
<REFERENCE>(VAX_mod_XXX) Ser-
vice Manual

Order Number EK–650EA–MG–001

This manual is intended for Digital customer
service engineers. It covers processor-specific and
troubleshooting information. This manual is to be used
with the VAX 6000 Platform Service Manual.

digital equipment corporation
maynard, massachusetts

First Printing, November 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software, if any, described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license. No responsibility is assumed
for the use or reliability of software or equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEMNA PDP VAXcluster
DEC ULTRIX VAXELN
DEC LANcontroller UNIBUS VMS
DECnet VAX XMI
DECUS VAXBI

�

FCC NOTICE: The equipment described in this manual generates, uses, and may emit
radio frequency energy. The equipment has been type tested and found to comply with the
limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such radio frequency interference when
operated in a commercial environment. Operation of this equipment in a residential area
may cause interference, in which case the user at his own expense may be required to take
measures to correct the interference.

Contents

Preface xi

Chapter 1 Introduction

1.1 System Functional Description . 1–2
1.2 Troubleshooting Flowcharts . 1–4

Chapter 2 Diagnostics

2.1 Diagnostic Overview . 2–2
2.2 Self-Test and Additional Power-Up Tests 2–4
2.2.1 Checking Self-Test Results: Console Display 2–6
2.2.2 Checking Self-Test Results: Status LEDs 2–8
2.2.3 KA65A LEDs . 2–10
2.2.4 Determining Failing Test from LEDs 2–12
2.2.5 KA65A Error LED . 2–14
2.2.6 Checking Self-Test Results: XBER and XGPR Registers . . 2–16
2.3 ROM-Based Diagnostic Monitor Program 2–18
2.3.1 RBD Monitor Control Characters . 2–20
2.3.2 START Command . 2–22
2.3.3 START Command Qualifiers . 2–23
2.3.4 RBD Test Printout, Passing . 2–26
2.3.5 RBD Test Printout, Failing . 2–28
2.3.6 SUMMARY Command . 2–30
2.3.7 Sample RBD Session . 2–32
2.3.8 Running ROM-Based Diagnostics on I/O Devices 2–38
2.4 ROM-Based Diagnostics . 2–40
2.4.1 <REFERENCE>(xmp) Self-Test — RBD 0 2–42
2.4.2 CPU/Memory Interaction Tests — RBD 1 2–46
2.4.3 <REFERENCE>(xbi) Tests — RBD 2 2–48

iii

2.4.4 DWMBB Tests — RBD 2 Subtests 2–50
2.4.5 MS65A Memory Tests — RBD 3 . 2–52
2.4.6 KA65A Cache Tests — RBD 4 . 2–56
2.4.7 Multiprocessor Tests — RBD 5 . 2–58
2.5 VAX Diagnostic Supervisor Programs 2–60
2.5.1 Running VAX/DS in Standalone Mode 2–62
2.5.2 Running VAX/DS in User Mode . 2–64
2.5.3 Sample VAX/DS Session . 2–66
2.5.4 VAX/DS Diagnostics . 2–70

Chapter 3 <REFERENCE>(xmp) Scalar Processor

3.1 <REFERENCE>(xmp) Physical Description and
Specifications . 3–2

3.2 <REFERENCE>(xmp) Configuration Rules 3–4
3.3 <REFERENCE>(xmp) Functional Description 3–6
3.4 Boot Processor . 3–10
3.5 Power-Up Sequence . 3–12
3.6 ROM-Based Diagnostics . 3–16
3.7 VAX/DS Diagnostics . 3–18
3.8 Machine Checks . 3–20
3.9 Console Commands . 3–22
3.10 <REFERENCE>(xmp) Handling Procedures 3–24
3.11 How to Replace the Only Processor . 3–28
3.12 How to Replace the Boot Processor . 3–30
3.13 How to Add a New Processor or Replace a Secondary

Processor . 3–32
3.14 Using EVUCA to Patch the EEPROM 3–34
3.15 <REFERENCE>(xmp) Registers . 3–36

Chapter 4 FV64A Vector Processor

4.1 <REFERENCE>(xrv) Physical Description and Specifications 4–2
4.2 <REFERENCE>(xmp)/FV64A Coprocessors 4–4
4.3 <REFERENCE>(xrv) Configuration Rules 4–6
4.4 <REFERENCE>(xrv) Functional Description 4–8
4.5 Self-Test Results: Console Display and Self-Test LED 4–10

iv

4.6 Self-Test Results: Scalar XGPR Register 4–12
4.7 ROM-Based Diagnostics . 4–14
4.8 VAX/DS Diagnostics . 4–16
4.9 Machine Checks . 4–17
4.10 Vector Console Commands . 4–18
4.11 <REFERENCE>(xrv) Handling Procedures 4–22
4.12 How to Replace a Vector Module . 4–26
4.13 Vector Processor Registers . 4–28

Chapter 5 MS65A Memory

5.1 MS65A Physical Description . 5–2
5.2 MS65A Configuration Rules . 5–4
5.3 MS65A Specifications . 5–5
5.4 MS65A Functional Description . 5–6
5.5 MS65A Interleaving . 5–8
5.6 Console Commands for Interleaving 5–10
5.7 MS65A Addressing . 5–12
5.8 Memory Self-Test . 5–14
5.9 Memory Self-Test Errors . 5–16
5.10 MS65A Control and Status Registers 5–18

Chapter 6 DWMBB I/O Adapter

6.1 DWMBB Physical Description . 6–2
6.1.1 Physical Layout . 6–2
6.1.2 Specifications . 6–4
6.2 <REFERENCE>(xbi) Configuration Rules 6–6
6.3 DWMBB Functional Description . 6–8
6.4 <REFERENCE>(xbi) Registers . 6–10

v

Appendix A Console Error Messages

Appendix B Boot Status and Error Messages

B.1 Ethernet MOP Boot Status and Error Messages B–1
B.2 Disk Boot Status and Error Boot Messages B–2
B.3 Tape Status and Error Boot Messages B–2
B.4 CI Status and Error Boot Messages . B–4

Appendix C KA65A LED Patterns Indicating Console Errors

Appendix D Parse Trees

Appendix E Restoring a Corrupted EEPROM

Glossary

Index

Examples

2–1 Self-Test Results . 2–6
2–2 Examining the XCR0 and XBER Registers 2–14
2–3 XGPR Register After Power-Up Test Failure 2–16
2–4 START Command . 2–22
2–5 RBD Test Printout, Passing . 2–26
2–6 RBD Test Printout, Failing . 2–28
2–7 SUMMARY Command . 2–30
2–8 Sample RBD Session, Part 1 of 3 . 2–32
2–9 Sample RBD Session, Part 2 of 3 . 2–34
2–10 Sample RBD Session, Part 3 of 3 . 2–36
2–11 Running RBDs on I/O Devices . 2–38

vi

2–12 <REFERENCE>(xmp) Self-Test — RBD 0 2–42
2–13 Running <REFERENCE>(xmp) Self-Test (RBD 0) on a

Secondary Processor . 2–43
2–14 CPU/Memory Interaction Tests — RBD 1 2–46
2–15 <REFERENCE>(xbi) Tests — RBD 2 2–48
2–16 RBD Test on All Modules with Halt on Error 2–52
2–17 RBD Test on Module in Slot A . 2–52
2–18 RBD Test with Module Error . 2–53
2–19 RBD Test with Confirm Switch . 2–53
2–20 KA65A Cache Tests — RBD 4 . 2–56
2–21 Multiprocessor Tests — RBD 5 . 2–58
2–22 Running VAX/DS in Standalone Mode 2–62
2–23 Running VAX/DS in User Mode . 2–64
2–24 Sample VAX/DS Session, Part 1 of 2 2–66
2–25 Sample VAX/DS Session, Part 2 of 2 2–68
3–1 ROM and EEPROM Version Numbers 3–8
3–2 VAX/DS Commands for Running Standalone Processor

Diagnostics . 3–18
3–3 Replacing a Single Processor . 3–28
3–4 Replacing Boot Processor . 3–30
3–5 Adding or Replacing Secondary Processor 3–32
3–6 Patching the EEPROM with EVUCA 3–34
4–1 Self-Test Results . 4–10
4–2 XGPR Register After Power-Up Test Failure 4–12
4–3 VAX/DS Commands for Testing Vector Processors 4–16
5–1 SET MEMORY and INITIALIZE Commands 5–10
5–2 MS65A Memory Module Results in Self-Test 5–14
5–3 MS65A Memory Module Node Exclusion 5–16
E–1 Restoring a Corrupted EEPROM, Part 1 of 2 E–2
E–2 Restoring a Corrupted EEPROM, Part 2 of 2 E–4

vii

Figures

1–1 <REFERENCE>(VAX_mod_XXX) System Architecture 1–2
1–2 Power-Up . 1–4
1–3 Boot VMS . 1–6
1–4 Control Panel Lights Do Not Work . 1–7
1–5 System Shutdown 30 Seconds After Power-Up 1–8
1–6 No Console Output, Control Panel Fault LED Is On 1–9
1–7 No Console Output, Control Panel Fault LED Is Off 1–10
1–8 DWMBB Fails Self-Test . 1–11
2–1 Diagnostics Design . 2–2
2–2 Location of Status LEDs . 2–8
2–3 <REFERENCE>(xmp) LEDs After Power-Up Self-Test 2–10
3–1 <REFERENCE>(xmp) Module . 3–2
3–2 Typical <REFERENCE>(xmp) Configuration 3–4
3–3 <REFERENCE>(xmp) Block Diagram 3–6
3–4 Selection of Boot Processor . 3–10
3–5 <REFERENCE>(xmp) Power-Up Sequence, Part 1 of 2 3–12
3–6 <REFERENCE>(xmp) Power-Up Sequence, Part 2 of 2 3–14
3–7 The Stack in Response to a Machine Check 3–20
3–8 Holding the <REFERENCE>(xmp) Module 3–24
3–9 Inserting the <REFERENCE>(xmp) Module in an XMI Card

Cage . 3–26
4–1 <REFERENCE>(XRV) Module (Side 1) 4–2
4–2 <REFERENCE>(XRV) Module (Side 2) 4–3
4–3 VAX 6000 Model 500 Vector Processing System 4–4
4–4 Scalar/Vector Configurations . 4–6
4–5 <REFERENCE>(XRV) Block Diagram 4–8
4–6 XGPR Register . 4–12
4–7 The Stack in Response to a Machine Check 4–17
4–8 Holding the <REFERENCE>(xrv) Module 4–22
4–9 Inserting the <REFERENCE>(xrv) Module in an XMI Card

Cage . 4–24
4–10 Replacing a Vector Module in an XMI Card Cage 4–26
5–1 MS65A Module . 5–2
5–2 MS65A Configuration . 5–4
5–3 MS65A Block Diagram . 5–6

viii

5–4 MS65A Interleaving . 5–8
5–5 MS65A Addressing . 5–12
6–1 <REFERENCE>(XBIA_TITLE) . 6–2
6–2 <REFERENCE>(XBIB_TITLE) . 6–3
6–3 <REFERENCE>(VAX_XXXX) Slot Numbers 6–6
6–4 <REFERENCE>(XBI_TITLE) Block Diagram 6–8
C–1 KA65A Module LEDs . C–2
D–1 <REFERENCE>(xmp) Machine Check Parse Tree D–2
D–2 <REFERENCE>(xmp) Hard Error Interrupt Parse Tree D–7
D–3 <REFERENCE>(xmp) Soft Error Interrupt Parse Tree D–10
D–4 <REFERENCE>(xrv) Machine Check Parse Tree D–12
D–5 <REFERENCE>(xrv) Hard Error Interrupt Parse Tree D–13
D–6 <REFERENCE>(xrv) Soft Error Interrupt Parse Tree D–14
D–7 <REFERENCE>(xrv) Disable Fault Parse Tree D–15

Tables

1 VAX 6000 Series Documentation . xii
2 VAX 6000 Model Level Documentation xiii
3 Associated Documents . xiv
2–1 ROM-Based Diagnostics Run at Power-Up 2–4
2–2 Status LEDs After Self-Test . 2–9
2–3 <REFERENCE>(xmp) Status LEDs . 2–12
2–4 KA65A Error LED . 2–14
2–5 XMI Base Addresses . 2–17
2–6 Interpreting XGPR Failing Test Numbers 2–17
2–7 RBD Monitor Commands . 2–18
2–8 ROM-Based Diagnostic Programs — Callable Tests 2–18
2–9 RBD Monitor Control Characters . 2–20
2–10 START Command Qualifiers . 2–23
2–11 ROM-Based Diagnostic Programs — Callable Tests 2–40
2–12 <REFERENCE>(xmp)/<REFERENCE>(xrv) Self-Test —

RBD 0 . 2–43
2–13 CPU/Memory Interaction Tests — RBD 1 2–47
2–14 <REFERENCE>(XBI_TITLE) RBD Tests 2–50
2–15 Memory Tests — RBD 3 . 2–54
2–16 RBD 3 Parameters . 2–55

ix

2–17 KA65A Cache Tests — RBD 4 . 2–57
2–18 Multiprocessor Tests — RBD 5 . 2–59
2–19 RBD 5 Parameters . 2–59
2–20 VAX Diagnostic Program Levels . 2–60
2–21 VAX/DS Documentation . 2–60
2–22 VAX Diagnostic Supervisor Programs 2–70
3–1 <REFERENCE>(xmp) Specifications 3–3
3–2 KA65A ROM-Based Diagnostics . 3–16
3–3 <REFERENCE>(xmp) VAX/DS Diagnostics 3–18
3–4 Machine Check Parameters . 3–20
3–5 Console Commands . 3–22
3–6 <REFERENCE>(xmp) Internal Processor Registers 3–36
3–7 <REFERENCE>(XMI) Registers for the

<REFERENCE>(xmp) . 3–39
3–8 <REFERENCE>(xmp) Registers in <REFERENCE>(XMI)

Private Space . 3–40
4–1 <REFERENCE>(XRV) Specifications 4–5
4–2 Processor Module Combinations . 4–7
4–3 Interpreting XGPR Failing Test Numbers 4–13
4–4 FV64A ROM-Based Diagnostics . 4–14
4–5 <REFERENCE>(XRV) VAX/DS Diagnostics 4–16
4–6 <REFERENCE>(xrv) Machine Check Parameters 4–17
4–7 Vector Console Commands . 4–18
4–8 <REFERENCE>(XRV) Internal Processor Registers 4–28
5–1 <REFERENCE>(XMA_TITLE) Specifications 5–5
5–2 MS65A Control and Status Registers 5–18
6–1 DWMBB/A Specifications . 6–4
6–2 DWMBB/B Specifications . 6–5
6–3 <REFERENCE>(xbi) Cables . 6–5
6–4 <REFERENCE>(xbi) Configuration . 6–7
6–5 VAXBI Registers . 6–10
6–6 <REFERENCE>(xbi) XMI Registers 6–11
A–1 Console Error Messages Indicating Halt A–1
A–2 Standard Console Error Messages . A–3
C–1 KA65A Console LED Patterns . C–2

x

Preface

Intended Audience
This manual is written for Digital customer service engineers servicing the
<REFERENCE>(VAX_mod_XXX) system.

Document Structure
This manual uses a structured documentation design. There are many
topics, organized into small sections for efficient reference. Each topic
begins with an abstract. You can quickly gain a comprehensive overview
by reading only the abstracts. Next is an illustration or example, which
also provides quick reference. Last in the structure is descriptive text.

This manual has six chapters and five appendixes:

• Chapter 1, Introduction, gives an overview of the <REFERENCE>(vax_
mod_xxx) system architecture and flowcharts for troubleshooting the
system.

• Chapter 2, Diagnostics, describes the <REFERENCE>(vax_xxxx)
self-test, ROM-based diagnostics, and software diagnostics that run
under the VAX Diagnostic Supervisor.

• Chapter 3, <REFERENCE>(XmP) Scalar Processor, Chapter 4,
<REFERENCE>(xrv) Vector Processor, Chapter 5, <REFERENCE>(XMA)
Memory, and Chapter 6, DWMBB I/O Adapter, give information on
module specifications, configuration rules, and registers.

• Appendix A lists the console error messages. Appendix B contains
the boot status and error messages. Appendix C shows KA65A LED
patterns that indicate console errors. Appendix D gives the parse trees
for the KA65A and FV64A processors. Appendix E is a procedure
for restoring a corrupted EEPROM. A Glossary and Index provide
additional reference support.

xi

Conventions Used in This Document
The icons shown below are used in illustrations for designating part
placement in VAX 6000 systems. A shaded area in the icon shows the
location of the component or part being discussed.

FRONT REAR

<REFERENCE>(XXX) Documents
There are two sets of documentation: manuals that apply to all VAX 6000
series systems and manuals that are specific to one VAX 6000 model.
Table 1 lists the manuals in the VAX 6000 series documentation set.

Table 1: VAX 6000 Series Documentation

Title Order Number

Operation

<REFERENCE>(XXX) Owner’s Manual EK–600EA–OM

<REFERENCE>(XXX) Vector Processor Owner’s Manual EK–60VAA–OM

<REFERENCE>(v6) Vector Processor Programmer’s Guide EK–60VAA–PG

Service and Installation

<REFERENCE>(v6) Platform Technical User’s Guide EK–600EA–TM

<REFERENCE>(XXX) Installation Guide EK–600EA–IN

<REFERENCE>(v6) Installationsanleitung EK–600GA–IN

<REFERENCE>(v6) Guide d’installation EK–600FA–IN

<REFERENCE>(v6) Guia de instalacion EK–600SA–IN

<REFERENCE>(v6) Platform Service Manual EK–600EA–MG

xii

Table 1 (Cont.): VAX 6000 Series Documentation

Title Order Number

Options and Upgrades

VAX 6000: XMI Conversion Manual EK–650EA–UP

VAX 6000: Installing MS65A Memories EK–MS65A–UP

VAX 6000: Installing the H7236 Battery Backup Option EK–60BBA–IN

VAX 6000: Installing the FV64A Vector Option EK–60VEA–IN

VAX 6000: Installing the VAXBI Option EK–60BIA–IN

Manuals specific to models are listed in Table 2.

Table 2: VAX 6000 Model Level Documentation

Title Order Number

Models 200/300/400

VAX 6000 Model 300 and 400 Service Manual EK–624EA–MG

VAX 6000: Installing Model 200/300/400 Processors EK–6234A–UP

Model 500

<REFERENCE>(MX) Mini-Reference EK–650EA–HR

<REFERENCE>(MX) Service Manual EK–650EA–MG

<REFERENCE>(MX) System Technical User’s Guide EK–650EA–TM

VAX 6000: Installing Model 500 Processors EK–KA65A–UP

Associated Documents
Table 3 lists other documents that you may find useful.

xiii

Table 3: Associated Documents

Title Order Number

System Hardware Options

VAXBI Expander Cabinet Installation Guide EK–VBIEA–IN

VAXBI Options Handbook EB–32255–46

System I/O Options

CIBCA User Guide EK–CIBCA–UG

CIXCD Interface User Guide EK–CIXCD–UG

DEC LANcontroller 200 Installation Guide EK–DEBNI–IN

DEC LANcontroller 400 Installation Guide EK–DEMNA–IN

InfoServer 100 Installation and Owners Guide EK–DIS1K–IN

KDB50 Disk Controller User’s Guide EK–KDB50–UG

KDM70 Controller User Guide EK–KDM70–UG

RRD40 Disc Drive Owner’s Manual EK–RRD40–OM

RA90/RA92 Disk Drive User Guide EK–ORA90–UG

SA70 Enclosure User Guide EK–SA70E–UG

Operating System Manuals

Guide to Maintaining a VMS System AA–LA34A–TE

Guide to Setting Up a VMS System AA–LA25A–TE

Introduction to VMS System Management AA–LA24A–TE

ULTRIX–32 Guide to System Exercisers AA–KS95B–TE

VMS Upgrade and Installation Supplement: VAX 6000 Series AA–LB36C–TE

VMS Networking Manual AA–LA48A–TE

VMS System Manager’s Manual AA–LA00A–TE

VMS VAXcluster Manual AA–LA27B–TE

xiv

Table 3 (Cont.): Associated Documents

Title Order Number

Peripherals

HSC Installation Manual EK–HSCMN–IN

H4000 DIGITAL Ethernet Transceiver Installation Manual EK–H4000–IN

Installing and Using the VT320 Video Terminal EK–VT320–UG

RV20 Optical Disk Owner’s Manual EK–ORV20–OM

SC008 Star Coupler User’s Guide EK–SC008–UG

TA78 Magnetic Tape Drive User’s Guide EK–OTA78–UG

TA90 Magnetic Tape Subsystem Owner’s Manual EK–OTA90–OM

TK70 Streaming Tape Drive Owner’s Manual EK–OTK70–OM

TU81/TA81 and TU/81 PLUS Subsystem User’s Guide EK–TUA81–UG

VAX Manuals

VAX Architecture Reference Manual EY–3459E–DP

VAX Systems Hardware Handbook — VAXBI Systems EB–31692–46

VAX Vector Processing Handbook EC–H0739–46

xv

Chapter 1

Introduction

This chapter is an overview of the <REFERENCE>(vax_mod_xxx) system.
Sections include:

• System Functional Description

• Troubleshooting Flowcharts

Introduction 1–1

1.1 System Functional Description

The <REFERENCE>(VAX_mod_XXX) system supports multi-
processing with up to six <REFERENCE>(xmp) processors.
The system uses the <REFERENCE>(XMI) bus as the system
and I/O bus.

Figure 1–1: <REFERENCE>(VAX_mod_XXX) System Architecture

KDM70 CIXCDDEMNA

ETHERNET
AND CD SERVER

XMI

MEMORY

PROCESSORS

msb-0310-90

DISKS
AND TAPES

STAR
COUPLER

VAXBI

DWMBB/A

DWMBB/B

OPTION

1–2 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(XMI) bus is the system and I/O bus; the VAXBI bus
can also be used for I/O. The <REFERENCE>(XMI) bus is a 64-bit system
bus1 that interconnects the processors, memory modules, and I/O adapters.

The <REFERENCE>(XMI) bus has three types of nodes: processor
nodes (<REFERENCE>(xmp) and <REFERENCE>(xrv)), memory nodes
(<REFERENCE>(XMA)), and I/O adapter nodes.

A processor node is a single-board scalar processor (KA65A) or a scalar/
vector processor pair (KA65A/FV64A). The CPU comprises two chips, one
of which is a floating-point accelerator. A write-back cache subsystem
improves system performance. In a multiprocessing system one scalar
processor becomes the boot processor during power-up, and that boot
processor loads the operating system and handles communication with the
operator console. The other processors become secondary processors and
receive system information from the boot processor.

This system supports multiprocessing with up to six processors. It
supports vector processing with up to two scalar/vector processor pairs.
Symmetric multiprocessing is supported, allowing a program to execute on
any processor.

A memory node is an <REFERENCE>(XMA). Memory is a global resource
equally accessible by all processors on the <REFERENCE>(XMI) bus. Each
<REFERENCE>(XMA) module has 32, 64, or 128 Mbytes of memory,
consisting of MOS 1-Mbit or 4-Mbit dynamic RAMs, ECC logic, and control
logic. Memory access is automatically interleaved between modules. An
optional battery backup unit protects memory in case of power failure.

I/O adapters are installed on the XMI bus. If this system has a VAXBI
bus, the DWMBB adapter is used to connect VAXBI I/O adapters to the
XMI bus.

1 The <REFERENCE>(XMI) bus has a 64-nanosecond bus cycle, with a maximum
throughput of 100 Mbytes per second.

Introduction 1–3

1.2 Troubleshooting Flowcharts

The following flowcharts reference sections in this manual
and in the VAX 6000 Platform Service Manual.

Figure 1–2: Power-Up

POWER ON

PROMPT NO SEE VAX 6000
PLATFORM SERVICE
MANUAL, CHAPTER 5

APPEARS
>>>

YES

CHECK SELF−TEST RESULTS
FOR ALL MODULES. SEE
SECTION 2.2 OF THIS MANUAL

PROCESSORS

A

msb−p378A−90

PASS

NO SEE CHAPTER 3
OF THIS MANUAL

SCALAR

YES

1–4 <REFERENCE>(VAX_mod_XXX) Service Manual

A

VECTOR NO SEE CHAPTER 4
OF THIS MANUALPROCESSORS

PASS

YES

MEMORY

ADAPTERS

WARNINGS
YES

BOOT THE SYSTEM

STATUS ERROR

msb−p378Br−90

MODULES
NO SEE CHAPTER 5

OF THIS MANUAL

SUCCESSFULLY

I/O

YES

PASS

MESSAGES

YES

CONSOLE

NO
SEE CHAPTER 6 OF
THIS MANUAL FOR
DWMBB OR APPRO−
PRIATE MANUAL FOR
OTHER I/O ADAPTER

YES

PASS

SYSTEM

SEE APPENDIX A
OF THIS MANUAL

NO

BOOT SEE APPENDIX B
OF THIS MANUAL

NO

BOOTS

Introduction 1–5

Figure 1–3: Boot VMS

BOOT VMS

MACHINE CHECK OCCURS

LOCATE LENGTH FIELD + 4
LOW WORD CONTAINS
MACHINE CHECK CODE

CODE = YES SEE SECTION 3.8
AND APPENDIX B
OF THIS MANUAL

1−13 OR 15

NO

14

msb−p379r−90

LOCATE LENGTH FIELD
(00000018) ON
INTERRUPT STACK FRAME

CODE = YES SEE SECTION 4.9
AND APPENDIX B
OF THIS MANUAL

REBOOT VMS

NO

ANALYZE CRASH DUMP
SEE ERROR LOG REPORT

1–6 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure 1–4: Control Panel Lights Do Not Work

CONTROL PANEL LIGHTS
DO NOT WORK

POSSIBLE AC OVER−
CURRENT. SEE
SECTIONS 5.13, 5.14
VAX 6000 PLATFORM
SERVICE MANUAL

CIRCUIT
BREAKER
TRIPPED

YES

NO

H7206−B
GREEN LEDS ON

POWER

GREEN LEDS
ON

msb−p380r−90

CHECK THAT SYSTEM IS
PLUGGED IN AND POWER
IS PRESENT

SEE SECTION 5.10.2
AND APPENDIX E
VAX 6000 PLATFORM
SERVICE MANUAL

RED OFF

NO

YES

REGULATOR

CHECK CABLING TO XTC
MODULE

POSSIBLE BAD REGULATOR
OR CABLING PROBLEM
SEE SECTIONS 5.4 − 5.9
VAX 6000 PLATFORM
SERVICE MANUAL

NO

YES

CHECK CABLING TO
CONTROL PANEL

SEE SECTIONS 4.3, 4.4
VAX 6000 PLATFORM
SERVICE MANUAL

SEE SECTIONS 4.5, 4.6
VAX 6000 PLATFORM
SERVICE MANUAL

Introduction 1–7

Figure 1–5: System Shutdown 30 Seconds After Power-Up

SYSTEM SHUTDOWN 30
SECONDS AFTER POWER−UP

SEE SECTION 6.3
VAX 6000 PLATFORM
SERVICE MANUAL

msb−p381−90

CHECK AIRFLOW SENSOR

SEE SECTIONS 6.5,
6.6, 6.7 VAX 6000
PLATFORM SERVICE
MANUAL

CHECK BLOWERS. LOOK
FOR OBSTRUCTED OR NO
MOTION. CHECK BLOWER
POWER AND CABLES.

1–8 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure 1–6: No Console Output, Control Panel Fault LED Is On

NO OUTPUT ON CONSOLE,
CONTROL PANEL FAULT
LED IS ON

SEE SECTION 2.2.3
OF THIS MANUAL

RUN SELF−TEST AND RBDs

CHECK H7206−B LEDs

msb−p382−90

CHECK LEDS ON KA65A
MODULE

SEE SECTIONS 2.2,
2.3, AND 2.4 OF
THIS MANUAL

FORCE A BOOT PROCESSOR

CHECK CONFIGURATION
SEE SECTIONS 2.4,
2.5 OF VAX 6000
PLATFORM SERVICE
MANUAL

USE SET CPU COMMAND
SEE VAX 6000 SERIES
OWNER’S MANUAL

SEE SECTION 5.10.2
AND APPENDIX E
VAX 6000 PLATFORM
SERVICE MANUAL

Introduction 1–9

Figure 1–7: No Console Output, Control Panel Fault LED Is Off

NO OUTPUT ON CONSOLE,
CONTROL PANEL FAULT
LED IS OFF

CHECK CABLING TO
CONSOLE TERMINAL

SEE TERMINAL
OWNER’S MANUAL

msb−p383−90

CHECK BAUD RATE.
PRESS BREAK KEY UNTIL
CORRECT BAUD RATE IS
ATTAINED

CHECK THE CONSOLE
TERMINAL

SEE TERMINAL
OWNER’S MANUAL

1–10 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure 1–8: DWMBB Fails Self-Test

DWMBB FAILS SELF−TEST

CHECK DWMBB/A AND
DWMBB/B MODULE SEATING

SEE SECTION 6.3 OF THIS
MANUAL AND SECTIONS 2.5,
2.6, 3.5 OF VAX 6000
PLATFORM SERVICE MANUAL

msb−p384−90

CHECK CABLING BETWEEN
MODULES

SEE SECTION 2.2.4 OF
THIS MANUAL

CHECK THE BOOT PROCESSOR
USE SET CPU COMMAND TO
CHANGE BOOT PROCESSOR,
RERUN RBD 2

Introduction 1–11

Chapter 2

Diagnostics

This chapter describes diagnostics for the <REFERENCE>(vax_mod_xxx)
system. Sections include:

• Diagnostic Overview

• Self-Test and Additional Power-Up Tests
Checking Self-Test Results: Console Display
Checking Self-Test Results: Status LEDs
KA65A LEDs
Determining Failing Test from LEDs
KA65A Error LED
Checking Self-Test Results: XBER and XGPR Registers

• ROM-Based Diagnostic Monitor Program
RBD Monitor Control Characters
START Command
START Command Qualifiers
RBD Test Printout, Passing
RBD Test Printout, Failing
SUMMARY Command
Sample RBD Session
Running ROM-Based Diagnostics on I/O Devices

• ROM-Based Diagnostics
KA65A Self-Test — RBD 0
CPU/Memory Interaction Tests — RBD 1
DWMBB Tests — RBD 2
MS65A Memory Tests — RBD 3
KA65A Cache Tests — RBD 4
Multiprocessor Tests — RBD 5

• VAX Diagnostic Supervisor Programs
Running VAX/DS in Standalone Mode
Running VAX/DS in User Mode
Sample VAX/DS Session
VAX/DS Diagnostics

Diagnostics 2–1

2.1 Diagnostic Overview

The <REFERENCE>(vax_mod_xxx) system is tested with two
types of diagnostics: ROM-based and loadable. The ROM-
based diagnostics (RBD) include self-tests, additional power-
up tests, and callable diagnostics (from the RBD monitor).
The loadable diagnostics run under the VAX Diagnostic
Supervisor (VAX/DS) in standalone mode or user mode (see
Figure 2–1).

Figure 2–1: Diagnostics Design

Self-test

Additional Power-up Test

VAX Diagnostic Supervisor, standalone (VAX/DS)

VAX Diagnostic Supervisor, user mode (VAX/DS)

msb-0182-90

Operator-Invoked Diagnostics

Loadable

ROM-Based
Diagnostics

(RBDs)

2–2 <REFERENCE>(VAX_mod_XXX) Service Manual

Self-Tests
Each module on the <REFERENCE>(XMI) bus, except DWMBB and
FV64A, has its own self-test resident in ROM. At power-up, initialization,
booting, or system reset, each module runs its own self-test. The processor
self-test completes within 10 seconds. The memory test completes in less
than 60 seconds.

Additional Power-Up Tests
Following the modules’ self-tests, three additional tests are run and
reported in the self-test display: CPU/memory interaction tests,
multiprocessor tests, and DWMBB tests.

All CPUs that have passed self-test run the CPU/memory interaction test.
The CPU/memory interaction test checks that the processors can access
memory. Memory also has a self-test that tests actual memory locations.
The CPU/memory interaction test is the second test for memory and serves
as a check on the memory’s <REFERENCE>(XMI) interface and on some
CPU logic that can be tested only by accessing memory.

The multiprocessor test runs after the CPU/memory interaction test.
Combined results of the CPU/memory and multiprocessor tests are printed
on the ETF line of the self-test display.

If the system contains a VAXBI bus, the DWMBB modules are tested by
the boot processor before it queries the VAXBI options for the results of
their self-tests. Results from both tests are printed in the XBI lines on the
self-test printout.

Operator-Invoked ROM-Based Diagnostics
From the console prompt, you can enter RBD mode and run any of six
ROM-based diagnostics. These six diagnostics are the KA65A/FV64A
self-test, CPU/memory interaction tests, DWMBB tests, memory tests,
<REFERENCE>(xmp) cache tests, and multiprocessor tests. In RBD mode,
you have the capability of running tests other than those in the default
suite, running multiple passes of tests, and receiving an error report with
information about any failing tests.

VAX Diagnostic Supervisor (VAX/DS)
From the console prompt, you can boot VAX/DS from the compact disk
server or other media and run VAX/DS level 3 diagnostics (standalone
mode). From your operating system, run VAX/DS and run level 2R
diagnostics (user mode). Level 2 VAX/DS diagnostics may be run either
in standalone or user mode.

Diagnostics 2–3

2.2 Self-Test and Additional Power-Up Tests

Self-test and additional power-up tests are ROM-based
diagnostics (RBDs) that check each module at power-up,
when the system is reset, and during booting. Results can be
checked in the console display, the processor module LEDs,
and the XBER and XGPR registers.

Table 2–1: ROM-Based Diagnostics Run at Power-Up

RBD
Program

Total
Tests

Tests
Run at
Power-Up Description

0 45
57

45
57

Runs CPU tests (scalar only)
Runs CPU tests (scalar and vector)

1 18
22

16
20

Runs CPU/memory interaction tests
Runs scalar/vector CPU/memory interaction
tests

2 48 39 Runs DWMBB tests

3 14 0 Sizes and runs additional tests on main
memory

4 3 0 Checks for cache incoherency

5 7
8

7
7

Runs multiprocessor tests
Runs vector multiprocessor tests

2–4 <REFERENCE>(VAX_mod_XXX) Service Manual

Self-test and additional power-up tests are invoked and results are reported
under several circumstances:

• At power-up

• When the control panel Restart button is pressed

• During boot procedure

• In console mode, with the systemwide INITIALIZE command

Self-test results are reported in three ways:

• Console display

• Processor module LEDs

• XBER and XGPR registers

Sections 2.2.1, 2.2.2, and 2.2.6 explain how to check self-test results.

The tests run during self-test can be individually invoked in RBD mode
using the ROM-based diagnostics monitor program. Here you can examine
each test more closely and determine which test is failing.

Diagnostics 2–5

2.2.1 Checking Self-Test Results: Console Display

You can check self-test results in three ways: the self-test
display, the lights on the modules, and the contents of the
XBER and XGPR registers.

Example 2–1: Self-Test Results

#123456789 0123456789 0123456789 0123456789 012345# 1

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . . M M M M . . P P P TYP 2
o + . . . + + + + . . + + + STF 3
. E D B BPD 4
. + + - ETF 5
. B D E BPD 6

. + + + . + . . + . XBI E + 7

. A4 A3 A2 A1 ILV

. 64 64 64 64 256 Mb

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 SN = SG01234567 8
>>>

1 The first line of the self-test printout is the progress trace. This line
prints if a <REFERENCE>(xmp) module is in slot 1. The progress
trace has two purposes: to give a visual indication that the system
is functioning during self-test, and, if self-test fails, to display the
failing test number. The numbers correspond to the 45 tests in the
<REFERENCE>(xmp) self-test (57 tests if the <REFERENCE>(xmp)
in slot 1 is part of a scalar/vector pair; see Chapter 4). When self-test
passes, the line prints as in Example 2–1. If a test fails, the failing test
number is the last one printed. For example, if test 14 fails, the line is
printed as follows:

#123456789 01234

2 This line indicates the type (TYP) of module at each <REFERENCE>(XMI)
node. Processors are type P, memories are type M, and I/O adapters are
type A. In this example, processors are at nodes 1, 2, and 3, memories
at nodes 6 through 9, and I/O adapters in nodes D and E.

2–6 <REFERENCE>(VAX_mod_XXX) Service Manual

3 This line shows self-test fail status (STF), which are the results of on-
board self-test. Possible values for processors are:

+ (pass)
– (fail)

All processors passed self-test in this example.

4 The BPD line indicates boot processor designation. When the system
completes on-board self-test, the processor with the lowest XMI ID
number that passes self-test and is eligible is selected as boot processor
— in this example, the processor at node 1.

The results on the BPD line indicate:

• The boot processor (B)

• Processors eligible to become the boot processor (E)

• Processors ineligible to become the boot processor (D)

5 During extended test (ETF) all processors run additional tests, which
include CPU/memory interaction and multiprocessor tests. On line
ETF, results are reported for each processor in the same way as on
line STF—a plus sign (+) indicates that extended test passed and a
minus sign that extended test failed. In this example, the processor
at node 1 (originally selected boot processor) failed the CPU/memory
interaction tests.

6 Another BPD line is displayed, because it is possible for a different
CPU to be designated boot processor before the system actually boots.
This occurs in this example, because the processor at node 1 failed
the extended test. The lowest-numbered processor that passed both
tests is the processor at node 2. However, a previous SET CPU/
NOPRIMARY command has made this processor ineligible to be boot
processor (indicated by the designation D on the BPD line). Therefore,
the processor at node 3 is designated boot processor.

7 A plus sign at the right of the XBI line means both the DWMBB/A and
DWMBB/B modules passed self-test. Plus signs within the line mean
VAXBI options at those nodes passed their self-tests.

8 The bottom line of the self-test display shows the ROM and EEPROM
version numbers and the system serial number.

Diagnostics 2–7

2.2.2 Checking Self-Test Results: Status LEDs

You can check self-test results in the console display, in the
lights on the modules, or in the XBER and XGPR registers.
Before module status LEDs can be checked, the control
panel switch must be set to Enable.

Figure 2–2: Location of Status LEDs

GREEN
POWER-ON

LED XMI
CORNER

YELLOW
SELF-TEST

LED

DWMBB/A FV64A KA65A
msb-0452C-90

Update

Halt

Auto Start

0

Standby

Enable

Secure

Run

Battery

Fault

Restart

MS65A

RED ERROR
SUMMARY

LED

RED LED

RED ERROR
LED

FRONT

RED LEDS

YELLOW
SELF-TEST
LED

2–8 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–2 lists each module’s LED status indicating self-test passed or self-
test failed.

Table 2–2: Status LEDs After Self-Test

Module Self-Test Passed Self-Test Failed

KA65A boot processor Yellow ON
Top two red ON

Yellow OFF
Some red ON

FV64A vector processor Yellow ON Yellow OFF

KA65A secondary processor Yellow ON
Top two and second from
bottom red ON

Yellow OFF
Some red ON

MS65A memory Yellow ON
Green ON

Yellow ON 1

Green ON

DWMBB/A adapter Yellow ON Yellow OFF

1The yellow LED on the memory module is used to indicate only that self-test has com-
pleted.

Diagnostics 2–9

2.2.3 KA65A LEDs

The KA65A LEDs indicate if self-test passed or failed, if the
module is the boot processor or a secondary, and the failing
test number.

Figure 2–3: <REFERENCE>(xmp) LEDs After Power-Up Self-Test

SELF-TEST PASSED

RED

RED

YELLOW
ON

BOOT CPU

SELF-TEST FAILED

OFF

msb-0710-90

MOST
SIGNIFICANT
 BIT

FAILING
TEST NUMBER
(BINARY-CODED
DECIMAL)

ON

SECONDARY CPU

OFF

ON

ON

OFF

OFF

ON ON
ON

ERROR ERROR ERROR

2–10 <REFERENCE>(VAX_mod_XXX) Service Manual

If self-test passes, the large yellow LED at the top of the LEDs is ON.
(Here self-test means the on-board power-up tests, RBD 0, the CPU/memory
interaction tests, RBD 1, and the multiprocessing tests, RBD 5.) The top
two red LEDs (next to the yellow one) are also ON, and the next five red
LEDs are OFF. The LED next to the Error LED is OFF if the processor is
the boot processor, and ON if it is a secondary processor.

If self-test fails, the yellow LED is OFF, and the top eight red LEDs contain
an error code that corresponds to the number of the failing test. The test
number is represented in binary-coded decimal, with the most significant
bit at the top. A bit is ONE if the light is ON.

For example, assume a processor fails self-test (yellow LED is OFF) and
shows the following pattern in the top eight red LEDs:

TOP
(MSB) off 0

off 0 = 3
on 1
on 1

off 0
off 0
on 1 = 2

(LSB) off 0
BOTTOM

The failing test number decodes to 0011 0010 (binary-coded decimal 32). If
you then ran RBD 0 with the /TR and /HE qualifiers, the last test number
you would see displayed is T0032.

If either of the top two red LEDs is off, a failure has occurred during the
self-test sequence. But system power-up self-test actually comprises four
sets of tests: <REFERENCE>(xmp) power-up tests (RBD 0), CPU/memory
interaction tests (RBD 1), DWMBB tests (RBD 2), and multiprocessing tests
(RBD 5). Interpretation of the red LEDs depends on which set of tests was
running, as explained in Section 2.2.4. Interpretation of the error LED is
explained in Section 2.2.5. Appendix C shows LED patterns that indicate
console errors.

Diagnostics 2–11

2.2.4 Determining Failing Test from LEDs

When self-test fails, the red LEDs on the KA65A contain
the failing test number. Check the state of other module
LEDs to determine the failing RBD and device, as shown in
Table 2–3.

Table 2–3: <REFERENCE>(xmp) Status LEDs

KA65A LEDs Diagnostic and Self-Test

Yellow Red Test Number Device Failing Line

FV64A Yellow LED OFF

OFF 1–45 Power-up self-test (RBD 0)
T0001–T0045
See Table 2–12.

<REFERENCE>(xmp)STF

ON 46–57 Power-up self-test (RBD 0)
T0046–T0057

FV64A STF

OFF 61–82 CPU/memory test - Memory 1
(RBD 1) T0001–T0022
See Table 2–13.

<REFERENCE>(xmp),
<REFERENCE>(xrv),
or <REFERENCE>(xma)
1 (module with low-
est XMI node num-
ber)

ETF

ON 79–82 CPU/memory test - Memory 1
(RBD 1) T0079–T0082

FV64A ETF

OFF 83 CPU/memory test - Memory 2
T0003
(equivalent to ST1/T=3)

<REFERENCE>(xma)
2

ETF

OFF 84 CPU/memory test - Memory 3 MS65A 3 ETF

OFF 85 CPU/memory test - Memory 4 MS65A 4 ETF

OFF 86 CPU/memory test - Memory 5 MS65A 5 ETF

OFF 87 CPU/memory test - Memory 6 MS65A 6 ETF

OFF 88 CPU/memory test - Memory 7 MS65A 7 ETF

OFF 89 CPU/memory test - Memory 8 MS65A 8 ETF

2–12 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–3 (Cont.): <REFERENCE>(xmp) Status LEDs

KA65A LEDs Diagnostic and Self-Test

Yellow Red Test Number Device Failing Line

FV64A Yellow LED ON

OFF 91–97 Multiprocessor test (RBD 5)
T0001–T0007
See Table 2–18.

<REFERENCE>(xmp)
or <REFERENCE>(xrv)

ETF

DWMBB/A Yellow LED OFF

ON 1–48 DWMBB test (RBD 2)
T0001–T0048
See Table 2–14.

DWMBB XBI

If a processor’s yellow LED is OFF and the red LEDs show an error code
in the range 1–45, the power-up self-test failed and the processor board is
bad. If the processor board has an attached vector processor and the error
code is 46–57, the vector processor board is bad. On the self-test console
display, the processor shows a minus sign (–) on the STF line.

After the power-up tests, each processor runs the CPU/memory interaction
tests and the multiprocessor tests. If a test fails, the processor shows
a minus sign (–) on the ETF line of the self-test console display. The
LED error codes are numbered from 61 to 82, which is the failing CPU/
memory test number (1 through 22) plus 60, or 91 to 97, which is the
failing multiprocessor test number (1 through 7) plus 90.

Each processor, after testing with the first memory, runs the CPU/memory
interaction tests on every other good memory module. (However, only CPU/
memory interaction test T0003 is run.) If a failure occurs, the memory
module is probably bad, although the processor’s yellow light is OFF and the
memory module’s yellow light is ON. If several processors fail on the same
memory, that memory module is certainly bad. Try using SET MEMORY
to configure the bad module out of the interleave set. For error codes 83
through 89, consult Table 2–3 to determine the failing memory.

The last series is the DWMBB tests. If one fails, the red LEDs contain an
error code, although the processor’s yellow self-test LED is ON (because the
CPU itself has passed). The failing test numbers are listed in Table 2–14.
Note that only the boot processor performs the DWMBB tests.

Diagnostics 2–13

2.2.5 KA65A Error LED

The KA65A error LED (bottom red LED) is an error summary
or indicates the state of backup cache.

Table 2–4: KA65A Error LED

XCR0<14> XCR0<13> Error LED ON

0 0 Error summary (power-up state)

0 1 Backup cache is off

1 0 Error summary or backup cache is off

1 1 Off—Error LED does not light

Example 2–2: Examining the XCR0 and XBER Registers

>>> E/P/L E1880024 ! Examine the XCR0 register of the KA65A
E1880024 00000200 ! processor in slot 1. The result shows

! bits 14 and 13 are clear.
>>> E/P/L E1880004 ! Then examine the XBER register of the
E1880004 8000A300 ! same processor. The result shows bit

! 31 is set.

2–14 <REFERENCE>(VAX_mod_XXX) Service Manual

The state of the error LED depends on bits in two registers. At power-up it
reflects the state of XBER bit 31, the Error Summary bit. (The error LED
is ON if the Error Summary bit is set.)

At times other than power-up, the meaning of the error LED is determined
by the state of XCR0 bits 14 and 13. See Table 2–4 and Example 2–2.

In Example 2–2 the error LED on the KA65A processor in slot 1 is lit. The
reason for this is determined by examining the XCR0 and XBER registers.
The addresses for these registers are calculated by adding an offset to the
base address of the slot that contains the KA65A module. The offset for
XCR0 is 24; for XBER it is 4. (All numbers are hexadecimal.) See Table 2–5
for the base addresses of the XMI slots.

Diagnostics 2–15

2.2.6 Checking Self-Test Results: XBER and XGPR
Registers

You can check self-test results in the self-test display, in the
lights on the modules, or in the XBER and XGPR registers.
Use the XBER and XGPR registers when a failure occurs
during power-up and the failing test number cannot be
found in the module LEDs.

Example 2–3: XGPR Register After Power-Up Test Failure

>>> E/P/L E190000C ! Examine the longword at physical address
E190000C 30xxxxxx ! E190000C, the address of the XGPR

! register of the <REFERENCE>(xmp) processor in slot 2.
>>> E/P/L E1900004 ! Then examine the XBER register (bit 10
E1900004 xxxxx4xx ! set). The result indicates that test 30

! of the <REFERENCE>(xmp) self-test failed. See
! Table 2-6 to interpret the data returned.

>>> E/P/L E188000C ! Examine the XGPR register of the <REFERENCE>(xmp)
E188000C 13xxxxxx ! processor in slot 1. Derivation of the

! address is explained below.
>>> E/P/L E1880004 ! Then examine the XBER register (bit 10
E1880004 xxxxx0xx ! clear). DWMBB test 13 failed.

When a failure occurs in power-up test, you can examine the XGPR
register to determine the failing test number. The XGPR register of
the <REFERENCE>(xmp) processor that failed self-test or CPU/memory
interaction test, or of the boot processor if DWMBB test failed, contains the
failing test number. If all power-up tests pass, the XGPR register contains
other data and should be ignored.

To examine the XGPR register, first see Table 2–5 to determine the base
address (BB) of the <REFERENCE>(xmp) processor’s node. Then calculate
the address of the XGPR register by adding 0C (hex) to the base address.

The failing test number is derived from the upper byte (bits <31:24>) of
the longword returned. For self-test, the upper byte contains the failing
test number. If a CPU/memory interaction test fails, this byte contains the
failing test number plus 60. If a multiprocessor test fails, this byte contains

2–16 <REFERENCE>(VAX_mod_XXX) Service Manual

the failing test number plus 90. All numbers are expressed in binary-coded
decimal (BCD). See Table 2–6.

Table 2–5: XMI Base Addresses

Slot Node Base Address (BB)

1 1 E188 0000
2 2 E190 0000
3 3 E198 0000
4 4 E1A0 0000
5 5 E1A8 0000
6 6 E1B0 0000
7 7 E1B8 0000
8 8 E1C0 0000
9 9 E1C8 0000
10 A E1D0 0000
11 B E1D8 0000
12 C E1E0 0000
13 D E1E8 0000
14 E E1F0 0000

Table 2–6: Interpreting XGPR Failing Test Numbers

Failing Diagnostic XBER <10>
XGPR <31:24>
(BCD)

Test
Numbers

Self-test Set 1–57 1–57

CPU/memory interaction test Clear 61–82 1–22

Additional memory Clear 83–89 3

Multiprocessor test Clear 91–97 1–7

DWMBB test Clear 1–48 1–48

Diagnostics 2–17

2.3 ROM-Based Diagnostic Monitor Program

Access the ROM-Based Diagnostic Monitor program through
the console program. Type T/R at the console prompt to
enter RBD mode. RBD mode has three commands with
qualifiers that run the RBD tests. It also has a set of control
characters, described in Section 2.3.1.

Table 2–7: RBD Monitor Commands

Command Function

ST[ART]n Starts RBD n, where n is the number of the RBD pro-
gram listed in Table 2–11

SU[MMARY] Prints a summary report of the last RBD program run

QU[IT] Exits the RBD monitor and returns control to the console pro-
gram

Table 2–8: ROM-Based Diagnostic Programs — Callable Tests

RBD
Program

Total
Tests

Default Number
of Callable Tests Description

0 45
57

45
57

Runs CPU tests (scalar only)
Runs CPU tests (scalar and vec-
tor)

1 18
22

18
22

Runs CPU/memory interaction tests
Runs scalar/vector CPU/memory inter-
action tests

2 48 48 Runs DWMBB tests

3 14 10 Sizes and runs additional tests on main
memory

4 3 0 Checks for cache incoherency

5 7
8

7
7

Runs multiprocessor tests
Runs vector multiprocessor tests

2–18 <REFERENCE>(VAX_mod_XXX) Service Manual

To enter the RBD monitor, at the console prompt type:

>>> T/R ! This is the abbreviation for TEST/RBD.
!

RBDn> ! RBD prompt appears signifying entrance into
! RBD mode, where n is the XMI node number of
! the processor running the RBD monitor program.

The RBD commands are explained in this section. Table 2–7 gives the
commands, their abbreviations, and functions.

Six programs run from the ROM-based diagnostics (RBD) monitor program.
These programs are the <REFERENCE>(XMP) and <REFERENCE>(xrv)
self-tests, CPU/memory interaction tests, DWMBB tests, memory tests,
<REFERENCE>(xmp) cache tests, and multiprocessor tests. Each of these
programs has several tests, as shown in Table 2–8. The RBDs are designed
for use by Digital customer service personnel.

Each RBD has a default number of tests that run at power-up, and another
default number of tests that run when the program is called from the RBD
monitor (see Table 2–8). The CPU diagnostic (RBD 0) runs all its tests
in both modes. The power-up default for the CPU/memory interaction
diagnostic (RBD 1) is 16 (scalar only—20 with the vector tests), and the
callable default is all tests. RBD 3, the Memory diagnostic, does not run
on power-up. In callable mode, 10 of the 14 tests run when invoked; tests
1 through 10 are defaults. RBD 4, the test for cache incoherency, also does
not run on power-up. In callable mode, a test number must be supplied
to run any test. The multiprocessing diagnostic (RBD 5) runs seven tests
in both modes. To run tests other than the default suite from the RBD
monitor, issue a command such as the following, which invokes all memory
tests (RBD 3):

RBDn> ST3/T=1:14

It is helpful to use the trace qualifier, /TR, with the RBD START command.
(See Section 2.3.3.) This qualifier shows each individual test as it is
run. If a test fails, the program displays error messages. By default, the
RBDs continue testing after an error is encountered. Adding the halt-on-
error qualifier, /HE, causes the program to halt when the first error is
encountered. Testing can be aborted at any time by typing CTRL/C.

To exit RBD mode, type QUIT at the RBD prompt. Your next prompt is
from console mode.

Diagnostics 2–19

2.3.1 RBD Monitor Control Characters

Several control characters are supported by the RBD
monitor program. These characters manage the program
process as shown in Table 2–9.

Table 2–9: RBD Monitor Control Characters

Character Environment Function

CTRL/C Test running Stops the execution of an RBD test and exe-
cutes cleanup code.

DELETE RBD command line Use for deleting erroneous characters entered on the
command line.

CTRL/Q Test running Resumes output to terminal that was suspended with
CTRL/S .

CTRL/R At RBD prompt Refreshes the command line; useful when charac-
ters are deleted.

CTRL/S Test running Suspends output to the terminal until CTRL/Q is
typed.

CTRL/T Test running Displays informational status line about currently
running diagnostic.

CTRL/U At RBD prompt Disregards previous input.

CTRL/Y Test running Stops the execution of an RBD test and does not exe-
cute any cleanup code.

CTRL/Z At RBD prompt Exits RBD monitor program and enters con-
sole program; same effect as the QUIT com-
mand.

2–20 <REFERENCE>(VAX_mod_XXX) Service Manual

When CTRL/C is entered from the console terminal that began execution
of the RBD test, the diagnostic stops execution, runs cleanup code, and
returns control to the RBD monitor program. This happens immediately
when running RBD 0, RBD 1, or RBD 2; there may be a wait of up to one
minute for a response when RBD 3 is running. If CTRL/C is typed at the
RBD monitor prompt, it has the same effect as CTRL/U.

When you use the DELETE key (or rubout key), characters being deleted
are preceded by a backslash (\) and print as they are rubbed out. When
the next valid character is typed, it is preceded by a backslash (\) to
delineate the deleted characters. You can use CTRL/R to refresh the line.

When a CTRL/T is received by the RBD monitor program from the console
terminal that began execution of the RBD test, the diagnostic displays an
informational status line and continues test execution. A CTRL/T entered
at the RBD prompt is ignored.

When the RBD monitor program receives a CTRL/U, the program
disregards all previous input typed and returns the RBD prompt. If a
test is running when CTRL/U is entered, CTRL/U is ignored.

When a CTRL/Y is received by the RBD monitor program from the console
terminal that began execution of the RBD test, the diagnostic stops
execution and returns control to the RBD monitor program. No cleanup
code is run, and the unit under test is left in an indeterminate state.
A CTRL/Y entered at the RBD monitor prompt has the same effect as
CTRL/U.

When the RBD monitor program receives a CTRL/Z, the program exits and
control is returned to the console program. The next prompt is the console
prompt. CTRL/Z has the same effect as the QUIT command. If CTRL/Z
is entered while an RBD test is running, CTRL/Z has the same effect as
CTRL/C: it halts the test and executes cleanup code.

Diagnostics 2–21

2.3.2 START Command

The RBD monitor START command invokes a specific RBD
program. It takes an argument indicating the RBD program
to be run, and can take any of 13 qualifiers.

Example 2–4: START Command

>>> T/R ! Command to enter RBD monitor program.

RBD3> ! RBD monitor prompt, where 3 is the hexa-
! decimal node number of the processor
! that is currently receiving your input.

RBD3> ST0/TR ! Runs the CPU tests, testing the <REFERENCE>(XMP)
! at <REFERENCE>(XMI) node number 3. Test results
! are written to the console terminal.

RBD3> ST1/HE/IE/BE ! Runs the default tests in the CPU/memory
! interaction RBD, halting on the first
! error encountered, inhibiting error output,
! ringing the bell when the first error is
! encountered.

The START command syntax is:

STn[/qualifier] [parameter]

where:

• n is the RBD to be run (see Table 2–11).

• [/qualifier] is one of those listed in Section 2.3.3.

• [parameter] is a program-specific value used in RBD 3. (For the
meaning of this parameter, see Section 2.4.5.)

2–22 <REFERENCE>(VAX_mod_XXX) Service Manual

2.3.3 START Command Qualifiers

The START command has qualifiers that allow you to control
the output of the tests—to run portions of a test, to run
nondefault tests, and to loop on tests.

Table 2–10: START Command Qualifiers

Qualifier Default Function

/BE Disabled Bell sounds when an error is encountered

/C Disabled Destructive test confirmation

/DS Disabled Disable status reports

/HE Disabled Halt on the test that incurs a hard error

/HS Disabled Halt on the test that incurs a soft error

/IE Disabled Inhibit all error output

/IS Disabled Inhibit summary reports

/LE Disabled Loop on the test that incurs a hard error

/LS Disabled Loop on the test that incurs a soft error

/P=n Enabled Make n passes of the test or tests indicated

/QV Disabled Quick verify mode

/T=n[:m] Enabled /T=n runs test n; /T=n:m runs a range of tests from n
through m

/TR Disabled Print a trace of test numbers, as they run

NOTE: A qualifier is valid only for the command with which it is issued.
Qualifiers do not remain in effect for the session once they are issued.

See Example 2–4 for examples and a description of the START command
syntax.

With /BE, the RBD monitor program rings the bell on the console terminal
whenever an error is encountered. This is useful when error printout is
inhibited and a loop is being performed on an intermittent error (/LE).

/C enables execution of destructive tests. See Section 2.4.5 for information
on the destructive tests.

Diagnostics 2–23

/DS disables printout of the diagnostics test results. The summary report
is run, unless it is specifically disabled.

/HE halts on hard error and stops execution of tests as soon as the first
hard error is encountered. (In this context, a hard error is defined as a
recoverable, repeatable error, for example, a ROM checksum error. This
differs from a fatal error, which is an unrecoverable fault, for example,
an unexpected interrupt or exception. A fatal error is always cause for
program abortion, regardless of the state of the /HE or /LE qualifier.) The
test number is printed, and a summary indicating failure of the RBD is
printed to the console terminal. Also the RBD monitor prompt is returned.
Continue on error is the default condition, so if you want to halt on error,
you must specifically invoke it in your command line.

/HS halts on soft error and stops execution of tests as soon as the first soft
error is encountered. (In this context, a soft error is defined as a recoverable
error that goes away after retry, for example, a corrected read data memory
error.) The test number is printed, and a summary indicating failure of the
RBD is printed to the console terminal. Also the RBD monitor prompt is
returned. Continue on soft error is the default condition, so if you want to
halt on soft error, you must specifically invoke it in your command line.

/IE inhibits all error output, suppressing printing of RBD results. This
qualifier is used primarily for module repair, in conjunction with the /LE
or /LS qualifier. Errors are counted even when the printing is disabled.

/IS suppresses printout of RBD summary after the end of the last pass
performed by the RBD.

/LE loops on the test where the first hard error is detected. Even if the
error is intermittent, looping continues on the test indicated. To terminate
/LE, enter CTRL/C, CTRL/Z, or CTRL/Y. After entering one of these control
characters, a summary report is printed. A fatal error causes the program
to abort, regardless of the state of this qualifier.

/LS loops on the test where the first soft error is detected. Even if the
error is intermittent, looping continues on the test indicated. To terminate
/LS, enter CTRL/C, CTRL/Z, or CTRL/Y. After entering one of these control
characters, a summary report is printed.

/P=n runs n number of passes of the RBD test invoked, where n is a decimal
number. If n is 0, all selected tests run for an infinite number of passes.
If the /P qualifier is not used, the program defaults to one pass of the test
invoked. When used with the /T=n:m qualifier, you run a range of tests. To
terminate /P=n, enter CTRL/C, CTRL/Z, or CTRL/Y. After entering one of
these control characters, a summary report prints out and the RBD monitor
prompt returns.

2–24 <REFERENCE>(VAX_mod_XXX) Service Manual

/QV selects the quick verify version of any selected test that supports this
mode.

/T=n[:m] selects individual tests (/T=n) or a range of tests (/T=n:m) where
n and m are decimal numbers. For example, to run tests T0005 through
T0008, use /T=5:8. If no /T qualifier is used, the diagnostic runs its default
suite of tests.

/TR prints each test number as it is completed. This qualifier allows you to
trace the progress of the diagnostic as it runs. Without the /TR qualifier,
just the summary line is printed.

One parameter field can be appended to the START command string to
control aspects of the diagnostic that are not covered by the qualifiers. The
parameter must be appended after any qualifiers specified and separated
from the qualifiers by a space. The format of the parameter field is
one to four hexadecimal characters. The use of a parameter field is
implementation specific and is optional.

Diagnostics 2–25

2.3.4 RBD Test Printout, Passing

The RBD printout results are different when the RBD tests
pass and when they fail. Example 2–5 shows a passing
printout, and Example 2–6 is a sample failure printout.

Example 2–5: RBD Test Printout, Passing

>>> T/R ! Command to enter RBD monitor program at
! console prompt.

RBD3> ! RBD monitor prompt, where 3 is the hexa-
! decimal node number of the processor
! that is currently receiving your input.

RBD3> ST2/TR E ! Runs the XBI self-test, testing the <REFERENCE>(XBI)
! at <REFERENCE>(XMI) node number E. Test results
! written to the console terminal:

; XBIP_TST 1 1.00 2

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010 3
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 T0030
; T0031 T0032 T0033 T0034 T0035 T0036 T0037 T0038 T0039 T0040
; T0041 T0042 T0043 T0044 T0045 T0046 T0047 T0048

; P 4 3 5 8080 6 1 7
; 00000000 00000000 00000000 00000000 00000000 00000000 00000000 8

RBD3> QU 9 ! RBD prompt returns; test ran successfully.
! Exit RBD program.

>>>

The callouts in Example 2–5 are explained below.

1 This entry designates which test is being run. Here it is the XBIP_TST,
the self-test for the DWMBB.

XMP/V_ST indicates RBD 0, the CPU tests
CPUMEM indicates RBD 1, the CPU/memory interaction tests
XBIP_TST indicates RBD 2, the DWMBB tests
XMA2_RBD indicates RBD 3, the Memory tests
XMP_BC indicates RBD 4, the cache tests
XMP_MP indicates RBD 5, the multiprocessor tests

2 This field lists the revision number of the RBD program.

2–26 <REFERENCE>(VAX_mod_XXX) Service Manual

3 These T00nn fields appear only with the /TR qualifier; each entry
corresponds to a test being run and prints out as the test starts running.
In a passing RBD, the final T00nn number corresponds to the last test
run.

4 This field indicates whether the RBD passed or failed; P for passed, F
for failed.

5 This field is the XMI node number of the boot processor executing the
RBD. It matches the number in your RBD prompt.

6 This field is always 8080—the device type of the boot processor.

7 This field displays the total number of passes (in decimal) executed by
the RBD. The default number of passes is 1. If you use the START
command with the qualifier /P=5, for example, then this field will show
5, indicating 5 passes were completed.

8 This line contains the summary of the RBD failures. In a successful
RBD run, the line will contain all zeros as shown here. Currently
only the second and third fields are used. The second field contains the
number of hard errors detected during the run. The third field contains
the number of soft errors detected during the run.

9 The console prompt is usually returned in response to the RBD QUIT
command, as shown in this example. However, when tests that cause
parity errors are run, the response to QUIT is a system reset. Self-test
is then run, and the self-test results are printed. The tests that cause
a system reset are: tests 1, 2, 4, and 22 of RBD 1; tests 2, 3, 4, 30, and
31 of RBD 2; and tests 5 and 9 of RBD 3.

Diagnostics 2–27

2.3.5 RBD Test Printout, Failing

The RBD printout results are different when the RBD passes
and when it fails. Example 2–6 is a sample failure printout,
and Example 2–5 shows a passing printout.

Example 2–6: RBD Test Printout, Failing

>>> T/R ! Command to enter RBD monitor program at
! console prompt.

RBD2> ! RBD monitor prompt, where 2 is the hexa-
! decimal node number of the processor
! that is currently receiving your input.

RBD2> ST0/TR ! Execute RBD 0 (CPU test) and trace results.

; XMP/V_ST 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 1

; F 2 2 3 8080 4 1 5
; HE 6 MAXMIRAM 7 XX 8 T0029 9
; 28 10 5555AAAA 11 A8AAAAAA 12 00000000 13 E1008000 14 E008C410 15 08 16
; T0030 T0031 T0032 T0033 T0034 T0035 T0036 T0037 T0038 T0039
; T0040 T0041 T0042 T0043 T0044 T0045 17

; F 1 8080 1 18

; 00000000 00000001 19 00000000 00000000 00000000 00000000 00000000

RBD2> ! RBD prompt returns; test completed.
RBD2> QUIT ! Exit RBD program.
>>> ! Console prompt reappears.

The callouts in Example 2–6 are explained below. (See also Example 2–5
for explanation of other fields of the printout.)

1 These T00nn fields appear only with the /TR qualifier; each entry
corresponds to a test being run. The entry prints out as the test starts
running. This T00nn number is the number of the failing test and is
followed by a failure report. In this example, test 29 failed. The /HE
qualifier was not used, so testing continues.

2 F indicates failure of the previous test listed, test 29.

3 This field is the XMI node number of the boot processor executing the
RBD. It matches the number in your RBD prompt.

2–28 <REFERENCE>(VAX_mod_XXX) Service Manual

4 This field is always 8080—the device type of the boot processor.

5 This field displays the total number of passes (in decimal) executed by
the RBD. The default number of passes is 1.

6 The class of error is displayed here. HE indicates that the error was
a hard error. SE means the error was a soft error, and FE indicates a
fatal error. (See Section 2.3.3 for a definition of these errors.)

7 This field describes the failing logic. Here, the XMI interface chip is
the failing logic.

8 This field is the unit number used in memory, multiprocessing, and
DWMBB tests.

9 This field lists the number of the test that failed; test 29 failed here.

10 This is a two-digit (decimal) generic error code.

11 The expected data is listed here. 5555AAAA is the data test 29
expected.

12 The received data is listed here. A8AAAAAA is the data test 29
received.

13 This field shows any unexpected interrupt vectors.

14 This is the address in memory where the referenced error is found.

15 This is the address of the failing PC at the time of error.

16 This is the error number within the failing test. In this example, the
failure was detected at failure point 8 in T0029. This is a decimal field.

17 This final T00nn number corresponds to the last test run.

18 This entire line is the summary line, and a repeat of the failure
summary. It lists the pass/fail code (P or F), the node number and
device type number of the boot processor executing the RBD, and the
number of passes of the RBD.

19 This is the number of hard errors detected.

Diagnostics 2–29

2.3.6 SUMMARY Command

The RBD monitor SUMMARY command displays a summary
of the last diagnostic run.

Example 2–7: SUMMARY Command

>>> T/R ! Command to enter RBD monitor program
RBD1> ST0/IE/IS/P=100 ! Execute RBD 0 (CPU test), inhibiting

! error outputs and summary report.
; XMP/V_ST 1.00

RBD1> SU ! Request a summary.

; XMP/V_ST 1.00

; P 1 1 2 8080 3 100 4
; 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5

RBD1>

2–30 <REFERENCE>(VAX_mod_XXX) Service Manual

The callouts in Example 2–7 are explained below.

1 This field indicates whether the RBD passed or failed; P for passed, F
for failed.

2 This field is the XMI node number of the boot processor executing
the RBD. It will match the number in your RBD prompt, which also
indicates the node number of your boot processor.

3 This field is the device type number of the boot processor executing the
RBD.

4 This field displays the total number of passes executed by the RBD.

5 This line contains the summary of the RBD failures. Presently only the
second and third fields are used. The second field contains the number
of hard errors detected during the run. The third field contains the
number of soft errors detected during the run.

Diagnostics 2–31

2.3.7 Sample RBD Session

Examples 2–8, 2–9, and 2–10 show a sample RBD session.

Example 2–8: Sample RBD Session, Part 1 of 3

>>> T/R 1
RBD1> ST0/TR 2

;XMP/V_ST 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 T0030
; T0031 T0032 T0033 T0034 T0035 T0036 T0037 T0038 T0039 T0040
; T0041 T0042 T0043 T0044 T0045 T0046 T0047 T0048 T0049 T0050
; T0051 T0052 T0053 T0054 T0055 T0056 T0057

; P 1 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD1> ST1/TR/HE 3

;CPUMEM 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022

; P 1 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD1> ST2/TR 5 4

;XBIP_TST 1.00

; F 1 8080 1
; HE NO_UNIT XX T0000
; 52 00000000 00000000 00000000 E1880000 E007AF8E 01

; F 1 8080 1
;00000000 00000001 00000000 00000000 00000000 00000000 00000000

2–32 <REFERENCE>(VAX_mod_XXX) Service Manual

1 Enter RBD mode from console mode. The RBD prompt appears and
indicates you are operating from the boot processor at node 1.

2 Run RBD 0 and trace the tests. The CPU test runs all 57 tests
successfully.

3 Run RBD 1, trace it, and halt on the first hard error found. All CPU/
memory interaction RBD tests run and pass.

4 Run RBD 2, testing the DWMBB at XMI node 5. The value NO_UNIT
on the third line of output indicates that the node value of node 5 is not
correct; no DWMBB was found at this node.

Diagnostics 2–33

Example 2–9: Sample RBD Session, Part 2 of 3

RBD1> ST2/TR/T=2:4/P=3 E 5

;XBIP_TST 1.00

; T0002 T0003 T0004 T0002 T0003 T0004 T0002 T0003 T0004

; P 1 8080 3
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD1> ST3/TR/T=1 6

RBD1> ST3/TR/T=1

RBD1> ST3/TR/T=1 /C 7

;XMA2_RBD 0.80

; T0001

; P 1 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD1> ST4/TR/T=1 8

;XMP_BC 1.00

; T0001

; S 1 8080 1
; XX Cache XX T0001

;00000800 00000000 00000000 1F2C0000 00000300 00000000 00000000 00000000

; P 1 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD1> ST5/TR 9

;XMP_MP 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007

; P 1 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD1> QUIT 10

[self-test results may be displayed here]

2–34 <REFERENCE>(VAX_mod_XXX) Service Manual

5 Run RBD 2, testing the DWMBB at XMI node E; trace the tests as
they run, and run tests 2 through 4 of RBD 2; make 3 passes over
these selected tests.

Note that the T00nn line lists each of the three tests three times, since
the /P=3 called for 3 passes of the tests. And the final parameter in the
summary line is a 3, indicating that 3 passes completed.

6 Run RBD 3, trace it, and run only test 1 of this RBD. This test is one of
the memory tests that is not part of the default suite of tests. This test
corrupts memory. You must add a /C qualifier to the START command,
to indicate that you do indeed intend to run this destructive test.

The /C qualifier was not given in this example. The command line is
echoed, waiting for /C to be typed.

At this point you can press Return to return to the command prompt
(RBD1>), or you can type the /C qualifier followed by Return.

7 Run RBD 3, trace the tests as they run, run only test 1, and /C allows
the test to run. In this example, the test completed with no errors.

8 Run RBD 4, test 1, with trace set.

9 Run RBD 5 and trace the tests. All tests pass.

10 Exit from RBD mode and enter console mode. The console prompt is
usually returned in response to the RBD QUIT command; however,
when tests that cause parity errors are run, the response to QUIT is a
system reset. Self-test is then run, and the self-test results are printed.
The tests that cause a system reset are tests 1, 2, 4, and 22 of RBD 1;
tests 2, 3, 4, 30, and 31 of RBD 2; and tests 5 and 9 of RBD 3.

Diagnostics 2–35

Example 2–10: Sample RBD Session, Part 3 of 3

>>> SET CPU 2 11
>>> T/R

RBD2> ST0/TR 12

;XMP/V_ST 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 T0030
; T0031 T0032 T0033 T0034 T0035 T0036 T0037 T0038 T0039 T0040
; T0041 T0042 T0043 T0044 T0045 T0046 T0047 T0048 T0049 T0050
; T0051 T0052 T0053 T0054 T0055 T0056 T0057

; P 1 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

2–36 <REFERENCE>(VAX_mod_XXX) Service Manual

11 Make another processor the primary processor so that RBD 0 can be
run on it.

12 Run RBD 0 and trace the tests. This processor has an attached vector
processor. All 57 tests run successfully.

Diagnostics 2–37

2.3.8 Running ROM-Based Diagnostics on I/O Devices

Some XMI and VAXBI devices can be tested from the console
terminal with their on-board ROM-based diagnostics. The Z
console command is used to send commands to these nodes.

Example 2–11: Running RBDs on I/O Devices

>>> SHOW CONFIGURATION 1
Type Rev

1+ KA65A (8080) 0006
2+ KA65A (8080) 0006
3+ FV64A (0000) 0000
4+ MS65A (4001) 0084
8+ MS65A (4001) 0084
D+ DEMNA (0C03) 0601
E+ DWMBB/A (2002) 0001

XBI E
1+ DWMBB/B (210F) 000A
4+ KDB50 (010E) 132E
6+ TBK70 (410B) 0307
8+ CIBCA-B (0108) 41C2
C+ DEBNI (0118) 0200

>>> Z D 2
?0033 Z connection successfully started

t/r 3

RBDD> ST0/TR 4

;Selftest 3.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018

; P D 0C03 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBDD> QUIT 5
^P
?0031 Z connection terminated by ^P

>>> Z/BI:6 E 6
?0033 Z connection successfully started

t/r

RBD6> ST 0/TR 7

;T1035_St 1.00

Example 2–11 Cont’d on next page

2–38 <REFERENCE>(VAX_mod_XXX) Service Manual

Example 2–11 (Cont.): Running RBDs on I/O Devices

; T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13 T14
; T15 T16 T17

; P 6 410B 00000001
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

; PUDR: 5FF43FDF 8

RBD6> QUIT
^P
?0031 Z connection terminated by ^P

>>>

The callouts in Example 2–11 are explained below.

1 The SHOW CONFIGURATION console command shows that this
system includes a DEMNA at node D of the XMI bus and
a TBK70 at node 6 of the VAXBI attached at XMI node E.
(See <REFERENCE>(VAX_xxxx) Series Owner’s Manual for more
information on the SHOW CONFIGURATION command.)

2 The Z command is typed at the console prompt. A connection is
established to XMI node D. The console returns a message confirming
that the connection has been made.

3 After the console message is returned in 2 , no prompt is printed.
Typing t/r invokes the RBD monitor on the adapter being tested and
returns the RBD monitor prompt. Note that the D in the RBD prompt
refers to the XMI node.

4 The RBD is started with trace set.

5 The QUIT command exits the RBD monitor. The Z connection remains
until CTRL/P is entered.

6 Steps 2 through 5 are repeated to run the RBD of the TBK70 at node
6 of the VAXBI attached at XMI node E.

7 The START command for VAXBI RBDs requires a space before the 0.
When run with the /TR qualifier, test traces are printed.

8 The last line of the summary report indicates the contents of the Power-
Up Diagnostic Register. To interpret the contents of this register, refer
to the technical manual for the device being tested.

Diagnostics 2–39

2.4 ROM-Based Diagnostics

The <REFERENCE>(xmp) diagnostic ROM has six diagnos-
tics: RBD 0 and RBD 1 test the specified scalar and, if pre-
sent, attached vector processor; RBD 2 tests the optional
DWMBB adapter; RBD 3 tests <REFERENCE>(xma) memo-
ries; RBD 4 tests the <REFERENCE>(xmp) cache; and RBD
5 tests multiprocessor interaction.

Table 2–11: ROM-Based Diagnostic Programs — Callable Tests

RBD
Program

Total
Tests

Default Number
of Callable Tests Description

0 45
57

45
57

Runs CPU tests (scalar only)
Runs CPU tests (scalar and vec-
tor)

1 18
22

18
22

Runs CPU/memory interaction tests
Runs scalar/vector CPU/memory inter-
action tests

2 48 48 Runs DWMBB tests

3 14 10 Sizes and runs additional tests on main
memory

4 3 0 Checks for cache incoherency

5 7
8

7
7

Runs multiprocessor tests
Runs vector multiprocessor tests

2–40 <REFERENCE>(VAX_mod_XXX) Service Manual

RBD 0 is the same as the <REFERENCE>(xmp) self-test. It is useful
for running several passes when a processor fails self-test intermittently.
Section 2.4.1 shows examples of running RBD 0 on both the boot processor
and a secondary processor, and lists the tests in RBD 0.

RBD 1 is the same as the CPU/memory interaction tests. It is useful for
running several passes when a processor fails CPU/memory interaction
tests intermittently. Section 2.4.2 shows an example and lists the tests.

RBD 2 is the set of tests that the boot processor runs for each DWMBB I/O
adapter when the system is powered on. (The DWMBB has no on-board
self-test of its own.) Section 2.4.3 has an example of this diagnostic and a
list of tests.

RBD 3 is a set of XMI memory tests that sizes and runs extended tests
on all of memory. Section 2.4.5 shows examples of this RBD and lists the
tests.

RBD 4 is a set of tests you can run following system crash to check for
cache incoherency. Section 2.4.6 has an example of this diagnostic and a
list of tests.

RBD 5 tests the interaction of multiple <REFERENCE>(xmp) processors
and, if present, multiple <REFERENCE>(xrv) processors. Section 2.4.7
includes an example of this RBD and a list of its tests.

For a detailed explanation of the diagnostic printout, see Section 2.3.7.

Diagnostics 2–41

2.4.1 <REFERENCE>(xmp) Self-Test — RBD 0

RBD 0 is equivalent to the <REFERENCE>(xmp) self-tests.
The first 45 tests test scalar CPU modules; tests 46–57 test
vector modules.

Example 2–12: <REFERENCE>(xmp) Self-Test — RBD 0

>>> T/R ! Command to enter RBD monitor program.
RBD1> ! RBD monitor prompt, where 1 is the hexa-

! decimal node number of the boot processor.
RBD1> ST0/TR/HE ! Runs the <REFERENCE>(xmp) self-test on boot processor

! Trace prints each test number; halt on error
! Test results written to the console terminal:

; XMP/V_ST 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 1

; F 2 2 8080 1 3
; HE MAXMIRAM XX T0029 1
; 28 5555AAAA A8AAAAAA 00000000 E1008000 E008C410 08

; F 1 8080 1
; 00000000 00000001 00000000 00000000 00000000 00000000 00000000

RBD1>

In Example 2–12:

1 Test 29 failed. The /HE switch causes execution to stop when the error
is encountered.

2 F indicates failure.

3 The diagnostic ran for one pass.

2–42 <REFERENCE>(VAX_mod_XXX) Service Manual

Example 2–13: Running <REFERENCE>(xmp) Self-Test (RBD 0) on a
Secondary Processor

>>> SET CPU 2 1
>>> T/R
RBD2> ST0/TR 2

;XMP/V_ST 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 T0030
; T0031 T0032 T0033 T0034 T0035 T0036 T0037 T0038 T0039 T0040
; T0041 T0042 T0043 T0044 T0045 T0046 T0047 T0048 T0049 T0050
; T0051 T0052 T0053 T0054 T0055 T0056 T0057

; P 2 8080 1
;00000000 00000000 00000000 00000000 000000000 00000000 00000000

In Example 2–13:

1 This command causes the <REFERENCE>(xmp) module at node 2 to
become the primary processor. This processor has an attached vector
processor.

2 The prompt indicates that the CPU at node 2 is the primary processor.
RBD 0 is run on this processor.

Table 2–12: <REFERENCE>(xmp)/<REFERENCE>(xrv) Self-Test
— RBD 0

Test Function

Scalar Processor Tests

T0001 <REFERENCE>(xmp) ROM Test

T0002 IPL Step-Down Test

T0003 MSSC Configuration Register Test

T0004 MSSC RAM Test

T0005 MSSC Output Port Test

T0006 MSSC Programmable Address Decode Strobe Test

T0007 MSSC UART External Loopback Test

T0008 MSSC UART Internal Loopback Test

Diagnostics 2–43

Table 2–12 (Cont.): <REFERENCE>(xmp)/<REFERENCE>(xrv) Self-
Test — RBD 0

Test Function

T0009 <REFERENCE>(xmp) EEPROM Test

T0010 MSSC Input Port Test

T0011 MSSC Bus Timeout Control Register Test

T0012 MSSC Programmable Timers Test

T0013 MSSC TOY Clock Test

T0014 MSSC Interval Timer Test

T0015 Interrupts at IPL 14 to 17 Test

T0016 Primary Cache Tag Store Test

T0017 Primary Cache Data RAM March Test

T0018 Backup Cache Tag Store Test

T0019 Backup Cache Data Line Test

T0020 Backup Cache Data RAM March Test

T0021 Backup Cache Data Parity RAM Test

T0022 Cache Mask Write Test

T0023 Flush Cache Test

T0024 Data Parity Logic Test

T0025 Backup Tag Store Parity Error Test

T0026 DCSR Register Test

T0027 ECC Logic Test

T0028 ECC RAM March Test

T0029 MAXMI RAM March Test

T0030 XDEV Register Test

T0031 XBER and XBEER Registers Test

T0032 XFADR and XFAER Registers Test

T0033 XGPR Register Test

T0034 XCR Register Test

2–44 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–12 (Cont.): <REFERENCE>(xmp)/<REFERENCE>(xrv) Self-
Test — RBD 0

Test Function

T0035 NSCSR Register Test

T0036 CNAK and TTO on Read Test

T0037 CNAK and TTO on Write Test

T0038 CNAK and TTO on IVINTR Test

T0039 Interprocessor IVINTR Test

T0040 Write Error IVINTR Test

T0041 Multiple Interrupt Test

T0042 MP-Chip Critical Path Test

T0043 MF-Chip Test

T0044 Disable MF-Chip Test

T0045 MF-Chip Critical Path Test

Vector Processor Tests

T0046 VECTL Registers Test

T0047 Verse Registers Test

T0048 Load/Store Registers Test

T0049 VIB Error Logic Test

T0050 Other VECTL Chip Logic Test

T0051 Verse and Favor Test

T0052 Load/Store Translation Buffer and CAM Test

T0053 Load/Store Cache Test

T0054 Load/Store Instruction Test

T0055 Load/Store Tag Tests

T0056 Load/Store Error Cases Test

T0057 <REFERENCE>(xrv) Critical Path Test

Diagnostics 2–45

2.4.2 CPU/Memory Interaction Tests — RBD 1

RBD 1 is equivalent to the CPU/memory interaction tests.
The first 18 tests test scalar processor modules; tests 19–22
test vector processor modules. Tests 1 and 2 are not run on
power-up.

Example 2–14: CPU/Memory Interaction Tests — RBD 1

>>> T/R ! Command to enter RBD monitor program

RBD3> ! RBD monitor prompt, where 3 is the hexa-
! decimal node number of the processor
! that is currently receiving your input.

RBD3> ST1/TR/HE/QV ! Runs the CPU/memory interaction RBD with
! trace, halt on error, and quick verify.
! Test results written to the console
! terminal:

;CPUMEM 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018

; P 1 3 8080 1 2
;000000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD3>

In the example above:

1 P means that the diagnostic ran successfully.

2 One pass was completed. (The system did not have a vector processor.)

2–46 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–13: CPU/Memory Interaction Tests — RBD 1

Test Function

Scalar Processor Tests

T0001 Parity Error CNAK Read Test

T0002 Parity Error CNAK Write Test

T0003 Cache Disable Test

T0004 Interlock Instruction Cache Disable Test

T0005 Cache Read Fill Test

T0006 Cache Location Displacement Test

T0007 Interlock Instruction Cache Test

T0008 Hexword Writeback Test

T0009 Invalidate Bus Test

T0010 Error Transition Mode Test

T0011 IBUS March and Parity Error Test

T0012 Bad ACP During Writeback Test

T0013 At-Speed Cache Access Test

T0014 Upper Address Bit Test

T0015 Single-Bit ECC Error Test

T0016 Double-Bit ECC Error Test

T0017 Memory Write Merge Test

T0018 Backup Cache Tag Exerciser

Vector Processor Tests

T0019 Cache Test

T0020 Write Buffer Test

T0021 Duplicate Tag Test

T0022 Miscellaneous Error Test

Diagnostics 2–47

2.4.3 <REFERENCE>(xbi) Tests — RBD 2

The <REFERENCE>(xbi) ROM-based diagnostic, RBD 2,
checks functions of both <REFERENCE>(xbi) modules. RBD
2 tests the <REFERENCE>(XBI) modules and can trace the
subtests, pinpointing errors.

Example 2–15: <REFERENCE>(xbi) Tests — RBD 2

>>> T/R

RBD1> ST2/TR E 1

;XBIP_TST 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010
; T0011 T0012 T0013 T0014 T0015 T0016 T0017 T0018 T0019 T0020
; T0021 T0022 T0023 T0024 T0025 T0026 T0027 T0028 T0029 T0030
; T0031 T0032 T0033 T0034 T0035 T0036 T0037 T0038 T0039 T0040
; T0041 T0042 T0043 T0044 T0045 T0046 T0047 T0048

; P 2 1 8080 1 3
;000000000 00000000 00000000 00000000 00000000 00000000 00000000

2–48 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(XBI) has no on-board self-test. The boot processor
ROM code tests <REFERENCE>(XBI)s during additional power-up tests.
At power-up, the boot processor first sizes all <REFERENCE>(XBI)s and
then serially tests each one.

1 When invoking RBD 2 from the monitor, the START command requires
a parameter. This parameter is the XMI node number (hexadecimal)
of the <REFERENCE>(xbia) module of the <REFERENCE>(xbi) to be
tested.

2 This diagnostic ran successfully.

3 One pass was completed.

Diagnostics 2–49

2.4.4 DWMBB Tests — RBD 2 Subtests

RBD 2 consists of 48 subtests, as shown in Table 2–14.

Table 2–14: <REFERENCE>(XBI_TITLE) RBD Tests

Test Function

T0001 <REFERENCE>(XBI) CSR Test

T0002 <REFERENCE>(XMI) Low Longword Parity Error Test

T0003 <REFERENCE>(XMI) High Longword Parity Error Test

T0004 <REFERENCE>(XMI) Function and ID Parity Error Test

T0005 <REFERENCE>(xbia) Loopback Transaction Test

T0006 <REFERENCE>(xbia) Loopback DMA Buffer Test

T0007 <REFERENCE>(xbia) Loopback Nonexistent Memory Interrupt Test

T0008 Retry Timeout Disable Test

T0009 Timeout Disable Test

T0010 Data NO ACK Test

T0011 RER Error Interrupt Test

T0012 Lockout Assertion Test

T0013 Quick PMR Memory Test

T0014 DMA ECC Error Interrupt Test

T0015 PMR ECC Error Interrupt Test

T0016 ECC Syndrome Test

T0017 ECC Disable Test

T0018 Extended Addressing Test

T0019 34-bit Addressing Test

T0020 Invalid PFN Interrupt Test

T0021 Failing Command and Mask Test

T0022 Responder Request Test

T0023 <REFERENCE>(xbib) CSR Test

2–50 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–14 (Cont.): <REFERENCE>(XBI_TITLE) RBD Tests

Test Function

T0024 Illegal I/O Command Test

T0025 BIIC Loopback Transaction Test

T0026 BIIC VAXBI Transaction Test

T0027 VAXBI Window Space Test

T0028 DMA Test

T0029 DMA Loopback DMA Buffer Test

T0030 XMI Parity Error Interrupt Test

T0031 Write Sequence Error Interrupt Test

T0032 Return Vector/Multiple Interrupt Test

T0033 I/O Buffer C/A Fetch Parity Error Interrupt Test

T0034 I/O Buffer Data Fetch Parity Error Interrupt Test

T0035 IDMA Buffer Data Fetch Parity Error Interrupt Test

T0036 VAXBI Interlock Read Error Interrupt Test

T0037 DMA-A Buffer C/A Load Parity Error Interrupt Test

T0038 DMA-A Buffer Data Load Parity Error IVINTR/INTR Test

T0039 DMA-B Buffer C/A Load Parity Error Interrupt Test

T0040 DMA-B Buffer Data Load Parity Error IVINTR/INTR Test

T0041 I/O Buffer Data Load Parity Error IVINTR/INTR Test

T0042 BCI Parity Error Test

T0043 Nonexistent Memory Interrupt Test

T0044 CRD Error Interrupt Test

T0045 VAXBI Interrupt Test

T0046 VAXBI IP Interrupt Test

T0047 Control Reset Test

T0048 No Stall Timeout Test

Diagnostics 2–51

2.4.5 MS65A Memory Tests — RBD 3

RBD 3 sizes memory, runs extended memory tests, and
indicates any failing tests. Examples 2–16 through 2–19 show
the use of various qualifiers.

Example 2–16: RBD Test on All Modules with Halt on Error

>>> ! Console program prompt

>>> T/R ! Command to enter RBD monitor program

RBD3> ! RBD monitor prompt, where 3 is the hexa-
! decimal node number of the processor
! that is currently receiving your input

RBD3> ST3/TR/HE ! Runs the default <REFERENCE>(XMA) RBD
! test; test results written to the
! console terminal; tests will halt on
! any error found (/HE)

;XMA2_RBD 1.00

; T0002 T0003 T0004 T0005 T0006 T0007 T0008

; P 3 8001 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

Example 2–17: RBD Test on Module in Slot A

RBD3> ST3/TR A ! Runs the <REFERENCE>(XMA) RBD test
! on memory module in slot A only;
! test results written to the console
! terminal

;XMA2_RBD 1.00

; T0002 T0003 T0004 T0006 T0007 T0008 T0009

; P 3 8001 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

2–52 <REFERENCE>(VAX_mod_XXX) Service Manual

Example 2–18: RBD Test with Module Error

RBD3> ST3/TR ! Runs the default <REFERENCE>(XMA) RBD
! test; test results written to the
! console terminal; a hard error is found
! in the memory module in slot 8

;XMA2_RBD 1.00

; T0002 T0003 T0004 T0006 T0007 T0008 T0009

; F 3 8001 1
; HE ERRLOGIC 08 T0005
; 00 00000000 00000000 00000000 00000000 20073E32 16

; F 3 8001 1
;00000000 00000001 00000000 00000000 00000000 00000000 00000000

Example 2–19: RBD Test with Confirm Switch

RBD3> ST3/TR/T=5:12 A /C ! Runs RBD tests T0005 through T0012 on
! memory module in slot A. Confirm
! destructive memory test switch (/C)
! is required on tests T0005, T0009
! and T0012.

;XMA2_RBD 1.00

; T0005 T0006 T0007 T0008 T0009 T0010 T0011

; S 1 8001 1 ! Test status prints out every
; XX RAM XX T0011 ! 60 sec until tests are completed;

! /DS disables test status printout.
; T0012
; S 1 8001 1
; XX RAM XX T0012

; P 3 8001 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD3> QUIT ! Exit from RBD monitor program

>>> ! Console prompt returns

Diagnostics 2–53

Table 2–15: Memory Tests — RBD 3

Test Function
Approximate Run Time
(For 32-Mbyte Module)

T00011 Memory Self-Test 12 sec2

T00023 CSR Addressability Test 3 sec

T00033 CSR Read/Write, Write 1 to Clear Test 3 sec

T00043 SEADR Register Test 3 sec

T00051 Parity Error Test 3 sec

T00063 Error Correction Code Circuit Test 3 sec

T00073 Data Path Test 3 sec

T00083 Write Mask Logic Test 3 sec

T00091 Block State Test 3 sec

T00103 EEPROM Update Test 3 sec

T00113 Interleave Address and Boundary Test 22 sec

T00121 ECC RAM March Test 9 min

T00131 March Test 10 min

T00141 Modified MOVI Test 4 hrs

1The /C qualifier is required for these tests.
2If self-test fails, there is a 60 second timeout.
3Tests T0002–T0004, T0006–T0008, and T0010–T0011 are run by default.

2–54 <REFERENCE>(VAX_mod_XXX) Service Manual

Tests T0002, T0003, T0004, T0006, T0007, T0008, T0010, and T0011 are
run by default. All other tests must be selected by the user. Tests are
performed on all <REFERENCE>(XMA) modules unless the user specifies
a single <REFERENCE>(XMA). Parameters specified in the command line
(refer to Table 2–16) allow one or all memory modules to be tested. These
parameters also allow RBD tests to be run from main memory or ROM for
RBD tests T0013 and T0014.

Table 2–16: RBD 3 Parameters

Parameter1 Function

00 Run tests T0013 and T0014 from main memory (RAM) and test all mem-
ory modules

0n Run tests T0013 and T0014 from main memory (RAM) and test mem-
ory module n only

10 Run tests T0013 and T0014 from ROM and test all memory mod-
ules

1n Run tests T0013 and T0014 from ROM and test memory mod-
ule n only

1Where n is the memory module backplane slot number that is specified in hex param-
eters 0n and 1n.

The CPU/memory interaction diagnostic also runs tests that exercise
memory (see Section 2.4.2).

Diagnostics 2–55

2.4.6 KA65A Cache Tests — RBD 4

RBD 4 tests backup cache. A test number must be supplied
to run any of the three tests.

Example 2–20: KA65A Cache Tests — RBD 4

>>> T/R ! Command to enter RBD monitor program

RBD4> ! RBD monitor prompt, where 4 is the hexa-
! decimal node number of the processor
! that is currently receiving your input.

RBD4> ST4/TR 1

;XMP_BC 1.00

; S 4 8080 1
; XX NoTstSel 2 XX T0000

; P 3 4 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD4> ST4/TR/T=1 4

;XMP_BC 1.00

; T0001 5

; S 4 8080 1
; XX Cache XX T0001

;00000800 00000000 00000000 1F0C0000 00000300 00000000 00000000 00000000

; P 6 4 8080 1
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD4>

2–56 <REFERENCE>(VAX_mod_XXX) Service Manual

1 RBD 4 is started without specifying a test number.

2 No tests are run, and a status message is given that no test was
selected.

3 Since no tests were run, no failures were detected.

4 The command to run RBD 4 is reissued, this time with a test number.

5 Test 1, as requested, is run.

6 Test 1 passes.

Table 2–17: KA65A Cache Tests — RBD 4

Test Function

T0001 Parity Error Test

T0002 Cache Coherency Checker

T0003 Memory Locked Location Test

Diagnostics 2–57

2.4.7 Multiprocessor Tests — RBD 5

RBD 5 is equivalent to the multiprocessor tests. The first 7
tests check scalar processor modules; test 8 checks vector
processor modules.

Example 2–21: Multiprocessor Tests — RBD 5

>>> T/R ! Command to enter RBD monitor program

RBD3> ! RBD monitor prompt, where 3 is the hexa-
! decimal node number of the processor
! that is currently receiving your input.

RBD3> ST5/TR 1

;XMP_MP 1.00

; T0001 T0002 T0003 T0004 T0005 T0006 T0007

; P 2 1 8080 1 3
;00000000 00000000 00000000 00000000 00000000 00000000 00000000

RBD3>

In the example above:

1 RBD 5 is run with trace set.

2 The diagnostic ran successfully.

3 One pass was completed.

2–58 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–18: Multiprocessor Tests — RBD 5

Test Function

Scalar Processor Tests

T0001 Interprocessor Interrupt (IVINTR) Test

T0002 Write Error Interrupt (WEINTR) Test

T0003 Cache Invalidate Test

T0004 XMI Bus Arbitration Test

T0005 XMI Bus Arbitration Collision Test

T0006 XMI Suppress Assertion Test

T0007 Memory Lock and Interrupt Exerciser Test

Vector Processor Test

T0008 Vector Cache Coherency Test

Table 2–19: RBD 5 Parameters

Parameter Function

No parameter When no parameter is specified, all scalar processors that have passed
power-up test will be tested.

xxxx Specifies a hexadecimal bit mask indicating slot positions of the scalar pro-
cessors to be tested. For example, a parameter of 322 indi-
cates that processors in slots 1, 5, 8, and 9 will be tested. All pro-
cessors specified are tested, even those that did not pass power-
up test.

Diagnostics 2–59

2.5 VAX Diagnostic Supervisor Programs

The VAX Diagnostic Supervisor (VAX/DS) is a monitor that
controls operation of diagnostic programs. You can use
VAX/DS in one of two modes: standalone mode (exclusive
use of the system) or user mode (under the VMS operating
system).

Table 2–20: VAX Diagnostic Program Levels

Level Type of Test Run-Time Environment

1 System exercisers Runs under the VMS operating sys-
tem without VAX/DS

2R Function tests of peripheral devices Runs under the VMS operating sys-
tem with VAX/DS

2 Exercisers and function tests of
peripheral devices and processors

Runs under VAX/DS in user mode and
standalone mode

3 Function tests and logic tests of
peripheral devices and processors

Runs under VAX/DS in standalone
mode

Table 2–21: VAX/DS Documentation

Document Order Number

VAX Diagnostic Supervisor User’s Guide AA–FK66A–TE

VAX Diagnostic Software Handbook AA–F152A–TE

VAX Diagnostic Design Guide AA–FK67A–TE

VAX Systems Hardware Handbook EB–31692–46

2–60 <REFERENCE>(VAX_mod_XXX) Service Manual

The VAX Diagnostic Supervisor (VAX/DS) can be run in interactive mode.
You type commands in response to the VAX/DS program prompt:

DS>

VAX/DS lets you load diagnostic programs into system memory, select
devices to be tested, and run the programs. The VAX/DS command
language also lets you control the execution of diagnostic programs; you
can specify which tests or sections of a program should run, and how many
passes it should run. You can also show the current state of parameters
that affect the operation of diagnostic programs. The programs report their
results through VAX/DS to the terminal.

VAX/DS supports three types of diagnostic programs:

• Logic tests
Test a specific section of a device’s logic circuitry. Logic tests provide the
greatest degree of detail in determining the location of faulty hardware.

• Function tests
Test the functions of the device. For example, a function test for a disk
drive would test the drive’s reading and writing capabilities. Function
tests can detect the location of faulty hardware, although the results
may be less exact than those of a logic test.

• Exercisers
Test entire systems or subsystems and verify that a system can function
properly over a period of time. Exercisers can detect both hardware
faults resulting from the simultaneous use of a system’s numerous
devices and intermittent faults occurring only once or twice over a long
period of time.

VAX/DS also supports EVUCA, the EEPROM patch and console boot device
utility.

Table 2–22 lists the VAX/DS programs available for the <REFERENCE>(VAX_
mod_XXX) system. Each program has a HELP file available. To access the
help files for any diagnostic, at the VAX/DS prompt, type:

DS> HELP [VAX/DS diagnostic program name]

Diagnostics 2–61

2.5.1 Running VAX/DS in Standalone Mode

You can use VAX/DS in one of two modes: standalone mode
(exclusive use of the system) or user mode (under VMS).

Example 2–22: Running VAX/DS in Standalone Mode

>>> BOOT/XMI:m/FILENAME:ISL_LVAX/R5:10 EX0 1

Initializing system
[Self-test display prints]

Loading system software
[System messages print]

Ethernet Initial System Load Function

FUNCTION ID FUNCTION
1 - Display Menu
2 - Help

3 - Choose Service 2
4 - Stop

Enter a function Id value: 3 2

Service options:
1 = Find Services
2 = Enter Known Service Name
=>1 3

Servers found:: 2

Service Name Format:
Service Name
Server Name
Ethernet ID

#1
NSS_SYSDISK
ESS_08002B15FCE1
08-00-2B-15-FC-E1

#2
6000_DIAG_* 4
ESS_08002B15FCE1
08-00-2B-15-FC-E1

Enter a number => 2 5
[Diagnostic Supervisor Banner prints]

DS>

2–62 <REFERENCE>(VAX_mod_XXX) Service Manual

Load the diagnostic CD into the CD server console load device.

1 Boot the system. The BOOT command you enter depends on the system
configuration. If the CD server is connected to a DEMNA, use the
command shown; if it is connected to a DEBNI or DEBNA, use the
command:

>>> BOOT/XMI:m/FILENAME:ISL_LVAX/BI:n/R5:10 ET0

2 The system prompts, Enter a function Id value:. Enter 3 to choose
service.

3 The system displays the service options menu and the prompt, =>.
Enter 1 to select Find Services. The available Ethernet services are
located and displayed. In this example, one server was found with two
CD drives.

4 One of the services will show the diagnostic CD that you loaded. Here
it is in the second drive.

5 The system prompts, Enter a number =>. Enter the number of the
service with the Diagnostic Supervisor CD. If more than one service
name 6000_DIAG_* of the VAX 6000 CMPLT DIAG CD ROM is loaded
in the CD drives, choose the drive where the * revision letter is the
highest. This will be the most recent version of the diagnostic media.

Diagnostics 2–63

2.5.2 Running VAX/DS in User Mode

You can use VAX/DS in one of two modes: standalone mode
(exclusive use of the system) or user mode (under VMS).

Example 2–23: Running VAX/DS in User Mode

$! At the operating system prompt, run
$ RUN EMSAA ! the VAX/DS program.

[VAX/DS banner prints, as in example above]
DS> ! VAX/DS prompt appears.

! Run VAX/DS level 2R or 2 programs.
DS> EXIT ! Type EXIT to exit VAX/DS
$! Operating system prompt returns.

2–64 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–20 describes the levels of VAX/DS programs. Check Table 2–22 for
the programs you wish to run, and determine if you will run VAX/DS in
standalone or user mode.

In both standalone and user mode, VAX/DS functions the same way.
Typically a program running in user mode provides less detailed results
than one running in standalone mode. For more information on VAX/DS,
see the documents listed in Table 2–21.

Diagnostics 2–65

2.5.3 Sample VAX/DS Session

When you run the VAX/DS programs, run the system
autosizer program EVSBA first. This program, which takes
several minutes to execute, will save you time as you proceed
with other tests. Certain conditions cause the generation of
an unexpected trap or interrupt. Use the method shown to
avoid these conditions.

Example 2–24: Sample VAX/DS Session, Part 1 of 2

>>> SET BOOT DIAG /XMI:9/R5:10 DU1

>>> BOOT DIAG 1

[self-test results print]

Loading system software

* Initializing adapter
* Specified adapter initialized successfully
* Connecting to boot disk
* Reading bootblock from disk
* Passing control to transfer address

Copyright Digital Equipment Corporation
1989, 1990.

All Rights Reserved.

DIAGNOSTIC SUPERVISOR. ZZ-EMSAA-V14.0-561 1-DEC-1990 11:39:12
DS> RUN EVSBA 2

[banner prints]

.. Program: EVSBA - AUTOSIZER level 3, revision 7.0, 3 tests,
at 11:43:33.20.

.. End of run, 0 errors detected, pass count is 1,
time is 1-DEC-1990 11:44:59.66

2–66 <REFERENCE>(VAX_mod_XXX) Service Manual

1 The SET BOOT command stores a nickname for a set of parameters to
the BOOT command. (The lower key switch on the control panel must
be set to Update when this command is issued.) This BOOT command
loads VAX/DS from disk. For more information on the BOOT and SET
BOOT commands, see the <REFERENCE>(vax_xxxx) Series Owner’s
Manual.

2 The off-line autosizer program EVSBA identifies hardware on your
system and builds a database for the VAX Diagnostic Supervisor.
The autosizer eliminates the need for you to type in the name and
characteristics of the hardware you intend to test under VAX/DS with
level 3 diagnostic programs.

Diagnostics 2–67

Example 2–25: Sample VAX/DS Session, Part 2 of 2

DS> SHO DEV 3
_DUA KDM70 HUB 61C80000 XMI Node Number (1 to E) =00000009(X)
Bus Request Level (4 - 7) =5.
_DUA1 RA70 _DUA 72000000
_KA0 KA65A HUB 61980000 XMI Node Number (1 to E) =00000003(X)
Vector Unit Present=Yes
_DUA2 RA70 _DUA 72000000
_EXA0 DEMNA HUB 61D80000 XMI Node Number (1 to E) =0000000B(X)
_PAA0 CIXCD HUB 61E00000 XMI Node Number (1 to E) =0000000C(X)
CI Node Number (0 to 224) =1.
_DWMBA0 DWMBA HUB 61E80000 XMI Node Number (1 to E) =0000000D(X)
BI Node Number (HEX)=00000002(X)
_TXA DHB32 _DWMBA0 7A006000 BI Node Number (HEX) =00000003(X)
_SLA DSB32 _DWMBA0 7A01E000 BI Node Number (HEX) =0000000F(X)
_DWMBB0 DWMBB HUB 61F00000 XMI Node Number (1 to E) =0000000E(X)
BI Node Number (HEX)=00000001(X)
_BLA0 DWBLA _DWMBB0 7C004000 BI Node Number (HEX)=00000002(X)
_MUB0 TU81 _BLA0 7C4BF940 CSR=774500(O) VECTOR=000260(O) BR=5.
_TXB DMB32 _DWMBB0 7C006000 BI Node Number (HEX) =00000003(X)
_DUB KDB50 _DWMBB0 7C008000 BI Node Number (HEX)=00000004(X)
_DUB0 RA70 _DUB 7C500000
_MUC TBK70 _DWMBB0 7C00C000 BI Node Number (HEX)=00000006(X)
_MUC6 TK70 _MUC 7C580000
_ETD DEBNA _DWMBB0 7C018000 BI Node Number (HEX)=0000000C(X)
_ETD0 LANCE _ETD 7C700000

DS> SELECT ALL 4
DS> SET TRACE
DS> RUN EVKAQ

[banner prints]

.. Program: ZZ-EVKAQ, VAX Basic Instructions Exerciser, revision 3.5, 92
tests, at 11:46:11.90.
Testing: _KA0

Test 1: BRB Instruction Test
Test 2: BRW Instruction Test
Test 3: BBC Instruction Test

.

.

.
Test 90: XORL2 Instruction Test
Test 91: XORL3 Instruction Test
Test 92: ROTL Instruction Test
.. End of run, 0 errors detected, pass count is 1,

time is 1-DEC-1990 11:46:09.88
DS>

2–68 <REFERENCE>(VAX_mod_XXX) Service Manual

3 You can use the autosizer to print a list of system hardware by running
the program EVSBA under VAX/DS and typing the VAX/DS command
SHOW DEVICE. The command lists system devices, similar to the
SHOW CONFIGURATION command in console mode.

4 SELECT ALL selects all devices listed in 3 . SET TRACE enables
printing of test numbers and names when the diagnostic runs.

Diagnostics 2–69

2.5.4 VAX/DS Diagnostics

Table 2–22 lists the VAX Diagnostic Supervisor tests
currently available for the <REFERENCE>(VAX_mod_XXX)
system.

Table 2–22: VAX Diagnostic Supervisor Programs

Diagnostic Level Diagnostic Title

EMSAA1 <REFERENCE>(VAX_mod_XXX) Diagnostic Supervisor

EVSBA 3 VAX Standalone Autosizer

EVUCA 3 VAX 6000 EEPROM Utility

<REFERENCE>(xmp)-Specific Diagnostic

EMKAX1 3 Manual Tests

<REFERENCE>(xrv)-Specific Diagnostics

EVKAG 2 VAX Vector Instruction Exerciser, Part 1

EVKAH 2 VAX Vector Instruction Exerciser, Part 2

VAX CPU Cluster Exerciser

EVKAQ 2 VAX Basic Instructions Exerciser, Part 1

EVKAR 2 VAX Basic Instructions Exerciser, Part 2

EVKAS 2 VAX Floating-Point Instruction Exerciser, Part 1

EVKAT 2 VAX Floating-Point Instruction Exerciser, Part 2

EVKAU 3 VAX Privileged Architecture Instruction Test, Part 1

EVKAV 3 VAX Privileged Architecture Instruction Test, Part 2

1Diagnostic software with file names beginning with EM are tests created specifi-
cally for the <REFERENCE>(VAX_mod_XXX) system. This software is not trans-
portable.

2–70 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–22 (Cont.): VAX Diagnostic Supervisor Programs

Diagnostic Level Diagnostic Title

CIBCA-BA Diagnostics

EVGEE 3 CIBCA-B Repair Level Diagnostic, Part 1

EVGEF 3 CIBCA-B Repair Level Diagnostic, Part 2

EVGEG 3 CIBCA-B Repair Level Diagnostic, Part 3

EVGAA 3 CI Functional Diagnostic, Part 1

EVGAB 3 CI Functional Diagnostic, Part 2

EVGAC 3 Standalone CI Exerciser

EVGDA 3 CIBCA EEPROM Update Utility

EVXCI 1 VAX CI Exerciser

CIXCD Diagnostics

EVGAA 3 CI Functional Test, Part 1

EVGAB 3 CI Functional Test, Part 2

EVGAC 3 Standalone CI Exerciser

EVXCI 1 VAX CI Exerciser

EVGEA 3 XCD Repair Level Diagnostic

EVGEB 3 XCD Firmware Loader Program

DEC LANcontroller 200 Diagnostics

EVDYD 2R DEBNI Online Functional Diagnostic

EVDWC 2R VAX NI Exerciser

DEC LANcontroller 400 Diagnostics

EVDYE 2R DEMNA NI Functional Diagnostic

EVGDB 2 DEMNA EEPROM Update Utility

EVDWC 2R VAX NI Exerciser

Diagnostics 2–71

Table 2–22 (Cont.): VAX Diagnostic Supervisor Programs

Diagnostic Level Diagnostic Title

DHB32 Diagnostics

EVDAR 3 DHB32 Diagnostic

EVDAS 2R DMB32/DHB32 Asynchronous Diagnostic

DMB32 Diagnostics

EVDAJ 2R DMB32 Online Asynchronous Port Test

EVDAK 3 DMB32 Standalone Functional Verification

EVDAL 2R DMB32 Online Synchronous Port Test

EVDAN 2R DMB32 Online Data Communications Link

DRB32 Diagnostics

EVDRH 3 DRB32-M, -E Functional Diagnostic

EVDRI 3 DRB32-W Functional Diagnostic

DSB32 Diagnostics

EVDAP 3 DSB32 Level 3 Diagnostic

EVDAQ 2R DSB32 Level 2R Diagnostic

KDB50 Diagnostics

EVRLF 3 UDA50/KDB50 Basic Subsystem Diagnostic

EVRLG 3 UDA50/KDB50 Disk Drive Exerciser

EVRLB 3 UDA/KDB50 Basic Disk Formatter

EVRLJ 3 VAX UDA50-A/KDB50/KDM70 Exerciser

EVRLK 3 VAX Bad Block Replace Utility

EVRLL 3 VAX Disk Resident Error Log Utility

EVRAE 2R Generic MSCP Disk Exerciser

2–72 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 2–22 (Cont.): VAX Diagnostic Supervisor Programs

Diagnostic Level Diagnostic Title

KDM70 Diagnostics

EVRAE 2R Generic MSCP Disk Exerciser

EVRLJ 3 VAX UDA50/KDB50/KDM70 Exerciser

EVRLM 3 KDM70 EEPROM Update Utility

EVRLN 3 DUP Control Program

KLESI-B/TU81 Diagnostics

EVMBA 2R VAX TU81 Data Reliability

EVMBB 3 VAX Front-End/Host Functional Diagnostic

MS65A Online Memory Diagnostic

EVKAM 2R VAX Memory User Mode Test

RV20 Diagnostics

EVRVA 3 RV20 Level 3 Functional Diagnostic

EVRVB 2R RV20 Level 2R Diagnostic

EVRVC 2R RV60/20 Level 2R DUP Diagnostic

TBK Diagnostic

EVMDA 2R VAX TK50/TK70 Exerciser

TM32 Diagnostics

EVMEA 2R TM32 L2R Reliability Diagnostic

EMBEB 3 TM32 L3 Functional Diagnostic Part 1

EMBEC 3 TM32 L3 Functional Diagnostic Part 2

Diagnostics 2–73

Chapter 3

<REFERENCE>(xmp) Scalar Processor

This chapter contains the following sections:

• Physical Description and Specifications

• Configuration Rules

• Functional Description

• Boot Processor

• Power-Up Sequence

• ROM-Based Diagnostics

• VAX/DS Diagnostics

• Machine Checks

• Console Commands

• <REFERENCE>(xmp) Handling Procedures

• How to Replace the Only Processor

• How to Replace the Boot Processor

• How to Add a New Processor or Replace a Secondary Processor

• Using EVUCA to Patch the EEPROM

• <REFERENCE>(xmp) Registers

<REFERENCE>(xmp) Scalar Processor 3–1

3.1 <REFERENCE>(xmp) Physical Description and
Specifications

The <REFERENCE>(xmp) is a single-module VAX processor.
The module designation is <REFERENCE>(Txxxx). <REF-
ERENCE>(VAX_mod_XXX) systems include multiple <REF-
ERENCE>(xmp) processors, which use the 100 Mbyte/second
<REFERENCE>(XMI) system bus to communicate with mem-
ory. Features of the module are shown in Figure 3–1.

Figure 3–1: <REFERENCE>(xmp) Module

FLOATING-POINT
PROCESSOR

ZIF
CONNECTOR
SEGMENTS

XMI
CORNER

msb-0711-90

SYSTEM
SUPPORT

CHIP

CACHE
RAMs

XMI
INTERFACE

YELLOW
SELF-TEST

LED

RED
LEDs

CLOCK
CHIP

PROCESSOR
CHIP

CACHE
CONTROL

EEPROM

DIAGNOSTIC
ROMs

CONSOLE
ROM

{

3–2 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 3–1: <REFERENCE>(xmp) Specifications

Parameter Description

Module Number: <REFERENCE>(Txxxx)

Dimensions: 23.3 cm (9.2") H x 0.23 cm (0.093") W x 28.0 cm (11.0") D

Temperature:

Storage Range -40oC to 66oC (-40oF to 151oF)

Operating Range 10oC to 40oC (41oF to 122oF)

Relative Humidity:

Storage 10% to 95% noncondensing

Operating 10% to 95% noncondensing

Altitude:

Storage Up to 4.8 km (16,000 ft)

Operating Up to 2.4 km (8000 ft)

Current: 4.5A at +5.1V
3.7A at +3.3V

Power: 41W

Cables: VIB cable, 17-02240-03 (only when FV64A vector proces-
sor is attached)

Diagnostics: ROM-based diagnostics 0, 1, 4, and 5
VAX/DS diagnostics, see Section 3.7

<REFERENCE>(xmp) Scalar Processor 3–3

3.2 <REFERENCE>(xmp) Configuration Rules

<REFERENCE>(xmp) modules will operate in any slot of
the XMI card cage; however, processors usually go on the
right, beginning with slot 1. Special rules apply if the
<REFERENCE>(xmp) has an attached vector processor; see
Section 4.3.

Figure 3–2: Typical <REFERENCE>(xmp) Configuration

XMI CARD CAGE

E D C B A 9 8 7 6 5 4 3 2 1

PROCESSOR

SLOTS

msb-0054-88

3–4 <REFERENCE>(VAX_mod_XXX) Service Manual

Processor modules are configured after I/O adapters. (I/O adapters are
installed left to right in slots E through A and 5 through 1.) In a system
with only scalar processors, the KA65A modules are installed right to left,
beginning with the first available slot on the right.

In a system with vector processors, each scalar/vector pair requires three
consecutive slots. An attached vector processsor must be in the slot to the
left of the <REFERENCE>(xmp) module. The slot to the left of the vector
processor can be used only for a memory module. Installing another kind
of module in that slot can damage the vector module.

For performance reasons, the scalar processor of a scalar/vector pair should
not be made the primary processor when other scalar processors are in the
system.

If the system is an H9657-CX upgrade, the T2019 module must be in slot 2,
and slot 1 must be empty. Since slot 1 does not hold a processor module in
this type of upgrade, the progress trace will not print as part of the self-test
printout. (See Section 2.2.1.)

A processor module should be replaced if it consistently fails self-test, or
if it causes the operating system to crash. However, you can leave the
module in the system temporarily, since the console program prevents the
operating system from using that processor. If a processor module fails
intermittently, you should prevent the operating system from using it by
doing the following:

1. Enter console mode.

2. Use the command SET CPU/NOENABLE to remove the processor from
the software configuration.

3. Reboot the operating system.

<REFERENCE>(xmp) Scalar Processor 3–5

3.3 <REFERENCE>(xmp) Functional Description

The <REFERENCE>(xmp) processor has four functional
sections (see Figure 3–3): the CPU section, the backup cache,
the XMI interface, and system support sections.

Figure 3–3: <REFERENCE>(xmp) Block Diagram

Cache
Control

XMI
Inter-
face

XCI

Inval-Bus

Clock

XClock XLatch x 7
XMI

Corner

XMI Bus

Cache
Control

AddrData

Data and Address Lines

Control Float-
ing

Point

System
Sup-
port

CPU
with

Cache

Data

Addr

ROM
and

EEPROM

System and
Aux Console

msb-0718-90

VIBTo Vector
Module

RAM

3–6 <REFERENCE>(VAX_mod_XXX) Service Manual

The CPU section includes:

• The processor chip, which implements the VAX base instruction group
and data types. It contains a 64-entry, fully associative translation
buffer for both process and system-space mappings. The processor chip
includes a 2-Kbyte, direct-mapped, write-through instruction and data
cache with a quadword block and fill size.

• A floating-point accelerator chip that enhances the computation phase
of floating-point and some integer instructions. This chip receives
operands from the processor chip, computes the result, and passes the
result and status back to the processor chip to complete the instruction.

The backup cache is a 512-Kbyte, direct-mapped, writeback instruction and
data cache. It is implemented in 64-Kbyte x 4 data RAMs. The backup
cache contains 4-Kbyte tags, organized to provide a hexword fill size and a
4-hexword block size.

The <REFERENCE>(XMI) interface performs the following tasks:

• Translates memory and I/O space references from the processor chip to
the appropriate XMI transactions.

• Implements an eight-hexword writeback buffer to handle writeback
requests from the cache.

• Supports control of cache fills and cache invalidates.

• Supports XMI-required interrupt logic.

• Implements all XMI-required registers.

The system support section includes support for external ROM/EEPROM,
1 Kbyte of battery-backed-up RAM, console terminal UARTs, bus reset
logic, interval and programmable timers, time-of-year clock, bus timeout,
and halt arbitration logic.

<REFERENCE>(xmp) Scalar Processor 3–7

Example 3–1: ROM and EEPROM Version Numbers

#123456789 0123456789 0123456789 0123456789 012345#

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . . M M M M . . P P P TYP
o + . . . + + + + . . + + + STF
. E E B BPD
. + + + ETF
. E E B BPD

. + + + . + . . + . XBI E +

. A4 A3 A2 A1 ILV

. 64 64 64 64 256 Mb

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 SN = SG01234567
1 2 3

3–8 <REFERENCE>(VAX_mod_XXX) Service Manual

The console and diagnostics sections include:

• A console read-only memory (ROM), which contains the code for
initialization, executing console commands, and bootstrapping the
system. The last line of the self-test display shows the ROM version.
In this example, callout 1 indicates that the console ROM is version
V1.00.

• A diagnostic ROM, which contains the <REFERENCE>(vax_mod_xxx)
ROM-based diagnostics (RBDs). The diagnostic ROM has the same
version number as the console ROM. Callout 2 indicates that the
diagnostic ROM is version V1.00.

• An electrically-erasable, programmable ROM (EEPROM), which
contains system parameters and boot code. You can modify the
parameters with the console SET commands. Patching console and
diagnostic code in the ROMs is accomplished by reading the patches
into a special area of the EEPROM. The EVUCA utility, which patches
the EEPROM, is described in Section 3.14.

Callout 3 indicates two EEPROM version numbers separated by a slash
(/). The first number is the format version of the EEPROM. This version
is changed only when the internal structure of the EEPROM is modified.

The second number is the revision of ROM patches that have been
applied to the EEPROM. The major number in this revision (before the
decimal point) corresponds to the major number of the ROM revision 1 .
The minor number indicates the actual patch revision. In this example
the EEPROM has not been patched for console ROM V1.00.

• A system support chip (MSSC) that includes support for external
ROM/ EEPROM, 1 Kbyte of battery-backed-up RAM, console terminal
UARTs, bus reset logic, interval timer, programmable timers, time-of-
year (TOY) clock, bus timeout, and halt arbitration logic.

<REFERENCE>(xmp) Scalar Processor 3–9

3.4 Boot Processor

In the <REFERENCE>(VAX_mod_XXX) system all <REFER-
ENCE>(xmp) processors share system resources equally. The
processor controlling the console at any given time is des-
ignated as the primary or boot processor. The others are
called secondary processors. The boot processor is selected
during the power-up sequence.

Figure 3–4: Selection of Boot Processor

CPU WITH
LOWEST

XMI NODE ID

ELIGIBLE
CPU WITH NEXT

LOWEST
XMI NODE ID

PASSED
BOTH POWER-UP

TESTS

BOOT PROCESSOR

N

Y

N

Y

msb-0051-90

3–10 <REFERENCE>(VAX_mod_XXX) Service Manual

Using boot code stored in its ROM or EEPROM, the boot processor reads the
boot block from a specified device. Booting may be triggered by a command
issued to the boot processor from the console, or by a system reset with the
bottom key switch in the Auto Start position.

The boot processor also communicates with the system console, using
the common console lines on the backplane. When you change system
parameters in the EEPROM using SET commands, the boot processor
automatically copies the new values to the EEPROMs on the secondary
processors. If you swap in a new <REFERENCE>(xmp) module, it
should be configured as a secondary processor. Then you can use the
UPDATE command to copy the boot processor’s entire EEPROM to the new
secondary. See the <REFERENCE>(VAX_XXXX) Series Owner’s Manual
for a description of the UPDATE command.

Usually the processor with the lowest <REFERENCE>(XMI) node number
(which is also the lowest slot number) is selected as the boot processor.
However, if this processor does not pass all its power-up tests, the next
higher-numbered processor is selected. This is one way the boot processor
can change.

The user also has control over boot processor selection with the SET CPU
command. This command may declare a processor ineligible for selection.
SET CPU can also select a boot processor explicitly.

You can see the boot processor selection three ways:

• In the self-test display, the boot processor is indicated by a B on the
second line labeled BPD.

• In console mode, the command SHOW CPU displays the boot processor
as "Current primary."

• The bottom red LED is off on the boot processor module. It is lit on
secondary processors.

<REFERENCE>(xmp) Scalar Processor 3–11

3.5 Power-Up Sequence

Figure 3–5 shows the power-up sequence for <REFERENCE>(xmp)
processors. All processors execute two phases of self-test,
and a boot processor is selected. The boot processor tests
the VAXBI adapters and prints the self-test display.

Figure 3–5: <REFERENCE>(xmp) Power-Up Sequence, Part 1 of 2

Power-up or system reset (cold)

CPU 1 CPU 2 CPU n

Self-Test Self-Test Self-Test
. . .

Determine
Boot Processor

. . .Determine
Boot Processor

Determine
Boot Processor

. . .

Determine
Boot Processor . . .

Determine
Boot Processor

Determine
Boot Processor

Boot Processor prints
self-test results

Boot Processor signals
all CPUs to start CPU/MEM tests

CPU 2
CPU/MEM and

MP tests

A

msb-0047A-90

1

2

3

4

5

NOTE: The second determination of the boot processor
occurs even if the original boot processor passes all

memory and multiprocessor tests.

CPU 1
CPU/MEM and

MP tests

CPU n
CPU/MEM and

MP tests

3–12 <REFERENCE>(VAX_mod_XXX) Service Manual

1 All CPUs execute their on-board self-tests at the beginning of the power-
up tests. On line STF of the self-test display, a plus sign (+) is shown
for every module whose self-test passes (see Section 2.2.1).

2 The boot processor is determined as described in Section 3.4. On the
first BPD line, the letter B corresponds to the processor selected as
boot processor. Because the processors have not yet completed their
power-up tests, the designated processor may later be disqualified from
being boot processor. For this reason, line BPD appears twice in the
self-test display.

3 The boot processor prints the results of self-test, lines NODE, TYP,
STF, and BPD on the self-test display. The boot processor then signals
all CPUs to start running the extended test.

4 All CPUs execute an extended test using the memories. On line ETF
of the self-test display, a plus sign (+) is shown for every module that
passes extended test.

5 If all CPUs pass the extended test, the original boot processor selection
is still valid. Lines STF and ETF would be identical for all the
processors.

The yellow LED and the top two red LEDs are lit on all processor
modules that pass both power-up tests. On the secondary processors,
the bottom red LED is also lit. On the boot processor, this red LED is
off (see Figure 2–3).

If the original boot processor fails the extended test (indicated by a
minus sign (–) on line ETF), a new boot processor is selected. On
the second BPD line, the letter B corresponds to the processor finally
selected as boot processor.

<REFERENCE>(xmp) Scalar Processor 3–13

Figure 3–6: <REFERENCE>(xmp) Power-Up Sequence, Part 2 of 2

. . .

Boot Processor prints
DWMBB test results

Boot Processor halts in console
mode or boots operating system

If Boot Processor is booting
operating system, starts all attached

CPUs after boot processor has booted

CPU 1
running

CPU 2
running

CPU n
running

A

msb-0048B-90

Boot Processor prints
CPU/MEM and MP

test results

Boot Processor
executes DWMBB tests

6

7

Boot processor configures
memory and prints configuration

3–14 <REFERENCE>(VAX_mod_XXX) Service Manual

6 The boot processor prints line ETF and the second BPD line of the
self-test display. If none of the processors is successfully selected as
the boot processor, no self-test results are displayed and the console
hangs. You can identify this hung state by examining the LEDs on
the processor modules (see Section 2.2.3). All yellow LEDs will be OFF.
The group of eight red LEDS indicate the failing test number in binary-
coded decimal.

7 The boot processor tests the DWMBB. Test results are indicated on the
lines labeled XBI on the self-test display. A plus sign (+) at the extreme
right means that the adapter test passed; a minus sign (–) means that
the test failed.

<REFERENCE>(xmp) Scalar Processor 3–15

3.6 ROM-Based Diagnostics

The ROM-based diagnostics that test the KA65A are listed
in Table 3–2. See Sections 2.3 and 2.4 for instructions on
running RBDs.

Table 3–2: KA65A ROM-Based Diagnostics

Diagnostic Name

0 KA65A/FV64A self-test

1 KA65A/FV64A CPU/memory interaction tests

4 KA65A cache tests

5 KA65A/FV64A multiprocessor interaction tests

3–16 <REFERENCE>(VAX_mod_XXX) Service Manual

The KA65A diagnostic ROM contains six diagnostics, four of which test the
KA65A. (The other two test the DWMBB I/O adapter and MS65A memory.)
You run these diagnostics using the boot processor’s RBD monitor program
described in Section 2.3. Descriptions of these diagnostics are in Section 2.4.

<REFERENCE>(xmp) Scalar Processor 3–17

3.7 VAX/DS Diagnostics

The <REFERENCE>(xmp) software diagnostics that run
under the VAX Diagnostic Supervisor (VAX/DS) are listed
in Table 3–3. An example follows. See Section 2.5 for
instructions on running the supervisor.

Table 3–3: <REFERENCE>(xmp) VAX/DS Diagnostics

Program Description

EVSBA VAX Standalone Autosizer

EVKAQ VAX Basic Instructions Exerciser, Part 1

EVKAR VAX Basic Instructions Exerciser, Part 2

EVKAS VAX Floating Point Instruction Exerciser, Part 1

EVKAT VAX Floating Point Instruction Exerciser, Part 2

EVKAU VAX Privileged Architecture Instruction Test, Part 1

EVKAV VAX Privileged Architecture Instruction Test, Part 2

EVUCA VAX 6000 EEPROM Update Utility

EMKAX Manual Tests

Example 3–2: VAX/DS Commands for Running Standalone Processor
Diagnostics

DS> RUN EVSBA 1

DS> SEL KA0 2

DS> RUN EMKAX 3

DS> EXIT 4

3–18 <REFERENCE>(VAX_mod_XXX) Service Manual

The callouts in Example 3–2 are explained below:

1 Run the standalone autosizer; then you do not need to attach devices
to the supervisor explicitly. However, if you want to know how to use
the ATTACH command for a specific diagnostic, enter:

DS> HELP diagnostic_name ATTACH

2 The instruction and manual tests run on the boot processor. If the
boot processor is the CPU with the lowest <REFERENCE>(XMI) node
number (which is usually the case), issue the command to select KA0.
The Diagnostic Supervisor numbers the processors consecutively. For
example, if the <REFERENCE>(xmp) module with the second-lowest
<REFERENCE>(XMI) node number were boot processor, you would
select KA1.

3 This example runs the manual tests (EMKAX), which include powerfail,
machine check, restart, and EEPROM functions. The diagnostic prints
messages, and you must manually intervene using console switches.

4 Exit from VAX/DS.

<REFERENCE>(xmp) Scalar Processor 3–19

3.8 Machine Checks

Figure 3–7 and Table 3–4 show parameters for machine
checks. The <REFERENCE>(xmp) machine check parse tree
appears in Appendix D along with parse trees for hard and
soft error interrupts.

Figure 3–7: The Stack in Response to a Machine Check

Table 3–4: Machine Check Parameters

Parameter

Value
(hex) or
Bit Description

Byte Count (SP) 18 Size of stack frame in bytes, not including PSL, PC,
or byte count longword

Machine check code (SP+4) 01 Floating-point operand or result transfer error

02 Floating-point reserved instruction

03 Floating-point operand parity error

04 Floating-point unknown status error

3–20 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 3–4 (Cont.): Machine Check Parameters

Parameter

Value
(hex) or
Bit Description

05 Floating-point returned result parity error

08 Translation buffer miss in ACV/TNV microflow

09 Translation buffer hit in ACV/TNV microflow

0A Undefined INT.ID value

0B Undefined MOVCx state

0C Undefined instruction trap code

0D Undefined control store address

10 Cache read tag/data parity error

11 DAL bus or data parity read error

12 DAL bus error on write or clear write buffer

13 Undefined bus error microtrap

14 Vector module error

15 Instruction stream read error

Virtual address (SP+8) <31:0> Current contents of VAP register

Virtual instruction buffer
address (SP+C)

<31:0> Current virtual instruction buffer address

Interrupt state (SP+10) <22> ICCS bit <6>

<15:1> SISR bits <15:1>

Internal state (SP+14) <31:24> Difference between current PC and opcode PC

<20:18> Address of last memory reference

<17:16> Data length of last memory reference

<15:8> Opcode

<3:0> Last GPR referenced by E-box

Internal register (SP+18) <31:0>

Program counter (SP+1C) <31:0> PC at the start of the current instruction

Processor status longword
(SP+20)

<31:0> Current contents of PSL

<REFERENCE>(xmp) Scalar Processor 3–21

3.9 Console Commands

Table 3–5 summarizes the console commands. The VAX
6000 Series Owner’s Manual gives a full description of these
commands, their qualifiers, and examples.

Table 3–5: Console Commands

Command Function

BOOT Initializes the system, causing a self-test, and begins the boot
program.

CLEAR EXCEPTION Cleans up error state in XBER and RCSR registers.

CONTINUE Begins processing at the address where processing was inter-
rupted by a CTRL/P console command.

DEPOSIT Stores data in a specified address.

EXAMINE Displays the contents of a specified address.

FIND Searches main memory for a page-aligned 256-Kbyte block of
good memory or for a restart parameter block.

HALT Null command; no action is taken since the processor has al-
ready halted in order to enter console mode.

HELP Prints explanation of console commands.

INITIALIZE Performs a system reset, including self-test.

REPEAT Executes the command passed as its argument.

RESTORE EEPROM Copies the TK tape’s EEPROM contents to the EEPROM of
the processor executing the command. (Valid only for sys-
tems that have a TK tape.)

SAVE EEPROM Copies to the TK tape the contents of the EEPROM of the pro-
cessor executing the command. (Valid only for sys-
tems that have a TK tape.)

SET BOOT Stores a boot command by a nickname.

SET CPU Specifies eligibility of processors to become the boot proces-
sor or whether the vector processor is to be included in the sys-
tem configuration.

SET LANGUAGE Changes the output of the console error messages between nu-
meric code only (international mode) and code plus explana-
tion (English mode).

3–22 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 3–5 (Cont.): Console Commands

Command Function

SET MEMORY Designates the method of interleaving the memory mod-
ules; supersedes the console program’s default interleav-
ing.

SET TERMINAL Sets console terminal characteristics.

SHOW ALL Displays the current value of parameters set.

SHOW BOOT Displays all boot commands and nicknames that have been
saved using SET BOOT.

SHOW CONFIGURATION Displays the hardware device type and revision level for
each XMI and VAXBI node and indicates self-test sta-
tus.

SHOW CPU Identifies the primary processor and the status of other proces-
sors.

SHOW ETHERNET Locates all Ethernet adapters on the system and dis-
plays their addresses.

SHOW FIELD Displays saved boot commands, console terminal parame-
ters, console language mode, memory configuration, type of
power system, and system serial number.

SHOW LANGUAGE Displays the mode currently set for console error messages, in-
ternational or English.

SHOW MEMORY Displays the memory lines from the system self-test, show-
ing interleave and memory size.

SHOW TERMINAL Displays the baud rate and terminal characteristics function-
ing on the console terminal.

START Begins execution of an instruction at the address speci-
fied in the command string.

STOP Halts the specified node.

TEST Passes control to the self-test diagnostics; /RBD qualifier in-
vokes ROM-based diagnostics.

UPDATE Copies contents of the EEPROM on the processor exe-
cuting the command to the EEPROM of another proces-
sor.

Z Logically connects the console terminal to another proces-
sor on the <REFERENCE>(XMI) bus or to a VAXBI node.

! Introduces a comment.

<REFERENCE>(xmp) Scalar Processor 3–23

3.10 <REFERENCE>(xmp) Handling Procedures

Handle the KA65A modules with care. The technology
used on this module is more vulnerable to static than past
technology. Also, these modules have 25 mil leads to the
chips; these leads are very small, close together, and easily
bent.

Figure 3–8: Holding the <REFERENCE>(xmp) Module

msb-0228B-90

3–24 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(xmp) module requires careful handling. Prepare
yourself and the work area before handling these modules. Roll up your
sleeves and remove any jewelry. Figure 3–8 shows the proper way to hold
the module.

Follow these handling procedures to avoid damaging the <REFERENCE>(xmp)
module:

1. Always wear an antistatic wrist strap.

2. Before removing the module from its ESD box, place the box on a clean,
stable surface.

Be sure the box will not slide or fall. Never place the box on the floor.
And be sure no tools, papers, manuals, or anything else that might
damage the module is near it. Some components on this module can
be damaged by a 600-volt static charge; paper, for example, can carry
a charge of 1000 volts.

3. Hold the module only by the edges, as shown in Figure 3–8.

Do not hold the module so that your fingers touch any 25 mil devices,
leads, or XMI fingers. Be sure you do not bend the module as you are
holding it.

4. Be sure nothing touches the module surface or any of its components.

If anything touches the module, components or leads can be damaged.
This includes the antistatic wrist strap, clothing, jewelry, cables,
components on other modules, and anything in the work area (such
as tools, manuals, or loose papers).

<REFERENCE>(xmp) Scalar Processor 3–25

Figure 3–9: Inserting the <REFERENCE>(xmp) Module in an XMI Card
Cage

msb-0219A-90

3–26 <REFERENCE>(VAX_mod_XXX) Service Manual

You must take special precautions when moving the <REFERENCE>(xmp)
module in or out of the XMI card cage.

1. Be sure, when inserting the module in or removing it from the XMI
card cage, that no part of the module comes in contact with another
module or a cable.

2. When you swap out a module, temporarily place it in an unused XMI
slot, if one is available, or place the module in an ESD box or on an
ESD mat before you install the new module.

An unused XMI slot is the best place to leave a module that is being
swapped out until it can be placed in the ESD box.

CAUTION: If you temporarily leave a module in an unused XMI slot,
be sure to remove the module before powering up the system.

If you place the module on an ESD mat, make sure the mat is on a
stable, uncluttered surface, with side 1 of the module facing up (the side
with the heat sinks). Do not put it on the top of the system cabinet. And
never slide the module across any surface. The leads on the components
are fragile and can be damaged by contact with fingers or any surface.

3. Hold the XMI card cage handle while removing or inserting the module.
If it is not held in place, the handle can spring down and damage the
module.

4. When inserting the module in the card cage, grasp it as shown in
Figure 3–9, being careful not to touch any 25 mil devices, and slide
it slowly and gently into the slot.

5. Do not attach the repair tag to the module.

Place the repair tag in the plastic bag attached to the bottom of the
ESD box. Allowing the repair tag to come in contact with the module
can cause damage to a component.

<REFERENCE>(xmp) Scalar Processor 3–27

3.11 How to Replace the Only Processor

When replacing the processor module in a single-processor
system, you must set a number of parameters. This ensures
a correct EEPROM image in the new processor.

CAUTION: Special care must be taken when handling a <REFERENCE>(xmp)
module. Review Section 3.10 before replacing this module.

Example 3–3: Replacing a Single Processor

#123456789 0123456789 0123456789 0123456789 012345#

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . . M M P TYP 6
o + . . . + + + STF 7
. B BPD
. + ETF 7
. B BPD

. + + + . + . . + . XBI E +

. A2 A1 ILV

. 64 64 128 Mb

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 SN = 0000000000

?004F System serial number has not been initialized

>>> SET TERMINAL/SPEED:9600 9
>>> SET LANGUAGE ENGLISH
>>> ESC DELSET POWER
Power system>>> C
Power system read as: C

Update EEPROM? (Y or N) >>> Y
?011B Power system identification updated
>>> ESC DELSET SYSTEM SERIAL
System Serial Number>>> SG01234567
Serial number read as: SG01234567

Update EEPROM? (Y or N) >>> Y
?0073 System serial number updated

>>> BOOT 12

3–28 <REFERENCE>(VAX_mod_XXX) Service Manual

1. Turn the upper key switch to the Off position (0).

2. Set the console terminal baud rate to 1200.

CAUTION: See Section 3.10 for <REFERENCE>(xmp) module handling
procedures.

3. Remove the defective processor module and temporarily insert it in an
unused XMI slot or place it on an ESD mat.

4. Remove the new processor module from the ESD box and insert it in
the XMI card cage. Place the old processor module in the ESD box.

5. Turn the lower key switch to Halt. Turn the upper key switch to Enable.

6. Check the self-test display for the processor, indicated by a P on the
TYP line (usually in slot 1). See 6 in Example 3–3.

7. If the processor shows a plus sign (+) on both lines STF and ETF, it
passed self-test. See 7 .

8. Turn the lower key switch to Update.

9. Using the appropriate SET commands, enter the information displayed
by the SHOW FIELD command (see 9). This command should have
been issued at the end of the installation procedure, and a hard copy
of the output should have been saved in the Site Management Guide.
If it was not, you will need to research this information. The SHOW
FIELD output for this system is shown here:

>>> SHOW FIELD
Saved boot specifications:

Console terminal parameters:
/SCOPE /SPEED: 9600 /BREAK

Console error message language mode:
English

Memory configuration:
F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

. A2 A1 ILV

. 64 64 128 Mb
/INTERLEAVE:DEFAULT

Power system: C

System serial number: SG01234567

10. Install any console patches. See Section 3.14.

11. Turn the lower key switch to the Auto Start position.

12. Boot the operating system. See 12 .

<REFERENCE>(xmp) Scalar Processor 3–29

3.12 How to Replace the Boot Processor

The boot processor is indicated by the letter B on the self-
test BPD line (slot 1 in Example 3–4). If they have the same
version ROMs, you can update the new processor’s EEPROM
from one of the secondaries.

CAUTION: Special care must be taken when handling a <REFERENCE>(xmp)
module. Review Section 3.10 before replacing this module.

Example 3–4: Replacing Boot Processor

#123456789 0123456789 0123456789 0123456789 012345#

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . . M M M M . P P P P TYP 6
o + . . . + + + + . + + + + STF 7
. E D E B BPD
. + + + + ETF 7
. E D E B BPD

. + + + . + . . + . XBI E +

. A4 A3 A2 A1 ILV

. 64 64 64 64 256 Mb

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 SN = SG01234567

>>> SET CPU/NOPRIMARY 1 10
>>> SHOW CPU
Current Primary: 1
/NOENABLED-
/NOVECTOR_ENABLED-
/NOPRIMARY- 1

>>> SET CPU 2 11
>>> SHOW CPU
Current Primary: 2
/NOENABLED-
/NOVECTOR_ENABLED-
/NOPRIMARY- 1

>>> UPDATE 1 13

1. Turn the upper key switch straight up to the Off position (0).

CAUTION: See Section 3.10 for <REFERENCE>(xmp) module handling
procedures.

3–30 <REFERENCE>(VAX_mod_XXX) Service Manual

2. Remove the defective processor module and temporarily insert it in an
unused XMI slot or set it on a static pad.

3. Remove the new processor module from the ESD box and insert it in
the XMI card cage. Place the old processor module in the ESD box.

4. Turn the lower key switch to Halt.

5. Turn the upper key switch to Enable.

6. Check the self-test display for the new processor, indicated by a P on
the TYP line (usually in slot 1). See 6 in Example 3–4.

7. If the processor shows a plus sign (+) on both lines STF and ETF, it
passed self-test. See 7 .

8. You will see the following message:

?0050 System serial number not initialized on primary processor

9. If you see the error message ?0052 (ROM revision mismatch. Secondary
processor has revision x.xx.), the new module will not be able to function
as the boot processor. If you don’t see this error message, go to Step 11.

10. Make the new module ineligible to be boot processor—use the console
command SET CPU/NOPRIMARY. See 10 . The new processor will
operate as a secondary processor without problems, but you may
continue to see error messages ?002D, ?0052, and ?0054 when the
system is powered on or booted.

Go to Step 15.

11. Make one of the secondary processors the boot processor temporarily,
because the UPDATE command copies the boot processor’s EEPROM.
Then you can update the new processor. This command immediately
makes the processor at node 2 the boot processor: SET CPU 2. See 11 .

12. Turn the lower key switch to Update.

13. Now update the EEPROM of the new module from the temporary boot
processor, using the UPDATE command. See 13 . UPDATE takes several
minutes to complete.

14. Turn the lower key switch to the Auto Start position.

15. Press the Restart button.

<REFERENCE>(xmp) Scalar Processor 3–31

3.13 How to Add a New Processor or Replace a
Secondary Processor

Add a new secondary processor in a slot to the left of the
boot processor.

CAUTION: Special care must be taken when handling a <REFERENCE>(xmp)
module. Review Section 3.10 before replacing this module.

Example 3–5: Adding or Replacing Secondary Processor

#123456789 0123456789 0123456789 0123456789 012345#

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . . M M M M . P P P P TYP 5
+ + . . . + + + + . + + + + STF 6
. E D E B BPD
. + + + + ETF 6
. E D E B BPD

. A4 A3 A2 A1 ILV

. 64 64 64 64 256 Mb

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 9 SN = SG01234567

>>> SET CPU/NOPRIMARY 3 8
>>> SHOW CPU
Current Primary: 1
/NOENABLED-
/NOVECTOR_ENABLED-
/NOPRIMARY- 3

>>> UPDATE 3 11

1. Turn the upper key switch straight up to the Off position (0).

CAUTION: You must wear an antistatic wrist strap attached to the
cabinet when you handle any modules.

2. Either remove the defective secondary processor module, or find an
empty slot where you can add the new processor. If you are removing
a defective module, temporarily insert it in an unused slot.

3. Remove the new processor module from the ESD box and insert it in
the XMI card cage. If you are replacing a processor module, place the
old module in the ESD box.

3–32 <REFERENCE>(VAX_mod_XXX) Service Manual

4. Turn the lower key switch to Halt and the upper key switch to Enable.

5. Check the self-test display for the new processor, indicated by a P on
the TYP line (in this example: slot 3). See 5 in Example 3–5.)

6. If the processor shows a plus sign (+) on both lines STF and ETF, it
passed self-test. See 6 .

7. If you see the error messages ?002D and ?0052, the new module will
not be able to function as the boot processor. If you do not see these
error messages, go to Step 9.

8. Make the new module ineligible to be boot processor—use the console
command SET CPU/NOPRIMARY. See 8 . The new processor will
operate as a secondary processor without problems, but you may
continue to see error messages ?002D, ?0052, and ?0054 when the
system is powered on or booted.

Go to Step 13.

9. If you see error messages ?002D and ?0054, the EEPROM revision
levels of the boot processor and new secondary processor do not match.
Compare the boot processor’s EEPROM revision numbers (see 9) to the
numbers given in error message ?0054.

If the new secondary processor has a higher revision number than the
boot processor, patch the boot processor’s EEPROM (see Section 3.14).

10. Turn the lower key switch to Update.

11. Now update the EEPROM of the new module. See 11 . UPDATE takes
several minutes to complete.

12. Turn the lower key switch to the Auto Start position.

13. Press the Restart button.

<REFERENCE>(xmp) Scalar Processor 3–33

3.14 Using EVUCA to Patch the EEPROM

Use the EVUCA utility to patch the EEPROM in systems that
have a CD server. EVUCA is run under VAX/DS in standalone
mode.

Example 3–6: Patching the EEPROM with EVUCA

>>> BOOT /XMI:A /R5:110 EX0 1
[Self-test display prints]

Filename: ISL_LVAX
Follow Prompts

[Diagnostic Supervisor Banner]

DS> LOAD EVUCA 2
DS> ATTACH KA65A HUB KA0 1
DS> ATTACH KA65A HUB KA1 2
DS> ATTACH KA65A HUB KA2 5
DS> ATTACH KA65A HUB KA3 6
DS> SELECT ALL
DS> SET TRACE
DS> START

.. Program: EVUCA - VAX 6000 EEPROM Update Utility, revision 0.5, 5
tests,
Testing: _KA0 _KA1 _KA2 _KA3
Booting secondary CPU 02.
Booting secondary CPU 05.
Booting secondary CPU 06.
Test 2: Load data from media
Data file? <EMUCA.BIN> 3
Searching for data file...
Data file loaded.
Looking for patch for CPU 01 - ROM 03.00 EEPROM 03.00
No patch image was found for CPU 01 - ROM 03.00 EEPROM 03.00

.

.

.
Looking for patch for CPU 05 - ROM 02.00 EEPROM 02.00
Patch image is revision 02.10

Do you really want to apply this patch [(No), Yes] YES 4

Test 3: Determine Typecodes Updated
Test 4: Update EEPROM data
Getting selectable boot primitives for CPU 05, ROM 02.00

[Boot primitives identified]
[I/O device types identified]

Example 3–6 Cont’d on next page

3–34 <REFERENCE>(VAX_mod_XXX) Service Manual

Example 3–6 (Cont.): Patching the EEPROM with EVUCA

Available boot primitive space is 27F4

Please enter what boot primitive to delete by number. [1-3(D)] 2 5
Boot primitives fit into allotted EEPROM area.
Secondary cpus are being updated, please wait a maximum of 20 seconds.
Updating CPU 05
Test 5: Show Boot primitives

.

.

.
The primary cpu was not updated. 6
Secondary CPU 05, was successfully updated.

.. End of run, 0 errors detected, pass count is 1,
time is 24-SEP-1990 17:06:57.88

DS>

1. Load the latest diagnostic CD in the CD drive. The CD is labled 6000_
DIAG_*. (* is the revision.) Then boot VAX/DS (see 1 in Example 3–6).

2. Load EVUCA, attach the processors, and run EVUCA (see 2).

3. Test 2 of EVUCA selects the correct patch file for the system (see 3).
Press Return .

4. When EVUCA finds a patch, it asks if it should be applied (see 4).

5. Test 4 creates a new updated EEPROM image in memory. Several boot
primitives are available; they reside in either ROM or the EEPROM.
Since all primitives may not fit, the user may be prompted to choose
those primitives not wanted (see 5). When enough space is available,
EVUCA continues.

6. EVUCA then prints a list of boot primitives for each processor and,
if necessary, updates EEPROMs. It then prints a status message
indicating which EEPROMs it updated (see 6).

<REFERENCE>(xmp) Scalar Processor 3–35

3.15 <REFERENCE>(xmp) Registers

The <REFERENCE>(xmp) registers consist of the proces-
sor status longword, internal processor registers, <REFER-
ENCE>(xmp) registers in <REFERENCE>(XMI) private space,
<REFERENCE>(XMI) required registers, and 16 general pur-
pose registers.

Table 3–6: <REFERENCE>(xmp) Internal Processor Registers

Register Mnemonic Address Type Class

Kernel Stack Pointer KSP IPR0 R/W 1

Executive Stack Pointer ESP IPR1 R/W 1

Supervisor Stack Pointer SSP IPR2 R/W 1

User Stack Pointer USP IPR3 R/W 1

Interrupt Stack Pointer ISP IPR4 R/W 1

Reserved IPR5–IPR7 3

P0 Base P0BR IPR8 R/W 1

P0 Length P0LR IPR9 R/W 1

P1 Base P1BR IPR10 R/W 1

P1 Length P1LR IPR11 R/W 1

Key to Types:

R–Read
W–Write
R/W–Read/write

Key to Classes:

1–Implemented by the <REFERENCE>(xmp) (as specified in the VAX Architecture Refer-
ence Manual).
2–Implemented uniquely by the <REFERENCE>(xmp).
3–Not implemented. Read as zero; NOP on write.
4–Access not allowed; accesses result in a reserved operand fault.
5–Accessible, but not fully implemented; accesses yield UNPREDICTABLE results.
6–Implemented by the FV64A vector module.
I–The register is initialized on <REFERENCE>(xmp) reset (power-up, system re-
set, and node reset).

3–36 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 3–6 (Cont.): <REFERENCE>(xmp) Internal Processor Reg-
isters

Register Mnemonic Address Type Class
System Base SBR IPR12 R/W 1

System Length SLR IPR13 R/W 1

Reserved IPR14–IPR15 3

Process Control Block Base PCBB IPR16 R/W 1

System Control Block Base SCBB IPR17 R/W 1

Interrupt Priority Level IPL IPR18 R/W 1 I

Reserved IPR19

Software Interrupt Request SIRR IPR20 W 1

Software Interrupt Summary SISR IPR21 R/W 1 I

Reserved IPR22–IPR23 3

Interval Clock Control and
Status

ICCS IPR24 R/W 2 I

Reserved IPR25–IPR26 3

Time-of-Year Clock TODR IPR27 R/W 1

Reserved IPR28–IPR31

Console Receiver Control/Status RXCS IPR32 R/W 2 I

Console Receiver Data Buffer RXDB IPR33 R 2 I

Console Transmitter Control/Status TXCS IPR34 R/W 2 I

Console Transmitter Data Buffer TXDB IPR35 W 2 I

Reserved IPR36–IPR37 3

Machine Check Error Summary MCESR IPR38 W 2

Reserved IPR39 3

Accelerator Control and Status ACCS IPR40 R/W 2 I

Reserved IPR41 3

Console Saved PC SAVPC IPR42 R 2

Console Saved PSL SAVPSL IPR43 R 2

Reserved IPR44–IPR46 3

<REFERENCE>(xmp) Scalar Processor 3–37

Table 3–6 (Cont.): <REFERENCE>(xmp) Internal Processor Reg-
isters

Register Mnemonic Address Type Class
Translation Buffer Tag TBTAG IPR47 W 2

Reserved IPR48–IPR54 3

I/O Reset IORESET IPR55 W 2

Memory Management Enable MAPEN IPR56 R/W 1 I

Translation Buffer Invalidate
All

TBIA IPR57 W 1

Translation Buffer Invalidate
Single

TBIS IPR58 W 1

Translation Buffer Data TBDATA IPR59 W 2

Reserved IPR60–IPR61 3

System Identification SID IPR62 R 1

Translation Buffer Check TBCHK IPR63 W 1

Reserved IPR64–IPR111 3

Backup Cache Index BCIDX IPR112 R/W 2

Backup Cache Status BCSTS IPR113 R/W 2 I

Backup Cache Control BCCTL IPR114 R/W 2 I

Backup Cache Error Address BCERA IPR115 R 2

Backup Cache Tag Store BCBTS IPR116 R/W 2

Backup Cache Deallocate Tag BCEDET IPR117 W 2

Backup Cache Error Tag BCERT IPR118 R 2

Reserved IPR119–IPR122

Vector Interface Error Status VINTSR IPR123 R/W 2

Primary Cache Tag Store PCTAG IPR124 R/W 2

Primary Cache Index PCIDX IPR125 R/W 2

Primary Cache Error Address PCERR IPR126 R/W 2

Primary Cache Status PCSTS IPR127 R/W 2 I

Reserved IPR128–IPR143 3

Vector Processor Status VPSR IPR144 R/W 6

3–38 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 3–6 (Cont.): <REFERENCE>(xmp) Internal Processor Reg-
isters

Register Mnemonic Address Type Class
Vector Arithmetic Exception VAER IPR145 R 6

Vector Memory Activity Check VMAC IPR146 R 6

Vector Translation Buffer
Invalidate All

VTBIA IPR147 W 6

Reserved IPR148–IPR156 5

Vector Indirect Register Address VIADR IPR157 R/W 6

Vector Indirect Data Low VIDLO IPR158 R/W 6

Vector Indirect Data High VIDHI IPR159 R/W 6

The IPRs are explicitly accessible to software only by the Move To Processor
Register (MTPR) and Move From Processor Register (MFPR) instructions,
which require kernel mode privileges. From the console, EXAMINE/I and
DEPOSIT/I commands read and write the IPRs.

Table 3–7: <REFERENCE>(XMI) Registers for the <REFERENCE>(xmp)

Register Mnemonic Address

XMI Device XDEV BB + 00

XMI Bus Error XBER BB + 04

XMI Failing Address XFADR BB + 08

XMI General Purpose XGPR BB + 0C

Node-Specific Control and Status NSCSR BB + 1C

XMI Control 0 XCR0 BB + 24

XMI Failing Address Extension XFAER BB + 2C

XMI Bus Error Extension XBEER BB + 34

Writeback Failing Address 0 WFADR0 BB + 40

Writeback Failing Address 1 WFADR1 BB + 44

Note: "BB" = base address of an XMI node, which is the address of the
first location in nodespace.

<REFERENCE>(xmp) Scalar Processor 3–39

Table 3–8: <REFERENCE>(xmp) Registers in <REFERENCE>(XMI)
Private Space

Register Mnemonic Address

Control Register 0 CREG0 none

Control Register 1 CREG1 none

Control Register Write Enable CREGWE E000 0000

Console ROM (halt protected) E004 0000 to E009 FFFF

Console EEPROM (halt protected) E00A 0000 to E00A 7FFF

Console ROM (not halt protected) E00C 0000 to E011 FFFF

Console EEPROM (not halt
protected)

E012 0000 to E012 7FFF

MSSC Base Address SSCBAR E014 0000

MSSC Configuration SSCCNR E014 0010

MSSC Bus Timeout Control SSCBTR E014 0020

MSSC Output Port OPORT E014 0030

MSSC Input Port IPORT E014 0040

Control Register Base Address CRBADR E014 0130

Control Register Address Decode Mask CRADMR E014 0134

EEPROM Base Address EEBADR E014 0140

EEPROM Address Decode Mask EEADMR E014 0144

Timer 0 Control TCR0 E014 0160

Timer 0 Interval TIR0 E014 0164

Timer 0 Next Interval TNIR0 E014 0168

Timer 0 Interrupt Vector TIVR0 E014 016C

Timer 1 Control TCR1 E014 0170

Timer 1 Interval TIR1 E014 0174

Timer 1 Next Interval TNIR1 E014 0178

Timer 1 Interrupt Vector TIVR1 E014 017C

MSSC Interval Counter SSCICR E014 01F8

MSSC Internal RAM E014 0400 to E014 07FF

3–40 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 3–8 (Cont.): <REFERENCE>(xmp) Registers in <REFER-
ENCE>(XMI) Private Space

Register Mnemonic Address

MAXMI DAL Diagnostic DCSR E100 0000

MAXMI Failing DAL 0 FDAL0 E100 0020

MAXMI Failing DAL 1 FDAL0 E100 0028

MAXMI Failing DAL 2 FDAL0 E100 0030

MAXMI Failing DAL 3 FDAL0 E100 0038

MAXMI RAM E100 8000 to E100 9FFF

IP IVINTR Generation IPINTR E101 0000 to E101 FFFF

WE IVINTR Generation WEINTR E102 0000 to E102 FFFF

<REFERENCE>(xmp) Scalar Processor 3–41

Chapter 4

FV64A Vector Processor

This chapter contains the following sections:

• <REFERENCE>(xrv) Physical Description and Specifications

• <REFERENCE>(xmp)/FV64A Coprocessors

• Configuration Rules

• Functional Description

• Self-Test Results: Console Display and Self-Test LED

• Self-Test Results: Scalar XGPR Register

• ROM-Based Diagnostics

• VAX/DS Diagnostics

• Machine Checks

• Vector Console Commands

• FV64A Handling Procedures

• How to Replace a Vector Module

• Vector Processor Registers

FV64A Vector Processor 4–1

4.1 <REFERENCE>(xrv) Physical Description and
Specifications

The <REFERENCE>(XRV) is a vector processor used with
the <REFERENCE>(xmp) scalar processor. The module
designation is T2017. The two processor modules are
connected with a VIB cable. Figure 4–1 shows side 1 of the
module, and Figure 4–2 shows side 2.

Figure 4–1: <REFERENCE>(XRV) Module (Side 1)

CACHE CONTROL AND
CACHE ADDRESS BUFFERS

ZIF
CONNECTOR
SEGMENTS

XMI
CORNER

msb-0319-89

DUPLICATE
TAG

STORE
LOAD/STORE
CHIP

SELF-TEST
LED

VERSE 0VERSE 1VERSE 2FAVOR 3

VIB
CONNECTOR

OSCILLATOR

CLOCK
CHIP

VECTL
CHIP

CD BUS
CACHE

INTERFACE

+3.3V REGULATOR

CACHE
TAG

STORE

4–2 <REFERENCE>(VAX_mod_XXX) Service Manual

Because the vector module has components on side 2,
only memory modules can be installed next to side 2 (see
Figure 4–2).

Figure 4–2: <REFERENCE>(XRV) Module (Side 2)

CACHE CONTROL AND
CACHE ADDRESS BUFFERS

ZIF
CONNECTOR

SEGMENTS

XMI
CORNER

msb-0320-89

DUPLICATE
TAG

STORE

VIB
CONNECTOR

CD BUS
CACHE
INTERFACE

FAVOR 0 FAVOR 1 FAVOR 2 VERSE 3

MODULE
REVISION
EEPROM

CACHE
TAG
STORE

FV64A Vector Processor 4–3

4.2 <REFERENCE>(xmp)/FV64A Coprocessors

The <REFERENCE>(XX) uses a high-speed system bus,
called the <REFERENCE>(XMI) bus, to interconnect its
processors and its memory modules. In Figure 4–3 all I/O
devices connect to the VAXBI bus. The <REFERENCE>(XX)
supports multiprocessing with up to six scalar processors or
one or two scalar/vector pairs.

Figure 4–3: VAX 6000 Model 500 Vector Processing System

MEMORY

msb-0526A-90

SCALAR
CPU

VECTOR
CPU

VECTOR
CPU

SCALAR
CPU

VIB

XMI

DWMBB
I/O

INTERFACE

VIB

MEMORYMEMORY

4–4 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 4–1: <REFERENCE>(XRV) Specifications

Parameter Description

Module Number: T2017

Dimensions: 23.3 cm (9.2") H x 0.23 cm (0.093") W x 28.0 cm (11.0") D

Temperature:

Storage Range -40oC to 66oC (-40oF to 151oF)

Operating Range 10oC to 40oC (41oF to 122oF)

Relative Humidity:

Storage 10% to 95% noncondensing

Operating 10% to 95% noncondensing

Altitude:

Storage Up to 4.8 km (16,000 ft)

Operating Up to 2.4 km (8000 ft)

Current: 14A at +5V

Power: 70W

Cables: VIB cable, 17-02240-03

Diagnostics: ROM-based diagnostics 0, 1, and 5
VAX/DS diagnostics, see Section 4.8

The FV64A vector processor is an integrated vector processor; that is, the
vector processor module performs as a coprocessor that is tightly coupled
with a host scalar processor. The two processors are physically connected
by an intermodule cable, the VIB. The scalar processor is specifically
designed to support its vector coprocessor, and the vector instruction set is
implemented as part of the host native instruction set. Both the scalar and
vector processors are on the XMI bus, and they share a common memory.

A <REFERENCE>(vax_mod_xxx) system can have one or two scalar/vector
pairs. If the system has only one pair, it can also have additional scalar
processors. For optimal performance, two memory modules of the same
size are required for one scalar/vector pair, and four memory modules are
required for two scalar/vector pairs.

FV64A Vector Processor 4–5

4.3 <REFERENCE>(xrv) Configuration Rules

A vector processor must be installed to the left of its
companion scalar processor. An intermodule cable connects
the two modules. A memory module or an empty slot must be
to the left of the vector processor. Any other configuration
may damage the vector module.

Figure 4–4: Scalar/Vector Configurations

M V P M V P M V P P P P

msb-0373-90

SLOT 1 SLOT 1

KEY:
M
V
P

= MEMORY
= VECTOR PROCESSOR
= SCALAR PROCESSOR

TWO SCALAR/VECTOR PAIRS ONE SCALAR/VECTOR PAIR

4–6 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 4–2 shows the maximum number of scalar and vector processors
supported in a <REFERENCE>(vax_mod_xxx) system.

Table 4–2: Processor Module Combinations

Maximum
Scalar
Processors

Maximum
Vector
Processors

Configuration
(Slot 1 at Right)

6 0 P P P P P P

4 1 M V P P P P

2 2 M V P M V P

Figure 4–4 shows system configurations for a <REFERENCE>(vax_mod_
xxx) system with one or two vector processors. The left side of the figure
indicates the configuration for two scalar/vector pairs with a memory
module in the slot to the left of the vector processor. The right side of the
figure shows a single scalar/vector pair with additional scalar processors.

Processor modules are configured after I/O adapters. (I/O adapters are
installed, from left to right, in slots E to A and then 5 to 1.) Processors
are configured from right to left, filling available slots starting with slot 1.
Memories are configured last, from left to right, filling available slots from
9 to 1. However, in a system with a vector processor, the modules should
be installed as shown in Figure 4–4. These configurations must be followed
to avoid damage to the modules and for performance reasons:

• Because the <REFERENCE>(xrv) module has VLSI components with
heat sinks protruding from both sides, only a memory module,
with its low components, can be placed next to side 2 of the
<REFERENCE>(xrv) module.

• In a system with one scalar/vector pair and one or more additional
scalar processors, the scalar processor of the pair should be prevented
from being the boot processor for performance reasons.

If the scalar/vector pair is to the left of other scalar processors, then the
processor of the scalar/vector pair will not become the boot processor
unless other processors fail self-test or have been disabled with the
SET CPU console command. Alternatively, you can issue the SET
CPU/NOPRIMARY command and give the node number of the attached
scalar processor that you do not want to be the boot processor.

FV64A Vector Processor 4–7

4.4 <REFERENCE>(xrv) Functional Description

Figure 4–5 shows the three main functional units of the
<REFERENCE>(XRV) processor: the vector control unit, the
arithmetic unit, and the load/store unit, which includes the
XMI interface and cache control.

Figure 4–5: <REFERENCE>(XRV) Block Diagram

msb-0527-90

XMI Bus

LOAD/STORE UNIT

VECTOR CONTROL UNIT

VIB
Cable

Cache Data Bus
(CD Bus)

To Scalar Processor

VECTL Chip

Load/Store Chip

ARITHMETIC UNIT

Vector
Register
File Chips

(Verse)

Vector
FPU Chips

(Favor)
Cache and XMI Interface

4–8 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(xrv) is an integrated vector processor, tightly coupled
to the <REFERENCE>(xmp) scalar processor. The vector instructions are
issued from the scalar processor, and the vector processor then dispatches
them internally. All communication between the scalar and vector modules
takes place across the intermodule VIB cable. All communication with
memory is over the XMI bus.

The vector processor has 16 vector data registers, each 64 quadwords long.
It also has a 1-megabyte direct-mapped cache and a 136-entry translation
buffer.

The <REFERENCE>(xrv) is an XMI module with the standard XMI
Corner. The module has a cable connector at the rear edge of the module
that connects to the rear edge of a <REFERENCE>(xmp) module. The
instructions are issued over the VIB bus and pass to the VECTL chip,
which then controls the operations on the module. It passes instructions
to the load/store unit over the CD bus. The load/store unit then issues
XMI memory transactions. The VECTL chip also issues instructions to the
four pairs of Verse and Favor chips that make up the arithmetic unit. The
vector data registers are in the Verse chips. The Favor chips perform the
arithmetic operations on the data held in the Verse chips.

The vector processor module uses the standard XMI Corner interface, but it
functions only as an XMI commander. The vector processor does not issue
transactions to I/O space, nor does it respond to XMI transactions directed
to it. All error reporting is done by the scalar processor.

FV64A Vector Processor 4–9

4.5 Self-Test Results: Console Display and
Self-Test LED

You can check the vector processor self-test results in three
ways: the self-test display if the <REFERENCE>(xrv) module
is attached to the <REFERENCE>(xmp) module in node 1,
the yellow self-test LED on the <REFERENCE>(xrv) module,
and the contents of the XGPR register of the attached
<REFERENCE>(xmp) module. If self-test passes, the large
yellow LED on the <REFERENCE>(xrv) module lights. If the
<REFERENCE>(xrv) module fails self-test, the light remains
unlit.

Example 4–1: Self-Test Results

#123456789 0123456789 0123456789 0123456789 0123456789 01234567# 1

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . . M M . M V- -P M V- -P TYP 2
+ + . . . + + . + + + + + + STF 3
. D E . E B BPD 4
. + + + + + ETF 5
. D E . E B BPD 6

. A4 A3 . A2 . . A1 . . ILV

. 32 32 . 32 . . 32 . . 128Mb

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 SN = SG01234567 7
>>>

Example 4–1 shows the self-test results for a system with two scalar/vector
pairs. Each <REFERENCE>(xmp) runs its self-test and then tests any
attached vector processor.

1 The first line of the self-test printout is the progress trace. This line
shows the self-test progress of the <REFERENCE>(xmp) in node 1 (the
baud rate must be at least 1200). The numbers correspond to tests in
the system self-test. If there is an attached vector processor module
and self-test passes, the line prints as in Example 4–1 ending with #.
If there is no attached vector processor, testing stops after the first 45
tests. If a test fails, the failing test number is the last one printed. For
example, if test 14 fails, the line is printed as follows:

#123456789 01234

4–10 <REFERENCE>(VAX_mod_XXX) Service Manual

2 This line indicates the type (TYP) of module at each <REFERENCE>(XMI)
node. Scalar processors are type P, and vector processors are type V. The
dashes indicate that the vector processors are attached to the adjacent
scalar processors.

3 This line shows self-test fail status (STF), which are the results of on-
board self-test. Possible values for processors are:

+ (pass)
– (fail)

All processors passed self-test in this example.

4 The BPD line indicates boot processor designation and whether vector
processors are enabled or disabled. When the system completes on-
board self-test, the scalar processor with the lowest XMI ID number
that passes self-test and that is eligible is selected as boot processor —
in this example, the processor at node 1.

The results on the BPD line indicate:

• The boot processor (B)

• Scalar processors eligible (E) or ineligible (D) to become the boot
processor

• Vector processors enabled (E) or disabled (D)

In this example the vector processor attached to the scalar processor
at node 4 has been disabled. A vector processor can be disabled by the
SET CPU/NOVECTOR_ENABLED command.

5 During extended test (ETF) all processors run additional tests, which
include reading and writing memory and using the cache. On line ETF,
results are reported for each processor in the same way as on line STF—
a plus sign indicates that extended test passed and a minus sign that
extended test failed.

6 Another BPD line is displayed, because it is possible for a different CPU
to be designated boot processor if the processor first designated as the
boot processor fails the extended testing.

7 The last line of the self-test display shows the ROM and EEPROM
version numbers and the system serial number.

FV64A Vector Processor 4–11

4.6 Self-Test Results: Scalar XGPR Register

You can check self-test results in the self-test display or
in the XGPR register. The failing test number is left
in the upper byte of the XGPR register of the failing
<REFERENCE>(xmp) module.

Figure 4–6: XGPR Register

3
1

2
4

2
3

2
2

2
1

2
0

1
9

1
6

1
5 0

Reserved

Failing Test Number
msb−p371−90

Vector Node ID
Vector Enabled
Vector Extended Test Failed
Vector Self−Test Failed
Vector Present

Example 4–2: XGPR Register After Power-Up Test Failure

>>> E/P/L E188000C ! Examine the longword at physical address
! E188000C, the address of the XGPR

E188000C 45F0xxxx ! register of the processor in slot 1.
! The result indicates that test 45 of
! self-test failed (Load/Store Cache test).

4–12 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure 4–6 shows the XGPR register of the scalar processor. Bit <23>, when
set, indicates that there is a vector processor attached to this processor. Bits
<22:16> give status on an attached vector processor.

The failing test number is derived from the upper byte (bits <31:24>) of
the longword returned. For self-test, the upper byte contains the failing
test number. If CPU/memory interaction test fails, this byte contains the
failing test number plus 60. If a multiprocessor test fails, this byte contains
the failing test number plus 90. All numbers are expressed in binary-coded
decimal (BCD). See Table 4–3.

As shown in Example 4–2, you can examine the XGPR register of the failing
<REFERENCE>(xmp) module to determine the failing test number. See
Table 2–5 to determine the base address (BB) of the <REFERENCE>(xmp)
processor’s node. Then calculate the address of the XGPR register by adding
0C (hex) to the base address.

Table 4–3: Interpreting XGPR Failing Test Numbers

Failing Diagnostic
XGPR <31:24>
(BCD)

Test
Numbers

Self-test 1–57 1–57

CPU/memory interaction test 61–82 1–22

Additional memory test 83–89 3

Multiprocessor tests 91–97 1–7

FV64A Vector Processor 4–13

4.7 ROM-Based Diagnostics

The ROM-based diagnostics that test the FV64A are listed
in Table 4–4. See Sections 2.3 and 2.4 for instructions on
running RBDs.

Table 4–4: FV64A ROM-Based Diagnostics

Diagnostic Name

0 KA65A and FV64A self-test

1 KA65A and FV64A CPU/memory interaction tests

5 KA65A and FV64A multiprocessor interaction tests

4–14 <REFERENCE>(VAX_mod_XXX) Service Manual

The KA65A diagnostic ROM contains six diagnostics, three of which test
the FV64A. (The other three test the KA65A cache, the DWMBB I/O
adapter, and the MS65A memory.) You run these diagnostics using the boot
processor’s RBD monitor program described in Section 2.3. Descriptions of
these diagnostics are in Section 2.4.

FV64A Vector Processor 4–15

4.8 VAX/DS Diagnostics

The <REFERENCE>(XRv) diagnostics that run under the
VAX Diagnostic Supervisor (VAX/DS) are listed in Table 4–5.
Example 4–3 lists VAX/DS commands used in testing vector
processors. See Section 2.5 for instructions on running the
supervisor.

Table 4–5: <REFERENCE>(XRV) VAX/DS Diagnostics

Program Description

EVKAG VAX Vector Instruction Exerciser, Part 1
(1 1/2 min—quick)
(16 min—default)

EVKAH VAX Vector Instruction Exerciser, Part 2
(1 min—quick)
(18 min—default)

Example 4–3: VAX/DS Commands for Testing Vector Processors

DS> SET QUICK ! Abbreviated version of the VAX Vector
! Instruction Exerciser will be run.

DS> DESELECT KA1 ! Removes the second scalar/vector pair
! from testing.

DS> RUN EVKAG ! Part 1 of VAX Vector Instruction Exerciser.
DS> RUN EVKAH ! Part 2.

DS> BOOT n ! If more than one vector, make the scalar
DS> DESELECT KA0 ! processor of the second scalar/vector pair
DS> SELECT KA1 ! the boot processor. Run EVKAG and EVKAH

! on the second vector processor.
DS> RUN EVKAG ! Restore original boot processor.
DS> RUN EVKAH
DS> BOOT n
DS> EXIT

4–16 <REFERENCE>(VAX_mod_XXX) Service Manual

4.9 Machine Checks

A machine check is an exception that indicates a processor-
detected internal error. Figure 4–7 and Table 4–6 show these
parameters. The <REFERENCE>(xrv) machine check parse
tree appears in Appendix D along with parse trees for hard
and soft error interrupts and disable faults.

Figure 4–7: The Stack in Response to a Machine Check

Table 4–6: <REFERENCE>(xrv) Machine Check Parameters

Parameter
Value
(hex) Description

Machine check code
(SP+4)

14 Vector module error

Machine checks are taken regardless of the current IPL. If the machine
check exception vector bits (<1:0>) are not both one, the operation of the
processor is undefined. The exception is taken on the interrupt stack and
the IPL is raised to 1F (hex). See Table 3–4 for the complete list of machine
check codes.

FV64A Vector Processor 4–17

4.10 Vector Console Commands

Table 3–5 gives the console commands specific to the vector
processor.

Table 4–7: Vector Console Commands

Command Function

DEPOSIT Stores data in a specified address. Additional ad-
dresses can be VMR, VCR, and VLR (for Vector Mask Reg-
ister, Vector Count Register, and Vector Length Regis-
ter).

/M Defines the address space as a vector indirect register; ac-
cesses addresses 400 and higher.

/Q Quadword is the default data size for vector registers (ex-
cept for VCR and VLR).

/VE Defines the address space as the vector register set.

EXAMINE Displays the contents of a specified address. Additional ad-
dresses can be VMR, VCR, and VLR (for Vector Mask Reg-
ister, Vector Count Register, and Vector Length Regis-
ter).

/M Defines the address space as a vector indirect register; ac-
cesses addresses 400 and higher.

/Q Quadword is the default data size for vector registers (ex-
cept for VCR and VLR).

/VE Defines the address space as the vector register set.

SET CPU Specifies attributes of processors, such as eligibility to be-
come the boot processor or whether a vector processor is en-
abled.

/NOVECTOR_ENABLED Prevents a vector module from being recognized in the sys-
tem configuration.

/VECTOR_ENABLED Specifies that a vector module will be recognized in the sys-
tem configuration; the default.

4–18 <REFERENCE>(VAX_mod_XXX) Service Manual

DEPOSIT Examples

1. >>> DEPOSIT/VE V12 0 ! Deposits zero into all 64 elements
! of vector register V12.

2. >>> DEPOSIT V6:2C/n:2 0 ! Deposits zero into V6 beginning at
! element 2C (hex) and also in the next
! two elements.

3. >>> DEPOSIT VLR 1 ! Deposits one in the Vector Length
! Register.

4. >>> DEPOSIT/Q/P 200 FFFFFFFF45370201
! Deposits FFFFFFFF45370201, a quadword
! of data into physical memory at address
! 200.

5. >>> DEPOSIT/M 440 0 ! Deposits zeros to vector indirect
! register with address 440 (hex).

FV64A Vector Processor 4–19

EXAMINE Examples

1. >>> EXAMINE VLR ! Examines the Vector Length
! Register.

M 00000001 0E

2. >>> EXAMINE/Q/P 200 ! Examines the quadword in
! physical memory at address 200.

3. >>> EXAMINE/VE V12:2E ! Examines element 2E (hex)
! (which is 41 decimal) of vector
! data register V12.

4. >>> EXAMINE/M 440 ! Examines the vector indirect
! register at hex address 440.

M 440 FFFFFFFF 00000000 ! /M is used to access vector
! indirect registers.

4–20 <REFERENCE>(VAX_mod_XXX) Service Manual

5. >>> EXAMINE/VE V0 ! Examines vector register V0; system
! displays all 64 elements of register V0.

VE V00:00 00000000 00000002 VE V00:01 00000000 00000002
VE V00:02 00000000 00000002 VE V00:03 00000000 00000002
VE V00:04 00000000 00000002 VE V00:05 00000000 00000002
VE V00:06 00000000 00000002 VE V00:07 00000000 00000002
VE V00:08 00000000 00000002 VE V00:09 00000000 00000002
VE V00:0A 00000000 00000002 VE V00:0B 00000000 00000002
VE V00:0C 00000000 00000002 VE V00:0D 00000000 00000002
VE V00:0E 00000000 00000002 VE V00:0F 00000000 00000002
VE V00:10 00000000 00000002 VE V00:11 00000000 00000002
VE V00:12 00000000 00000002 VE V00:13 00000000 00000002
VE V00:14 00000000 00000002 VE V00:15 00000000 00000002
VE V00:16 00000000 00000002 VE V00:17 00000000 00000002
VE V00:18 00000000 00000002 VE V00:19 00000000 00000002
VE V00:1A 00000000 00000002 VE V00:1B 00000000 00000002
VE V00:1C 00000000 00000002 VE V00:1D 00000000 00000002
VE V00:1E 00000000 00000002 VE V00:1F 00000000 00000002
VE V00:20 00000000 00000002 VE V00:21 00000000 00000002
VE V00:22 00000000 00000002 VE V00:23 00000000 00000002
VE V00:24 00000000 00000002 VE V00:25 00000000 00000002
VE V00:26 00000000 00000002 VE V00:27 00000000 00000002
VE V00:28 00000000 00000002 VE V00:29 00000000 00000002
VE V00:2A 00000000 00000002 VE V00:2B 00000000 00000002
VE V00:2C 00000000 00000002 VE V00:2D 00000000 00000002
VE V00:2E 00000000 00000002 VE V00:2F 00000000 00000002
VE V00:30 00000000 00000002 VE V00:31 00000000 00000002
VE V00:32 00000000 00000002 VE V00:33 00000000 00000002
VE V00:34 00000000 00000002 VE V00:35 00000000 00000002
VE V00:36 00000000 00000002 VE V00:37 00000000 00000002
VE V00:38 00000000 00000002 VE V00:39 00000000 00000002
VE V00:3A 00000000 00000002 VE V00:3B 00000000 00000002
VE V00:3C 00000000 00000002 VE V00:3D 00000000 00000002
VE V00:3E 00000000 00000002 VE V00:3F 00000000 00000002

FV64A Vector Processor 4–21

4.11 <REFERENCE>(xrv) Handling Procedures

Handle the processor modules with care. The CMOS2
technology used on the later VAX 6000 series modules is
more vulnerable to static than past technology. Also, these
modules have 25 mil leads to the chips; these leads are very
small, close together, and easily bent.

Figure 4–8: Holding the <REFERENCE>(xrv) Module

msb-0228A-90

4–22 <REFERENCE>(VAX_mod_XXX) Service Manual

The later VAX 6000 series modules require careful handling. Prepare
yourself and the work area before handling these modules. Roll up your
sleeves and remove any jewelry. Figure 4–8 shows the proper way to hold
these modules.

Follow these handling procedures to avoid damaging the processor modules:

1. Always wear an antistatic wrist strap.

2. Before removing the module from its ESD box, place the box on a clean,
stable surface.

Be sure the box will not slide or fall. Never place the box on the floor.
And be sure no tools, papers, manuals, or anything else that might
damage the module is near it. Some components on this module can
be damaged by a 600-volt static charge; paper, for example, can carry
a charge of 1000 volts.

3. Hold the module only by the edges, as shown in Figure 4–8.

Do not hold the module so that your fingers touch any 25 mil devices,
leads, or XMI fingers. Be sure you do not bend the module as you are
holding it.

4. Be sure nothing touches the module surface or any of its components.

If anything touches the module, components or leads can be damaged.
This includes the antistatic wrist strap, clothing, jewelry, cables,
components on other modules, and anything in the work area (such
as tools, manuals, or loose papers).

FV64A Vector Processor 4–23

Figure 4–9: Inserting the <REFERENCE>(xrv) Module in an XMI Card
Cage

msb-0372-90

4–24 <REFERENCE>(VAX_mod_XXX) Service Manual

You must take special precautions when moving the processor modules in
or out of the XMI card cage.

1. Be sure, when inserting the module in or removing it from the XMI
card cage, that no part of the module comes in contact with another
module or a cable. The leads on the components are fragile and can be
damaged by contact with fingers or any surface.

2. When you swap out a module, place it in the correct ESD box before
you install the new module.

3. Hold the XMI card cage handle while removing or inserting the module.
If it is not held in place, the handle can spring down and damage the
module.

4. When inserting the module in the card cage, grasp it as shown in
Figure 4–9, being careful not to touch any 25 mil devices, and slide
it slowly and gently into the slot.

5. Do not attach the repair tag to the module.

Place the repair tag in the plastic bag attached to the bottom of the
ESD box. Allowing the repair tag to come in contact with the module
can cause damage to a component.

FV64A Vector Processor 4–25

4.12 How to Replace a Vector Module

If a vector module is defective, you can replace it with a
new one. If you install an additional one, see the complete
installation instructions in the VAX 6000 Series Upgrade
Manual.

Figure 4–10: Replacing a Vector Module in an XMI Card Cage

msb-0407-90

4–26 <REFERENCE>(VAX_mod_XXX) Service Manual

CAUTION: Special care must be taken when handling processor modules.
See Section 4.11 before replacing this module. Also review the configuration
rules in Section 4.3.

While removing or inserting a module in the XMI card cage, you must hold
the XMI card cage lever. Failure to do so may result in damage to the
module.

1. Turn the upper key switch straight up to the Off position (0).

2. Open the cabinet door and remove the plastic door in front of the XMI
card cage.

CAUTION: You must wear an antistatic wrist strap attached to the
cabinet when you handle any modules.

3. Disconnect the VIB cable (17-02240-03) from the vector module.

4. Remove the defective vector processor module.

5. Take the new vector processor module from the ESD box and insert it
in the XMI card cage. Place the defective module in the ESD box.

6. Attach the connecting VIB (vector interface bus) cable. The keyed end
of the cable attaches to the vector module.

7. Press the lever down to close the connector.

8. Replace the plastic door and shut the cabinet door.

9. Turn the lower key switch to Halt and the upper key switch to Enable.

10. Check the self-test display for the new vector processor, indicated by a
V on the TYP line.

11. If the processor shows a plus sign (+) on both lines STF and ETF, it
passed self-test.

FV64A Vector Processor 4–27

4.13 Vector Processor Registers

The <REFERENCE>(XRV) internal processor registers are
listed in Table 4–8. See Chapter 3 for the complete list of
IPR registers. The console program allows you to access the
vector registers. Software accesses the vector registers with
MTPR/MFPR and MTVP/MFVP instructions.

Table 4–8: <REFERENCE>(XRV) Internal Processor Registers

Register Mnemonic Address Type Class

Vector Interface Error Status VINTSR IPR123 R/W 1

Vector Processor Status VPSR IPR144 R/W 2

Vector Arithmetic Exception VAER IPR145 R 2

Vector Memory Activity Check VMAC IPR146 R 2

Vector Translation Buffer Invalidate All VTBIA IPR147 W 2

Vector Indirect Register Address VIADR IPR157 R/W 2

Vector Indirect Data Low VIDLO IPR158 R/W 2

Vector Indirect Data High VIDHI IPR159 R/W 2

Key to Types:

R–Read
W–Write
R/W–Read/write

Key to Classes:

1–Implemented by the <REFERENCE>(xmp) CPU module.
2–Implemented by the <REFERENCE>(XRV) vector module.

4–28 <REFERENCE>(VAX_mod_XXX) Service Manual

The IPRs listed in Table 4–8 are explicitly accessible to software only by
the Move To Processor Register (MTPR) and Move From Processor Register
(MFPR) instructions, which require kernel mode privileges. (The vector
indirect registers are also accessed with MTPR and MFPR instructions.
These registers are described in the System Technical User’s Guide.)

From the console, EXAMINE/I and DEPOSIT/I commands read and write
the IPRs. EXAMINE/M and DEPOSIT/M commands provide access to
the vector indirect registers above hex address 400. EXAMINE/VE and
DEPOSIT/VE provide access to the vector data registers.

Other instructions, the Move To/From Vector Processor (MTVP/MFVP)
instructions, are used by software to access the Vector Length, Vector
Count, and Vector Mask control registers. From the console, these registers
are specified as VLR, VCR, and VMR after DEPOSIT and EXAMINE
commands, with no qualifiers.

For more information on accessing the vector module registers, see the VAX
6000 Series Vector Processor Owner’s Manual.

FV64A Vector Processor 4–29

Chapter 5

MS65A Memory

This chapter discusses the <REFERENCE>(XMA) memory module.
Sections include:

• Physical Description

• Configuration Rules

• Specifications

• Functional Description

• Interleaving

• Console Commands for Interleaving

• Addressing

• Memory Self-Test

• Memory Self-Test Errors

• Control and Status Registers

MS65A Memory 5–1

5.1 MS65A Physical Description

The <REFERENCE>(XMA) memory module is a metal-oxide
semiconductor (MOS), dynamic random access memory
(DRAM), which provides up to 128 Mbytes of data storage.
The memory module is designed for use with the VAX 6000
through the XMI bus.

Figure 5–1: MS65A Module

EEPROM

ZIF
CONNECTOR
SEGMENTS

XMI
CORNER

msb-0454A-90

YELLOW
SELF-TEST

LED

GREEN
POWER

LED

MEMORY CONTROL
GATE ARRAY

DRAMS DRAMS

DRAMS

DATA
MUXs

DATA
MUXs

DRAM
CONTROL/ADDRESS

BUFFERS

BLOCK STATE
BUFFER

SMALL
RED
LED

5–2 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(XMA) memory module has the following features:

• The memory module contains MOS dynamic RAM (DRAM) arrays; a
CMOS memory control gate array that contains error correction code
(ECC) logic and control logic; an EEPROM storage element; and an
XMI interface known as the XMI Corner.

• Storage arrays are made up of two or four banks, either 155 or 299
DRAMs.

• ECC logic detects single-bit and double-bit errors and corrects single-bit
errors on 64-bit words.

• Memory self-test checks all RAMs, the data path, and control logic on
power-up.

• Quadwords, octawords, and hexwords can be read from or written to
memory.

• Memory is configured by the console program for 2-, 4-, 8-way or no
interleaving.

MS65A Memory 5–3

5.2 MS65A Configuration Rules

Figure 5–2 shows the order of placement of MS65A modules
in the XMI backplane.

Figure 5–2: MS65A Configuration

XMI CARD CAGE

E D C B A 9 8 7 6 5 4 3 2 1

msb-0133D-90

Memory Slots2 1

Memory modules are configured after I/O adapter and processor modules.
Install memory modules next to vector processors first, then install
additional memories as follows:

1 Install the first memory module in slot 9. Fill all available slots left to
right from slot 9 to slot 1.

2 Install any additional memory modules right to left in available slots
from slot A to slot E.

5–4 <REFERENCE>(VAX_mod_XXX) Service Manual

5.3 MS65A Specifications

Table 5–1 gives the <REFERENCE>(XMA) memory module
specifications.

Table 5–1: <REFERENCE>(XMA_TITLE) Specifications

Parameter Description

Module Number: T2053

Dimensions: 23.3 cm (9.2") H x 0.23 cm (0.093") W x 28.0 cm (11.0") D

Memory Size: MS65A-BA 32 Mbytes
MS65A-CA 64 Mbytes
MS65A-DA 128 Mbytes

Addresses: 16-Mbyte boundaries

Starting Address 0 to 512 Gbytes

Ending Address 0 to 512 Gbytes

Technology:

DRAMS 1 or 4 Mbit dynamic RAMs

Gate Arrays CMOS gate array

Interleave: 2-, 4-, 8-way or none

Error Correction Code: Detects single- and double-bit errors and corrects single-
bit errors

Temperature:

Storage Range –40oC to 66oC (–40oF to 151oF)

Operating Range 5oC to 50oC (41oF to 122oF)

Relative Humidity:

Storage and Operating 10 to 95% noncondensing

Altitude:

Storage Up to 4.8 km (16,000 ft)

Operating Up to 2.4 km (8000 ft)

Current: 10A active, 3.8A standby, max.

Power: 50W active, 19W standby, max.

MS65A Memory 5–5

5.4 MS65A Functional Description

The <REFERENCE>(XMA) module consists of an XMI
Corner, a memory control gate array, address and control
drivers, block state DRAMs, DRAM arrays, and an EEPROM.

Figure 5–3: MS65A Block Diagram

Bank 2
Data

DRAMs

Bank 3
Data

DRAMs

Bank 1
Data

DRAMs

Bank 0
Data

DRAMs

MUX

msb-0730-90

To DRAM Array

Buffers

Block
State

DRAMs

Address/Control

EEPROM

Memory
Control
Array

XMI
Corner

PROM Bus

Diag Test Bus

XMI Bus

XCI

MUX SEL

5–6 <REFERENCE>(VAX_mod_XXX) Service Manual

The XMI Corner is located on the <REFERENCE>(XMA) module and
contains interface logic.

The memory control gate array transfers data between the XMI Corner
and the DRAMs. The memory control gate array also controls address
multiplexing, command decoding, arbitration, and CSR logic functions.

Address and control logic modifies address bits received from the XMI
Corner. These modified address bits are used to control the selection of
the DRAMs during reading and writing.

Memory is arranged in two or four banks of DRAMs. Each bank contains
either 155 or 299 DRAMs on each memory module.

The data in the EEPROM is used to initialize the memory control gate array.
After a power-up or system reset, the data in the EEPROM is loaded into
the memory control gate array.

MS65A Memory 5–7

5.5 MS65A Interleaving

Interleaving optimizes memory access time and increases
the effective memory transfer rate by operating memory
modules in parallel.

Figure 5–4: MS65A Interleaving

2-WAY INTERLEAVE SET
(32, 32)

128 Mb

32 Mb

32 Mb 64 Mb

msb-0717A-91

32 Mb

128 Mb 128 Mb

64 Mb

32 Mb

32 Mb

32 Mb

32 Mb

2-WAY INTERLEAVE SET
(32 + 32, 64)

4-WAY INTERLEAVE SET WITH ONE MEMORY NOT INTERLEAVED
(128, 128, 128, 64 + 32+32) interleaved and (32) not interleaved

5–8 <REFERENCE>(VAX_mod_XXX) Service Manual

Memory supports 2-, 4-, 8-way or no interleaving. Up to eight memory
modules of the same size can be interleaved. Memory modules of different
sizes can also be interleaved. Figure 5–4 shows three examples of
interleaving. The first is a two-way set (32, 32); two arrays of the same size
are interleaved. The second two-way set (32 + 32, 64) consists of different
size arrays. The interleave set at the bottom of Figure 5–4 is a four-way
set consisting of several array sizes.

Interleaving is done on hexword boundaries. Interleaving addresses are set
in the Starting and Ending Address Register by the console program (see
Section 5.7). The <REFERENCE>(XMA) does not check for valid or invalid
interleaving configurations.

NOTE: Memory modules that fail self-test due to multiple bit errors are not
included in the interleave set.

When different sizes of memory modules are installed in a Model 500
system, the console interleaves the memory modules according to size and
sets as follows.

• Sorts memory modules into groups by size.

• Interleaves the largest size memory modules first.

• Stacks remaining sets of modules into sets that equal the largest size
memory modules and interleaves them with the largest size memory
modules.

• Stacks remaining modules into sets of the next largest size memory
modules and interleaves them.

• Continues stacking and interleaving memory modules until all memory
modules have been configured (including noninterleaved modules).

Unless the system requires a specific, dedicated memory use, you should
run the default interleave rather than setting interleaving manually. In
default, the console program chooses the optimal configuration for the
system. Manual interleaving requires more operator attention.

MS65A Memory 5–9

5.6 Console Commands for Interleaving

The SET MEMORY and SHOW MEMORY commands are
useful for setting the interleave to a memory configuration
other than the default interleave. This is not usually
advisable, but occasional customer use will warrant
overriding the original console setting of the interleave.
The INITIALIZE command causes the <REFERENCE>(XX)
system to execute <REFERENCE>(XMA) self-tests.

Example 5–1: SET MEMORY and INITIALIZE Commands

>>> SET MEMORY /INTERLEAVE:DEFAULT 1
! For a system with one 64-Mbyte and two
! 32-Mbyte memory modules, it creates a 2-way
! interleave of 64-Mbyte memory modules
! (1x64-Mbyte and 2x32-Mbyte memory modules)
! located at XMI nodes 9, 8, and 7.

>>> SHOW MEMORY 2 ! Displays the memory lines from self-test.

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #
. A3 A2 A1 ILV
. 32 32 64 128Mb

/INTERLEAVE:DEFAULT

>>> SET MEMORY /INTERLEAVE:(7, 8+9) 3
! Explicitly specifies what is created
! as requested by the user (two interleave
! sets with modules in nodes 7, 8, and 9).

>>> INITIALIZE 4 ! Initializes the system.

>>> SHOW MEMORY 5 ! Displays the memory lines from self-test.

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #
. B2 B1 A1 ILV
. 32 32 64 128Mb

/INTERLEAVE:(7, 8+9)
>>>

5–10 <REFERENCE>(VAX_mod_XXX) Service Manual

The callouts in Example 5–1 are explained below.

1 Shows the SET MEMORY command that configures interleaving with
the console program. This command invokes the default interleaving
configuration. It is recommended that this default be used, rather than
trying to interleave memory manually.

2 The SHOW MEMORY command displays the node number (node #),
interleave (ILV), and total usable memory (xxMb) lines from the self-
test results.

3 Shows the SET MEMORY command that creates a 2-way interleave
as requested by the user. In this example the user explicitly specified
how to interleave the memory modules. Each interleaving set must
contain the node number of the memory module. If there is more than
one memory module in a set, they are joined by a + sign. Each set of
interleaved memory modules must be separated by a comma.

4 The system is initialized, self-test is run, and the >>> prompt returns.
Section 5.8 describes the memory self-test and shows test results.

5 The SHOW MEMORY command displays the configuration set in 3 .

NOTE: Refer to Chapter 5 of the VAX 6000 Series Owner’s Manual
for detailed information on the SET MEMORY and SHOW MEMORY
commands.

The SET MEMORY command does not change memory interleaving; it
just modifies the memory configuration in the EEPROM. The memory
configuration specified by the SET MEMORY command takes place when
the system is initialized (by a power-up or INITIALIZE command).

MS65A Memory 5–11

5.7 MS65A Addressing

Memory addressing is set on hexword boundaries and
depends on the interleaving sets organized by the console.
Starting and ending addresses are determined by the
console regardless of how interleaving is done (by the user
or by the console).

Figure 5–5: MS65A Addressing

TOTAL MEMORY SIZE: 256 Mb

STADR = 00000000

INTLV = 00000001

ENADR = 00000100

INTLV = 00000001

ENADR = 00000200

INTLV = 00000001

ENADR = 00000400

STADR = 00000100

STADR = 00000200

STADR = 00000000

INTLV = 00000021

ENADR = 00000400

128 Mb32 Mb

32 Mb

64 Mb

msb-0717-91

5–12 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure 5–5 shows the starting address (STADR), ending address (ENADR),
and interleave (INTLV) registers of a sample interleave set. The contents
of these registers are set by the console.

The memory shown in Figure 5–5 is divided into two interleaving sets and
totals 256 Mbytes. Set 0 consists of two 32-Mbyte arrays and one 64-Mbyte
array. Set 1 consists of one 128-Mbyte array.

The starting address of the first array is 0. The ending address is
determined by multiplying the density of the array by the interleave factor
(number of sets). For example, the starting address of the first array in set
0 is 0, and the ending address is 100 hex (64 decimal, which is equal to 32
multiplied by 2). The starting address of the second array is the same as
the ending address of the first.

Each array’s interleave register indicates the set it belongs to (bits <7:5>)
and the total number of interleave sets (bits <1:0>). The interleave register
for the 128-Mbyte array indicates that the array is set 1 (bits <7:5>=001)
of two interleave sets (bits <1:0>=01).

MS65A Memory 5–13

5.8 Memory Self-Test

The <REFERENCE>(XMA) performs an initialization and
self-test sequence on power-up or when the sequence is
requested by a console command. During memory self-test
the array chip is initialized, all memory locations are tested,
and the control and status registers are initialized.

Example 5–2: MS65A Memory Module Results in Self-Test

#123456789 0123456789 0123456789 0123456789 012345#

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #
A A . . . M M M M . . P P P TYP 1
+ + . . . + + + + . . + + + STF 2
. E E B BPD
. + + + ETF
. E E B BPD

. A4 A3 A2 A1 ILV 3

. 64 64 64 64 256Mb 4

Console = V1.00 RBDs = V1.00 EEPROM = 1.00/1.00 SN = SGO1234567

>>>

5–14 <REFERENCE>(VAX_mod_XXX) Service Manual

The callouts in Example 5–2 are explained below.

1 The TYP line shows that memory modules are installed in XMI slots 6
through 9 as indicated by the M in this row.

2 The STF line shows if memory modules pass self-test, as indicated by
the + in this row. If a module fails self-test, a – is indicated, but the
console still tests all pages within the module. The failing module is
included in the configuration, and the addresses that fail self-test are
not used by the system.

3 The ILV line indicates the memory array modules are 4-way
interleaved.

4 This system contains a total usable memory of 256 Mbytes (four 64-
Mbyte memory modules).

If all <REFERENCE>(XMA) nodes pass self-test, the CPU/memory test is
performed on the <REFERENCE>(XMA) by the CPU. The console executes
a simple read/write test to a small portion of memory. Since there are no
errors from the self-test, the memory bitmap is set with all pages as good.

MS65A Memory 5–15

5.9 Memory Self-Test Errors

If an <REFERENCE>(XMA) node fails self-test, an explicit
memory test is run on the failing module and console error
messages are displayed. The failing module is still included
in the memory configuration.

Example 5–3: MS65A Memory Module Node Exclusion

>>> SET MEMORY /INTERLEAVE:(7+8, 9)
>>> INITIALIZE

[Self-test display prints]
>>> SHOW MEMORY

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #
. B1 A2 A1 - ILV
. 64 64 64 192Mb
/INTERLEAVE:(7+8, 9)

If an <REFERENCE>(XMA) node fails self-test, then the console executes
an explicit memory test during the building of the bitmap. Failing memory
modules are included in the configuration, although they are interleaved by
themselves. The only way to exclude a memory module from interleaving
is to use the SET MEMORY command without designating the node you
want to exclude. Example 5–3 shows how to exclude the memory module
at node 6.

During the explicit memory test, any number of the following console
messages might be displayed to aid the customer service engineer in
diagnosing the problem.

?0037 Explicit interleave list is bad. Configuring
all arrays uninterleaved.

This means that the explicit set of memory arrays for the explicit interleave
includes no nodes that contain memory array. All memory arrays found
in the system are unconfigured (the SET MEMORY command may have
specified nodes that did not contain memory modules).

?0046 Memory interleave set is inconsistent: n n ...

This means that the listed nodes (n n) do not form a valid memory interleave
set. One or more of the nodes might not be a memory array or the set
contains an invalid number of memory arrays. Each listed memory array

5–16 <REFERENCE>(VAX_mod_XXX) Service Manual

that is valid will be configured uninterleaved; any memory array that is
not included in the set will not be interleaved.

?0047 Insufficent working memory for normal operation.

This means that less than 256 Kbytes per processor of working memory
were found. There may be insufficient memory for the console to function
or for the operating system to boot.

?011E Uncorrectable memory errors discovered -- long memory
test must be performed on node n

This means that a memory array contains an unrecoverable error. The
console must perform a slow test to locate all the failing locations.

?004A Memories not interleaved due to uncorrectable errors.

This means that the listed arrays would normally have been interleaved
(by default or an explicit request). Because one or more arrays contained
unrecoverable errors, this interleave set will not be constructed.

NOTE: Refer to Appendix A for a list of console error messages. See also
Section 6.6 in the VAX 6000 Series Owner’s Manual for more information
on these errors.

When self-test has finished running on the module, the yellow LED (located
at the center of the module’s edge farthest from the XMI backplane) lights.
After self-test, starting and ending addresses are set by the boot processor.

MS65A Memory 5–17

5.10 MS65A Control and Status Registers

The memory contains 19 control and status registers (CSRs)
to control the memory and log errors. All CSRs are 32
bits long and respond only to longword read and write
transactions. Only full writes are performed to the CSRs. If
a parity error occurs during a write operation, the operation
is aborted and the contents of the CSRs are unchanged.

The CSRs start at an address dependent upon the node ID. All CSR
addresses are designated as BB + n, where n is the relative offset of the
register.

Table 5–2: MS65A Control and Status Registers.
Register Mnemonic Address

Device Register XDEV BB1 + 00

Bus Error Register XBER BB + 04

Starting and Ending Address Register SEADR BB + 10

Memory Control Register 1 MCTL1 BB + 14

Memory ECC Error Register MECER BB + 18

Memory ECC Address Register MECEA BB + 1C

Memory Control Register 2 MCTL2 BB + 30

TCY Tester Register TCY BB + 34

Block State ECC Error Register BECER BB + 38

Block State ECC Address Register BECEA BB + 3C

Starting Address Register STADR BB + 50

Ending Address Register ENADR BB + 54

Segment/Interleave Control Register INTLV BB + 58

Memory Control Register 3 MCTL3 BB + 5C

Memory Control Register 4 MCTL4 BB + 60

Block State Control Register BSCTL BB + 68

1"BB" refers to the base address of an <REFERENCE>(XMI) node (2180 0000 + (node ID x
8000))

5–18 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 5–2 (Cont.): MS65A Control and Status Registers

Register Mnemonic Address
Block State Address Register BSADR BB + 6C

EEPROM Control Register EECTL BB + 70

Timeout Control/Status Register TMOER BB + 74

MS65A Memory 5–19

Chapter 6

DWMBB I/O Adapter

This chapter discusses the DWMBB adapter, the interface to an optional
VAXBI I/O channel. Sections include:

• Physical Description
Physical Layout
Specifications

• Configuration Rules

• Functional Description

• Registers

DWMBB I/O Adapter 6–1

6.1 DWMBB Physical Description

6.1.1 Physical Layout

The <REFERENCE>(xbia) is an XMI module (T2018) with the
standard XMI Corner, an XMI self-test OK LED indicator,
IBUS drivers/receivers and transceivers, timeout logic, and
a gate array that controls the <REFERENCE>(xbia). Most
of the components on the <REFERENCE>(xbia) are surface-
mounted.

Figure 6–1: <REFERENCE>(XBIA_TITLE)

ZIF
CONNECTOR
SEGMENTS

XMI
CORNER

msb-0060-88

GATE ARRAY

YELLOW
SELF-TEST

LED

6–2 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(xbib) is a standard VAXBI (T1043)
module with a VAXBI Corner, including a BIIC interface
chip, the primary interface between the VAXBI bus and
the <REFERENCE>(xbib) node logic, a clock driver, and a
clock receiver. The <REFERENCE>(xbib) gate array is used
mostly for data path logic. The VAXBI self-test OK LED is
on the VAXBI Corner, and the module self-test OK LED is at
the module edge opposite the connector edge.

Figure 6–2: <REFERENCE>(XBIB_TITLE)

ZIF
CONNECTOR
SEGMENTS

VAXBI
CORNER

msb-0061-89

MASTER
SEQUENCER

YELLOW
SELF-TEST

LED

YELLOW
SELF-TEST
LED

BIIC

CLOCK
RECEIVER

CLOCK
DRIVER

GATE
ARRAY

SLAVE
SEQUENCER

DWMBB I/O Adapter 6–3

6.1.2 Specifications

The following specifications apply to the DWMBB modules.

Table 6–1: DWMBB/A Specifications

Parameter Description

Module Number: T2018

Dimensions: 23.3 cm (9.2") H x 0.23 cm (0.093") W x 28.0 cm (11.0") D

Temperature:

Storage Range -40oC to 66oC (-40oF to 151oF)

Operating Range 5oC to 50oC (41oF to 122oF)

Relative Humidity:

Storage and operating 10% to 95% noncondensing

Altitude:

Storage Up to 4.8 km (16,000 ft)

Operating Up to 2.4 km (8000 ft)

Current: 6A at +5V

Power: 16W

6–4 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 6–2: DWMBB/B Specifications

Parameter Description

Module Number: T1043

Dimensions: 20.3 cm (8") H x 0.23 cm (0.093") W x 23.3 cm (9.2") D

Temperature:

Storage Range -40oC to 66oC (-40oF to 151oF)

Operating Range 5oC to 50oC (41oF to 122oF)

Relative Humidity:

Storage and operating 10% to 95% noncondensing

Altitude:

Storage Up to 4.8 km (16,000 ft)

Operating Up to 2.4 km (8000 ft)

Current: 6A at +5V

10mA at -12V

Power: 30W

Table 6–3: <REFERENCE>(xbi) Cables

Part Number Description

17-01569-01 DWMBB to H7206-B power OK cable

17-01897-01 15’ DWMBB cables for expander cabinet, from XMI slots 1, 2, 3, and
4 as needed (segments D and E) to VAXBI cages 2, 3, 4, and 5 (seg-
ments D and E). Two per DWMBB.

17-01897-02 7" DWMBB cables, from XMI slot E (segments D and E) to VAXBI cage 1
slot 1 (segments D and E). Two per DWMBB.

DWMBB I/O Adapter 6–5

6.2 <REFERENCE>(xbi) Configuration Rules

This section describes the configuration rules for the
DWMBB/A module in the XMI card cage and for the
DWMBB/B module in the VAXBI card cage.

Figure 6–3: <REFERENCE>(VAX_XXXX) Slot Numbers

XMI CARD CAGE

E D C B A 9 8 7 6 5 4 3 2 1

msb-0040B-90

VAXBI CARD CAGE

12 11 10 9 8 7 6 5 4 3 2 1

6–6 <REFERENCE>(VAX_mod_XXX) Service Manual

<REFERENCE>(XBIA) modules are placed in the order shown in
Table 6–4.

Table 6–4: <REFERENCE>(xbi) Configuration

<REFERENCE>(XMI) Node
No. VAXBI Channel Location

E 1 System cabinet

1 2 Expander cabinet

2 3 Expander cabinet

3 4 Expander cabinet

4 5 Expander cabinet

Configuration rules are as follows:

• The first VAXBI channel is the 12-slot channel in the system cabinet.
The DWMBB/A module is placed in XMI slot E; the corresponding
DWMBB/B module is placed in the system VAXBI cage, slot 1 (the
rightmost slot). See Figure 6–3.

• Any additional VAXBI channels are 6-slot channels in the expander
cabinet. The DWMBB/B module is placed in slot 1 of each. The
corresponding DWMBB/A module is placed in the XMI slot listed in
Table 6–4.

DWMBB I/O Adapter 6–7

6.3 DWMBB Functional Description

The <REFERENCE>(XBI) adapter provides an information
path between the <REFERENCE>(XMI) bus and I/O devices
on the VAXBI bus. The <REFERENCE>(XBI) consists of two
modules: the <REFERENCE>(XBIA) and the <REFERENCE>(XBIB).
The <REFERENCE>(XBIA) resides on the <REFERENCE>(XMI)
bus, and the <REFERENCE>(XBIB) resides on the VAXBI
bus. Four 30-pin cables, which make up the IBUS, connect
the two modules.

Figure 6–4: <REFERENCE>(XBI_TITLE) Block Diagram

DWMBB/A
MODULE

LOGIC

XMI
CORNER

VAXBI
CORNER

(BIIC)
IBUS

VAXBIXMI

T1043 MODULET2018 MODULE

msb-0062A-90

DWMBB/B
MODULE

LOGIC

6–8 <REFERENCE>(VAX_mod_XXX) Service Manual

The <REFERENCE>(XBIA) contains the <REFERENCE>(XMI) Corner,
the register files, <REFERENCE>(XMI) required registers, <REFERENCE>(XBIA)-
specific registers, page map registers, and the control sequencers for the
<REFERENCE>(XMI) interface.

The <REFERENCE>(XBIB) contains the BIIC interface chip, interconnect
drivers, control sequencers to handle the control of the data transfer, status
bits to and from the <REFERENCE>(XBIA) module’s register files and
the BIIC, <REFERENCE>(XBIB)-specific registers, decode logic for direct
memory access (DMA) operation, and VAXBI clock-generation circuitry.

The <REFERENCE>(XBIA) and <REFERENCE>(XBIB) modules are
connected by four cables of 30 wires each. These 120 wires make up
the IBUS, which transfers data and control information between the two
modules.

The <REFERENCE>(XBI) uses I/O and DMA transactions to exchange
information. I/O transactions originate from the <REFERENCE>(XMP)
module(s) and are presented to the <REFERENCE>(XBI) from the
<REFERENCE>(XMI) bus with the processor as the <REFERENCE>(XMI)
commander and the <REFERENCE>(XBI) as the <REFERENCE>(XMI)
responder.

DMA transactions originate from VAXBI nodes that select the <REFER-
ENCE>(XBI) as the VAXBI slave. These are read or write transactions
targeted to <REFERENCE>(XMI) memory space or are VAXBI-generated
interrupt transactions that target a <REFERENCE>(XMP) module. For
DMA transactions, the <REFERENCE>(XBI) is the <REFERENCE>(XMI)
commander, and the <REFERENCE>(XMA) module is the <REFERENCE>(XMI)
responder.

The <REFERENCE>(XBI) can be both a master and a slave on the
VAXBI. As a master, it carries out transactions requested by its
<REFERENCE>(XMI) devices. As a slave, it responds to VAXBI
transactions that select its node.

DWMBB I/O Adapter 6–9

6.4 <REFERENCE>(xbi) Registers

Two sets of registers are used by the <REFERENCE>(XBI)
adapter: VAXBI registers (residing in the BIIC) and <REF-
ERENCE>(XBI) registers (residing on both modules of the
<REFERENCE>(XBI)). The <REFERENCE>(XBI) registers in-
clude the <REFERENCE>(XMI) required registers and <REFERENCE>(XBI)-
specific registers addressed in <REFERENCE>(XBI) private
space.

Table 6–5: VAXBI Registers

Name Mnemonic Address1

Device Register DTYPE bb+00

VAXBI Control and Status Register VAXBICSR bb+04

Bus Error Register BER bb+08

Error Interrupt Control Register EINTRSCR bb+0C

Interrupt Destination Register INTRDES bb+10

IPINTR Mask Register IPINTRMSK bb+14

Force-Bit IPINTR/STOP Destination Register FIPSDES bb+18

IPINTR Source Register IPINTRSRC bb+1C

Starting Address Register SADR bb+20

Ending Address Register EADR bb+24

BCI Control and Status Register BCICSR bb+28

Write Status Register WSTAT bb+2C

Force-Bit IPINTR/STOP Command Register FIPSCMD bb+30

User Interface Interrupt Control Register UINTRCSR bb+40

General Purpose Register 0 GPR0 bb+F0

General Purpose Register 1 GPR1 bb+F4

General Purpose Register 2 GPR2 bb+F8

General Purpose Register 3 GPR3 bb+FC

1The abbreviation "bb" refers to the base address of a VAXBI node (the address of the first lo-
cation of nodespace).

6–10 <REFERENCE>(VAX_mod_XXX) Service Manual

Table 6–5 lists the VAXBI registers. The VAXBI registers are described
in Chapter 5 of the VAXBI Options Handbook. Table 6–6 lists the
<REFERENCE>(XBI) registers.

Table 6–6: <REFERENCE>(xbi) XMI Registers

Name Mnemonic1 Address2

Device Register XDEV BB+00

Bus Error Register XBER BB+04

Failing Address Register XFADR BB+08

Responder Error Address Register AREAR BB+0C

Error Summary Register AESR BB+10

Interrupt Mask Register AIMR BB+14

Implied Vector Interrupt Destination/Diagnostic
Register

AIVINTR BB+18

Diagnostic 1 Register ADG1 BB+1C

Utility Register AUTLR BB+20

Control and Status Register ACSR BB+24

Return Vector Register ARVR BB+28

XMI Failing Address Extension Register XFAER BB+2C

VAXBI Error Address Register ABEAR BB+30

Control and Status Register BCSR BB+40

Error Summary Register BESR BB+44

Interrupt Destination Register BIDR BB+48

Timeout Address Register BTIM BB+4C

Vector Offset Register BVOR BB+50

Vector Register BVR BB+54

Diagnostic Control Register 1 BDCR1 BB+58

Reserved Register BRSVD BB+5C

1If the first letter of the mnemonic is "X" or "A," it indicates that the register re-
sides on the <REFERENCE>(XBIA) module; a first letter of "B" indicates that the register re-
sides on the <REFERENCE>(XBIB) module.

2The abbreviation "BB" refers to the base address of an <REFERENCE>(XMI) node (the ad-
dress of the first location of nodespace).

DWMBB I/O Adapter 6–11

Table 6–6 (Cont.): <REFERENCE>(xbi) XMI Registers

Name Mnemonic1 Address2

Page Map Register (first location)

.

.

.

PMR BB+200

Page Map Register (last location) PMR BB+401FC

6–12 <REFERENCE>(VAX_mod_XXX) Service Manual

Appendix A

Console Error Messages

Table A–1 lists the console error messages that appear when the processor
halts and the console gains control. Most messages are followed by:

• PC = xxxxxxxx — program counter = address at which the processor
halted or the exception occurred

• PSL = xxxxxxxx — processor status longword = contents of the register

• –SP = xxxxxxxx — –SP is one of the following:
ESP executive stack pointer
ISP interrupt stack pointer
KSP kernel stack pointer
SSP supervisor stack pointer
USP user stack pointer

Table A–2 lists standard console error messages for the Model 500.

Table A–1: Console Error Messages Indicating Halt

Error Message Meaning

?0002 External halt (CTRL/P, break, or exter-
nal halt).

CTRL/P or STOP command.

?0003 Power-up halt. System has powered up, had a system re-
set, or an XMI node reset.

?0004 Interrupt stack not valid during excep-
tion processing.

Interrupt stack pointer contained an in-
valid address.

?0005 Machine check occurred during excep-
tion processing.

A machine check occurred while han-
dling another error condition.

?0006 Halt instruction executed in kernel mode. The CPU executed a Halt instruc-
tion.

Console Error Messages A–1

Table A–1 (Cont.): Console Error Messages Indicating Halt

Error Message Meaning

?0007 SCB vector bits <1:0> = 11. An interrupt or exception vector in the
System Control Block contained an in-
valid address.

?0008 SCB vector bits <1:0> = 10. An interrupt or exception vector in the
System Control Block contained an in-
valid address.

?000A CHMx executed while on interrupt stack. A change-mode instruction was issued
while executing on the interrupt stack.

?0010 ACV/TNV occurred during machine check
processing.

An access violation or translation-not-
valid error occurred while handling an-
other error condition.

?0011 ACV/TNV occurred during kernel-stack-
not-valid processing.

An access violation or translation-not-
valid error occurred while handling an-
other error condition.

?0012 Machine check occurred during ma-
chine check processing.

A machine check occurred while process-
ing a machine check.

?0013 Machine check occurred during kernel-
stack-not-valid processing.

A machine check occurred while han-
dling another error condition.

?0019 PSL <26:24>= 101 during interrupt
or exception.

An exception or interrupt occurred while
on the interrupt stack but not in ker-
nel mode.

?001A PSL <26:24>= 110 during interrupt
or exception.

An exception or interrupt occurred while
on the interrupt stack but not in ker-
nel mode.

?001B PSL <26:24>= 111 during interrupt
or exception.

An exception or interrupt occurred while
on the interrupt stack but not in ker-
nel mode.

?001D PSL <26:24> = 101 during REI. An REI instruction attempted to re-
store a PSL with an invalid com-
bination of access mode and inter-
rupt stack bits.

?001E PSL <26:24> = 110 during REI. An REI instruction attempted to re-
store a PSL with an invalid com-
bination of access mode and inter-
rupt stack bits.

?001F PSL <26:24> = 111 during REI. An REI instruction attempted to re-
store a PSL with an invalid com-
bination of access mode and inter-
rupt stack bits.

A–2 <REFERENCE>(VAX_mod_XXX) Service Manual

Table A–2: Standard Console Error Messages

Error Message Meaning

?0020 Illegal memory reference. An attempt was made to reference a vir-
tual address (/V) that is either un-
mapped or is protected against access un-
der the current PSL.

?0021 Illegal command. The command was not recognized, con-
tained the wrong number of parame-
ters, or contained unrecognized or inap-
propriate qualifiers.

?0022 Illegal address. The specified address was recognized as
being invalid, for example, a general pur-
pose register number greater than 15.

?0023 Value is too large. A parameter or qualifier value con-
tained too many digits.

?0024 Conflicting qualifiers. A command specified recognized quali-
fiers that are illegal in combination.

?0025 Checksum did not match. The checksum calculated for a block of X
command data did not match the check-
sum received.

?0026 Halted. The processor is currently halted.

?0027 Item was not found. The item requested in a FIND com-
mand could not be found.

?0028 Timeout while waiting for characters. The X command failed to receive a full
block of data within the timeout pe-
riod.

?0029 Machine check accessing memory. Either the specified address is not im-
plemented by any hardware in the sys-
tem, or an attempt was made to write
a read-only address, for example, the ad-
dress of the 33rd Mbyte of mem-
ory on a 32-Mbyte system.

?002A Unexpected machine check or
interrupt.

A valid operation within the console
caused a machine check or interrupt.

?002B Command is not implemented. The command is not implemented by this
console.

?002C Unexpected exception. An attempt was made to examine ei-
ther a nonexistent IPR or an unimple-
mented register in RSSC address range
(20140000—20140800).

Console Error Messages A–3

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning

?002D For Secondary Processor n. This message is a preface to sec-
ond message describing some error re-
lated to a secondary processor. This mes-
sage indicates which secondary proces-
sor is involved.

?002E Specified node is not an I/O adapter. The referenced node is incapable of per-
forming I/O or did not pass its self-
test.

?0030 Write to Z command target has timed out. The target node of the Z command is not
responding.

?0031 Z connection terminated by ^P. A CTRL/P was typed on the key-
board to terminate a Z command.

?0032 Your node is already part of a Z
connection.

You cannot issue a Z command while exe-
cuting a Z command.

?0033 Z connection successfully started. You have requested a Z connection to a
valid node.

?0034 Specified target already has a Z
connection.

The target node was the target of a previ-
ous Z connection that was improperly ter-
minated. Reset the system to clear this
condition.

?0036 Command too long. The command length exceeds 80 charac-
ters.

?0037 Explicit interleave list is bad.
Configuring all arrays uninterleaved.

The list of memory arrays for ex-
plicit interleave includes no nodes that
are actually memory arrays. All ar-
rays found in the system are config-
ured.

?0039 Console patches are not usable. The console patch area in EEPROM
is corrupted or contains a patch revi-
sion that is incompatible with the con-
sole ROM.

?003B Error encountered during I/O
operation.

An I/O adapter returned an error status
while the console boot primitive was per-
forming I/O.

?003C Secondary processor not in console mode. The primary processor console needed to
communicate with a secondary proces-
sor, but the secondary processor was not
in console mode. STOP the node or re-
set the system to clear this condi-
tion.

A–4 <REFERENCE>(VAX_mod_XXX) Service Manual

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning

?003D Error initializing I/O device. A console boot primitive needed to per-
form I/O, but could not initialize the I/O
adapter.

?003E Timeout while sending message to
secondary processor.

A secondary processor failed to re-
spond to a message sent from the pri-
mary. The primary sends such mes-
sages to perform console functions on sec-
ondary processors.

?003F Microcode power-up self-test failed
in REX520.

Model 400 CPU chip failed its mi-
crocoded self-test.

?0040 Key switch must be at "Update" to
update EEPROM.

A SET command was issued, but the
key switch was not set to allow up-
dates to the EEPROM.

?0041 Specified node is not a bus adapter. A command to access a VAXBI node spec-
ified an XMI node that was not a bus
adapter.

?0042 Invalid terminal speed. The SET TERMINAL command speci-
fied an unsupported baud rate.

?0043 Unable to initialize node. The INITIALIZE command failed to re-
set the specified node.

?0044 Processor is not enabled to BOOT or
START.

As a result of a SET CPU/NOENABLE
command, the processor is disabled from
leaving console mode.

?0045 Unable to stop node. The STOP command failed to halt the
specified node.

?0046 Memory interleave set is
inconsistent: n n ...

The listed nodes do not form a valid mem-
ory interleave set. One or more
of the nodes might not be a mem-
ory array or might be of a differ-
ent size, or the set could contain an in-
valid number of members. Each listed ar-
ray that is a valid memory will be config-
ured uninterleaved.

?0047 Insufficient working memory for nor-
mal operation.

Less than 256 Kbytes per processor of
working memory were found. There is in-
sufficient memory for the console to func-
tion normally or for the operating sys-
tem to boot.

Console Error Messages A–5

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning

?0048 Uncorrectable memory errors—long mem-
ory test must be performed.

A Model 400 memory array contains
an unrecoverable error. The con-
sole must perform a slow test to lo-
cate all the failing locations.

?0049 Memory cannot be initialized. The specified operation was attempted
and prevented.

?004A Memories not interleaved due to
uncorrectable errors:

The listed arrays would normally have
been interleaved (by default or explicit re-
quest). Because one or more of them con-
tained unrecoverable errors, this inter-
leave set will not be constructed.

?004B Internal logic error in console. The console encountered a theoreti-
cally impossible condition.

?004C Invalid node for Z command. The target of a Z command must be a CPU
or an I/O adapter and must not be the pri-
mary processor.

?004D Invalid node for new primary. The SET CPU command failed when at-
tempting to make the specified node the
primary processor.

?004E Specified node is not a processor. The specified node is not a processor, as re-
quired by the command.

?004F System serial number has not been
initialized.

No CPU in the system contains a valid
system serial number.

?0050 System serial number not initialized on
primary processor.

The primary processor has an uninitial-
ized system serial number. All other pro-
cessors in the system contain a valid se-
rial number.

?0051 Secondary processor returned bad
response message.

A secondary processor returned an un-
intelligible response to a request made
by the console on the primary proces-
sor.

?0052 ROM revision mismatch. Secondary
processor has revision x.xx.

The revision of console ROM of a sec-
ondary processor does not match that of
the primary.

?0053 EEPROM header is corrupted. The EEPROM header has been cor-
rupted. The EEPROM must be re-
stored from the TK tape drive.

A–6 <REFERENCE>(VAX_mod_XXX) Service Manual

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning

?0054 EEPROM revision mismatch.
Secondary processor has revision x.xx/y.yy.

A secondary processor has a differ-
ent revision of EEPROM or has a dif-
ferent set of EEPROM patches in-
stalled.

?0055 Failed to locate EEPROM area. The EEPROM did not contain a set of
data required by the console. The EEP-
ROM may be corrupted.

?0056 Console parameters on secondary proces-
sor do not match primary.

The console parameters are not the same
for all processors .

?0057 EEPROM area checksum error. A portion of the EEPROM is corrupted.
It may be necessary to reload the EEP-
ROM from the TK tape drive.

?0058 Saved boot specifications on secondary
processor do not match primary.

The saved boot specifications are not the
same for all processors.

?0059 Invalid unit number. A BOOT or SET BOOT command speci-
fied a unit number that is not a valid hex-
adecimal number between 0 and FF.

?005A System serial number mismatch.
Secondary processor has xxxxxxxx.

The indicated serial number of a sec-
ondary processor does not match that of
the primary.

?005B Unknown type of boot device. The console program does not have a boot
primitive to support the specified type
of device or the device could not be ac-
cessed to determine its type.

?005C No HELP is available. The HELP command is not supported
when the console language is set to Inter-
national.

?005D No such boot spec found. The specified boot specification was not
found in the EEPROM.

?005E Saved boot spec table full. The maximum number of saved boot spec-
ifications has already been stored.

?005F EEPROM header version mismatch. Processors have different versions of EEP-
ROMs.

?0061 EEPROM header or area has bad
format.

All or part of the EEPROM contains in-
consistent data and is probably cor-
rupted. Reload the EEPROM from the TK
tape.

?0062 Illegal node number. The specified node number is invalid.

Console Error Messages A–7

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning

?0063 Unable to locate console tape de-
vice.

The console could not locate the I/O
adapter that controls the TK tape.

?0064 Operation only applies to secondary
processors.

The command can only be directed at a
secondary processor.

?0065 Operation not allowed from secondary
processor.

A secondary processor cannot perform this
operation.

?0066 Validation of EEPROM tape image failed. The image on tape is corrupted or
is not the result of a SAVE EEP-
ROM command. The image cannot be re-
stored.

?0067 Read of EEPROM image from tape failed. The EEPROM image was not success-
fully read from tape.

?0068 Validation of local EEPROM failed. For a PATCH EEPROM operation, the
EEPROM must first contain a valid im-
age before it can be patched. For a RE-
STORE EEPROM operation, the im-
age was written back to EEPROM
but could not be read back success-
fully.

?0069 EEPROM not changed. The EEPROM contents were not changed.

?006A EEPROM changed successfully. The EEPROM contents were success-
fully patched or restored.

?006B Error changing EEPROM. An error occurred in writing to the EEP-
ROM. The EEPROM contents may be cor-
rupted.

?006C EEPROM saved to tape successfully. The EEPROM contents were success-
fully written to the TK tape.

?006D EEPROM not saved to tape. The EEPROM contents were not com-
pletely written to the TK tape.

?006E EEPROM Revision = x.xx/y.yy. The EEPROM contents are at revi-
sion x.xx with revision y.yy patches.

?006F Major revision mismatch between tape
image and EEPROM.

The major revision of tape and EEP-
ROM do not match. The requested opera-
tion cannot be performed.

?0070 Tape image Revision = x.xx/y.yy. The EEPROM image on the TK tape is
at revision x.xx with revision y.yy patches.

A–8 <REFERENCE>(VAX_mod_XXX) Service Manual

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning

?0073 System serial number updated. The EEPROM has been updated with the
correct system serial number.

?0074 System serial number not updated. The EEPROM has not been changed.

?0075 /CONSOLE_LIMIT value too small for
proper operation. Value ignored.

No change has been made.

?0076 Error writing to tape. Tape may be
write-locked.

Tape has not been written. Check to see
if tape is write-locked.

?0077 CCA not accessible or corrupted. Attempt to find the console communi-
cations area (CCA) failed. The con-
sole then builds a local CCA, which does
not allow for interprocessor communica-
tion.

?0078 Vector module configuration error at node
n

The console detected a vector module con-
figuration error. Problem can be that the
vector node number is not one greater
than the scalar CPU or that the mod-
ule to the left of a vector proces-
sor is not a memory module.

?0079 Vector synchronization error. The console could not synchronize with
the vector processor on a console en-
try. The Busy bit in the Vector Pro-
cessor Status Register remained set af-
ter a timeout, or a vector processor er-
ror occurred.

?007A No vector module associated with CPU
at specified node.

No vector module is in the slot to the left
of the specified CPU, or the VIB cable ei-
ther is not attached or is bad.

?007B An error occurred while accessing the vec-
tor module.

Attempt to access VCR, VLR, or VMR reg-
isters failed.

?007C I/O adapter configuration error at node
n

The I/O adapter at node n is configured im-
properly.

?007D Vector module is disabled—check KA64A
revision at XMI node n

The vector module is attached to a KA64A
module that is not at the revision level re-
quired.

?0083 Loading system software.1 The console is attempting to load the oper-
ating system in response to a BOOT com-
mand, power-up, or restart failure.

1No numbered prefix appears with these messages in English language mode. These num-
bers are used for these messages in International mode.

Console Error Messages A–9

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning
?0084 Failure.1 An operation did not complete success-

fully. Should be issued with another mes-
sage to clarify failure.

?0085 Restarting system software.1 The console is attempting to restart the in-
memory copy of the operating sys-
tem following a power-up or serious er-
ror.

?00A0 Initializing system.1 The console is resetting the system in re-
sponse to a BOOT command.

?00A6 Console halting after unexpected ma-
chine check or exception.1

The console executed a Halt instruc-
tion to reset the console state after pro-
cessing an unexpected machine check.

?00A7 RCSR <WD> is set. Local CCA must be
built.1

When the <WD> bit is set, writes to mem-
ory are disabled. The Model 400 pro-
cessor must then build a CCA in lo-
cal memory. Main memory cannot be writ-
ten to or accessed with interlocked instruc-
tions.

?00A8 Bootstrap failed due to previous error.1 The previous attempt to bootstrap the sys-
tem failed.

?00A9 Restart failed due to previous error.1 The previous attempt to restart the sys-
tem failed.

?0104 Filename format error. Period and semicolon characters are im-
properly used within the filename speci-
fied for a MOP boot.

?0105 Illegal character(s) in filename. For filename specified in a MOP boot.

?0106 Filename cannot contain nested blanks or
tabs.

For filename specified in a MOP boot.

?0107 Filename can be no longer than 16 char-
acters.

For filename specified in a MOP boot.

?0111 Microcode power-up self-test failed in
DC595.

CPU chip failed its microcoded self-
test.

?011E Uncorrectable memory errors discovered -
long memory test must be performed on node n

Memory array in node n contains an un-
correctable error. The console must per-
form a full test to locate all the failing loca-
tions.

1No numbered prefix appears with these messages in English language mode. These num-
bers are used for these messages in International mode.

A–10 <REFERENCE>(VAX_mod_XXX) Service Manual

Table A–2 (Cont.): Standard Console Error Messages

Error Message Meaning
?0120 Unsupported memory module found, will
not be configured.

One or more MS62A memory mod-
ules are installed but will not be used.
Only MS65A memory modules are com-
patible with Model 500.

?0121 Patch command no longer implemented—
use the Diagnostic utility EVUCA.

An invalid PATCH command was is-
sued; use the EVUCA program to up-
date the EEPROM.

Node n: ?xxxx Error message ?xxxx was generated on sec-
ondary processor n and was passed
to the primary processor to be dis-
played.

Console Error Messages A–11

Appendix B

Boot Status and Error Messages

This appendix lists status and error messages for Ethernet MOP, disk, tape,
and CI boots. Status messages are shown in the order they would appear
after the boot command is issued. Listed after each status message are the
error messages that could appear during each boot subprocess.

B.1 Ethernet MOP Boot Status and Error Messages

1. [Start boot]
?002Enode is not an I/O adapter
?0100 Specified adapter failed selftest
?010B Illegal adapter specified for NI boot

2. * Initializing adapter
?0119 Failure to initialize specified adapter

3. * Specified adapter initialized successfully

4. * "Request Program" MOP message sent—waiting for service from
remote node

?0115 Aborting boot process—adapter failed attempting to execute
port command
?0113 No traffic was detected on the net—aborting boot procedure
?011F Aborting boot process—adapter failed attempting to execute
boot command (DEBNA only)

5. * Still waiting for assistance—reissuing "Request Program" message

6. * Remote service link established

7. * Reading boot image from remote node
?010F Failed to receive image from remote server

8. * Passing control to transfer address

Boot Status and Error Messages B–1

B.2 Disk Boot Status and Error Boot Messages

1. [Start Boot]
?002E Specified node is not an I/O adapter
?0100 Specified adapter failed selftest
?010A Illegal adapter specified for disk boot

2. * Initializing adapter
?0119 Failure to initialize specified adapter

3. * Specified adapter initialized successfully

4. * Connecting to boot disk
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline — No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting

5. * Reading bootblock from disk
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting

6. * Passing control to transfer address

B.3 Tape Status and Error Boot Messages

1. [Start boot]
?002E Specified node is not an I/O adapter
?0100 Specified adapter failed selftest
?010C Illegal adapter specified for tape use

B–2 <REFERENCE>(VAX_mod_XXX) Service Manual

2. * Initializing adapter
?0119 Failure to initialize specified adapter

3. * Specified adapter initialized successfully

4. * Connecting to tape
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting
?0101 BVP port error—aborting

5. * Reading bootblock from tape
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting
?0101 BVP port error—aborting

6. * Rewinding tape
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting
?0101 BVP port error—aborting

7. * Passing control to transfer address

Boot Status and Error Messages B–3

B.4 CI Status and Error Boot Messages

1. [Start boot]
?002E Specified node is not an I/O adapter
?0109 Illegal adapter specified for CI boot

2. * Initializing adapter
?0119 Failure to initialize specified adapter

3. * Specified adapter initialized successfully

4. * Connecting to storage controller

5. * Previous operation failed—retrying CI boot

6. * Port received a "no path" error—retrying the init sequence
?0110 Port received a "no path" error after 6 retries—aborting the
boot process

7. * Connecting to MSCP server layer

8. * Previous operation failed—retrying CI boot

9. * Connecting to boot disk
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting

10. * Connecting to shadow unit
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting

11. * Failure to connect to shadow unit—retrying on physical unit

B–4 <REFERENCE>(VAX_mod_XXX) Service Manual

12. * Reading bootblock from disk
?0117 Specified unit offline
?0118 Specified unit offline—Unit unknown, online to another
controller or port disabled via A,B switches
?010E Specified unit offline—No media mounted or disabled via
RUN/STOP switch setting
?0116 Specified unit is inoperative
?0103 Drive error detected—aborting
?0102 Controller error detected—aborting
?0114 Serious exception reported—aborting

13. * Passing control to transfer address

Boot Status and Error Messages B–5

Appendix C

KA65A LED Patterns Indicating Console
Errors

After self-test runs without errors, the yellow self-test passed (STP) LED
remains lit, and the console lights a pattern in red LEDs 1–8. (See
Figure C–1.) This pattern indicates that the console has detected either
no errors or one of three console-detected errors: no primary, no memory,
or no CCA. These patterns are shown in Table C–1. The state of the error
LED does not affect the interpretation of these patterns.

KA65A LED Patterns Indicating Console Errors C–1

Figure C–1: KA65A Module LEDs

msb-0711A-90

8

7

6

5

4
3
2
1

YELLOW
STP
LED

RED
LEDs

ERROR
LED

Table C–1: KA65A Console LED Patterns

Red
LED

No
Errors
(Primary)

No
Errors
(Secondary)

No
Primary

No
Memory

No
CCA

8 On On On On On

7 On On On On On

6 Off Off Off Off Off

5 Off Off Off Off Off

4 Off Off Off Off On

3 Off Off Off On Off

2 Off Off On Off Off

1 Off On X 1 X X

1X indicates LED can be on or off.

C–2 <REFERENCE>(VAX_mod_XXX) Service Manual

The LED patterns in Table C–1 are interpreted as follows:

• No errors (primary)—The console detected no errors. This is the
primary processor.

• No errors (secondary)—The console detected no errors. This is a
secondary processor.

• No primary—The console cannot locate any processor that is eligible
to be the boot processor.

• No memory—The console cannot locate any system memory on the
XMI bus.

• No CCA—The console cannot locate the console communications area
in system memory.

KA65A LED Patterns Indicating Console Errors C–3

Appendix D

Parse Trees

This appendix shows parse trees for the following:

• <REFERENCE>(XMP) Machine Checks

• <REFERENCE>(XMP) Hard Error Interrupts

• <REFERENCE>(XMP) Soft Error Interrupts

• <REFERENCE>(xrv) Machine Checks

• <REFERENCE>(xrv) Hard Error Interrupts

• <REFERENCE>(xrv) Soft Error Interrupts

• <REFERENCE>(xrv) Disable Faults

Parse Trees D–1

Figure D–1: <REFERENCE>(xmp) Machine Check Parse Tree

(select one)

MCHK_FP_PROTOCOL_ERROR (01 hex)
MF−chip protocol error

MF−chip illegal opcode

MF−chip operand parity error

MF−chip unknown result status

MF−chip result parity error

TB miss status during
ACV/TNV processing

TB hit status during ACV/TNV
processing

Undefined interrupt ID value

MOVCx status encoding error

Unknown I−box trap

PCSTS<TAG_PARITY_ERROR> (PCSTS<8>)

msb−p358−90

MCHK_FP_ILLEGAL_OPCODE (02 hex)

P−cache tag parity error on
D−stream read hit

PCSTS<P_DATA_PARITY_ERROR> (PCSTS<10>)

MCHK_FP_OPERAND_PARITY (03 hex)

P−cache data parity error on
D−stream read hit

Inconsistent status (one or
both bits must be set)

neither

MCHK_FP_UNKNOWN_STATUS (04 hex)

MCHK_FP_RESULTS_PARITY (05 hex)

MCHK_TBM_ACV_TNV (08 hex)

MCHK_TBH_ACV_TNV (09 hex)

MCHK_INT_ID_VALUE (0A hex)

MCHK_MOVC_STATUS (0B hex)

MCHK_UNKNOWN_IBOX_TRAP (0C hex)

MCHK_BUSERR_READ_PCACHE (10 hex) (select all)

Figure D–1 Cont’d on next page

D–2 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–1 (Cont.): <REFERENCE>(xmp) Machine Check Parse Tree

MCHK_BUSERR_READ_DAL (11 hex) (select one)

PCSTS<DAL_DATA_PARITY_ERROR> (PCSTS<9>) (select one)

PCSTS<B_CACHE_HIT> (PCSTS<12>)
Backup cache data parity error
on D−stream read

MAXMI data parity error on
D−stream read

BCSTS<AC PERR> (BCSTS<7>)

msb−p359−90

PCSTS<BUS_ERROR> (PCSTS<11>) (select one)

otherwise

MC−Chip−detected Command/Address
parity error on D−stream read

XBEER<ACPE> (XBEER<29>)

SSCBTR<RWT> (SSCBTR<30>) (select all)

MAXMI−detected Command/Address
parity error on D−stream read

Nonexistent Memory (NXM)
otherwise

(BCSTS<CMD> = read) AND (BCERA = PCERR)
(BCSTS<25:22> = 1 hex) AND (BCERA = IPR126)

Tag parity error on D−stream read
BCSTS<TPERR> (BCSTS<1>)

Valid/Dirty bit parity error on
D−stream read

Inconsistent status (no BCSTS
status bits set)

BCSTS<VDPERR> (BCSTS<2>)

otherwise

Figure D–1 Cont’d on next page

Parse Trees D–3

Figure D–1 (Cont.): <REFERENCE>(xmp) Machine Check Parse Tree

(XBER0<FCMD> = read) AND (XFADR0, XFAER0 = PCERR)
(XBER0<3:0> = 1 hex) AND (XFADR0, XFAER0 = IPR126)

XBER0<RSE> (XBER0<17>)
XMI read sequence error on first
quadword of D−stream read

XMI read error response on first
quadword of D−stream read

XBER0<CNAK> (XBER0<15>)

otherwise

otherwise

msb−p360A−90

XBER0<RER> (XBER0<16>)

NXM on first quadword of
D−stream read

XBER0<NRR> (XBER0<18>)

XBER0<TTO> (XBER0<13>) (select one)

XMI no read response for first
quadword of D−stream read

XBEER0<OLR> (XBEER0<1>)

otherwise

XMI LOC response on D−stream
read

No XMI grant to D−stream read

Inconsistent status (no XBER0
error bits set)

Inconsistent status (machine
check during error interrupt)

Inconsistent status (no PCSTS
error bits set)

otherwise

Figure D–1 Cont’d on next page

D–4 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–1 (Cont.): <REFERENCE>(xmp) Machine Check Parse Tree

MCHK_BUSERR_WRITE_DAL (12 hex) (select one)

SSCBTR<RWT> (select all)

BCSTS<AC_PERR> (BCSTS<7>)
MC−chip−detected address/
command parity error on write

MAXMI−detected address/command
parity error on write

Nonexistent memory (NXM)

Tag parity error on write

Valid/dirty bit parity error on
write

Inconsistent status (no BCSTS
status bits set)

XBER0<CNAK> (XBER0<15>)

Unknown bus error trap

Vector module error

Unexpected control store address

msb−p361r−90

MCHK_UNKNOWN_BUSERR_TRAP (13 hex)

BCSTS<CMD> = write (select one)

XBEER0<ACPE> (XBEER0<29)

Nonexistent memory (NXM) on
write

Data NO ACK on write

No XMI grant on write

Inconsistent status (No XBER0
error bits set

Inconsistent status (No error
bits set)

XBER0<WDNAK> (XBER<20>)

MCHK_VECTOR_STATUS (14 hex)

XBEER0<CMD> = write (select one)

otherwise

otherwise

MCHK_UNKNOWN_CS_ADDR (0D hex)

otherwise

BCSTS<BTS TPERR> (BCSTS<1>)

BCSTS<BTS VDPERR> (BSTS<2>)

otherwise

XBER0<TTO> (XBER0<13>) (select one)

otherwise

Figure D–1 Cont’d on next page

Parse Trees D–5

Figure D–1 (Cont.): <REFERENCE>(xmp) Machine Check Parse Tree

MCHK_ERROR_ISTREAM (15 hex) (select one)

PCSTS<DAL DATA PARITY ERROR> (PCSTS<9>) (select one)

PCSTS<B CACHE HIT> (PCSTS<12>)
Backup cache data parity error on
I−stream read

MAXMI data parity error on I−stream
read

XBER0<CNAK> (XBER0<15>)

NOTES:

(select one) − exactly one case must be true. If zero or more

(select all) − more than one case may be true.

than one is true, the status is inconsistent.

− fall−through case for (select one) if no other

− fall−through case for (select all) if none of

msb−p362r−90

otherwise

PCSTS<BUS ERROR> (PCSTS<11>) (select one)

otherwise

MSSC bus timeout on I−stream read

XMI read sequence error on first
quadword of I−stream read

XMI read error response on first
quadword of I−stream read

XBER0<NRR> (XBER0<18>)

otherwise

neither

options are true.

otherwise

SSCBTR<RWT> SSCBTR<30>)

Nonexistent memory (NXM) on
first quadword of I−stream read

otherwise

the options are true.

XBER0<RSE> (XBER0<17>)

XMI no read response for first
quadword of I−stream read

No XMI grant to I−stream read

Inconsistent status (no error
bits set)

Inconsistent status (no PCSTS
error bits set)

Inconsistent status (unknown
machine check code)

XBER0<RER> (XBER0<16>)

XBER0<TTO> (XBER0<13>) (select one)

otherwise

D–6 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–2: <REFERENCE>(xmp) Hard Error Interrupt Parse Tree

(select all)

BCSTS<BTS_TPERR> and/or BCSTS<BTS_VDPERR>
(BCSTS<1> and/or BCSTS<2>)

(select one)

BCSTS<IBUS_CYCLE> (BCSTS<20>)
Internal parity error on
invalidate

(BCSTS<5:4>)

(BCSTS<7>)

(XBER<25>)

msb−p363A−90

BCSTS<I_PER<1:0>>

BCSTS<DAL_CMD> = cache fill and BCSTS<DMG> = 0
(BCSTS<25:22> = cache fill and BCSTS<26> = 0)

Internal parity error on cache
fill

(BCSTS<6>)BCSTS<FILL_ABORT>

BCSTS<DAL_CMD> = invalidate or writeback and BCSTS<DMG> = 0
(BCSTS<25:22> = invalidate or writeback and BCSTS<26> = 0)

Internal parity error on
invalidate or writeback

Inconsistent status

IBUS parity error

Cache fill abort received

Second error

Command/address parity error

WE IVINTR received

(BCSTS<8>)BCSTS<SECOND_ERR>

otherwise

BCSTS<AC_PERR>

XBER0<WEI>

Figure D–2 Cont’d on next page

Parse Trees D–7

Figure D–2 (Cont.): <REFERENCE>(xmp) Hard Error Interrupt Parse
Tree

XBER0<IPE> (XBER0<24>) (select one)

XBER0<PE> (XBER0<23>)
ACKed parity error

Inconsistent status (PE not
set)

DAL write data parity error

Command/address parity error

Unexpected read response

(XBEER0<17> if x=0; XBEER0<25> if x=1)

(XBEER0<18> if x=0; XBEER0<26> if x=1)

msb−p364A−90

XBEER0<WDPE>

otherwise

(XBEER0<30>)

Uncorrectable cache ECC error
detected,memory location
tagged bad

(XBEER0<14> if x=0; XBEER0<22> if x=1)

(XBEER0<16> if x=0; XBEER0<24> if x=1)

XBEER0<ACPE>

XBEER0<WCNAKx>

(XBEER0<29>)

Sequence error detected on the
DAL during a writeback

XBEER0<URR>

XBEER0<WWDNAKx> (XBEER0<15> if x=0; XBEER0<23> if x=1)

(XBEER0<2>)

NXM on writeback

XBEER0<WTBDATAx>

otherwise

Data NO ACK on write

No XMI grant on writeback

XBEER0<WSQEx>

XBEER0<WTTOx>
(select one)

Figure D–2 Cont’d on next page

D–8 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–2 (Cont.): <REFERENCE>(xmp) Hard Error Interrupt Parse
Tree

XBEER0<WSEOx> (XBEER0<13> if x=0; XBEER0<21> if x=1)
Second writeback error
detected on same commander ID

VINTSR<VHE> (VINTSR<2>)

(XBER0<9:4> = IDENT)
(select one)

XBER0<RSE> (XBER0<17>)
XMI read sequence error on return
of interrupt vector

XMI read error response on return
of interrupt vector

(XBER0<13>)
(select one)

XBER0<CNAK> (XBER0<15>)

NOTES:

(select one) − exactly one case must be true. If zero or more

(select all) − more than one case may be true.

than one is true, the status is inconsistent.

− fall−through case for (select one) if no other

msb−p365A−90

XBER0<FCMD> = IDENT

Vector module hard error

VINTSR<VECTL VIB HERR> (VINTSR<4>)

otherwise

XBER0<RER> (XBER0<16>)

No adapter ACK to IDENT

XBER0<NRR> (XBER0<18>)

otherwise
options are true.

VECTL VIB hard error

VINTSR<CCHIP VIB HERR> (VINTSR<6>)

XBER0<TTO>

XMI no read response to IDENT

No XMI grant on IDENT

Inconsistent status (no XBER
error bits set)

Inconsistent status (machine
check during error interrupt)

otherwise

MC−chip VIB hard error

VINTSR<Bus Timeout> (VINTSR<7>)

otherwise

MC−chip DAL timeout on vector
operation

Parse Trees D–9

Figure D–3: <REFERENCE>(xmp) Soft Error Interrupt Parse Tree

(select all)

PCSTS<INTERRUPT> (PCSTS<5>) (select all)

PCSTS<P_TAG_PARITY_ERROR> (PCSTS<8>)
P−cache tag parity error on
read, write, or invalidate

(select one)

PCSTS<B_CACHE_HIT> (PCSTS<12>)

(select one)

XBER<RSE> (XBER<17>)

(select one)

XBER<CNAK> (XBER<15>)

msb−p366−90

PCSTS<P_DATA_PARITY_ERROR> (PCSTS<10>)
P−cache data parity error on
I−stream read hit

(select one)

otherwise

XBER<TTO> (XBER<13>)

XBER<RER> (XBER<16>)

XBER<NRR> (XBER<18>)

PCSTS<DAL_DATA_PARITY_ERROR> (PCSTS<9>)

Backup cache data parity
error on I−stream read or
nonrequested longword of
D−stream read

MAXMI data parity error on
I−stream read or nonrequest−
ed longword of D−stream read

MSSC bus timeout on I−stream
read

SSCBTR<RWT> (SSCBTR<30>)

otherwise

PCSTS<BUS_ERROR> (PCSTS<11>)

XMI read sequence error on
first quadword of I−stream
read

XMI read error response on
first quadword of I−stream
read

XBER<FCMD> = read (XBER<3:0>)

NXM on first quadword of
I−stream read

XMI no read response for
first quadword of I−stream
read

No XMI grant to I−stream

Figure D–3 Cont’d on next page

D–10 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–3 (Cont.): <REFERENCE>(xmp) Soft Error Interrupt Parse Tree

XBER0<PE> (XBER0<23>)
NO ACKed parity error

Corrected confirmation

Corrected read data on
memory read

(XBEER0<19> if x=0; XBEER0<27> if x=1)

(VINTSR<1>)

NOTES:

than one is true, the status is inconsistent.

− fall−through case for (select one) if no other

msb−p367A−90

XBER0<CC> (XBER0<27>)

Single−bit cache ECC error
on writeback

(VINTSR<3>)

options are true.

XBER0<CRD> (XBER0<19>)

Vector module soft error

(VINTSR<5>)

XBEER0<WCDEx>

VECTL VIB soft error

VINTSR<Vector Soft Error>

MC−chip VIB soft error

VINTSR<VECTL VIB SERR>

VINTSR<CCHIP VIB SERR>

(select one) − exactly one case must be true. If zero or more

(select all) − more than one case may be true.

otherwise

Parse Trees D–11

Figure D–4: <REFERENCE>(xrv) Machine Check Parse Tree

MCHK_VECTOR_STATUS
CODE = VA<8:7> (SP + 8 on stack frame)

(select one)

CODE = 00 (Unrecoverable VIB error)
(select one)

VINTSR<VECTL VIB HERR> <4>
VECTL detected VIB hard error

C−chip detected VIB hard error

Scalar DAL bus timeout error

Vector module is being reset

<7>

<8>

<24> (Vector hardware error)
(select all)

<6>

VCTL_CSR<VHE>
(select all)

<8>

Load/Store Chip Hard Error

msb−p287R−90

VINTSR<CCHIP VIB HERR> <6>

CD bus hard error

Illegal sequence error

<11>

ALU_DIAG_CTL<ABE>

(select all)

<9>

VINTSR<Bus Timeout>

(Verse chip hard error)

AB bus parity error

C bus parity error

Illegal opcode

Hard CD bus error

XMI interface hard error

<1>

ALU_DIAG_CTL<CPE>

<10>

VINTSR<Vector Module Reset>

<11> = 0

ALU_DIAG_CTL<IFO>

CODE = 10, VINTSR<VHE> <2> (Unrecoverable vector hard error)

<11> = 1

VCTL_CSR<LSH>

LSX_CCSR<XHE>

VPSR<IMP>

LSX_CCSR<XHE>

VCTL_CSR<CDH> <3>

VCTL_CSR<ISE>

D–12 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–5: <REFERENCE>(xrv) Hard Error Interrupt Parse Tree

(select all)

(Unrecoverable VIB error)
(select one)

<4>
VECTL detected VIB hard error

C−chip detected VIB hard error

Scalar DAL bus timeout error

Vector module is being reset

<7>

<8>

<2> (Unrecoverable vector hard error)

<3>

VCTL_CSR<VHE>
(select all)

<8>

(select all)

msb−p288−90

VINTSR<VECTL VIB HERR>

(select one)

<6>

CD bus hard error

Illegal sequence error

<11>

<6>

ALU_DIAG_CTL<ABE>

<9>

VINTSR<CCHIP VIB HERR>

Verse Hard Error

AB bus parity error

C bus parity error

Illegal opcode

<1> Load/Store Chip Hard Error

ALU_DIAG_CTL<CPE>

<10>

VINTSR<Bus Timeout>

Hard CD bus error

XMI interface hard error

ALU_DIAG_CTL<IFO>

VINTSR<Vector Module Reset>

VCTL_CSR<LSH>

VINTSR<VHE>

LSX_CCSR<XHE> <11> = 0

VPSR<IMP> <24> (Vector hardware error)

LSX_CCSR<XHE> <11> = 1

VCTL_CSR<CDH>

VCTL_CSR<ISE>

Parse Trees D–13

Figure D–6: <REFERENCE>(xrv) Soft Error Interrupt Parse Tree

(select all)

(Recoverable VIB error)
(select one)

VINTSR<VECTL VIB SERR> <3>
VECTL detected
VIB soft error

C−chip detected
VIB soft error

<5>

<1> (Recoverable vector error)

<2>

VCTL_CSR<LSS> <0> Load/Store Chip Soft Error
(select all)

<10>

No error bits set

msb−p289−90

VINTSR<Vector Soft Error>
(select one)

VINTSR<CCHIP VIB SERR

CD bus soft error

LSX_CCSR<XSE>

<9>

VCTL_CSR<CDS>

XMI interface soft error

Data cache parity error

Hard error interrupt

LSX_CCSR<CPE>

D–14 <REFERENCE>(VAX_mod_XXX) Service Manual

Figure D–7: <REFERENCE>(xrv) Disable Fault Parse Tree

VPSR<VEN> <0> = 0, Vector disabled
(select one)

<25>
Illegal vector opcode

VPSR<AEX>

VAER<FUN>

<7> Vector arithmetic exception
(select all)

msb−p290−90

VPSR<IVO>

Floating Underflow

Floating Divide by Zero

Floating Reserved Operand

Floating Overflow

Integer Overflow

Hard error interrupt

VAER<FDZ>

<0>

No error bits set

VAER<FRS>

<1>

VAER<FOV>

<2>

VAER<IOV>

<3>

<5>

Parse Trees D–15

Appendix E

Restoring a Corrupted EEPROM

Use this procedure to restore a corrupted EEPROM. A corrupted EEPROM
is indicated by any of the following console errors:

?0053 EEPROM header is corrupted.
?0055 Failed to locate EEPROM area.
?0057 EEPROM area checksum error.
?0061 EEPROM header or area has bad format.
?006B Error changing EEPROM.

CAUTION: You must wear an antistatic wrist strap attached to the
cabinet when you handle any modules. See Section 3.10 for processor
module handling instructions.

1. Note the module serial number and revision level of each CPU module
in the system. To do this, slide each CPU module, one at a time, out of
its slot so that you can see the label on the back of the module under
the bar code. Return each module to its slot.

2. Turn the control panel’s lower key switch to Update.

3. If the console terminal is set to a speed other than the default speed of
1200 baud, press BREAK until the >>> prompt prints. Alternatively, set
the console terminal to 1200 baud.

4. Follow the steps shown in Examples E–1 and E–2.

Restoring a Corrupted EEPROM E–1

Example E–1: Restoring a Corrupted EEPROM, Part 1 of 2

>>> SET CPU 1 1
>>> JSB E0040044 2

This procedure will format the EEPROM on the primary processor,
destroying the system serial number, saved boot specifications,
terminal characteristics, console and diagnostic patches, etc.

Do you want to format the EEPROM [No]? Y 3

Zeroing EEPROM (approximately 15 seconds)

Writing data to EEPROM (approximately 15 seconds)

Move lower keyswitch from UPDATE to write-protect EEPROM 4

>>> SET CPU 2 5
>>> JSB E0040044

.

.

.
>>> SET CPU 1 6
>>> ESC DEL SET MANUFACTURING 7
Module Serial Number>>> NI000200007
Module Revision>>> D02
DC595 Revision>>>
FPU Revision>>>
SSC Revision>>>
Fields are as follows:
Module serial number:
Module revision:
DC595 revision:
FPU revision:
SSC revision:

Update EEPROM? (Y or N) >>> Y
?0071 Manufacturing parameters updated

>>> ESC DEL SET POWER 8
Power system>>> A
Power system read as: A

Update EEPROM? (Y or N) >>> Y
?011B Power system identification updated

>>> ESC DEL SET SYSTEM SERIAL 9
System Serial Number>>> AG02915081
Serial number read as: AG02915081

Update EEPROM? (Y or N) >>> Y
?0073 System serial number updated

>>> SET CPU 2 10

E–2 <REFERENCE>(VAX_mod_XXX) Service Manual

1 Make the CPU in the lowest-numbered slot the primary processor.

2 Enter the command JSB E0040044. This command blasts the default
EEPROM image into the current primary’s EEPROM.

3 Type Y in response to the question. You do not need to press RETURN or
ENTER .

4 Leave the key switch in the Update position until this procedure is
finished.

5 Make each CPU in turn the primary processor and repeat 2 and 3 .

6 Again make the first CPU the primary processor.

7 The ESC DEL SET MANUFACTURING command prompts you for
information. Enter the module serial number and module revision in
response to the first two prompts. (You noted this information before
starting this procedure.) Press RETURN in response to the rest of the
prompts. Type Y to terminate the command.

8 The ESC DEL SET POWER prompts for the power system type. You can
find this information in the SHOW FIELD listing that was saved for
this system in the Site Management Guide or in another safe place.
Type Y to terminate the command.

9 Enter the ESC DEL SET SYSTEM SERIAL command. The system serial
number is also in the SHOW FIELD listing. Type Y to terminate the
command.

10 Make each CPU in turn the primary processor and repeat 7 , 8 , and
9 . The SET commands that are preceded by ESC DEL do not propagate
to other processors, so they must be entered for each processor in the
system.

Restoring a Corrupted EEPROM E–3

Example E–2: Restoring a Corrupted EEPROM, Part 2 of 2

>>> SET CPU 1 11
>>> SET BOOT DEFAULT /XMI:E/BI:2 DU0 12
>>> SET BOOT NI /XMI:C/FILENAME:ISL_LVAX EX0
>>> SET BOOT NIDI /XMI:C/FILENAME:ISL_LVAX/R5:10 EX0
>>> SET BOOT TK70 /XMI:E/BI:C MU0
>>> SET CPU /PRIMARY/ALL 13
>>> SET LANGUAGE INTERNATIONAL
>>> SET TERMINAL /SCOPE/SPEED:9600
>>> SET MEMORY /INTERLEAVE:DEFAULT
>>> BOOT /XMI:C/R5:110 EX0 14

.

.

.
>>> INITIALIZE 15

#123456789 0123456789 0123456789 0123456789 012345#

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #
A . A . . M M P P P TYP
o . + . . + + + + + STF
. E E B BPD
. + + + ETF
. E E B BPD

. . . + + . + . . + . XBI E +

. A2 A1 ILV

. 32 32 64 Mb

Console = V2.00 RBDs = V2.00 EEPROM = 2.00/2.00 SN = AG02915081

E–4 <REFERENCE>(VAX_mod_XXX) Service Manual

11 Make the first CPU the primary processor.

NOTE: If the console load device is a TK70 and an image of the
EEPROM has been saved on tape, you can use the RESTORE command
in place of the next two steps.

12 Use the SET BOOT command to set the boot specifications entered in
the Site Management Guide.

13 Enter the rest of the information saved in the Site Management Guide.

14 Use the EVUCA utility to update the other processors’ EEPROMs. See
Section 3.14.

15 Initialize the system and verify there are no messages regarding console
patches, corrupt EEPROMs, or system number mismatches. If the
console prints any of these messages, verify that you installed the
latest revision of patches. If they are the latest revision, follow the
troubleshooting flowchart in Figure 1–2.

Restoring a Corrupted EEPROM E–5

Glossary

Adapter
A node that interfaces other buses, communication lines, or peripheral
devices to the <REFERENCE>(XMI) bus or the VAXBI bus.

Address space
The 1 terabyte of physical address space that the XMI bus is capable of
supporting; currently the XMI bus supports 1 gigabyte of physical memory.

Asymmetric multiprocessing
A multiprocessing configuration in which the processors are not equal in
their ability to execute operating system code. In general, a single processor
is designated as the primary, or master, processor; other processors are
the slaves. The slave processors are limited to performing certain tasks,
whereas the master processor can perform all system tasks. Contrast with
Symmetric multiprocessing.

Bandwidth
The data transfer rate measured in information units transferred per unit
of time (for example, Mbytes per second).

Boot device
Contains the bootblock and typically also contains the virtual memory boot
program (VMB). A <REFERENCE>(SSS) system can be booted from one
of four boot devices: the console load device, a local system disk, a disk
connected to the system through a CI adapter, or a disk connected to the
system through the Ethernet.

Boot primitives
Small programs stored in ROM on each processor with the console program.
Boot primitives read the bootblock from boot devices. There is a boot
primitive for each type of boot device.

Boot processor
The CPU module that boots the operating system and communicates with
the console.

Glossary–1

Bootblock
Block zero on the system disk; it contains the block number where the
virtual memory boot (VMB) program is located on the system disk and
contains a program that, with the boot primitive, reads VMB from the
system load device into memory.

CIBCA
VAXBI CI port interface; connects a system to a Star Coupler.

CIXCD
XMI CI port interface; connects a system to a Star Coupler.

Cold start
An attempt by the primary processor to boot a new copy of the operating
system.

Compact disk server
Ethernet-based CD server; provides access to CDROMs for software
installation, diagnostics, and on-line documentation.

Console communications area (CCA)
Segment of system main memory reserved by the console program.

Console mode
A mode of operation allowing a console terminal operator to communicate
with nodes on the XMI bus.

DEBNI
VAXBI adapter; Ethernet port interface.

DEMNA
XMI adapter; Ethernet port interface.

DHB32
VAXBI adapter communication device; supports up to 16 terminals.

DMB32
VAXBI adapter interface for 8-channel asynchronous communications for
terminals, one synchronous channel, and a parallel port for a line printer.

DRB32
VAXBI adapter; parallel port.

Glossary–2

DSB32
VAXBI adapter communication device; provides two synchronous lines.

DWMBB
The XMI-to-VAXBI adapter; a 2-module adapter that allows data transfer
from the XMI to the VAXBI; DWMBB/A is the module in the XMI
card cage, and DWMBB/B is the VAXBI module. Every VAXBI on a
<REFERENCE>(SSS) system must have a <REFERENCE>(XBI) adapter.

Ethernet-based compact disk server
The RRD40 compact disk drive, a console load device, functions as a server
on the Ethernet.

FV64A
Vector processor; works in a scalar/vector processor pair.

Interleaving memory
See Memory interleaving.

KDB50
VAXBI adapter for RAxx disks; enables connection to disk drives.

KDM70
XMI adapter for RAxx disks; enables connection to disk drives.

Memory interleaving
Method to optimize memory access time; the <REFERENCE>(SSS) console
program automatically interleaves the memories in the system unless the
SET MEMORY command is used to set a specific interleave or no interleave
(which would result in serial access to each memory module). Interleaving
causes a number of memories to operate in parallel.

Memory node
Also called the <REFERENCE>(XMA). Memory is a global resource
equally accessible by all processors on the <REFERENCE>(XMI). See also
<REFERENCE>(XMA).

Module
A single <REFERENCE>(XMI) or VAXBI card that is housed in a single
slot in its respective card cage. XMI modules (11.02" x 9.18") are larger
than VAXBI modules (8.0" x 9.18").

Glossary–3

<REFERENCE>(XMA)
XMI memory array; a memory subsystem of the XMI. Memory is a global
resource equally accessible by all processors on the <REFERENCE>(XMI).
A memory module can have 32, 64, or 128 Mbytes of memory, consisting of
MOS 1–Mbit or MOS 4–Mbit dynamic RAMs, ECC logic, and control logic.

Node
An <REFERENCE>(XMI) node is a single module that occupies one of the
14 logical and physical slots on the <REFERENCE>(XMI) bus. A VAXBI
node consists of one or more VAXBI modules that form a single functional
unit.

Node ID
A hexadecimal number that identifies the node location. On the
<REFERENCE>(XMI) bus, the node ID is the same as the physical location.
On the VAXBI, the source of the node ID is an ID plug attached to the
backplane.

Pended bus
A bus protocol in which the transfer of command/address and the transfer
of data are separate operations. The <REFERENCE>(XMI) bus is a pended
bus.

Primary processor
See Boot processor.

Processor node
A VAX processor that contains a central processor unit (CPU), executes
instructions, and manipulates data contained in memory.

RBD
ROM-based diagnostics.

RBV20/RBV64
VAXBI adapter for write-once-read-many (WORM) optical disk drive. The
RBV20 and RBV64 controllers use the KLESI–B adapter.

Scalar/vector processor pair
The FV64A vector processor functions as a coprocessor with a host scalar
processor. The scalar/vector processor pair appear as one processor to an
executing program.

Secured terminal
Console terminal in program mode while the machine is processing.

Glossary–4

Shadow set
Two disks functioning as one disk, each shadowing the information
contained on the other, controlled by an HSC controller under the VMS
operating system.

Symmetric multiprocessing
A multiprocessing system configuration in which all processors have equal
access to operating system code residing in shared memory and can perform
all, or almost all, system tasks.

System root
In a BOOT commmand, the argument to the /R5 qualifier.

TBK70
VAXBI adapter connecting the TK tape drive to the system.

TU81E
VAXBI adapter for a local (nonclustered) tape subsystem. The TU81E
controller uses the KLESI–B adapter.

VAX Diagnostic Supervisor (VAX/DS)
Software that loads and runs diagnostic and utility programs.

VAXBI bus
The 32-bit bus used for I/O.

VAXBI Corner
The portion of a VAXBI module that connects to the backplane and provides
an electrically identical interface for every VAXBI node.

VMB
The virtual memory boot program (VMB.EXE) that boots the operating
system. VMB is the primary bootstrap program and is stored on the boot
device. The goal of booting is to read VMB from the boot device and load
the operating system.

XBI
Lines in the self-test display that show the status of <REFERENCE>(XBI)
adapters and of VAXBI nodes. See also <REFERENCE>(xbi).

XMI
The 64-bit, high-speed system bus.

Glossary–5

<REFERENCE>(XMI) Corner
The portion of an <REFERENCE>(XMI) module that connects to the
backplane and provides an electrically identical interface for every XMI
node.

Glossary–6

Index

A
Architecture, 1–2

with vector processors, 4–4
Autosizer program, 2–66

B
Backup cache, 3–7
Booting

boot error messages, B–1 to B–5
boot status messages, B–1 to

B–5
over Ethernet, 2–62

Boot processor, 3–10 to 3–11
how to replace, 3–30

Boot processor’s EEPROM, 3–33
BPD

in self-test display, 2–6, 4–11

C
Cache, 3–7

backup, 3–7
CD server, 2–63
Configuration rules

memory, 5–4
<REFERENCE>(xbi) adapter,

6–6 to 6–7
scalar processor, 3–4 to 3–5
vector processor, 4–6

Console
error messages, A–1 to A–11

Console commands, 3–22 to 3–23
for interleaving, 5–10 to 5–11
vector processor, 4–18

Console display, 2–6 to 2–7

D
Diagnostics

design, 2–2
overview, 2–2 to 2–3
ROM-based, 2–2, 2–40 to 2–59
self-test, 2–2
VAX/DS, 2–2, 3–18, 4–16
XGPR use, 4–12

Diagnostic Supervisor
See VAX/DS

Disable fault parse tree
<REFERENCE>(xrv), D–14 to

D–15
DWMBB adapter, 6–1 to 6–12

configuration rules, 6–6 to 6–7
functional description, 6–8 to

6–9
physical description, 6–2 to 6–3
registers, 6–10 to 6–12
specifications, 6–4 to 6–5

E
EEPROM

restoring corrupted, E–1 to E–5
version number, 3–9

EEPROM, patching, 3–34 to 3–35
Error messages

console, A–1 to A–11
ETF

in self-test display, 2–6, 4–11
EVSBA, 2–66
EVUCA, 2–61, 3–34 to 3–35
Extended test, 3–13

Index–1

F
Fatal error, defined, 2–24
Floating-point accelerator chip, 3–7
FV64A module

inserting in XMI card cage, 4–25

H
Hard error, defined, 2–24
Hard error interrupt parse tree

<REFERENCE>(xmp), D–7 to
D–9

<REFERENCE>(xrv), D–13

I
I/O adapters, 1–3
Interleaving, 5–8 to 5–11

default, 5–9
manual, 5–9

L
LEDs

processor, error code in, 2–10 to
2–13, C–1 to C–3

processor error, 2–14 to 2–15
status, 2–8 to 2–9

M
Machine check parse tree

<REFERENCE>(xmp), D–1 to
D–6

<REFERENCE>(xrv), D–12
Machine checks, 3–20, 4–17
Memory

See MS65A memory
Module handling, 3–24 to 3–27,

4–22 to 4–25
MS65A memory, 1–3, 5–1 to 5–19

addressing, 5–12 to 5–13
configuration rules, 5–4
features, 5–3
functional description, 5–6 to

5–7

MS65A memory (Cont.)
good and bad memory pages,

5–17
interleaving, 5–8 to 5–11
physical description, 5–2 to 5–3
power-up, 5–14
registers, 5–18 to 5–19
self-test, 5–14 to 5–17
self-test errors, 5–16 to 5–17
specifications, 5–5
yellow LED, 5–17

MSSC, 3–9
MTPR/MFPR instructions, 3–39,

4–29
MTVP/MFVP instructions, 4–29

P
Parse trees, D–1 to D–15

<REFERENCE>(XMP), D–1 to
D–12

<REFERENCE>(XRV), D–12 to
D–15

Patching the EEPROM, 3–34 to
3–35

Power-up
processor, 3–12 to 3–15

Power-up tests, 2–3
Primary processor

See Boot processor
Processor, 1–3, 3–1 to 3–41

See also Vector processor
boot, 3–10 to 3–11
configuration rules, 3–4 to 3–5
console commands, 3–22 to 3–23
error LED, 2–14 to 2–15
functional description, 3–6 to

3–9
handling procedures, 3–24 to

3–27
how to add new, 3–32
how to replace boot, 3–30
how to replace only, 3–28
how to replace secondary, 3–32

Index–2

Processor (Cont.)
LEDs, 2–8 to 2–9, 2–10 to 2–13,

C–1 to C–3
machine checks, 3–20
module, inserting in XMI card

cage, 3–26 to 3–27
physical description, 3–2
power-up, 3–12 to 3–15
registers, 3–36 to 3–41
self-test, 3–13
specifications, 3–3
XMI interface, 3–7

Processor chip, 3–7
Progress trace, 2–6, 4–10

R
RBDs

See ROM-based diagnostics
<REFERENCE>(XBI) adapter, 1–3
<REFERENCE>(XMI)-to-VAXBI

adapter, 1–3
See also DWMBB adapter

<REFERENCE>(xmp) processor,
3–1 to 3–41

See also Processor
<REFERENCE>(XRV) processor,

4–1 to 4–29
See also Vector processor

Registers
MS65A memory, 5–18 to 5–19
processor, 3–36 to 3–41
<REFERENCE>(xbi) adapter,

6–10 to 6–12
vector processor, 4–28 to 4–29

Repair tag, 3–27
Reset, 2–27
ROM-based diagnostics, 2–3, 2–40

to 2–59, 3–16, 4–14
cache tests, 2–56 to 2–57
callable tests, 2–18, 2–40
commands, 2–18

QUIT, 2–27
START, 2–22 to 2–25
SUMMARY, 2–30 to 2–31

ROM-based diagnostics (Cont.)
control characters, 2–20 to 2–21
CPU/memory interaction tests,

2–46 to 2–47
entering RBD mode, 2–19
exiting RBD mode, 2–19
/HE, 2–19
I/O devices, 2–38 to 2–39
memory, 2–52 to 2–55
multiprocessor tests, 2–58 to

2–59
operator-invoked, 2–40 to 2–41
overview, 2–2
program, 2–18 to 2–19
<REFERENCE>(xbi) adapter,

2–48 to 2–51
run at power-up, 2–4 to 2–17
sample session, 2–32 to 2–37
self-test, 2–42 to 2–45
system reset in, 2–27
test printout

explanation, 2–26 to 2–29
failing, 2–28 to 2–29
passing, 2–26 to 2–27
sample, 2–32 to 2–37

tests, 2–4
/TR, 2–19

ROM version number, 3–9

S
Secondary processor

how to replace, 3–32
Self-test, 2–3, 2–4 to 2–17

display, 2–6, 3–13, 4–10
processor, 3–13
results, 2–6 to 2–11, 2–16 to

2–17
when invoked, 2–5

Serial number, 3–28
Single processor

how to replace, 3–28
Soft error, defined, 2–24
Soft error interrupt parse tree

Index–3

Soft error interrupt parse tree
(Cont.)

<REFERENCE>(xmp), D–10 to
D–11

<REFERENCE>(xrv), D–14
Specifications

scalar processor, 3–3
vector processor, 4–5

STF
in self-test display, 2–6, 4–11

System
architecture, 1–2, 4–4
functional description, 1–2 to

1–3
serial number, 3–28

System reset, 2–27
System support, 3–7
System support chip

See MSSC

T
Troubleshooting flowcharts, 1–4 to

1–11
TYP

in self-test display, 2–6, 4–11

V
VAX/DS, 2–3, 2–60 to 2–73

description, 2–61
diagnostics, 2–70 to 2–73, 3–18,

4–16
documentation, 2–60
exerciser tests, 2–61
explanation of levels, 2–60
function tests, 2–61
HELP in, 2–61
logic tests, 2–61
running in user mode, 2–64 to

2–65
running standalone, 2–62 to

2–63
sample session, 2–66 to 2–69
types of diagnostic programs,

2–61

VAXBI nodes, running RBD, 2–38
VAX Diagnostic Supervisor

See VAX/DS
Vector console commands, 4–18
Vector processor, 4–1 to 4–29

configuration rules, 4–6
console commands, 4–18
functional description, 4–8
handling procedures, 4–22 to

4–25
how to replace, 4–26
machine checks, 4–17
memory requirements, 4–5
physical description, 4–2 to 4–3
registers, 4–28 to 4–29
self-test, 4–10
specifications, 4–5
XMI transactions, 4–9

X
XBER register, 2–16 to 2–17
XGPR register, 2–16 to 2–17, 4–12
XMI interface, 3–7
XMI nodes, running RBD, 2–38

Index–4

