
18 36 36
5 5 10
2 2 4

¥
e E T

Subprograms 23

When program control returns to the main program, the final value of A is printed.

Main
H=

Although p-numbers can be used only within subprograms, they can be accessed in the live
keyboard mode or by stopping execution during a subprogram. A stop statement can be used
in a subprogram to stop execution of the subprogram. The current value of any of the

p-numbers in the subprogram can be displayed or changed, but new p-numbers can’t be
created.

24 Subprograms

Chapter 4
Split and Integer Precision Storage

With the AP and String Variables ROM installed in your HP 9825A, you can compactly store
values in split and integer precision formats using string variables. in stored form, the values
cannot be used directly in calculations, although they can easily be converted back to
numeric values for that purpose. This enables you to store large amounts of data using half

(split precision) or one fourth (integer precision) as much memory as full precision storage
requires.

Split Precision Storage

Using split precision format, full precision numbers (twelve digit mantissa with sign and expo-
nent) are rounded to six digits and stored in string variables. Only values with exponents in the
range of £63 can be stored using split precision format.

The full to split (% } function stores a value in split precision format by encoding the value
into four characters* (or bytes) which can then be stored in a previously dimensioned string
variable. The location within the string variable (first and last characters) where the encoded
value is to be stored should always be specified to eliminate truncation of the rest of the string.
The value to be stored must be enclosed in parentheses.

expression i

*The first character contains the exponent and sign. Each of the three remaining characters contain two BCD (Binary Coded
Decimal) digits.

26 Split and Integer Precision Storage Functions

To unpack the value, the split to full (=

) function is used. The string variable must also be
enclosed in parentheses.

{string variable :

Here's a program that uses the + + function to store a list of ten random numbers. (The +

function in line 4 generates the random numbers.) The numbers are packed into a string array
consisting of ten strings, each four characters iong.*

DO % B
un mn

T
ST owe s W

s B W]

The rest of the program unpacks the stored values using the = % + function and then prints the
numbers. The values being recovered are six digit numbers because they were rounded
before they were stored using the % = function.

RNy

e
Pl et wn

Now press to start the program and compare these printouts with yours. (Press
before running any of the example programs in this chapter to get printouts identical to those
shown.)

A
L)

e
AN
PR
% NG B)
L]

A
AR

e
L
.

-

o e o
(s X

Aol
u

R
LR AU U

N
L

=
3

*Normally the first and last characters of the string variable being used for storage (i.e., A$[1,1,4]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in this program it's not needed, since each string
is only four characters long.

Split and Integer Precision Storage Functions 27

All values are rounded to six digits before they are stored. If you attempt to store a number with
an exponent outside the range of —63 to +63 (and flag 14 is clear), & &
and flag 15 is set (to 1)*. To avoid this error, you can set flag 14 before the % = function is
executed. This causes a default value to be substituted and stored. If the exponent is less than
—63, the underflow default value is O; if the exponent is greater than +63, the overflow default
value is +9.99999e63. Flag 15 is set regardless of whether flag 14 is set or not.

s displayed

To illustrate what happens when the exponent is less than —63 (underflow), execute these
statements—

And the display shows—

Then set flag 14, and the underflow value is automatically substituted. Key in and execute
these statements—

Which substitutes, stores and displays—

C »

To illustrate what happens when the exponent is greater than +63 (overflow), execute the
following statements—

And the display shows—

(grrar FE \j

*Remember that flag 15 is set when any math error occurs.

28 Split and Integer Precision Storage Functions

By setting flag 14 first, the overflow default value is substituted. Key in and execute these
statements—

Which substitutes, stores and displays—

The next example uses split precision format to store four full precision numbers in each
simple string in a string array. As many numbers as the size of the memory and the size of the
string array allow, can be stored in split precision format. This means that you can use a string
array just like a chart or a table to store data (part numbers, temperatures, etc.) for easy
reference. This program also uses the i
stored.

4 function in line 4, to generate the values to be

Notice that in line 5 three expressions are used to position the value in the appropriate string —
the string used for storage (1), the 'beginning character of the s'tring where the value is to be
stored (4(J-1)+1) and the end character where the value is to be stored (4J).

To recall the numbers from split precision format, add these lines to the program and run it.

bt fed LY
o
Ty

o G P e e et (5
';:[-., HH

— s

Split and Integer Precision Storage Functions

And the printout looks like this—

AR AR
.

AR
-

-
e
=

-
l...l
u

.._..,...
ol 0ol
= "

]
=

o
SR
"

e
T

L

o

Some applications require that data be stored in a linear array. By storing data in a single
string instead of string arrays, numbers can be stored even more compactly by saving the
bytes of memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a simple string using the &
the values to be stored.

-+ function to generate

(R]

Fre

-1
-4

"1 mm

n

o8 B8 feeq BH

T

29

30 Split and Integer Precision Storage Functions

To recover the numbers, add these lines and run the program.

- .
fe For T
byt] -,
e L|
[]
e
- 1
=
b 3

— 1
-
|
un

To get these printouts—

Lot

-
...L‘ i

e, g opn
IRy B A e

. e i,
(A I A e

-
=,
X

.
.

N

5
Lo

A

.,x.,_..
)
o
-
2
Lt

ey
U MUY
s =

o,
I, |

v g ey
oI B AL

Ny B O LU W

Er:‘il ;::
E‘: '_'.I—‘E' E‘I,-;_if_

Split and Integer Precision Storage Functions 31

Integer Precision Storage

Using integer precision format, numbers in the range —32768 to +32767 can be stored as
integers in string variables even more compactly than split precision format.

The full to integer (+ % i) function rounds a value to an integer and stores it in integer precision
format by encoding the value into two characters (or bytes) which can then be stored in a
previously dimensioned string variable. The location within the string variable (first and last
characters) where the encoded value is to be stored should always be specified to eliminate
truncation of the rest of the string. The value to be stored must be enclosed in parentheses.

iexpression }

To recover or unpack the value, the integer to full (i %) function is used. The string variable
must also be enclosed in parentheses.

istring variable
The following program uses the ¢ % i function to store a list of ten random numbers. (The

;i function in line 4 generates the random numbers.) The numbers are packed into a string
array consisting of ten strings, each two characters long.”

2 Ol Pt —
Fa T =

a
=

4T

The rest of the program unpacks the stored values using the i % % function and then prints the
numbers. The values being recovered are integers within the range previously stated because

they were rounded before they were stored.

2]
an
=
-
Al
i

MG
S4: for Jd=1 oto 1H
18: itf {A$LI11+R
et H
11: next
12: end

*Normally the first and last characters of the string variable being used for storage (i.e., A$[1,1,2]) must be specified, otherwise the
remainder of the string may be truncated after the last character stored. However, in the following program it's not needed since
each string is only two characters long.

32 Split and Integer Precision Storage Functions

Now press to start the program and compare the listings.

STORIHNG o RECOVERIMEG

If you attempt to store a number outside the range —32768 to + 32767 using integer precision
format (and flag 14 is clear) =+

- is displayed and flag 15 is set.*

To avoid s+ "o 1

%, you can set flag 14 before the + % i function is executed. This causes
an overflow default value (—32768 or +32767) to be substituted. Flag 15 is set regardless of
whether flag 14 is set or not.

To illustrate overflow, execute these statements—

And the display shows—

L \—}

By setting flag 14 first, the overflow default value is substituted without displaying an error.

Key in and execute these statements—

And the default value is automatically substituted, stored and displayed—

L e \j

*Remember that flag 15 is set when any math error occurs.

Split and Integer Precision Storage Functions

If the value to be packed is between —.5 and .5, then it is rounded to zero as shown here—

L ;

)]

Here's an example that uses integer precision format to store eight values in each simple
string of a string array. As many numbers as the size of the memory and the size of the string
array allow, can be stored in integer precision format. This means that you can use a string
array o store data in a table or chart for easy reference. This program also uses the 1
function to generate the values to be stored.

d: fxd &

18 4 ER R
28 for I=1 to o4
3i For d=1 1o 4
4 280rndtliAf
prt R

S:ofti (RISAELI
2l d-1r+12.43
B P JrEwmi
TEome:

3]
in
T
£
)

Notice that in line 5, three expressions are used to position the value in the appropriate string -
the string being used for storage (1), the beginning character where the value is to be stored
(2(J-1)+1) and the last character where the value is to be stored (2J).

To recall the numbers from integer precision format, add these lines to the program and run it.

A for E=l oto g
16: for L=y 1o 4
11y 11fiRELR
SiL-11+1 2075 +R
L

127 next Lizec

127 next K

14: end

33

34 Split and Integer Precision Storage Functions

And the printout looks like this—

35,55 36
14,79 185
125, 9§ {26
155, 94 126
127.41 127
148,75 149

35, B8 37
222,28 222
218,78 219
= T sd5
=3 . s =% R
igl.is 1al

7E. 7S 73

o e 4
pe i
174,32 174

Some applications require data storage in a string or linear array. By storing data in a single
string instead of string arrays, numbers can be stored even more compactly by saving the
memory that would have been allocated for the setting up (overhead) of a string array.

The following example stores numbers in a single string using the i function to generate
the values to be stored.

3 50

r

wn no anm
A T
Lo R -
- =
% P = T)
it &
3]
e
i
kA
o

=9 53
31 Z8Ernd 11 4R
rrt A
4 i [A1+A$FLIs

9 next 1
B ZRC

To recover the numbers, add these lines and run the program.

d=1 to

ot

=
1 um
e
=

29 by 2

St itf(AFLLs I+
11J1+RAYRrt H

4 next J

16 end

Split and Integer Precision Storage Functions 35

And the printout shows—

169,55 TE. 66
184,73
LT
1720 #F8
185, 34
Lo, 55
P B
187 .41
142,75
SE, B8
22, 2E
- - -
SHE, Sk
e -7 =
.ﬁ"‘i‘"". LY o 2
1d1.1i% t 1
TE,TS S
1 7]
od, =2
215,71
- .
S47 .4
1o T
LiZe =i

Full precision numbers (twelve digit mantissa plus exponent and sign) can be compactly
stored in strings or in string arrays using one of two possible storage formats. Split precision
format packs data in half the memory space that full precision storage requires and integer
precision format packs data in one fourth the memory space that full precision storage re-
quires.

Storing a number using full precision format requires eight bytes of memory. Using split
precision format, only four bytes of memory are required to store a number. This is ac-
complished by limiting the range and precision of the numbers that can be stored. Using split
precision format, the number is rounded to six digits before storage. In addition, the exponent
must be in the range ~63 to +63. If it’s not in that range, then flag 15 is set (to 1) and & v o v
Hiiis displayed (if + 1@ i+ is clear). To avoid =+ ¢ 5, you can set flag 14 before
executing the + % = function, causing a default value to be substituted and stored. For an
overflow error, the default value is £9.99999%e63; if it's an underfiow error the default value is 0.

36 Split and Integer Precision Storage Functions

The following program illustrates how the :i i function internally rounds the value to be
packed to six digits before storage in split precision format.

Bi dim AFL[4]
1i for I=1 to 18
20 rmdill =R
3t ftz (A1+AE
41 1if drrdifa
izt f (AF1iRprt
e "Oifferent "z
= HLL 0O

trgst I
prt "ALL OK"i

rE 2
e

w L 0]

T
= ifi == m=a |

-4

Using integer precision format, only two bytes of memory are required to store a number.
Integers in the range —32768 to +32767 can be stored using integer precision format. if you
attempt to store a number that’s outside of this range using integer precision format, flag 15 is
set and = v Fiis displayed (if ¢ 1= 1< is clear). To avoid & ¢ s+ , you can set

flag 14 before executing the + % i function, causing an overflow default value (—32768 or
+32767) to be substituted and stored. If the value to be packed is between —.5 and .5, then it
is rounded to zero.

This program shows how the i function internally rounds the value to be packed to the
nearest integer value before storage in integer precision format.

5 ig (2]

1 I=1 1o 1@

o “rad il A

- b1 PRI RE

41 Foprnd e

GigityiAEaiprt

Hi Different s ALL OF
st

2t omext I

g omrt CALL ORT:

A =Y A

Yioend

When storing numbers in a string variable using the # %« or ¢ % i functions, the locations

where storage begins and ends within the string variable must be specified; otherwise the
string may be truncated after the last character stored.

Chapter 5
Cross Reference Statement

Description

The cross reference (") statement prints each variable used in your program followed by
the line numbers in which it appears.

For programs with many variables, the : statement aids in keeping track of these vari-
ables and their locations in your program. The " statement can be executed from the
keyboard, in the live keyboard mode or within a program. The variables used in the program —
simple, numeric array, string and r-variables — are printed, in that order. Within each type, the
variables are arranged alphabetically.

When ¥ is executed, it searches the program once for each of the 79 possible variables
(26 simple, 26 numeric array, 26 string and r-variables*). The " statement does not list
references to p-numbers (see Chapter 3) or variables used in Matrix ROM statements (see the
Matrix ROM Programming Manual).

*All r-variables are considered as one for this statement and they appear together at the end of the cross reference listing.

38 Cross Reference Statement

The following program finds prime numbers and their logarithms using simple, numeric array,
string and r-variables.

~“a ME an w“n

n
-

Ly = =X

T BR BN peq WE R

El

3

.,_
%,
~r

IR T U
-
T
et
1T,

[nx]

IR

—_
e
I,

—
bt

12

13

14 or J=1 ta

12 if {itfifFs
(J=11+1114=31
2irer 1

18 if HEmodrpi=g:
Fet ©

178 mext Jdirsi 1

") function and the concatenation (i) operator.

*The String ROM is required to run this program, since it uses the string

Cross Reference Statement 39

By executing the =14 statement, these variables are listed—
1 1 4 4
i 14
J 14 13 1
A 1 3 b
£ i ii i
1l
Li#14 £ E
0 o i v
Ff G] i3

-
e
.
T
AN,
-
e

H
i
]

40

Appendix

AP Syntax
Syntax Conventions

The following conventions apply to the syntax for the statements and functions found below.

a7 1w - Allitems in dot matrix are required, exactly as shown.

[] - All items in square brackets are optional, unless the brackets are
in dot matrix.

For/Next Loops

r:+ simple variable = initial value % ¢ final value [+ step size value]
[]

riit st same simple variable

Subprograms
Subroutines

=11 "name *[iparameter ¢ : parameterz:...] i]

Functions

“name ¥ [iparameter 1[: parameterz:...] 1]

5% parameter

Split and Integer Precision Storage Functions

Split Precision Storage

"o fexpression i

- istring variable

Integer Precision Storage

lexpression

" istring variable :

Cross Reference Statement

Appendix 41

44 Appendix

Subject Index

d

accessing p-numbers 23

b

inw[stepsizevalue] 10

13

37
decremental for/next looping 10
default step sizevalue 5
defaultvalues 27,32
cirmcifunction Lo 36
Error Messages back cover
flag14 27,32
flag1s ... 27,32
For/NextLoops 5
vy ostatement Lo L 5

31

25

[

ihffunction. ... 31
Inspection and Installation of ROM 2
Integer Precision Storage 31
local parameters 19

n

nesting for/nextloops 8
nesting subprograms............... 15,18
st ostatement Lo 5

overflow 27,32
Passing Parameters 15,19
PO . 19
p-numbers 15,19
morrwifunction Lo 36
rangeofvalues 25,31
et ostatement L 13
return parameters 16,17
Sales and Service Offices 42
Split Precision Storage 25
stepsizevalue 10
=i function ... 26
Subprograms 13
Subroutines 13
Syntax Summary 40
tracemode 20
underflow 27,32

ard statement ... 37

* Wrong number of parameters in + .z, -

Error Messages

Relational operator in # :: + statement not allowed. No closing apostrophe in
subprogram name.

1. statement encountered without a previous o " statement.
Non-numeric parameter passed as a p-number.

No return parameter for a function subprogram.

improper p-number reference since no functions or subroutines are running.

Attempt to allocate local p-numbers from the keyboard.

41 or it ¥ function. Parameter

for =t

¢ or i % ¥ function must be a string (not a numeric). Parameter for =% ¢
or i % ¢ function contains too few characters.

Overfiow or underflow in i % = function or overflow in + % i function.

String Variables ROM missing for =% ¥ or i %+ functions.

These mainframe errors have additional meanings when the AP ROM is installed.

Attempt to execute a =% statement from keyboard while for/next loop with
same variable is executed in program or from program while for/next loop with
same variable is executed from keyboard. Attempt to call a function or sub-

routine from keyboard.
Negative p-number reference.

Non-numeric value in ¥ ::: statement. Non-numeric parameter in + % i or
% 1 function.

Memory overflow during function or subroutine call.

Memory overflow while using { ::+ statement or while allocating local
p-numbers.

