SORT /250 Programming Manual

Manual Part No. 45251-90024

#P 250 Business System __ 4

Hewlett-Packard
19447 Pruneridge Avenue, Cupertino, California 95014

Printing History

New editions of this manual will incorporate all material updated since the previ-
ous edition. Update packages may be issued between editions and contain re-
placement and additional pages to be merged into the manual by the user. Each
updated page will be indicated by a revised date at the bottom of the page. Note
that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorpo-
" rated.

August 1978 ... FIRST EDITION
June 1979.. SECOND EDITION: Revised pages: 2-3, 2-6 thru 2-9, 3-7,
3-14, B-1, C-5, C-6, D-1 thru D-3

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equip-
ment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are

reserved. No part of this document may be photocopied, reproduced or translated to another
program language without the prior written consent of Hewlett-Packard Company.

ii rev: 6/79

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Table of Contents

Chapter 1: Introduction

What is SORT /2507 . 1-1
Specifying Data Base Structure 1-1
The Workfile 1-3
Putting Data into Sorted Order 1-5
Selecting Data 1-6
Specifying Complex Data Base Structures, 1-7
Chapter 2: SORT Statements and Functions
Introduction 2-1
Syntax Conventions 2-2
The WORKFILE IS # Statement e 2-2
The SORT BY Statement. e 2-5
The FIND Statement 2-7
The WFLEN Function 2-8
The READ# and PRINT# Statements 29
Other Statements and Functions 2-10
SORT /250 Order of Execution 2-10
Chapter 3: Program Examples
Order List Programs 3-1
Order List Report 3-3
Example 1: A Two-Set Thread 3-4
Example 2: Using Only One SetInsteadof Two 3-5
Itemized Order List Programs 3-6
Itemized Options List Report (sorted order) 3-8
Example 3: A Four-Set Thread 3-9
Example 4: Using Only One Setinstead of Four 3-11
Itemized Options List Report (unsorted order) 3-13
Example 5: Listing Option in Unsorted Order 0 .. 3-14
Chapter 4: Programming Considerations
Introduction ... 4-1
Data Set/File Layout 4-1
Software Optimizations 4.3
Appendix A: Schema Listing for the Sales Analysis DataBase A-1
Appendix B: SORT /250 Error Codes B-1
Appendix C: Determining Workfile Size
SortField Size C-4
Appendix D: Examples of SORT /250 Performance D-1

iv

CHAPTER]1

Introduction

This manual describes the SORT /250 software available with the HP250 Busi-
ness System. Chapter 1 presents a brief overview of SORT /250 terms and
concepts. Chapter 2 describes the syntax of the various statements and func-
tions. Chapter 3 lists sample programs using SORT /250. Chapter 4 covers
optimization techniques.

This manual is intended for the programmer who is familiar with both the HP250
BASIC Programming Manual and the IMAGE /250 Programming Manual.

What is SORT /250?

SORT /250 is a collection of BASIC statements and functions to facilitate re-
trieving information from an IMAGE / 250 data base. Statements are provided to
allow accessing data in sorted order, and for selecting subsets of the total infor-
mation available.

In addition, SORT /250 provides for simulating structures more complex than
the two-level networking supported by IMAGE /250. SORT /250 enables the
program to access a data base in a hierarchical fashion. Simple data sets (a
degenerate hierachy) can also be handled as well as certain non-hierarchical
structures.

Specifying Data Base Structure

Before beginning any actual data base access via SORT /250, it is necessary to
specify the structure of that portion of the data base to be used. This structure is
specified as a list of set names, optionally separated by information concerning
their interrelationship. This list is called the thread. The thread specification
describes the hierarchical (or other) structure on which SORT /250 statements
operate.

SORT /250 operations are used to extract information according to the thread
specification. This information is in the form of record pointers which the prog-
ram uses in direct-mode DBGETs to obtain the actual information from the data
base. The thread may contain from one to ten sets, depending on the particular
application.

1-1

The next diagram shows the example Sales Analysis Data Base. Some example
reports which can be obtained are:

1. Alist of all orders.

2. Alist of products along with the orders placed for that product.

3. A list of products and the orders, as above, but including the options
contained with each order.

To produce report 1, only the CUSTOMER data set is involved. The thread list
for such a structure would consist only of CUSTOMER. Report 2 involves the
data sets PRODUCT and CUSTOMER, while 3 involves the sets PRODUCT,
CUSTOMER and OPTION. A further discussion of how to generate these re-
ports is in this chapter, along with the program to generate report 1. Chapter 3
gives complete sample programs for reports 2 and 3.

Product Location Date Order

Product-No Regron
Prod-Desc Region-Desc
Region-Type

Date Order-No

Customer Option

Y

Order-No —» Order-No
Name Option-Desc
Address Option-Price
City Option-Type
State
Country
Zip-Code
Order-Date
Ship-Date
Region
Product-No
Price
Salesperson

YYVYY

Sales Analysis Data Base

Schema listing for this data base is in Appendix A.

1-2 Introduction

Putting Data into Sorted Order

The SORT BY statement allows a sort to be determined by up to ten data items
from any data set in the thread. If an ordering of two elements cannot be
determined on the basis of the first field, the second, the third, and so on, will be
compared until an ordering can be found. If no ordering is found, the pointers
into the data base are compared to determine order. Additionally, sort direction
is specifiable on each sort field on an individual basis. Any field may be suffixed
by the keyword DES to cause it to sort in descending order rather than ascending.

Here is the same program shown earlier, but with some additional statements
filled in:

In this example, lines 80 thru 100 are used to create a file, ASSIGN it to a file
position and convert it into a workfile. (Note that the file is still of type DATA.)
Line 120 produces pointers so the data can be accessed in sorted order. Line

170 reads the pointer into a BASIC variable so it can be used in the direct mode
DBGET in line 180.

One additional function has been introduced in this example, the WFLEN func-
tion used in line 130. This function returns the number of pointers in the work-
file. It has as an argument, the file number of the workfile, since more than one
workfile may be in use at a given time. Notice that the program creates and
purges the workfile each time the program is run. If disc space is available,
program execution time can be decreased by deleting lines 80 and 220, which
allows the file to remain on the disc.

i0 DIM Buf$(1701,E$[5],0rder_no$[10]),Nametl30]

20 INTEGER S(9) ! Ten—element status array,

30 R¢=" SAD*

40 DROPEN (E$,"MANAGER" ,3,5(X)) ! Open the database,
S0 DRASE IS B¢

60 IN DATA SET “CUSTOMER" USE Order_no$,Name$

70 ! Now set up a workfile with CUSTOMER as the thread,.
80 FCREATE "XYZ",200

90 ASSIGN "XYZ" TO #1% p

100 WORKFILE IS #41;THREAD IS "CUSTOMER"

110 ' Sort the orders by order number.

120 SORT RY Order_no$

130 Entry_count=WFLEN(1) ! WFLEN returns no. of pointe

rs in file, -
140 PRINT " ORDER NUMEER";TAEB(30);"CUSTOMER NAME";LIN(2)
1S5S0 FOR I=1 TO Entry_count :

160 ! Read the record pointer into Rec_no.

170 READ #1i;Rec_no

180 DRBRGET (B$,"CUSTOMER",4,5(x),"@" ,Euf%$,Rec_no)
190 PRINT Order_no$;TAE(30);Name$

200 NEXT I
210 DECI.OSE (B$,"",1,5(x%))
220 PURGE "Xyz*

230 END

Introduction 1-5

Selecting Data

Often times only a small portion of the total available space is of interest for
processing purposes. SORT /250 provides the FIND statement to select only
those entries in the hierarchy which are pertinent. This selection can involve
data available at any level of the hierarchy and may use an arbitrarily-complex
selection criteria involving any function available in a BASIC expression.

When a FIND is executed, pointers to some subset of the records in the hierar-
chy are put in the workfile. Only the pointers for records which meet the selec-
tion criteria are put in the workfile. If there are already pointers in the workfile
from executing previous FINDs (or SORTs), then the subset described by these
pointers is used in successive FINDs and SORTs, rather than all the information
present in the data base.

Suppose, in the above example, it was desirable to list only the orders for ABC
Company. This can be accomplished by inserting a FIND statement somewhere
between line 100 and line 130 to select only those customers. Thus a report for
just ABC Company could be produced by adding:

115 FIND TRIM$ (Hame$)="ABC Company"®

This line could have followed the SORT BY in line 120 since executing a FIND
does not change the order produced by the last SORT BY.

Note the use of TRIM$. This is necessary because FIND works like a direct-mode
DBGET. The unpacking procedure performed by IN DATA SET will leave any
trailing blanks on the string.

Suppose, now, that an additional restriction needs to be put on the set of orders
in the report. The report should contain only those orders from ABC Company
and only if there is a 2"’ somewhere in the order number. This can be ac-
complished in either of two ways. The first method is to add another FIND
statement specifying the additional restriction between lines 100 and 130. The
second method is to change line 115. The first method might produce aline like ::

L]

125 FIND POS(Order_no%,"2")<>0

A more efficient way is the second method. The fewer FIND statements executed the
better, since each data entry need be examined only once. (This is the usual case.
More details on the best way to optimize FINDs are presented in Chapter 4.) This
method might have produced a replacement for line 115 such as:

115 FIND (TRIM$(Name$)="ABC Company”) AND (POS(Order_no$,"2")<>0)

1 Note that now one of the FINDs is before the SORT BY and one is after. Both could also appear before or both after the SORT BY.

1-6 Introduction

Specifying Complex Data Base Structures

As indicated earlier, it is sometimes useful to sort or find records spread over
several data sets when those data sets logically represent a hierarchy. The thread
parameter on the workfile statement allows this to be done. The thread is basi-
cally a list of the sets in the order they occur in the hierarchy.

The following figures show one master with three detail sets linked to it.

{A} or {B} or {C} or {D}

{A.B} or B.A}
{A.C) or {C.A}

{B.A.C}or {C.AB}

A Multiple Two-Level IMAGE Structure Threads Defined

Notice that detail data set D has two data paths to the same master. In this case,
linking set A to set D is ambiguous. To resolve this ambiguity, it is necessary to
specify which path is involved. Adding this capability to the thread specification
allows the description of the following additional threads:

Additional Threads

{A (via path 1) D (via path 2) A}
{A (via path 2) D (via path 1) A}
{D (via path 1) A (via path 2) D}
{D (via path 2) A (via path 1) D}
{C,A (via path 1) D (via path 2) A,B}

{B.A (via path 2) D (via path 1 A,C}
etc.

Remember that although these threads can be defined, they may not make any
sense! It is the programmer’s responsibility to determine the sense of a thread.

Introduction 1-7

As another example, refer to the three reports introduced on page 1-2. Generat-
ing report 2 involves using two sets. The thread that describes this hierarachy is
specified as a list of PRODUCT and CUSTOMER. Report 3 involves three sets
(PRODUCT, CUSTOMER and OPTION). The structures involved in all these
reports are hierarchical in nature. In report 2, for example, the PRODUCT data
set is higher in the hierarchy than CUSTOMER. Report 3 is an example of a
three-level hierarchy. The next figure shows how the hierarchy for report 3 is
organized.

PRODUCT NO PRODUCT NO
PRODUCT 100 500
INFORMATION
5° 10"
ORDER NO ORDEA NO ORDER NO
CUSTOMER 17 3 18 2 19 1
INFORMATION
5" 7 8"

OPTION OPTION OPTION OPTION OPTION OPTION opwjow
INFORMATION B A c F E o

2 1° 4" 6" 3 5

*Record numoers.

Sample Three-level Heirarchy

1-8 Introduction

Unlike report 2 where there is a direct connection between PRODUCT and
CUSTOMER, there is no connection between CUSTOMER and OPTION. This is
why the ORDER master data set exists. The thread necessary for accessing this
three-level hierarchy consists of four sets which are specified in the order PRO-
DUCT, CUSTOMER, ORDER and OPTION. See the next figure.

PRODUCT ORDER
Product.no Order.no
A
Order.no Order_no
Product.no Option_desc
CUSTOMER OPTION

Simulation of a Three-level Hierarchy

Introduction 1-9

A sample output for report 3 is shown next. Notice that information is obtained
from the product data set (product number and description), as well as from
each of the other sets. Graphically, this information is organized as shown on
page 1-8. The numbers in the corner of the boxes correspond to the records
where the information is stored in the data base. Entries for the ORDER detail
are not shown, since the ORDER set contains no information pertinent to pro-
ducing the report.

OUTSTANDING ORDERS LIST

PRODUCT NO, ORDER NO, CUSTOMER NAME OPTIONS PRICE
100¢(STD BICYCLE) 7.3 XYZ Company A 10.2S
E 20.31

"30.56

18.4 X¥Z Company C 30.97

T30.97

TOTAL 400 ORDERS: 61.53

S500(S~SPEED) 1i9.1 AEBC Company E 123.08%
F 100.1
Q 1.23

T223.38

TOTAL S00 ORDERS: 224.38

TOTAL ORDERS: 285.91

To producereport 3, it is necessary to extract this information from the data base
(record numbers from figure on page 1-8):

Set Name Record to Read Action to Take
Product 5 Print header for product.
Customer 5 Print header for order.
Option 1 Print first option.

Option 2 Print last option and total.
Customer 7 Print header for new order.
Option 4 Print option and totals.
Product 10 Print header for new product.
Customer 8 Print header for order.
Option 3 Print first option.

Option 6 Print second option.
Option 5 Print last option and totals.

1-10 Introduction

The numbers stored in the workfile, however, always contain one record from
each set. Thus, the first record will contain the three pointers in color above and
the pointer to the ORDER set.

The subsequent record is the same except that the pointer for the option set is
changed to 2. The next figure shows the pointers as they are stored in the
workfile.

Note that one pointer for each set is always stored. If a record at one level of the
hierarchy has no records associated with it at the next lower level, there is no
way to store a record of pointers in the workfile pertaining to that record. In
particular, if the records circled in the figure on page 1-8 are deleted, product
500 has no order associated with it and order 18.4 has no associated options.
The workfile would then have only two records corresponding to the bracketed
records in the next figure. Further, if the options on order number 17.3 were
deleted, FIND or SORT would return an empty workfile.

Pointer to Pointer to

information in

information in
“PRODUCT" \ /— “OPTION"
X
5 5. -.1
Pointer to ; 55 -2 : Pointer to

information in

N ¢

T~

information in

5.7
"CUSTOMER™ "ORDER"
10. 8 (value cannot be
determined from
10.8,-.6 given data)
10.8,.-.5

7

Contents of Workfile after Sorting

The program to produce the outstanding order list is fairly complex, as shown in
Chapter 3. However, the skeleton for the program is shown next. This skeleton
reads four pointers from the workfile even though the third pointer (to the
automatic master set ORDER) is not used. Also, note that this skeleton re-
peatedly reads records from the PRODUCT and CUSTOMER data set even
though it may be reading the same record as on the previous pass through the
loop. For clarity’s sake, the code to optimize out the extra reads is not shown.

Introduction 1-11

ASSIGH “»vZ" T #1
WORKFILE IS #1:THREAD IS "PRODUCIT", "CUSTOMEP®,*(PDIP", OPTION®

IN DATA SET "CUSTOMER" USE ALL
IN DATA SET "OPTION" USE SKP 1,0ption_desc$,P0

SORT BY Product_no,Order_no$,0ption_desc$

FOR L=1 TO WFLENC(1)

READ #1;R1,R2,R3,R4

DBGET (Base$%, "PRODUCT",4,S(*»), "€" ,Buf$,R1)
DBGET (Base$, "CUSTOMER",4,S(*),"€" ,Buf$,R2)
DBGET (Base$, "OPTION",4,S(*),"€" ,Buf$,R4)

NEXT L

1-12 Introduction

o

CHAPTFERZ2

SORT Statements and Functions

Introduction

This chapter describes the syntax needed to use SORT /250 software. The
statements and functions provided with SORT /250 are:

A statement specifying the hierarchical structure (thread) of the
data sets to be sorted, the work space for sorting, and the work-
file itself.

A statement specifying the order in which data is to be sorted.

A statement used to select a subset of record pointers from the
data base or the current workfile.

A function returning the number of logical records in the work-
file.

Two IMAGE / 250 statements, DBASE IS and IN DATA SET, are used to define
the data base and data sets before unpacking data entries with SORT / 250.

In addition, many BASIC file storage operations (PRINT #, READ #, REC, etc.)
are used in conjunction with SORT /250 workfiles. Because of the workfile
structure, these operations may work differently with SORT /250 than as de-
scribed in the BASIC Programming Manual. These differences are covered near
the end of the chapter.

2-1

Syntax Conventions

The statements in this manual use the same syntax conventions as in the BASIC
Programming Manual.

All keywords and characters in dot matrix must appear as
shown.

An ellipsis indicated that the previous parameter can be re-
peated.

[] Al parameters in brackets are optional. If there are brackets
within brackets, the parameter within the inner bracket may
only be specified if the parameter in the outer bracket is spcified.
Parameters may also be stacked in brackets. For exam-
ple: [A] A orB or neither may be selected.

{} One parameter must be selected from those stacked within
braces. For example: {%} A or B or C must be selected.

The WORKFILE IS # Statement

The WORKFILE IS # statement describes the hierarchical structure on which
FIND and SORT will operate, where the scratch area is for SORT, and where the
results of executing a FIND or SORT are stored.

s in[setid|. f#E link}:...]set id]
:path id

¢ file number| ¢

\

thread list
(up to 10 sets allowed)

The parameters are:

file number A numeric expression having an integer value from
1 through 10, and used to identify a file previously
defined by an ASSIGN statement.

setid A numeric or string expression used to identify a
data set. If numeric, this parameter references a
data set number for the current data base (specified
in the last DBASE IS statement). If a string, this
parameter references a data set name for the cur-
rent data base.

2-2 Statements and Functions

pathid A numeric expression having an integer value from
1 through 8. This expression selects which data
path to use between the first data set specified (set
id) and the next in the thread list. It is needed only
when more than one path exists between two sets
being linked in the thread. If only one path exists for
the data set specified, it is not necessary to list the
path id parameter.

link A BASIC variable which is currently linked via an IN
DATA SET statement to an item found in the detail
data set to which it is attached. The variable must
match in type and length the search item in the
master data set which follows in the thread list. If the
variable refers to a sub-item, it may only be the first
sub-item.

NOTE
The path or link parameters cannot be specified on
the last data set in the thread list, since these opera-
tions specify a relationship between the set to
which it is attached and the next set listed in the
thread.

Some examples of the WORKFILE IS # statement are -

KORKFILE IS#1; THREAD IS*CUSTOMER®
WORKFILE IS #X+3; THREAD IS"CUSTOMER" :2, "DATE"
KORKFILE IS #8; THREAD IS"CUSTOMER ™ :2, “DATE"

Up to 10 data sets can be specified for any thread list. The number of sets in the
list is referred to as the thread length. Each set must be related to the sets on
either side of it (or one side if it is at the end of the thread) by a path in the data
base (or a synthetic path using the LINK option). This defines the hierarchical
structure, with the leftmost set in the thread list usually being the highest (usually
the least commonly occuring) in the hierarchy. Successful execution of WORK-
FILE IS # converts the file into a workfile. To convert a file to a workfile, the file
must be ASSIGNed in exclusive mode. The file remains a workfile until either another
file is assigned in its place (same file number) or it is de-assigned. Closing the data base
to which the workfile pertains automatically de-assigns the workfile.

rev: 6/79 Statements and Functions 2-3

A workfile uses 214 bytes of user memory if it was un-buffered at the time it was
converted to a workfile. If it was BUFFERed, no additional memory space is
used, since BUFFER # uses 270 bytes of user memory. When the workfile is
de-assigned, the memory space is returned.

The workfile is used to store all pointers generated by FIND and SORT BY
operations. Initially, the workfile contains no pointers, so any attempt to access
them (via READ #) will result in an error. The REC function returns 0 to indicate
this null state. Pointers can be put in the workfile by executing SORT BY, FIND,
FIND ALL or PRINT #.

The workfile is composed of logical records whose lengths in bytes are twice the
thread length. Thus, a two-byte pointer is stored for each set in the thread in any
given logical record. Pointers may range in value from one to the capacity of the
set to which they pertain. (The first pointer in the record corresponds to the first
set in the thread, the second pointer corresponds to the second set, and so on.)
The workfile also makes use of any additional space on the last file sector, space
normally inaccessible when the file is not a workfile.

In the case where more than one path connects two adjacent sets in the thread, it
is necessary to specify which path is to be used. This is done by suffixing the first
of the sets with a ‘"’ and following that with a path id. The path id for a
particular path is determined by using the schema listing. To find the path with
path id n, for example, scan the detail for the nth occurrence of the master set
name. If the path id is not specified, 1 is assumed.

A method exists for defining data set relationships independent of the data base
structure. This method is used to link a detail data set to a master data in the
thread list. This is done by using the LINK option, which specifies an item in the
detail data set and is used to perform a calculated access into the specified
master data set. This item must match the type and length of the search item in
the master data set (which is then the set id following the LINK in the thread list).

All SORT BY and FIND operations work with the current workfile. Executing
another WORKFILE IS # deactivates the current workfile and defines a new
one. All subsequent SORTs and FINDs then work on the new file. The informa-
tion in the old workfile is still intact, however, and can be accessed via READ #
and PRINT # statements.

Since it may be desirable to return to do additional FINDs and SORTs on the
previous workfile, a method is provided for saving and reactivating a workfile.
This is done by executing another WORKFILE IS # which does not include the
thread list. This will deactivate (but not erase) the current workfile and allow you
to activate an old workfile. Do not attempt to reactivate the workfile by re-
specifying the thread list, since this loses all information currently in the file by
reseting WFLEN to O.

2-4 Statements and Functions

Expressions are allowed in all WORKFILE IS # parameters. When invoking

multiple-line function subprograms, however, these subprograms cannot exe-
cute SORT BY, FIND, WORKFILE IS #, IN DATA SET or DBASE ISstate-

ments.

Determining workfile size is a complex function, depending on many factors. A
utility program is provided to determine the required file size for a particular
application. This program and the formula used are described in Appendix C.

The SORT BY Statement

The SORT BY statement generates pointers to allow accessing data in a
specified order.

7T B variable name 1 [

=]

][#... - variable name 10 [{:

The parameter is:

variable name A BASIC variable linked via the IN DATA SET
statement to an item appearing in one of the data
sets in the thread. Substrings are not allowed.

Sorting can occur on up to ten data items’; if an order cannot be determined
from the first data item, subsequent data items can be specified to determine the
order. If no order can be found, the order for those records will be determined
by their record pointer value(s) in the data set(s). The specified data is sorted in
reverse order by specifying {:# . Each data item listed can be sorted in either
order.

Data items used for sorting can come from any data set belonging to the thread
of the current workfile. When listing the data items in the SORT BY statement,
you must place them in order of their significance to the sort, not in their original
set order. If an item occurs in two data sets in the thread, the item will be
assumed to come from the leftmost set.

1 Although up to ten items are allowed, the sum of their lengths {in bytes) plus 2 times the thread length must not exceed 256.
(Additional overhead is needed for strings with some local-language keyboards; see Appendix C for details.)

Statements and Functions 2-5

After verifying that all parameters are valid, SORT BY copies about 30K bytes
(121 sectors) of user memory to the workfile. This allows sorts to use the 30K
byte area for work space. The user memory is reloaded upon completion of the
sort. Thus, there is a fairly large overhead associated with any sort, regardless of
size. If the system is unable to reload the user memory, error 240 is issued and
SCRATCH A is performed. Therefore, sorts should not be done in the middle of
critical sections where a restart is not possible?.

Since SORT BY and FIND handle record pointers in the data base, and other
users may be modifying the data base, care should be taken when using FIND
and SORT BY while the data base is opened in mode 1. Execution of SORT BY
requires that all sets in the thread are either read or write locked. Thus, a whole data
base lock may be used to achieve the same effect.

After completion of the SORT BY the data sets may be unlocked. However,
remember that only pointers are stored in the workfile; if another user (or even
the current program) does DBPUTs or DBDELETEs, the pointers may become
meaningless due to migrating secondaries in master sets and outright record
deletions.

There are a couple of miscellaneous items concerning SORT BY. The first is that
executing a SORT BY resets the workfile pointer (as determined by REC) to 1.
The second is that if SORT BY is reading the data base via pointers in the
workfile (rather than accessing the data base directly) and records in the data
base have been deleted since the FIND, SORT or PRINT # that put the pointers
there, then any logical workfile record which contains a pointer to a deleted
data set record will be deleted. This is true only when SORT BY accesses the set in
which the deletion occurred. If there is no sort item needed from that set, SORT BY
will not perform the read to determine if a deletion has occurred.

Some example sequences using SORT BY are -

SORT BY Order_no$
SORT BY Product_no$,Name$ DES

2 Prior to copying user memory, mode 4 closes are performed on all data bases to insure their integrity. Also, the default mass
memory buffer is dumped. Buffers for buffered files and the spooler buffer are not dumped, however.

2-6 Statements and Functions rev: 6/79

rev: 6/79

The FIND Statement

The FIND statement selects a subset of records from the data base thread or the
current workfile if the workfile is non-empty.

1 {conditon)

The parameter is:

condition Any numeric expression used to test variables (or
any attribute) for certain conditions. If these condi-
tions are met, the expression has a non-zero (true)
result and the record pointers are stored in the
workfile. Otherwise, the result is 0 and the record
pointers are not stored.

If the workfile has not been used with any previous FIND or SORT BY operation,
FIND examines the data base associated with the current workfile. The condition
parameter is evaluated to determine whether the group of data entries just read
should have their pointers put in the workfile. If the condition is met, the pointers
are stored and the next group of entries are processed. Otherwise, the pointers
are not stored and processing continued. Note that FIND must actually read
each record and trigger the IN DATA SET for each set in the thread to establish
the variable values it needs to evaluate the condition expression.

If the workfile already contains pointers (indicated by REC greater than 0), only
the data entries specified by the pointers in the workfile are checked by the
condition parameter. Pointers to data entries that meet the condition criteria are
retained in the workfile; all other pointers are deleted.

Since FIND handles pointers, it is recommended that the data sets in the thread be at
least read locked if the data base is opened in mode 1. The sets may also be write

locked, or the whole data base may be locked. Unlike SORT BY, however, this is not a
requirement.

Specifying FIND ALL is the same as FIND 1=1, and is useful to get all records in
unsorted order. If a subsequent FIND or SORT BY is used, however, the
FIND ALL is not needed and only wastes time. If a FIND, SORT BY or PRINT # has

previgulsly been done, FIND ALL has no effect except to reset the record pointer to
record 1.

FIND execution requires the temporary use of from 1032 to 1050 bytes of user
memory, depending on thread length.

Statements and Functions 2-7

There are two miscellaneous items concerning FIND. The first is that executing a
FIND resets the workfile pointer (as determined by REC) to 1. The second is that
if FIND is reading the data base via pointers in the workfile and deletions have
occurred in sets involved in the FIND, then FIND will delete the logical workfile records
containing pointers to empty data set records.

NOTE
If the condition parameter does not use values from a
particular set in the thread (via an IN DATA SET state-
ment), execution time can be improved by deactivating
the IN DATA SET statement using the FREE option.

Some example sequences using FIND are:

FIND Order_no$>"1000"
FIND (Vendor_no>250) AND (Invoice_no>10000)
FIND ALL

The WFLEN Function

The WFLEN function returns the number of logical record pointers contained in
the specified workfile.

tfile number:

The parameter is:

file number A numeric expression specifying the file number of
the workfile.

WFLEN returns a value from 0 through 65534. If a FIND or SORT BY has not been
executed on the workfile, 0 is returned. 0 also indicates no entries in the workfile. —1 is
returned when the contents of the workfiles are invalid (caused by removing the
flexible disc, pressing % or getting a disc error during a SORT BY or FIND
statement). Executing WFLEN on a file other than a workfile causes an error.

2-8 Statements and Functions rev: 6/79

The READ # and PRINT # Statements

The READ # and PRINT # statements operate on workfiles in much the same way as
they operate on standard BASIC data files. Although their syntax is identical, certain
restrictions apply when operating on workfiles.

The first restriction is that only an integeral number of logical records can be
read or written. If a partial logical record is read, an error is issued and the record
pointer is left at word one of the incompletely read record. If a partial logical
record is written, the incompletely written record is not changed; instead, the
record pointer is left pointing at the beginning of that record and an error is
issued. Strings cannot be read or written on workfiles. Arrays can be written or read by
using the array notation (i.e.,, =« :) or via MAT PRINT # and MAT READ #.

Note that a pointer value is a value between 1 and the capacity of the set to
which it pertains. Since capacities can be as high as 65534, a simple integer
variable (or array) may not be able to hold a pointer value. Thus, short or real
values should generally be used. The conversion to the appropriate type will be
performed automatically.

If a non-integral value is PRINTed on a workfile, it is rounded to an integer. If the
rounded value is less than 1 or greater than the set capacity, an error occurs.

The record pointer for READ # and PRINT # can be positioned at any record
from 1 through WFLEN + 1. Attempting to position past record number WFLEN
+1 results in an end-of-file error (which is trappable by ON END #). When
printing to records greater than WFLEN, the value of WFLEN is adjusted ap-
propriately. However, actually trying to read values in records beyond WFLEN
causes end-of-file error.

PRINTing an END on a workfile resets WFLEN to a value corresponding to the

record where END was printed —1. This effectively erases all information from
the record where END was printed to the end of the workfile. -

rev: 6/79 Statements and Functions 2-9

et

CHAPTER3

Program Examples

- This chapter shows several programs using SORT /250 operations with the
Sales Analysis Data base (SAD). The two programs introduced in Chapter 1 are
described here: a program to list products along with their associated orders and
a program which also lists the options for each order. Whenever possible, the
line numbering for logically-equivalent statements remains the same for each
program.

Order List Programs

Each of the order list programs produces a report as shown on page 3-3. This
report lists the orders in the data base, broken down by product and organized in
sorted order by order number. The products themselves are listed in sorted
order. Also, totals are maintained for all orders on each product as well as a total
of all orders. '

Example program 1 uses a two-set thread (see line 1320). This means that two
pointers must be read in line 1480. The R1 pointer refers to a record n the
PRODUCT set and the R2 pointer refers to a record in the CUSTOMER set.

Everytime the product changes, the value of R1 also changes. S1 represents the
value of R1 at the previous pass through the FOR loop. It is used to detect when
it is necessary to print a trailer for the current product (consisting primarily of the
total of the orders for the product) and a heading for the new product. Note,
however, that printing a trailer at the first pass through the loop is undesirable. A
special test for S1=0 is made to stop this from occurring.

Note that the sort performed in line 1360 has Prod_no as its primary sort field.
This variable comes from the PRODUCT data set (see line 1190). Because the
schema item “PRODUCT-NO” is a search item, however, the value of the
variable Product_no$ from the CUSTOMER detail set could just as well have
been used. :

3-1

This program shows many poor programming practices which are corrected by
example program 2:

e The status array is never tested at any point in the program. The data base
may not have been opened; this will ultimately result in error 211 being
issued in line 1180.

e As pointed out earlier, the PRODUCT data set need not be involved in the
sort. As discussed in Chapter 4, having the PRODUCT data set in the thread
greatly reduces efficiency of the SORT BY statement. The description field,
however, must be accessed to get the description field for printing. (This is
done by a calculated-access DBGET in line 1690 of example program 2.)

e After deleting PRODUCT from the thread there is only one pointer per
record in the workfile (see line 1480). This points into the CUSTOMER set,
so there is no way to wait for change in recod number to indicate a change in
product. Thus, the actual product numbers must be compared. Note that
the update of the old product number is accomplished by the IN DATA SET
which is triggered when the DBGET in line 1690 is executed. This means
that a line analogous to line 1710 in the first example is not needed.

3-2 Program Examples

ouTsT

PRODUCT

ORDER NUMRER

Order List Report

ANDING ORDERS LISY

CUSTOMER NAME

S0 (Tricycle)
110

TOTAL ORDERS FOR 100

100 (Standard BRicycle)
104
103
108

TOTAL ORDERS FOR 300

300 (3-Speed Eicycle)
104

TOTAL ORDERS FOR SO0

S00 (S5-Speed Bicycle)
100
10S
109

TOTAL ORDERS FOR 4000
1000 (10-Speed Ricycle)
102
i06
107

TOTAL ORDERS FOR 1000

Gisesing, Malcomb

Noname, Joseph
Hernandes, Jose

Arauvja, Lucians A,

Houseman, Sean

Smith, Thomas A.
Sono, Jomo A.
Bekker, Rart

Johnson, Sam
Heining, Heinz
Dalling, Jimmy

TOTAL ORDERS

435.540

162.50
175.00

Program Examples 3-3

fooo
1040
1020
1030
1040
1050
1060
1090
1100
1110
1130
1150
1160
1170
1180
1190
1200
1220
1230
1240
1340
1320
1330
1340
1350
1360
1400
141490
1420
1430
14490
1450
1460

Example Program 1: A Two-set Thread

OUTSTANDING ORDERS REPORT (NOT INCLUDING ALL DETAIL)

INTEGER S(9),Prod_no

DIM B$[42),P$[10],Bufs(4170]

DIM Desc$(301,0rder_no$L30] ,Namne${30])

DISP "%%rn; ! CLEAR SCREEN

B$=" SAD,SALES"

P$="MANAGER"

DEROPEN (E$,P$,1,5(x)) ! OPEN DATA EASE

DBLOCK (BRs$,"",1,5(x)) ! DATA BASE MUST RE LOCKED TO SORT

SET UP ALL APPROPRIATE RELATIONSHIPS
DRASE IS E¢

IN DATA SET “PRODUCT" USE Prod_no,Desc$
IN DATA SET “CUSTOMER"™ USE ALL

SET UP THE WORKFILE

ASSIGN "XYZ" TO #1
WORKFILE IS #4;THREAD IS "PRODUCT",“"CUSTOMER"

SORT THE STRUCTURE
SORT BY Prod_no,Order_no$

INITIALIZE VARIAELES & PRINT REPORT HEADER

ﬁep:Totul=Hoster_Totul=0

Si=0
PRINT TAE(20); "OUTSTANDING ORDERS LIST";LINC(1) .
PRINT “PRODUCT";SPA(8);“ORDER NUMEER";SPA(4); "CUSTOMER NAME";SPA(14);

“PRICE";LINCL);RPTS$("-",63);LINCY)

14614
1462
1463
14790
14890
1570
1580
1590
1600
1610
1620
1630
16490
1650
1660
1670
1680
1690
1710
1720
1840
1820
1830
1840
1860
1870
1880
1890
1200
1710
1920
1940
1950

PRODUCE THE REPORT

FOR Z=1 TO WFLEN(1)
READ #1;Ri,R2

PRINT TRAILER FOR PRODUCT (IF NEEDED)
(SKIP IF SAME PRODUCT AS BEFORE, OR FIRST TIME THRU LOOP)
IF (R4=S1) OR NOT Si THEN Notot
PRINT USING Tot_image;VAL$(Prod_no),Total
Total=0 :

PRINT HEADER FOR PRODUCT (IF NEEDED)

&otot:IF Ri=514 THEN Skipi

DEGET (Bs,“PRODUCT",4,S(x),"@" ,Rufs$,R1)
Si=R1
PRINT VAL$(Prod_neo);" (";TRIM$(Descs$);")"

PRINT ORDERS

Skipi:DEGET (B$,*CUSTOMER®,4,5(X),"B" Huf$,R2)

PRINT TAE(16);
PRINT USING Itm_image;Order_no$,Name$,Price

Itm_image :IMAGE 16A,22A,2X,S5D.DD
'

ACCUMULATE TOTALS
Total=Tetal+Price

Master_total=Master_total+Price
NEXT 2

(continued)

3-4 Program Examples

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

2000 PRINT USING Tot_image ;VAL$(Prod _no),Total
2010 PRINT USING Mstr_imnge;Master_total

2040 Tot_image:IMAGE S4X,9("=") / 3X,"TOTAL ORDERS FOR “,10A,24X,6D.DD /
20S0 Mstr_image:IMAGE // 25X, "TOTAL ORDERS",14X,"$°BD.DD / S4X,9("=")
2130 END

Example Program 2: Using Only One Set Instead of Two

1000 !

1010 ¢! OUTSTANDING ORDERS REPORT (NOT INCLUDING ALL DETAIL)
1020 !

1030 INTEGER S(9),Product_no,Prod_no

1040 DIM B$[12),P$[401 ,Buf$(170]

1050 DIM Desc$(30],0rder_no$[30],Name$(30]

1060 DISP "&Un; I CLEAR SCREEN
1090 B$=" SAD,SALES"

1400 P$="MANAGER"

11490 DBROPEN (B$,P$,1,8(x)) ' OPEN DATA EASE
1120 IF S(0) THEN Dberr :
1120 DELOCK (E$,“",4,S(Xx)) ! DATA RASE MUST HE LOCKED TO SORT
1140 IF S(0) THEN Dberr

1150 ¢

1160 ! SET UP ALL APPROPRIATE RELATIONSHIPS

1170

1180 DERASE 1S E$

1190 IN DATA SET "PRODUCT" USE Prod_no,Descs$

1200 IN DATA SET "CUSTOMER™ USE ALL

1220 ¢ -

1230 ! SET UP THE WORKFILE

1240 !

1340 ASSIGN “XYZ" TO #14

1320 WORKFILE IS #1;THREAD IS “CUSTOMER"

1330 !

1340 ! SORT THE STRUCTURE

1350 !

1360 SORT HY Product_no,Order_no$

1400 !

1440 ! INITIALIZE VARIAKLES & PRINT REPORT HEADER

1420

1430 Rep:Total=Master_total=0

1440 Prod_no=-1

1450 PRINT TAE(20);"OUTSTANDING ORDERS LIST";LINC(i)

1460 PRINT "PRODUCT";SPA(8);"ORDER NUMRER";SPA(4); "CUSTOMER NAME";SPA(14);
"PRICE";LINC4);RPTS$("-" 63);LINC(L)

1461 !

1462 ! PRODUCE THE REPORT

1463 !

1470 FOR Z=1 TO WFLEN(1)

1480 READ #1;R1%

1490 DEGET (R$,"CUSTOMER",4,5(X),"@" Euf$,R1)

1500 IF S(0) THEN Dberr

1570 !

1580 PRINT TRAILER FOR PRODUCT (IF NEEDED)

1590 !

1600 ! (SKIP IF SAME PRODUCT AS KEFORE, OR FIRST TIME THRU LOOP)
1610 !

1620 IF (Prod_no=Prodvct_no) OR (Prod_no¢8) THEN Notot
1630 PRINT USING Tot_image;VAL$(Product_no),Total
1540 Total=0

1650 !

1660 ! PRINT HEADER FOR PRODUCT (IF NEEDED)

1670 1

1680 Notot:IF Prod no=Product_no THEN Skipi

1690 DEGET (E%,"PRODUCT",7,S(X),"8" ,Buf$,Product_no)
1700 IF 5(8) THEN Dberr

1720 PRINT VAL%(Prod_no);" (";TRIM$(Descg);")"

(continued)

Program Examples 3-5

i810 !

1820 PRINT ORDERS

1830 !

1860 Skipi:PRINT TAR(16);

1870 PRINT USING Itm image;Order _no$,Names ,Price
1880 Itm_image:IMAGE 16A,22A,2X,SD.DD

1890 !

1900 ! ACCUMULATE TOTALS

1910 !

1920 Total=Total+Price

1940 Master _total=Master_total+Price

1950 NEXT Z

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

2000 PRINT USING Tot_imange;VAL$(Prod_no),Total
2010 PRINT USING Mstr_image;Master_total

2040 Tot image:IMAGE S4X,9("=") / 3X,"TOTAL ORDERS FOR ",10A,24X,6D.DD /
2050 Mstr_image:IMAGE // 2SX,"TOTAL ORDERS",14X,"$"8D.DD / S4X,9("=")
2060 STOP

2070 !

2080 ! ERROR TERMINATION ROUTINE
2090 !

2100 Dberr:DISP LIN(2);*STATUS ERROR ";VAL$(S(0));" IN LINE ";5(6)
2170 END

Itemized Order List Programs

The remaining three programs are all extensions to the previous programs, in
that the report is essentially the same, but each order has its options listed along
with it. In example programs 3 and 4 the options are listed in sorted order. A
report that could be printed by these programs is shown on pages 3-8/9.
Example program 5 lists the options in the order they occur along the chain in
the OPTION detail. The report produced by this program is shown on pages
3-13/14.

Note that there is a blank option following the customer name. There is actually
an entry with a blank option number field in ORDER for each order placed. This
record contains the price of the product, and the all-blank field is used to force
this entry to occur before any of the other options when sorted. It is also put into
the detail before any of the options to guarantee that it will be the first in the
chain. '

The blank entry also serves another function. If it were not included, then any
order sold with no options would have no record in the OPTION set. This would
generate an incomplete hierarchy for such orders, so they would not occur in the
workfile generated by programs 3 and 4, though program 5 could be modified to
handle such orders.

3-6 Program Examples

rev: 6/79

Example program 3 uses a four-set thread (see line 1320). The construction of
this thread is discusses in Chapter 1. Note, however, that although four pointers
must be read from the workfile (see line 1480), the third pointer, R3, is never
used. This third pointer is just the place holder to skip over the information in the
automatic set, ORDER. Again, the change in record number pertaining to the
PRODUCT set is used to trigger the headers and trailers for new products (via
variables R1 and S1). A similar technique is used to detect the change in order
number (via variables R2 and S2).

Example program 3 is another case of bad programming. Example program 4
cleans up these problems. It adds status checks for data base calls, error trapping
(see line 1070) and key trapping (see line 1080). Also, all the previous
examples have assumed that the data file ““XYZ" existed for use as a workfile.
Example program 4 now checks to see if the workfile exists and creates it if it
does not. It stops if the file is protected or is of the wrong type.

For reasons detailed in Chapter 4, long threads are undesirable and should be
avoided when possible. As in example program 2, the PRODUCT set can be
eliminated from the thread by use of a calculated-access DBGET. This reduces
the thread length to three. Also, if it is not particularly important to have the
options listed in sorted order, a DBFIND on the OPTION set using the order
number from the CUSTOMER set may be done. This allows chained mode
DBGETs to be used to get the options. Listing will thus be in the chain order (the
order the options appeared in on the original order). This reduces the thread
length to only one set, the CUSTOMER set. Program example 5 shows how this
could be done.

In example program 5, as in example 2, the actual product number is used to
determine when product headers and trailers are required. However, since each
record in the workfile corresponds to a new order, no special logic is needed to
detect change in order number; the header and trailer each occur every time
through the loop. A special imbedded FOR loop is added, however, to print out
the options (see lines 1835 through 1945).

Example program 5 does not lock the data base. It only locks the sets in the thread and
the sets used in the report. This allows multiple users to simultaneously run copies of
the program from different consoles. If a data base lock had been used, one program
would run while others would wait at DBLOCK for access to the data base.

Program Examples 3-7

Itemized Options List Report (sorted order)

OUTSTANDING ORDERS LIST

PRODUCT ORDER NUMEER

S0 (Tricycle)

TOTAL ORDERS FOR SO

100 (Standard Bicycle)
104

103

TOTAL ORDERS FOR 100

300 (3-Speed ERicycle)
104

TOTAL ORDERS FOR 300

S00 (S-Speed Ricycle)
100

109

TOTAL ORDERS FOR S00

3-8 Program Examples

CUSTOMER NAME OPTIONS
Gissing, Malcomb
Noname , Joseph
Horn
Hernandes, Jose
Fan
Horn
Light
Mud Flaps
Stripes
Arav ja, Luciano A,
Horn
Houseman, Sean
Light

Super tire

Smith, Thomas A.
BASKETLE
Light

Sono, Jomo A.
Horn
Reflector

EKekker, FEart

(continued)

175.50

125.00
2.50
7.50

1000 (10~-Speed Ricycle)

1000
1040
1020
1030
1040
1050
1060
1090
1100
1140
1130
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1310
1320
1330
1340
1350
1360
1400
1440
1420
1430
1440
1450
1460

i02 Johnson, Sam 150.00
Chrome 12.50

162.50

106 Heining, Heinz 150.00
Basket 15.00
Light 10,00

175.00

107 Dalling, Jimmy 150.00

TOTAL ORDERS FOR 1000 487.50

TOTAL ORDERS $1368.2%

Example Program 3: A Four-set Thread

OUTSTANDING ORDERS REPORT (INCLUDING ALL DETAIL)

INTEGER S(9),Prod_no

DIM R$[412),P$[10),Buf$[170]

DIM Desc$[30),0rder _no$[30] ,Names[-30]1,0ption_descs$[10]

DISP us&n; ! CLEAR SCREEN

E$=" SAD,SALES™

P$="MANAGER"

DROPEN (E$,P$,1,5(Xx)) ! OPEN DATA EASE

DRELOCK (E$,™",1,5(x)) ! DATA BASE MUST BE LOCKED TO SORT

SET UP ALL APPROPRIATE RELATIONSHIPS

DEASE 1S E$

IN DATA SET “PRODUCT" USE Prod_no,Desc$

IN DATA SET "CUSTOMER™ USE ALL

IN DATA SET "OPTION" USE SKP 1,0ption_desc$,P0O
SET UP THE WORKFILE

ASSIGN "XYZ* TO #14
WORKFILE IS #1;THREAD IS "PRODUCT","CUSTOMER™,"ORDER",“OPTION"

SORT THE STRUCTURE

SORT RY Prod_no,Order_no$,0ption_desc$
INITIALIZE VARIAEBLES & PRINT REPORT HEADER
Sub_total=Total=Master_total=0

§4=82=0

PRINT TAE(30);"OUTSTANDING ORDERS LIST";LIN(1)
PRINT "PRODUCT";SPA(8);"ORDER NUMEKER";SPA(10);"CUSTOMER NAME";SPA(9);

"OPTIONS" ;SPA(8) ; “PRICE" ;LINCL) ;RPTS("~" ,79);LINCYL)

(continued)

Program Examples 3-9

1464
1462
1463
1470
1480
1490

1500
15410

1520
1530
1540
1550
1560
1570
1580
1590
1600
1640
1620
1630
1640
1650
1660
1670
1680
1690
1740
i72

1730
1740
1750
1760
1770
1790
1800
1810
1820
1830
18490
1860
1870
1880
1890
1900
1940
1920
1930
1940
1950
1960
1970
1980
1990
2000

2030

2050
2160

3-10 Program Examples

! PRODUCE THE REPORT

\

\

)
Skip

Sub
Tot

FOR Z=1 TO WFLEN(1)
READ #1;Ri,R2,R3,R4

PRINT TRAILER FOR ORDER (IF NEEDED)

(SKIP IF SAME ORDER AS REFORE,

IF (R2=S82) OR NOT S2 THEN Nosub
PRINT USING Sub_image;Sub_total
Sub_total=0

PRINT TRAILER FOR PRODUCT (IF NEEDED)

:IF (R4=S1) OR NOT S1 THEN Notoet

PRINT USING Tot_image;VAL$(Prod_no),Total
Total=0

PRINT HEADER FOR PRODUCT (IF NEEDED)

t:IF R4=S1 THEN Skipt
DEGET (R%,"PRODUCT",4,S5(x),"€" ,Bufs,R1)
Si=R1
PRINT VAL$(Prod no);" (";TRIM$(Desc$);")"

PRINTER HEADER FOR ORDER (IF NEEDED)

1:IF R2=52 THEN Skip2
DEGET (R$,"CUSTOMER",4,S(X),"®" ,Bufs$,R2)
PRINT TAR(20);0rder_no%;TAE(3B) ;Name$l4i,21];

S2=R2

PRINT OPTIONS

2:DBGET (E$,"OPTION",4,5(%x), 8" Ruf$,R4)
PRINT TAER(60);
PRINT USING Itm_image;0Option_descs¢,P0
Itm_image :IMAGE 10A,2X,SD.DD
1

ACCUMULATE TOTALS

Total=Total+PO
Sub_total=Sub_total+P0
Master _total=Master_total+P0

NEXT Z

PRINT

PRINT
PRINT
PRINT

image:
image:

FINAL

USING
USING
USING
IMAGE
IMAGE

TOTALS

Sub_image;Svb_total
Tot_inage;VAL%$(Prod_no),Total

Mstr _imnge;Master_total

74X,8(*-"Y / 74X,5D.DD /
70%,9("=") / 14X,"TOTAL ORDERS FOR

OR FIRST TIME THRU LOOP)

(SKIP IF SAME PRODUCT AS REFORE, OR FIRST TIME THRU LOOP)

",10A,32 X,6D.DD /

Metr_image: IMAGE // 34X,"TOTAL ORDERS",24X,"4"8D.DD / 70X,9("=")

END

Example Program 4: Using Only One Set Instead of Four

t OUTSTANDING ORDERS REPORT (INCLUDING ALL DETAIL)

INTEGER S(9),Prod_no

DIM EK$[12),P$[10),Buf$l170)

DIM Desc$(30),0rder_no$(30),Namnes$(30),0ption_desc$[10]

DISP "%I=; ! CLEAR SCREEN

ON ERROR GOTO Error ! SET UP ERROR AND HALT TRAPS
ON HALT GOTO Halt

Ek$=" GSAD,SALES"

P$="MANAGER"

DROPEN (E$,P%,1,S5(x)) ! OPEN DATA ERASE

IF S(0) THEN Dberr

~DBLOCK (ER¢$,"",1,5(%)) '\ DATA BASE MUST EE LOCKED TO SORT

IF S¢(0) THEN Dberr
! SET UP ALL APPROPRIATE RELATIONSHIPS

DEASE IS E¢

IN DATA SET "PRODUCT* USE Prod_no,Descs$

IN DATA SET "CUSTOMER" USE ALL

IN DATA SET "OPTION" USE SKP 1,0Option_descs$,P0

! SET UP THE WORKFILE

ASSIGN "XYZ" TO #1,Z
IF 2Z<2 THEN Ok
DISP "CAN’T ASSIGN THE WORKFILE!'!'*®
STOP
Ok: IF NOT Z THEN Aok ! CREATE WORK FILE IF NECESSARY
FCREATE "XYZ",130
ASSIGN "XYZ" TO #4
Aok :WORKFILE IS #1i;THREAD IS "PRODUCT" ,"CUSTOMER","ORDER",“OPTION"
t
! SORT THE STRUCTURE
t
SORT BY Prod_no,Order_no$,0ption_descs$
IF WFLEN(1) THEN Rep
DISP "THERE ARE NO ENTRIES IN THE STRUCTURE TO REPORT ON."
STOP
1
' INITIALIZE VARIABLES & PRINT REPORT HEADER
I
Rep:Sub_total=Total=Master_total=0
81=52=0
PRINT TAEK(30);"OUTSTANDING ORDERS LIST";LINC4)
PRINT "PRODUCT";SPA(B); "ORDER NUMBER";SPA(410); "CUSTOMER NAME";SPA(9);

"OPTIONS";SPA(8) ;"PRICE™;LIN(1);RPT$("=",79) ;LIN(1)

14614
1462
1463
1470
1480
1490
iS00
15410
1520
1530
1549
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640

t PRODUCE THE REPORT
!

FOR Z=1 TO WFLEN(1) -
READ #1;R1i,R2,R3,R4
PRINT TRAILER FOR ORDER (IF NEEDED)

(SKIP IF SAME ORDER AS REFORE, OR FIRST TIME THRU LOOP)

IF (R2=S2) DR NOT S2 THEN Nosub
PRINT USING Sub_image;Sub_total
Sub_total=0

PRINT TRAILER FOR PRODUCT (IF NEEDED)

(SKIP IF SAME PRODUCT AS EEFORE, OR FIRST TIME THRU LOOP)

2 = e

osub:IF (R1i=S{) OR NOT Si THEN Notot
PRINT USING Tot_image;VAL$(Prod_no),Total
Total=0

(continued)

Program Examples 3-11

1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
i%00
1940
1920
1930
1940
1950
1960
1970
1980
1990
2000
2040
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2420
2130
2140
2150
2160

'
! PRINT HEADER FOR PRODUCT (IF NEEDED)
'
Notot:IF Ri1=S1 THEN Skipi
DBGET (B¢, "PRODUCT",4,S¢(x),"@" ,Rufs,R1)
IF S(0) THEN Dberr
Si=R14
PRINT VAL$(Prod_no);" (";TRIM$(Desc$);")"
t
' PRINTER HEADER FOR ORDER (IF NEEDED)
!
Skipi:IF R2=S2 THEN Skip2
DEGET (BRs,"CUSTOMER",4,S(Xx),"8" ,Ruf$,R2)
IF S(0) THEN Dberr
PRINT TAE(20);0rder_desc$;TAE(38) ;Name$li,21];
S2=R2
!
! PRINT OPTIONS
!
Skip2:DEGET (K$,"OPTION",4,5(x),"@" ,Kufs$,R4)
IF S(0) THEN Dberr
PRINT TAE(60);
PRINT USING Itm_image;Option_no$,PO
Itm_image:IMAGE 10A,2X,5D.DD
!

! ACCUMULATE TOTALS
'
Total=Total+P0
Sub_total=Sub_total+PO0
Master _totaol=Master_total+P0
NEXT Z

! PRINT FINAL TOTALS

PRINT USING Sub_image;Sub_total
PRINT USING Tot_imnge;VAL$(Prod_no),Total
PRINT USING Mstr_image;Master_total
DISP "REPORT COMPLETE."
Sub _image:IMAGE 71X,8("-") / 74X ,S5D.DD /
Tot_image:IMAGE 70X,9("=") / 14X,"TOTAL ORDERS FOR *",10A,32 X,6D.DD /
Mstr_image:IMAGE // 341X,"TOTAL ORDERS",24X,"$"8D,DD / 70X,9("=")
sTOP
1
1 ERROR AND HALT TERMINATION ROUTINES
1
Dberr:DISP LIN(2);"STATUS ERROR " ;VAL$(S(0));" IN LINE";S(6)
STOP
Error:DISP LIN(2);"UNEXPECTED ™ ;ERRM$
sSTOP
Halt:PRINT LIN(2)
DISP LIN(2);"PROGRAM TERMINATED."
END

3-12 Program Examples

Itemized Options List Report (unsorted order)

OUTSTANDING ORDERS LIST

PRODUCT ORDER NUMEER CUSTOMER NAME OPTIONS PRICE

S0 (Tricycle)

110 Gissing, Malcomb 45.00

45,00

TOTAL ORDERS FOR S0 45,00
100 (Standard Ricycle)

104 Noname, Joseph 75.00

Horn 2.50

77.50

103 Hernandes, Jose 75.00

Light 5.00

Mud Flaps 7.25

Horn 10.00

Stripes 2.50

Fan 10.00

109.75

108 Arav ja, Luciano A, 75.00

Horn 5.00

80.00

TOTAL ORDERS FOR 4100 267.2S
300 (3-Speed Eicycle)

104 Houseman, Sean 110,00

Light 5.00

Super tire 1i8.00

133,00

TOTAL ORDERS FOR 300 133.00
S00 (S5-Speed Kicycle)

100 Smith, Thomas A. 125.00

Light S.00

HASKETLE 45.590

175,50

105 Sono, Jomo A. 125.00

Horn 2.50

Reflector 7.50

135,00

109 Hekker, Eart 125.00

125.00

TOTAL QORDERS FOR S00 435,50

(continued)

Program Examples 3-13

1000

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
112S
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

(10-Speed ERicycle)
i02

106

TOTAL ORDERS FOR 1000

Johnson, Sam
Chrome

Heining, Heinz
Light
Fasket

Dnlling, Jimmy

TOTAL ORDERS

150.00
12.50

162.50

150.00
10.00
15.00

Example Program 5: Listing Options in Unsorted Order

! OUTSTANDING ORDERS REPORT (I

INTEGER S(9),Product_no,Prod
DIM EB$142),P$040],Bufs$[470]
DIM Desc$[30],0rder_no$[301],
DISP »ekn,

ON ERROR GOTO Error

ON HALT GOTO Halt

E$=" SAD,SALES"
P$="MANAGER"

DEOPEN (BS$,P$,1,S(X))

IF S(0) THEN Dberr

PREDICATE Euf$ FROM "PRODUCT
DELOCK (B%,Kufs$,13,S(x))

IF S¢(0)> THEN Dberr

1 SET UP ALL APPROPRIATE RELAT

DBASE IS E$
IN DATA SET "PRODUCT™ USE Pr

NCLUDING ALL DETAIL)
_no

Name$!301,0ption_descs[10}
! CLEAR SCREEN

' SET UP ERROR AND HALT TRAPS

! OPEN DATA BASE

*,"CUSTOMER" ,"OPTION"

IONSHIPS

od_no,Descs

IN DATA SET "CUSTOMER" USE ALL

IN DATA SET "OPTION*" USE SKP
! SET UP THE WORKFILE

ASSIGN "XYZ" TO #1,Z

IF Z<2 THEN Ok

DISP "CAN'T ASSIGN THE WORKF
STOP

IF NOT Z THEN Aok

FCREATE "XYZ*»,130

ASSIGN "XYZ"™ TO #1

Aok :WORKFILE IS #4i;THREAD IS "CU
1

! SORT THE STRUCTURE
1

Ok

SORT RY Product_no,Order_no$
IF WFLEN(1) THEN Rep

DISP “THERE ARE NO ENTRIES IN THE STRUCTURE TO REPORT ON.™

STOP

1,0ption_descs,P0

ILE'™

! CREATE WORK FILE IF NECESSARY

STOMER ™

(continued)

3-14 Program Examples

rev: 6/79

1400
1410
1420
1430
1440
1450
1460

1
! INITIALIZE VARIAELES & PRINT REPORT HEADER
!
Rep:Total=Master_total=0
Prod_no=-1
PRINT TAE(30);"OUTSTANDING ORDERS LIST";LIN(1)
PRINT "PRODUCT™;SPA(B);“ORDER NUMBER";SPA(40);“CUSTOMER NAME" ;SPA(9)

"OPTIONS";SPA(B) ; "PRICE";LINC1) ;RPT$("-",79);LIN(L)

1464
1462
14632
1470
1480
1490
1500
1520
1530
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1720
1730
1740
1750
1790
18410
1820
1830
1835
1836
1840
184S
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1945
1946
1947
1950
1960
1970
1980
2000
2010
2020
2030
2040
2050
20690
2070
2080
2090
2100
2410
2120
2430
2140
21590
2160

]
1 PRODUCE THE REPORT
]
FOR Z=1 TD WFLEN(1)

READ #1;Ri

DBGET (B$,"CUSTOMER",4,5(X),"@" ,Euf$,R1)

IF 5(0) THEN Dberr

(SKIP IF SAME ORDER AS REFORE, OR FIRST TIME THRU LOOP)

!

1

!

! PRINT TRAILER FOR PRODUCT (IF NEEDED)

!

! (SKIP IF SAME PRODUCT AS BEFORE, OR FIRST TIME THRU LOOP)

t

Nosub:IF (Prod_no=Product_no) OR (Prod_no<0) THEN Notot
PRINT USING Tot_image;VAL$(Prod_no),Total
Total=0

!

! PRINT HEADER FOR PRODUCT (IF NEEDED)

L

Notot:IF Prod_no=Product_no THEN Skipi
DEGET (R$, "PRODUCT",7,S(%x),"®" ,Buf$,Product_no)
IF S(0) THEN Dberr
PRINT VAL$(Prod_no);" (";TRIM$(Desc¢);")"

t

' PRINT HEADER FOR ORDER

1

Skipi:PRINT TAB(20);0rder_no$;TAR(3B) ;Names$[1,211;
t

! PRINT OPTIONS
'
DEFIND (E$,"DPTIDN",i,5(%),"DRDER~ND",Drder_no$)
IF S(0) THEN Dberr
FOR C=4 TO S(S)
DBEGET (Bs$,*OPTION",S,S(x),"8" ,Hufs,D)
IF S(0) THEN Dberr
PRINT TAEK(60);
PRINT USING Itm_image;0Option_desc$,PD
Itm_image:IMAGE 10A,2X,SD.DD
1

' ACCUMULATE TOTALS
1
Total=Total+PO
Sub_total=Sub_total+P0
Master_total=Master_total+P0
NEXT C
PRINT USING Sub_image;Sub_total
Sub_total=0
NEXT Z

! PRINT FINAL TOTALS

PRINT USING Tot_image;VAL${(Prod_no),Total
PRINT USING Mstr_image;Master_total
DISP "REPORT COMPLETE."
Svb_image :IMAGE 71X,B(*~*) / 7i1X,SD.DD /
Tot_image:IMAGE 70X,9("=") / 14X,"TOTAL ORDERS FOR ",10A,32 X,&D.DD /
Mstr_image:IMAGE // 31X, "TOTAL ORDERS",24X,"$"8D.DD / 70X,9("=")
STOP
!
' ERROR AND HALT TERMINATION ROUTINES
)
Dberr:DISP LIN(2);"STATUS ERROR ";VAL$(S(0));" IN LINE";S(&)
STOP
Error:DISP LIN(2);"UNEXPECTED " ;ERRMS
STOP
Halt:PRINT LIN(2)
DISP LIN(2);"“PROGRAM TERMINATED,"
END

Program Examples 3-15

3-16

CHAPTER 4

Programming Considerations

Introduction

A great deal can be done toward speeding up SORT /250 operations by follow-
ing certain programming guidelines and by proper layout of data sets on the
media. This chapter presents factors which should be considered in program and
data base design to optimize sorting speed. Use of some factors will always result
in optimum sort speed. Use of other factors may increase or decrease speed,
depending on how they are implemented; trial and error will determine the
optimum combination for a given application.

Data Set/File Layout

Perhaps the most difficult parameters to optimize are those associated with file

placement on the disc. There are basically four parameters which effectdisc1/0
time:

Head settling time - the time needed to wait for oscillations in the floppy
head to damp out after dropping onto the media.

Seek time - the time necessary for the head to move from the track it is
currently on to the track where the required sector(s) reside.

Latency time - the time necessary to wait for the desired sector to be lo-
cated underneath the read head (worst case is one revolution of the disc).

Interleave factor - a measure of the number of physical sectors between
two logically-sequential sectors.

In general, control of the latency time is extremely difficult and not a factor worth
considering. Interleave factor is determined at floppy initialization; the default
interleave factor of four is optimized for the HP250 System. The interleave

factor for hard discs is not user controllable. Thus, only head settling time and
seek time are controllable.

Head settling time is only an issue on flexible discs, and then only when all data
sets in the thread and the workfile are not on the same volume. If more than one
volume is used in the sort, because of a multi-set thread, the data sets should be
split up so that the sets involved in the SORT or FIND alternate between the
available volumes. For the case where no FINDs or SORTs have been done on
the workfile (REC=0), all sets are involved in the operation and should be
alternated between the volumes. If the workfile has pointers in it already, only
the data sets from which a sort item originates (in the case of SORT BY) and only
those data sets which have an IN DATA SET active on them (in the case of FIND)
are considered to be actively involved in the SORT or FIND. Only those sets
involved need to be alternated.

Clearly, it may not be possible to satisfy the above criteria when more than just a
single FIND or SORT is done. In this case, experimental placement of the data
sets may be done, although it may not be worthwhile when relatively few head
lifts occur.

The other factor which slows down execution speed is head movement. There
are two simple rules to follow to minimize head movement. First, insure that the
DBCREATE is issued on an essentially ‘‘repacked’’ disc or that all but one of the
unused areas on the disc are smaller than the smallest data set. This ensures that
the data set files will be created one after the another on the media (regardless of
physically where their names appear in the directory). Thus, no intervening files
are present to lengthen the seek.

The second rule is somewhat more complicated. It involves knowing what kinds
of FINDs and SORTs will be done. Basically, the sets in the schema should be
created (via DBCREATE), so that sets occurring on the same volume which will
be involved in the same thread are as close as possible on the disc. This reduces
the number of intervening sets and, thus, the length of the seek.

One comment relative to workfile placement: the workfile should be kept as
small as possible while still ensuring that it has sufficient size (see Appendix C for
details). Certain information in the workfile (mostly of a temporary nature) is
stored near the end of the file during a SORT BY. Pointers are stored near the
beginning of the file. If the workfile is too large, extra tracks will have to be
skipped to get from the pointers to this temporary information. Also, note that if
the workfile is purged and re-created for each use, it may be placed at different
parts of the disc, thus producing varying execution times due to random head
movement.

4-2 Programming Considerations

Software Optimizations

The most significant gains in terms of speed improvement can be made by
following some simple rules in designing programs using SORT /250 opera-
tions. There are essentially three classes of rules which will be covered:

e Generally true rules.

e Rules which are to be used if no FINDs, SORTs or PRINT #s have been
done on the workfile (REC=0).

e Rules which are to be used if pointers have been put i
(REC+#0). ;

e workfile

General Rules

The most important rule is to keep thread length minimal. In fact, if thread length
can be kept to 1, the SORT /250 System will use a large number of special
optimizations that cannot be otherwise used. Also, if either the first or the last set
in the thread is a master and the only item that will be ever used out of it for
FINDing or SORTing is the search item, it can be eliminated. This is possible
since that item also exists in the associated detail thus enabling a calculated
access DBGET to be used to get the additional information out of the master.

The second rule deals with execution of SORT BY. The function for execution time of
SORT BY is only piece-wise linear. For small sorts® the time is generally dependent on
the time needed to read the entries from the data sets in the thread. If a merge is
required, however, time increases dramatically. There is no precise formula for de-
scribing sort times; however, it can be assumed to be the same in terms of shape as the
workfile size graph (see Appendix C). Discontinuities in the execution time function
will occur at the same places as they do in the workfile size function.

The last rule is to turn off all possible IN DATA SETs (via the FREE option)
before doing a FIND. If a particular IN DATA SET is active for some data set in
the thread and no values from that set are needed to evaluate the selection
expression, FREEing that IN DATA SET stops FIND from reading information
from that set.

1 A small sort is defined as one which can be performed entirely in memory (i.e.. no merges will be required [this can be detected

via use of the SIZE GRAPH function in the WORK program described in Appendix CJ).

Programming Considerations 4-3

Rules When REC =0

If an item occurs in more than one set in the thread (generally because it is a
search item), it should be selected to come from the set closest to the start of the
thread.For FIND it is very important to notice that the value of the conditional
expression cannot be evaluated until all appropriate sets {ones with IN DATA
SETs active) have been read. Thus, if the needed set can be restricted to those
near the head of the thread, the expression can be evaluated sooner.?

When there are no pointers in the workfile, SORT BY and FIND statements must
do a serial scan of the first set in the thread. This means the execution time of a
SORT BY or FIND is not strictly dependent of the number of entries, but where
the last non-empty record in the set occurs. In the case of master data sets
where, despite a small number of entries, the last record may be very near the
end of the set, the increase in execution time is particularly pronounced.

Rules WhenREC + 0

Here, again, it is a good idea to deactivate all unused IN DATA SET relations
pertaining to sets in the thread. In the case of SORT BY, the fewer sets involved
the better. Remember that if one of the sort items is a search item it may be
possible to select it from one of several sets. Select it from the set which allows
you to deactivate the most IN DATA SETs.

In the case of FIND the same things as mentioned for SORT BY also apply.
However, breaking up a complex FIND separated by ANDs into several FINDs
may increase speed if (and only if) some of the clauses separated by the ANDs
do not involve the same sets or involve fewer sets than the other clauses. If this is
the case, the clauses which have the fewest sets involved and the lowest proba-
bility of being true should be executed first. Remember, again, that the only way
FIND knows which sets are involved is by which IN DATA SETs are active.

Clearly, most of these rules assume the programmer has a good understanding
of the form the data will take (in terms of probable events). When in doubt,
perform tests.

REC =90 REC # 0
(no previous FIND, SORT BY or PRINT #) (previous FIND, SORT BY or PRINT #)

FIND Keep thread length short. Make sure the last Make sure IN DATA SETS are active on only

set with an IN DATA SET active on it is as those sets from which information must be
close to the start of the thread as possible. retrieved.

SORTBY Keep thread length short. Make sure sort keys come from as few sets as
possible.

Always:
1) Minimize thread length.

2) Minimize complexity of the FIND selection expression.
3) Minimize total sort key.

2 |f the FIND condition is a series of conditions separated by ANDs, it may be beneficial to break them up into separate FINDs. In
general, if some of the clauses pertain only to the first set in the thread and they will select significantly less than all the data
available, then it is best to construct two FIND statements (the first one pertaining only to the set at the head of the thread).
Remember when doing this 1o deactivate and reactivate the IN DATA SET relations {via FREE) to maximize effect.

4.4 Programming Considerations

PAGE 1

DNV G -

$PAGE

$CONTROL
$TITLE

HP250.A

EDITOR

LIST, TABLE ,ROOT

“Sales Analysis Data Base”

BEGIN DATA RASE

PASSWORDS :

ITEMS:

SETS:

NAME :
ENTRY:
CAPACITY:

NAME :
ENTRY
CAPACITY:

NAME :
ENTRY:

CAPACITY:

NAME :
ENTRY:

CAPACITY:

SAD; <((CUSTOMER SALES ANALYSIS DATA KASE))

10 SALESMAN;
15 MANAGER ;

3 SECRTARY; ((WILL HAVE READ ACCESS ONLY))
ADDRESS, 2X30; <(2 LINES OF ADDRESS ALLOWED))
cITY, X16;

COUNTRY, X12;

DATE, 1; <{PATH FOR ORDER-DATE, SHIP-DATE))
NAME , X30;

OP TION-DESC, X410

OPTION-PRICE, L;

OPTION-TYPE, 1;

ORDER-DATE, 1; ((HUST BE YYMM))
ORDER-NOD, X160

PRICE, L;

PRODUCT-NO, 1;

PROD-DESC, X30;

REGION, Xb;

REGION-DESC, X30;

REGION-TYPE, 1;

SALESPERSON, X4;

SHIP-DATE, 1; C{MUST EE YYHM))
STATE, Xb;

ZIP-CODE, X8;

DATE ,AUTOMATIC(3/10,15) ,SALES;
DATE(2);
S1;

ORDER ,A(3/10,15);
ORDER-NO(2)
101;

PRODUCT ,MANUAL (3,10/15) ,SALES;
PRODUCT-NO(1),

PROD-DESC;

i11;

LOCATION,M(3,10/15) ,SALES;
REGION(1),

REGION-DESC,

REGION-TYPE;

17;

A-1

PAGE 2 ' HP250..6.A EDITOR

3 NAME ; OPTION,D(3/10,15);
56 ENTRY : ORDER-NO (ORDER) ,

57 OPTION-DESC,

57.1 OFTION-PRICE,

57.2 OPTION-TYPE;

sg CAPACITY: 300;

59

60

61 NAME : CUSTOMER,DETAIL(3/10,15);
62 ENTRY: ORDER-NOCORDER),

63 NAME,

64 ADDRESS,

65 CITY,

66 STATE,

67 COUNTRY,

68 Z1P-CODE,

69 ORDER-DATE (DATE) ,

70 SHIP-DATE (DATE) ,

74 REGION(LOCATION),

72 PRODUCT~-NO(PRODUCT) ,
73 PRICE,

74 SALESPERSON;

75 CAPACITY: 100;

76

77 END.

A-2 Schema Listing

rev: 6/79

211

212

230

231

232
233

234

235

236

237

238

No DBASE IS statement active or bad data base specifier. Attempt to
execute an IN DATA SET or WORKFILE IS # without previously execut-
ing a DBASE IS or the data base that the DBASE IS was executed for has
been closed. Or bad data base specified in DBASE IS.

Specified data set not found. An improper set name or number was
specified.

Improper nesting of SORT /250 statement. An attempt was made to
execute a SORT BY, FIND, IN DATA SET, DBASE IS, etc. while nested

inside one of these statements. This can only happen if an expression uses
a multi-line function subprogram.

Cannot reactivate workfile. An attempt is made to reactivate a workfile by
using the WORKFILE IS # statement with no thread list, but the spcified
file is not a workfile.

Improper mode for SORT BY. One of the data sets in the thread is not locked.

No read access to specified data set, or data set not currently mounted.
One of the data sets in the thread is not accessible with the current
password or is not mounted.

Missing or improper data set linkage. For WORKFILE IS #, two adjacent
sets in the thread list have no path between them, or the chain id specified
does not refer to an existing chain.

No WORKEFILE IS # statement active. Attempt to execute a SORT BY or
FIND when no workfile has been declared or the workfile was closed
(either by de-assigning it or by DBCLOSE).

Improper data item or data item not found. The item specified in the
LINK parameter of WORKFILE IS # does not refer to an item for the
specified set or the given item in the SORT BY list is not linked via IN
DATA SET to an item in one of the sets in the thread.

Work record for sorting exceeds 256 bytes. An attempt was made to
issue a SORT BY where the sum of the length of the sort fields plus two
times the thread length exceeded 256.

Improper synthetic linkage. The item in the LINK parameter of WORK-
FILE IS # either does not match the type of the search item in the master set
following the LINK or it is not the first sub-item. Also, LINK is applied to a master
set, or the set following the LINK is not of type master.

B-1

239 Insufficient space in workfile. The size of the workfile is insufficient to
perform the desired operation.

240 Program lost due to disc failure. A disc error occurred when trying to
re-load user memory from the workfile after completing a SORT BY. This
will cause the system to execute SCRATCH A.

241 Improper operation attempted on workfile. Attempt to position the word
pointer of a workfile to someplace other than word 1. Also, attempt to print
an array on a workfile.

242 Improper READ # or PRINT # on workfile. A complete logical record
was not read or written. The word pointer is reset to word 1.

243 Workfile contains invalid information. Attempt to access the workfile via
SORT BY, FIND, READ # or PRINT # after its contents have been de-
stroyed by a disc error or % stopping a FIND or SORT.

245 SORT not allowed. INP Controller in use.

B-2 Error Codes

Determining Workfile Size

A facility is provided to determine the length of a workfile. This is accomplished
by using the WORK program supplied on the Operating System Disc. To run the
WORK program, execute:

Two options are provided by this program, one for calculating a precise
maximum size for specific values and one for plotting workfile size over a range.
Press the appropriate softkey (or the corresponding keyboard SFK) to run the
required function.

If EXACT FILE SIZE is selected, the following sets of prompts appear on the
display. Simple ENTER the requested information (a,b,c and d) and the prog-
ram will return a size for the workfile in sectors (256 byte records):

X represents the value returned for the minimum length workfile, in 256-byte
records, needed to perform the specified sort.

Press EXIT to return to the main menu.

1f SIZE GRAPH is selected, five prompts will appear on the display:

a

After entering the required data, a summary listing is displayed. Press the PRO-
CEED softkey to plot a graph showing the workfile size as a function of the
number of records sorted. Notice that the graph is a non-linear function. Press
EXIT to return to the main menu.

Four possible symbols are used to plot the graph and each one has a unique
meaning described as follows:

. - Sort can be accomplished in memory.

+ - One-pass merge required.

+ - Two-pass merge required.

- - Non-processable sort. Requires greater than 65534 sectors of work space.

Two sample graphs are shown next, each for a thread length of 1 with one sort
field. The first graph shows a sort field length of 20 bytes, while the second
shows a length of 200 bytes.

Press anytime during program execution to exit the WORK program.

NOTE
The WORK program assumes that a sort is to be per-
formed. If only FINDs are performed, the workfile size
is MAX ((T+*L+127) DIV 128, 1), where T is the thread
length and L is the number of entries found.

C-2 Workfile Size

WORKFILE INFORMATION PROGRAM

HP250.2.A SIZE GRAPH
56 +44 4444444
9} THREAD
W LENGTH
0 1
P 4594 [T TSR A
K
£ 4 OF
1 FIELDS
L 3491 P e 1
E
[BYTES
1 2391 4444444444444 4444 IN
Z FIELDS
E 20
123 T T T —
1000 2008 3016 4024 5032
& OF RECORDS (MAX & SORTABLE: 65534)
DIFFERENT ! EXIT
DATA :
Computer
» Museum
WORFFILE INFORMATION PROGRAM
HP250. 2.A S1ZE GRAPH
506864) ean
e THREAD
W whhe LENGTH
o} 12232 1
R 38276 ¥
¥ NN
F KK KK & OF
1 »n FIELDS
L 25866 AR 1
[AR KONk
nokok
s +H44 BYTES
I 134564 +444 IN
V4 +444 FIELDS
E +i+4 200
+444
1046 T n 1]
1000 13256 25512 37768 50024
& OF RECORDS (MAX & SORTABLE: 64451)
RN
DIFFERENT : : i : : o EXIT
DATA | | H | , |

Workfile Size C-3

Sort Field Size

The number of bytes in the sort fields is the sum of all the sort field lengths.

These are:

Field Type

Length in Bytes

INTEGER
SHORT
REAL
STRING

2
4
8

length in characters

With certain local-language keyboards, however, there is some extra overhead
because of the way sorting is done. For French, Italian and Spanish systems, four
bytes per string should be added. For German systems, the effective length of
each string should be computed via the formula:

Actual Length = L + 2+((L + 31)DIV 32)

where L. = length of string in characters

C-4 Workfile Size

1000
10410
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
12290
1230
1240
1250
1260
1270
1280
1290
1300
1340
1320
1330
1340
13S0
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600

Workfile Size Function

The WORK program defines a function to generate the graphs shown in Appendix D.
Refer to the following listing for operational detail.

FUNCTION TO COMPUTE NUMBER OF RECORDS NEEDED

ENTRY: Thread_len is @ number from 1 to 10 specifying the number

of sets in the thread.

Wrsz is an even number between 2 and 2S6-2%xThread_len which

Num_keys

Num_recs

EXIT: The value

specifies the sum of the lengths of the sort keys
in bytes.

is a number between 4 and 10 specifying the number
of sort keye,

1S @ number between 0 and 65534 specifying the
maxiMmum number of records to be sorted.

returned is the number of sectors (256 byte logical

records) needed to perform the indicated sort. If a -1 it
returned it means that one of the parameters was out of range,

If the re

turned value é&xceeds 65534, the sert will be unprocese-~

able, since 250 files cannot contain more than 65534 sectors.

DEF FNWf_len(Thread_len,Wrsz ,Num_keys,Num_recs)

! Convert Wrs

z (uin bytes) to Wr_size (in worde’,

Wr_size=Wrsz/2
]

! Test parameter ranges
Test=FRACT(Thread_len)+FRACT(Wr_size)+FRACT(Numnkeys)+FRACT(Num_recs)

Test=Tle=st OR
Test=Test OR
Test=Test OR
Test=Test OR
IF Test THEN

1

I Dafine Wf

Wf_len=-1
ELSE

'

({Thread_len<1i) OR (Thread_len’>il))
((Wr_size(1) Ok (Wr_size+Thread_len>128))
((Num_keys<1) OR (Num_keys>10))
((Num_recs<0) OR (Num_recs?>65534))

_len as -4 since some of the parameters were bad.

! Define the number of sectors needed to store user memory.

Ps=121
! Calculate

memory available for sorted records.

Ms=413388-40%kThread_len-4%Num_keys

! Calculate
Rim=Ms DIV
! Calculate

maximum number of records that can be sorted in memary.
(Wr_size+Thread_len+i)
numMber of secters needed to store pointers.

Psec=(Thread_lenXNum_recs+1i27) DIV 128
IF Num_recs(Rim THEN
1

! Define workfile size for case where the sort can be
! accomplished i1n memory with no need for merges.
Wf_len=Ps+MAX(Psec,1)

ELSE
'

! Set up parameters for sort merge.

! Define the magic number,

Kiim2=133%11-2

! Make quesses concerning when merges will be required.

! These guesses are necessarily inaccurate since {for

! thread lengths greater than 2, SORT/2S50 really has

' no way of predicting the number of records to be sorted.
Maxpos=MAX(32767%(Thread_len)>2),(Num_recs+1) DIV 2)
Maxsseg=(Kiim2-2X(Maxpos DIV Rim)) DIV 10

rev: 6/79 (new page and text)

Determine how many work records can a put in one sector.

Workfile Size C-5

16190 Bf=128 DIV (Wr_size+Tnread_len)

1620 ' Determine how many sectors are needed to dump a memory full
1630 ! of work records,

16490 RPpo=(Rim-1) DIV Bf+1

1650 ' Calculate space needed if miscellaneous records 1IN memory must
1660 ! be dumped before the iast pass (or only) pass merge can be
1670 ' performec.

1680 Mslop=(Nus_recs MOD Rim—1) DIV kt+1

16990 ir Num_recs(MaxssegkRim THEN

1700 '

1710 ! Define workfile size for case where only a one pass merge
1720 ! is required to accomplish the sort,

1730 Uf_len=Ps+Psec+Num_recs DIV RimXRpb+MslopX(Num_recs DIV Rim>13)
1740 ELSE

1750 !

1760 ' Define workfile size for case where one or more intermediate
1770 ! merges are required to accompiish the sort.

1780 !

1790 ! Determin: how many sectors are needed to store the results
1800 t of an intermediate merge.

1810 Mrpb=(11%XRim—1) DIV Ef+i

1820 ! Calculate the amount of slop left ocver after the last merge,
1830 Xtra=MslopX((Num_recs/Rim—Maxsseg) MOD 11>10)

1840 ! Determine how many intermediate merges will be performed.
1850 Lsegs=(Num_recs/Rim-Maxsseg) DIV 11+1

1860 ' AT LAST! Define the required size.

1870 Wf_len=Ps+Psec+MaxssegXRpb+Xtra+Mrpbxisegs

1880 END IF

1890 END IF

1900 END IF

1910 RETURN Wf_len

1920 FNEND

C- 6 Workfile Size {new page and text) rev: 6/79

Examples of SORT /250 Performance

This appendix provides the user with an intuitive ‘‘feel’” for the time taken by a
certain class of common operations. The data presented here is by no means
intended to be comprehensive.

The following graphs compare number of records sorted versus sort time. The
particular data base used was one constructed specifically for producing these
graphs. There is one graph for each type of disc available with the HP250
system. The lines on each graph correspond to different sort field lengths.

The data base consists of a single stand-alone detail data set whose media record
length is 100 bytes. The workfile length is 2000 sectors (no attempt was made to
compute an optimal workfile size). The last graph shows the resulting minimum work-
file sizes.

In the case of the flexible disc, the workfile and data base were on the same volume. In
this latter case, however, no attempt was made to control the relative placement of the
data set and the workfile. The workfile was empty at the start of each sort (REC=0).

Note that there are jumps in the time function for a particular field length. These
jumps occur at the same place in the sort time function as in the workfile size
function (see Appendix C). Since jumps occur everytime user memory is filled with
records, the contents of memory must be written to the workfile before sorting can
continue. The location of these jumps can be determined as follows:

Let:
I = number of sort fields

B = Sort field length (sum of all sort fields)
T = number of sets in the thread

Then define:

M = (26776—-20-T—8+I) DIV (B+2+T+2)

Jumps occur at:
M, 2M, 3M, ..., 13M

As the multiplier or M exceeds 13, however, the jumps move down slightly.

rev: 6/79

SORT TIME MIN)

SORT TIME MIN)

SORT TIME (ON A FLEXIBLE DISOC) (Sort field ilength=40 bytes)

g—
e-
7-
20 byles
6 (20 bytes)
5 (10 bytes)
(6 bytes)
4 (2 bytes)
3-.
2-
1..
B T T 1 T T T T T T L
B 1k 2k 3k 4k Sk Bk 7k B8k Sk 18k
RECORDS SORTED
SORT TIME (ON A 7886>
3—.
2. 51
2_
(Sort field length=40 bytes)
1. 549
1-.
(20 bytes)
(10 bytes)
(6 bytes
5 yles)
(2 bytes)
2 T T L T L T T T T —
%] 1k 2k 3k 4k Sk 6k 7Tk B8k Sk 18k

RECORDS SORTED
D-2 Performance (new page and text) rev: 6/79

SORT TIME (ON A 7918

2. 57 (Sort field length=40 bytes)

2~

(20 bytes)
1. 57

(10 bytes)
14 (6 bytes)
(2 bytes)

SORT TIME (MIN)

L 1 1 ¥ Al)

T
2 1k 2k 3k 4k Sk 6k 7k 8k 8k 18k

RECORDS SORTED

WORKFILE SIZE
2000+
(Sort field length =40 bytes)
1800+
1680
1488+
1288

1000 J—————(zo bytes)

880

(10 bytes)
600 H

(6 bytes)
400 r J—r j — (2 bytes)
zoet [] [T F

WORKFILE SIZE (SECTORS)

%] T T T T LI —T T T

L 1
2 1k 2k 3k 4k Sk 6k Tk 8k 9k 1Pk

RECORDS SORTED
rev: 6/79 (new page and text) Performance D-3

[Faciano

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA
Telecira
Empresa Tecnica de
Equipamentos
Electicos SARL
R Barbosa Rodngues 42101
Caixa Postal 648

Tel 35?‘56
Cabte TELECTRA Luanda

AUSTRALIA
Hewleft-Packarg Austraia
Py Lig
31-41 Joseph Street
Blackburn. Victoria 3130
PO Box 36
Doncaster East Victoria 3109
Tel 89-6351
Telex 31-024
Cable HEWPARD Meibourne

Hewieti-Packard Austraha
1d

31 Bridge Street
Pymbie

New South Wales. 2073
Tel M9-656

Teiex 2156

Cabie MEWPARD Sydney

Hewieft-Packard Austrahia
Lig

153 Greenhill Roag
Parkaide S A 5

Tel 272-5911

Telex 82536 ADEL

Cable HEWPARD AOELAID

Ncgm Packard Ausiraiia

1 gmhng Highway
Nedlands W A 5009
Tel 86-5455

Telex 93859 PERTH
Cable HEWPARD PERTH

Hewietl-Packard Austraha
Pty Ll

121 ‘lmlongon Street

Fyshwick AET 2600

Jel 852733

Telex 62650 Canberra

Cable HEWPARD CANBERRA

Hewlet! Packard Austraha
Pty Ltd

Sth Floor

Teachers Umon Building

HONG KONG

Schrar & Ca (Hong Kong! Ltg
PO 8Box 297

Connaughi Centre

39h #ioor

Connaugnt Road. Centrat
Hong Kol

Te H 755%‘ 5

Telex 74766 SCHMC HX

Cable SCHMIDTCO Hong Kong

INDIA

Bive Star 110
Kastort Buildings
Jamshed;: Tata Rd
Bombay 400 020
Tel 2950 21

Teiex 0012156
Cable BLUEFROST
Bive Star Lto

Sanas

414 2 Vir Savarkar Marg
Piabhadev.
Bombay 400 025
Tel 4578 87

Telex 011-4093
Cable FROSTBLUE
Biue Star Ltg

Bana Bos House
Prabhadev:
Bombay 400 025
Tel 457301

Teiex 011-3751
Cabie BLUESTAR
Bive Star L1¢

7 Hare Stree

PO Box 506
Calcutta 700 001
Tel 23-0121

Teiex 021-7655
Cabie BLUESTAR
Biue Star Ltd

7th & 8th Figor
Bhandan House

91 Nehey Prace
New Delhi 110024
Te! 634770 & 635166
Telex 031-2463
Cabie BLUESTAR
Blue Star Ltg

Blue S1ar House

11 11A Magarath Roac
Bangalore 560 025
Tel

Telex 043-430
Cable BLUESTAR
Bive Star Ltg
Meeaksh) Mandiran

Biue Star Ltd

2 34 Kodambakkam High Road
Madras 600034

Ter 82056

Telex 041-379

Cable BLUESTAR

INDONESIA
BERCA Indonesia P T
PO Box 496 Jit
JLNeADdU! Muis 62

Jakarts
Tel 40369 49886 49255 356038
JKT 42895
Cabie BERCACON
BERCA tndonesia P {
63 JU Raya Gubeng
Surabays
Tel 443

ISRAEL

Elecironics & Engineening Div
of Molorola Istael Ltd

17 Kremenetski Street

PO 8ox 25016

TekAviv

Ter 38973

Teiex 33569

Cable BASTEL Tel-Aviv

JAPAN

Yokogawa-Hewlen-Packatd Ltg

Ohasnr Buitding

59-1 voyog: 1-Cnome

Shibuya-ku. Tokyo 151

Tet 03-370-2281'92

Telex 232-2024YHP MARKET
TOK 23-724

Cabie YHPMARKET

Yokogawa-Hewlett-Packard Lig

Chue Bidg 4th Floor

4-20 Nishinakagma S-cnome

Yodogawa-ku Dsaka-sti

Osaks 532

Tel 06-304-6021

Yokogawa-Hewlen Packarg Ltg

Naxamo Buitaing

24 Kam Sasapma-cho

NakaTura-ku. Nagoya 450

Tet (052) 57¢-5171

Yokogawa-Hewlett-Packard Ltd

Tanigawa Building

2-24-1 Tsuruya-tno

Kanagawa-ku

Yokohsma. 221

Yokogawa-Hewlet!-Packarg Ltd
Kumagaya Asani

Hackijuns Bunging

4th Floor

3-4 Tsukuba

Kumagaya Satama 360
Tel 0‘?;-2‘-6563

KENYA

Technicat Engineenng
Servicestt A iLtd

PO BOI 18311

Nair

Tel 557726 556762

Cable PROTON

Medical Oniy

International AeradiofE A Ji1d

PO Box 19012

Naitob Airpon

Nairobi

Tel 33605556

Telex 22201 22301

Cable INTAERIO Nairob:

KOREA
Samsung Electronics Co . Ltd

20th FI Dongbanq Bidg 250. 2-KA

CPO Bo
’hepyunq Ro Cnung Ku
Seoul

Tel (23) 6811
Telex 22575
Cable ELEKSTAR Seou!

MALAYSIA

Teknk Muty San Bhd
2 Lorong 13 6A
Sectign 13

Petaiing Jaya Selangor
Tel 54994.54916
Telex MA 37605
Prole! Engingering
PO Box 19

Lot 259. Satok Road
Kuching Sarawak
Ter 24

Cable PROTEL ENG

MOZAMBIQUE

AN Goncalves Lta

162 1 Apt 14 Av D Luts
Caima Postat 107
Lourenco Marques

Tel 27091, 27114

Telex 6-203 NEGON Mo
Cable NEGON

NEW ZEALAND
Hewlen-Packara (N 2) Lid

Anatytical Medical Only
Medical Supphes N 7 Ltd
Sceentiic Owision

79 Carhon Gote Ra . Newmarket

P 0 Box 1234

Cabie DENTAL Auckiang
Analytical Medical Only
Medical Suppives N Z Ltd
PO Box 1934

147-161 Tory St
Wellington

Tei 850 799

Telex 3858

Cable DENTAL. Welington
Analyncal Medical Dnly
Medicai Suppies N 7 ttd
PO Bor 309

239 Stanmare Road
Chnstchurch

Tel 892-019

Cable DENTAL Chnistchureh
Anatytical Meaical Only
Medical Supplies N 2 Lig
303 Great King Street
PO Box 233

Ounedin

Tet 88-817

Cabie DENTAL Dunedin

NIGERIA

The Electronics
Instrumentations tid

N6B 770 Oyo Road

Oiwseun House

P MB 5402

Ibadan

Tel 61577

Teiex 31231 TEWL Nigenia

Cabie THETEIL ibagan

Tne Electironics Instrumenta
fions L1g

144 Agege Motor Road Mushin

PO Hox 6645

Lagos
Cable THETEIL Lagos

PAKISTAN

Mushkb & Company. Ltg
Oosman Chambers

Abduliah Marpon Road
Karachi 3

Te! 511027 512927

Teiex 2894

Cabie COOPERATDR Karach:
Mushko & Company Llig
388 Satefite Town

RHODESIA

Field Technicat Saies
45 Kewin Road Non
P 0 Box 3456
Salisbury

Ter 705231 (5 tnes
Teiex RA 4122

SINGAPORE

Hewiett-Packard Singapore
(Pte) Lt

1150 Depot Roac

Alexand-a P D Box 58

Singapore 4

Tel 270-2355%

Teiex HPSG RS 21486

Cable HEWPACK Singapore

SOUTH AFRICA

Hewlett-Packarc South Atnica
Pty Lt

Prvate Bag Wendywooo

Sangton Transvaa 2144

Hewiett-Packard Centre

Daphne Stireet Wendywo0d

Sandton Transvaal 2144

Tel B02-10408

Telex 8-4782

Cable HEWPACR JOHANNESBURG

Service Depanment

Hewleni-Packard South Atrica
(Pty] Lig

P D Box 39325

Gramiey Sandton 201§

451 Wynberg Extension 3

Sandton. 2001

Tel 636-8188°9

Telex 8239t

Hewlen-Packard Souin Africa
(Pty 3. L1g

PO Bor120

Howard Place Cape Prownce 7450

Pine Park Centre. Forest Drive
Pinelands Cape Province 7405

TAIWAN

Hewlen-Packard Far East 117
Tarwan Brancn

39 Chung Hsiao West Roa:
Sec 1 7tn Fioor

Teipei

Tel 3819160-4

Cabie HEWPACK TAIPLI
Hewieft-Packara Far East t17
Taiwan Brancn

68-2 Chung Cheng 3ra Roa®
Ksohaiu

Tet (07) 242318-Kaohswung
Anaiytical Only

San Kwang insttuments Cc .2
No 20 Yung Sui Road
Teipei

Tel 371571-4 (5 unes)

Telex 22894 SANKWANG
Cable SANKWANG TAIPE|

TANZANIA

Medical Onty

International Aeradio (€ A 1 =2
PO Box 861

Oar o3 Salasm

Tel 21251 Ext 265

Telex 41030

THAILAND

UNIMESA Co Lig
Eicom Research Building
2538 Sukumvit Ave
Bangkok

Tel 3932387 3930338
Cable UNIMESA Bangrok

UGANDA

Medical Onty

internavonal Atvammi AL
PO Box 257

Kampals

Tel 54388

Cabie INTAERIO Kampala

ZAMBIA
R J Titbury 3Zamma) Lta

495-499 Boundary Streel Tel 045-312-1252 PD Box 9443 R,\nl indi Ter 53 7955 thy 9 PO Box?

Svﬂn%mll 4030 Queenslang ?:SE:;;"S;N Ganan Ra Teiex 382-3204 YHP YOK Courtenay Piace }J:‘m:‘ﬂz:dus Rawalping: Telex 57-0006 #:‘;;7‘93

Tel 1544 Tel 32069 32161 32282 Yokogawa-Hewleft-Packacd L1d we||ll\9‘o“ Service Department Coble ARIAYTEE. Lusaka

Cabie HEWPARD Brisbane Telex 0885514 Milo Mitsu Builging 877-199 PHILIPPINES Hewlen-Packarg South Atrca

GUAM Cabie BLUESTAR 105 Chome-1.San-no-maru Cable HEWPACK Weliinglon The Dniine Advanced Pty) L

"u 1P Cal Dnt Biue Star Ltd Wito Ibarag: 310 Hewlen-Packard (N Z § Lig Systems Cotporation PO Box 37099 OTHER AREAS NOT LISTED.CONTACT:

Gmaue:c::aTS oy ne 19117 Tet 0282-25-7470 Pakutanga Professional Centre Rico House Overport Durban 4067 Hewteti-Pacxard {mercontmena

Jay Ease Buudmaw%zom 210 Saropimi Dev: Roaa Yokogawa-Hewleft-Packard L10 267 Pakuranga Highway Amorsolo cor Herrera St Braby House 3200 Hivvew Ave

PO Box 8947 Secunderabad 500 003 Inoue Burlding Box 51092 Legasp: Village. Makaty 641 Rigge Roac Paio Ao Catomia 94304

Tamuning 96911 Tet 70126 70127 1348-3 Asahi-cho 1-chome Pakurangs Metro Manila Durban 4001 Tel (415) 4%6-1501

Tel 6464513 Cable BLUEFROST Atsugi. Kanagawa 243 Tel 569-6351 Tel 85-35-81 85-34-91 Tet 887478 TWX 910-373-1267

Cable EARMEO Guam Tetex 015-459 Tet 0462-24-0452 Cable HEWPACK Auckland Teiex 3274 ONLINE Tewr 6-7954 Cabie HEWPACK Palo Aho
ONTARIO

::‘:1:\"?7;:1”0 (Canada) Lta Hewtetl-Packard (Canada) Lta

11620A - 1681h Street 1020 Mornsen Dr

EdmontonT5M 319 ?ﬂlwl K2H BK7

Tel (403) 452-3670 MANITOBA el (613) B20-6483 QUEBEC

TWX 610-831-243t

Hewleft-Packard Canadal Ltd
210.7220 Fisher St S E

Caigery 12H zua
Tet {403) 253-2713
Twx 60-821-6141

BRITISH COLUMBIA
Hewietr-Packard (Canada) Ltd
837 £ Cordova Street
Vancouver V6A 3R2

Tel (604) 254-0531

TWX 610-922-5059

Hewlen-Packarg (Canada) Ltg
513 Century St

S1 James

Winni A3H DLB

Te! 1204) 786-7581

TWX 610-671-3531

NOVA SCOTIA
Hewiett-Packard (Canada) L1d
800 windmdl Road
D.mmmm 838 \Ll

Tel (902) 4

TWX 610~ 27! 4482 HF)(

TWX 610-563-1636
Hewlet-Packard (Canada) Ltd
6877 Goreway Drive
Misaissaugs L4V 1M8

Tel (416} 6/8-9430

TWX 610-492-4246

Hewient-Packard (Canada) Lid
275 Hymus Bivd

Poinle Claire HIR 167

Ted 1514} 697-4232

TWX 610-422-3022

TLX 05-821521 HPCL

FOR CANADIAN AREAS NOT LISTED:

Contac! Hewien-Packard (Camaca:

Ltd i Mississauga

CENTRAL AND SOUTH AMERICA

ARGENTINA
Hewlen-Packard Argentina
SA

Av Leandro N Alem 822 - 12
1001 Buenos Aires

Tet 31-6063 4.56 and 7
Teiex 122443 AR CIGY

Cable HEW/PACK ARG

BOLIVIA

Casa Kaviin S A-
Calle Potos: 1130
PO Box 500

» Paz
Te! 41530 53221

2
Telex CWC BX 5298 1TT 3560082

Cable KAVLIN

BRAZIL
Hewler-Pacaard do Brasi
teC Ltoa

Aveniga Rio Negro 980
Alphaviie

06400Barueri SP

Te! 4293222

Hewlen-Packard do Brasi!
ieC L1da
Rua Padre Chagas 32
90000-Porto Alegre-RS
Tel (0512) 22-299B. 22-5621
Cable HEWPACK Potto Alegre
Hewient-Packard do Brasi
1EC Luida
Ruz Siquerra Campos. 53
Copacabana
20000-Rio de Janeito
Tel 257-80-%4-00D (021)
Telex 391-212-1905 HEWP-BR
Caple HEWPACK

Rio de Janeuo

CHILE

Caicagni y Melcalle L|da
Alameda 580-0t

Casia 2118

Santiago. 1

Tel 398613

Telex 3520001 CALMET
Cabte CALMET Sannago

COLOMBIA

Instrumentacian

Hennk A Langebaex & Kier S A
Carrera 7 No 48-75

Apanado Aéreo 6287
Bogota, 1 D E

Tel 69-88-77

Cabie AARIS Bogold

Teiex 044-400

COSTA RICA

Ciennfica Costarncense S A
Avenda 2 Calle 5

San Pedro de Monles de Oca
Apanado 10159

San Jose

Tei 24-38-20 24-08-19
Teiex 2367 GALGUR CR
Cable GALGUR

ECUADOR

Calculators Only
Computadoras y Equipos
Electranicos

P D Box 6423 CCI

Eloy Aitaro #1824.3 Piso

Quito

Tet 453482

Telex 02-2113 Sagna Ea
Cable Sagita-Duro

EL SALVADOR

Instrurnentacion y Pracesamienip
Electronico de el Salvador

Bulevar de Ios Heroes 11-48

Ssn Sslvedor

Tel 252787

GUATEMALA

IPESA

Avenida La Relorma 3-48
Zona 9
Guatema|
Tei 63627
Telex 4192 Teletro Gu

MEXICO

Hewlett-Packard Mexicana
SA geCv

Av Perderico Sur No 6501
Tepepan. Xochimilco
Mexico 23 D f

Te! 905-676-4600
Hewleft-| Parnvu Mexicana
SA geC

Ave Consmucmn No 2184
Monterrey N L

Tel 48.71-32 48.71-84
Telex 038-410

NICARAGUA

Roberip Teran G

Apariado Postal 689
Edifcio Tetdn

Mansgua

Tel 25114 23412.23454
Cabie ROTERAN Managua

PANAMA

Elecirdmico Batboa. S A
P D Box 492

Calle Samuel Lewis
Cuidad de Panama
Tel 64-2700

Telex 3483103 Cutunda

anal Zone
Cadle ELECTRON Panama

PERU

Compania Hectro Médica S A
Los Flamencos 145

San Isxaro Casila 1030

Cabie ELMED Lma

PUERTO RICO
Hewleft-Packard Inte:-Americas
Puento Rico Branch Oftice
Cavle 272

No 203 Urb Country Cub
Carolina 00924

Tet (809) 762-7255

Teles 3450514

URUGUAY

Pabic Fercando S A
Comercial e Indusiniai
Avenida l1aha 2877

Casilla ge Correo 370
Montevideo

Tel 40-3102

Cable RADIUM Montevideo

VENEZUELA
Hewlet1-Packard de Venezue.:

CA

PO Box 50933

Caracas 105

Los Ruices Nore

3a Transversal

Edticio Segre

Caracas 107

Te! 3500 11 (20 ines)
Telex 25146 HEWPACK
Cable HEWPACK Caracas

FOR AREAS NOT LISTED. CONTA.

Hewlen-Packatg
Inter-Americas

3200 Hiliview Ave

Pato Ao California 94304
Tei (4151 493 1501

TWX 910-373-1260

Cable HEWPACK Paio Alto
Teiex 034-8300 034-8493

~

