
 MC68705U3 Bootstrap ROM

;This is a listing of the Bootstrap ROM which resides in Motorola's MC68705U3 single chip
;micros. Its sole purpose is to program its own EPROM by copying the data from an external
;EPROM (2732) which has been programmed with an exact duplicate of the required information
;(refer to the MC68705U3/R3 data sheets for more info).
;I obtained the listing by dumping the contents of the ROM and disassembling it.
;I believe the ROM in the MC68705R3 is identical but I haven't checked it however ROM size
;is 120 bytes in both devices.
;Peter Ihnat, Oct 2010. pihnat@uow.edu.au

;In Motorola's suggested Programmer, PortA is used to read data from the external EPROM.
;The 4 lower bits of PortB are used as outputs with the following functions:
; PB4 = reset the 4040 counter (1 = reset)
; PB3 = clock the 4040 counter (clks on falling edge)
; PB2 = 'verified' LED (0 = ON)
; PB1 = 'programmed' LED (0 = ON)
; PB0 = 0 applies +21V to the micro's Vpp input (pin 7). PB0 = 1 applies +5V.
; +21V is used when programming and +5V is used when verifying.

;In this listing the code appears twice. That's because even though the Bootstrap ROM is the
;120 bytes starting from address 0F80H the first thing it does when it runs is to copy itself
;into RAM. This is so it can modify itself during execution.
;The first listing is the Bootstrap ROM exactly as it appears in the 68705U3 memory map.
;I've disassembled the first 14 bytes which is the part that does the block move.
;The second listing is the Bootstrap ROM located in its new position in RAM.
;This is fully disassembled.

;Basic operation is as follows:
;When powered up, 12V on the TIMER input (pin 8) forces the micro to fetch the vector at
;0FF6H & 0FF7H and to start executing the code from that address (0F80H).
;First it copies itself to RAM then continues executing from address 0019H.
;It sets up PortB & removes the reset to the 4040 counter. It pulses the counter 128 times
;to skip the first 128 bytes (remember, the internal EPROM starts at 0080H).
;It then starts the programming loop:
; read the external EPROM, clock the 4040 counter,
; increment the address pointer to the internal EPROM, store the data at that address,
; apply the programming voltage for the correct length of time
;It loops until the whole external EPROM has been copied.
;Then it modifies some instructions so that the programming part of the code does a verify
;instead and then lights the 'programmed' LED.
;The same loop runs again until the whole EPROM has been verified.
;The 'verified' LED is lit if there were no errors.

;Notes:
;1. The Bootstrap program changes the address pointer to the internal EPROM by incrementing
; the 2 address bytes in the 'sta 0F07FH' command.
;2. The internal EPROM address in the 'sta 0F07FH' command has an 'F' in the high nibble
; of the high byte (F0). This is ignored by the micro but helps by making it easier to
; skip non-EPROM locations and easier to stop the programming/verify loop.
;3. Any data bytes which are 00H are skipped (ie not programmed).
;4. In the programming and verification loops non-EPROM addresses are skipped ie 0000H to

 007FH inc and 0F3FH to 0FF7H inc.
;5. Just before the program reads the external EPROM it checks the INT input (pin 3). If
; this pin is high, it skips the EPROM read. In Motorola's suggested Programmer the INT
; pin is connected to 0V so it always reads the external EPROM.
;6. The command to turn on the 'verified' LED is 'bclr 2,PortB' and is executed
; at the end of the whole verification procedure. If verification fails at any
; point the Bootstrap program modifies this command to become 'bset 2,PortB'.

; So at the end of the verification procedure when the command executes, the LED is
; lit if the command is 'bclr' and not lit if it's 'bset'.
;7. The Bootstrap code does NOT check to see if the programming voltage (+21V) is correct
; before it runs.
;8. The length of the programming pulse is calculated as follows:
; "clr PCR" at address 0048H applies the programming voltage to the internal EPROM
; "bsr Delay" takes 8 + 12810 cycles
; "bra Loop" takes 4 cycles
; "ldx #0FEH" takes 2 cycles
; "stx PCR" (removes the programming voltage from the internal EPROM) takes 5 cycles
; So the total delay is 12829 cycles.
; With a 1M clock the programming pulse length is 12829 X 4 / 1000000 = 51.3mS

;***
;The Bootstrap ROM starts here (0F80H). The first thing it does is copy itself to RAM.

 ;Contents of address 0FF4H (ie 0F8CH + 68H) are copied to address 0076H (ie 000EH + 68H), etc.
;It finishes with contents of address 0F8DH copied to address 000FH.
;36H is left in the accumulator after the block move.
;***

org 0F80H

0F80 9C rsp
0F81 AE68 ldx #68H
0F83 D60F8C BM0: lda 0F8CH,X
0F86 E70E sta 0EH,X
0F88 5A decx
0F89 26F8 bne BM0
0F8B BC19 jmp 19H ;Continue running the program in RAM from address 0019H.
0F8D 36 db 36H ;This byte is left in the accumulator when the jump occurs.

0F8E 1601
0F90 2FFE
0F92 B600
0F94 1701
0F96 81
0F97 B701
0F99 A61F
0F9B B705
0F9D 1901
0F9F ADED
0FA1 5C
0FA2 2AFB
0FA4 AEFE
0FA6 BF0B
0FA8 3C45
0FAA 2604
0FAC 3C44
0FAE 271C
0FB0 ADDC
0FB2 BE44
0FB4 5C
0FB5 260A
0FB7 BE45
0FB9 A33F
0FBB 2504
0FBD A3F8
0FBF 25E3
0FC1 C7F07F
0FC4 2704
0FC6 3F0B
0FC8 AD1E

0FCA 20D8
0FCC 03010D
0FCF 5F
0FD0 E662
0FD2 E743
0FD4 5C
0FD5 A308
0FD7 26F7
0FD9 5F
0FDA 20BB
0FDC 1501
0FDE 20FE
0FE0 C1F07F
0FE3 262B
0FE5 BC26
0FE7 15
0FE8 5F
0FE9 ADA9
0FEB ADA7
0FED 5A
0FEE 26F9
0FF0 81
0FF1 115E
0FF3 BC26 ;Last instruction of Bootstrap ROM
0FF5 00 ;00H is not used
0FF6 0F80 dw 0F80H ;Vector to the start of Bootstrap ROM. When powered up,

;the 12V applied to the TIMER input makes the micro
;fetch this vector.

;**
;The following code is the Bootstrap ROM after having been copied to RAM.
;Execution continues at address 0019H.
;**

;The following routine reads a byte from the external EPROM & then increments the 4040 counter

0010 1601 GetByte: bset 3,PortB ;Bit 3 is connected to the 4040 CLK input
0012 2FFE bih ClrCLK ;Don't read ext EPROM if INT input is HIGH
0014 B600 lda PortA ;Read ext EPROM value
0016 1701 ClrCLK: bclr 3,PortB ;4040 counter increments on falling edge of CLK
0018 81 rts

;*************************
;Main program starts here
;*************************

0019 B701 START: sta PortB ;36H was left in ACC after block move. Writing this to

;PortB results in the following:
;reset is true, CLK is low, LEDs are off & Vpp = 21V

;After the EPROM is programmed, 3 lines of code are
;overwritten to change the code into a verify procedure and
;then the whole program runs again from here (ie START).
;The value 1BH is left in ACC so when "sta PortB" executes
;the second time it sets PortB as follows:
;reset is true, CLK is low, Prog LED is ON, Ver LED is OFF
;and Vpp = 5V

001B A61F lda #1FH
001D B705 sta DDRB ;Set PortB bits 4 to 0 as outputs
001F 1901 bclr 4,PortB ;Remove RESET to 4040 counter

;Skip the first 128 bytes since the MC68705U3 EPROM starts at 0080H
0021 ADED L0: bsr GetByte
0023 5C incx
0024 2AFB bpl L0

 ;This is the programming/verify loop.
 ;After programming finishes, addresses 0043H to 004AH (8 bytes) are overwritten with the values
 ;from addresses 0062H to 0069H. This changes the loop from a programming routine to a verify one.
 ;I've added the replacement code in the comment part of the 4 affected lines.

0026 AEFE Loop: ldx #0FEH
0028 BF0B stx PCR ;Remove program voltage from EPROM
002A 3C45 inc 45H ;Increment address pointer to internal EPROM. It’s the
 ;“0F07FH” part of the “sta 0F07FH” instruction at
 ;address 0043H.
002C 2604 bne L1
002E 3C44 inc 44H
0030 271C beq L4
0032 ADDC L1: bsr GetByte
0034 BE44 ldx 44H ;The following 8 lines skip non-EPROM addresses.
0036 5C incx ;Skipped addresses are FF3FH to FFF7H inc. Note that
 ;the micro ignores the upper 4 bits of the address so the
 ;addresses actually skipped are 0F3FH to 0FF7H inc.

0037 260A bne L2

0039 BE45 ldx 45H
003B A33F cpx #3FH
003D 2504 bcs L2
003F A3F8 cpx #0F8H
0041 25E3 bcs Loop
0043 C7F07F L2: sta 0F07FH ;Write data to internal EPROM cmp 0F07FH
0046 2704 beq L3 ;Don't program if Byte = 0 bne Change
0048 3F0B clr PCR ;Apply program voltage to EPROM jmp Loop
004A AD1E bsr Delay db 15H
004C 20D8 L3: bra Loop

004E 03010D L4: brclr 1,PortB,FIN ;Check if this is the first or second time around.

;If first time (ie 'programmed' LED is off) then continue
;by changing the code which does the programming to one
;which does a verify.
;If second time then all done so go to FIN.

;Change 8 bytes in the programming loop to make it verify instead
;ie overwrite addresses 0043H to 004AH with the values from addresses 0062H to 0069H

0051 5F clrx
0052 E662 L5: lda 62H,X
0054 E743 sta 43H,X
0056 5C incx
0057 A308 cpx #08H
0059 26F7 bne L5
005B 5F clrx
005C 20BB bra START ;Repeat the whole program to perform verification of data

 ;Come here at the end of everything. If data verified OK then "bclr" switches on the
;'verified' LED. If verification failed, the code at address 0073H changed "bclr" to
;"bset" so the 'verified' LED stays OFF.

005E 1501 FIN: bclr 2,PortB ;Turn on 'ver' LED if op is "bclr" or turn off if "bset".
0060 20FE bra * ;FINISHED so stop here with infinite loop.

;These 3 lines get copied to addresses 0043H - 004AH thereby changing the program
;from a programmer to one that verifies.

0062 C1F07F cmp 0F07FH
0065 262B bne +43
0067 BC26 jmp 0026H
0069 15 db 15H ;This byte (15H) is used to set PortB differently

;The following delay time is:
;4 + 256 * (21 + 21 + 4 + 4) + 6 = 12810 cycles
;With a 1M clock it's 12810 X 4 / 1000000 = 51.24mS

006A 5F Delay: clrx ;4 cycles
006B ADA9 del: bsr ClrCLK ;8 + 7 + 6 = 21 cycles
006D ADA7 bsr ClrCLK ;8 + 7 + 6 = 21 cycles
006F 5A decx ;4 cycles
0070 26F9 bne del ;4 cycles
0072 81 rts ;6 cycles

;This changes the 'bclr' command at address 005EH to a 'bset' since the verify failed.
;To change code for 'bclr 2' (15H) to 'bset 2' (14H) just clear bit 0.

0073 115E Change: bclr 0,FIN
0075 BC26 jmp Loop

