
VAX 6000 Series
Vector Processor Programmer’s Guide

Order Number: EK–60VAA–PG–001

This manual is intended for system and application programmers writing programs for
the VAX 6000 system with a vector processor.

Digital Equipment Corporation



First Printing, June 1990

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license. No responsibility
is assumed for the use or reliability of software or equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990. All rights reserved.

Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem–10 PDP VT
DECSYSTEM–20 PDT
DECUS RSTS
DECwriter RSX

�

<SET_FCC_WARNING>(a)

This document was prepared with VAX DOCUMENT, Version 1.2.



Contents

PREFACE ix

CHAPTER 1 VECTOR PROCESSING CONCEPTS 1–1

1.1 SCALAR VS. VECTOR PROCESSING 1–2
1.1.1 Vector Processor Defined 1–3
1.1.2 Vector Operations 1–3
1.1.3 Vector Processor Advantages 1–6

1.2 TYPES OF VECTOR PROCESSORS 1–6
1.2.1 Attached vs. Integrated Vector Processors 1–6
1.2.2 Memory vs. Register Integrated Vector Processors 1–8

1.3 VECTORIZING COMPILERS 1–8

1.4 VECTOR REGISTERS 1–9

1.5 PIPELINING 1–11

1.6 STRIPMINING 1–14

1.7 STRIDE 1–15

1.8 GATHER AND SCATTER INSTRUCTIONS 1–17

1.9 COMBINING VECTOR OPERATIONS TO IMPROVE EFFICIENCY 1–18
1.9.1 Instruction Overlap 1–18
1.9.2 Chaining 1–18

1.10 PERFORMANCE 1–19
1.10.1 Amdahl’s Law 1–19
1.10.2 Vectorization Factor 1–21

iii



Contents

1.10.3 Crossover Point 1–22

CHAPTER 2 VAX 6000 SERIES VECTOR PROCESSOR 2–1

2.1 OVERVIEW 2–2

2.2 BLOCK DIAGRAM 2–3

2.3 VECTOR CONTROL UNIT 2–5

2.4 ARITHMETIC UNIT 2–5
2.4.1 Vector Register File Chip 2–6
2.4.2 Vector Floating-Point Unit Chip 2–7

2.5 LOAD/STORE UNIT 2–7

2.6 VECTOR PROCESSOR REGISTERS 2–9

2.7 MEMORY MANAGEMENT 2–11
2.7.1 Translation-Not-Valid Fault 2–11
2.7.2 Modify Flows 2–11
2.7.3 Memory Management Fault Priorities 2–12
2.7.4 Address Space Translation 2–12
2.7.5 Translation Buffer 2–12

2.8 CACHE MEMORY 2–13
2.8.1 Cache Organization 2–13
2.8.2 Cache Coherency 2–16

2.9 VECTOR PIPELINING 2–17
2.9.1 Vector Issue Unit 2–17
2.9.2 Load/Store Unit 2–18
2.9.3 Arithmetic Unit 2–19

2.10 INSTRUCTION EXECUTION 2–21

iv



Contents

CHAPTER 3 OPTIMIZING WITH MACRO-32 3–1

3.1 VECTORIZATION 3–2
3.1.1 Using Vectorization Alone 3–2
3.1.2 Combining Decomposition with Vectorization 3–3
3.1.3 Algorithms 3–5

3.2 CROSSOVER POINT 3–5

3.3 SCALAR/VECTOR SYNCHRONIZATION 3–6
3.3.1 Scalar/Vector Instruction Synchronization (SYNC) 3–6
3.3.2 Scalar/Vector Memory Synchronization 3–7

3.3.2.1 Memory Instruction Synchronization (MSYNC) • 3–8
3.3.2.2 Memory Activity Completion Synchronization (VMAC) • 3–9

3.3.3 Memory Synchronization Within the Vector Processor
(VSYNC) 3–9

3.3.4 Exceptions 3–10
3.3.4.1 Imprecise Exceptions • 3–10
3.3.4.2 Precise Exceptions • 3–11

3.4 INSTRUCTION FLOW 3–11
3.4.1 Load Instruction 3–12
3.4.2 Store Instruction 3–13
3.4.3 Memory Management Okay (MMOK) 3–14
3.4.4 Gather/Scatter Instructions 3–14
3.4.5 Masked Load/Store, Gather/Scatter Instructions 3–15

3.5 OVERLAP OF ARITHMETIC AND LOAD/STORE INSTRUCTIONS 3–15
3.5.1 Maximizing Instruction Execution Overlap 3–16

3.6 OUT-OF-ORDER INSTRUCTION EXECUTION 3–18

3.7 CHAINING 3–20

3.8 CACHE 3–21

3.9 STRIDE/TRANSLATION BUFFER MISS 3–22

v



Contents

3.10 REGISTER REUSE 3–25

APPENDIX A ALGORITHM OPTIMIZATION EXAMPLES A–1

A.1 EQUATION SOLVERS A–2

A.2 SIGNAL PROCESSING—FAST FOURIER TRANSFORMS A–7
A.2.1 Optimized One-Dimensional Fast Fourier Transforms A–7
A.2.2 Optimized Two-Dimensional Fast Fourier Transforms A–9

GLOSSARY

INDEX

EXAMPLES
3–1 Overlapped Load and Arithmetic Instructions 3–16

3–2 Maximizing Instruction Execution Overlap 3–17

3–3 Effects of Register Conflict 3–18

3–4 Deferred Arithmetic Instruction Queue 3–19

3–5 A Load Stalled due to an Arithmetic Instruction 3–19

3–6 Use of the Deferred Arithmetic Instruction Queue 3–20

3–7 Example of Chain Into Store 3–21

3–8 Matrix Multiply—Basic 3–24

3–9 Matrix Multiply—Improved 3–24

3–10 Matrix Multiply—Optimal 3–26

A–1 Core Loop of a BLAS 1 Routine Using Vector-Vector Operations A–3

A–2 Core Loop of a BLAS 2 Routine Using Matrix-Vector Operations A–5

A–3 Core Loop of a BLAS 3 Routine Using Matrix-Matrix Operations A–6

vi



Contents

FIGURES
1–1 Scalar vs. Vector Processing 1–5

1–2 Vector Registers 1–10

1–3 Vector Function Units 1–11

1–4 Pipelining a Process 1–12

1–5 Constant-Strided Vectors in Memory 1–16

1–6 Random-Strided Vectors in Memory 1–16

1–7 Vector Gather and Scatter Instructions 1–17

1–8 Computer Performance Dominated by Slowest Process 1–20

1–9 Computer Performance vs. Vectorized Code 1–21

2–1 Scalar/Vector Pair Block Diagram 2–3

2–2 FV64A Vector Processor Block Diagram 2–4

2–3 Vector Count, Vector Length, Vector Mask, and Vector Registers 2–10

2–4 Virtual Address Format 2–11

2–5 Address/Data Flow in Load/Store Pipeline 2–13

2–6 Cache Arrangement 2–14

2–7 Physical Address Division 2–14

2–8 Main Tag Memory Organization 2–15

2–9 Data Cache Logical Organization 2–15

2–10 Vector Processor Units 2–17

2–11 Vector Arithmetic Unit 2–20

A–1 Linpack Performance Graph, Double-Precision BLAS Algorithms A–4

A–2 Cooley-Tukey Butterfly Graph, One-Dimensional Fast Fourier
Transform for N = 16 A–8

A–3 Optimized Cooley-Tukey Butterfly Graph, One-Dimensional Fast
Fourier Transform for N = 16 A–9

A–4 One-Dimensional Fast Fourier Transform Performance Graph,
Optimized Single-Precision Complex Transforms A–10

A–5 Two-Dimensional Fast Fourier Transforms Using N Column and N
Row One-Dimensional Fast Fourier Transforms A–10

A–6 Two-Dimensional Fast Fourier Transforms Using a Matrix Transpose
Between Each Set of N Column One-Dimensional Fast Fourier
Transforms A–11

A–7 Two-Dimensional Fast Fourier Transform Performance Graph,
Optimized Single-Precision Complex Transforms A–12

vii



Contents

TABLES
2–1 Memory Management Fault Prioritization 2–12

3–1 Qualifier Combinations for Parallel Vector Processing 3–3

viii



Preface

Intended Audience

This manual is for the system or application programmer of a VAX 6000
system with a vector processor.

Document Structure

This manual has three chapters and an appendix, as follows:

• Chapter 1, Vector Processing Concepts, describes basic vector
concepts and how vector processing differs from scalar processing.

• Chapter 2, VAX 6000 Series Vector Processor, gives an overview
of the vector coprocessor and related vector features.

• Chapter 3, Optimizing with MACRO–32, using MACRO–32
and FORTRAN programming examples, illustrates particular
programming techniques that take advantage of the high performance
of the VAX 6000 series vector processor.

• Appendix A, Algorithm Optimization Examples, provides
examples of optimization in two application areas: equation solvers
and signal processing.

• A Glossary and Index provide additional reference support.

ix
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1 Vector Processing Concepts

This chapter presents a brief overview of vector processing concepts.
Sections include:

• Scalar vs. Vector Processing

• Types of Vector Processors

• Vectorizing Compilers

• Vector Registers

• Pipelining

• Stripmining

• Stride

• Gather and Scatter Instructions

• Combining Vector Operations to Improve Efficiency

• Performance
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Vector Processing Concepts

1.1 SCALAR VS. VECTOR PROCESSING

Vector processing is a way to increase computer performance over that
of a general-purpose computer for certain scientific applications. These
include image processing, weather forecasting, and other applications
that involve repeated operations on groups, or arrays, of elements. A
vector processor is a computer optimized to execute the same instruction
repeatedly. For example, consider the process of adding 50 to a set of 100
numbers. The advantage of a vector processor is its ability to perform
this operation with a single instruction, thus saving significant processing
time.

In computer processors, a vector is a list of numbers, a set of data,
or an array. A scalar is any single data item, having one value. A
scalar processor is a traditional central processing unit (CPU) that
performs operations on scalar numbers in sequential steps. These types of
computers are known as single-instruction/single-data (SISD) computers
because a single instruction can process only one data item at a time.

A list of elements can be placed in an array. The array is defined by
giving each element and its location. Example: � 12 is the value a located
at row 1 and column 2. The dimensions of the array are m and n. An
array element is a single value in an array, such as � 12 below.��� �����

�
11

�
12 ����� �

1 ��
21

�
22 ����� �

2 �
...

...
...���

1
���

2 ����� � � �
���� ����

A one-dimensional array consists of all elements in a single row or single
column. A one-dimensional array can be expressed as a single capital
letter such as A, B, or C. Collectively, the elements within a vector are
noted by A(I), B(I), C(I), and so forth. Example: B and C are vectors,
where:

B = (-3, 0, 2)

	�

��������
The elements B(I) are –3, 0, and 2. The elements C(I) are 9 and –5.
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Vector Processing Concepts

1.1.1 Vector Processor Defined

A vector processor is a computer that operates on an entire vector with
a single vector instruction. These types of computers are known as
single-instruction/multiple-data (SIMD) computers because a single vector
instruction can process a stream of data.

A traditional scalar computer typically operates only on scalar values
so it must therefore process vectors sequentially. Since processing by a
vector computer involves the concurrent execution of multiple arithmetic
or logical operations, vectors can be processed many times faster than
with a traditional computer using only scalar instructions.

1.1.2 Vector Operations

A computer with vector processing capabilities does not automatically
provide an increase in performance for all applications. The benefits of
vector processing depend, to a large degree, on the specific techniques
and algorithms of the application, as well as the characteristics of the
vector-processing hardware.

Operations can be converted to code to be run on a vector processor if they
are identical operations on corresponding elements of data. That is, each
operation is independent of the previous step, as follows:

A(1) = B(1) + C(1)
A(2) = B(2) + C(2)
A(3) = B(3) + C(3)
.
.
.

A(n) = B(n) + C(n)

To create the vector, A(1:n), the same function [adding B(i) to C(i)] is
performed on different elements of data, where i = 1,2,3 ... n. Notice
that the equation for A(3) does not depend on A(1) or A(2). Therefore, all
these equations could be sent to a vector processor to be solved using one
instruction. Two vectors can be added together if both vectors are of the
same order; that is, each vector has the same number of elements, n. The
sum of two vectors is found by adding their corresponding elements. For
example, if B = [2, –1, –3] and C = [3, 5, 0], then

A =[2+3, -1+5, -3+0] = [5, 4, -3]

1–3



Vector Processing Concepts

A scalar processor operates on single quantities of data. Consider the
following operation: A(I) = B(I) + 50. As illustrated in Figure 1–1, five
separate instructions must be performed, using one instruction per unit
of time, for each value from 1 to Imax (some CPUs may combine steps and
use fewer units of time):

1 Load first element from location B.

2 Add 50 to the first element.

3 Store the result in location A.

4 Increment the counter.

5 Test the counter for index Imax.

If Imax is reached, the operation is complete. If not, steps 1 through 5 are
repeated. To calculate A(I) for 100 elements using these instructions (5 X
100), or 500 scalar instructions, takes 500 units of computer time.

Since a vector processor operates on complete vectors of independent data
at the same time, only three instructions are needed to perform the same
operation A(I) using a vector processor:

1 Load the array from memory into the vector processor register B.

2 Add 50 to all elements in the array, placing the results in register A.

3 Store the entire vector back into memory.

The flow of data optimizes the use of memory and reduces the overhead
to perform each operation. Within the vector processor, much the same
processing may occur as in the scalar processor, but the vector processor
is optimized to do it faster. It is important to remember that vector
operations generate the same result as scalar operations.
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Vector Processing Concepts

Figure 1–1 Scalar vs. Vector Processing

BEGIN EXECUTING
TOTAL STEPS = 500

BEGIN EXECUTING
TOTAL STEPS = 3

TEST COUNTER
FOR INDEX 100

INCREMENT COUNTER

STORE RESULT A (2)

ADD 50

LOAD B (2)

TEST COUNTER
FOR INDEX 100

INCREMENT COUNTER

STORE RESULT A (1)

ADD 50

LOAD B (1)

STORE TO MEMORY

ADD 50

LOAD B

SCALAR
PROCESSOR

VECTOR
PROCESSOR

DO 10 I = 1, 100
10 A(I) = B(I) + 50

msb-0420-90
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Vector Processing Concepts

1.1.3 Vector Processor Advantages

Vector processors have the following advantages:

• A vector processor can use the full bandwidth of the memory system
for loading and storing an array. Unlike the scalar processor, which
accepts single values at a time from memory, the vector processor
accepts any number up to its limit, say 64 elements, at a time. The
vector processor processes all the elements together and returns them
to memory.

• The vector processor eliminates the need to check the array index as
often. Since all values, up to the vector processor limit, are operated
upon at the same time, the vector processor does not have to check
the index for each element and each operation.

• The vector processor can free the scalar processor to do further scalar
operations. While the vector processor is doing operations other than
transferring data to or from memory, the scalar processor can do other
functions. This process is in contrast to a scalar processor performing
a math operation where the scalar processor must wait until the
calculation is complete before proceeding.

• The vector processor runs certain types of applications very fast, since
it can be optimized for particular types of calculations.

1.2 TYPES OF VECTOR PROCESSORS

Vector processors are classified according to two basic criteria:

• How closely coupled they are to their scalar coprocessor—whether
they are attached or integrated

• How they retrieve vector data—whether they are memory or register
processors

1.2.1 Attached vs. Integrated Vector Processors

In general, there are two types of vector processors: attached and
integrated. An attached vector processor (also known as an array
processor) consists of auxiliary hardware attached to a host system
that consists of some number of scalar processors. An attached vector
processor, which generally has its own memory and instruction set,
can also access data residing in the host main memory. It is typically
attached by a standard I/O bus and is treated by a host processor as an

1–6



Vector Processing Concepts

I/O device, controlled under program direction through special registers
and operating asynchronously from the host. Program data is moved back
and forth between the attached processor and the host with standard I/O
operations. The host processor requires no special internal hardware to
use an attached vector processor.

There is no "pairing" of a host processor to an attached vector processor. A
system can have multiple host scalar processors and one attached vector
processor. Some systems can also have one host processor and a number
of attached vector processors, all driven by a program executing on the
host.

Because it runs in parallel with its host scalar CPU, an attached vector
processor can give good performance for the proper applications. However,
attached vector processors can be difficult to program, and the need to use
I/O operations to transfer program data can result in very high overhead
when transferring data between processors. If the data format of the
attached processor is different from that of the host system, input and
output conversion of the data files will be required.

To perform well on an attached vector processor, an application must have
a high percentage of vector operations that need no I/O support from the
host. Also, the computational time of those vector operations should be
long compared to any required I/O operations.

An integrated vector processor, on the other hand, consists of a
coprocessor that is tightly coupled with its host scalar processor; the
two processors are considered a pair. The scalar processor is specifically
designed to support its vector coprocessor, and the vector processor
instruction set is implemented as part of the host’s native instruction
set. The two processors share the same memory and transfer program
instructions and data over a dedicated high-speed internal path. They
may also share special CPU resources such as cache or translation buffer
entries. Since they share a common memory, no I/O operations are needed
to transfer data between them. Thus, programs with a high ratio of
data access to arithmetic operations will perform more efficiently on an
integrated vector processor than on an attached vector processor.

An integrated vector processor can run synchronously or asynchronously
with its scalar coprocessor, depending on the hardware implementation.
When the scalar processor fetches and decodes a vector instruction,
it passes the instruction to the vector processor. At that point, the
scalar processor can either wait for the vector processor to complete
the instruction, or it can continue executing and synchronize with the
vector processor at a later time. Integrated processors that have this
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ability to overlap vector and scalar operations can give better performance
than those that do not.

1.2.2 Memory vs. Register Integrated Vector Processors

There are two types of integrated vector processor architectures: memory-
to-memory and register-to-register.

In a memory-to-memory architecture, vector data is fetched directly from
memory into the function units of the vector processing unit. Once the
data is operated on, the results are returned directly to memory.

With a register-to-register (or load/store) architecture, vector data is first
loaded from memory into a set of high-speed registers. From there it is
moved into the function units and operated on. The resulting data is not
returned to the registers until all operations are complete, at which point
the vector data is stored back in memory.

For applications that use very long vectors (on the order of thousands of
elements), a memory-to-memory architecture works quite well. Once the
overhead involved in starting the vector operation is completed, results
can be produced at the rate of one element per cycle. On the other hand,
with a register-to-register architecture, only a limited segment of the
array can be processed at once, and the load/store overhead (or latency)
must be paid over and over. With long vectors, this overhead can reduce
the performance advantage of high-speed registers.

However, several hardware techniques can be implemented by a register-
to-register architecture that can help amortize this load/store overhead.
By using techniques such as chaining and instruction overlap, multiple
operations can be executed concurrently on the same set of vector data
while that data is still in the vector registers. Intermediate (temporary)
values need not be returned to memory. Such techniques are not possible
with a memory-to-memory architecture.

1.3 VECTORIZING COMPILERS

Developing programs to take maximum advantage of a specific vector
processor requires a great deal of knowledge of, and attention to, the
particular vector computer hardware. Fortunately most applications that
benefit from vector processing can be written in a high-level programming
language, such as FORTRAN, and submitted to a vectorizing compiler
for that language. The primary function of a vectorizing compiler is to
analyze the source program for combinations of arithmetic operations
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for which vectorization will yield correct results and generate vector
instructions for those operations. If the compiler cannot be certain that
a particular expression can be correctly vectorized, it will not vectorize
that portion of the source code. The vectorizing compiler can reorganize
sections of the program code (usually inside formal loops) that can be
vectorized.

Certain portions of all applications are nonvectorizable. Some
programming techniques, by their nature, cannot be vectorized. For
example, conditional branches into or out of a loop make it impossible
for the compiler to know the range of the loop (that is, the vector length)
before the code is executed.

In other instances, there may be an unclear relationship between multiple
references to the same memory location (called an unknown dependency).
In such a relationship, the final value of the location may or may not
depend on serial execution of the code, and the compiler does not have
enough information to determine whether it can vectorize.

Finally, there may be instances of constructs that could be vectorized
but are not. The compiler may not be sophisticated enough to do so, the
compiler may determine that vectorization would not be profitable in
terms of performance, or the compiler may have insufficient information
to determine that vectorization is safe.

1.4 VECTOR REGISTERS

A scalar register is a location in fast memory where data is stored or
status bits can be placed to be read at a later time. A register has a set
length, say 32 bits, or four consecutive 8-bit bytes.

A vector register is considerably larger. With the VAX, the vector register
has a maximum length of 64 elements. Each element can contain up to
64 bits. The elements used can be enabled or disabled by setting bits in
a Vector Mask Register (VMR). The programmer usually determines the
range, or limits the number of elements used through a Vector Length
Register (VLR) (see Figure 1–2). This range can vary, for example, from 0
to 64 elements. Of course, if the vector length = 0, no vector elements will
be processed.
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Figure 1–2 Vector Registers
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REGISTER
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1.5 PIPELINING

A vector function unit, or pipe, performs a specific function within a vector
processor and operates independently of other function units. Some vector
processors have three function units (see Figure 1–3): one for memory
instructions, one for operations (such as add, subtract, and multiply),
and one for miscellaneous instructions. Some vector processors have
additional function units, specifically to perform additional arithmetic
functions.

The performance of the arithmetic and memory function units of a vector
processor can be improved using instruction pipelining. Pipelining can
be thought of as "assembly line" processing. If a complicated operation
can be divided into smaller subprocesses that can then be executed
independently by different parts of the function unit, the total time
required to execute the operation repeatedly is substantially less than if
the operation is performed serially.

Figure 1–3 Vector Function Units

MEMORY
(LOAD/STORE)

MISCELLANEOUS
(DECODE/ISSUE/SYNC)

OPERATION
(ALU AND FPU)

OPERATION
(OTHER ALUs)

msb-0422-90
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Figure 1–4 shows a concurrent execution of a process divided into four
subprocesses. Each subprocess has five operations (A, B, C, D, and E),
which start at different times. Operation A might be a load, operation
B might be an add, ... and operation E might be a store. There is some
overhead in starting the process, but once that overhead (or pipeline
latency) is paid, the function unit produces one result per cycle.

Figure 1–4 Pipelining a Process

A      B      C       D       E

A      B      C       D       E

A      B      C       D       E

A      B      C       D       E

CONCURRENT EXECUTION OF A SUBPROCESS

SUBPROCESS

T1      T2      T3      T4      T5      T6      T7     T8     T9     T...TIME

msb-0423-90
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Because most arithmetic and memory operations can be broken down into
a series of one-cycle steps, the function units of a vector processor are
generally pipelined. Thus, after initial pipeline latency, the function units
can process an entire vector in the number of cycles equal to the length of
the input vector—one vector element result per cycle. This time interval
(known as a chime) is approximately equal (in cycles) to the length of the
vector plus the pipeline latency.

A vector instruction operates on an array of data, so the pipelined
execution of vector instructions allows the overlap of multiple iterations
of the same vector instruction operating on different data items. The
pipeline length equals its number of segments. The maximum number
of data elements operated on at any one time equals the pipeline length.
Pipelining accommodates the variable array lengths found in vector
instructions.

Instruction pipelining can be enhanced by providing multiple parallel
pipelines, which operate on different vector elements, within a function
unit. As an example, assume a vector has 64 elements. If the vector
processor has a function unit with four pipelines, the following processing
can be executed in parallel:

Pipe 0 operates on elements 0, 4, 8, ... , 60
Pipe 1 operates on elements 1, 5, 9, ... , 61
Pipe 2 operates on elements 2, 6, 10, ... , 62
Pipe 3 operates on elements 3, 7, 11, ... , 63

This obviously results in much faster execution than a single pipeline,
giving four results per cycle instead of only one. After the pipeline
latency, the 64 elements can be processed in 16 cycles rather than in 64.
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1.6 STRIPMINING

An array longer than the maximum vector register length of a vector
processor must be split into two or more subarrays or vectors, each
of which can fit into a vector register. This procedure is known as
stripmining (or sectioning), and it is performed automatically by a
vectorizing compiler when the source program operates on loops longer
than the maximum vector length.

For example, suppose the following FORTRAN loop is vectorized to be run
on a vector processor with registers that are 64 elements long:

DO 20 I=1,350
A(I) = B(I) + C(I)

20 CONTINUE

Because the vector registers can only hold 64 elements, the compiler
vectorizes the loop by splitting the vector into six subvectors to be
processed separately.

As typically happens, one subvector in this example is shorter than the
full length of a vector register. This short subvector is processed first.
Conceptually, the compiler generates vector instructions for the following
functions:

DO I = 1,30
A(I) = B(I) + C(I)

ENDDO

DO I = 31,350,64
DO J = I,I+63
A(J)=B(J) + C(J)

ENDDO
ENDDO

Note that the compiler must also generate code to set the Vector Length
Register to 30 before processing the short vector and then reset it to 64
before processing the remaining vectors.
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1.7 STRIDE

To a vector processor, a vector in memory is characterized by a start
location, a length, and a stride. Stride is a measure of the number of
memory locations between consecutive elements of a vector. A stride
equal to the size of one vector element, known as unity stride, means that
the vector elements are contiguous in memory. A constant stride greater
than the size of one element means that the elements are noncontiguous
but are evenly spaced in memory (see Figure 1–5). Most vector processors
can load and store vectors that have constant stride.

Not all vector data is constant-strided, however. In some vectors, the
distance between consecutive elements in memory is not constant but
varies for each pair of elements. Such vectors can be scattered throughout
memory and are said to be random-strided or nonstrided (see Figure 1–6).
For example, a sparse matrix is generally treated as a nonstrided vector.

Some earlier vector processors did not support this kind of vector. On
those systems, special software routines were required to gather the
nonstrided vector into a temporary contiguous vector that could be
accessed by constant-strided vector memory instructions.

Today, most vector processors support nonstrided vectors with special load
and store instructions called gather and scatter.
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Figure 1–5 Constant-Strided Vectors in Memory
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1.8 GATHER AND SCATTER INSTRUCTIONS

To support random-strided vectors, gather and scatter instructions operate
under control of a vector register that contains an index vector. For each
element in the vector, the corresponding element in the index vector
contains an offset from the start location of the vector in memory. The
gather instruction uses these offsets to "load" the vector elements into the
destination register, and the scatter instruction uses them to "store" the
vector elements back into memory (see Figure 1–7).

Figure 1–7 Vector Gather and Scatter Instructions
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1.9 COMBINING VECTOR OPERATIONS TO IMPROVE EFFICIENCY

Some of the techniques available to increase vector instruction efficiency
include overlapping and chaining.

1.9.1 Instruction Overlap

Overlapping instructions involves combining two or more instructions
to overlap their execution to save execution time. If a vector processor
has independent function units, it can perform different operations on
different operands simultaneously. Overlapping provides a significant
gain in performance. If a register must be reused or if data is not yet
available, overlapping may not be possible.

1.9.2 Chaining

Chaining, a special form of instruction overlap, is possible with multiple
function units. Chaining is passing the result of one operation in one
function unit to another function unit. For example, an add instruction
followed by a store command can "combine" so each element of the vector
is stored as soon as the result is obtained. The processor does not have to
wait for the add instruction to finish before storing the data.

VADD V1,V2,V3
VSTORE V3

As results are generated by the add instruction, they are immediately
available for input to the waiting store instruction. The store instruction
can then begin processing the data.

Instruction chaining only works if all the data to be processed is available
at the beginning of the pipeline. If the result of one operation must be
used as input to another operation in the same data stream, instruction
chaining cannot be used.
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1.10 PERFORMANCE

The performance of scalar computers has been measured for some time
using millions of instructions executed per second (MIPS). MIPS is not
a good measure of speed for vector processors, since one instruction
produces many results. Vector processor execution speed, instead, is
measured in millions of floating-point operations per second (MFLOPS).
Other abbreviations used are MegaFLOPS, MOPS (millions of operations
per second), and RPM (results per microsecond). Some of the largest
computers measure speed in gigaFLOPS or billions of floating-point
operations per second.

The peak MFLOPS value is a vector processor’s best theoretical
performance, in terms of the maximum number of floating-point
operations per second. For a vector processor having a processor
cycle time of 5 nanoseconds and 1 arithmetic unit per pipeline, its
peak MFLOPS performance (defined as 1 divided by the cycle time) is
determined as follows:�
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������������������

1.10.1 Amdahl’s Law

Amdahl’s Law indicates that the performance of an application on a
computer system with two or more processing rates is dominated by
the slowest process. Vector processing is faster than scalar processing
executing the same operation, yet the primary factor that determines a
computer’s speed is the speed of the scalar processor (see Figure 1–8).

Amdahl’s law, expressed as an equation, gives the time (T) to perform N
operations as:

T = N X (%scalar operations X time/scalar operation +

%vector operations X time/vector operation)
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Figure 1–8 Computer Performance Dominated by Slowest Process
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1.10.2 Vectorization Factor

Some computer programs use only a portion of the code during the
majority of the execution time. For example, a program may spend most
of its time doing mathematical calculations, which comprise only 20% of
its code. The vectorization factor may be defined as the percentage of the
original scalar execution time that may be vectorized. Figure 1–9 shows
how the performance increases as more code is vectorized.

Figure 1–9 Computer Performance vs. Vectorized Code
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Consider a scalar program that uses 20% of its code 70% of the time. If
this 20% portion of the code is converted to vector processing code, the
program is considered to have a vectorization factor of 70%. If the time
for the scalar operation is set to 1 and the time for a vector operation is
10%, we have:

T = N * (.30 * 1 + .70 * .1)

T = N * .37

If performance (P), equals operations performed (N) per unit time (T)
then, with T = N * .37:

P = N / T = N / (N * .37) = 1 / .37 = 2.7

The improved performance, shown in Figure 1–9, would be about 2.7
times faster than a scalar processor. Vectorization factors above 70%
achieve performance above the same computer using scalar processing.
The speedup ratio is defined as the vector performance divided by the
scalar performance.

1.10.3 Crossover Point

The crossover point is the vector length or number of elements at which
the vector unit exceeds the performance of the scalar unit for a particular
instruction or sequence. To achieve a performance improvement on a
given vector processor, a vectorized application should have an average
vector length that is larger than the crossover point for that processor and
the vector operations used.

The smaller the crossover point, the better. A crossover point of 11 means
that DO loops below 11 elements are performed faster using a scalar
processor than by using a vector processor. This point is a result of the
overhead instructions and time required to set up the vector processor,
process the data, and return the solution. This point varies from computer
to computer.

Vector operations add some startup overhead, putting a limit on the
minimum number of elements in an array. For small arrays, the time
to process and compile the data is usually longer than doing the same
process on a scalar processor.
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2 VAX 6000 Series Vector Processor

This chapter describes the vector processor module for the VAX 6000
series. The basic hardware is briefly described and then the hardware
components are discussed from the software perspective.

The chapter includes the following sections:

• Overview

• Block Diagram

• Vector Control Unit

• Arithmetic Unit

• Load/Store Unit

• Vector Processor Registers

• Memory Management

• Cache Memory

• Vector Pipelining

• Instruction Execution
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2.1 OVERVIEW

The FV64A vector processor is a single-board option that implements the
VAX vector instruction set. This module requires a scalar CPU module
for operation. The scalar/vector pair implement the VAX instruction set
plus the VAX vector instructions. Figure 2–1 is a block diagram of the
scalar/vector pair. The vector processor occupies a slot adjacent to the
scalar CPU on the XMI. The two processors are connected by the vector
interface bus (VIB) cable.

The C-chip on the scalar module provides the operand and control
interface between the scalar CPU and the vector module. This interface is
used to issue vector instructions to the vector module, which then executes
the instruction, including all memory references necessary to load or store
vector registers. The vector processor receives all instructions and returns
status to the scalar CPU across the VIB. For memory references, the
vector processor has its own independent path to main memory.

The system supports multiple scalar CPUs with a single scalar/vector pair.
For a single scalar/vector pair, two memory controllers are required. It
also supports a dual scalar/vector pair, for which four memory controllers
are required to support the memory traffic.
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Figure 2–1 Scalar/Vector Pair Block Diagram
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2.2 BLOCK DIAGRAM

The FV64A module is divided into three separate functional units:

• Vector control unit

• Arithmetic unit

• Load/store unit

All three functional units can operate independently. Figure 2–2 is a
block diagram of the vector module.
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The FV64A chipset consists of five core chips, as follows:

• Vector instruction issue and scalar/vector interface chip

• Vector register file chip, 4 chips

• Vector arithmetic data path, floating-point unit (FPU) chip, 4 chips

• Load/Store—Vector module translation buffer, cache, and XMI
interface controller chip

• Clock generation chip (same as on scalar module)

Figure 2–2 FV64A Vector Processor Block Diagram
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2.3 VECTOR CONTROL UNIT

When the vector control unit receives instructions, it buffers the
instructions and controls instruction issue to other functional units in the
vector module. The vector control unit is responsible for all scalar/vector
communication. The vector control unit also contains the necessary
register scoreboarding to control instruction overlap. The scoreboard
implements the algorithms that permit chaining of arithmetic operations
into store operations.

To summarize, the vector control unit performs the following functions:

• Interface to the scalar processor; receives instructions from the scalar
module and also returns status.

• Instruction issue. The vector control unit issues instructions to the
other functional units of the vector module and maintains a register
scoreboard for the detection of interinstruction dependencies.

• Cache data (CD) bus master control. It relinquishes partial control to
the load/store unit during execution of load/store instructions.

• Implementation of the Vector Count Register (VCR), Vector Processor
Status Register (VPSR), Vector Length Register (VLR), Vector
Arithmetic Exception Register (VAER), and Vector Memory Activity
Check Register (VMAC).

2.4 ARITHMETIC UNIT

All register-to-register vector instructions are handled by the arithmetic
unit. Each vector register file chip contains every fourth element of
the vector registers, thus permitting four-way parallelism. These chips
receive instructions from the vector contol unit and data from the cache or
load/store, read operands from the registers, and write results back into
the registers or into the mask register. If two 32-bit operands come over
in a single 64-bit transfer, they can be read or written by two separate
register file chips.

The register set has four 64-bit ports (one read/write for memory data,
two for read operands, and one for writing results). While one instruction
is writing its results, a second can start reading its operands, thus hiding
the instruction pipeline delay. Variations in pipeline length between
instructions are smoothly handled so that no gaps exist in the flow
of write data. The register file can hold two outstanding arithmetic
instructions in its internal queue. The arithmetic unit executes two
arithmetic instructions in about the time it takes one load or store
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operation to take place. The data from the register file chip flows to
the vector FPU chip.

Input data to the vector FPU chip comes over a 32-bit bus that is driven
twice per cycle, and results are returned on a separate 32-bit bus that is
driven once per cycle. The two operands for single-precision instructions
can be passed in one cycle, while double-precision operands require
two cycles. The FPU chip has a throughput of one cycle per single-
precision operation, two cycles per double-precision operations, and 10 or
22 cycles per single- or double-precision divide. Its pipeline delay varies
for different operations; for example, the pipeline delay is 5 cycles for
all longword-type instructions and is 6 cycles for all double-precision
instructions except multiply.

2.4.1 Vector Register File Chip

The vector register file chip is the interface between the floating-point
processor and the rest of the vector module. Among its features are:

• It contains one quarter of the storage needed to implement the vector
registers defined by the VAX vector architecture (2 Kbytes/Verse).

• It provides four ports on the register file: a 64-bit, read/write port to
the CD bus for loads and stores, a 32-bit (64-bit internal) read port for
operand A, a 32-bit (64-bit internal) read port for operand B, and a 32-
bit (64-bit internal) write port for results. A load or store instruction
can be writing or reading the registers at one port, and an arithmetic
instruction can be reading its operands out of two other ports, and
another arithmetic instruction can be writing its results from still
another port. All three operations can be done in parallel. When two
longword operands are packed into the quadword, two separate vector
register file chips can each select the appropriate longword.

• It contains registers for holding two instructions, two scalar operands,
the vector length embedded in each instruction, and the vector mask.

• It performs the vector logical and vector merge instructions and
formats integer operations so that they can be executed by the FPU.
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2.4.2 Vector Floating-Point Unit Chip

The FPU chip is a multi-stage pipelined floating-point processor. Among
its features are:

• VAX vector floating-point instructions and data types. The FPU
implements instruction and data type support for all VAX vector
floating-point instructions as well as the integer multiply operation.
Floating-point data types F_, D_, and G_floating are supported.

• High-throughput external interface. The FPU receives two 32-bit
operands from the vector register file chip every cycle. It drives back
a 32-bit result to the vector register file chip in the same cycle.

• Based on the floating-point accelerator chip (the F-chip) on the scalar
module.

2.5 LOAD/STORE UNIT

When a load/store instruction is issued, the load/store unit becomes bus
master and controls the internal cache data (CD) bus. Once a load/store
instruction starts execution, no further instructions can be issued on
the CD bus until it completes. The load/store unit handles the memory
reference instructions, the address translation, the cache management,
and the memory bus interface.

If a memory instruction uses register offsets, the offset register is first
read into a buffer and then each element of the offset register is added
to the base. This saves having to turn around the internal bus for each
offset read. If a register offset is not used, addresses are generated by
adding the stride to the base. This virtual address is then translated
to a physical address by using an on-chip 136-entry, fully associative
translation buffer (TB). Two entries are checked at once by an address
predictor looking for "address translation successful" on the last element.
The early prediction permits the scalar processor to be released and
appear to be asynchronous on memory reference instructions. The load
/store unit handles translation buffer misses on its own but returns
the necessary status on invalid or swapped-out pages. Once the scalar
processor corrects the situation, the instruction is retried from the
beginning.

Once a physical address is obtained, the load/store unit looks it up in
the 32K entry tag store. The address is delayed and then passed to the
1-Mbyte cache data store. This delay permits cache lookup to complete
before data is written to the cache on store operations. In parallel, the
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corresponding register file address is presented to the four register file
chips. The data and addresses are automatically aligned for load and
store operations to permit the correct reading and writing of the register
file and cache data RAMs. Up to four cache misses can be outstanding
before the read data for the first miss returns, and hits can be taken
under misses. Cache parity errors cause the cache to be disabled, the
instruction retried, and when the instruction completes, a soft error
interrupt is sent to the scalar processor.

A duplicate copy of the cache tag store is maintained for filtering cache
invalidates from the main memory bus. The cache is write through,
with a 32-element write buffer, and memory read instructions that hit in
the cache can start while the memory write instructions are emptying the
write buffer. The cache fill size is 32 bytes. The entire process is pipelined
so that a new 64-bit word can be read or written each cycle.

The load/store unit implements the following functions:

• Execution of all load, store, gather, and scatter instructions.

• Virtual address generation logic for memory references.

• Virtual to physical address translation logic, using a translation
buffer. A 136-entry TB is part of the load/store unit. The load/store
unit also contains the data path and control necessary to implement
full VAX memory management (with assistance from the scalar CPU).

• Cache control. The load/store unit supports the tag and data store for
a 1-Mbyte write-through data cache. It also supports a duplicate tag
store for invalidate filtering.

• XMI interface. The load/store unit serves as the interface between
the vector module and the XMI bus. This includes support for four
outstanding cache misses on read requests and a 32-entry write buffer
to permit half the data from one store/scatter instruction to be held
in the buffer. The performance of the high-speed CD bus can thus be
isolated from the performance impact of the slower XMI bus.
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2.6 VECTOR PROCESSOR REGISTERS

The vector processor has 16 data registers, each containing 64 elements
numbered 0 through 63. Each element is 64 bits wide. A vector
instruction that reads or writes longwords of F_floating or integer data
reads bits <31:0> of each source element and writes bits <31:0> of each
destination element.

Other registers used with the data registers are the Vector Length, Vector
Count, and Vector Mask Registers (see Figure 2–3). The 7-bit Vector
Length Register (VLR) controls how many vector elements are processed.
VLR is loaded prior to executing a vector instruction. Once loaded, VLR
specifies the length of all subsequent vector instructions until VLR is
loaded with a new value.

The Vector Mask Register (VMR) has 64 bits, each bit corresponding to
an element in a vector register. Bit <0> corresponds to vector element
zero. The vector mask is used by the vector compare, merge, IOTA, and
all masked instructions.

The 7-bit Vector Count Register (VCR) receives the length of the offset
vector generated by the IOTA instruction.

VLR, VCR, and VMR are read and written by Move From/To Vector
Processor (MFVP/MTVP) instructions.

The Vector Count and Vector Length Registers are in the vector control
unit. The Vector Mask Register and vector data registers are split across
the four vector register file chips.
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Figure 2–3 Vector Count, Vector Length, Vector Mask, and Vector Registers
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2.7 MEMORY MANAGEMENT

The vector processor implements memory management as described in
the VAX Architecture Reference Manual.

The 32-bit virtual address is partitioned as shown in Figure 2–4.

Figure 2–4 Virtual Address Format
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Access mode
0,0 = P0 Space
0,1 = P1 Space
1,0 = S Space
1,1 = Reserved (virtual address causes length violation)

2.7.1 Translation-Not-Valid Fault

If the V bit = 0 for a page table entry (PTE) which is being used for
address translation, and no access violation (ACV) fault has occurred,
then the vector module passes status back to the scalar CPU indicating a
translation-not-valid (TNV) fault has occurred.

2.7.2 Modify Flows

If the PTE for the page being accessed has V bit = 1, access is a write,
no ACV fault has occurred, and the Modify (M) bit is not set, then the
memory management unit enters the modify flows. The load/store unit
sets the PTE M bit and continues.
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2.7.3 Memory Management Fault Priorities

Table 2–1 shows the priority order, from highest to lowest, by which the
vector processor reports faults.

Table 2–1 Memory Management Fault Prioritization

ACV Alignment TNV I/O Modify Error Reported

1 x x x x ACV vector, ACV
parameter

1 1 x x x ACV vector, align
parameter

0 0 1 x x TNV vector, TNV
parameter

1 0 0 1 x ACV vector, IOREF
parameter

0 0 0 0 1 Execute modify flows

0 0 0 0 0 None; reference OK

2.7.4 Address Space Translation

The memory management hardware translates virtual to physical
addresses using the VAX Architecture Reference Manual requirements
for vector processors.

2.7.5 Translation Buffer

The translation buffer (TB) contains 136 page table entries (PTEs). The
TB has 68 associative tags with two PTEs per tag. The TB uses a round-
robin replacement algorithm. When a TB miss occurs, two PTEs (one
quadword) are fetched from cache. If the fetch from cache results in a
cache miss, eight PTEs (one hexword) are loaded into cache from main
memory. Two PTEs are installed in the TB.

The TB can be invalidated by executing a translation buffer flush. This
is accomplished either by writing the VTBIA register or by writing the
VTBIS register with the desired virtual address to invalidate a single
location.
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2.8 CACHE MEMORY

The vector module implements a single-level, direct-mapped cache. In
addition, the load/store unit can hold the data and addresses for one
complete vector store or scatter instruction. Figure 2–5 shows the flow of
address and data in the load/store pipeline.

Each stage is a single or multiple stage based on the 44.44-ns vector
module clock. The XMI stage is a multiple of 64 ns, and the time taken
depends on the transaction type and the XMI bus activity. All memory
references must flow through the cache stage.

Figure 2–5 Address/Data Flow in Load/Store Pipeline
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2.8.1 Cache Organization

The vector processor implements a 1-Mbyte cache, direct-mapped, with a
fill of a hexword (block) and a hexword allocate (block size). The cache is
read allocate, no-write allocate, and write through. There are 32K tags,
and each tag maps one hexword block. Each tag contains one block valid
bit, a 9-bit tag, and one parity bit. Each data block contains 32 bytes and
8 parity bits, one for each longword.
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Associated with each of the 32K main tags is a duplicate tag in the
XMI interface. This tag is allocated in parallel with the main tag and is
used for determining invalidates. All XMI write command/address cycles
are compared with the duplicate tag data to determine if an invalidate
should take place. The resulting invalidate is placed in a queue for
subsequent processing in the main tag store. Figure 2–6 shows the cache
arrangement. Figure 2–7 shows how the physical address is divided.

Figure 2–6 Cache Arrangement
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The physical address passed to the cache is 27 bits long and is longword
aligned. Bit <29> is never passed to the cache, because an I/O space
reference generates a memory management exception in the translation
buffer.Bits <28:20> are compared to the tag field. Bits <19:5> provide the
row select for the cache, bits <4:3> supply the quadword address, and bit
<2> supplies the longword address.
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Figure 2–8 shows how the main tag memory is arranged. The main tag
is written with PA<28:20>, and the valid bit covers a hexword block. The
parity bit covers the tag and valid bits. The duplicate tag memory is
identical to the main tag memory.

Figure 2–9 shows the organization of the cache data. Each cache block
contains four quadwords, with eight longword parity bits.

Figure 2–8 Main Tag Memory Organization
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2.8.2 Cache Coherency

All data cached by a processor must remain coherent with data in main
memory. This means that any write done by a processor or I/O device
must displace data cached by all processors.

The XMI interface in the load/store unit continuously monitors all XMI
write transactions. When a write is detected, the address is compared
with the contents of a duplicate tag store to determine if the write should
displace data in the main cache. If the write requires that the main cache
tag be invalidated, then an invalidate queue entry is generated. The
duplicate tag store is a copy of the main tag store. When a main cache
tag allocate is performed, the corresponding duplicate tag is also allocated.
When an invalidate request is generated, the duplicate tag is immediately
invalidated. This mechanism permits full bandwidth operation of the
main cache without missing an invalidate request.

The invalidate queue is 16 entries long. In its quiescent state the load
/store unit can process invalidates faster than the XMI can generate them.
However, during execution of a load or store instruction, the invalidate
queue can fill to a level where normal processing must cease, and the
invalidate queue is then emptied before an overflow occurs. The number
of entries before this mechanism is enabled is nine.
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2.9 VECTOR PIPELINING

The vector processor, which is fully pipelined, has three major function
units: the vector issue unit, the load/store unit, and the arithmetic unit
(see Figure 2–10). These function units operate independently and are
fully pipelined. Vector instructions are received by the issue unit from
the scalar processor. The issue unit decodes the instruction, performs
various checks, and issues the instruction to either the load/store unit
or the arithmetic unit. At that point, the issue unit is finished with that
instruction and control of the instruction passes to the function unit to
which it was issued.

Figure 2–10 Vector Processor Units
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2.9.1 Vector Issue Unit

The vector issue unit acts as the controller for the vector pipeline. It
handles vector instruction decomposition, resource availability checks,
and vector instruction issue.

When an instruction is received by the vector module from the scalar
processor, the instruction is decomposed into its opcode and operands,
and the availability of the requested resources is checked. All source
and destination registers must be available before instruction execution
begins. The function unit to be used by the instruction during execution
must also be available. The instruction is not issued until all required
resources are available.
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The availability of registers is handled by a method called scoreboarding.
The rules governing register availability depend on the type of instruction
to be issued.

• For a load instruction, the register to be loaded must not be modified
by any currently executing (arithmetic) instruction, and it must not
be modified or used as input by any currently deferred (arithmetic)
instruction.

• For a store instruction, the register to be stored must not be modified
by any currently executing or deferred instruction, but it may be in
use as input. The exception is when a chain into store may occur.
In this case the store instruction can be issued while the chaining
arithmetic instruction is still executing.

• For a scatter or gather instruction, the restrictions for a load or store
instruction apply, but also the register containing the offset to be
used in the scatter or gather instruction must not be modified by any
currently executing or deferred instruction.

• For a load or store under mask instruction, the restrictions for a load
or store instruction apply, but also the mask register must not be
modified by any currently executing or deferred instruction.

• An arithmetic instruction may be issued as soon as the deferred
instruction queue of the arithmetic unit is free. Register checking for
these instructions is handled by the arithmetic unit.

In general, there must be no outstanding writes to a needed register from
prior instructions, and the destination register of the instruction must not
be used by a currently deferred instruction.

Once an instruction is issued, it may take multiple cycles before the result
of the calculation is available. Meanwhile, in the next cycle the next
instruction can be decoded and, if all its issue conditions are satisfied, it
can be issued.

2.9.2 Load/Store Unit

The load/store unit handles all cache and memory access for the vector
module. The load/store unit includes a five-segment pipeline that can
accept a new instruction every cycle. In general, the load/store pipeline
handles a single element request at a time. The exception occurs when a
load instruction is acting on single-precision, unity vector stride data. In
this special case, consecutive elements are paired and then each pair is
handled as a single request by the load/store pipeline.
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Once a load or store (or scatter or gather) instruction is issued, no further
instructions may be issued until a Memory Management Okay (MMOK)
is received. The scalar unit is also stalled until the MMOK is received.
Chapter 3 suggests certain coding techniques to minimize the impact of
this behavior as much as possible.

2.9.3 Arithmetic Unit

The arithmetic unit is composed of two parts: the vector ALU and the
vector FPU. The FPU performs all floating-point instructions as well as
compare, shift, and integer multiply. (There is no integer divide vector
instruction.) The ALU does everything else, including merge and logical
instructions and all initial instruction handling.

The ALU receives instructions from the vector issue unit. One instruction
may be queued while another instruction is executing in the arithmetic
unit. A queued (or deferred) instruction begins executing as soon as any
current instruction completes. Some overlap of instructions is possible
if both the current and the deferred instructions require the FPU and
are not divide instructions. Also, the second instruction must not begin
outputting results before the first instruction completes.

The ALU decodes the instruction and determines the type of operation
requested (see Figure 2–11). If the instruction is a Boolean or merge
instruction, the ALU performs the required operation. Floating-point
instructions, as well as integer, compare, and shift instructions, are sent
to the vector FPU for execution.

Once an instruction begins execution in the arithmetic unit, the number
of cycles delay (startup time) before the first results are returned depends
on the particular instruction executed. With the exception of any type
of divide, all instructions return new results each cycle for single-
precision data, or every other cycle for double-precision data, following
the return of the first results. The total number of cycles required for
an instruction to complete depends on the length of the vector and the
particular instruction.
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Figure 2–11 Vector Arithmetic Unit
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An instruction continues executing until all results are completed. A
deferred arithmetic instruction begins execution after the instruction in
the pipeline completes or when all the following conditions are met:

• The deferred instruction must not be a "short" instruction; that is,
the vectors used by the instruction must be at least eight elements in
length.

• The current instruction must not be a "long" instruction; that is, the
instruction must not require more than two cycles per element to
execute. (The divide instructions are the only "long" instructions.)

In other words, overlap of instruction execution can occur if the results of
the deferred instruction will not be completed before the last results from
the current instruction. The overlap of instructions will be particularly
significant for shorter vectors.

All instructions, except floating-point divide instructions, are fully
pipelined. For increased performance all arithmetic instructions are
executed by four parallel pipelines.
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2.10 INSTRUCTION EXECUTION

The vector pipeline is made up of a varying number of segments
depending on the type of instruction being executed. Once an instruction
is issued, the pipeline is under the control of the load/store unit or the
arithmetic unit. The interaction between the different function units of
the vector module can greatly affect the performance/execution of vector
instructions.

The execution time of a vector instruction can be calculated using the
following equation:

FC + IC * round_up [ VL / NPP ]

where FC is the fixed cost and IC is the incremental cost per vector
element, NPP is the number of parallel pipelines, and VL is the length
(number of elements) of the vector operand. This can be rewritten in
terms of the data as:

Startup_latency + Execution_time

where Execution_time is a function of vector length.

Note that the execution of D_ and G_floating (64-bit data) type arithmetic
instructions (except divide) can only produce results every two cycles
due to the bandwidth of the interconnect between the register file and
the vector FPU, whereas F_floating type arithmetic instructions (except
divide) produce results each cycle.

The execution time of a sequence of instructions is not necessarily equal
to the sum of the execution times of the individual instructions. Overlap
can occur between arithmetic instructions and load/store instructions as
well as between individual arithmetic instructions. It is possible that a
sequence of instructions consisting of two arithmetics followed by a load
or store can have a total execution time just slightly longer than the
execution time of the load or store or equal to the total execution time of
the arithmetics, whichever is longer.

In the case of overlap between individual arithmetic instructions, a
minimum of one cycle must elapse between the final result of the first
instruction and the first result of the following instruction. In other
words, when overlap occurs the total execution time decreases. For all
overlapping arithmetic instructions, other than the first instruction to
enter the empty pipeline, the effective fixed cost (or startup latency) is
reduced to a minimum of one cycle.
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3 Optimizing with MACRO-32

This chapter discusses optimization features of the VAX 6000 series vector
processor. Appendix A provides additional optimization examples. This
chapter includes the following sections:

• Vectorization

• Crossover Point

• Scalar/Vector Synchronization

• Instruction Flow

• Overlap of Arithmetic and Load/Store Instructions

• Out-of-Order Instruction Execution

• Chaining

• Cache

• Stride/Translation Buffer Miss

• Register Reuse
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3.1 VECTORIZATION

Many loops that VAX FORTRAN decomposes can also be vectorized. VAX
FORTRAN performs vectorization automatically whenever /VECTOR is
specified at compilation. VAX FORTRAN can vectorize any FORTRAN–77
Standard-conforming program; and vectorized programs can freely call
and be called by other programs (vectorized, not vectorized, and non-
FORTRAN) as long as both abide by the VAX Calling Standard.

The VAX vector architecture supports most FORTRAN language features,
as follows:

• Data types: LOGICAL*4, INTEGER*4, REAL*4, REAL*8,
COMPLEX*8, and COMPLEX*16

• Operators: +, -, *, /(floating point), and **

• All VAX FORTRAN intrinsic functions

Although no VAX vector form exists for integer divide operations,
VAX FORTRAN vectorizes them by converting them to floating-point
operations.

3.1.1 Using Vectorization Alone

Vectorize a program using the following iterative process:

1 Using /CHECK=BOUNDS, compile, debug, and run a scalar version of
the program.

2 Compile and run the program using /VECTOR and the suitable
vector-related qualifiers.

3 Evaluate execution time and results. The results should be
algebraically equivalent to the scalar results; if not, check the
DUMMY_ALIASES or ACCURACY_SENSITIVE settings.

• If performance is adequate, stop.

• If performance is inadequate, you have similar options as with
autodecomposition:

– Check the /SHOW=LOOPS output to see if CPU-intensive
loops vectorized. To vectorize effectively, source code must
not contain certain inhibiting constructs such as unknown
dependencies. However, you can use LSE diagnostics and add
assertions to the source code to overcome dependencies.
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– Combine vectorization with decomposition.

– Consider a solution at a higher level hierarchy.

– Retest the program compiling with /VECTOR (or any
combination with a parallel qualifier) and return to the start
of step 3.

3.1.2 Combining Decomposition with Vectorization

To produce code that executes in parallel and on vector processors, compile
/VECTOR with a parallel qualifier. Table 3–1 lists the compilation
combinations and their interpretations.

Table 3–1 Qualifier Combinations for Parallel Vector Processing

Combination Interpretation

/VECTOR/PARALLEL=AUTOMATIC

Performs a dependence analysis on suitable loops and optimizes
them for parallel-vector processing; chooses loops and prepares
them for vector or parallel processing based on whether they
will execute efficiently and produce correct results. In a nested
structure, decomposition and vectorization may occur for multiple
loops — but no loop is decomposed inside a decomposed loop
and no loop is vectorized inside a vectorized loop.

/VECTOR/PARALLEL=MANUAL

Performs a dependence analysis, optimization, and vectorization
only; disqualifies from vectorization any loops preceded by the
CPAR$ DO_PARALLEL directive from vectorization; in these
loops, parses the user-supplied directives.

/VECTOR/PARALLEL

(Same as VECTOR/PARALLEL=MANUAL)

/VECTOR/PARALLEL=(MANUAL,AUTOMATIC)

Same as /VECTOR/PARALLEL=AUTOMATIC except disqualifies
loops preceded by CPAR$ DO_PARALLEL. In those loops,
only user-supplied directives are parsed. Any loops contained
in a manually decomposed loop are disqualified from
autodecomposition but not vectorization.

Both parallel and vector processing have certain tradeoff qualities, which
affect the aggregate speedup of vector and parallel processing. The
combined vector-parallel processing will be somewhat less than the
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aggregate speedup of each because of these qualities; however, both CPU
time and wall-clock time can be reduced most dramatically when vector
and parallel processing are combined.

The qualities involved are as follows:

• Large amounts of vector load-stores can create a bottleneck in
the system. On the other hand, small amounts of CPU work can
cause the parallel processing startup overhead itself to become a
bottleneck. Vector operations have smaller startup overhead than
parallel processing, so they amortize this CPU expense much sooner.
However, vector processing demands more from memory than parallel
processing (on scalar CPUs) because one vector load or store can affect
up to 64 elements, whereas a scalar load or store typically affects only
one element.

• Vector processing is "free" for the scalar CPUs because it is done on
a vector processor; both wall-clock time and scalar CPU time are
decreased. On the other hand, parallel processing is not free for the
scalar CPUs; it can never decrease CPU time. But it can reduce
wall-clock time more dramatically than vector processing.

Vectorization can be effectively combined with decomposition:

1 Compile, debug, and run the program serially and in scalar.

2 Evaluate the algorithm and make suitable changes.

3 Unless your algorithm and system environment are especially suitable
for parallel processing or you have already decomposed the program,
compile, debug, and run the program using /VECTOR first. This is
because vectorization is "free," as stated in this section.

4 Using /VECTOR/PARALLEL=AUTOMATIC, recompile, debug, and
run the program.

5 Evaluate performance.

• If performance is adequate, stop.

• If performance is inadequate, review the /SHOW=LOOPS output
and LSE diagnostics and modify the source code as needed for
important loops that neither vectorized nor decomposed (this
most probably will include adding assertions to resolve unknown
dependencies). Then retest the program. If performance is still
not acceptable, consider manually decomposing certain loops
and look for other bottlenecks such as I/O or other performance
inhibitors.
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3.1.3 Algorithms

At times it is necessary to consider the algorithm that is represented
by the code to be optimized. Some algorithms are not as well suited to
vectorization as others. It may be more effective to change the algorithm
used or the way it is implemented rather than trying to optimize the
existing code. Increasing the work performed in any single loop iteration
and increasing the ratio of arithmetic to load/store instructions are
two effective methods to consider when optimizing an algorithm for
vectorization. Using unity stride rather than nonunity stride and longer
vector lengths are other approaches to consider.

3.2 CROSSOVER POINT

For any given instruction or sequence of instructions, there is a particular
vector length where the scalar and vector processing of equivalent
operations yield the same performance. This vector length is referred to
as the crossover point between scalar and vector processing for the given
instruction or instruction sequence and varies depending on the particular
instruction or sequence. For vector lengths below the crossover point,
scalar operations are faster; above the crossover point vector operations
are more efficient. A low crossover point is considered a benefit, since it
indicates that it is relatively easy to take advantage of the power of the
vector processor.

For any single, isolated vector instruction, the crossover point on the VAX
6000 is quite low, generally about 3 elements. But an instruction is not
performed in isolation. Taken in the context of a routine or application,
other factors affect the performance of the operations on short vectors,
in particular whether the data of the short vector is used in other vector
operations as well. In general, on the VAX 6000 vectorizing as much
code as possible, including short vector length sections, leads to higher
performance through more optimal use of cache. Specifically, once a set
of data has been operated on by vector instructions, that data will be in
the vector cache. A subsequent scalar operation on any of that same data
will require that the data be moved out of the vector cache into the scalar
cache. A vector operation would not require this data movement and thus
is usually more efficient. Overall, the crossover point on the VAX 6000
is low enough that only for isolated operations on short vectors is scalar
processing the faster alternative.
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3.3 SCALAR/VECTOR SYNCHRONIZATION

For most cases, it is desirable for a vector processor to operate
concurrently with the scalar processor so as to achieve best performance.
However, there are cases where the operation of the vector and scalar
processors must be synchronized to ensure correct program results.
Rather than forcing the vector processor to detect and automatically
provide synchronization in these cases, the architecture provides software
with special instructions to accomplish the synchronization. These
instructions synchronize the following:

• Exception reporting between the vector and scalar processors

• Memory accesses between the scalar and vector processors

• Memory accesses between multiple load/store units of the vector
processor

Software must determine when to use these synchronization instructions
to ensure correct results.

3.3.1 Scalar/Vector Instruction Synchronization (SYNC)

A mechanism for synchronization between the scalar and vector
processors is provided by the SYNC instruction, which is implemented by
a Move From Vector Processor (MFVP) instruction. SYNC allows software
to ensure that the exceptions of previously issued vector instructions are
reported before the scalar processor proceeds with the next instruction.
SYNC detects both arithmetic exceptions and asynchronous memory
management exceptions and reports these exceptions by taking the
appropriate VAX instruction fault. Once it issues the SYNC, the scalar
processor executes no further instructions until the SYNC completes or
faults.

When SYNC completes, a longword value (which is unpredictable) is
returned to the scalar processor. The scalar processor writes the longword
value to the scalar destination of the MFVP instruction and then proceeds
to execute the next instruction.

When SYNC faults, it is not completed by the vector processor, and the
scalar processor does not write a longword value to the scalar destination
of the MFVP instruction. Also depending on the exception condition
encountered, the SYNC itself takes either a vector processor disabled
fault or memory management fault. After the appropriate fault has been
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serviced, the SYNC may be returned to through a Return from Exception
or Interrupt (REI) instruction.

SYNC only affects the scalar/vector processor pair that executed it. It has
no effect on other processors in a multiprocessor system.

3.3.2 Scalar/Vector Memory Synchronization

The scalar processor and the vector processor can access memory at the
same time during:

• Asynchronous memory management mode

• Synchronous memory management mode, after the vector processor
indicates no memory management exceptions occurred

When the scalar processor and the vector processor access memory at
the same time, it may be desirable to synchronize their accesses. Using
an MFVP from MSYNC vector control register causes the scalar CPU to
stall until previous memory accesses by either the vector processor or the
scalar processor are completed and visible to the other. MSYNC is for
user software.

Scalar/vector memory synchronization allows software to ensure that the
memory activity of the scalar/vector processor pair has ceased and that
the resultant memory writes have been made visible to each processor
in the pair before the pair’s scalar processor proceeds with the next
instruction. Two ways are provided to ensure scalar/vector memory
synchronization:

• Using MSYNC, which is implemented by the MFVP instruction

• Using the Move From Processor Register (MFPR) instruction to read
the Vector Memory Activity Check (VMAC) internal processor register

In the following example, both the vector processor load instruction
(VLDL) and the scalar processor move instruction (MOVF) would be
using the same BASE memory. MSYNC ensures that the load instruction
completes before beginning the move instruction.

VLDL BASE, #4, V1
MSYNC R0
MOVF#^F3.0, BASE
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Scalar/vector memory synchronization does not mean that previously
issued vector memory instructions have completed; it only means
that the vector and scalar processor are no longer performing memory
operations. While both VMAC and MSYNC provide scalar/vector memory
synchronization, MSYNC performs significantly more than just that
function. In addition, VMAC and MSYNC differ in their exception
behavior.

Note that scalar/vector memory synchronization only affects the processor
pair that executed it. Other processors in a multiprocessor system are not
affected. Scalar/vector memory synchronization does not ensure that the
writes made by one scalar/vector pair are visible to any other scalar or
vector processor.

Software can make data visible and shared between a scalar/vector pair
and other scalar and vector processors by using the mechanisms described
in the VAX Architecture Reference Manual. Software must first make
a memory write by the vector processor visible to its associated scalar
processor through scalar/vector memory synchronization synchronization)
before making the write visible to other processors. Without performing
this scalar/vector synchronization, it is unpredictable whether the vector
memory write will be made visible to other processors even by the
mechanisms described in the VAX Architecture Reference Manual.

Note that waiting for VPSR<BSY> to be clear does not guarantee that a
vector write is visible to the scalar processor.

3.3.2.1 Memory Instruction Synchronization (MSYNC)

Once it issues MSYNC, the scalar processor executes no further
instructions until MSYNC completes or faults.

When MSYNC completes, a longword value (which is unpredictable) is
returned to the scalar processor, which writes it to the scalar destination
of the MFVP instruction. The scalar processor then proceeds to execute
the next instruction.

Arithmetic and asynchronous memory management exceptions
encountered by previous vector instructions can cause MSYNC to fault.

When MSYNC faults, all previously issued scalar and vector memory
instructions may not have finished. In this case, the scalar processor
writes no longword value to the scalar destination of the MFVP.
Depending on the exception encountered by the vector processor, the
MSYNC takes a vector processor disabled fault or memory management
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fault. After the fault has been serviced, the MSYNC may be returned to
through a Return from Exception or Interrupt (REI) instruction.

3.3.2.2 Memory Activity Completion Synchronization (VMAC)

Privileged software needs a way to ensure scalar/vector memory
synchronization that will not result in any exceptions being reported.
Reading the Vector Memory Activity Check (VMAC) internal processor
register with the privileged Move From Processor Register (MFPR)
instruction is provided for these situations. It is especially useful for
context switching.

Once an MFPR from VMAC is issued by the scalar processor, the scalar
processor executes no further instructions until all vector and scalar
memory activities have ceased; all resultant memory writes have been
made visible to both the scalar and vector processor; and a longword
value (which is unpredictable) is returned to the scalar processor. After
writing the longword value to the scalar destination of the MFPR, the
scalar processor then proceeds to execute the next instruction.

Vector arithmetic and memory management exceptions of previous vector
instructions never fault a privileged MFPR from the Vector Memory
Activity Check Register and never suspend its execution.

3.3.3 Memory Synchronization Within the Vector Processor (VSYNC)

The vector processor can concurrently execute a number of vector memory
instructions through the use of multiple load/store paths to memory.
When it is necessary to synchronize the accesses of multiple vector
memory instructions, the MSYNC instruction can be used; however, there
are cases for which this instruction does more than is needed. If it is
known that only synchronization between the memory accesses of vector
instructions is required, the Synchronize Vector Memory Access (VSYNC)
instruction is more efficient.

If a conflict results within the vector processor for accessing memory,
a VSYNC instruction can be used. VSYNC ensures that the current
memory access instruction is complete before executing another. This
instruction does not affect scalar processor memory access instructions.

VSYNC orders the conflicting memory accesses of vector memory
instructions issued after VSYNC with those of vector memory instructions
issued before VSYNC. Specifically, VSYNC forces the access of a memory
location by any subsequent vector memory instruction to wait for (depend
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upon) the completion of all prior conflicting accesses of that location by
previous vector memory instructions.

VSYNC does not have any synchronizing effect between scalar and vector
memory access instructions. VSYNC also has no synchronizing effect
between vector load instructions because multiple load accesses cannot
conflict. It also does not ensure that previous vector memory management
exceptions are reported to the scalar processor.

3.3.4 Exceptions

There are two categories of exceptions within the vector processor:

• Imprecise exceptions

• Precise exceptions

3.3.4.1 Imprecise Exceptions

Imprecise exceptions can occur within the vector processor when
arithmetic instructions are processing. They may be caused by typical
arithmetic problems such as division by zero or underflow. Because the
vector processor can execute instructions out of order, it is not possible
to determine the instruction that caused the exception from the updated
program counter (PC). The PC in the scalar processor is pointing further
down the instruction stream and cannot be backed up to point at the
failing instruction. To report the exception condition in this case, the
vector processor disables itself so that the scalar processor will take a
vector disable fault when it attempts to dispatch a vector instruction. The
vector disable fault handler then determines the cause. When this type
of exception occurs, the vector controller sets a bit in the register mask
in the Vector Arithmetic Exception Register (VAER) IPR to indicate the
destination vector register which received data from the exception. It
then informs the scalar CPU of the exception.

When debugging code, it is often necessary to be able to find the precise
instruction causing the problem. Inserting a SYNC instruction after
each arithmetic instruction will cause the machine to run in precise
mode, waiting for each instruction to complete before executing the next.
However, it will run much slower than when imprecise exceptions are
allowed to occur.
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3.3.4.2 Precise Exceptions

The vector processor produces precise exceptions for memory management
faults. When a memory management exception occurs, microcode and
operating system handlers are used to fix the exception.

The vector processor cannot service Translation Not Valid and Access-
Control Violation faults. To handle these exceptions, the vector processor
passes sufficient state data back to the scalar CPU. Then if a memory
management fault occurs, the microcode can build a vector exception
frame on the stack so that vector processor memory manangement
exceptions will be handled precisely and the faulting instruction restarted.

To enforce synchronous operation, after a vector load/store operation is
issued, the scalar CPU will not issue additional instructions until memory
management has completed. To reduce the delay from the issue of a
load/store instruction to the issue of the next instruction, the load/store
unit has special logic which predicts when load/store instructions can
proceed fault free. When the load/store unit knows it can perform all
virtual to physical translations without incurring a memory management
fault, it issues the MMOK signal to the vector control unit. The scalar
CPU is then released to issue more instructions while the load/store unit
completes the remainder of the data transfers. This mechanism reduces
the overhead associated with providing precise memory management
faults.

3.4 INSTRUCTION FLOW

Vector instructions are read from the scalar CPU’s I-stream. The scalar
issue unit decodes the vector instructions and passes them to the vector
CPU. The instructions are decoded by the vector control unit and then
issued to the appropriate function unit through the internal bus. Before
instruction issue, the instruction is checked against a register scoreboard
to verify that it will not use a corrupted register or attempt to modify
a register that is already in use. Load, store, scatter, and gather
instructions are processed in the Load/Store chip. These instructions
either fetch data from memory and place it in the vector register file or
write data from the vector register file to memory.

Arithmetic instructions are passed to the arithmetic pipelines by way
of control registers in the register file chips. An arithmetic instruction
has a fixed startup latency. To minimize the effects of this latency,
the arithmetic pipelines support the ability to queue two arithmetic
instructions. This permits the arithmetic pipeline controller to start
the second instruction without any startup latency. The removal of
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startup latency for the second arithmetic instruction (deferred arithemetic
instruction) is a benefit in algorithms that require less than eight Bytes
/FLOP of load/store bandwidth.

Typical algorithms benefit greatly from the ability to chain an arithmetic
operation into a store operation. The vector control unit, along with the
ALU unit, implements this capability. The following sections describe by
instruction type the flow of instructions in the machine.

3.4.1 Load Instruction

When a load instruction is received by the vector control unit, the
destination vector register is checked against outstanding arithmetic
instructions. A load instruction cannot begin execution until the
register to which it will write is free. A register conflict may occur
if the destination register of a load instruction is the same as one of
the registers used by a preceding arithmetic instruction. If instruction
execution overlap could occur if the load instruction were using a different
register, then the register conflict can be eliminated by simply changing
the register used.

If there are no register usage conflicts, the instruction is dispatched to the
load/store unit. An example of a memory access instruction in assembler
notation is as follows:

VLDL base, stride, Vc

where:

VLD = vector load (load memory data into vector register)
L = longword (Q would equal quadword)
base = beginning of first element
stride = number of memory locations (bytes) between the

starting address of the first element and the
next element

Vc = vector register destination result

This instruction means:

Load the vector register (Vc) from memory, starting at the base address
(base), incrementing consecutive addresses by the stride in bytes. The
load operation writes the data from memory into the destination register.
The store operation writes the data from the vector register back to
memory.
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In the load/store instruction, the Vector Length Register (VLR) and the
Vector Mask Register (VMR) with the match true/false (T/F) (when the
mask operate enable (MOE) bit is set) determine which elements to access
in Vc. For longwords, only bits <31:0> may be accessed. The elements
can be loaded or stored out of order, because there can be multiple load
/store units and multiple paths to memory, a desirable effect of vector
processors.

A Modify Intent (MI) bit may be used with the VLD instruction to improve
performance for systems that use writeback caches. The MI bit is not
used for store or scatter instructions.

During a load operation, the first element in memory at the base address
loads into the destination vector register. The next element in memory
at the base address plus the stride loads into the next location in the
destination vector register. With a vector load/store operation, the stride
is constant, so that the third address in memory is the base address plus
two times the stride.

3.4.2 Store Instruction

When the vector control unit receives a store instruction, the source
vector register is checked against outstanding arithmetic instructions. If
there are no conflicts, the instruction is dispatched to the load/store unit.
If the source for the store is the destination of the current arithmetic
instruction, and the deferred arithmetic instruction does not conflict with
the source vector register, and the arithmetic instruction is not a divide,
then the vector control unit waits for a signal from the arithmetic unit
to indicate that the store operation can start. The instruction is then
dispatched to the load/store unit.

During a store operation, the data moves in the opposite direction, from
the destination vector register back to memory. The elements of the vector
are placed back into memory at the base address plus a multiple of the
stride, as shown in the following example:

VLDL base,#4,V3 Load vector V3 from memory, starting at
the "base" address and obtaining next
elements every 4 bytes apart (stride = 4).

VSTL V1,base,#16 Store vector V4 into memory starting at
"base" address and placing next
elements 16 bytes apart.
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The data from a store instruction is internally buffered in the chip. This
offers the advantage of allowing cache hit load instructions to issue and
complete while the write executes over the XMI.

3.4.3 Memory Management Okay (MMOK)

When a memory reference occurs, control is turned over to memory
management until an MMOK is returned indicating that all memory
references were successful. An algorithm is used to predict when MMOK
will be returned, to determine when new instructions can be issued. For
every vector element a new last element virtual address is calculated
based on the current element virtual address, the number of remaining
elements, and the stride. Every element virtual address is compared to
the calculated last element virtual address to determine whether both
reside in the same two virtual page window. If they do reside within the
same two pages and if the current virtual address has been successfully
translated, then MMOK is asserted. If not, then the generation of virtual
addresses continues.

3.4.4 Gather/Scatter Instructions

An array whose subscript is an integer vector expression is "indirectly
addressed." Indirect addressing appearing on the right side of an
assignment statement is called a gather operation; on the left side it
is known as a scatter, as shown in the following:

DO 80 I = 1,95
J = IPICK(I)
A(I) = B(J) + C(K(I)+3) * D(I)

80 CONTINUE

Array A requires a scatter operation. B and C require gathers.

Loops that contain references to a scattered array or stores into a
gathered array [have potential for data dependency, as shown in the
following:

DO 10 I = 1,N
A(I) = B(I) + C(I) / D(ID(I))
B(IB(I)) = X(I) * Y(I)
D(I) = E(I)**2
G(JG(I)) = 2. * G(NG(I))

10 CONTINUE

Potential data dependency exists for arrays B, D, and G.
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When a gather or scatter instruction is received by the vector control unit,
the destination/source register is checked against outstanding arithmetic
instructions. If there are no conflicts, the instruction is dispatched
to the load/store unit. The load/store unit will then fetch the offset
vector register. When this is complete, the vector control unit reissues
the instruction and the gather/scatter operation takes place using the
previously stored offset vector register to generate the virtual addresses.

A gather instruction is used to collect memory data into vector registers
when the memory data does not have a constant stride. The memory data
starts with a base address plus an offset number of up to a 64-element
(depending on VL) register of offsets. The elements are loaded nearly as
fast as a load instruction and are loaded sequentially in the destination
register. (The scatter instruction stores the result back to memory using
the same offsets.)

3.4.5 Masked Load/Store, Gather/Scatter Instructions

The operation for masked memory instructions is identical to the
unmasked versions except the following operations are performed first.
The vector controller checks if any outstanding arithmetic instructions
will modify the mask register. If not, the vector controller reads the mask
from the arithmetic unit and sends it to the load/store unit. The sequence
is then performed as above.

3.5 OVERLAP OF ARITHMETIC AND LOAD/STORE INSTRUCTIONS

Arithmetic instructions and load/store instructions may overlap because
the functional units are independent. To achieve this overlap, the
following conditions must be met:

• The arithmetic instruction must be issued before the load/store
instruction.

• There must be no register conflict between the arithmetic and load
/store instructions.

In the following example, while the results of vector register 2, V2,
are being calculated, vector register 4, V4, is being stored in memory.
Consequently, this is referred to as overlapping instructions.

VVADDL V1,V3,V2
VSTL V4,base,#4
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In the following examples, an I represents instruction issue time and an E
represents instruction execution time. A series of periods represents wait
time in the arithmetic unit for deferred instructions. Notice that these
are not exact timing examples, since they do not correspond to individual
instruction timings, but are for illustration purposes only.

In Example 3–1 the execution of the VLDL instruction does overlap the
VVADDL instruction because there is no conflict in the destination vector
registers, V3 and V1, for the add and load respectively.

Example 3–1 Overlapped Load and Arithmetic Instructions

VVADDL V1,V2,V3 IEEEEEEEE
VLDL base,#4,V1 IEEEEEEEEEEEEEE

3.5.1 Maximizing Instruction Execution Overlap

Three important hardware features help to maximize instruction overlap
in the load/store unit. First, a load or store instruction can execute in
parallel with up to two arithmetic instructions, provided the arithmetic
instructions are issued first. Second, the chain into store sequence can
reduce the perceived execution time of a store instruction. Finally, early
detection of no memory faults allows scalar-to-vector communications to
overlap with load or store instruction execution.

In the first instruction sequence in Example 3–2 there is little overlapping
of instructions, whereas in the second sequence the VVMULL and the
second VLDL instructions overlap and require less total time to complete
execution. The only difference between the two instruction sequences
is the order in which they are issued. Because the VVMULL does not
require the result of the second VLDL and can precede that instruction, a
significant reduction in execution time is achieved.

Another effective way to maximize the overlap of load/store instructions is
to precede, wherever possible, all load and store instructions by at least
two arithmetic instructions. In this way both the load/store pipeline and
the arithmetic pipeline will be in use.
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Example 3–2 Maximizing Instruction Execution Overlap

Instruction Sequence 1

VLDL base1,#4,V1 IEEEEEEEEE
VLDL base2,#4,V2 IEEEEEEEEE
VVMULL V3,V1,V1 IEEEEE
VVADDL V1,V2,V2 I....EEEEE
VSTL V2,base,#4 IEEEEEEEEE

Instruction Sequence 2

VLDL base1,#4,V1 IEEEEEEEEE
VVMULL V3,V1,V1 IEEEEE
VLDL base2,#4,V2 IEEEEEEEEE
VVADDL V1,V2,V2 IEEEEE
VSTL V2,base,#4 IEEEEEEEEE

A load instruction cannot begin execution until the register to which
it will write is free. A register conflict may occur if the destination
register of a load instruction is the same as one of the registers used
by a preceding arithmetic instruction. If instruction execution overlap
could occur if the load instruction were using a different register, then the
register conflict can be eliminated by simply changing the register used.

Example 3–3 shows the effects of register conflict. In the first instruction
sequence the VLDL instruction must wait until the VVADDL instruction
completes and the VVMULL instruction begins because VLDL will change
the contents of one of the registers that provides input to the deferred
VVMULL instruction. In the second instruction sequence it is possible
to take advantage of the deferred arithmetic instruction queue and
overlap the VLDL and arithmetic instruction execution because the
VLDL instruction does not change the registers used by the arithmetic
instructions. By simply changing the register to which the VLDL will
write, the total execution time for the instruction sequence is reduced.

The locality of reference of data plays an important role in determining
the performance of load/store operations. Unity stride load and store
instructions are the most efficient. For this reason, whenever possible
data should be stored in the sequential order in which it is usually
referenced.
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Example 3–3 Effects of Register Conflict

Instruction Sequence 1

VVADDL V1,V2,V3 IEEEEE
VVMULL V1,V2,V4 I....EEEEE
VLDL base,#4,V1 IEEEEEEEEE

Instruction Sequence 2

VVADDL V1,V2,V3 IEEEEE
VVMULL V1,V2,V4 I....EEEEE
VLDL base,#4,V5 IEEEEEEEEE

Nonunity stride loads and stores can have a significantly higher impact on
the performance level of the XMI memory bus as compared to unity stride
operations. A far greater number of memory references are required for
nonunity stride than is the case for unity stride. If the ratio of cache
miss load/store to arithmetic instructions is sufficiently high and nonunity
stride is used, bus bandwidth can become the limiting performance factor.

3.6 OUT-OF-ORDER INSTRUCTION EXECUTION

The deferred instruction queue (of length 1) associated with the arithmetic
unit allows the vector issue unit to queue one instruction to the arithmetic
unit while that unit is still executing a previous instruction. The issue
unit checks the status of this queue when it does the functional unit
availability check for an instruction. (Both the deferred and currently
executing instructions are checked for register availability.) This frees the
issue unit to process another instruction rather than having to wait for
the arithmetic unit to complete its current instruction.

Example 3–4 shows the use of the deferred arithmetic instruction queue.
If a deferred instruction queue was not implemented, the VVMULL
instruction could not be issued until the VVADDL was completed (or
nearly completed). The VLDL instruction would then not issue until
after the VVMULL was issued and would complete much later than in
the deferred instruction case. Once the VLDL instruction is issued, no
other instructions may be issued. The overlap of instruction execution
made possible by the deferred instruction queue can significantly reduce
the total execution time. The VLDL instruction can overlap the deferred
VVMULL instruction because there are no register conflicts between the
two instructions.
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Example 3–4 Deferred Arithmetic Instruction Queue

Instruction Sequence

VVADDL V1,V2,V3
VVMULL V3,V1,V4
VLDL base,#4,V2

Execution without Deferred Instruction Queue

Issue VVADDL IEEEEEEEE
Issue VVMULL IEEEEEEEE
Issue VLDL IEEEEEEEEEEEEEE

Execution with Deferred Instruction Queue

Issue VVADDL IEEEEEEEE
Issue deferred VVMULL I.......EEEEEEEE
Issue VLDL IEEEEEEEEEEEEEE

In Example 3–5 the VLDL instruction cannot begin before VVMULL
because VVMULL needs data in V3 before the VLDL takes place.

Example 3–5 A Load Stalled due to an Arithmetic Instruction

VVADDL V1,V2,V3 IEEEEEEEE
VVMULL V3,V4,V5 I.......EEEEEEEE
VLDL base,#4,V3 IEEEEEEEEEEEEEE

To take advantage of the deferred instruction queue, close attention to
instruction ordering and register use is required. Generally, a divide
or two other arithmetic instructions should precede each load or store
instruction. (In the case of divide instructions, multiple load/store
instructions can be overlapped with a single divide instruction.) This
is not always possible, since initial loads are usually necessary and
there may not be two arithmetic instructions per load/store. Also, some
instruction ordering is dictated by the use of the data. But even with
these restrictions, it is still important to watch for potential instruction
execution overlap.
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Example 3–6 is another example of the use of a deferred arithmetic
instruction. In this case, a divide instruction is followed by an add
and then a load. The deferred instruction queue and the length of the
divide instruction combine to "hide" the load instruction (that is, the
execution time of the load instruction does not contribute to the total
execution time of the instruction sequence). Note also that the divide
instruction completes after the load completes. Out of order completion of
instructions is possible.

Example 3–6 Use of the Deferred Arithmetic Instruction Queue

Instruction Sequence

VVDIVL V1,V2,V3
VVADDL V3,V1,V4
VLDL base,#4,V5

Execution without Deferred Instruction Queue

Issue VVDIVL IEEEEEEEEEEEEEEEEEEEE
Issue VVADDL IEEEEEEEE
Issue VLDL IEEEEEEEEEEEEEE

Execution with Deferred Instruction Queue

Issue VVDIVL IEEEEEEEEEEEEEEEEEEEE
Issue deferred VVADDL I...................EEEEEEEE
Issue VLDL IEEEEEEEEEEEEEE

3.7 CHAINING

Vector operands are generally read from and written to the vector register
file. An exception to this process occurs when a store instruction is
waiting for the results of a currently executing arithmetic instruction.
(Divide instructions are not included in this exception because they do
not have the same degree of pipelining as the other instructions.) As
results are generated by the arithmetic instruction and are ready to be
written to the register file, they are also immediately available for input
to the waiting store instruction. Therefore, the store instruction can begin
processing the data before the arithmetic instruction has completed. This
process is called "chain into store." The store instruction will not overrun
the arithmetic instruction because the store instruction cannot process
data faster than the arithmetic unit can generate results.
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In Example 3–7, the VSTL instruction requires the result of the VVADDL
instruction and without chain into store would have to wait for the
VVADDL to complete before beginning the store operation. The use of
chain into store allows the VSTL operation to begin after the first result
of the add is complete, while the VVADDL is still executing and greater
overlap of instruction execution is the result. The instruction sequence
requires a shorter period of time to complete.

The coordination of the arithmetic operation and the VSTORE for a chain
into store is handled by the vector arithmetic unit and depends on a
number of factors such as vector length.

Example 3–7 Example of Chain Into Store

Instruction Sequence

VVADDL V1,V2,V3
VVMULL V1,V2,V4
VSTL V3,base,#4

Execution without Chain into Store:

Issue VVADDL IEEEEEEEE
Issue deferred VVMULL I.......EEEEEEEE
Issue VSTL IEEEEEEEEEEEEEE

Execution with Chain into Store:

Issue VVADDL IEEEEEEEE
Issue deferred VVMULL I.......EEEEEEEE
Issue VSTL IEEEEEEEEEEEEEE

3.8 CACHE

With the 1-Mbyte vector cache, up to four load operations with cache
misses can be queued at one time. The pipeline continues processing
vector element loads until a fourth cache miss occurs. At that point the
cache miss queue is full and the pipeline stalls. The pipeline remains
stalled until one of the cache misses is serviced. Cache misses on a load
instruction degrade the performance of the load/store pipeline.
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A cache miss is serviced by a hexword fill. On the XMI, a hexword
transfer is 80 percent efficient since one address is sent to receive four
quadwords of data. An octaword transfer is 67 percent efficient since one
address is sent to receive two quadwords of data. A quadword transfer is
only 50 percent efficient since one address is sent to receive one quadword
of data. For this reason, stores are more efficient with unity stride than
with nonunity stride. A larger piece of memory can be referenced by a
single address so that fewer memory references are required.

In the case of load instructions, the comparison of unity and nonunity
stride is less straightforward. A nonunity stride cache miss load causes a
full hexword to be read from memory even though the load requires only
a longword or quadword of data. If the additional data is not referenced
by subsequent load instructions, then the nonunity stride load is much
less efficient than a unity stride load. If subsequent loads do reference
the extra data, then nonunity stride load performance improves due
to high cache hit rates for the subsequent loads. For double-precision
data there is little degradation due to nonunity stride in this case. For
single-precision data, unity stride loads will show significantly higher
performance because of the load/store pipeline optimization for single-
precision unity stride loads.

3.9 STRIDE/TRANSLATION BUFFER MISS

A vector’s stride is the number of memory locations (bytes) between the
starting address of consecutive vector elements. A vector with a stride of
1 is contiguous; it has no gaps in memory between vector elements.

Consider the vector arrays A and B in the following DO loop. Vector A
has a stride of 1; vector B has a stride of 2.

DO 100 I=1,5
A(I) = B(I*2)

100 CONTINUE

When a translation buffer (TB) miss occurs, two PTEs (1 quadword) are
fetched from cache. If this fetch results in a cache miss, then a hexword
(eight PTEs) is loaded into cache from memory but only two PTEs are
installed in the TB.

This handling of TB misses has a large effect on the performance of
nonunity stride vectors. A stride of two pages (256 longwords or 128
quadwords) or more can result in a TB miss for each data item. A stride
of eight pages (1024 longwords or 512 quadwords) or more can result in a
TB miss that can cause a cache miss for each data item. Unity stride is
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most efficient in that it runs sequentially through the data and makes full
use of all PTEs fetched.

An example of how to avoid large vector strides can be seen in a simple
matrix multiplication problem:

DO I = 1, N
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)
ENDDO
ENDDO
ENDDO

If coded as written, there is a choice of which variable to vectorize on.
If the "K" variable is chosen, array A will access FORTRAN rows that
are nonunity stride. This choice also means that for every K, a reduction
operation is required to sum the product of A and B into the C array.
Although reduction functions vectorize, they are less efficient than other
methods.

A better choice is to vectorize on either I or J. J is not the best candidate
because it involves nonunity stride for both the B and the C arrays.
For large values of N, this is an inefficient use of the bus bandwidth,
the translation buffer, and the cache. Clearly the optimal solution is to
vectorize on the I variable.

Example 3–8 shows a first attempt to code the matrix multiplication in
MACRO pseudocode for vectors. Although this example uses unity stride,
it is far from optimal. Notice that it is not necessary to load and store
C for different values of K because C is dependent only on the I and J
variables. By removing the load and store of C from the inner loop, the
bytes/FLOP ratio (load and stores: arithmetics) drops from 12 to 2 down
to 4 to 2. Example 3–9 shows an improved version.
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Example 3–8 Matrix Multiply—Basic

msync R0 ;synchronize with scalar
LOOP:

vldl A(I,K),#4,V0 ;col of A is loaded into V0
vsmulf B(K,J),V0,V0 ;V0 gets the product of V0

;and the scalar value B(K,J)
vldl C(I,J),#4,V1 ;col of C gets loaded into V1
vvaddf V0,V1,V1 ;V1 gets V0 summed with V1
vstl V1,C(I,J),#4 ;V1 is stored back into C

INC K ;increment K by one
IF (K < N) GOTO LOOP ;Loop for all values of K

INC J ;increment J by vector length
IF (J < N) GOTO LOOP ;Loop for all values of J

INC I, RESET J ;increment I by vector length
IF (I < N) GOTO LOOP ;Loop for all values of I

msync R0 ;synchronize with scalar

Example 3–9 Matrix Multiply—Improved

msync R0 ;synchronize with scalar
IJLOOP:

vldl C(I,J),#4,V1 ;col of C gets loaded into V1
KLOOP:

vldl A(I,K),#4,V0 ;col of A is loaded into V0
vsmulf B(K,J),V0,V0 ;V0 gets the product of V0

;and the scalar value B(K,J)
vvaddf V0,V1,V1 ;V1 gets V0 summed with V1

INC K ;increment K by one
IF (K < N) GOTO KLOOP ;Loop for all values of K

vstl V2,C(I,J),#4 ;V2 is stored back into C

INC J, RESET K ;increment J by vector length
IF (J < N) GOTO IJLOOP ;Loop for all values of J

INC I, RESET J ;increment I by vector length
IF (I < N) GOTO IJLOOP ;Loop for all values of I

msync R0 ;synchronize with scalar
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3.10 REGISTER REUSE

The concept used in Example 3–9 to reuse the data when it has already
been loaded into a vector register is known as register reuse. Register
reuse can be extended further by using all available vector registers to
decrease the bytes/FLOP ratio and improve performance. With maximum
register reuse, programs on the VAX 6000 Model 400 vector processor can
approach a peak single-precision performance of 90 MFLOPs and a peak
double-precision performance of 45 MFLOPs.

To implement register reuse for matrix multiply, the J loop must be
unrolled. By precomputing 14 partial results, using only the first column
of A with 14 different columns of B, it is possible to use 14 vector registers
(instead of 14 memory locations) to hold the partial results. Thus, all N
rows of B can be accessed in groups of 14 columns to compute the first
14 columns of C. When the final row of B is reached, the results are
chained into a store into array C. Then the next set of 14 columns of C
will be calculated. The unrolling depth of 14 is chosen because of the
number of vector registers. Example 3–10 shows the MACRO pseudocode
to accomplish this for values of N <= 64. Although the code length is
longer, the performance is greatly improved by the segments of code that
are purely vector arithmetics. The bytes/FLOP ratio has dropped to better
than 4 to 14, allowing the algorithm to approach peak vector speeds.
When implemented in matrix solvers, speedups greater than 25 have been
realized in a VAX 6000 Model 410 vector processor computer system.
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Example 3–10 Matrix Multiply—Optimal

msync R0 ;synchronize with scalar
mtvlr #N ;

;
loop2: ;first segment

;
vldl A(I,K),#4,v0 ;

;mul
;

vsmulf B(K,J),v0,v2 ;

vsmulf B(K,J+1),v0,v3 ;
vsmulf B(K,J+2),v0,v4 ;
vsmulf B(K,J+3),v0,v5 ;
vsmulf B(K,J+4),v0,v6 ;
vsmulf B(K,J+5),v0,v7 ;
vsmulf B(K,J+6),v0,v8 ;
vsmulf B(K,J+7),v0,v9 ;
vsmulf B(K,J+8),v0,v10 ;
vsmulf B(K,J+9),v0,v11 ;
vsmulf B(K,J+10),v0,v12 ;
vsmulf B(K,J+11),v0,v13 ;
vsmulf B(K,J+12),v0,v14 ;
vsmulf B(K,J+13),v0,v15 ;

; update
;

INC K
loop1: ;

;load col of A
;

vldl A(I,K),#4,v0 ;
;mul and add
;

vsmulf B(K,J),v0,v1
vvaddf v1,v2,v2 ;
vsmulf B(K,J+1),v0,v1
vvaddf v1,v3,v3 ;
vsmulf B(K,J+2),v0,v1
vvaddf v1,v4,v4 ;
vsmulf B(K,J+3),v0,v1

Example 3–10 Cont’d on next page
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Example 3–10 (Cont.) Matrix Multiply—Optimal

vvaddf v1,v5,v5 ;
vsmulf B(K,J+4),v0,v1
vvaddf v1,v6,v6 ;
vsmulf B(K,J+5),v0,v1
vvaddf v1,v7,v7 ;
vsmulf B(K,J+6),v0,v1
vvaddf v1,v8,v8 ;
vsmulf B(K,J+7),v0,v1
vvaddf v1,v9,v9 ;
vsmulf B(K,J+8),v0,v1
vvaddf v1,v10,v10 ;
vsmulf B(K,J+9),v0,v1
vvaddf v1,v11,v11 ;
vsmulf B(K,J+10),v0,v1
vvaddf v1,v12,v12 ;
vsmulf B(K,J+11),v0,v1
vvaddf v1,v13,v13 ;
vsmulf B(K,J+12),v0,v1
vvaddf v1,v14,v14 ;
vsmulf B(K,J+13),v0,v1
vvaddf v1,v15,v15 ;

; update
;

INC K
IF (K < N) GOTO LOOP1 ;Loop for all values of K

;
;last element

loopa1: ;
;load col of A
;

vldl A(I,K),#4,v0 ;
;mul, add and store
;

Example 3–10 Cont’d on next page
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Example 3–10 (Cont.) Matrix Multiply—Optimal

vsmulf B(K,J),v0,v1
vvaddf v1,v2,v2
vstl v2,C(I,J),#4 ;
vsmulf B(K,J+1),v0,v1
vvaddf v1,v3,v3
vstl v3,C(I,J+1),#4 ;
vsmulf B(K,J+2),v0,v1
vvaddf v1,v4,v4
vstl v4,C(I,J+2),#4 ;
vsmulf B(K,J+3),v0,v1
vvaddf v1,v5,v5
vstl v5,C(I,J+3),#4 ;
vsmulf B(K,J+4),v0,v1
vvaddf v1,v6,v6
vstl v6,C(I,J+4),#4 ;
vsmulf B(K,J+5),v0,v1
vvaddf v1,v7,v7
vstl v7,C(I,J+5),#4 ;
vsmulf B(K,J+6),v0,v1
vvaddf v1,v8,v8
vstl v8,C(I,J+6),#4 ;
vsmulf B(K,J+7),v0,v1
vvaddf v1,v9,v9
vstl v9,C(I,J+7),#4 ;
vsmulf B(K,J+8),v0,v1
vvaddf v1,v10,v10
vstl v10,C(I,J+8),#4 ;
vsmulf B(K,J+9),v0,v1
vvaddf v1,v11,v11
vstl v11,C(I,J+9),#4 ;
vsmulf B(K,J+10),v0,v1
vvaddf v1,v12,v12
vstl v12,C(I,J+10),#4 ;
vsmulf B(K,J+11),v0,v1
vvaddf v1,v13,v13
vstl v13,C(I,J+11),#4 ;
vsmulf B(K,J+12),v0,v1
vvaddf v1,v14,v14
vstl v14,C(I,J+12),#4 ;
vsmulf B(K,J+13),v0,v1
vvaddf v1,v15,v15
vstl v15,C(I,J+13),#4 ;

; update
;

Example 3–10 Cont’d on next page

3–28



Optimizing with MACRO-32

Example 3–10 (Cont.) Matrix Multiply—Optimal

RESET K
RESET I
INC J by 14
IF (J < N) GOTO LOOP2 ;Loop for all values of K

msync R0 ;synchronize with scalar
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A Algorithm Optimization Examples

This appendix illustrates how the characteristics of the VAX 6000
series vector processor can be used to build optimized routines for this
system and how the algorithm and its implementation can change the
performance of an application on the VAX 6000 processor.

The VAX 6000 series vector processor delivers high performance for
computationally intensive applications. Based on CMOS technology, the
VAX 6000 Model 400 vector processor is capable of operating at peak
speeds of 90 MFLOPs single precision and 45 MFLOPs double precision.
Linear algebra and signal processing applications that utilize the
various hardware features have demonstrated vector speedups between
3 and 35 over the scalar VAX 6000 CPU times. With the integrated
vector processing available on the VAX 6000 series, the performance
of computationally intensive applications may now approach that of
supercomputers.

Algorithm changes can alter the data access patterns to more efficiently
use the memory subsystem, can increase the average vector length,
and can minimize the number of vector operations required. By
applying Amdahl’s Law of vectorization, performance can be improved
by increasing the percentage of code that is vectorized.

Four basic optimization methods that take advantage of the processing
power of VAX 6000 series system include:

• Rearrange code for maximum vectorization of the inner loop and
remove data dependencies within the loop

• Vectorize across contiguous memory locations to produce unity stride
vectors for increased cache hit rates and optimized cache miss
handling

• Reuse the data already loaded into the vector registers as frequently
as possible to reduce the number of vector load and store operations

• Maximize instruction execution overlap by pairing arithmetic
instructions between load and store instructions wherever possible

Further information on optimization techniques in FORTRAN can be
found in the VAX FORTRAN Performance Guide available with the
FORTRAN-High Performance Option.
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Two groups of applications that have high vector processing potential
include equation solvers and signal processing routines. For example,
computational fluid dynamics, finite element analysis, molecular
dynamics, circuit simulation, quantum chromodynamics, and economic
modeling applications use various types of simultaneous or differential
equation solvers. Applications such as air pollution modeling, seismic
analysis, weather forecasting, radar imaging, speech and image
processing, and many other scientific and engineering applications use
signal processing routines, such as fast Fourier transforms (FFT), to
obtain solutions.

A.1 EQUATION SOLVERS

Equation solvers generally fall into four categories: general rectangle,
symmetric, hermitian, and tridiagonal. The most common benchmark
used to measure a computer system’s ability to solve a general rectangular
system of linear equations is Linpack. The Linpack benchmarks,
developed at Argonne National Laboratory, measure the performance
across different computer systems while solving dense systems of 100,
300, and 1000 linear equations.

These benchmarks are currently written to call subroutines from the
Linpack library. The subroutines, in turn, call the basic linear algebra
subroutines (BLAS) at the lowest level. For each benchmark size,
there are different optimization rules which govern the type of changes
permitted in the Linpack report. Optimizations to the BLAS routines
are always allowed. Modifications can be made to the FORTRAN source
or by supplying the routine in macrocode. Algorithm changes are only
allowed for the largest problem size, the solution to a system of 1000
linear equations.

The smallest problem size uses a two-dimensional array that is 100
by 100. The benchmarks are written to use Gaussian elimination for
solving 100 simultaneous equations. This two-step method features a
factorization routine, xGEFA, and a solver, xGESL. Both are column-
oriented algorithms and use vector-vector level 1 BLAS routines. Column
orientation increases program efficiency because it improves locality of
data based on the way FORTRAN stores arrays.

As shown in Example A–1, the BLAS level 1 routines allow the user to
schedule the instructions optimally in vector macrocode. Deficiencies
in BLAS 1 routines include frequent synchronization, a large calling
overhead, and more vector load and store operations in comparison to
other vector arithmetic operations.
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Example A–1 Core Loop of a BLAS 1 Routine Using Vector-Vector Operations

xAXPY - computes Y(I) = Y(I) + aX(I)
where x = precision = F, D, G

MSYNC ;synchronize with scalar
LOOP:

VLDx X(I),std,VR0 ;X(I) is loaded into VR0
VSMULx a,VR0,VR0 ;VR0 gets the product of VR0

;and the scalar value "a"
VLDx Y(I),std,VR1 ;Y(I) get loaded into VR1
VVADDx VR0,VR1,VR1 ;VR1 gets VR0 summed with VR1
VSTx VR1,Y(I),std ;VR1 is stored back into Y(I)

INC I ;increment I by vector length
IF (I < SIZ) GOTO LOOP ;Loop for all values of I
MSYNC ;synchronize with scalar

The performance of the Linpack 100 by 100 benchmark, which calls the
routine in Example 3–7 showing execution without chain into store, shows
how an algorithm with approximately 80 percent vectorization can be
limited by the scalar portion. One form of Amdahl’s Law relates the
percentage of vectorized code compared to the percentage of scalar code to
define an overall vector speedup. This ratio between scalar runtime and
vector runtime is described by the following formula:

Time Scalar
Vector Speedup = ______________________________________________

(%scalar*Time Scalar)) + (%vector*Time Vector)

Under Amdahl’s Law, the maximum vector speedup possible, assuming an
infinitely fast vector processor, is:

1.0 1.0
Vector Speedup = ____________________ = ____ = 5.0

(.2)*1.0 + (.8)*0 0.2

As shown in Figure A–1, the Model 400 processor achieves a vector
speedup of approximately 3 for the 100 by 100 Linpack benchmark when
using the BLAS 1 subroutines. It follows Amdahl’s Law closely because it
is small enough to fit the vector processor’s 1-Mbyte cache and, therefore,
incurs very little overhead due to memory hierarchy.
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Figure A–1 Linpack Performance Graph, Double-Precision BLAS Algorithms

Refer to the printed version of this book, EK–60VAA–PG.

For the Linpack 300 by 300 benchmark, optimizations include the use
of routines that are equivalent to matrix-vector level 2 BLAS routines.
Example A–2 details the core loop of a BLAS 2 routine. BLAS 2 routines
make better use of cache and translation buffers than the BLAS 1
routines do. Also, BLAS 2 routines have a better ratio between vector
arithmetics and vector load and stores. The larger matrix size increases
the average vector length. Performance is improved by amortizing the
time to decode instructions across a larger work load.

By removing one vector load and one vector store from the innermost loop,
the BLAS 2 routine has a better ratio of arithmetic operations to load and
store operations than BLAS 1 routines. Although the 300 by 300 array
fits into the vector processor’s 1-Mbyte cache, not all the cache can be
mapped by its translation buffer. By changing the sequence in which this
routine is called in the program, the data access patterns can be altered to
better use the vector unit’s translation buffer. Thus, higher performance
is obtained.

The percent of vectorization increases primarily because of the increase
in the matrix size from 100 by 100 to 300 by 300. With a vector fraction
of approximately 95 percent, Figure A–1 shows the speedup improvement
in the 300 by 300 benchmark when using methods based on BLAS 2
routines. With a matrix vector algorithm, the 300 by 300 benchmark
yields speedups of between 10 and 12 over its scalar counterpart.
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Example A–2 Core Loop of a BLAS 2 Routine Using Matrix-Vector Operations

xGEMV - computes Y(I) = Y(I) + X(J)*M(I,J)
where x = precision = F, D, G

MSYNC ;synchronize with scalar
ILOOP:

VLDx Y(I),std,VR0 ;Y(I) is loaded as VR0
JLOOP:

VLDx M(I,J),std,VR1 ;VR1 gets columns of M(I,J)
VSMULx X(J),VR1,VR2 ;VR2 gets the product of VR1

;and X(J) as a scalar
VVADDx VR0,VR2,VR0 ;VR0 gets VR0 summed with VR2
INC J
IF (J < SIZ) GOTO JLOOP ;Loop for all values of J

VSTx VR0,Y(I),std ;VR0 gets stored into Y(I)
INC I
IF (I < SIZ) GOTO ILOOP ;Loop for all values of I
MSYNC ;synchronize with scalar

There are no set rules to follow when solving the largest problem size,
a set of 1000 simultaneous equations. One potential tool for optimizing
this benchmark is the LAPACK library, developed by Argonne National
Laboratory in conjunction with the University of Illinois Center for
Supercomputing Research and Development (CSRD). The LAPACK library
features equation-solving algorithms that will block the data array into
sections that fit into a given cache size. The LAPACK library calls not
only the BLAS 1 and BLAS 2 routines but also a third level of BLAS,
called matrix-matrix BLAS or the BLAS level 3.

Example A–3 shows that a matrix-matrix multiply is at the heart of
one BLAS 3 routine. The matrix multiplication computation can be
blocked for modern architectures with cache memories. Highly efficient
vectorized matrix multiplication routines have been written for the VAX
vector architecture. For example, a double precision 64 by 64 matrix
multiplication achieves over 85 percent of the peak MFLOPS on the
Model 400 system.

Performance can be further improved with other methods that increase
the reuse of data while it is contained in the vector registers. For
example, loop unrolling can be done until all the vector registers have
been fully utilized. Partial results can be formed within the innermost
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Example A–3 Core Loop of a BLAS 3 Routine Using Matrix-Matrix Operations

xGEMM - computes Y(I,J) = Y(I,J) + X(I,K)*M(K,J)
here x = precision = F, D, G

MSYNC ;synchronize with scalar
IJLOOP:

VLDx Y(I,J),std,VR0 ;Y(1:N,J) gets loaded into VR0
KLOOP:

VLDx M(K,J),std,VR1 ;K(1:N,K) get loaded into VR1
VSMULx X(I,K),VR1,VR1 ;VR1 gets VR1 summed with

;X(I,K) as a scalar
VVADDx VR0,VR2,VR0 ;VR0 gets VR0 summed with VR2
INC K ;increment K by vector length
IF (K < SIZ) GOTO KLOOP

RESET K ;reset I to SIZ
VSTx VR0,Y(I,J),std ;VR0 gets stored into Y(I,J)
INC I ;increment I by vector length
IF (I < SIZ) GOTO IJLOOP
INC J ;increment J by vector length
RESET I ;reset I to SIZ
IF (J < SIZ) GOTO IJLOOP
MSYNC ;synchronize with scalar

loop to minimize the loads and stores required. Because both rows and
columns are traversed, the algorithm can be blocked for cache size. The
VAX 6000 Model 400 exhibits vector speedups greater than 35 for the 64
by 64 matrix multiplication described above.

Although the overall performance of the 1000 by 1000 size benchmark
is less than a single 64 by 64 matrix multiplication, it does indicate the
potential performance when blocking is used. Improving the performance
of this benchmark is most challenging because the 1000 by 1000 matrix
requires about eight times the vector cache size of 1 Mbyte. Further
analysis is being conducted to determine the most efficient block size to
use, that would maximize the use of BLAS 3 and remain within the size
of the cache for a given block of code.

The vectorized fraction increases to approximately 98 percent for the
1000 by 1000 benchmark. The proportion of vector arithmetics relative to
vector load and stores is much improved for the BLAS 3s. Although the
cache is exceeded, performance more than doubles when using a method
that can block data based on the BLAS 3 algorithms. Therefore, the
performance of the VAX 6000 Model 400 on the blocked Linpack 1000
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by 1000 obtained a vector speedup of approximately 25, as shown in
Figure A–1.

A.2 SIGNAL PROCESSING—FAST FOURIER TRANSFORMS

The Fourier transform decomposes a waveform, or more generally, a
collection of data, into component sine and cosine representation. The
discrete Fourier transform (DFT) of a data set of length N performs the
transformation following the strict mathematical definition which requires
O(N**2) floating-point operations. The fast Fourier transform (FFT),
developed by Cooley and Tukey in 1965, reduced the number of operations
to O(N x LOG[N]), improving computational speed significantly.

Figure A–2 shows that the complex data in the bottom butterfly is
multiplied in each stage by the appropriate weight. The result is then
added to the top butterfly and subtracted from the bottom butterfly. If the
algorithm is left in this configuration, it must use nonunity stride vectors,
very short vectors, or masked arithmetic operations to perform the very
small butterflies.

A.2.1 Optimized One-Dimensional Fast Fourier Transforms

The bit-reversal process that permutes the data to a form that enables the
Cooley-Tukey algorithm to work is also shown in Figure A–2. When using
vectors, a common approach to performing the bit-reversal reordering
is to use vector gather or scatter instructions. These instructions allow
vector loads and stores to be performed using an index register. Vector
loads and stores require a constant stride. However, vector gather and
scatter operations allow the user to build a vector of offsets to support
indirect addressing in vector mode. Both gather and scatter instructions
are available with VAX vectors.

A vector implementation of the FFT algorithm has been developed that is
well suited for the VAX vector architecture. One optimization made to the
algorithm involves moving the bit-reversal section of the code to a place
where the data permutation will benefit vector processing. By doing so,
two goals are accomplished. First, the slower vector gather operations are
moved to the center of the algorithm such that the data will already be in
the vector cache. In Figure A–2, the first FFT stage starts out with large
butterfly distances. After each stage the butterfly distance is halved. For
the optimized version shown in Figure A–3, the bit-reversal permutation
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Figure A–2 Cooley-Tukey Butterfly Graph, One-Dimensional Fast Fourier Transform
for N = 16

Refer to the printed version of this book, EK–60VAA–PG.

is performed as close to the center as possible, when the stage number
= LOG(N)/2. To complete the algorithm, the butterfly distances now
increase again. Second, this process entirely eliminates the need for short
butterflies.

Another optimization made to the FFT algorithm is the use of a table
lookup method to access the sine and cosine factors, which reduces
repetitive calls to the computationally intensive trigonometric functions.
The initialization of this trigonometric table has been fully vectorized
but shows only a modest factor of 2 performance gain. To build the
table, a first order linear recurrence loop is formed that severely limits
vector speedup. Because this calculation is only done once, it becomes
negligible for multiple calls to the one-dimensional FFTs and for all
higher dimensional FFTs. The benchmark shown in Figure A–4 was
looped and includes the calculation of the trigonometric table performed
once for each FFT data length.
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Figure A–3 Optimized Cooley-Tukey Butterfly Graph, One-Dimensional Fast Fourier
Transform for N = 16

Refer to the printed version of this book, EK–60VAA–PG.

Reusing data in the vector registers also saves vector processing time.
The VAX vector architecture provides 16 vector registers. If all 16
registers are used carefully, data can be reused by two successive butterfly
stages without storing and reloading the data. With half the number of
loads and stores, the vector performance almost doubles.

A.2.2 Optimized Two-Dimensional Fast Fourier Transforms

The optimized one-dimensional FFT can be used to compute
multidimensional FFTs. Figure A–5 shows how an N by N two-
dimensional FFT can be computed by performing N one-dimensional
column FFTs and then N one-dimensional row FFTs. The same routine
can be called for column or row access FFTs by simply varying the stride
parameter that is passed to the routine. (Note: In FORTRAN, the column
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Figure A–4 One-Dimensional Fast Fourier Transform Performance Graph,
Optimized Single-Precision Complex Transforms

Refer to the printed version of this book, EK–60VAA–PG.

Figure A–5 Two-Dimensional Fast Fourier Transforms Using N Column and N Row
One-Dimensional Fast Fourier Transforms

Refer to the printed version of this book, EK–60VAA–PG.

access is unity stride and the row access has a stride of the dimension of
the array.)
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For improved performance on VAX vector systems, the use of a matrix
transpose can dramatically increase the vector processing performance
of two-dimensional FFTs for large values of N (that is, N > 256).
The difference between unity stride and nonunity stride is the key
performance issue. Figure A–6 shows that a vectorized matrix transpose
can be performed after each set of N one-dimensional FFTs. The
computation will be equivalent to Figure A–2 but with a matrix transpose:
each one-dimensional FFT will be column access which is unity stride.
The overhead of transposing the matrix becomes negligible for large
values of N.

Figure A–6 Two-Dimensional Fast Fourier Transforms Using a Matrix Transpose
Between Each Set of N Column One-Dimensional Fast Fourier
Transforms

Refer to the printed version of this book, EK–60VAA–PG.
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When the value of N is relatively small (that is, N < 256), the two-
dimensional FFT can be computed by calling a one-dimensional FFT of
length N**2. The small two-dimensional FFT can achieve performance
equal to that of the aggregate size one-dimensional FFT by linearizing the
data array. Figure A–7 shows the tradeoff between using the linearized
two-dimensional routine (for small N) and the transposed method (for
large N) to maintain high performance across all data sizes.

The optimization of an algorithm that vectorizes poorly in its original form
has been shown. The resulting algorithm yields much higher performance
on the VAX 6000 Model 400 processor. High performance is due to the
unique way the algorithm touches contiguous memory locations and its
effort to maximize the vector length. The implementation described above
always uses unity stride vectors and always results in a vector length of
64 for FFT lengths greater than 2K (2 x 1024).

Figure A–7 Two-Dimensional Fast Fourier Transform Performance Graph,
Optimized Single-Precision Complex Transforms

Refer to the printed version of this book, EK–60VAA–PG.
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accumulator: A register that accumulates data for arithmetic or logic
operations.

ALU: Arithmetic Logic Unit, a subset of the operation instruction function unit
that performs arithmetic and logical operations, usually in binary form.

Amdahl’s Law: A mathematical equation that states that a system is
dominated by its slowest process.

arithmetic exception: A software error that occurs while performing an
arithmetic or floating point operation.

array: Elements or data arranged in rows and columns.

array processor: A vector processor consisting of auxiliary hardware attached
to a host CPU. It is typically attached by an I/O bus and is treated by the
host as a foreign I/O device. Also called an attached vector processor.

asynchronous: Pertaining to events that are scheduled without any specific
time reference; not synchronized to a master clock. For example, while
performing arithmetic operations, the vector processor operates by an
asynchronous schedule to that of the scalar processor, which is free to
perform other operations.

benchmark: A program used to evaluate the performance of a computer for a
given application.

cache miss: The case when the processor cannot find an item in the cache
that it needs to perform an operation; also called a cache fault. When this
happens, the item is fetched from main memory at the slower main memory
speed.

chaining: A form of instruction overlap that uses a special hardware path
to load the output of one function unit directly into the input of a second
function unit, as well as into the destination register of the first instruction.

concurrent: Occurring during the same interval of time; may or may not be
simultaneous.
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control word operand: The portion of the instruction that indicates which
registers to use and enables or disables certain functions.

crossover point: The vector length at which the vector processor’s
performance exceeds that of the scalar processor.

data dependency: The case when data for one arithmetic instruction depends
on the result of a previous instruction so both instructions cannot execute at
the same time.

decomposition: Part of the compilation process that prepares code for parallel
or vector processing. It includes dependency analysis, recognition of parallel
or vector inhibitors, and code restructuring. Decomposition can be automatic
(controlled entirely by the compiler), directed (controlled by compiler
directives or statements in the source code), or by a combination of the
two.

dependency analysis: An evaluation of how data flows through memory. The
analysis is performed to identify data dependencies in a program unit and to
determine the requirements they place on decomposition.

first-order linear recurrence: A cyclic data dependency in a linear function
that involves one variable.

function unit: A section of the vector processor (or any other processor) that
performs a specific function and operates independently from other units.
Typically, a function unit performs related operations; for example, an add
function unit may also perform subtraction since the operations are similar.
Also called pipe.

gather: The collection of data from memory starting with a base address plus
an offset address; the instruction that performs this action placing the data
into sequential locations in a vector register.

integrated vector processor: A vector processor consisting of a coprocessor
that is tightly coupled with its host scalar processor.

interleaving: Using multiple memory boards in main memory so that one or
more processors can access data, that is distributed among different boards,
concurrently.

IOTA: An instruction to generate a compressed vector of offset addresses for
use in a gather or scatter instruction.
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latency: The time that elapses from an element entering a pipeline until the
first result is produced.

linear recurrence: A cyclic data dependency in a linear function.

LINPACK: An industry-wide benchmark used to measure the performance
characteristics of various computers. Unlike some benchmarks, LINPACK is
a real application package doing linear algebra calculations.

Livermore FORTRAN kernels: A set of loops used to measure the performance
characteristics of various computers and the efficiency of vectorizing
compilers. The 24 kernels are fragments of programs from scientific and
engineering applications. Also known as Livermore Loops.

loop fusion: A transformation that takes two separate DO loops and makes a
single DO loop one out of them.

loop rolling: A transformation that combines parts of DO loops to allow for
vectorization.

loop unrolling: A transformation that separates certain DO loops into smaller
loops to reduce overhead.

loop-carried dependency: A data dependency that crosses iteration
boundaries or that crosses between a loop and serial code. The dependency
would not exist in the absence of the loop.

loop-independent dependency: A data dependency that occurs whether or not
a loop iterates.

mask register: A vector control register used to select the elements of a vector
that will participate in a particular operation.

megaflops: A measure of the performance of a computer—the rate at which
the computer executes floating-point operations. Expressed in terms of
"millions of floating-point operations per second." Known as MFLOPS.

memory bandwidth: The range of speeds at which a memory bus or path
can carry data. The lowest speed is usually 0 (no data) and is, therefore
normally not mentioned. For example, a memory bus that can provide data
at speeds from 0 to 512 megabytes per second is said to have a bandwidth of
512 Mbytes/s.

memory bank: An individual memory board. Groups of memory banks make
up interleaved high-speed main memory.
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MFLOPS: See megaflops.

MIPS: A measure of the performance of a computer—the rate at which
the computer executes instructions. Expressed in terms of "millions of
instructions per second."

MTF: Match true/false: When masked operations are enabled, only elements
for which the Vector Mask Register bit matches true (or false, depending on
the condition) are operated upon.

optimizer: A program that scans code and changes the sequence or placement
of the code to allow it to run faster and more efficiently on the scalar or
vector processor. The program also reports dependencies that it cannot
resolve.

overlapping: Executing two or more instructions so part of their execution
occurs at the same time. For example, while one instruction is performing
an arithmetic operation, another is storing results to memory.

parallelization: The part of the compilation process that prepares a section of
source code for parallel processing.

parallel processing: Concurrent execution of multiple segments from the
same program image.

peak MFLOPS: The theoretical maximum number of floating-point operations
per second; a vector processor’s best attainable performance.

pipe, or pipeline: A section of a processor that performs a specific function.
For example, one pipe can be used for addition and subtraction, one for
multiply, and one for load/store operations. Each operates independently
from the others. Also called function unit.

pipeline length: The number of segments of a pipeline within one function
unit, which is the limit of the number of elements that can be executed in
that function unit at one time.

pipelining: A technique used in high-performance processors whereby a
stream of data is processed in contiguous subtasks at separate stations
along the pipeline.

recursion: A process in which one of its steps makes use of the results of steps
from an earlier statement. Also called recurrence.

scalar: A single element or number.
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scalar operand: The symbolic expression representing the scalar data
accessed when an operation is executed; for example, the input data or
arguement.

scatter: The process of storing data into memory starting with a base address
plus an offset address; the instruction that performs this action of placing
the data back into memory.

second-order linear recurrence: Two cyclic data dependencies occurring in a
linear function.

speedup ratio: The vector processor performance divided by the scalar
processor performance; indicates how many times faster the computer is
with a vector processor installed than without it.

store: To move data from vector register to memory; for example, the VSTx
command moves the results from the vector register back to memory.

stride: The number of memory locations (bytes) between the starting address
of consecutive vector elements; for example: A vector has a starting address,
a length of 10 elements, and a stride of 4 bytes between the start of each
element.

stripmining: The process of splitting a vector into two or more subvectors,
each of which will fit in a vector register, so each is processed sequentially
by the vector procesor.

sustained megaflops: The average floating-point performance achieved on a
computer during some reference application (or benchmark).

translation buffer: A hardware or software mechanism to remember successive
virtual address translations and virtual page addresses, used to save time
when referencing memory locations on the same memory page.

translation buffer miss: An occurrence where the processor cannot translate
the virtual address using the current contents of the translation buffer.
In such a case, the processor is forced to load new information into the
translation buffer to furnish the address.

unknown dependency: An unclear relationship between multiple references
to a memory location; a relationship in which the final value of the location
may or may not depend on serial execution of the code involved.

vector: A data structure composed of scalar elements with the same data type
and organized as a simple linear sequence.
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vector instruction: A native computer instruction that recognizes a vector as
a native data structure and that can operate on all the elements of a vector
concurrently.

vector length register (VLR): A 7-bit register that controls the number of
elements used in the vector registers, from 0 to 64.

vector load: To move data from memory to the vector registers. For example,
the VLDx command moves data to the vector registers.

vector mask register (VMR): A 64-bit register that enables and disables the
use of individual elements within a vector register.

vector operand: A string of scalar data items with the same data type that
are processed in a single operation.

vector processor: A processor that operates on vectors, making use of
pipelines that overlap key functional operations and performing the same
operations repeatedly, to achieve high processing speeds.

vector processing: Execution of vector operations on a vector processor. A
single vector operation is capable of modifying each element in a vector
operand concurrently.

vector register: A high-speed buffer contained in the vector processor’s
CPU, consisting of word- or address-length bit sequences that are directly
accessible by the processor. A VAX vector register can hold 64 elements of
64 bits each.

vectorizable: Capable of being converted to code that can be processed on a
vector processor.

vectorization: Part of the compilation process that prepares a section of source
code for vector processing.

vectorization factor: In a program, the fraction of code that can be converted
to run on a vector processor. For example, a program with a vectorization
factor above 70% will perform well on a system that has a vector processor.

vector-scalar operation: An operation such as add, subtract, and so forth, in
which a scalar number operates with each element of a vector register and
places results in matching elements of another vector register.
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vector-vector operation: An operation in which each element of one vector
register operates with the corresponding element of a second vector register
and then places the results in matching elements of a third vector register.
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length • 1–9, 3–21
Length Register • 1–9, 2–5, 2–9
Length Register (VLR) • 3–13
Mask Register • 1–9, 2–9
Mask Register (VMR) • 3–13
Memory Activity Check Register • 2–5
Processor Status Register • 2–5
register • 1–14
register file • 3–20

Vectorization factor • 1–21, 1–22
Vectorizing compiler • 1–8, 1–14
VIB • 2–2
Virtual address • 2–7, 2–8, 2–11, 3–14
VSTL instruction • 3–21
VSYNC instruction • 3–9
VVADDL instruction • 3–21

W

Wall-clock time • 3–4
Writeback cache • 3–13

X

XMI
bus • 2–8, 2–13
interface • 2–16
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