1985

SEPTEMBER

o

&

Uz

m@

-
J

HEWLETT-PACKARD

JOURINAL e

Articles

4 VLSI Delivers Low-Cost, Compact HP 3000 Computer System, by James H. Holl and
Frank E. La Fetra, Jr. The key to success was full family membership, including operating
system and object code compatibility with larger HP 3000s.

6 High-Volume Test Strategy

Simplicity in a Microcoded Computer Architecture, by Frederic C. Amerson Simplic-
ity means more efficient use of silicon without sactificing performance.

10 Using a Translator for Creating Readable Microcode
12 Booting 64-Bit WCS Words from a 32-Bit-Wide ROM Word

1 3 Simulation Ensures Working First-Pass VLS| Computer System, by Patria G. Alvarez,
Greg L. Gilliom, John R. Obermeyer, Paul L. Rogers, and Malcolm E. Woodward
A simulator with the improbable name “Faster Than Light” was the essential tool.

.‘ 7 Creative Ways to Obtain Computer System Debug Tools, by William M. Parrish, Eric
B. Decker, and Edwin G. Wong The ways include an off-the-shelf microcomputer and a
virtual software debugging panel.

20 The Role of a Programmable Breakpoint Board
22 Virtual Microcode Memory

2 New Cardiograph Family with ECG Analysis Capability, by Robert H. Banta, Jr., Peter
H. Dorward, and Steven A. Scampini. These instruments can reduce a physician’s
work load by providing a preliminary analysis of heart behavior.

24 ECG Storage and Transmission
27 Artifact Generation

2 Computer-Aided ECG Analysis, by John C. Doue and Anthony G. Vallance Special
signal processing and algorithms are required to detect various ECG abnormalities.

30 ECG Criteria Language
34 Pediatric Criteria

3 5 Authors

Editor, Richard P. Dolan ® Associate Editor, Kenneth A. Shaw ® Assistant Editor, Nancy R. Teater @ Art Director, Photographer, Arvid A. Danielson @ Support Supervisor, Susan E. Wright
llustrator, Nancy S. Vanderbloom e Administrative Services, Typography, Anne S. LoPresti ® European Production Supervisor, Michael Zandwijken @ Publisher, Russell M. H. Berg

© Hewlett-Packard Company 1985 Printed in Holland
2 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

In this Issue

Our cover subject this month is the HP 3000 Series 37 Computer. This
A newest and smallest member of Hewlett-Packard’s business data processing
IR computer family is an affordable, user-installable system that supports up
to 28 terminals and is suitable for small companies (like the horse breeder
f suggested by our cover photo) or for departments or workgroups of larger
il companies. At about half the price of the previous entry-level HP 3000, the
Series 37 makes this computer family accessible to many more users. A
major advantage is that all HP 3000 Computers run the same software. HP
offers standard upgrades to larger systems from any family member, so a
user starting with the Series 37 has an easy growth path all the way to a system that supports
as many as 400 terminals and can handle the data processing needs of a fairly large company,
and no reprogramming or software conversion will be required at any step. Any HP 3000 can
also be part of a network that includes other HP 3000s, mainframe computers, personal computers,
and engineering workstations. For example, HP’s own worldwide electronic mail system runs on
a network of HP 3000 Computers.

The Series 37’s designers report on its design on pages 4 to 22. Among the engineering
challenges was the integration of the central processing unit (CPU) on a single semicustom gate
array chip (page 7). Simulation of the CPU chip and another gate array (page 13) refined the two
chip designs to the point where the first chips produced worked as designed, a major accomplish-
ment. To keep the cost low and ensure reliability and family compatibility, the project was carefully
managed (page 4), and the hardware and software debugging tools received special attention
(page 17).

In the articles on pages 25 to 36, you'll find the design story of the new HP 4760 PageWriter
Cardiograph family. While a cardiograph is very different from a business computer, the major
engineering contribution in the HP 4760 family is much like the Series 37’s—very large-scale
integration puts more computing power into a smaller package. Two of the new cardiographs
have parts of the HP ECG analysis program, formerly available only in a separate computer
system, built right in, along with a dedicated 68000 microprocessor. The HP 4760AM, which has
the ECG measurements portion of the program, can make more than 4000 measurements on
the ECG waveform and print the complete results or a summary. The HP 4760Al has the full
ECG analysis program and provides an interpretation of the ECG waveform. Adult analysis is
standard; pediatric analysis, based on age-dependent criteria, is an option. Some feel that such
automated interpretation can be helpful in eliminating normals in high-volume screening, or in
emergencies when no cardiologist is available. The ECG measurements capability helps the
cardiologist reduce interpretation time and is useful in research and teaching.

R. P. Dolan

What’s Ahead
Next month’s issue will be devoted to the design of the HP Integral Personal Computer. The

HP-UX operating system of this 25-pound transportable computer is HP’s version of AT&T Bell
Laboratories’ UNIX™ operating system.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 3

VLSI Delivers Low-Cost, Compact HP 3000

Computer System

This entry-level, user-installable computer system runs the
same software as the largest HP 3000, but fits under a table

and is much quieter than a typewriter.

by James H. Holl and Frank E. La Fetra, Jr.

rent-generation business computer family. At the top

of the line is the HP 3000 Series 68, which is capable
of supporting hundreds of terminals and handling the data
processing needs of a fairly large company. The newest
and smallest HP 3000 is the Series 37, Fig. 1, a compact,
quiet office computer capable of supporting up to 28 users.
Like all HP 3000s, the Series 37 runs the same software as
the Series 68. Although slower than the Series 68, of course,
the Series 37 has about the same processing power as the
Series III, the top-of-the-line HP 3000 when it was intro-
duced seven years ago. VLSI (very large-scale integration)
is the key to the exceptional price/performance of the new
computer.

The HP 3000 Series 37 was conceived as the answer to
the need to add a low-cost computer to the HP 3000 product
line while maintaining reasonable performance. Although
the need was obvious (many people are willing to take

T HE HP 3000 COMPUTER product line is HP’s cur-

4 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

credit for discovering it), the solution remained elusive
until a key project manager proposed a product that evolved
into the Series 37.

Design Objectives
The original design objectives stated at the time the proj-
ect was proposed were:
m Low system list price
® Four to eight terminal ports
® Mean time between failures (MTBF) greater than 2 years,
including peripherals required to run the operating system
® Mid-1983 manufacturing release
m Series II performance
m Easier to use—you turn it on and it works
m Networking capability.
Most of the original objectives were met. The system list
price is in the originally targeted range. Seven terminal
ports are standard; 28 is the maximum number. The esti-

Fig. 1. The HP 3000 Series 37
Computer runs the same software
as other HP 3000s, supports up
to 28 terminals, and fits easily into
an office environment. The Series
37 system processing unit is the
second unit from the top in the
cabinet at right.

mated MTBF of the system processing unit is 1.17 years,
which did not meet the goal. However, the two-year goal
was very aggressive and involved many separate parts of
our corporation. The time to market goal was based on the
time it would take to complete similar projects, on the
average. This is called our 50% schedule because it is ex-
pected that the schedule can be met half of the time. The
time it would take to complete nine out of ten similar
projects was also projected, and this 90% schedule estimate
turned out to be exactly the time taken. The actual release
date was February 1985.

The Series 37 has Series Ul performance with up to 20
terminals. It can be installed by the customer without ex-
pert assistance and is ready to run applications when it is
first turned on. The Intelligent Network Processor is part
of the initial release, so the networking goal was met.

Our lab teams operate in an environment that allows
them to set their own, often aggressive goals, which they
strive toward but do not always achieve. This encourages
our teams to take appropriate risks in areas where there is
a range of acceptable results. Performance is an area where
risk is appropriate. Product quality is an area without much
opportunity for risk taking. Although this project did not
meet all of its goals, it is considered to have been successful,
since the product met the goals considered important by
both management and the project team and has sold well.

Initial Design Approach

The originator’s first designs emphasized maximum

hardware integration. The team considered a single printed
circuit board with everything on it, including the control-
lers for the peripherals. This design would contain no con-
nectors and assembly would consist of snapping things to-
gether. This approach would minimize cost at the expense
of configuration flexibility. The team chose to add the ability
to expand memory and thus avoided being trapped with a
small memory while memory use continued to expand.

The single printed circuit board with everything on it
might have been fully explored had not organizational con-
siderations within HP brought about its early termination.
HP entities have traditionally produced both hardware and
the software necessary to make it function. They tend to
use revenues from hardware sales to support the software.
Although this trend was changing when the Series 37 proj-
ect began, there was enough concern to justify separating
the hardware along divisional boundaries. The team de-
cided not to produce a new version of the peripheral con-
trollers and made the I/O channels separate printed circuit
boards.

Another early decision led to the inclusion of operating
instructions in the product packaging. This evolved into a
pull-out card with instructions on it. The card became un-
popular when we faced the issues involved in localizing
the card for the other languages we support. The card was
eliminated late in the project when it was noted that its
slot was contributing significantly to electrical noise radiat-
ing from the system.

Active Investigation
The team made attempts to eliminate costly features that
had become standard on members of the HP 3000 family.

Computer
Museum

These efforts had some success. A battery to sustain the
memory during powerfail is an example of a feature that
was eventually retained. A separate service processor is an
example of a feature that was deleted. The Series 37 achieves
its maintenance functions by putting itself into a different
mode of operation (see article, page 17). The system acts
as its own service processor. Although there isn’t a separate
service processor in the Series 37, many features needed
to debug system software problems have been made avail-
able by a microcoded debug package.

“Keep it simple” became a motto for the team. This led
to the decision not to support peripherals that could not
share their channels. Since we were channel limited, we
couldn’t afford to dedicate a channel and didn’t want the
coordination problems involved in working with other HP
divisions to redesign their products. Another decision was
to refuse the offer of another division to take control of our
terminal connections. Thus, we avoided the management
complexity that would have resulted had we increased our
dependence on HP entities outside the project’s cantrol.

Although we wanted to use the newest subsystems being
developed within HP, we didn’t want to introduce any part
availability problems. We discovered that unless new prod-
ucts were produced with the HP 3000 family in mind, they
invariably lacked features required of an HP 3000 system
component. Powerfail/auto-restart functionality is a good
example of a frequently missing capability.

We are finding that we can develop new hardware faster
than the software required to make it function. Because
our software resources were committed to other projects,
many early decisions were made to minimize the impact
on the software development teams. In many cases, emerg-
ing products looked very attractive until we realized that
the software for them couldn’t be developed in time. This
situation, together with the other problems we found trying
to use emerging products, led us to decide to leverage the
huge investment in existing I/O software for HP-1B (IEEE 488)
and ATP (Advanced Terminal Processor) peripherals instead
of using peripherals that required software development.

Development of new system microcode has been a historic
bottleneck. To reuse an existing (and working) microcode
set, we attempted to copy an existing hardware design, but
couldn’t find any that were suitable for VLSI. We eventually
built a microcode development team and wrote totally new
code.

Development Phase

Our VLSI processor was put into a single gate array to
avoid the performance and connection limitations of a par-
titioned design. We selected the gate array by looking for the
largest gate array that was already in production and would
require little power (see article, page 7). We also put part
of the terminal interface controller into VLSI.

Full simulation was correctly seen as necessary to get
the VLSI designs right before they were fabricated (see article,
page 13). Much of this work was performed on the most
powerful systems available to the design team. Simulation
was also used to debug microcode before the hardware was
available. We ran the initial part of the system boot software
on a simulator. The limiting factor became the effort it took
to give the simulator the I/O information that the software

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL §

At the beginning of the design phase for the HP 3000 Series
37 Computer, it was clear to the manufacturing team that the
production methods used on the existing HP 3000 production
line would require a complete revamping if manufacturing were
to be successful in meeting the high volume demands projected.
The key was clearly in developing a test strategy that allowed
high throughput, high confidence of shipping 100% operational
systems, and efficient diagnostic tools, none of which could be
at the expense of lengthy test times. This meant more than just
a new set of diagnostics and test tools.

The R&D team felt confident that the design tools used, coupled
with the dramatic parts count reduction, would make this HP
3000 one of the most reliable. But they agreed that the need for
manufacturing to be able to build 100% quality systems in high
volume had to be addressed. Thus the HP 3000 Series 37 be-
came a springboard to launch the Computer Systems Division
into a completely new methodology for manufacturing complex
computer systems. Relative to the test strategy, manufacturing
engineering felt the major goals were to:
| Establish a new, more effective real-time method of feedback

to the lab on the product and product testing.

m Establish a test flow that no longer requires highly technical
operators.

1 Develop a process that emphasizes good inventory, not test-
and-reject-to-be-fixed inventory.

Feedback to the lab was established in an unusual way. The
manufacturing team was established before the laboratory pro-
totype phase. Technicians and production engineers worked with
the R&D lab during this phase to gain familiarity with the tools
and the product. Ali remaining product phases were performed
at the manufacturing site by the manufacturing team with techni-
cal support from the lab. Thus the lab team received feedback
on the strategy and hardware before concepts were too de-
veloped to change. Manufacturing provided weekly summaries
of all problems and concerns to the lab for review. This was
successful even though the lab and manufacturing were sepa-

DA STAGING
SYS VRFY

DA STAGING

I“II“II.'II“I

DA STAGING
SYS van E LA] ADD-ONS.V.[G |

High-Volume Test Strategy

rated by over 150 miles.

The R&D team put great effort into realizing the key diagnostic
tests as power-on self-tests (microdiagnostics), which clearly
indicate to the operator whether the system is operational. Scripts
that detailed step-by-step system verification procedures were
established by production engineering early in the cycle. These
were later augmented with a Diagnostic Utility System, which
allows the streaming of tests, thus virtually eliminating operator
intervention.

The Series 37 established a new concept in testing HP 3000
Computer Systems. Production personnel receive completed
mainframes in the System Verify area (see Fig. 1) and attach
typical peripherals to execute microcoded self-tests and other
higher-level tests. The operator is required to ensure that each
system completes this testing phase without error. If an error
occurs, the failure mode is noted and the unit is rejected. No
problem isolation methods are allowed. This lets the operator
focus on the system’s operation and not merely on getting a
system ready to ship by swapping in other material. The defective
units are sent to the Defect Analysis stations. These are equipped
with all the hardware debug tools and are operated by highly
trained technicians, who determine the cause of the defect. Be-
cause the entire system is available, these stations are able to
locate most of the otherwise elusive failures that occur when
hardware is swapped between systems. The causes of defects
are reviewed weekly so methods can be established to eliminate
the defects from the process. The goal is to eliminate all defects,
so that none are found in the System Verify area.

Acknowledgment
Laurie Schoenbaum implemented the memory test used in
production.

Dennis Bowers
Manufacturing Engineer
Computer Systems Division

Legend

A = Powered Rollers

B = Accumulation Zone

G = Gravity Rollers

C = Cabinet

R = Racks and Carts

W = Custom Work Bench

FR = Flow Racks

DA = Defect Analysis

SYS VRFY = System Verify (Test)

Fig. 1. HP 3000 Series 37 build-test production line.

needed to continue to run.

The final key to success was full family membership.
We had to make the Series 37 a real HP 3000 in the eyes
of the users. Fortunately, we were shooting at a fairly sta-
tionary target and were able to achieve this goal. As aresult,
the HP 3000 software team decided to include the Series
37 in their effort to consolidate operating systems into one
version. All of HP’s currently manufactured HP 3000 sys-

6 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

tems can run the same version of MPE (Multiprogramming
Executive, the HP 3000 operating system).

The Series 37 had already completed a number of suc-
cessful production runs in our manufacturing area before
the project was completed. This allowed us to ship a large
number of systems as soon as the system was released, and
gave us a chance to stress a large number of systems en-
vironmentally before release. Systems were subjected to

high and low temperatures, high humidity, and a packaged
drop test. We used the information gained by our stress
testing to improve the systems before shipments began.

Conclusion and Summary

The Series 37 is an incremental member of the HP 3000 .

family. It runs the newest version of the MPE operating
system, provides powerfail/auto-restart capability and al-
lows remote support. It is the smallest and lowest-priced
HP 3000 there has ever been.

The Series 37 reduces the need for operator control to
the point where an operatorless environment is achievable
for some customers. It is the most reliable HP 3000 system
ever produced and is suitable for the office environment.

The time to start a system from cartridge tape has been
greatly reduced from that of older versions of MPE. This
is because of the ability to stream the tape during the boot
process. The Series 37 contains a real-time clock that con-
tinues to run when the system power is removed. This
clock allows the boot process to set the time of day without

operator input.

Acknowledgments

The Series 37 is the result of Rick Amerson’s ideas and
a lot of hard work. Peter Rosenbladt led the first half of
the project and one of the authors and Alan Christensen
led the second half. Rick’s team developed the VLSI portion
of the CPU and the memory. The rest of the hardware was
proposed by Mark Linsky’s group. Barry Bronson replaced
Mark after the investigation was complete. The author’s
group developed the system microcode and the service
tools. Greg Gilliom led the microcode team during the last
half of the project. The other author led the serviceability
group after it was separated from the microcode team. The
industrial design was done by three teams: Manny Kohli’s
team worked on the initial design, Gerry Gassman’s team
took over from them, and Frank Sindelar’s team took care
of the final set of challenges. The software team was led
by Kathy Hahn. Kathy and system manager Hank Cureton
led the effort to release the system.

Simplicity in a Microcoded Computer

Architecture

by Frederic C. Amerson

coded architecture can produce a design that is

more efficient in its use of silicon than one based
on specialized hardware functional units, without sacrific-
ing performance. The HP 3000 Computer, first introduced
in 1972, has had a number of different implementations
using various degrees of specialized hardware. The most
recent of these, the Series 37, is the first HP 3000 CPU to
be implemented in VLSI technology. This article describes
the design approach used to implement the CPU chip and
the efficiencies achieved. From the initial concept of the
design to the final working production parts was less than
one year.

There are two principal types of computer architecture
in widespread use today: stack architecture and register
architecture. Stack architecture is so named because the
computation is done on a data stack. Numbers are moved
to this stack from memory, an operation is performed leav-
ing the result on the stack, and then the result is stored at
some (other) location in memory. Register architecture per-
forms computations in general-purpose registers. Numbers
are first moved to one or more registers, an operation is
performed leaving the result in a specified register, and
the numbers are stored at some (other) location in memory.
Some stack and register machine implementations allow
operations that use memory operands directly without first

A SIMPLIFIED APPROACH to the design of a micro-

Fig. 1. The Series 37 CPU chip is a CMOS gate array using
nearly 8000 gates.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 7

moving them to the stack or registers.

The HP 3000 is a stack machine that has a very rich
instruction set, which has been enhanced over the years
and has grown to provide the user with a robust capability
for data processing in commercial applications. Although
many of its operations are performed directly on the stack,
it is possible to perform some operations using stack
operands with memory operands, and others (e.g., COBOL
instructions and extended-precision floating-point instruc-
tions) using memory operands only. Instructions that pro-
cess only data on the stack are called stackops. In the HP
3000, two of these instructions can be contained in the
same space that a single instruction would normally oc-
cupy and are referred to as paired stackops. This makes
for more efficient use of code space in the event that two
stackops occur in succession. Another very powerful group
of instructions is the memory reference instructions. These
instructions access a memory operand directly. In some
cases it is merely loaded onto or stored from the stack, but
in others, computation is performed using the memory
operand. There are several addressing modes available for
the memory reference instructions, allowing data to be ac-
cessed relative to any of several different base registers. A
scheme of encoding these, referred to as Huffnan encoding,
enables this important information to be encoded in fewer
bits.

Series 37 Design Methodology

Putting a processor onto a single chip is an extensive
effort that requires thoroughness and careful attention to
detail. The Series 37 presented a particularly difficult chal-
lenge because of the powerful HP 3000 instruction set and
the flexibility it provides. There exist several predecessors
that might have been used as models, but none of these
had been implemented on a single chip. The processor
offering the closest comparison is the Series 48, which is
contained on two boards. Its extensive use of high-density
memory parts precludes its implementation in a single-
chip CMOS design. The designers of the Series 37, there-
fore, created a new design, structured specifically for the

VLSI technology available.

The Series 37 uses gate-array technology (see photo, Fig.
1), so there is an absolute upper bound to the amount of logic
that can be contained in the chip, making it imperative to
conserve chip space while optimizing performance. The de-
sign approach had to be as simple as possible yet elegant
enough to achieve performance goals. Special hardware assists
were kept to a minimum, with preference given to simplicity
and ease of design rather than maximum performance.

It was decided to eliminate interdependencies between
portions of the design as much as possible. This approach
gives rise to a multiplicity of independent functional units,
each capable of performing one small function without
interaction from other functional units. The advantage of
this approach is that if one of the unit designs encountered
a problem, it did not impact the others. This also allowed
different designers to work on separate portions of the de-
sign without concern about the impact on other areas.

Instruction Decoding

Because the instruction set is full and the dense encoding
does not lend itself readily to a simplified method of decod-
ing, previous implementations of the HP 3000 architecture
have used specialized hardware to determine the mapping
from the instruction to the microcode that executes that
instruction. Generally, this hardware involves a fixed table
of entry points in the microcode for each instruction, and
a method of mapping the instruction encoding into this
table. The table requires one entry for each instruction.
However, it is frequently easier to duplicate entries rather
than create a mapping that can resolve each instruction to
a single location in the table. In the HP 3000 Series 64, the
upper ten bits of the instruction are used to address this
table directly, so there is no logic to map instructions to a
smaller table. This is effective for a high-performance
machine, because time is not lost for the function of the
mapping logic. For its predecessors, where memory compo-
nents were more expensive and less dense, mapping logic
was more effective.

When placing an architecture onto a single chip, memory

Special e

and

Sequencing B S

B Bus

$$ asue 1 1
| ﬁ ?

]

Compare

16 Registers

Fig. 2. Instead of the usual arith-

Adder Bus metic-logic unit (ALU), the HP

3000 Series 37 CPU has an adder

X Bus and a separate logic unit.

8 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

and mapping logic once again become expensive, so in the
case of the Series 37, this circuitry was eliminated. Even
more important than eliminating the circuits was reducing
the complexity of the design. Because it is so difficult to
fix mistakes in VLSI designs once they have been built, it
is important to use a methodology that is conducive to
error-free design. Special instruction decoding and map-
ping circuitry must be accompanied by logic to alter the
normal sequence of microinstruction execution. Determin-
ing whether the next microinstruction address should come
from the regular microcode sequencing logic or from the
special instruction lookup logic is a complex, error-prone
task. However, eliminating the special decode function is
expensive in performance because it adds the time required
to decode an instruction in microcode to the execution
time of each instruction.

It was necessary to find a method of decoding instruc-
tions that is both simple and fast. A jump table is a simple
method of decoding, but it is not fast. However, by making
decoding a fast operation while allowing other operations
to occur in parallel, the Series 37 is able to overcome the
inherent slowness of a jump table. To decode instructions,
the microcode extracts the upper eight bits of the instruc-
tion and then branches to a jump table of 256 entries. The
most frequently executed instructions are decoded quickly
by this method. The time required to perform the decode
is only two cycles. It is not wasted, however, since instruc-
tion fetch, incrementing of the program counter, and testing
for interrupts occur in parallel with the instruction decode.

16 Registers

Fig. 2 is a block diagram of the CPU chip. The heart of
the chip is a bank of sixteen registers controlled by micro-
code. Their definition does not change from instruction to
instruction. However, it is possible to use them as scratch-
pad registers if the information they contain is saved else-
where. The data contained in them is maintained by micro-
code convention only; there is no hardware requirement
for a particular register to contain particular data. They
usually contain the important base register information
needed by high-execution-frequency instructions. Not all
of the registers can be used for any purpose whatever. In
fact, most of them double as special registers for a particular
specialized function. See Fig. 3 fora list of these registers.

Top-of-Stack

Because the HP 3000 is a stack machine, many computa-
tions are done with top-of-stack {TQS) data. To the pro-
grammer, the TOS appears to be in memory, but this is
very inefficient, so it is necessary to provide some hardware
support for the stack. Four registers are used to contain
(up to) the top four elements of the memory stack at any
time. These registers, together with all of the supporting
logic to keep track of the stack data, are contained in a
separate functional unit. There are special operations that
allow the microprogrammer to control these registers and
to make the various tests necessary to implement efficient
algorithms for their control. Thus this important function
is retained so that performance is not compromised, yet
the simplicity of the architecture is preserved. The TOS
logic consists of four registers to contain data, a two-bit

namer register to identify the data register currently named
as the top of the stack, a three-bit stack-valid counter to
indicate how many of the data registers contain valid data,
and a two-bit adder to allow accessing relative to the top
of the stack.

Extractor

One of the most powerful functional units is the extrac-
tor. It concatenates two sixteen-bit quantities to form a
32-bit number. Any arbitrary sixteen bits from within this
32-bit number may be selected and then any arbitrary right-
most or leftmost bits may be selected from this sixteen-bit
quantity, effectively allowing the extraction and either right
or left justification of any arbitrary bits from a 32-bit quan-
tity. Additionally, the contents of one of the sixteen regis-
ters may be selectively ORed logically with the result. Al-
though this sounds somewhat convoluted, it is actually
quite straightforward, simple to implement, and extremely
powerful (see Fig. 4). Its most creative use is replacing the
instruction decoding logic found in earlier implementations
of the HP 3000 architecture, but it is used in several other
decoding situations as well. A target address into a jump
table can be created in a single microinstruction and then
control passed to that address on the next microinstruction.

Logic Unit, Comparator, and Adder

One of the most common operations performed in a mi-
crocoded architecture is logical arithmetic: AND, OR, etc.
Because these operations can be conveniently generated as
byproducts of arithmetic operations of addition and sub-
traction, they are usually included with the arithmetic unit,
which then becomes the arithmetic-logic unit or ALU. The
CMOS logic used in the Series 37 required special consid-
erations to achieve high performance, making combining

Register Allocation

[\§ Scratchpad

1 L4

2

Kl Q/Divide
'l DB/Multiply

] CIRNIR

[l XFunction

Y soovinesump]
N soovinesmez)
»
o
;
»

Lkl Flags i
(YW Microprogram Counter ‘

Ll Microprogram Constant

Fig. 3. A bank of sixteen registers allocated as shown is an
important part of the Series 37 CPU chip.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 9

The HP 3000 Series 37 Computer is built around a very power-
ful, flexible microprocessor. Because of this flexibility, the control
language for the microprocessor is complex and can be hard
to understand.

The major feature that makes the code difficult to read is the
ability to do many different operations concurrently. One instruc-
tion can simultaneously increment, do logic operations, add, and
do an IF-THEN-ELSE control branch. Clearly, it is important for the
microprogrammer to keep track of all of these simultaneous op-
erations.

To make line-by-line analysis in a debugging environment
easy, a very rigid 17-field source language was developed to
express these constructs (see Fig. 1). However, none of the
system microcode was written in this form. Although allowing
easy analysis of what the micromachine is doing on any given
clock, the splitting of a single function into multiple fields and
then interleaving these fields with other operations makes the
intent of the microcode almost impossible to follow accurately.

To overcome these limitations of the rigid fixed-field language,
a much more flexible language was developed (see Fig. 2). All
of the system microcode was written in this language. Its key
features are:
| Any construct can be expressed (the microprogrammer is not

limited by the language).

® The language is free-field. Spacing, column alignment, and
the positions of new lines and/or comments are not important.

@ The language allows an operation-by-operation expression of
what is coded (the DEC function in Fig. 2 is expressed indepen-
dently of the ADD function).

m The user can DEFINE registers and constants to improve reada-
bility.

LABEL... A. B.. C.. ADD IN |.. R—~FCN-XCNTR-SEC X.. SPEC JTD JFD CONSTANT

LOOP R1R2RORY -1R0 SZL 25 S5 R1 JL=0 R8 R15 LOOP

Top Line: Field Names
Bottom Line: Typical Instruction

Fig. 1. Fixed-field source language specification.

Object Code
A

Fixed-Field Source Language

Using a Translator for Creating Readable Microcode

Define Counter = R0,
Left =R1, Right =R2;

Loop:
Dec (counter) — > counter / *Decrement
Add(R10,R11) —> ADR/ *compute address w/ADD
ExtractR (Left | | Right (10..20)) — > Left/ *use extractor

If Logic = 0then ReturnSub1 else Loop;
Undefine counter, left, right;

*IF.THEN.. ELSE

Fig. 2. Flexiblelanguage usedforwriting system microcode.

This free-field language is implemented as an independent
source-language preprocessor. It is designed to complement,
rather than replace, the fixed-field language. This preprocessor
(known as the Translator) converts the microprogrammer-written
source code into the fixed-field language. This is then assembled
using a separate assembler into executable object code. The
powerful user-defined-command (UDC) capability of the HP 3000
has been used to make these two tools appear to the user as a
single well-integrated one. The final assembly listing (see Fig. 3)
contains the source code as written, the translated fixed-field
code, and the emitted object code, all presented in a format that
is easily read and understood by the microprogrammer.

Skip La Fetra
Project Manager
Computer Systems Division

Source Code as Written
e

—
|
|
!
|
|
|
)

|

0000: 1207 0555 1880 FFFF | LOOP R1 R2 RO R9 -1 RO
|
|

SZL 75

S5 R1 JL=0 R8 R15 LOOP

N 7 N

LABEL... A. B.. C.. ADD IN . R—FCN-XCNTR-SEC X.. SPEC JTD JFD CONSTANT 1|

Define Counter = RO,
Left = R1, Right =R2;

!

|

|

| Loop:
| Dec{counter) — > counter/ *Decrement

| Add(R10,R11) — > ADR/ “compute address w/ADD
| ExtractR {Left!iRight (10..20)) — > Left/ *use extractor

| IfLogic=0thenReturnSubt else toop; *IF.THEN..ELSE

|

| Undefine counter, left, right;

Fig. 3. Final assembly listing shows source code as written, translated fixed-field source lan-
guage code, and object code.

these two functions difficult. Also, an arithmetic unit that
can both add and subtract requires more circuitry than one
that can only add. Therefore, no subtract function is avail-
able to the microcode; only add is available. Instead, a
separate logic unit provides the functions normally associated
with an ALU, including the one’s complement necessary
for subtraction. To subtract, the microprocessor must form
the one’s complement of the subtrahend and add it to the
minuend with a carry. Because subtract is a relatively in-

10 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

frequent operation, performance impact is minimal.

In examining the functions normally performed by mi-
crocode to implement instructions, it was discovered that
the arithmetic functions are used primarily for comparing
and not for arithmetic. This comparing is generally a com-
parison of an address with certain bounds registers to see
if the address lies within the area that can be accessed by
the user. If it is not, a bounds violation is generated by the
microcode and the software aborts the program that is run-

Initial 16-Bit
Registers Concatenated

ool [ofolol ol o] i lololofolslolslols o] s]r]]1 o]

szzcy = DOODONEACANAGAR
Selected

Any Arbitrary Upper
(Lower) Bits Masked

oo olofo o]o]o}- IR

[+[1]olo]o]s]o[1]o]o]o]o]e[o[]o]

Another 16-Bit Register Is ORed
Logically

The 16-Bit Result

ning. Typically, previous HP 3000 machines have special
.hardware circuitry to examine the carry signal from the
ALU and force the microcode to specific error addresses
when a compare indicates a bounds violation. In keeping
with the philosophy of simplicity and explicit microcode
control of the machine at all times, hardware to force certain
microcode addresses -was summarily rejected. Instead, a
simple comparator circuit is included, allowing a quick
comparison of two addresses and a transfer of control based
on the result.

The specialized comparator circuitry, which is com-
pletely self-contained, is able to perform all of the necessary
bounds checking with no performance penalty.

incrementer

Although the microcode seldom needs to perform arith-
metic beyond addition, it frequently needs to either add
or subtract one from a number. To provide this capability,
an incrementer/decrementer is available and can be used
on every cycle. This proved to be one of the most valuable
additions to the design, because it allows an arithmetic
operation to occur in parallel with a separate logical oper-
ation. The incrementer can perform four functions: add
one, subtract one, pass unchanged, and add two.

One useful function of the incrementer is to simulate
subroutines. Because the microprogram counter is a register
like any of the other registers, the incrementer can pass its
value to one of the subroutine jump registers easily. If the
incrementer is needed on the line that jumps to the sub-
routine, it can pass the microprogram counter incremented
by one on the line before, or by two on the line before that.
The return from a subroutine is accomplished by select-
ing this register as the next address for the microprogram
sequencer.

Microcode Address Selection

The next line of microcode to be executed is selected
from one of four registers by the current line. Two fields
in the microinstruction specify the next line of microcode;
these are the true target and the false target fields. There
are 32 conditions that can be tested by each line of micro-
code. If the condition is met, the address for the next line
of microcode comes from the register specified by the true
target field. If not, the address comes from the register

Jelolefeo] - DEDEEOR

Fig. 4. The extractor, a functional
unit of the Series 37 CPU chip,
replaces the instruction decoding
logic found in earlier HP 3000
implementations.

specified by the false target field. Each bit in the flag register
can be independently tested, as can sixteen other condi-
tions and bits in the machine. The four registers that can
be used as the source for the next address are the micropro-
gram constant (useful for jumps to specific addresses), the
microprogram counter register (executing microcode in se-
quence), and the two subroutine-jump registers. The sepa-
rate true and false targets allow complete symmetry as well
as the freedom to execute either of two lines, neither of
which is the next line in sequence.

Diagnostic and Test Capability

Because all of the registers are easily accessible and there
is very little specialized hardware, the design does not
require much additional circuitry dedicated to diagnostic
test purposes. There are special commands allowing access
to bits that could not otherwise be accessed, but no other
specialized logic. This makes testing a straightforward task
instead of the labyrinthine jumble of convoluted code re-
quired with conventional designs containing a multiplicity
of untestable bits. Since each of the functional units has
limited well-defined side effects, it is easily verified that
a failure of one of these has occurred, and that no others
have failed.

Performance Resuits

The HP 3000 Series 48 provides a good comparison for
the design of the Series 37. Although the Series 48 has
specialized hardware to help with instruction decode and
bounds checking, it is basically a much simpler design than
the Series 68 and contains far fewer circuits. Measured in
the same terms, it contains about twice the circuitry of the
Series 37. Therefore, it is of particular interest to compare
the relative efficiency of the two designs. Because the mem-
ory reference instructions are so critical in the instruction
mix, it is especially worthwhile to compare these instruc-
tions.

The Series 37 has an immediate disadvantage compared
to the Series 48 because it does not have special instruction
decode circuitry. Since this function is executed by micro-
code, it must be slower. Also, there is no hardware prefetch
of the following software instruction as in the Series 48, so
this must also occur in microcode. Consequently, the first
few cycles of every instruction are spent initiating a memory

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 11

Booting 64-Bit WCS Words from a
32-Bit-Wide ROM Word

The processor design for the HP 3000 Series 37 Computer
emphasizes small size, low cost, and reliability. To realize this,
the computer is designed with few parts and without the separate
control processor used on other members of the HP 3000 product
line.

Because the Series 37 does not have a separate control pro-
cessor to load WCS before launching the main processor, the
main processor must load its own microcode. It does this by
executing a shart pawer-up praogram directly from ROM whose
sole purpose is to initialize the writable portion of control store.

The Series 37 requires four ROM chips to hold all of the. cold-
load and self-test microcode. These chips hold 128K bits of
information each. However, eight ROMs would be required, each
supplying eight bits of data at a time, to supply the full 64-bit
microinstruction word fequired to run the processor. To avoid
the need for these extra four ROMs, a scheme was devised that
allows the processor to boot with only 32 bits of each microin-
struction supplied.

This scheme is simple in principle: choose a subset of the
processor’s capability that is adequate to boot the system but
simple enough that it can be expressed with 32 or fewer bits of
microinstruction, and then force the unused 32 bits of the 64-bit
control word to constant values. For example, the CBUS field
allows access to all 16 internal registers (requiring four bits of
control). The boot code only uses two of these registers. By tying
three control lines to a constant zero we require only one bit of
ROM control for the CBUS field. Similar reduction of control re-
quirements was done with each microinstruction field as follows:

ABUS 2 of 4 bitsused
BBUS 4 of 4 bitsused
CBUS 1 of 4 bitsused
ASTOR 0 of 2 bitsused
INC/DEC 0 of 2 bitsused
ISTOR 2 of 4 bitsused
Indirect 0 of 1 bitused
X-control 12 of 12 bitsused
XSTOR 3 of 4 bitsused
Parity 1 of 1 bitused
Special 1 of 6 bitsused
Jump 4 of 4 bitsused
Constant 0 of 16 bitsused

30 of 64 bitsused

The limited capability provided by this control is enough to
step byte-by-byte through one ROM and transfer its contents to
writable control store. After confirming that the microcode was
successfully transferred, control is passed to the newly loaded
code. This code is of full 64-bit width and has all of the power
of the processor available to it. Thus it has the capability to run
extensive microdiagnostics, load more microcode from the other
three ROMSs, and boot the operating system.

Skip La Fetra

Project Manager

Chris Shaker

Development Engineer
Computer Systems Division

12 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

fetch of the following instruction and decoding the current
instruction. By using the capability of the extractor, the mi-
crocode is able to decode an instruction and transfer to the
first line of the instruction with only three cycles of over-
head. The first cycle extracts the upper eight bits of the
instruction and combines them with the address of the jump
table, storing this final address into a jump register. The
second cycle transfers control to the address specified in
the jump table. The third cycle is the line of microcode in
the jump table that transfers to the instruction itself. This
third cycle can also begin execution of the instruction, thus
reducing the effective overhead.

It would seem obvious that with a three-cycle overhead,
the instruction must be slower than its counterpart on the
Series 48. Indeed, the performance of the Series 37 is less
than that of the Series 48, but this is because of the Series
37’s lower clock frequency and not the efficiency of the
microcode. Comparing the number of cycles required to
execute the instruction rather than the amount of time, the
surprising result is that the Series 37 memory reference
instructions require approximately the same number of cy-
cles as the Series 48. When the overall performance of the
entire instruction set is compared, the Series 37 and the
Series 48 require approximately the same number of clocks
to execute a typical mix of instructions for the HP 3000.

Although the amount of logic is far greater to realize an
architectural implementation for the Series 48 compared
to the Series 37, the relative amount of work done for each
machine cycle is the same. The simple approach used in
the design of the Series 37 resulted in an extremely efficient
use of silicon. A design need not be complex to be cost-
effective.

Acknowledgments

There were a number of people whose dedication and
patience made this design possible, and incredibly in less
than six months from initial concept to final tape release.
Paul Smythe and Greg Gilliom led the microcode effort
working with Brian Feldman and our prolific summer stu-
dent, Michael Goo. Norm Galassi generated the test micro-
code which was successfully used in the simulations to
ensure that the first-pass chips were the last-pass chips.
Karen Murillo designed several of the functional units on
the chip. The tools were created by Frank Hublou, who
made sure that there were no problems interfacing with
any of the other groups with whom we worked, and Daryl
Allred, who was able to respond to the many requests for
specialized tools in a remarkably short time. Special recog-
nition is due Barry Shackleford, without whose encourage-
ment, insistence on maintaining simplicity, and dedication
to excellence in organizing and leading the design, this
project would not have been possible.

Computer
Museum

Simulation Ensures Working First-Pass
VLSI Computer System

by Patria G. Alvarez, Greg L. Gilliom, John R. Obermeyer, Paul L. Rogers, and Malcolm E. Woodward

37 project team was to produce two fully functional

VLSI chip designs, each in a single pass with no
errors. The advantages of this objective are obvious. With
first-pass chips, the project schedule is shortened consid-
erably, leading to lower project costs. This also frees labo-
ratory resources to be applied to the next project sooner.

This goal seemed formidable when first proposed, since
it had never been done before at HP’s Computer Systems
Division. Formerly, all designs were done in several passes:
a breadboard, a lab prototype, and a final-release version.
At each stage, the design was fine-tuned to match the
specifications of the project.

To release single-pass designs required careful investiga-
tion and thorough definition before the logic was laid out.
Gate arrays were chosen for the two chips, and their simple,
regular architecture was a strong ally in the construction
of first-pass chips. However, the tool that absolutely
guaranteed first-pass VLSI chips was the design simulator,
FTL. By using a simulator capable of logic and timing simu-
lation, the project team was able to detect errors before a
chip was masked or fabricated. This early error detection
allowed faster turnaround on logic design and encouraged
more effective verification.

FTL is an acronym for Faster Than Light, a name given
to the simulator by its creator. FTL uses the output files of
the Design Capture and Documentation Facility (DCDF),
an interactive menu-driven logic design tool used on the
Series 37 project to enter and generate circuit schematics.
During the design stage of the Series 37 project, DCDF
allowed engineers’ designs to be captured for input to the
simulator.

FTL lets the user watch a design in action as inputs are
provided. It is written in IBM 370 assembly language, and
in our case, runs on an Amdahl V6. The Amdahl provided
the design team with immense horsepower, greatly reduc-

O NE OF THE OBJECTIVES for the HP 3000 Series

MACRO SCREEN

ing the time necessary to simulate the design.

FTL Features

FTL provides many features to assist the hardware de-
signer in designing and debugging a circuit. It can combine
several different design files into a single simulation, so
that several designers working on the same chip can simu-
late their portions of the circuit and then combine their
designs into a single simulation to see how the different
parts of the circuit work together. Chip designs can then
be combined with board logic so that entire boards can be
simulated. Finally, several boards, such as CPU, memory,
and /0, can be simulated together.

A nice feature of FTL is the ease with which a designer .
can look at a logic signal. Like a conventional logic
analyzer, the FTL user interface is a display screen (see
examples, Figs. 1 and 2). All signals on the screen are
labeled with the names used in the DCDF design file. To
view a logic signal, the engineer simply inputs the name.
The logic signal is added to the screen, and the engineer
can observe the logic transitions. Logic signals can be view-
ed singly or as octal or hexadecimal representations if sev-
eral signals are grouped in a bus structure.

Through an addition to the simulator made specifically
for the Series 37 project, the design team was able to preload
RAMs and ROMs on the board from separate files.

CPU Chip Simulation

The two VLSI gate array chips in the Series 37 are the
CPU chip and another gate array that is used in the terminal
interface controller (TIC).

A difficult problem for most designs of chips as large as
the CPU gate array is the generation of good test vectors.
In many cases, test vectors are painstakingly generated by
hand, with an engineer toggling each input and observing
the outputs to see if they respond as expected. This often

e et el B et T S B Rt TR -SUR TR, AR

SET 0 -SYNC

SIMULATE 3

SET 1 -2XCLK
SIMULATE 3

SET 1 -SYNC

SIMULATE 3

SET 0 -2XCLK
SIMULATE 3

SET 1 -2XCLK
SIMULATE 3

SET 0 -SYNC

SIMULATE 3

SET 0 -2XCLK
SIMULATE T

Fig. 1. Macro screen produced
by the FTL simulator for generat-
ing simulation clocks for the termi-
nal interface controller (TIC)
board.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 13

SIMB DMA SEQUENCER LYNX BUS CMDSM
-- -112345678-
IN 0:7 8:9 IN - 100000000
DATAIN = 0 DMASQ =FF 0 BUSEND = 1
CMDIN = 0 BUSOP = 0 RWSM
DONECY = 0 MEMORY ouT -1123456---
L e e e e T BUSGO = 0 1000000
STRTCYC = 0 MEMWRT = POLLB = 1
RAMIO =000 FRZ =0
SIMBWRT = 0 MEMCY0-4 = 0 00000 BI
SIMBIO = 1000 MISC LBDATA = 00
(INV) EFFF —mmmmmmmmm oo LINE NO = 0
RESET LINES ! PFW = 0 IRQ =0
====z=z=s====2====|CLQCKIN = 1 SYNC =1
PON 0 ISYNCIN = 0 2XCLK = 1
CINIT 1 ICLKGT0-3 0000
|
1
!
SCOPE= TICBD FROM= 00 TO= 00 SCR= 0 X= 1 Y= 1
(T:ng4MAND= PRINT #CYC= 1 ACCEL TIME= 12
I SIMB INTERFACE
!
SIMBID 1000 !IMBMRQ .. © ¢ A IIMBRQ 0
DRVSIMB 0 IRIOC 0 ! ---T - 12345678 -- !HLDRQ 0
SIMBI 1000 'WIOC 0 ! 1 00000000 IMYDO 0
SIMBO 0000 IOBII 0 ! IRWENT1 ... 0
LEGAL 1 IRSTB 0 ! READ/WRITE STATE M [IRWEXIT4 ... 0
IMBAO;2;4:7 .. 111111!SMSK 0 I ---1 - 123456 -- IRWEXITS ... 1
IMBRD 0 IRDGT 0 ! 1 000000 IRWENTE 0
DMARD 0 IWRTGT ... 0 ! !
DATIN 0 IRCONFIG . 0 E/F !DATA BUS ..~ . FFFF ISTARTCY .. 0
DNCY 0 IRDIAGB .. 0 B IMYADN 0 !
COMMAND 0 IRDIAGA .. 0 A IMYDDN 0 |
ONB 0 IRINT 0 8/9 ISIMBDAT . . 0000 !
PFWB 0 IWC 0 B ! !
CMDDN 0 IWDIAG ... 0 A ISLAVETO . ! i i
Orame o WBOEN ~ o0 9 i i Fig. 2 (top) FTL S/mu/aIOISC(eQn
CMDINL 0 IWTPTR ... 0 8 ! ! showing overall TIC board activity.
DONECYL .0 1 ICLKGT0-3 6000 ! (bottom) FTL screen showing de-
SCOPE= TICBD FROM= 00 TO= 00 SCR= 1 X= 1YY= 1 tailed SIMB (synchronous inter-
COMMAND= PRINT #CYC= 1 ACCEL TIME= 12

TXT:

leads to bored engineers reaching a frustration limit and
releasing a circuit before it is fully verified.

In the case of the Series 37 CPU chip, we were building
a machine that had its own microcode structure. In addi-
tion, the CPU and memory boards were also being designed
in DCDF, so it was possible for FTL to simulate them to-
gether. Taking this one step farther, it was possible to load
actual microcode into simulated ROMs on the CPU board
and execute this microcode on the simulator. Therefore,
we used the self-test microcode for the system, which had
to be written for later use in manufacturing and field sup-
port, as the first test program for simulation of the design
using FTL. The first version of the self-test was approxi-
mately 1000 lines of microcode and took three hours to
run on the Amdahl. Using the clues provided by this first
simulation, the CPU designers reworked their design and
rechecked it, while the seli-test engineer expanded those
tests into new areas of the design. This same philosophy
was used on the memory and I/O boards.

By modifying the FTL simulatar slightly, it was possible
to generate test vectors for the gate array chip automatically.
The microcoded self-test was executed on FTL and the
inputs and outputs of the gate array were recorded. These
inputs and outputs were later used by the gate array vendor
to verify the first prototype chips and to verify the chip
timing and parameters using the vendor’s simulation
equipment. The vendor’s simulation after routing and
masking of the chip led to the final timing specifications
for the chip.

14 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

module bus) activity.

TIC Gate Array Simulation

The other gate array in the Series 37 system, a 4000-gate
VLSI chip, is used in the terminal interface controller (TIC).
The entire TIC, including the gate array, was designed in
DCDF and simulated using FTL. In the TIC case, the chip
is not a processor capable of executing a self-test. Instead,
it consists of several complex state machines and control
logic. To simulate it, a special assembler was written that
made it possible to write a verification test in a simple,
high-level language that corresponds to the functional op-
eration of the chip. The assembler translated the high-level
functions specified into the proper inputs for the chip. This
verification test was then executed in a pseudoboard envi-
ronment created to aid in the simulation. Around the VLSI
TIC chip was added a sequencer, a RAM to supply the
input signals, the DMA state machine ROMs, and the TIC
register RAMs (see Fig. 3). The DMA state machine ROMs
were loaded with the state machine control. The input
control RAM was loaded with the patterns from the assem-
bler and was accessed via the sequencer. The test vectors
for the gate array chip were collected from the chip inputs
and outputs during this verification test. The assembler
made it feasible to generate an exhaustive set of test vectors
for the gate array. Thus it was a major factor in the design
of a first-pass TIC gate array chip.

As a result of these methods and tools, the CPU and TIC
gate arrays had only one design pass. The chip designs
used in the first hardware breadboards are still used today
in production units. The next step was to achieve the same
results at the printed circuit board level.

Three-State
Buffer

BIDIRECTIONAL INPUTS

CLOCK e DMA

State
Gat
A ate Machine
rray ROMs

OUTPUTS

Fig. 3. Pseudoboard environment created to aid in the simu-
lation of the VLSI TIC (terminal interface controller) gate array.

Models Created

Before simulation of any of the boards could begin, we
had to create models for each of the TTL and CMOS parts,
PLAs, and other special parts used in the design. The mod-
els had to be understandable to the FTL simulator. Some
basic building blocks were created to aid in the modeling

of standard logic parts. These basic blocks were generic
OR, AND, and XOR gates and various types of flip-flops and
memory elements. Each standard part was modeled using
these basic blocks, Then the model was verified by testing
just that part using FTL. This process was tedious, but
necessary to ensure the accuracy of the system simulation.

The next step was to simulate each of the printed circuit
assemblies and custom VLSI chips separately. All of the
printed circuit boards and custom VLSI chips were simu-
lated more or less in parallel by the individual design
teams. FTL lends itself to parallel simulation, thereby sav-
ing a great deal of time. The custom VLSI CPU gate array
chip was simulated first, as described previously. After
this simulation was complete, the next step was to begin
simulation of the CPU board.

In simulating the CPU board, first the clocks were con-
nected to the board. An 8 x clock drove the CPU clock as
well as the system clocks. This clock, 8XCLK, was the driving
clock used during simulation. For each eight ticks of 8XCLK,
there was one tick of the CPU clock (CLOCK). The screen
of the simulator was set up so that the particular nodes
being tested were displayed on the screen. Any of the nodes
on the board could be displayed. Once the screen was set
up, the inputs to the particular subassembly of the CPU
board were put into their desired states. Then the required
number of clock cycles was entered (eight for one CLOCK

(— —

o
{InreRFace |

10640 1446

20] iINIEREACE]

Bers
(IMTERFACE |

o
o— -2e0.m

g

o e
TITT 77 ¢

TITTTIT

R
L s

e
(INTERFACE)

13
stixeos 0[01
H
L]

23
RO ——)

. .ezg
CINTERFACE) 1 @0

1w o)

S

~cReets

[— -outet> o}

TS0 91 71
1
|
H
S
£
§ veig
3

G
(INTERFACE}
— cars 0

udiil

1111 LU

1
f

]

Lald 44 Ludl

el

158

i

1oy
P
twerrace:

120

v
N
b cmmreos —o| B [—— scaRveps o)
cmyens
25 |INTERFACE)

1_ ovF
o cxmras —[gk Copyens
T | — o (TERFACE) | 0
O cRRYel> —
ol

POSTTIVE

— sowLy
CTHTERFACE)

zer0 — [ahd
S
wF e

;

<505
(IWTERFACE) | T

PRINTEG: 09/13/8 12117 PRRTE: AGLIS, FILE: ADDIS
EwInEER e

oate [bescoterion

WIERARGHY 10

8 ¢ e € 1] " 1 B x L n “

+ —_
v a ® s 1 u

PAGE 1 OF 7 | MEAETTPADKAD | PART WGER
Ebapany.
u %

v 2 e &= E 2

Fig. 4. An ALD schematic. ALD stands for Automated Logic Drawings, a subsystem of the

Design Capture and Documentation Facility (DCDF) used in the design of the VLSI chips for

the HP 3000 Series 37 Computer. DCDF output files are the inputs to the simulator, which is
called FTL.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 15

cycle), and the simulation was begun. Once simulation had
ended, the final state of each of the nodes on the screen
was displayed. No intermediate results were available. If
intermediate results were desired, the number of clock cy-
cles to simulate could be reduced.

Once all of the subassemblies had been simulated, the
processor gate array was connected to the CPU board, and
the simulation of the entire CPU began. This was done by
loading test microcode into the simulation control store
memory. At this point the microcode controlled the oper-
ation of the CPU, so that different code was written to test
the different functions of the CPU.

After the CPU and memory simulations were completed,
the CPU and the memory were simulated together. The
peripheral interface channel (PIC) was added to the system
simulation model after the CPU/memory simulation had
been completed succesfully. Finally the TIC was added to
the system simulation model after the CPU/Memory/PIC
simulation and the VLSI TIC gate array chip simulation
had been completed.

During every phase of the simulation, designs were cor-
rected or modified as necessary to ensure correct operation
of the system. The result of the individual and system
simulations was a set of first-pass printed circuit boards
that were able to run as a computer system. Both of the
custom VLSI chips also worked on the first pass. This is a
major accomplishment and was only possible with the help
of FTL and Delay, a timing analysis program.

The full system simulation model was used even after
the first successful printed circuit boards were up and run-
ning. The system model was used to check out new or
anticipated changes to the system before they were ever
implemented.

Providing Documentation

During the design stage, as the Design Capture and
Documentation Facility captured the engineers’ designs,
ALD {Automated Logic Drawings), a subsystem of DCDF,
provided documentation in the form of schematics. DCDF
runs on an Amdahl 470 Computer. Through an MRJE link,
the schematics are transferred to a remote HP 3000 Com-
puter and are printed out on an HP 2680A Laser Printer.

With the facilities available through DCDF, complete and
up-to-date documentation can be attained anytime a new
design is created or a modification is made.

Schematic Generation

Fig. 4 shows an example of an ALD schematic. A feature
of ALD is its autorouting facility. All of the circuit blocks
on a single ALD page having the same interconnect are
automatically routed together. ALD gathers all connectivity
information from the DCDF file and automatically routes
one signal line to another. Routing executes a variation of
Lee’s algorithm'? using direction numbers. The algorithm
finds the paths for routing the signals in the design.
Through the routing facility, an engineer can specify the
maximum number of bends in the line joining the signals.
Should the autorouter not find enough room to draw a wire
from one gate to another, the line is not drawn, although
the signal name of the line is shown so it is not mistaken
for no connection.

16 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

All logic symbol pictures come from a master library or
catalog. For example, when a NEW command is executed
from the DCDF gate editor, an element with the number
specified is fetched from the catalog. A pictorial description
of that element and other documentation elements (BLOCK
TYPE and BLOCK NAME) are brought to the terminal screen.
All design elements are automatically given a default name
as they are inserted in the design, but at any time the
engineer can replace this default name with a user name.
The designer may place the logic symbol at any valid loca-
tion on the schematic, and when it is printed, the picture
appears with the default or given block name.

The schematics generated by ALD are typical of most
schematics, but they also provide the following:
® Global comments: A designer’s personal comments can

be included on the schematic and placed and displayed

as desired. »

@ Title blocks: A box isautomatically placed in the corner
of a schematic. Information such as designer name, block
name, and block function can be placed here.

® Hierarchy information: Hierarchy information is pro-
vided by ALD so that a designer can tell what level of
the design is being displayed.

® Cross reference: The cross reference generates a symbol
table listing for bus cross references and connectivity
reports. It includes a list of the external signals to the
circuit, and it includes the interface signal name, connec-
tor pin number, and signal nature. All the interconnects
in the schematic are alphabetically listed with all the
connection points where that signal is attached.

The following is a sample cross reference:

+MPY_IN<*>

GATE-NAME X Y PG TYPECP BUNDLE
MPY_0 M 20 1 OUT +0UT <0>
ouT_SLV L 20 47 OUT +Q <0>
S4 G 64 1 IN +D_0<0> <0>

In this list, GATE-NAME refers to the name of the gate where
the connection is made, X is the X location of the connection
point based on a scale printed on the schematic, Y is the
Y location of the connection point based on a scale printed
on the schematic, PG is the page of the schematic where
the connection point is located, TYPE is the type of connec-
tion point (input, output, bidirectional), CP is the internal
pin designator for the node, and BUNDLE is used to show
which interconnect signals from the bundle are attached
to the node.

Acknowledgments

We would like to acknowledge Daryl Allred for the work
he put into all of the design tools (DCDF, FTL, Delay) so
they could be used in the design of the Series 37. The CPU
self-testand test vectors were contributed by Norm Galassi.

References

1. M.A. Breuer, Design Automation of Digital Systems, Volume I:
Theory and Techniques, Prentice-Hall, Inc., 1972, pp. 312-313.
2.].H. Hoel, ““Some Variations of Lee’s Algorithm,” IEEE Transac-
tions on Computers, Vol. C-25, no. 1, January 1976, pp. 19-24.

Creative Ways to Obtain Computer System

Debug Tools

by William M. Parrish, Eric B. Decker, and Edwin G. Wong

puter system, it is imperative that the problem be

found and corrected quickly. A determination of
whether the problem is in the hardware or the software
must be made, and the faulty hardware or software module
must be replaced. In the HP 3000 Computer, a major diag-
nostic tool is the maintenance panel or debug panel. In the
HP 3000 Series 37, an off-the-shelf microcomputer is used
for the maintenance panel. For software diagnostics, the
standard HP 3000 debugging facilities are supplemented
by a virtual software debugging panel called SoftPanel,
which is implemented in microcode. The maintenance
panel requires extra hardware and is used in the factory
and optionally in the field. SoftPanel is a built-in tool,
available in any system at any time.

W HEN SOMETHING GOES WRONG with a com-

System Consoles »

Historically, HP 3000 systems have had consoles that are
combinations of hardware and firmware. These devices
provide operator functions such as loading, starting, and
dumping the system, routine diagnostic functions such as
running built-in self-tests and checking hardware 1/O con-
figurations, and firmware, hardware, and software debug
facilities.

The earliest consoles consisted of a special interface card
on the CPU backplane and large assemblies of LED indi-
cators and switches. On the HP 3000 Series Il and III, these
consoles were made service-only tools, and the operator
functions were put into smaller panels which were actually
shipped to customers. If the diagnostic capabilities of the
maintenance panel are required, a Customer Engineer
brings the panels to the customer site and connects them
with several bulky cables.

Later consoles, those for the Series 44 and 64, for exam-
ple, also use a special interface card on the CPU backplane,
but are designed to work in parallel with the MPE system
console. A special sequence of characters is employed to
get the attention of the maintenance panel functions, and
the commands can be entered through the same terminal
used for the MPE console and the operator’s session.

The Series 64/68, with its large number of assemblies,
requires all boards on the CPU backplane to contain shift
strings, which can be read out and written by the console
{(known as the Diagnostic Control Unit, or DCU) to allow
detailed troubleshooting of the different assemblies and
data paths. By this mechanism, information contained in
storage elements on any assembly can be read and mod-
ified. Special microdiagnostics can be loaded through a
flexible disc drive connected to the console terminal.

Series 37 Requirements
The Series 37 is designed to be a high-volume, low-cost

system relative to other HP 3000 systems. As such, we
needed to minimize the special hardware required for the
console. We also had to have the debugging system avail-
able almost immediately after the receipt of first VLSI parts,
so there was not a lot of time in the schedule to debug our
debugging system.

The hardware of the Series 37 consists of a small number
of field-replaceable units. Sophisticated shift-string capa-
bility, such as was provided by the Series 64 DCU, was not
appropriate. If a hardware problem develops in the field,
there are few enough (and inexpensive enough) field-re-
placeable units in the Series 37 that a temporary exchange
of SPUs (system processing units) can show whether a
problem is with intermittent hardware or a design problem.
Hardware and microcode design problems should be found
and corrected in the factory, not the field, so such tools
were deemed unnecessary in the product.

It was decided, therefore, to partition the console func-
tions into functions required in the product and functions
required in the factory. Functions required in the product
include:

B The ability to LOAD, START, and DUMP the system

& MPE console capabilities

® Remote console capabilities

® Ability to run built-in and external software diagnostics
and check the hardware I/O configuration

® Ability to look at and modify software registers and main
memory (SoftPanel functions).

Functions not required in the final product, but required
for bringing up the system and factory debug include:

Fig. 1. An HP 9000 Mode/ 236 Computer serves as the
maintenance panel for the HP 3000 Series 37 Computer.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 17

® The ability to load a microcode image into control store

B The ability to read and modify writable control store

® The ability to read and modify registers used by the
microcode

® Breakpoint in control store

¥ The ability to do /O commands on the synchronous
intermodule bus (SIMB)

m The ability to do 32-bit writes and to read error status
information from the memory subsystem.

The microcode and software teams, being the primary
initial customers for the maintenance panel, had consider-
able interest in the specifications for the tool. Their inputs
caused us to come up with the following constraints:
® The major CPU registers should be visible on the screen

at the same time and should be updated automatically

as execution progresses. The contents of the screen
should reflect the state of the micromachine when micro-
code execution is interrupted by the maintenance panel
or while microstepping through microcode. Since the

CPU contains 15 high-speed registers plus a number of

register-file locations that are frequently updated by mi-

crocode, it was deemed necessary to use a product with

a large enough screen to display all of these registers.
® The microstep function, including screen updating,

should occur in about a second or less.
® Full support of the SIMB breakpoint board should be

provided, including use of the range and data pattern

features (see box, page 20).
® The microcode required for support of the maintenance

panel should be small enough to be debugged easily with

the microcode simulator tools, so that it could be fully
tested before committing it to ROM.

® A means of loading initial microcode and memory im-
ages was needed. Since the microcode files were de-
veloped on an HP 3000 Series 64, and the cold-load
microcode was not to be initially available, a means of
transferring such data from the development system to
the new hardware had to be developed.

Series 37 Maintenance Panel

The HP 9000 Model 236 Computer (formerly HP 9836)
was chosen as the maintenance panel (Fig. 1). It has a large
enough screen to display all relevant registers. Its high-per-
formance CPU and BASIC operating system are fast enough
that I/O and the screen updates required for a microstep
occur in about one half second. It supports HP’s LIF (logical
interchange format), allowing a limited file transfer capabil-
ity from the HP 3000 via flexible discs.

It was initially unclear whether interpreted BASIC had
sufficient performance to provide a one-second microstep.
Early in the development, we wrote an experimental screen
update program (not including I/O to the Series 37) and
determined that screen update and data formatting times
would not be limiting factors. The I/O time to read the
required registers over the parallel interface was computed
and it was determined that we would be able to meet the
specification of a one-second microstep time easily.

The required functions were implemented in a combina-
tion of hardware and firmware. The remainder of this arti-
cle describes the implementation and functionality of the
bring-up and debug tools.

Maintenance Panel Hardware

The hardware required for the Series 37 debug panel
includes an HP 9000 Model 236 Computer with 768K bytes
of memory and an HP 98622A GPIQO Interface card (16-bit
I/O plus handshake lines). This card resides in the Model
236 card cage. A custom cable connects the Series 37 CPU
board to the GPIO card. A connector and drivers for the
debug console are standard on every Series 37 CPU board.
The optional SIMB breakpoint board is required to set
breakpoints in main memory. This board requires a card
cage slot in the Series 37 Computer.

The mechanism for entering the maintenance panel code
is a process known as ““force magic data.”” This is a means
of breaking the microinstruction stream that is executing

BNKP: 1CS: AAEQ

BNKD: DSP: SS5EY

BNKS: LP : ARE2

BNKA: CPP: 553

: LAST: DL: FFFF

: Z: 5855

CC: 3 OPA: PB: 30F8

SG: FF OPB: PL: 0000

X: G568

SR: @ INV: 8090
NMR: 8 HCS BKPT

TOSC: 9080 BDS:0 8001P FFFF

MWA: SDF9 T0SD: @008 S3AEP FFFF

MWR: FFO3 @@FF 6@98 FFFF FFFF FFFF

A.. B.. C.. ¥.. SPEC JTD JFD LON FFFF FFFF

TOSR: @000
T0SB: 555

STATE: U_HLT 11:14:14
U (MICRO) BREAKPOINT (5ET)

4366_

<WCS ADDR> [,<DEC COUNT>1 [;T]

Fig. 2. Maintenance panel firm-
ware display.

18 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

and passing control to maintenance microcode. The mech-
anism works by forcing a particular data pattern onto the
microinstruction bus, causing a branch to a particular ad-
dress in the control store. This mechanism is implemented
in hardware on the Series 37 CPU board. It should be noted,
however, that this mechanism is used for handling micro-
interrupts other than the maintenance panel, and hence is
not unique to the debug panel.

Maintenance Panel Software

The software in the Model 236 Computer consists of a
BASIC program, which uses Advanced BASIC constructs
to control the displays, process commands, and handle
interrupts from the user and the Series 37. The BASIC
software is partitioned into user interface portions and I/O
portions, allowing us to be flexible in defining new user
commands as required during development.

The user normally sees one of two screens, a firmware
display or a software display, providing two viewpoints
into the machine. The firmware display (Fig. 2) provides
a window into the micromachine, including the state of
the firmware registers at the last invocation of maintenance
mode, along with the currently executing microword in hexa-
decimal format and disassembled symbolically. The address-
es of microbreakpoints currently set are also displayed.

The software display (Fig. 3) shows the HP 3000 program-
mer’s view of the machine (i.e., the state of the mac-
romachine). The display is arranged to show information
about the code (PROGRAM) currently running, the stack,
and global and status information. A display of the top 24
stack locations is shown at the bottom of the screen. The
TOS cache is transparent to the user in this mode; in the
firmware display, it is not.

Maintenance Panel Firmware
The work of obtaining and modifying values in memory,
registers, and the SIMB is done by a small set of microcode

PROGRAM STACK

BNKP 900000 BNKS 000000 M |
B : 030370 DL 177777 @ §
PL : 000000 G 000122

pegpag

Computer '
Museum -

routines. Two sets of these routines exist; one set is in
ROM, and another set overlays the ROM routines when
the operating system is running.

Operation

During normal system operation, the Model 236 can be
connected to the Series 37 CPU board and the impact is
minimal. The power-on self-test code checks for a mainte-
nance panel, and causes the panel to become active before
attempting to prompt the user for START/LOAD/DUMP com-
mands. Following that, if the system is operated normally,
the Series 37 user will not be aware that the panel is con-
nected to the system.

If certain microinterrupts occur, indicating hardware
problems, the panel will gain control if it is connected.
Alternatively, the user can hit the HALT key and force the
machine to stop.

While in maintenance mode, the user can issue com-
mands to the Model 236 which are formatted into data
patterns and sent out over the GPIO card to effect the vari-
ous user commands such as Modify Register or Display Memory.
These data patterns are interpreted by the firmware, which
invokes microsubroutines to make the changes occur in
the Series 37 CPU environment. Operations on the registers
normally used by microcode are performed on shadow reg-
isters while in maintenance mode.

To terminate maintenance mode and resume normal
execution, the user presses the CONTINUE(URUN) softkey,
which sends a command over the GPIO requesting micro-
code to restore the state from the shadow registers and
resume where execution was left off. -

Microbreakpoint

A breakpoint was defined in control store by use of the
WCS parity error interrupt. A breakpoint in control store
is set by changing the parity bit; the Model 236 keeps a
list of locations that have been so modified. The microcode

STATYS

T R 0O C CC

3

P 1 000002 S 001002 STA
LP 1128342 2 852525 1CS
ST 37 SR . psp
P-PB 147412 GLOBAL X
CIR : 080002 000000

177777
125340
052741
852753
BNKD

DB 001002

839370 @30370
830370 030370
030370 030370

030370
030370
830370

(T0S5-%27)
(T0S-X17)
(T05-37)

030376 030370 03037 030370
830370 93037¢ 030372 030370
030370 @3037¢ 039372 030370

030370
030370
930370

STATE:

SOITANTGIIIECTRING [<BANK> . 1<ADDRESS> [, <DEC COUNT>] [=<EXPR>)

2.3254=54_

U_HLT 11:24:13

Fig. 3. Maintenance panel soft-
ware display.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 19

In a microcode and software development environment, one
of the problems difficult to debug is the case when memory
locations appear to contain the wrong data. This normally occurs
when a bug in software or microcode causes an illegal write to
the suspected memory location. These so-called memory hits
may happen at just one memaory lacation, within a range of loca-
tions, or over the entire range of the memory. They may happen
with afixed data pattern or in a random pattern. They may happen
often or occasionally.

A simple approach to the solution of this problem is to connect
a logic analyzer to the CPU bus and program the analyzer to
trigger and record the bus transactions when an access to the
suspected memory location happens. There are afew drawbacks
to this approach. One major drawback is the fact that the logic
analyzer just captures what appears on the bus and cannot
freeze the CPU for further examination of the internal CPU regis-
.ters and flags. The other drawback is that this approach is not
friendly and requires specific knowledge of the hardware to con-
nect the logic analyzer, a task that most software developers
and microcoders try to avoid. A better solution to this problem
is to design a board that resides in the computer system like
any other board and does the job of a logic analyzer. The advan-
tage of this approach is that no analyzer needs to be connected,
and programming is through normal computer instructions.

For the HP 3000 Series 37 Computer, a special breakpoint
board was developed to provide memory transaction monitoring
capabilities to the system. This board is a programmable 1/O
channel that is plugged into the system like any other board and
monitors memory transactions. Normally, it is transparent to the
system and does not interfere with the normal system operation
except at system initialization, when it responds to the SIMB
ROCL (roll call) instruction to indicate its presence. The program-
ming is through SIMB WIOA (write I/O adapter) commands issued
to the board to set its internal registers. Therefore, programming
can be done using any facility capable of issuing SIMB com-
mands, including an HP 9000 Model 236 Computer or SoftPanel’'s
microcode.

The breakpoint board consists of nine write-only and three
read-only registers. The write-only registers include two bank
and address registers, two data registers, two opcode registers,
and one control register. The board is configured by writing into
the control register. The bank and address registers can be

The Role of a Programmable Breakpoint Board

programmed to break on individual addresses or on any address
between two limits (RANGE mode). The data registers can be
programmed to break on patterns of 1, 0, or X (don't care) bits.
The read-only registers capture the FROM CODE, bank, and ad-
dress of the breakpoint event.

Once the board is programmed, it compares every memory
transaction that appears on the SIMB with its internal registers.
When a match occurs it sends a nonmaskable interrupt (SIMB
WARMSTART) to the CPU. Upon receiving this interrupt the CPU
virtually freezes and executes special microcode that per-
mits the examination of the CPU internal registers and flags by
SoftPanel or the maintenance panel's Model 236 Computer. The
SIMB information that caused the break (memory address, SIMB
FROM CODE, and SIMB OPCODE of the transaction) are all cap-
tured in the internal registers of the breakpoint board and can
be accessed by issuing the SIMB RI0A (read 1/0O adapter) com-
mand to the breakpoint board.

The board was immediately put to use when it became avail-
able and solved many microcode bugs in its first weeks of exis-
tence. After a few weeks, users began to develop some uncon-
ventional uses for the board. An interesting unconventional appli-
cation is to use the board as a smart single-step facility for the
MPE operating system to single-step over PCAL instructions, in-
terrupts, etc. In this mode of operation, the MPE system Debug
facility is used to freeze the segment in question to prevent the
operating system from moving the segment. Then the breakpoint
board is programmed in RANGE mode such that the two break-
point registers point to the start and end of the procedure or
segment in question. The CONTINUE key of the Model 236 Com-
puter can then be used to single-step over the segment.

One dramatic case of breakpoint board application occurred
when the microcoders had been chasing a problem for several
days and had totally forgotten about the already programmed
breakpoint board inside the system. Several days later, while
they were working on another problem, the Model 236 mainte-
nance panel beeped, indicating a break from the breakpoint
board. From there it was a matter of minutes to find the bug they
had been looking for for days.

Mehraban Jam
Development Engineer
Computer Systems Division

for handling WCS parity interrupts includes going through
the ‘“force magic data” process and subsequently checking
for the presence of the Model 236. When the Model 236
sees an interrupt from a WCS parity error, it checks to see
if the location is one it knows to be a breakpoint. If so, it
treats the interrupt as a breakpoint, and indicates this to
the user. If not, it treats the interrupt as a valid WCS parity
error, and indicates this to the user.

With this general process, it was possible to create in
BASIC an arbitrarily large breakpoint table (we had eleven
entries: one special-purpose and ten general-purpose). It
was also possible to create temporary, permanent, and
counting breakpoints by changing only BASIC code. With
the programmable BEEP statement, an ALARM function is
provided: a short beep for a hit on a counting breakpoint
{different tones for different breakpoints), and a warble for
a complete step on expiration of a breakpoint.

The special-purpose breakpoint is used to implement

20 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

the single-step function for the software display mode.
There is an overhead line that always occurs between
machine instructions in the main microcode. When a
single-step at the macromachine level is requested, the CPU
is allowed to free-run until this line is executed between
instructions.

Memory Breakpoint

Memory breakpoint capability requires that an additional
hardware module, the SIMB breakpoint board, be installed
in the Series 37 card cage. I/O is done to this board by the
maintenance panel by general-purpose I/O routines that
talk to the SIMB. The user interface code formats these
calls to the I/O portion of the BASIC code, which in turn
does I/O over the GPIO board, which causes microcode
routines to write and read the various registers on the break-
point board. The memory breakpoint is discussed further
in the box above.

SoftPanel: Virtual Software Debugging Panel

For software debugging on the HP 3000 Series 37, a spe-
cial software debug facility, a virtual software debugging
panel called SoftPanel, is implemented in microcode.
SoftPanel is not the only software debugging tool available
in the HP 3000 system. The MPE operating system has its
help facility (not the same as the HELP command) and there
is the Debug facility. However, there are times when these
facilities may be hard to activate and/or cannot run at all.
SoftPanel is the only debugger on the Series 37 guaranteed
to be there when needed. It can always execute.

SoftPanel is a fundamental debugging tool. Through the
use of its commands, thé user can gain low-level informa-
tion about the system state. This information is vital when
one is trying to determine the cause of many failures. With-
out SoftPanel, the user has a significantly lower chance of
determining what is going on.

Basic Characteristics

The Series 37, like other HP 3000s, is a microcoded
machine. Thus it is really two machines in one. The mac-
romachine executes the instructions of the HP 3000. The
micromachine implements the macromachine. SoftPanel
is designed to debug software at the level of the mac-
romachine. Other tools exist for dealing with the system
at the micromachine level, primarily the HP 9000 Model
236 maintenance panel described above.

HP field engineers, being the primary customers for
SoftPanel, had considerable influence on its implementation.

A major requisite for a debugger is machine state visibil-
ity. SoftPanel provides this easily because of its microcode
implementation. Because it is implemented as microcode
and executes directly on the target machine, visibility of

//
\.\

Command Recognizer

[)

e
o

.

Terminal
o]

Conversions

different machine states is there for the asking. This in-
cludes memory, macromachine state, direct I/O, and some
micromachine control cells that directly affect the mac-
romachine. '

Another major requisite is transparency. The user should
be able to invoke the debugger, view the desired machine
state, and return to the software that was interrupted with
out any undesired effects. This, of course, assumes that the
machine state was not modified by the user. SoftPanel has
knowledge of what determines a macromachine state and
carefully preserves this information. This includes such
things as I/O system state, memory state, macromachine
state, and interrupt system state. None of this information
is altered unless specifically requested by the user. At any
time, the user can tell SoftPanel to return to the software
that was interrupted.

Yet another requisite is remote access. SoftPanel is usable
from a remote diagnosis center. As the number of systems
in the field increases, it becomes economically unfeasible
to service our machines any other way. SoftPanel ac-
complishes this by making use of the Series 37’s remote
operator interface. Anything that works on the local console
will also work through this interface.

A last major requisite is ease of use. To accomplish this,
the SoftPanel syntax is closely modeled after Debug’s.
Debug is a very well-known (in the HP 3000 user commu-
nity) debugger for the HP 3000. By choosing this syntax,
we avoided a large portion of the learning curve for many
users.

SoftPanel Structure

To facilitate quick design and implementation, SoftPanel
is partitioned into four major sections: command recog-
nizer, command parsers, command executors, and special

Command
Parsers

Parsing
Support

MODIFY
MEMORY
XCUTR

Command
Executors

Primitives

Fig. 4. The structure of SoftPanel,
a microcoded virtual software de-
bugging panel for the Series 37.

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 21

functions. Fig. 4 details the structure graphically.

The command recognizer is responsible for accepting
user input and determining which command should be
given control. Included in this activity are prompting, read-
ing the user response, scanning the first field, looking for
a valid command, and activating the appropriate command
parser. If an invalid command is input, an appropriate error
message is displayed.

The second major section of SoftPanel consists of the
command parsers. This software is responsible for scanning
the rest of the command line for the command’s parameters.
There is one parser for each command. If valid parameters
are found, a module in the third major part, the executors,
is activated.

The command executors actually implement the com-
mand. Each executor is passed a set number of parameters
by the corresponding command parser. It performs its ac-
tion and returns to the command recognizer. What each
executor does is entirely dependent upon the command.
Some commands simply take a starting memory address
and display consecutive locations. Other commands dis-
play some information and wait for user input. Depending
upon this input, some portion of the machine state may be
altered.

The last major section deals with special functions. In-
cluded are memory breakpoints, and the interface to the
macromachine.

Underlying these major sections are a significant number
of subroutines. There are subroutines that directly support
the command recognizer, parsers, and executors, and there
are primitive subroutines that support base functionality

Virtual Microcode Memory

The HP 3000 Series 37 self-test ROMs use an unusual im-
plementation of a virtual microcode space in the four 128K-bit
ROMs that enable the 64-bit CPU to access and run self-test
functions, boot routines, and diagnostics, simulating a separate
control processor. This separate control processor, if present,
would use writable control store (WCS). Since the separate pro-
cessor is not present, diagnostics, boot code, and other micro-
code can be loaded and run without taking valuable WCS space,
which is also needed for the main instruction microcode. This
extra microcode is loaded into WCS only when its functions are
needed. It is present in ROM on the CPU board and does not
need to be loaded from disc.

This virtual microcode space is implemented by a routine called
LoadNxt, which enables a specified program or data file to be
loaded from ROM into any arbitrary area of WCS so that it can
be executed or accessed.

This solution minimizes the use of scarce WCS resources,
which must be shared with HP 3000 instruction set microcode,
without sacrificing self-test, boot, or diagnostic functionality.

Acknowledgment
Norm Galassi wrote LoadNxt.

Chris Shaker
Development Engineer
Computer Systems Division

22 HEWLETT-PACKARD JOURNAL SEPTEMBER 1985

on all levels of the structure. Included are the following:

m Field scanner. This routine recognizes the next field in
the input buffer, determines its type (ASCII string, null,
or numeric) and returns this information.

m Conversion routines. These routines convert between in-
ternal (binary) and the appropriate external form. This
external form is either the octal or the hexadecimal ASCII
equivalent as determined by the current radix. This is
under user control.

m Expression handling. This family of routines deals with
processing expressions of various forms. Each one starts
scanning from the current place in the input buffer and
terminates appropriately. The value of the expression is
returned to the caller. These expression handlers can
deal with addition, subtraction, multiplication, indi-
rection, unary operators, base address modification, and
counts.

m Primitives. These provide buffer manipulation, table
management, address handlers, basic terminal I/O, and
connections back to the command recognizer for com-
mand termination and/or error conditions.

SoftPanel Commands

SoftPanel is command-driven. A prompt (SP>) is dis-
played, the user types the desired command followed by
its parameters, the command is processed and executed,
and the cycle is repeated. All activity of SoftPanel is in
some way caused by the input of a command. This includes
the special functions (memory breakpoint processing) as
well as regular functions.

There are six major groupings of commands: display
memory, modify memory, input/output, miscellaneous,
code breakpoints, and memory breakpoints. The command
syntax is strongly dependent upon the architecture of the
HP 3000, with its segmented memory system and separa-
tion of code and data spaces.

The command-driven approach was chosen for two
reasons. The first was ease of implementation, and the
second reason is related to the requirement for remote ac-
cess. This access is primarily through 1200-baud dial-up
lines. A full screen debugger becomes extremely obnoxious
running at this speed.

Memory Breakpoints

One very nice feature of SoftPanel is its ability to deal
with the Series 37 memory breakpoint board (see box, page
20). This is a hardware tool that allows debugging of ex-
tremely difficult problems. One such problem is the trash-
ing of particular memory locations that then cause a system
crash (bank O is a particularly nasty place to trash). The
memory breakpoint board allows the user to trap writes
and reads to particular addresses or ranges of addresses.

SoftPanel supplies an interface for setting this board up
and handling the results when a trap occurs.

Acknowledgments

Harish Joshi implemented the maintenance microcode,
including the microinterrupt handler, and wrote the low-
level /O routines in Model 236 BASIC. Paul Rogers im-
plemented the special circuitry on the CPU board that was
required for the maintenance panel.

Authors

September 1985

4 ——HP 3000 Computer System

Frank E. La Fetra, Jr.

E W Skip La Fetra was born in
s Los Angeles, California and
studied electrical engineer-
ki ing at Stanford University,
rom which he received his
BSEE and MSEE degrees
n 1976 and 1977. After
. joining HP in 1977, his first
% assignments as a develop-
_ti: . mentengineer involved cir-
cunde3|gn and analysis, reliability, burn-in, and au-
tomated test equipment. Later he worked on the HP
3000 Series 68 and Series 37 Computers and is
now an R&D project manager. Skip is a registered
professional engineer and amember of the IEEE,
and is interested in small, multiuser computer sys-
tems. He and his wife live in Sunnyvale, California.
Heis an avid bicyclist and likes to tinker with per-
sonal computers.

James H. Holl
A native Californian, Jim
Holl was born in Palo Alto,
studied electrical engineer-
ing at the University of
California at Berkeley
4 (BSEE 1966) and the Uni-
W versity of Santa Clara

* (MSEE 1971), and came
/ 9 HP in 1969. He is an R&D
section manager and was
the section manager responsible for the HP 3000
Series 37 Computer. He was also amember of the
original R&D team that developed the HP 3000. Jim
lives in Cupertino, California with his wife and two
sons, is a youth soccer referee, and has been a
YMCA indian Guides leader. He loves sports, par-
ticularly ultimate frisbee, managing to keep up with
HP teammates who are often 10 to 20 years
younger than he is.

7=—=Computer Architecture

Frederic C. Amerson

An R&D section manager at
HP's Data Systems Divi-
sion, Rick Amerson has
contributed to the develop-
ment of both the HP 3000
and HP 1000 Computers.
He worked on the plotter in-
terface for the original HP
3000, was a project man-
ager for the HP 3000 Series
64, and is a section manager for HP 1000 hardware
development. Rick received a BSEE degree from
the Georgia Institute of Technology in 1972 and
came to HP the same year. He now lives in Santa
Clara, California, is a church pianist, and enjoys
downhill skiing. He is also a commercial pilot with
instrument and multiengine ratings.

13— Simulation

Paul L. Rogers
Paul Rogers designed the
PU board for the HP 3000
. Series 37 Computer and
ontributed to the design of
he terminal interface con-
roller. At HP since 1981,
is other experience in-
ludes work on the
"k hardware cache for the HP
! 3000 Series 64 Computer.
He is a graduate of the University of California at
Berkeley (BSEE 1981) and recently completed an
MSEE degree at San Jose State University through
the HP fellowship program. Paul lives in Santa
Clara, California and has a variety of outside in-
terests. He plays water polo, ultimate frisbee, or
basketball with other HP employees at lunchtime
and also enjoys cooking, woodworking, scuba di-
ving, water skiing, and sailing.

Malcolm E. Woodward

Born in Ontario, Oregon,
Woody Woodward served
in the U.S. Marine Corps
before coming to HP in

- 1972. While he was in the
Marine Corps he super-
vised the maintenance of
tactical data systems, and
i inhisfirst HP job he worked
s @S @ technician on system
I/Oandon the HP 2100 Computer. Later, as an R&D
staff member, he contributed to the development
of the HP 3000 Series 64 and designed the peripheral
interface channel for the HP 3000 Series 37. He is
currently an R&D project manager. Woody lives in
Sunnyvale, California with his son and has one
other son and two daughters. He is an amateur
radio operator (W6PLT) and also likes fishing and
tinkering with cars.

Patria G. Alvarez

- A native of San Jose,
California, Pat Alvarez
earned a BSCS degree
from San Jose State Univer-
sity in 1983 before coming
o HP the same year. She
urrently works on software
for the HP 3000 operating
y ~ system and has also de-

E veloped and maintained
hardware design tools for the HP 3000 Series 37.
This fall she will be working on an MS degree in
computer science at Stanford University. Outside
of work, Pat enjoys tennis and making handicrafts
and clothing.

John R. Obermeyer

John Obermeyer studied
electrical engineering at
Northwestern University
and came to HP in 1981,
the same year he received
his BS degree. He also
completed an MS degreein
computer science at Stan-
ford University in 1984. He
contributed to the design of
the terminal interface controlier for the HP 3000
Series 37 Computer and also worked on the diag-
nostic and utility systems. Currently, he is working
on VLSI chip design. John was bornin Cincinnati,
Ohio, lives in San Jose, California with his wife, and
is an advisor and choir director for youth groups
in his church. His outside interests include painting,
drawing, woodcarving, and volleyball. He also col-
lects fossils, mostly from the Ordovician period.

Greg L. Gilliom

' Currently an R&D project
manager for HP 1000 Com-
puter products, Greg Gil-
liom has been with HP
since 1979. He worked as
aproduction engineerona
number of models of HP
3000 Computers, and later
developed diagnostics and
¥ microcode for the HP 3000
asan R&D engineer and project manager. He was
the project manager for the microcode on the HP
3000 Series 37. Greg was bornin St. Charles, Mis-
souri and graduated from the University of Missouri
with a bachelor's degree in electrical engineering
in1979. He lives in Campbell, California, is single,
and has many athletic interests, including sailing,
windsurfing, waterskiing, scuba diving, skiing, and
ultimate frisbee.

17 —=Debug Tools

Edwin G. Wong

With HP since 1979, Ed Wong wrote the diagnostic
microcode for the HP 3000 Series 37 and is cur-
rently working on CMOS VLS| chip design. He also

SEPTEMBER 1985 HEWLETT-PACKARD JOURNAL 35

designed an I/O card for the HP 1000 L-Series
Computer and a memory controller for another
product. A California native, Ed was born in San
Franciscoand earned a BS degree from the Univer-
sity of California at Santa Barbara in 1978. He ex-
pects to receive an MS degree from the University
of Santa Clara in 1986. He is a resident of Sun-
nyvale, supports the Big Brothers youth organiza-
tion, and is active in his church. He enjoys windsurf-
ing, running marathons, and participating in
triathlons.

William M. Parrish

Bill Parrish was bornin Dal-
las, Texas andis agraduate
of the University of Califor-
- nia at Santa Barbara {BS
1973). AtHP since 1974, he
has contributed to the de-
velopment of both the
Series 64 and Series 37 HP
% 3000 Computers and is

presently investigating the
field supportability of future products. He is a
member of both the IEEE and the ACM. Bill and his
wife live in Meadow Vista, California and enjoy tak-
ing ballet lessons together. His other interests in-
clude photography, travel, and playing the piano
and organ.

Eric B. Decker
; i At HP since 1980, Eric
Decker has written micro-
code forthe HP 3000 Series
37,64, and 68 Computers.
He alsc contributed to the

nal controller for the Series
64 and 68 and to the de-
velopment of the HP 75C
i Handheld Computer. He is
interested in distributed systems, computer ar-
chitecture, and the societal impact of computers.
He has attended Case Institute of Technology,
lowa State University, Stanford University, and
California State University at Chico. Eric lives with
his companion and two children in Scotts Valley,
California. He says he likes t'ai chi ch’uan, intellec-
tual pursuits, and "yard destruction.”

23 — Cardiograph Family

Peter H. Dorward
) i At HP’s Andover Division
 since 1975, Peter Dorward
W was project manager for
§ the HP 4750A and HP
4760A cardiographs. He
was also a project leader
for electronics on the HP
4700A Cardiograph and
developed software for the
HP 5600C ECG Manage-
ment Systern. Peter was born in Lancaster,
Pennsylvania and received an AB degree from
Dartmouth College in 1973 and a Master of En-
gineering degree from the Thayer School of En-
gineering in 1975. He lives in Harvard, Mas-
sachusetts with his wife and daughter and enjoys
softball and skiing. He is also renovating a 100-
year-old Victorian farmhouse, raises chickens, and
grows fruit trees and Christmas trees.

Steven A. Scampini

§ Born in Bristol, Connec-
ticut, Steve Scampini was
educated at Rensselaer
Polytechnic Institute (BSEE
1972) and at the California
Institute of Technology
(MSEE 1973). He worked
e O undersea electronics at
o ‘.t Bell Laboratories, then
SEONT M cametoHP in 1976, AtHP
he has contributed to the development of the HP
4700A, the HP 4750A, and the HP 4760A cardio-
graphs. He was also the author of an HP Journal
article on the HP 4700A. Steve lives in Reading,
Massachusetts and likes photography, running,
and cross-country skiing.

Robert H. Banta, Jr.
Foag At HP since 1980, Bob
Banta was responsible for
the integrated tape backup
and HP-IBinterface for the
HP 7908, HP 7911, and HP
7912 disc products. He
was one of the developers
of the HP 4750A Cardio-
graph and was the software
project leader on the HP

4760A Cardiograph. Bob was born in Neptune,
New Jersey and received his BS degree from Duke
University in 1980. Now a resident of North An-
dover, Massachusetts, he enjoys bicycling, hiking,
and soaring.

29 —— ECG Analysis

Anthony G. Vallance
Tony Vallance was barn in
Amersham, England and
studied at Woolwich
™ Polytechnic (BS 1963) and
" Northeastern University
(MSEE 1972). At HP since
1974, he is asection man-
ager at the Waltham Divi-
sion and was also a section
' manager atthe Andover Di-
vision. In his earlier assignments he was project
manager for the HP 5600C ECG Management Sys-
tem and project manager for the system and test
software for the HP 77020A ultrasound imaging
system. He has published severaltechnical papers
and is a member of the IEE and ACM. Tony lives
with his wife and two sons in Westford, Massachu-
setts and is interested in sailing and astronomy.

John C. Doue

John Doue was born in

¢ Chinaand educated inthe
U.S. He attended the Uni-
versity of California at
Berkeley, receiving a BSEE
degree in 1967 and an
MSCS degree in 1968.
After working as a software
engineer at two other elec-
tronics companies, he
joined HP in 1972. He has made a number of con-
tributions to the development of cardiograph prod-
ucts and is presently a project leader for the
analysis program for the products. He has pub-
lished papers in conference proceedings, is a
member of the American Heart Association, and is
interested in the application of artificial intelligence
to electrocardiograph analysis. John lives with his
wife in Manchester, Massachusetts. They de-
signed and built an A-frame cabin, all with hand
tools, in the Maine woods.

EN

HEWEETT-PACKARD JOURNAL

5953-8539

A

HEWLETT
PACKARD

