MC68705U3 Bootstrap ROM

;This is a listing of the Bootstrap ROM which resides in Motorola's MC68705U3 single chip ;micros. Its sole purpose is to program its own EPROM by copying the data from an external ;EPROM (2732) which has been programmed with an exact duplicate of the required information ;(refer to the MC68705U3/R3 data sheets for more info). ;I obtained the listing by dumping the contents of the ROM and disassembling it.

;I believe the ROM in the MC68705R3 is identical but I haven't checked it however ROM size

; is 120 bytes in both devices.

;Peter Ihnat, Oct 2010. pihnat@uow.edu.au

;In Motorola's suggested Programmer, PortA is used to read data from the external EPROM. ;The 4 lower bits of PortB are used as outputs with the following functions:

- ; PB4 = reset the 4040 counter (1 = reset)
- ; PB3 = clock the 4040 counter (clks on falling edge)
- ; PB2 = 'verified' LED (0 = ON)
- ; PB1 = 'programmed' LED (0 = ON)
- ; PB0 = 0 applies +21V to the micro's Vpp input (pin 7). PB0 = 1 applies +5V.
- ; +21V is used when programming and +5V is used when verifying.

;In this listing the code appears twice. That's because even though the Bootstrap ROM is the ;120 bytes starting from address 0F80H the first thing it does when it runs is to copy itself ;into RAM. This is so it can modify itself during execution.

;The first listing is the Bootstrap ROM exactly as it appears in the 68705U3 memory map.

;I've disassembled the first 14 bytes which is the part that does the block move.

;The second listing is the Bootstrap ROM located in its new position in RAM.

;This is fully disassembled.

;Basic operation is as follows:

;When powered up, 12V on the TIMER input (pin 8) forces the micro to fetch the vector at ;0FF6H & 0FF7H and to start executing the code from that address (0F80H). ;First it copies itself to RAM then continues executing from address 0019H.

;It sets up PortB & removes the reset to the 4040 counter. It pulses the counter 128 times ;to skip the first 128 bytes (remember, the internal EPROM starts at 0080H).

;It then starts the programming loop:

; read the external EPROM, clock the 4040 counter,

; increment the address pointer to the internal EPROM, store the data at that address,

; apply the programming voltage for the correct length of time

;It loops until the whole external EPROM has been copied.

;Then it modifies some instructions so that the programming part of the code does a verify ;instead and then lights the 'programmed' LED.

;The same loop runs again until the whole EPROM has been verified.

;The 'verified' LED is lit if there were no errors.

;Notes:

- ;1. The Bootstrap program changes the address pointer to the internal EPROM by incrementing
- ; the 2 address bytes in the 'sta 0F07FH' command.
- ;2. The internal EPROM address in the 'sta 0F07FH' command has an 'F' in the high nibble
- ; of the high byte (F0). This is ignored by the micro but helps by making it easier to
- ; skip non-EPROM locations and easier to stop the programming/verify loop.
- ;3. Any data bytes which are 00H are skipped (ie not programmed).
- ;4. In the programming and verification loops non-EPROM addresses are skipped ie 0000H to 007FH inc and 0F3FH to 0FF7H inc.
- ;5. Just before the program reads the external EPROM it checks the INT input (pin 3). If
- ; this pin is high, it skips the EPROM read. In Motorola's suggested Programmer the INT
- ; pin is connected to 0V so it always reads the external EPROM.
- ;6. The command to turn on the 'verified' LED is 'bclr 2,PortB' and is executed
- ; at the end of the whole verification procedure. If verification fails at any
- ; point the Bootstrap program modifies this command to become 'bset 2,PortB'.

- ; So at the end of the verification procedure when the command executes, the LED is
- ; lit if the command is 'bclr' and not lit if it's 'bset'.
- ;7. The Bootstrap code does NOT check to see if the programming voltage (+21V) is correct
- ; before it runs.
- ;8. The length of the programming pulse is calculated as follows:
- ; "clr PCR" at address 0048H applies the programming voltage to the internal EPROM
- "bsr Delay" takes 8 + 12810 cycles
- "bra Loop" takes 4 cycles
- "ldx #0FEH" takes 2 cycles
- "stx PCR" (removes the programming voltage from the internal EPROM) takes 5 cycles
- ; So the total delay is 12829 cycles.
- ; With a 1M clock the programming pulse length is $12829 \times 4 / 100000 = 51.3 \text{mS}$

;The Bootstrap ROM starts here (0F80H). The first thing it does is copy itself to RAM.

;Contents of address 0FF4H (ie 0F8CH + 68H) are copied to address 0076H (ie 000EH + 68H), etc. ;It finishes with contents of address 0F8DH copied to address 000FH.

;36H is left in the accumulator after the block move.

			org	0F80H	
0F80	9C		rsp		
0F81	AE68		ldx	#68H	
0F83	D60F8C	BM0:	lda	0F8CH,X	
0F86	E70E		sta	0EH,X	
0F88	5A		decx		
0F89	26F8		bne	BM0	
0F8B	BC19		jmp	19H	;Continue running the program in RAM from address 0019H.
0F8D	36		db	36H	;This byte is left in the accumulator when the jump occurs.

0F8E	1601
0F90	2FFE
0F92	B600
0F94	1701
0F96	81
0F97	B701
0F99	A61F
0F9B	B705
0F9D	1901
0F9F	ADED
0FA1	
0FA2	2AFB
0FA4	AEFE
0FA6	BF0B
0FA8	3C45
0FAA	
0FAC	3C44
0FAE	271C
0FB0	ADDC
0FB2	BE44
0FB4	5C
0FB5	260A
0FB7	BE45
0FB9	A33F
0FBB	
0FBD	A3F8
0FBF	25E3
0FC1	C7F07F
0FC4	2704
0FC6	
0FC8	AD1E

0FCA 20D8			
0FCC 03010D			
0FCF 5F			
0FD0 E662			
0FD2 E743			
0FD4 5C			
0FD5 A308			
0FD7 26F7			
0FD9 5F			
0FDA 20BB			
0FDC 1501			
0FDE 20FE			
0FE0 C1F07F			
0FE3 262B			
0FE5 BC26			
0FE7 15			
0FE8 5F			
0FE9 ADA9			
0FEB ADA7			
0FED 5A			
0FEE 26F9			
0FF0 81			
0FF1 115E			
0FF3 BC26			;Last instruction of Bootstrap ROM
0FF5 00			;00H is not used
0FF6 0F80	dw	0F80H	;Vector to the start of Bootstrap ROM. When powered up,
			;the 12V applied to the TIMER input makes the micro
			;fetch this vector.

;The following routine reads a byte from the external EPROM & then increments the 4040 counter

0010	1601	GetByte:	bset	3,PortB	;Bit 3 is connected to the 4040 CLK input
0012	2FFE		bih	ClrCLK	;Don't read ext EPROM if INT input is HIGH
0014	B600		lda	PortA	;Read ext EPROM value
0016	1701	ClrCLK:	bclr	3,PortB	;4040 counter increments on falling edge of CLK
0018	81		rts		

0019	B701	START:	sta	PortB	;36H was left in ACC after block move. Writing this to ;PortB results in the following: ;reset is true, CLK is low, LEDs are off & Vpp = 21V
					;After the EPROM is programmed, 3 lines of code are ;overwritten to change the code into a verify procedure and ;then the whole program runs again from here (ie START). ;The value 1BH is left in ACC so when "sta PortB" executes ;the second time it sets PortB as follows: ;reset is true, CLK is low, Prog LED is ON, Ver LED is OFF ;and Vpp = 5V

001B 001D 001F	A61F B705 1901		lda sta bclr	#1FH DDRB 4,PortB	;Set PortB bits 4 to 0 as outputs ;Remove RESET to 4040 counter
0021 0023 0024	ADED 5C 2AFB	;Skip the first L0:	128 by bsr incx bpl	tes since the M GetByte L0	C68705U3 EPROM starts at 0080H
0026 0028 002A	AEFE BF0B 3C45	;After progra ;from address	mming ses 0062	2H to 0069H. T	p. sses 0043H to 004AH (8 bytes) are overwritten with the values 'his changes the loop from a programming routine to a verify one. the comment part of the 4 affected lines. ;Remove program voltage from EPROM ;Increment address pointer to internal EPROM. It's the ;"0F07FH" part of the "sta 0F07FH" instruction at ;address 0043H.
002C 002E 0030 0032 0034 0036	2604 3C44 271C ADDC BE44 5C	L1:	bne inc beq bsr ldx incx	L1 44H L4 GetByte 44H	;The following 8 lines skip non-EPROM addresses. ;Skipped addresses are FF3FH to FFF7H inc. Note that ;the micro ignores the upper 4 bits of the address so the ;addresses actually skipped are 0F3FH to 0FF7H inc.

0037 260A

bne L2

0039	BE45		ldx	45H			
003B	A33F		срх	#3FH			
003D	2504		bcs	L2			
003F	A3F8		срх	#0F8H			
0041	25E3		bcs	Loop			
0043	C7F07F	L2:	sta	0F07FH	;Write data to internal EPROM	cmp	0F07FH
0046	2704		beq	L3	;Don't program if Byte $= 0$	bne	Change
0048	3F0B		clr	PCR	;Apply program voltage to EPROM	jmp	Loop
004A	AD1E		bsr	Delay		db	15H
004C	20D8	L3:	bra	Loop			
004E	03010D	L4:	brclr	1,PortB,FIN	;Check if this is the first or second ti ;If first time (ie 'programmed' LED is ;by changing the code which does th ;which does a verify. ;If second time then all done so go to	s off) t e prog	then continue

;Change 8 bytes in the programming loop to make it verify instead ;ie overwrite addresses 0043H to 004AH with the values from addresses 0062H to 0069H

0051	5F		clrx	
0052	E662	L5:	lda 62H,X	
0054	E743		sta 43H,X	
0056	5C		incx	
0057	A308		срх #08Н	
0059	26F7		bne L5	
005B	5F		clrx	
005C	20BB		bra START	;Repeat the whole program to perform verification of data

		;Come here at the end of everything. If data verified OK then "bclr" switches on the ;'verified' LED. If verification failed, the code at address 0073H changed "bclr" to ;"bset" so the 'verified' LED stays OFF.						
005E	1501	FIN: bc	clr	2,PortB	;Turn on 'ver' LED if op is "bclr" or turn off if "bset".			
0060	20FE	br	ra	*	;FINISHED so stop here with infinite loop.			
0062 0065 0067 0069	C1F07F 262B BC26 15	;from a programm cn bn	mer to mp ne np		s 0043H - 004AH thereby changing the program ies. ;This byte (15H) is used to set PortB differently			

		;The following delay time is:							
		(4 + 256 * (21 + 21 + 4 + 4) + 6 = 12810 cycles)							
		;With a 1M clock it's 12810 X 4 / 1000000 = 51.24mS							
006A	5F	Delay:	clrx		;4 cycles				
006B	ADA9	del:	bsr	ClrCLK	;8 + 7 + 6 = 21 cycles				
006D	ADA7		bsr	ClrCLK	;8 + 7 + 6 = 21 cycles				
006F	5A		decx		;4 cycles				
0070	26F9		bne	del	;4 cycles				
0072	81		rts		;6 cycles				

;This changes the 'bclr' command at address 005EH to a 'bset' since the verify failed. ;To change code for 'bclr 2' (15H) to 'bset 2' (14H) just clear bit 0.

0073	115E	Change:	bclr	0,FIN
0075	BC26		jmp	Loop