Programmer’s
Reference
Manual

NOVA LINE
COMPUTERS

015-000023-02

Ordering No. 015-000023

© Data General Corporation 1974, 1975
All Rights Reserved.

Printed in the United States of America
Rev. 02, September 1975

NOTICE

Data General Corporation (DGC) has prepared this manual
for use by DGC personnel, Licensee's, and customers.
The information contained herein is the property of DGC
and shall not be reproduced in whole or in part without
DGC's prior written approval.

Users are cautioned that DGC reserves the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any
damages (including consequential) caused by reliance on
the materials presented, including, but not limited to
typographical, arithmetic, or listing errors.

NOVA, SUPERNOVA, ECLIPSE and NOVADISC are registered
trademarks of Data General Corporation, Southboro, Mass.

TABLE OF CONTENTS

SECTION |
THE NOVA LINE COMPUTERS

Page
INTRODUCTION £ ottt itatetotesnnaanesessasssasnanarsssscsasassnsassossasesssssses cerea I-1
| Efficient Basic InStruction SEtoeetiuniintinieuariii i I-1
Ly o) < I I R I-1
MUILIPLY/DIVAAE « . ot ve e ne e et aanne e iaaaeaneessnastsesotesosinnssonnssseonas wenees I-1
Floating POMNt ..o .v vttt ittt iiieensseaetseoresansouosensssesasseaasnesoatsasssssnacanss I-2
Memory Allocation and Memory Managementc.oeitertirenerenatescescastsronnnss I-2
1, (= 0T 3 o AT R R R 1-2
Power Fail/AUto RESTAIT. .o vvve et neeoetnseeneeneeusesseanssnesusscsseacansssssnsesasns I-3
Real-Time ClOCK sttt vttt iie it ettt ni s eraaraeeeanesoasssosessssanesesssonnnonssssns I-3
INPUL/OULPUE BUS + .« v evtee st et e etea s eaaaee e aseas ot et aaesaeennenaonenasencsnssns I-3
Device Addressability itiiiiiiiitteittiritesnesearaasssostsastssnresatsonanns I-3
Interrupt Capabilityoiiinn i ereenenn i iiiitetirteeansautstoatetotenanans I-3
Datad ChanmNeEl . uv e vnterterennneeeosenoseasesasssessasassassssssassssssssanssasseanses I-3
Ease of INterfacing . oo vvviie it ii ittt tiatensaseotussanntatancaansnasaasosuscos I-3
INPUL/OULPUL DEVICES v v v e et v vuvetat e eenaa e e e e et esueouteetsaataesoneennssantenesons I-4
QO WAL & v s e s e e s s s anosnsoussosesnaeeosssssosessosssssesseneesanssssssssososnssssnenans I-4
LLANGUAEES + o s e e v e v e et sneannsnnssoseanesseenonssoassiasasesaesassssssascastnsssosas 1-4
Operating SYSteIMS « .ot itin e iiite s rais s et tes it I-4
CONCIUSION &+ttt ittt it ee e eeseanasaonosnssossosossaasesaasssssesossanessassnassnassssos 1-4
SECTION |l
INTERNAL STRUCTURE
INTRODUCTION &+ vt eet ettt et sesnonseassseesssssaassosssansssstssassssssssotsassonssonsse -1
INFORMATION FORMATS .ttt tieiveerottsessesonaasssanssosstsasssesosronsenassstssssssacnsans I1-1
Bit NUMDETINE + o v vv vttt ieine e eeeeennouoseneonssassaasstscsascoscustsssasttosesenanns Ir-1
Octal Representationeiiiuren oo renetettotustuereesenssracasctsntusansanes II-2
Character COGeS vt vttt e iieet teeuessesanasonsssansnasaasessoesosassaosasasanssaaosansss I1-2
Information Representation. e uieenenetionssnet et seaicertocasascstacostacnns I1-2
LTy =7 o< T R I1-3
Floating POINt . . vvveun ittt ittt it taeaaiaastaes et I1-4
Logical QUantities. ... ouueniiniinnenr i i it I1-5
Decimal NUMDETS « oot ettt it evsiaeennssossoneanssesssnssssonsaassossnsstssosannosssns II-5
INFORMATION ADDRESSING .+« v vt vvataenansosisaessossassasaneasasasasasstesotstsnsnsasnsns I1-6
WOTA AQATESSINE « vt vtr vttt titistonserasanesesssasssetossossserosossnsasnsusneossse II-6
Effective Address €Calculation. . vvve vt iieeeetiiiiereesssroseersassssssonssncssssnas II-7
Byte AdQreSSing . ..o tet et ieteteeetae e teeeeeeenioeeeatantaatuiiieuoseeaiocestsssosesos 11-8
~| Addressing With Address Translation Hardwarecooiiiiiiiiininiienniienes I1-9
PROGRAM EXECUTION ot ittt ieetanestsaeansaneasetonssessasotonsssssasssesseassasansnens II-10
Program Flow ALterationeeeuion ittt ttnnnansas I1-10
Program Flow Interruptionuiiun ittt iinettttttttietisetencannnns 1I-10

TABLE OF CONTENTS (Continued)

SECTION il
INSTRUCTION SETS

Page
INT RODUC TION . ittt ittt s eaeeasossesossorssessstssasonsssssosssssosssassssosnssssssnns III-1
INSTRUCTION FORMATS + vttt ittt st eseneeoeeesoseeeeeesessssosssosssssssssssssessssacnsnsss III-1
(000)0) 1. (€ -V & 5 < Ceeeeeteenn I1-3
FIXED POINT ARITHME T TIC .o ittt ittt tineteaneneseonanessssosnassssenscsasssssssssansssssns III-5
LOAD ACCUMULATOR + vttt ittt tttneroesoaneessassosesoasasesanssonsns et III-5
STORE ACCUMULATOR .. ittt i ittt eetossssosostsssssssnsssssssssseasessosassssnstsssnsss III-5
N0 3 1 T II1-5
SUB T RAC T & ittt it it ieneenaenasnasssosennsossssasssssassnens ettt teeaneeteeasatennans III-5
NEGA T TE ittt itetotosaneesossaeseneasassnssssaasossossessssssssssssssssnens e enene III-5
ADD COMPLEMENT .. ittt ieetecasaasassasssesssssssosssnsssssssssssnassssssosssssons II1-5
MOV E . ittt ittt ieneresoseaesoaneossssassesosonssssssanns i reerereaee s Ceeeeeenen I1I-6
INC REMENT .. ittt it teteeenanesssssssstsssasscssessnsosassssssssnsnas secsevneas ceeeaes II1-6
LOGIC AL OPERATIONS 4ttt ittt aeenneeeetosecsssassssassssasssssssssssssssossonsnss ceeees III-T
COMPLEMENT Ceeeeaes et rece et G UG | § C §
AND v iiiiinnnananns PP 0 § C |
STACK MANIPULATION Ceeees e et e eeree e ettt . III-8
Slack Pointerciiviiiiiiiienns e retecreaete e et ee e rereeteresrsessesesesasass III-8
Frame Pointer ettt e O AU PP PUPRPIP 4 § £}
Return Block PN e e e eens Cereaen ... III-8
StaCK Frames oot eeeierneeeensososossessssssssasenesss e e e es e st e eaneteeeseneanonn 1I1-9
StaCK ProteCliOn & ot vttt et e e esosoesesosasensaosesossssssssserossssssssssssssosssassssns I11-9
Initialization of the Stack Control Reg1sters .. II1-9
StaCK POINEeT & vt ittt ittt teteeesecosnoeassonesssasonensssssanssssannsns Cieeereteeaan II1-9
Frame Pointer . .o i iverieennereerosnssssnensess P II1-9
STACK MANIPULATION INST RUCTIONS & ittt teeetrosettotsnessasssssssssssossassssosssssossns I-10
PUSH ACCUMU L AT O R ot i ittt et e ttaseeseenenoesusaseoeessansesssanesasssanssossssnaessas nI1-10
POP ACCUMULATOR . ittt ettt eroneeesatoesessassaesesssnssassssesotanmsssssssnsnssss I11-10
£SJ7 725 - 111-10
MOVE TO STACK POINTER .. ittt tr ittt teenntasoseestsossosonssessssossnsesssnnes e aI1-10
MOVE TO FRAME POINT ER .ttt ittt iiietetotetssssassosssssassasasoncssnsesosessostosnsosnsos m1-10
MOVE FROM STACK POINTER .« 1ttt vttt it tetennoeseasasasssoasossasasssssssasssssssannnes III1-10
MOVE FROM FRAME POINTER .t . ittt ittt tneesentnsessasasesssssssssssessnsssossssssnssoss Ii-10
PROGRAM FLOW ALTERATION . ittt ottt ittt ttteeeseenanenssosaeseorosestssasssssssnnsnsssas ImI-11
5 8.2, 5 S Im-11
JUMP TO SUBROU TINE .. .t ittt ittt it s tteaeeeeioscsesssesssasessssssassssssssenssssnsanans mI-11
INCREMENT AND SKIP IF ZEROttt it ittt ttneeneanonossosssasssssasesensnssesnesnnns II-11
DECREMENT AND SKIP IF ZERO . . ittt it enseseeneeeesssenssssonssssssssssssassssansess II-11
Extended INStruCtionS .« v v i v ittt ittt it ittt e esaseeeononassosssosssasssssnnsesnnsnsssnanss nr-12
RETURN ittt it ittt teteisisasesesosososassersssesasastssesasssnssssssssasssssensososos Im-11
TRA P &+ ottt et et e e e tnsssnssasonsenioenseesnoesnaosseasassseessesssssosasssssansnssonsnsans mI-12
Rev. 02

ii

TABLE OF CONTENTS (Continued)

SECTION IV
INPUT/OUTPUT

Page

INT RODUCTION .« vttt ottt et e e ee e sesnesaseeneesseaneeeseseenseenssssenesnssserenssnnnnns Iv-1
OPERATION OF I/ O DEVICES &+ ottt et ettt et ereesensseenonseasssasesenseeraeeesarenacns Iv-1
PRIORITY INT ERRU PTS &ttt ttet vt eneseaeenneeneenssoesesesssssesssessensesseansennees Iv-2
DATA CHANNEL & vt etttteeeessseenseneenneeneeessssessessessssnesnsessossessenneonnens Iv-3
CODING AIDS ottt veeeene e ee s e eeesenseanseeseseeeensssessessnesnesnsssesnesneesnsenasnnas Iv-3
I/O INSTRUCTIONS &t ettt ttette et aeeeesasanseeeaseesssnnnnsanssoseseessesssssasosssssssesss 1v-3
DATA IN A v ooe e e et e tne e e eee e aaeessneesennseeaneeeeaeeeneeesnseesnsessosenseeenneennnnes Iv-3
DATA IN B ottt ttee s tee st anesenneeenseesunsseeneeesoesesseesssseanesensesonseesneeonnnes Iv-3
DATA IN € vttt e et ene e e e s e ne s e taeeeaneeneansesneeneeneenesseeeeensesnesncennssnenns V-4
DATA OUT A v oot ot tee e et asene e e s anssnsseeeeseeeeseseseeeeenesnseassssssssosaaseenns V-4
DATA OUT B ittt et s teee e seeeaee s sassensensseneesnsesssssesnseseesssnsossesansanssnnnes IV-4
DATA OUT € v eetveeeseeessnesaneneeeeasseseseseeseneessensenesssssnensnennenns e V-4
070 351 - § > S IV-4
NO I/O TRANSFER - ettt etttunetneneeennneeeeusesesaeesanessnseesneeennseaneeonsssasnnens Iv-4
CENTRAL PROCESSOR FUNCTIONS . « ot et tteeetttnnerneeneenseneeneensennenseennsens R IV-5
INTERRUPT ENABLE « v o vt ee sttt ttseeeenaseenneessieesseessnsosssesnnasenssssenseeens IV-5
INTERRUPT DISABLE . st vttt o ttsttets s eeeenessnesneenesseessenseensoasssnonnsnsennens IV-5
READ SWITCHES & it ottt tteeeas s eetnasese e eseeseeeeeeeesnossssensenasnseseesnnennennn IV-5
INTERRUPT ACKNOWLEDGE ..ttt tttetteeunennennesnseseesnseneesionsonessneanens .. IV<5
IMASK OUT & v vttt veee e eneane e et ee ese e ae s ne e tsesasesesisesseasennonsessssnsonensnes V-6

L O RESET &ttt e et tee et eee s eens et eneensssseoseeesnnsesnseosnsssnneennns N eeae e reeeeeeees IV-6
AL T + ot o et et e e e esmeeeeeseeeseseeseseeeuseneensenaseenensesssssessssanesesonennesnnss IV-6
CPU SKIP &t ot e veeeeseee e ee tee e e teeeaseenessnesseesssnesseesesenesnesassnnennssneanees IV-6

SECTION V
PROCESSOR OPTIONS

INTRODUCTION .« o v ottt e te e e o e ene e e see e e e eaeeneeesesteeneeneeiesssensesnenneennens v-1
POWER FALL .+ttt et eee s e e e aneeaeeseesaesaseeneeaeensesneensesneeseansosssnnseaseneenns V-1
SKIP IF POWER FAIL FLAG IS ONE &t ettt vttt tttetneeaeeeneoesesssaseneennessssnesnosnnns v-1
SKIP IF POWER FAIL FLAGIS ZERO it tvvtnrennennennreneennsonennenns ettt v-1
MUL TP LY/ DIV D E .+t vttt ot ee s et e tnessinennseneseasacsssessotncasseesessasonesesosassnsns V-1
NOVA MULIDPLY/DIVIAE & v v vt teeeteettaneeressaeaennessoeannesoeseasnesssnnsnseseosnnsonsos V-1
NON-NOVA MULLiPLY/DIVAAE . « v vttt vt ees teste e anensnneeenseeensseeaeeenseeanssesnessannesas V-2
MUL TP LY & o ettt ee e et et e e s osneseneseneanesnseneesseenesnsensesnsonsonsensnnnonnees V-2
DIVIDE & v v v et ee e et ee e e s et s asesaseeneeneseseseeenneseseaseseesessnsnnssnsonennnonnns V-2
REAL-TIME CLOGCK .ot tttttettneensennsensesesensnneensssesanssnnnnns e eree e V-2
SELECT RTC FREQUENCY .\ it ttttttineneeeeeeenneseesasneeeessssoasesessnseseosasnoneses V-3

iii

TABLE OF CONTENTS (Continued)

SECTION V (Continved)
PROCESSOR OPTIONS

Page
MEMORY MANAGEMEN T ..ttt it it itttesasorssesesessssossssossssassssssssencnssosnssssoses V-3
Background to Address Translationc.oiiiiiiiiii ittt inteeetntrterattnssssnconsns V-3
ADDRESS TRANSLATION USING THE MMDPUttt it it ietetaeenensansotstosssssssasssasssnns V-5
LOAD MA P . . ittt ittt it esronssotatsssasesssosssssssasssosesessssossoasossosossonsscasosans V-5
LOAD DEVICE PROT ECTION ittt ittt ieitntessosassessaesssssssssesassssssnssssasssssass V-5
LOAD PROTECTION CONT ROL ..ttt it iernatotosnessoseessasasannssssossnsnssssssassssons V-6
ENABLE USER MADPttt ttennensensssacesancsoanns i et esesserrtrassansansasanssnenen V-6
INITIATE PAGE CHECK .. ittt ittt ittt eanoseosesssssassssssassossssssssssssssnassasssans V-7
READ ST AT U S st ittt te it eeeneaneeosssssonssssasssssansssnossssssssosssssnssssansssassssnss V-1
READ INSTRUCTION ADDRESS ... ittt enoteneesurosssosossssssssesssssanssosssssssssass V-1
READ INVALID ADDRESS . .ttt ittt it iitieicestoeosnocnssaanosnses et et V-8
ENABLE SINGLE CYCLE ..ttt t ittt it itetttsenatessosesnssssssstsssessasssosssnasasans V-8
SUPERVISOR CALL ..ttt vttt noeeuesoansssossssssssossssessasssssssssnssasassonsssssas V-8
| SUPERVISOR PROGRAMMING FOR THE MMPU ittt ittt tinrttrtneiainaenseaeesas V-9
Setting Up For Translation ittt iiiitattiitaneansoseossasansnss V-9
MMPU Protection Processingoeeiteieitiiiineeensonnns i e etca et ceeese V-9
I/O Protection PP et R 51
Validity Protection ..ottt innisennnenieans et ceeeenseees. V=10
Runaway Defer Protection..........coivivviviiean. e e an e N V-10
Write Protectionc.cvna.. et P V-10
Device Interrupt Processing........ oottt et tae e ceeeeen ... V-10
ADDRESS TRANSLATION USING THE MMUttt ittt iiittnresanennnnnnsnns e et e an v-11
LOAD MA P . ittt ittt it tteneenaaeeeeneetasoasessonssasssonesoeseesnsssnsonnsssansanns v-11
INITIATE PAGE CHECK &+ ittt tteeneeenotassesssosssssassesosssssssssssssssnssssnsnsss eene V-12
PAGE CHECK + it ittt et ttsaseeeeaneeeessasasossosasosssasssscssonsssssassssasennsosssans V-12
READ MMU ST AT US ittt ittt treneeeoseenonessenanesssssesosssenasssssosnsstasscnsssnss V-12
WRITE MMU ST AT US Lttt ittt et tresetasesessssssssssssassssosansssosssassossssasssosssssss V-13
ADDRESS TRANSLATION USING THE MA Pttt ittt tvtntosrasssioesotssossssosssnasasnas V-14
Map Feature Instruction Set iiiiiiiiiiiiiiiiiiiiieeietiiiartioessssonseroasncsnesas V-14
ASSIGN LOWER LOGICAL MEMORY MADP .. ittt it ittt isessersstossssssesssassnsssnsssnosnons V-15
ASSIGN UPPER LOGICAL MEMORY MADP ...ttt ittt inrtrestassssatocansnessanssassonasanans V-15
WRITE PROTEC T st ittt e ttttttesianseeeaassasseasssoaanssanssssesasssstasossosesosnnnsess V-15
READ ST AT U S . ittt ittt s st teeneeasesenosessosssensasssoessassosossoasessssassonssensansns V-15
SELECT MODE &+ ittt ittt veenoesisesssesosessestosssussonesssessosssssssassssassansssasas V-16
ENTER USER MODE . ittt tt it tteteeessossasosssssssosssesasssssesssssosssssssassassnsssnae V-16
MAP AN ADDRESS vt ivt e vt tneneeeeeenseeeeessnesasnsesssesssssssansssssossasnrasssnsssess V-16
READ MAPPED ADDRESS .ttt ittt iuestsssssosasssssceassssssssnassssssssssssnsasnonsnsoocsss V-16
SELECT PAGE WRITTEN CHECK .. itttitttneerneteeatensssonssssssossssaseassssssssanssas V-16
READ PAGE WRITTEN FLAGS vttt tteteenetosteeatsoanessossaasonsseensasssassssssssonss V-16
CLEAR PAGE WRITTEN FLAGS . .. it ittt ittt eetssossassssassssssssccassscsssnonsnns . V=17
SKIP IF ANY VIOLATION 4ttt ittt eeestteesussosssssosssassssessssssssssssssasssssssanssssas vV-117
SKIP IF NO VIOLA TION .+ttt itttiiaereeeossosesssasssssassssssssssssassssstsssssssssssssns vV-117
SKIPIF I/O VIOLATION 4ttt ittt i tonetnscnnssesnsnassssssasttosaossscssssnsansessnnnssons v-117
SKIP IF NO I/O VIOLATION ... iettettnrnanaseeeeanueseeensnussssosasessssnnnassesaansnsss V-17
SKIP IF VALIDITY VIOLATION.oovivineannrnnn ettt eeetete et . V-17
SKIP IF NO VALIDITY VIOLATION ...ttt ititieeneeenesasssassoessssosonassasssoassssosnssas v-117

Rev. 02 iv

TABLE OF CONTENTS (Continued)

SECTION V (Continued)
PROCESSOR OPTIONS

Page

SKIP IF PROTECTION VIOLATIONiteuvreeirenoesnnnssososnaonns Cieeseeerseranseens V-17
SKIP IF NO VALIDITY VIOLATION ..t tit e tnnstsnserossssnsasstssassonsesassnssannns . V-17
FLOATING POINT ARITHMETIC ...ttt ittt ienosssesassosessssanenesnsoasnsssnsesasssonoenas V-18
Floating Point Unit Registers.ttt ittt ittt ettt tetettottoisssonnennonnnns V-18
INSTRUCTION SET ittt ittt tinansessesnseaeanseseseasanensssssoessasassnssasesnsans V-19
LOAD SINGLE .ttt itt ittt ot tentosstssnsassssessssasosasssmsesisssanassasansassssnss V-19
LOAD DOUBLE . . oottt ittt inetsntoansosssonssssansessesnssesssesassossssnnsons Ceeeees V-19
STORE SINGLE . ..ttt ittt ittt iteeteatsorsneaesneosesssssansesssasensnensssnsnssons V-19
STORE DOUBLE &« sttt voet ittt tontoonotnotsosesasssstnssassosssassssasasstsonsseens vee. V-19
ADD SINGLE i1ttt it itintieseossuiseassutsssosoaeasnsstnssssssonsssssassssossnssosacaes V-20
ADD DOUBLE .t it iiiiiititiieivnnsnansnsansssssosssesasssassssssesesseenassasessasnanons V-20
SUBTRACT SINGLE ...t itt it tntetiesttenssesesssssssscsanssoasssasssasss Cererasesnaaans V-20
SUBTRACT DOUBLE ...ttt ittt ittt tinanraasssostosassstssettonnssoessaeasosnsannsennos V-20
MULTIPLY SINGLE ittt ittnenestasonsoessaanoaasonens ettt esress et v-21
MULTIPLY DOUBLE ...ttt tieiiistttteieereoassossnssssosasssssstsnssnss ettt v-21
DIVIDE SINGLE . . .t ettt it tanesnessnsesssosasssstssssaassnsssnassans N vV-21
DIVIDE DOUBLE ...ttt ittt itite e ennsoaenernrosssssetensssssssossosenas Cereeeraans v-21
Temporary Buffer Instructionse.cieriiiirnennnrnrannennns P v-22
MOVE FPAC TO TEM P ...ttt it ittteseetttsstetoteesossanessssansssasosseesososenanans V-22
MOVE TEMP TO FPAC . .ttt iitttntrtenatessoenntsetsonssssasssatosasosstsossssasnsans V-22
ADD TEMP TO FPAC (SINGLE) ..ttt tittitantnorneassaroasssssssonsansassssessnasssennnes V-23
ADD TEMP TO FPAC (DOUBLE) . .ttt tit ettt et et et e e te ittt ettt et iannnnans V-23
SUBTRACT TEMP FROM FPAC (SINGLE) + .ot tv vt tvetvaensonsosassonsneasoensensassorsenns V-23
SUBTRACT TEMP FROM FPAC (DOUBLE) ¢ 4ttt vt tettntnusonoteeenssasansessnonusnanennns V-23
MULTIPLY TEMP BY FPAC (SINGLE) . vttt ittt et tnatenneseeteennennsennsonnssenesenns V-24
MULTIPLY TEMP BY FPAC (DOUBLE) .+ttt ittt it ittt eeiennsarerosneoenensnsesnsenenenens V-24
DIVIDE TEMP BY FPAC (SINGLE) .+ ittt titttteteneraneseatseneeeorseneoanssenessaseanans V-24
DIVIDE TEMP BY FPAC (DOUBLE) ..ot itteinttnetraeeeneceanseaaesonneeenasosssenssnnnns V-24
Shift and Logical Instructions . ..ottt i i i it snennsoasanansnssssnsnsen V-25
ABSOLUTE VALUE ...ttt ttttttetttteneeoesssstsnseatsesnesstontontoscessosenenns V-25
CLEAR FPAC ..ttt ittt ittt it taeinasseninnaetsasessonsseonsesssasssnonsneensoanas V-25
LOAD EXPONENT . ittt it ittetinesenoessessosssesesssssssossssesesnssssssssssssnsnas .. V=25
) N V-25
NORMALIZE ittt it tnaotnnnsasssoasennssossssnssossosassoattoatossssastnasssennsonns V-25
READ HIGH WORD . ..ttt iit it ittt ttasnnneesosneasessnesosssasssnseonssescaanansss Cesese V-25
SO ALE ittt iettte tettoeanonsneeaaessssontsesosoasesnsensasssasssonssnsssssssssassaasana . V=26
Status InStructionS . ..o i i i i it i ittt ettt e ettt V-26
READ ST AT U . ittt ittt ittt ittt eanoseeesoesesasesasosesssssssssossenssasassnnns V-26
W RITE ST ATUS i it ittt tnntiasersassesassasssssssasssasssanssasssasssasssosonannsenness V-26
Diagnostic InStructionsttt i i i i ettt itstenne sttt rneenn v-27
READ WORD .ttt ittt ittt ittt iaeteestosetoessneeenaseensnonesonosenenesansnasss V-27
READ WORD 2. ittt ittt ittt ittineesiaasenasiosieesnsanasnaneeoaeeosesenssenosenanss v-27
READ WORD 3.t ittt ittt ittaenanseasnatonseaunssoennosasenennensenseseonesssneennse v-27
READ WORD 4. ..ttt tiitt ittt itionaneeeesnaesnsassaseesssnannesnasesneeensssoossannsnsnss v-27
0 2 O 7 1 .o V22T

TABLE OF CONTENTS (Continued)

SECTION V (Continved)
PROCESSOR OPTIONS

Page
Mode Settings For The Floating Point Unit00ttt iiiiiisiriitresonsn Vv-28
NOTIMAL MOAE . ottt vt tsenetavoseesonnseesstosssasstseassasssuntossssrossanssoasosons Vv-28
Parallel MoOGe . vvtiveeeinreeeeeerososotosssstasansnssssssssessssnsosssscsnscasssrenses V-29
Interrupt Enable and Disablecvveiiniuirnerioretnssitsrosnorsreotsonesacosaanans V-29
FLOATING POINT UNIT MNEMONICS vt titvtentneetenannarossarsvensasssensnsssasasosssssns V-29
SECTION VI
FRONT PANEL
INT RODUC T TION &« it ittt ittt tasaeooesanessossasssesssesasssaasssessssonassasssssssnsosssonssas Vi-1
DATA SWITCHES « et te vt tnveseostaneonaseesassassasssossssasssssssostssnsssosssassssssnsns VI-4
CONSOLE SWITCHES .+ vttt ettneeneoneaesaeiossstosssasassossasssssssesssnsssessonsossassns Vi-4
Accumulator DeposSit=-EXamine . ..o .o ittt entiteoenernonoansnsssasaansassssrssssensasons Vi-4
Reg Dep==ReZ EXAI iititrenuioeeitossneaensssssasstonsssasososetasensssocnsoenenns Vi-4
2T R 7o) « R R R R R RRRE Vi-4
BTt~ =CONEITIUE & v vttt v e e et teeenoeeeesenaeseeasssssssonssansssoasosnassnonsassssosaonsos VI-4
Deposit--Deposit NeXt oo v ivrrrivernerrerroeranareiessiiociinssnannenns cerenes e eeeaean Vi-4
EXamine-=EXamine NeXt . o vv v e ereeerereeenrroassosssssstasassasssassosnssssossennsonass . VI-5
Memory Step-~InSt SEEP v vvv vttt iiieinrrirreretaenasattassrasasssatasans Cererearaanas VI-5
Program LOAA .. veevrrereesnsoassssarosnssecasssassersesassssstossssssasssonsosssvesasss VI-5
Channel Start o vv et et iveeeeerrnossrontsarosensensonsassonsnsans feerterersensenns Ceriaann Vi-5
POW BT v vt vttt ettt st nesesnseensesoassseassesessssssssssssssanasnsssasssasoassesoasnnnns VIi-5
PROGRAM LOADING vttt et tvniareveoenasseesssorsosasssstaasssanssoasesosstosssasssnssoass VI-6
Manual Loadingcurveivirnrerinesicnsecnorrcasacssssonarenas et enretseesr e nans VI-6
Automatic Loading . ..o.euirrireisesnrsnsssaetossosssssencesosssassesasstossossarssssnssss VI-6
APPENDICES
APPENDIX A .
1/0 DEVICE CODES AND DATA GENERAL MNEMONICSt iiiiniantotrsranrsnoosonnse A-2
APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION . ¢4 tvtvntrscoconssnssossaesssonsasanssosassosas B-1
APPENDIX C
ASCII CHARACTER CODES ot it ttetrtensserosascsasssoeressssssasssssasstoiossessossnssnsas C-1
APPENDIX D
DOUBLE PRECISION ARITHMETIC ...ttt vetearronorvosonnsrsssossossossssnssssanssss eeeess D-1
APPENDIX E
INSTRUCTION USE TABLES ..t iititteesanttsornseasnsessssosssssossssssessnssssansnsssssosss E-1
APPENDIX F
INSTRUCTION EXECUTION TIMES ...ttt iiniinatsonnenossssscnasens B R R F-1

SECTION |

THE NOVA LINE COMPUTERS

INTRODUCTION

The Data General Corporation NOVAZ® line of com-
puters are general purpose, four-accumulator,
stored-program computers, with a word length of
16 bits. The maximum amount of main memory is
32,768 16-bit words. For the NOVA 830 and NOVA
840 computers with the MMPU feature; and for the
NOVA 3/12 computer with the MMU feature, the
maximum amount of main memory is 131, 072
16-bit words. The accumulators are also 16 bits
in length and are used for arithmetic and logical
operations. Furthermore, two of the accumulators
can be used as index registers. Memory can be
addressed either directly or by using indirect ad-
dresses. Chains of indirect addresses can be of
any length. A direct memory access (DMA) data
channel is provided to enable rapid data transfer
between main memory and peripheral devices.

The flexible design of the NOVA line of computers
allows the convenient implementation of applica-
tions in all sectors of the data processing field.

The standard instruction set contains instructions
that perform fixed point arithmetic and logical
operations between accumulators, transfer of
operands between accumulators and main memory,
transfer of program control, and input/output (I/0)
operations. Options are available that add instruc-
tions to this set. These additional instructions
perform such operations as multiply/divide, float-
ing point calculations, memory allocation and pro-
tection, and memory management and protection.

The NOVA line of computers is made up of the
NOVA computer, the SUPERNOVA® computer, the
NOVA 1200 series, the NOVA 800 series, the
NOVA 2 series, and the NOVA 3 series. The
NOVA 1200 series consists of the NOVA 1200 com-
puter, the NOVA 1210 computer, the NOVA 1220
computer, and the NOVA 1200 Jumbo computer.
The NOVA 800 series consists of the NOVA 800
computer, the NOVA 820 computer, the NOVA 800
Jumbo computer, the NOVA 830 computer, and the
NOVA 840 computer. The NOVA 2 series consists
of the NOVA 2/4 computer and the NOVA 2/10 com-
“|puter. The NOVA 3 series consists of the NOVA
3/4 computer and the NOVA 3/12 computer. While
these computers differ in specifics such as process-
ing speed, they all share the same general archi-

tecture. This means that, in general, software is
compatible across the entire line. To a somewhat
lesser degree, hardware is also compatible across
the line. The features of the NOVA line are
summarized below.

Efficient Basic Instruction Set

The basic instruction set for the NOVA line of com-
puters contains instructions that perform fixed
point arithmetic and logical operations between ac -
cumulators, transfer of operands between accu-
mulators and main memory, transfer of program
control, and I/O operations. All instructions are
one 16-bit word in length. The arithmetic and
logical instructions have the capability to perform,
in one instruction, the following sequence: per-
form an operation, shift the result one bit left or
right, test the result of the shift, and then condi-
tionally skip the next instruction depending upon
the outcome of the test. In addition, it is possible
to perform this entire sequence without affecting
either of the operands. This means that compli-
cated numerical manipulation and testing can be
performed using a small number of instructions.

Stack

A Last-In/First-Out (LIFO) or push-down stack is
maintained by the NOVA 3 processor. This feature
provides a convenient method for the saving of re-
turn information and passing arguments between
subroutines. The stack also provides an expandable
area for the temporary storage of variables and
intermediate results.

Multiply /Divide

The multiply/divide feature allows the multiplica-
tion and division of operands to be performed
quickly, without resorting to time-consuming soft-
ware routines. Two 16-bit fixed point operands
can be multiplied together to yield a 32-bit fixed
point result. A 16-bit fixed point operand can be
divided into a 32-bit fixed point operand to yield a
16 -bit fixed point quotient and a 16-bit fixed point
remainder.

Rev. 02

I-1of 4

INTRODUCTION

Floating Point

The floating point feature allows the manipulation of
both single precision (32 bits) and double precision
(64 bits) floating point numbers. Single precision
gives 6-7 significant decimal digits while double
precision gives 13-15 significant decimal digits.
The decimal range of a floating point number is
approximately 5.4x10-79 to 7.2x10+75 in either
precision.

The floating point feature contains two 64-bit float-
ing point accumulators. Floating point calculations
can take place between these two accumulators or
between one of the accumulators and operands in
main memory.

Memory Allocation and Memory Management

There are three features available with NOVA line
computers that perform memory allocation and
memory management. All three perform logical-
to-physical address translation, and two of them
allow certain protection features to be implemented.

The memory allocation and protection (MAP) fea-
ture is available with the SUPERNOVA computer,
the NOVA 800 computer and the NOVA 820 com-
puter. The memory management and protection
unit (MMPU) is available with the NOVA 830 com-
puter and the NOVA 840 computer. The memory
management unit (MMU) is available with the
NOVA 3/12 computer.

The MAP feature allows the allocation of memory
to a user in blocks of 4096 words. Up to 8 such
blocks may be allocated to a user. The MMPU fea-
ture allows the allocation of memory to a user in
blocks of 1024 words and up to 32 such blocks may
be allocated to a user. In both cases, a user is
prohibited from accessing those blocks of memory
not allocated to him, thus protecting a user's area
of memory from unauthorized access. Both fea-
tures allow areas of memory to be write -protected
and areas of memory to be allocated to more than
one user, thus allowing the sharing of data and pro-
cedure areas. The blocks of memory allocated to
a user do not have to be contiguous.

The address translation function which correlates a
logical address to the corresponding allocated phy-
sical memory address is called an "'address map''.
The MAP feature is capable of holding the map for
one user at a time and memory references from the
data channel are not mapped. The MMPU feature
also holds only one user map at a time, but it has
the capability of simultaneously mapping memory
references for the data channel.

In addition to translating addresses, these two fea-
tures also perform various protection functions. A
user is allowed to access only those blocks of mem-
ory allocated to him. This ensures that a user does
not reach out of his own areas of memory for either
instructions or data. Blocks of memory allocated to

Rev. 02

1-2

a user may be write~-protected so that the user may
not modify them. This allows blocks of memory
containing constants or non-self-modifying proce-
dures to be shared between users. The MAP fea-
ture detects and inhibits indirection chains that go
deeper than two levels. The MMPU feature detects
and inhibits indirection chains that go deeper than
16 levels. In both cases, this protects the system
from becoming disabled by an indirection loop.
While the MAP feature provides total I/0 device
protection because the user is not allowed to issue
1/0 instructions, the MMPU allows devices to be
declared accessible or inaccessible to a user on an
individual device code basis. This allows any de-
vice to be controlled by the operating system or
dedicated to a user, depending upon user require -
ments.

The MMU allows the allocation of memory to a pro-
gram in the same manner as the MMPU, but per-
forms no protection functions. In addition, the
MMU can hold two program maps and two data
channel maps at the same time. Only one program
map can be enabled at any one time, but both data
channel maps can be enabled at the same time.

Memory

Memory is available in many forms for the differ-
ent members of the NOVA line. For the NOVA
computer, core memory is available in modules of
2, 4, and 8K 16-bit words. For the SUPERNOVA
computer, memory is available in both core and
semiconductor forms. Core memory is available
in modules of both 4 and 8K 16-bit words. Semi-
conductor memory is available in both read/write
and read-only forms in modules of 256, 512, and
1024 16-bit words. For the NOVA 1200 series of
computers, both core and semiconductor memory
is available. Core memory is available in modules
of 4, 8, and 16K 16-bit words. Semiconductor
memory is available in both read/write and read-
only forms in modules of 256, 512, and 1024 16-bit
words. For the NOVA 800 and 820 computers, core
memory is available in modules of 4 and 8K 16-bit
words. For the NOVA 830 computer, core mem-
ory is available in modules of 16K 16-bit words.
For the NOVA 840 computer, core memory is
available in modules of 8K 16-bit words. For the
NOVA 2 series of computers, core memory is
available in modules of 4, 8, and 16K 16-bit words.
For the NOVA 3 series of computers, memory is
available in both core and semiconductor forms.
Core memory is available in modules of both 8 and
16K 16-bit words. Semiconductor memory is
available in modules of 4K, 8K and 16K 16-bit
words.

In addition, a memory parity option is available
with the NOVA 3 series which will detect any single
bit error in a word read from main memory. If
desired, the parity option can interrupt the central
processor upon finding an error. This allows a
record to be kept of memory errors.

Power Fail/Auto Restart

The power fail/auto restart feature of the NOVA
line provides a ''fail-soft'' capability in the event of
unexpected power loss. In the event of power fail-
ure, there is a delay of one to two milliseconds be -
fore the processor shuts down. The power fail
portion of the feature senses the imminent loss of
power and interrupts the processor. The interrupt
service routine can then use this delay to store the
contents of the accumulators, the program restart
address, and other information that will be needed
to restart the system. One to two milliseconds is
enough time to execute 200 to 1500 instructions de-
pending on the processor, so there is more than
enough time to perform the power fail routine.

When power is restored, the action taken by the
auto-restart portion of the feature depends upon the
position of the power switch on the front panel. If
the switch is in the "'on'' position, the processor
remains stopped after power is restored. If the
switch is in the "'lock'' position, then 50 milli-
seconds after power is restored, the processor
executes the instruction contained in the first loca-
tion of main memory, restarting the interrupted
system,

The battery backup option available with the NOVA
3 series operates in conjunction with the power
fail/auto restart feature to provide security for
semiconductor memories in the event of a power
failure. If power fails, the battery backup option
will supply power to the memories for a period of
up to two hours so that they will not lose their data.
If further security is desired, an external battery
backup option is available so that the customer can
connect larger batteries and ensure the integrity of
the memories for extended periods of time.

Real-Time Clock -

The real-time clock feature of the NOVA line com-
puters generates a sequence of pulses that is inde-
pendent of the timing of the processor. The clock
will interrupt the system at one of four program-
selectable frequencies. The frequencies are: ac
line frequency, 10Hz, 100Hz, and 1000Hz.

Input/Output Bus

The input/output (I/0) bus is that portion of the
computer that carries commands and data between
the central processor and various peripheral de-
vices connected to it. The bus is made up of a six-
line device selection network, interrupt circuitry,
command circuitry, and sixteen data lines.

1-3

Device Addressability

Each I/O device in a NOVA line computer system
is connected to the six-line device selection net-
work in such a way that each device will only re-
spond to commands that contain its own device
code. The fact that the selection network is made
up of six lines gives 26 = 64 unique device codes.
Two of these codes are reserved for specific func-
tions, but there are still 62 device codes available
for use with I/O devices.

Interrupt Capability

The interrupt circuitry contained in the I/0 bus
provides the capability for any I/0O device to inter-
rupt the system when that device requires service.
When a device requests an interrupt, the processor
automatically transfers program control to the main
interrupt service routine. This routine can either
poll all the I/0 devices in the system to find out
which one initiated the interrupt or the routine can
use a special instruction to identify the source of
the interrupt.

The interrupt circuitry of the NOVA line also con-
tains the capability to implement up to sixteen
levels of priority interrupts. This is done with a
16-bit priority mask. Each level of device priority
is associated with a bit in this mask. In order to
suppress interrupts from any priority level, the
corresponding bit in the mask is set to 1.

Data Channel

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater
transfer rates, the I/O bus contains circuitry for
a direct memory access (DMA) data channel through
which a device, at its own request, can gain direct
access to main memory using a minimum of pro-
cessor time. At the maximum transfer rate, the
data channel effectively stops the processor, but
at lower rates, processing continues while data

is being transferred.

Ease of Interfacing

Due to the straightforward logic and general design
of the NOVA line I/0O bus, customer-provided or
customer-designed I/O devices may be easily in-
terfaced to a NOVA line computer system. Informa-
tion on how to interface to the NOVA line may be
found in '"The Interface Designer's Reference
Manual' (DGC 015-000031).

Rev. 02
INTRODUCTION

Input/Output Devices

A comprehensive array of I/O devices is available
from Data General for the NOVA line. This wide
choice of devices, ranging from teletypewriters to
line printers to video displays for man-machine
interaction; and from paper tape to magnetic tape
to fixed and moving-head discs for data storage
allows a wide spectrum of possible configurations.
Also available are various multiplexors and tele-
communications adapters including an IBM 360/370
interface.

Software

The NOVA line is fully supported by proven Data
General software. Because all members of the
NOVA line are program compatible with each other,
it is possible to create a computer system that can
be easily altered or upgraded as the need arises.

Languages
In addition to an assembler and a macro-assembler,

there are powerful higher-level language proces-
sors available for use with the NOVA line. Lan-

Rev. 02

I-4

guage processors such as ALGOL, EXTENDED
BASIC, FORTRAN IV, and FORTRAN 5 can be
used to ease the job of implementing application
systems.

Operating Systems

There is a wide array of operating systems avail -
able for the NOVA line. These range from the
Stand-alone Operating System (SOS) to the Real-
Time Operating System (RTOS) to the Real-Time
Disc Operating System (RDOS), to the Mapped
Real-Time Disc Operating System (MRDOS). SOS,
RTOS, and RDOS software are designed for the
small to medium-size systems, while MRDOS soft-
ware is designed for the large system and gives
full software support for the Memory Management
and Protection Unit.

Conclusion

The internal features, software, and I/O devices
available with the NOVA line of computers ensure
that they will easily meet the continually changing
needs of the data processing industry.

SECTION 1
INTERNAL STRUCTURE

INTRODUCTION

The basic structure of a NOVA line data processing
system consists of a central processing unit

(CPU), some amount of main memory, the I/0 bus,
the 1/0 devices connected to the I/O bus, and a
console which is on the front panel of the main
computer chassis.

[/0 BUS

TELETYPWRITER

CONSOLE

DG-011Z8

Due to the general-purpose design of the NOVA
line, the type, size, and number of memory mod-
ules and I/0 devices have no effect upon the inter-
nal logical structure of the CPU. This chapter

II-1 of 10

deals with the addressing of information and the
logical representation of information within the
CPU, and is unaffected by those portions of the
system outside the CPU.

INFORMATION FORMATS

The basic piece of information within the processor
is the binary digit, or "bit"". A bit is capable of
representing only two quantities, 0 and 1. How-
ever, a bit cannot represent both these values at
the same time. At any one point in time, a bit can
either represent a 0 or a 1, never both.

The normal unit of information within the CPU is
the "word". A word is made up of 16 bits. Be-
cause each bit is capable of representing two
qwf%ntities, a word is capable of representing

2+7 = 65,536 different quantities. A word may be
broken into two "bytes'' of 8 bits each. A byte is
capable of representing 28 = 256 different quanti-
ties. 1/0 devices transfer information in units of
bits, bytes, words or groups of words called
"'records'' depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are num-
bered from left to right, with the leftmost (high-
order) bit always numbered bit 0. The numbering
extends to the right and is always carried out in
the decimal number system. The rightmost (low-
order) bit in a byte is bit 7. The rightmost bit in
a word is bit 15,

WORD WORD
- e ~— e -~
BYTE BYTE BYTE BYTE
0,1,2)3,4,5,6,7[0,1,2,3,4,5,6,7(0,1,2,5,4,3,6,7/0,1,2,3,4,5,6,7
01 23456789I10111213141501 234567 8 9101112131418

Rev. 02
INFORMATION FORMATS

Octal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward and
confusing if each bit were described, the octal re-
presentation of binary information will be used in
this manual. To convert a piece of binary informa-
tion to its octal representation, the bits in the
quantity are separated into groups of three bits
each, starting from the right and proceeding to the
left. If the number of bits to be represented is not
evenly divisible into groups of three, the leftmost
group will contain one or two bits. Each group of
bits can now be represented by one of eight differ-
ent symbols. The digits 0-7 are used to represent
the quantities 0-7. Each encoded digit is called an
octal digit. Because each group of bits can contain
any one of 8 values, this representation is some-
times called '"base 8" representation.

Another way to represent binary information is the
hexadecimal or ""hex' representation. In hexa-
decimal, the bits in the quantity are separated into
groups of four bits each and each group can be re-
presented by one of 16 different symbols. The
digits 0-9 are used to represent the quantities 0-9.
The letters A-F are used to represent the quantities
10-15. Because each group of bits can contain any
one of 16 values, this representation is sometimes
called '"base 16" representation.

The following table gives the correspondence be-
tween the various representations.

DECIMAL | BINARY | HEX | BINARY | OCTAL
0 0000 0 000 0
1 0001 1 001 1
2 0010 2 010 2
3 0011 3 011 3
4 0100 4 100 4
5 0101 5 101 5
6 0110 6 110 6
7 0111 7 111 7
8 1000 8 1 100 10
9 1001 9 1001 11

10 1010 A 1010 12
11 1011 B 1011 13
12 1100 c 1100 14
13 1101 D 1101 15
14 1110 E 1110 16
15 1111 F 1111 17

II-2

Our normal decimal numbering system is some-
times called ""base 10" representation. Because
it is sometimes possible to confuse numbers writ -
ten in hex or octal with those written in decimal, a
subscript denoting the base will be used in cases
where confusion might occur. The following ex-
amples illustrate this convention.

6410 = 4016 = 1008
8'710 = 5’716 = 12'78
6310 = 3F16 = 778

In the last example, it is obvious that 3F is a num-
ber written in hex, but the subscript is included to
erase any possible doubts.

Conversion tables for hex to decimal and octal to
decimal are contained in Appendix B of this manual.

Character Codes

Within the processor, all information is repre-
sented by binary quantities. The CPU does not re-
cognize certain bit combinations as characters and
certain other bit combinations as numbers. Sooner
or later, however, this information must be trans-
ferred outside the computer in some form easily
understood by humans. For this reason, some
standard correspondence must be made between cer-
tain bit combinations and printable symbols. The
code used to implement this correspondence in I/0
devices available with the NOVA line is called the
American Standard Code for Information Interchange
(ASCII). This code can represent 95 printable sym-
bols plus 33 control functions. A complete table of
the codes and their corresponding characters can

be found in Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recog-
nize one information type from another, the differ-
ent instructions in the instruction set expect that
the information to be operated on will be in a spe-
cific format. In general, there are four different,
basic information formats. They are integers,
floating point numbers, logical quantities, and
decimal numbers.

Integers

Integers can be represented as either signed or un-
signed numbers and carried in either single or
multiple precision. Single precision integers are
two bytes long, while multiple precision integers
are four or more bytes long. Unsigned integers
use all the available bits to represent the magnitude
of the number. A single two-byte word can repre-
sent any unsigned number in the inclusive range 0
to 65,535. Two words taken together as an un-
signed, double precision integer can represent any
number in the inclusive range 0 to 4,294,967, 295,

For signed operations, the two's complement num-
bering system is used. In this system, the leftmost
or high-order bit is used as a sign bit. If the sign
bit is 0, the number is positive and the remainder
of the bits in the number represent the magnitude

of the number as described above. If the sign bit

is 1, the number is negative and the remainder of
the bits represent the two's complement of the
magnitude of the number.

To create the negative of a number in the two's
complement scheme, complement all the bits of the
number including the sign bit. After the comple-
menting process is finished, add 1 to the rightmost
or low-order bit. If the two's complement of a
negative number is formed, the result will be the
corresponding positive number. There is only one
representation for zero in two's complement arith-
metic: it is the number with all bits zero. Form-
ing the two's complement of zero will produce a
carry out of the high-order bit and leave the num-
ber with all bits zero.

Ii-3

Examples:

To form the negative of 4:

4=0 000 000 000 000 100
complement = 1 111 111 111 111 011
add 1 + 1
-4 =1 111 111 111 111 100
To form the negative of 1'7158:

17158 =0 000 001 111 001 101
complement = 1 111 110 000 110 010
add 1 + 1

—17158 =1 111 110 000 110 011

To form the negative of -17158:

—1’7158 =1 111 110 000 110 O11
complement = 0 000 001 111 001 100
add 1 + 1

1'7158 =0 000 001 111 001 101

To form the negative of 0:
0=0 000 000 000 000 000
complement = 1 111 111 111 111 111
add 1 + 1
0=0 000 000 000 000 000

Note that 0 is a positive number,

is 0.

i.e., its sign bit

INFORMATION FORMATS

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative num-
bers. The most negative number is a number with
a 1 in the sign bit and all other bits 0. The positive
value of this number can not be represented in the
same number of bits as used to represent the nega-
tive number.

A single two-byte word can represent any signed
number in the inclusive range -32, 768 to +32,767.
Two words taken together as a signed, double pre-
cision integer can represent any number in the in-
clusive range -2, 147,483,648 to +2,147, 483, 6417.

It is a property of numbers using the two's comple -
ment scheme that addition and subtraction of signed
numbers are identical to addition and subtraction of
unsigned numbers. The CPU just treats the sign
bit as the most significant magnitude bit.

Floating Point

The floating point feature of the NOVA line allows
operations on signed numbers having a much larger
range than those normally represented as integers.
It would take a 16-word multiple precision integer
to represent the range of a NOVA line floating
point number. Since floating point numbers occupy
either two words for single precision or four words
for double precision, and the floating point feature
is much faster than multiple precision integer
software routines, floating point arithmetic is used
when numbers having a large range must be mani-
pulated.

A floating point number is made up of three parts:
the sign, the exponent, and the mantissa. The
value of a floating point number is defined to be:

(MANTISSA) X (16 RAISED TO THE TRUE VALUE
OF THE EXPONENT FIELD) ’

The number is signed according to the value of the
sign bit. If the sign bit is 0, the number is posi-
tive; if the sign bit is 1, the number is negative.

Floating point numbers are represented internally
by either 32 bits (single precision) or 64 bits
(double precision).

The formats are shown below:

Single Precision

| I T W S U N S —|

3

MANTI§S.A.

1t 1 L 3 x4 1 13 1

S| EXPONENT |
0o | 78

Double Precision

MAN“TIISSA

| S U W TR N TN N A) Y F I I I (N Y I T N T |
1 {4

S| EXPONENT |
[eH] 78

Bit zero is the sign bit: 0 for positive, 1 for nega-
tive.

Bits 1-7 contain the exponent. This is the power to
which 16 must be raised in order to give the cor-
rect value to the number. So that the exponent field
may accommodate a large range, ''Excess 64"
representation is used. This means that the value
in the exponent field is 64 greater than the true
value of the exponent. If the exponent field is zero,
the true value of the exponent is -64. If the expo-
nent field is 64, the true value of the exponent is 0.
If the exponent field is 127, the true value of the
exponent is 63.

Bits 8-31 for single precision and bits 8-63 for
double precision contain the mantissa. This means
that bit 8 of the floating point number is bit 0 of the
mantissa. The mantissa is always a positive frac-
tion greater than or equal to 1/16 and less than 1.
The ""binary point" can be thought of as being just
to the left of bit 8. Continuing this concept then,
bit 8 represents the value 1/2, bit 9 represents

the value 1/4, bit 10 represents the value 1/8,

and so on. '

In order to keep the mantissa in the range of 1/16
to 1, the results of floating point arithmetic are
""normalized' . Normalization is the process
whereby the mantissa is shifted left one hex digit
at a time until the high-order four bits represent
a nonzero quantity. For every hex digit shifted,
the exponent is decreased by one. Since the
mantissa is shifted four bits at a time, it is pos-
sible for the high-order three bits of a normalized
mantissa to be zero.

Zero is represented by a floating point number with
all bits zero. This is true for both single and
double precision. This is known as '""true zero'".
When a calculation results in a zero mantissa, the
floating point processor automatically converts the
number to a true zero. Note that true zero is posi-
tive. It is not possible to obtain negative zero as
the result of a calculation.

Floating point operands in memory are represented
by two words for single precision and by four words

for double precision. The formats are shown below:

Single Precision

Word 1 [s] = EXPONENT [MANTISSA BITS O-7 | |
o'l 2 3 '4 5 87 8 9710 11 1213 i4 18
0' I 2 3' 4 8 6 7 8 ®'10 1 1213 14 13
Double Precision
Word 1 [s| | EXPONENT = [MANTISSA BITS 0-7 |
0 1 2 B8 4 B 6 T & 9 10 11 213 14 18
Word 2 I 11 1MAPT||SSIA BJITSL 8723| i 1
0 I 2 3'4 56 7 B 9 10 i 2 (3 14 15
Word 3 | L .MA.NT.ISSIA B‘ITS} 2f¥—§9 .
o' 1 2 3 4 85 € T 8 9 10 il 2t 14 s
word 4 I [L IMAINT!SSIA Q'Tls 410_1551 1 1 1]
o'l 2 3 4 86 e 7 8 9 1011 12 13 1415

Logical Quanities

Logical operations in the NOVA line can be per-
formed upon individual bits, bytes, or words.

When using the logical operations, quantities oper-
ated on are treated as unstructured binary quanti-
ties. The number of bits, bytes, or words
operated upon depends on the particular instruction.

Decimal Numbers

Decimal numbers may be represented internally in
two ways, character decimal and packed decimal.
In character decimal, the number is made up of a
string of ASCII characters and the sign, if present,
may appear in one of four places. The sign of the
number may be indicated by a leading or trailing
byte which contains the ASCII code for plus (2B)
or minus (2Dyg). Alternatively, either the high-
order digit or the low-order digit of the number

I1-5

may indicate the sign in addition to carrying a digit
of the number. The table below gives the corre-
spondence between certain ASCII characters and
the sign and digit values that they carry.

SIGN
VALUE

DIGIT
VALUE

ASCII
CHARACTER

TR S S S R T >

OO N WNNR OO R WN -=O
WOWOZEERU——TIQmEHD QW »—
-3
B

The digits that are not carrying the sign must be
valid ASCII characters for the digits 0-9
(3016-3916).

Examples:
In the following examples, the hex value of a byte

is shown inside the box; the corresponding ASCII
character is shown beneath the box.

+2,048 (leading sign) [28 [32 |30 [34 |38

+ 2 0 4 8

-1, 756 (trailing sign)

| 31 [37]35 |36 [2D
1 7 5 6 -

+1,850 (high-order sign) | 41 [38 |55 {30 |
A 8 5 0

-3,970 (low-order sign)] 33 |39 [37 l7D |
3 9 1)

For packed decimal, each digit of the decimal num-
ber occupies one hex digit. The sign is specified
by a trailing hex digit. The number must start and
end on a byte boundary. In other words, the num-
ber cannot start or end halfway through a byte.

This means that a packed decimal number will al-
ways consist of an odd number of digits followed by
the sign. The sign must be either Cyg for plus or
Dyg for minus. The only valid codes for digits are

16°

INFORMATION FORMATS

Examples:

In the following examples, the hex value of a digit
is shown within the box; the corresponding decimal

digit is shown beneath the box.

Byte Byte Byte

1o

+ 2,048 [o]2]o0]4]8]C
0 2 0 4 8 +
+32,456 [3]2]4[5]6]C
32 4 5 6 +
- 1,756 [0[1][7][5]6]D
0 1 7 5 6 -
-25, 989 [2]5]9]8]9]
2 5 9 8 9

INFORMATION ADDRESSING

The information formats described in the preceding
section give a way of representing different types of

data in main memory. Operations cannot be per-
formed upon these data types, however, unless

they can be addressed by the CPU. The address of
a piece of information is its location in main mem-

ory. Once the CPU knows the address of a piece
of information, the desired operation can be per-

formed.

Word Addressing

Main memory is partitioned into 2-byte words, and
each word has an address. The first word in mem-

Rev. 02

I1-6

ory has the address 0. The next word has the ad-
dress 1, the next word has the address 2, and so

on. Word addressing is used to address integers,
floating point numbers, and logical quantities that
are formatted in units of words.

ADDRESS WORD
[A N _ :_ .)
* L :
atiaiitiadielin it |
. ' i
I e e e e e e m e - ————— m— e — == = —— 4
| ettt e -
L] ! [
b o e e 4
400g | BYTE BYTE |
| 1 1 l 1 1 i 1 % 1 1 1 1 L
0'Il 2 3 45 6 7 8 9101112131415
40| | BYTE l BYTE
8 1 1 J 1 1 i J 1 [1 i l 1 A
01l 2 345 6' 7891011 127131415
4024 | BYTE | BYTE]
% 1 1 5 1 1 % 1 } 1 1 %

0Ol 2 345 678 9 10111213 1415

[] []

[] L]

DG-00538

Effective Address Calculation

There are six instructions in the NOVA line in-
struction set that directly reference memory using
word addressing. These instructions use eleven
bits in the instruction to define the address of the
desired word. These eleven bits do not directly
specify the address, but are used in a calculation
which results in the address of the desired word.
The resultant address is called the ' effective
address' or "E'", and the calculation is called the
""effective address calculation'.

The eleven bits in an instruction that are used in
the effective address calculation, are bits 5-15.
| Their format is shown below.

' I@IIN[?EXJ ?IS?LA}CE!{\AENIT]

O ' I 2 3 4 5 8 7 8 9 10 Il 1213 14 15

Bit 5 is called the '"indirect bit'', bits 6 and 7 are
called the '"index bits'', and bits 8-15 are called
the ''displacement bits'.

If the index bits are 00, the displacement is used as
an unsigned 8-bit number to address one of the first
25610 words in memory. This is called ''page
zero addressing" and this first block of 256 words
is known as '"page zero'.

If the index bits are 01, the displacement is treated
as a signed, two's complement number, which is
added to the address of the instruction to produce a
memory address. This is called '"relative addres-
sing''. By relative addressing, any instruction
which uses the effective address calculation can
directly address any word in storage whose address
is in the range -1281(to +1271¢ from the instruc-
tion.

If the index bits are 10, accumulator 2 is used as
an index register. If the index bits are 11, ac-
cumulator 3 is used as an index register. In this
form of word addressing, known as 'index regis-
ter addressing', the displacement is treated as a
signed, two's complement number which is added
to the contents of the selected index register to
produce a memory address. In index register ad-
dressing, the addition of the displacement to the
contents of index register does not change the value
contained in the index register.

-1

The result of the addition performed in relative
addressing and index register addressing is
"clipped' to 15 bits. In other words, the high-
order bit of the result is set to 0. For example,
if accumulator 2 is to be used as an index register
and contains the number 077774g, and the dis-
placement bits contain the number 012g, then the
result of the addition would be 000006g, not
1000064.

After one of the three types of addresses has been
computed from the index and displacement bits,
the indirect bit is tested. If this bit is zero, the
address already computed is taken as the effective
address. If the indirect bit is one, the word ad-
dressed by the result of the index and displacement
bits is assumed to contain an address. In this
word bit 0 is the indirect bit and bits 1-15 contain
an address. If bit 0 of the referenced word is 1,
another level of indirection is indicated, and bits
1-15 contain the address of the next word in the
indirection chain. The processor will continue to
follow this chain of indirect addresses until a word
is retrieved with bit 0 set to 0. Bits 1-15 of this
word are taken to be the effective address.

If an indirect address points to a location in the
range 20-27g (auto-increment locations); that word
is fetched, the contents of the word are incre-
mented by one and written back into the location.
This updated value is then used to continue the ad-
dressing chain. If an indirect address points to a
location in the range 30-37g (auto-decrement loca-
tions), that word is fetched, the contents of the
word are decremented by one and written back into
the location. The updated value is then used to
continue the addressing chain.

NOTE When referencing auto-increment
and auto-decrement locations, the
state of bit 0 before the increment
or decrementis the condition upon
which the continuation of the indi-
rectionchain is based. For exam-
ple: if an auto-increment location
contains 177777g, and the location
is referenced as part of an indi-
rection chain, location 0 will be
the next address in the chain.

Rev. 02
INFORMATION ADDRESSING

YES

8iTS=00?

NO
INDEX
BITS=01?

0

INDEX
BITS =107

0
INDEX
BITS=117

DISPLACEMENT BITS
AS SIGNED NUMBER
ARE ADDED TO

INSTRUCTION ADDRESS|

DISPLACEMENT BITS
GO TO INTERMEDIATE
ADDRESS AS
UNSIGNED NUMBER

DISPLACEMENT 8ITS
AS SIGNED NUMBER
ARE ADDED TO
CONTENTS OF
ACCUMULATOR 2

LOW ORDER (5
BITS GO TO
INTERMEDIATE
ADDRESS

DISPLACEMENT BITS
AS SIGNED NUMBER
ARE ADDEC TO
CONTENTS OF
ACCUMULATOR 3

INDIRECT
81T=0?

YES

e

FETCH WORD
AT INTERMEDIATE
ADDRESS

WORD
ETCHED FROM
LOCATION
20-27

[}
WORD

ETCHED FROM
LOCATION

NO

YES

YES

ADD | TO FETCHED
WORD AND REPLACE.
USE NEW VALUE
TO CONTINUE

SUBTRACT | FROM
FETCHED WORD
AND REPLACE. USE
NEW VALUE TO
CONTINUE

il

BITS 1-15 GO TO
INTERMEDIATE
ADDRESS

06-00539

INTERMEDIATE
AODRESS IS
EFFECTIVE
AODRESS

Byte Addressing

While bytes in main memory cannot be directly ad-
dressed by the CPU, there is a convenient program-
ming method for manipulating individual bytes of
information. This technique involves the use of a
"byte pointer''. A byte pointer is a word in which
bits 0-14 are the address in memory of a 2-byte
word. Bit 15 of the byte pointer is the ''byte
indicator''. If the byte indicator is 0, the refer-
enced byte is the high-order (bits 0-7) byte of the
word addressed by byte pointer bits 0-14. If the
byte indicator is 1, the referenced byte is the low-
order (bits 8-15) byte of the word addressed by
byte pointer bits 0-14.

100 101 102 103 104 105 106 107 HO it
[WORD IWORD I WORD{WORD I WORD WORDJWORDIWORD IWORDIWORD I
LA
BITS 0-i4

ADDRESS WORD

BIT
SELECTS BYTE

o] o] | o Se)
BYTEfo 0 o[o 0 ofo 0 1]O I 1
POINTER {1 L Ll lolo |o| :
0 23 4 56 7 8 9101 1213 |4115
06-00930 W

An effective address is always 15 bits in length.
This means that an instruction which uses the
effective address calculation can address any one

of 32,7681 words. This gives rise to the concept

of an '"address space'',
contains 64K bytes or 32,768 2-byte words.

Rev. 02

which, in the NOVA line,

II-8

Programming routines to load and store individual
bytes using byte pointers are given in Appendix E
of this manual.

Addressing With Address Translation Hardware

The concept of an address space was introduced in
the discussion of effective address calculation.
The "program' or ""logical' address space is that
amount of memory that can be referenced by in-
structions in a program. The maximum logical
address space available to a program running on
a NOVA line computer is 64K bytes or 32K words.

The '"'physical'’ address space is that amount of
physical memory that can be referenced by the
CPU. I« none of the address translation features
are installed, the maximum physical address
space available to the CPU is 64K bytes or 32K
words, and the logical address space is equal to
the physical space. For a NOVA line computer
with the MAP feature installed, the maximum
physical address space is still 64K bytes, but the
logical address space need not be equal to the
physical space. For a NOVA line computer with
either the MMPU or the MMU feature installed,
the maximum physical address space is 256K bytes
and the logical address space is some subset of
the physical space.

Installation of an address translation feature has
no effect on logical addressing. Addressing cal-
culations remain the same. The address trans-
lation features come into play when the CPU tries
to use a 15-bit address to reference memory.
The address translation features intercept the
memory reference and the 15-bit address. The
MAP feature translates this 15-bit address into
another 15-bit address and uses the new address
to perform the memory reference. The MMPU
and the MMU features translate the 15-bit ad-
dress from the CPU into a 17-bit address and use

this new address to perform the memory reference.

I1-9

o

LOGICAL ADDRESS

I

Y

f

ADDRESS

TRANSLATOR A

FEATURE
= v A
L PHYSICAL ADDRESS |,_:__,—'>
DG-00542

Rev. 02

PROGRAM EXECUTION

PROGRAM EXECUTION

Programs for the NOVA line consist of sequences
of instructions that reside in main memory. The
order in which these instructions are executed de-
pends on a 15-bit counter called the '"program
counter'. The program counter always contains
the address of the instruction currently being exe-
cuted. After the completion of each instruction the
program counter is incremented by one and the next
instruction is fetched from this address. This
method of operation is called ''sequential operation''
and the instruction fetched from the location ad-
dressed by the incremented program counter is
called the '"next sequential instruction''.

Program Flow Alteration

Sequential operation can be explicitly altered by the
programmer in two ways. Jump instructions alter
program flow by inserting a new value into the
program counter. Conditional skip instructions can
alter program flow by incrementing the program
counter an extra time if a specified test condition

is true. In the case of a conditional skip instruction
when the test condition is true, the next sequential
instruction is not executed because it is not ad-
dressed. After either a jump instruction or a

— I
. SEQUENTIAL
— PROGRAM
y " <1 | FLOW
INCREASING | [|
ADDRESSES I
JumMp |
| JUMP
N PROGRAM
_? FLOW
R
U <
c 1
¢
é L A
\ g SKIP
PROGRAM
|__SKIP L~ FLOW
A
L
DG-00543

successful conditional skip instruction, sequential
operation continues with the instruction addressed
by the updated value of the program counter.

Bacause the program counter is 15 bits in length,
it can address 32, 768 separate memory locations.
The next memory location after 77777g is location
0, and the location before 0 is location 77777g. If
the program counter rolls from 77777g to 0 in the
course of sequential operation, no indication is
given and processing continues with the location
addressed by the updated value of the program
counter.

Program Flow Interruption

The normal flow of a program may be interrupted
by external or exceptional conditions such as I/0
interrupts or various kinds of faults. In this case,
the address of the next sequential instruction in
the interrupted program is saved by the CPU so
that the I/O handler or the various fault handlers
can return control to the program at the correct
point. Once the address of the next sequential in-
struction in the program has been placed in the
program counter by the fault handler, sequential
operation of the program resumes.

SEQUENTIAL
- APROGRAM
) |FLOW 1/0
< \oCcurs |
___________/// A
__________//’/
INCREASING]]
ADDRESSES
A]
JUMP |
-1
I #Z 1
g =
1
; SKIP §
g 4
v
g (‘/‘
s <A CoNTINUED RETURN
- | PROGRAM
FLOW
-
DG-00544

II-10

SECTION Il
INSTRUCTION SETS

INTRODUCTION

The instruction set implemented on the NOVA line
is divided into 5 instruction sets. There are in-
struction sets available for fixed point arithmetic,
logical operations, program flow alteration, float-
ing point arithmetic, and I/O operations. In addi-
tion, instruction sets which are a mixture of I/O
instructions are available for programming the
stack feature, MMPU, MMU, and MAP features,
the RTC feature, the power fail/auto-restart fea-
ture, and certain CPU functions.

INSTRUCTION FORMATS

There are four different formats for instructions
on the NOVA line. These formats allow an exten-
sive instruction set while still keeping the instruc-
tion length to one word. The four formats and
their general layouts are described below.

NO ACCUMULATOR-EFFECTIVE ADDRESS

[o 0,0 ppcioosl @] INEII)EXI _ DISPLACEMENT |

0 [2 3'4 5 6 7 8 9 10 Il 12 13 4 1I5

In the No Accumulator -Effective Address format
instructions, bits 0-2 are 000, and bits 3-4 contain
the operation code. The effective address is com-
puted from bits 5-15 as described under ' Effective
Address Calculation' .

ONE ACCUMULATOR-EFFECTIVE ADDRESS

[obpcod ac [@[INDEX] DISPLACEMENT
0 1 2 34 5 6 T 8 '

9 10 Il 1213 14 15

In the One Accumulator-Effective Address format
instructions, bit 0 is 0, and bits 1-2 contain the
operation code. Bits 3-4 specify the accumulator
for the operation. The effective address is com-
puted from bits 5-15 as described under ' Effective
Address Calculation' .

TWO ACCUMULATOR-MULTIPLE OPERATION

L1 Acs [aco |opcooe] sn | ¢ [#] swp |
0O I 2 3 4 5 6 7 8 9 10 Il 12 13 14 (5

In the Two Accumulator-Multiple Operation format
instructions, bit 0 is 1, bits 1 and 2 specify the
source accumulator, bits 3 and 4 specify the desti-
nation accumulator, bits 5-7 contain the operation
code, bits 8 and 9 specify the action of the shifter,
bits 10 and 11 specify the value to which the carry
bit will be initialized, bit 12 specifies whether or
not the result will be loaded into the destination
accumulator, and bits 13-15 specify the skip test.
Each instruction in this format utilizes an arith-
metic unit whose logical organization is illustrated
below.

ORGANIZATION OF ARITHMETIC UNIT —

] 17 BITS Py
FUNCTION
GENERATOR SHIFTER
ACS ACD i7 BITS
168ITS |6 BITS
I [scesensor |

[accumuLaTors
181T ACDI6 BITS o'\c” BITS

LOAD/NO LOAD

D6-00927

Each instruction specifies two accumulators to sup-
ply operands to the function generator, which per-
forms the function specified by bits 5-7 of the
instruction. The function generator also produces
a carry bit whose value depends upon three quan-
tities: an initial value specified by the instruction,
the inputs, and the function performed. The initial
value may be derived from the previous value of
the carry bit, or the instruction may specify an
independent value.

The 17-bit output of the function generator, made
up of the carry bit and the 16-bit function result,
then goes to the shifter. In the shifter, the 17-bit
result can be rotated one place right or left, or the

Rev. 02

III-1 of 12 INSTRUCTION FORMATS

two 8-bit halves of the function result can be swap-
ped without affecting the carry bit. The 17-bit out-
put of the shifter can then be tested for a skip. The
skip sensor can test whether the carry bit or the
rest of the 17-bit result is or is not equal to zero.
After the skip sensor has tested the shifter output,
it can be loaded into the carry bit and the destina-
tion accumulator. Note, however, that loading is
not necessary. An instruction in this format can
perform a complicated arithmetic and shifting
operation and test the result for a skip without af-
fecting the carry bit or either of the operands.

-2

INPUT/OUTPUT

CONTROL
[0 1 1] Ac Jop CODE| ¢ | DEVICE CODE
0O I 2 3 4 &5 6 7T 8 9 10 Il 12 13 14 15

In the Input/Output format instructions, bits 0-2
are 011, bits 3-4 specify the accumulator for the
operation, bits 5-7 contain the operation code, bits
8-9 specify the control signal to be used, and bits
10-15 contain the device code of the referenced
device.

CODING AIDS

In the descriptions of the separate instructions,
the general form of how the instruction is coded in
assembly language is given along with the instruc-
tion. The general form of how an instruction may
be coded has the following format:

MNEMONIC < optional mnemonics > OPERAND STRING

The mnemonic must be coded exactly as shown in
the instruction description. Some instructions
have optional mnemonics that may be appended to
the main mnemonic if the option is desired. The
operand string is made up of the operands for the
given instruction.

The symbols <> and — are used in this manual to
aid in defining the instructions. These symbols
are not coded; they act only to indicate how an as-
sembly language instruction may be written. Their
general definition is given below.

<> Indicates optional operands or mnemonics.
The operand enclosed in the brackets (e.g.,
<#>) may be coded or not, depending on
whether or not the associated option is de-
sired.

Indicates specific substitution is required.
Substitute the desired accumulator, address,
name, number, or mnemonic.

The following abbreviations are used throughout
this manual:

AC = Accumulator

ACS = Source Accumulator

ACD = Destination Accumulator
FPAC = Floating Point Accumulator

-3

In the instructions that utilize an effective address,
the following coding conventions are used:

The indirect bit (bit 5) is set to 1 by coding
the symbol @ anywhere in the effective ad-
dress operand string.

The index bits are set by coding a comma
followed by one of the digits 0-3 as the last
operand of the operand string. If no index

is coded, the bits are set to 00. The charac-
ter " period" (.) can be used to set the index
bits to 01. ' Period' can be read to mean
"*address of the current instructions'. When
the period is used, it is followed by either a
plus or a minus sign followed by the displace-
ment e.g., ".+7", or ", -2",

The displacement is coded as a signed number in
the current assembler radix. This radix is the
numbering system in which the programmer sup-
plies numbers to the assembler. The default radix
is Base 8 or octal. The assembler radix can be
changed by using the RADIX statement.

The assembler available with the NOVA line allows
the programmer to place labels on instructions or
locations in memory. When the assembler comes
upon a label in the operand string of an effective
address instruction, it automatically sets the index
and displacement bits to the correct values. For

a detailed discussion of the features and operation
of the NOVA line assembler, see the assembler
manual (DGC 093-000017).

The fixed point and logical instructions which use
the two accumulator-multiple operation format
have several options that can be obtained by ap-
pending suffixes to the instruction mnemonic and
by coding optional operands in the operand string.
The characters to be coded are given below with
their results.

CODING AIDS

The characters in the column titled '"class abbre-
viation" refer to specific fields in the two accu-
mulator -multiple operation format. The characters
in the column titled '"coded character' show the
various characters which may be coded for this
option. The numbers in the column titled " result
bits'' show the bit settings in these fields resulting
from each coded character. The comments in the
column titled ''operation' describe the effect of
these bit settings.

CLASS CODED RESULT
ABBREVIATION | CHARACTER BITS OPERATION

C (option omitted) 00 Do not initialize the carry bit.

Z 01 Initialize the carry bit to 0.

O 10 Initialize the carry bit to 1.

C 11 Initialize the carry bit to the
complement of its present
value.

SH (option omitted) 00 Leave the result of the arith-
metic or logical operation un-
affected.

L 01 Combine the carry and the 16-
bit result into a 17-bit number
and rotate it one bit left.

R 10 Combine the carry and the 16-
bit result into a 17-bit number
and rotate it one bit right.

S 11 Exchange the two 8-bit halves
of the 16-bit result without af-
fecting the carry.

(option omitted) 0 Load the result of the shift
operation into ACD.

i 1 Do not load the result of the
shift operation into ACD.

The following diagrams illustrate the operation of
the shifter.

Coded
Character Shifter Operation
L Left rotate one place. Bit 0 is rotated

into the carry position, the carry bit

into bit 15,
L epe] 3
Bit 15 is ro-

R Right rotate one place.
tated into the carry position, the carry
bit into bit 0.

+

S Swap the halves of the 16-bit result.
The carry is not affected.

0—I5

0—15

l 8—-15

8—15 I

Rev. 02

I1-4

The following operands initiate operations that test
the result of the shift operation. If the tested con-
dition is true, the next sequential instruction is
skipped.

CLASS CODED RESULT
ABBREVIATION | CHARACTER BITS OPERATION

SKIP (option omitted) 000 Never skip.
SKP 001 Always skip.
SZC 010 Skip if carry = 0.
SNC 011 Skip if carry % 0.
SZR 100 Skip if result = 0.
SNR 101 Skip if result & 0.
SEZ 110 Skip if either carry or

result = 0,

SBN 111 Skip if both carry and

result % 0.

NOTE For the NOVA 3 series of computers,
instructions in the Two Accumulator-
Multiple Operation format must not have
boththe ""No Load' andthe "'Never Skip"'
options specified at the same time.
These bit combinations are used by
other instructions in the instruction set.

As an example of how to use these tables, assume
that accumulator 3 contains a signed, two's com-
plement number. Now consider the problem of
determining whether this number is positive or neg-
ative. One way to determine this would be to place
the number zero in another accumulator and use the
SUBTRACT instruction, but this requires an extra
instruction and also destroys the previous contents
of the other accumulator. Another way to deter-
mine the sign of the number in accumulator 3 is to
use the MOVE instruction and the power of the two
accumulator-multiple operation format. With the
MOVE instruction, the contents of AC3 can be
placed in the shifter and shifted one bit to the left.
This places the sign bit in the carry bit. The carry
bit can then be tested for zero. In order to pre-
serve the number in AC3, the instruction can pre-
vent the output of the shifter from being loaded back
into AC3.

The general form of the MOVE instruction is:
MOV<c ><sh><#> acs,acd<,skip>

The general bit pattern of the MOVE instruction is:

[[acs [acofo 1 of sH | c [#] sk
0’1 2 34 5 6 7 8 9 10 Il 1213 14 15
To shift the number in AC3 one bit left without
destroying the number, and skip the next sequential
instruction if the bit shifted into the carry bit is
zero, the following instruction could be coded:

MOVL# 3,3,8ZC

This instruction would assemble into the following
bit pattern:

[] vJo 1 ofo 1o o]i]o 1,0
0'1 2 3'4 5 6'7 8 910 11 12'13 14 15

FIXED POINT ARITHMETIC

The fixed point instruction set performs binary
arithmetic on operands in accumulators. The op-
erands are 16 bits in length and can be either
signed or unsigned. The instruction set provides
for loading, storing, adding, and subtracting.

LOAD ACCUMULATOR
LDA ac,<@ >displacement<,index >

0 OLIl AC]@||Nq£x[DISPLACEMENT 1

o1 2 34 5 &'7 8 9 10 Il 12 13 14 15

The word addressed by the effective address, "E'',
is placed in the specified accumulator. The pre-
vious contents of the AC are lost. The contents of
the location addressed by "E' remain unchanged.

STORE ACCUMULATOR
STA ac, <@ >displacement<,index >

[o |Lol AF T@]wo}n—:x| , DISPLACEMENT |
(o] | 2 3 4 5 [7 8] 10 |1 12 13 14 |5

The contents of the specified accumulator are
placed in the word addressed by the effective ad-
dress, "E'". The previous contents of the location
addressed by ""E'" are lost. The contents of the
specified accumulator remain unchanged.

ADD
ADD<c ><sh><#> acs,acd<, skip >

[]acs [aco i 1 of su [¢ [#] scp |
' ' ' 15

0O I 2 3 4 5 6 7T 8 9 10 Il 12 13 14

The carry bit is initialized to the specified value.
The number in ACS is added to the number in ACD
and the result is placed in the shifter. If the addi-
tion produces a carry of 1 out of the high-order bit,
the carry bit is complemented. The specified shift
operation is performed and the result of the shift is
placed in ACD if the no-load bit is 0. If the skip
condition is true, the next sequential instruction is
skipped.

NOTE 1If the sum of the two numbers
being added is greater than
65,b35,,, the carry bit is

10
complemented.

SUBTRACT

SUB<¢ ><sh > #> acs,acd<, skip >
¢

| ACIS|A(1:D|IIOII SH # ISKHI:’_]

0O I 2 3 4 5 6 7 8 9 10 1 12 13 14 15

The carry bit is initialized to its specified value.
The number in ACS is subtracted from the number
in ACD by taking the two's complement of the num -
ber in ACS and adding it to the number in ACD.
The result of the addition is placed in the shifter.
If the operation produces a carry of 1 out of the
high-order bit, the carry bit is complemented.
The specified shift operation is performed and the
result of the shift is placed in ACD if the no-load
bit is 0. If the skip condition is true, the next
sequential instruction is skipped.

NOTE If the number in ACS is less
than or equal to the number

in ACD the carry bit is com-
plemented.

NEGATE
NEG<c ><sh>J#> acs,acd<, skip>

[[acs [aco [o o i] sH| ¢ [#] skr
o'l 2 34 5 6 7 8 9 (0 Il 12 13 14 15
The carry bit is initialized to the specified value.
The two's complement of the number in ACS is
placed in the shifter. If the negate operation pro-
duces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition
is true, the next sequential instruction is skipped.

NOTE If ACS contains 0, the carry
bit is complemented.

ADD COMPLEMENT

ADC<c><sh><#> acs,acd<, skip >

[| ACI:S|A(=:D|IlO¢OI SlHl c |# SkiP

o | 2 3 4 5 €6 7 8 9 10 Il 1213 14 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is ad-
ded to the number in ACD and the result is placed

in the shifter. If the addition produces a carry of 1
out of the high-order bit, the carry bit is comple-
mented. The specified shift operation is performed,
and the result of the shift is loaded into ACD if the
no-load bit is 0. If the skip condition is true, the
next sequential instruction is skipped.

NOTE If the number in ACS is less
than the number in ACD, the
carry bit is complemented.

FIXED POINT ARITHMETIC

MOVE
MOV<c ><sh><#> acs,acd<, skip >

[

o |

SKIP |
14 15

ACS | ACD i

2 T

NIEEEEE
3 4 t

6 7 8 9 10 Il I2

0
5 13
The carry bit is initialized to the specified value.
The contents of ACS are placed in the shifter. The
specified shift operation is performed and the re-
sult of the shift is loaded into ACD if the no-load
bit is 0. If the skip condition is true, the next
sequential instruction is skipped.

Example:

The MOVE instruction can be used to perform a
signed divide by a power of 2 without using another
accumulator. The following sequence of instruc-
tions will divide the signed, two's complement
number in AC2 by 4 without using another accumu-
lator.

MOVL# 2,2,SZC
MOVOR 2,2,SKP

;SKIP IF POSITIVE

;SHIFT RIGHT WITH 1 AND
; SKIP

;SHIFT RIGHT WITH 0 AND
; SKIP

;SHIFT RIGHT WITH 1 AND
; SKIP

;SHIFT RIGHT WITH 0 AND
; DON'T SKIP

MOVZR 2,2,SKP
MOVOR 2, 2,SKP

MOVZR 2,2

Shifting a number right one bit position is equiva-
lent to dividing the number by 2 and rounding
down. To perform division of a signed number

in this manner, the bit shifted into the high-order
bit must be equal to the sign bit. The first in-
struction determines whether to shift ina 0 or a 1.

I11-6

INCREMENT
INC<c><sh><#> acs,acd<, skip >

[#]

L)
12 13

SKIP__ |

lA(l:SIAClDlOII‘IISIHl c
' 14 15

"1 2 3'4 5 6 T 8 9 I0

K

o] I
The carry bit is initialized to the specified value.
The number in ACS is incremented by one and the
result is placed in the shifter. If the incrementa-
tion produces a carry of 1 out of the high-order bit,
the carry is complemented. The specified shift
operation is performed, and the result of the shift
is loaded into ACD if the no-load bit is 0. If the
skip condition is true, the next sequential instruc-
tion is skipped.

NOTE If the number in ACS is 177777g
the carry bit is complemented.

LOGICAL OPERATIONS

The logical instruction set performs logical opera-
tions on operands in accumulators. The operands
are 16 bits long and are treated as unstructured
binary quantities. The logical operations included
in this set are: AND, and COMPLEMENT.

COMPLEMENT

COM<c ><sh><#> acs,acd<, skip>
K ¢ [#] swe
0 10 11 12 13 14

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is
placed in the shifter. The specified shift operation
is performed and the result is placed in ACD if the
no-load bit is 0, If the skip condition is true, the
next sequential instruction is skipped.

!Ags | ACD [olo=o| SH |
| 2 3 4 5 6 7 8 9

15

-1

AND

AND<c ><sh><#> acs,acd<, skip >

c

i

10 I

|
7

#

| A(ESlAé:D[I |
' 12

| I |
o' I 2 34 5 6

SH
8 9

SKIP
14

13 15
The carry bit is initialized to the specified value.
The logical AND of ACS and ACD is placed in the
shifter. Each bit placed in the shifter is 1 only if
the corresponding bit in both ACS and ACD is one;
otherwise the result bit is 0. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition
is true, the next sequential instruction is skipped.

LOGICAL OPERATIONS

STACK MANIPULATION

An important feature of the NOVA 3 series of com-
puters is the stack manipulation facility. A Last-
In/First-Out (LIFO) or "Push-Down' stack is
maintained by the processor. The stack facility
provides an expandable area of temporary storage
for variables, data, return addresses, subroutine
arguments, etc. An important byproduct of the
stack facility is that storage locations are reserved
only when needed. When a procedure is finished
with its portion of the stack, those memory loca-
tions are reclaimed and are available for use by
some other procedure.

The operation of the stack depends upon the con-
tents of two hardware registers. The registers
and their contents are described below,

Stack Pointer

The stack pointer is the address of the "top" of the
stack and is affected by operations that either
"push' objects onto or "pop'’ objects off of the
stack. A push operation increments the stack
pointer by 1 and then places'the "pushed” object

in the word addressed by the new value of the stack
pointer. A pop operation takes the word addressed
by the current value of the stack pointer and places
it in some new location and then decrements the
stack pointer by 1.

"
STACK POINTER STACK POINTER
BEFORE PUSH — <«— AFTER POP

PUSHED/POPPED | «}—— STACK POINTER
TSN T e RS

INCREASING
ADDRESSES

06-0056/

Rev. 02 II1-8

Frame Pointer

The frame pointer is used to reference an area in
the user stack called a ''frame''. A frame is that
portion of the stack which is reserved for use by
a certain procedure. The frame pointer usually
points to the first available word minus 1 in the
current frame. The frame pointer is also used by
the RETURN instruction to reset the user stack
pointer.

Return Block

A return block is defined as a block of five words
that is pushed onto the stack in order to allow con-
venient return to the calling program. The format
of the return block, therefore, is determined by
how it is used in the return sequence. The format
of the return block is as follows:

| WORD # POPPED

DESTINATION

1 Bit 0 placed in the
carry bit.

Bits 1-15 placed in the
program counter.

AC3
AC2
AC1

2
3
4
5 ACO

In the stack, the return block looks like this:

STACK POINTER
AFTER RETURN

o____sth worD
Aco POPPED
ACl
AC2
AC3
STACK POINTER PROGRAM Ist WORD
BEFORE RETURN —PISARRY| Cointer | POPPED
PPV

D6-00566

Stack Frames

In order to implement re-entrant subroutines, a
new area of temporary storage must be available
for each execution of a called subroutine. The
easiest way to accomplish this is for the subrou-
tine to use the stack for temporary storage. A
"stack frame'' is defined as that portion of the
stack which is available to the called routine. In
general, the stack frame belonging to a subroutine
begins with the first word in the stack after the
return block pushed by the called routine and con-
tains all words in the stack up to, and including,
the return block pushed by any routine which the
called routine calls. Variables and arguments can
be transmitted from the calling routine to the
called routine by placing them in prearranged
positions in the calling routine's stack frame. Be-
cause the SAVE instruction sets the frame pointer
to the last word in the return block, these variables
and arguments can be referenced by the called
program as a negative displacement from the
frame pointer. The called routine should ensure
that reference to the calling routine's stack frame
is made only with the permission of the calling
routine.

Stack Protection

During every instruction that pushes data onto the
stack, a check is made for stack overflow. If the
instruction places data in a word whose address is
an integral multiple of 25610, a stack overflow is
indicated. If a stack overflow is indicated, the in-

-9

struction is completed, an internal stack overflow
flag is set to 1, and, if the Interrupt On flag is 1,
a stack fault is performed. If the Interrupt On flag
is 0, the stack overflow flag remains set to 1, and
as soon as the interrupt system is enabled, the
stack fault is performed.

When a stack fault is performed, if a program map
is enabled, it is inhibited; the Interrupt On flag is
set to 0; the stack overflow flag is set to 0; the up-
dated program counter is stored in physical loca-
tion 0; and the processor executes a "jump
indirect" to physical location 3.

Initialization of the Stack Control Registers

Before the first operation on the stack can be per-

formed, the stack control registers must be ini-

tialized. The rules for initialization are as follows:
Stack Pointer

The stack pointer must be initialized to the begin-

ning address of the stack area minus one.

Frame Pointer

If the main user program is going to use the frame
pointer, it should be initialized to the same value
as the stack pointer. Otherwise, the frame pointer
can be initialized in a subroutine by the SAVE in-
struction.

Rév. 02
STACK MANIPULATION

STACK MANIPULATION INSTRUCTIONS

The stack feature of the NOVA 3 computer is pro-
grammed with eight I/0 instructions which use the
device code 01. Although the instructions are in

the standard I/0 format, the operation of these in-
structions is in no way similar to I/O instructions.

PUSH ACCUMULATOR

PSHA_g_g

0 1 IIACIOI o olo o o 0 o 11
I 1 i | L 1 1 1 1 | 1
0O I 2 34 5 &'7 8 9 140 Il 1213 14 15

The contents of the specified accumulator are
pushed onto the top of the stack. The contents of
the specified accumulator remain unchanged.

POP ACCUMULATOR

POPA&Q
o, i [A [0 1]1,0[06000.0,1]
o'l 2 3'4 5 6'7 8 910 I 127413 14 15

The specified accumulator is filled with the word
popped off the top of the stack.

SAVE
SAV
0III'| AIC lol'lllolo ololololoLLI
o'l 2 3'a4 5 6'7 8 910 Il 1213 14 15

A return block is pushed onto the stack. After the
fifth word of the return block is pushed, the value
of the stack pointer is placed in the frame pointer
and in AC3, The contents of accumulators 0, 1,
and 2 remain unchanged. The format of the five
words pushed is as follows:

WORD # PUSHED CONTENTS
1 ACO
2 AC1
3 AC2
4 Bit 0=0

Bits 1-15=frame pointer
before the SAVE

5 Bit O=carry bit
Bits 1-15=Bits 1-15 of
AC3
Rev. 02

MOVE TO STACK POINTER

MTSP ac

IO!IIACIOIOIOOOOOOOI
1 1 1 1 1 1 1 1 i L i
01 2 3'4 5 6'7 8 9'10 I 12 13 14 15,

Bits 1-15 of the specified accumulator are placed
in the stack pointer. The contents of the specified
accumulator remain unchanged.

MOVE TO FRAME POINTER

MTFP ac

lOllIACIOOOOOOOOOOIJ
1 1 L 1 [l i 1 1 L 1 I
0O I 2 34 5 6'7 8 910 Il 1213 14 15

Bits 1-15 of the specified accumulator are placed
in the frame pointer. The contents of the specified
accumulator remain unchanged.

MOVE FROM STACK POINTER

MFSPg_E
[OIIIACJOIOIOOOOOOI]
i 1 1 | | I | SR SRR N |
0O I 2 3 4 5 6'7 8 9 10 1l 2 13 14 15

The contents of the stack pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the
specified accumulator is set to 0. The contents of
the stack pointer remain unchanged.

MOVE FROM FRAME POINTER

MFFP ac

[oullAc]ooolnoooooon
i 1 il 1 L 1 1 1 i 1 1
0O I 2 3 4 5 6'7 8 9 10 Il 12 13 14 15

The contents of the frame pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the
specified accumulator is set to 0. The contents of
the stack pointer remain unchanged.

II1-10

PROGRAM FLOW ALTERATION

INCREMENT AND SKIP IF ZERO

As stated previously, the normal method of pro- ISZ <@>displacement<,index>

gram execution is sequential. That is, the proces- _ =

sor will continue to retrieve instructions from I 0 0 0 l I 0 r@]INDEX I DISPLACEMENT]
sequentially addressed locations in memory until ot T2 3ta 5 et7 ® st o it 14 15
directed to do otherwise. Instructions are pro-

vided in the instruction set that alter this sequen- The word addressed by '"'E" is incremented by one
tial flow. Program flow alteration is accomplished and the result is written back into that location. If
by placing a new value in the program counter. the updated value of the location is zero, the next
Sequential operations will then continue with the sequential instruction is skipped.

instruction addressed by this new value., Instruc-
tions are provided that change the value of the

program counter, change the value of the program DECREMENT AND SKIP IF ZERO

counter and save a return address, or modify a

memory location by incrementing or decrementing DSZ <@ >displacement<,index>

and skip the next sequential instruction if the result

is zero. [o o o] 1 J@[moex] = oispLacement]
0'1 2 3 4 5 6 7 8 9 10 I 1213 14 15

JUMP

The word addressed by 'E'" is decremented by one

JMP <@ >displacement< , index >

o 0 ofo o|@]inoEx| DISPLACEMENT
0 1 2 3 4 5 6 7 8 9 10 Il 12'13 14 I5

The effective address, '""E' is computed and placed
in the program counter. Sequential operation con-
tinues with the word addressed by the updated value
of the program counter.

JUMP TO SUBROUTINE
JSR <@ >displacement<,index >

[0 0 ofo 1 [@]moEx| | DpispLAcEMENT
ol 1 2 3’/4 5 6 7 8 9 10 Il 12° 13 14 1§

P . . . o
The éffective address, ""E' is computed. Then the
present value of the program counter is incre-
mented by one and the result is placed in AC3. "E"
is then placed in the program counter and sequential
operation continues with the word addressed by the
updated value of the program counter,

NOTE The computation of "E'" is
completed before the incre-
mented program counter is
placed in AC3.

I-11

and the result is written back into that location. If
the updated value of the location is zero, the next
sequential instruction is skipped.

Rev. 02
PROGRAM FLOW ALTERATION

Extended Instructions

The following two program flow alteration instruc-
tions are available with the NOVA 3 series of com-
puters.

RETURN

RET

0o | ll AC]I 0 Ill 0]0 0O 00 O 1
1 A 1] 5 1 1 1 L 1 1
0'1 2 3'4 5 6'7 8 9 10 H 1213 14 |5

The contents of the frame pointer are placed in the
stack pointer and then five words are popped off the
stack and placed in predetermined locations. The

words popped and their destinations are as follows:

WORD # POPPED DESTINATION

1 Bit 0 is placed in the
carry bit,

Bits 1-15 are placed in
the program counter.

2 Bits 1-15 are placed in
the frame pointer.

Bits 0-15 are placed in
AC3.

AC2
4 AC1
ACO

Sequential operation continues with the word ad-
dressed by the updated value of the program
counter.

Rev. 02

TRAP

TRAP acs,acd,trap number

0 ACs I ACD l
1 }

ITRAPI leMBERl) o|o|
0'1 2 3'4 5 6'7 8

L L 1
910 It 12713 14 15

If a program map is enabled, it is inhibited. The
logical address of this instruction is placed in bits
1-15 of physical location 40g and bit 0 of this loca-
tion is set to 0. Then the processor executes a
"jump indirect' to physical location 41g. The state
of the Interrupt On flag is unaltered.

NOTE The mnemonic TRAP and the in-
struction format illustrated above
will only work with the DGC Macro
Assembler. If the program is to
be assembled using the Assembler
or the Extended Assembler, this
function can be performed by cod-
ing an instruction inthe Two Accu-
mulator/Multiple Operation format
withthe '""No Load' and the ''Never
Skip'' options both specified. The
trap number can be constructed in
bits 5-11 by specifying the correct
operation code, shift command,
and carry command.

1I1-12

SECTION IV
INPUT/OUTPUT

INTRODUCTION

In order for the processor to perform useful work
for the user, there must be some method for the
program to transfer information outside the ma-
chine. The Input/Output (I/0O) instruction set pro-
vides this facility. There are eight I/O instructions
which allow the program to communicate with I/O
devices, control the I/O interrupt system, control
certain processor options, and to perform certain
processor functions.

The NOVA line has a 6-bit device selection net-
work, corresponding to bits 10-15 in the I/O in-
struction format. Each device is connected to
this network in such a way that each device will
only respond to commands with its own device code.
Each device also has two flags, Busy and Done,
which control its operation. When Busy and Done
are both 0, the device is idle and cannot perform
any operations. To start a device, the program
must set Busy to 1 and set Done to 0. When a
device has finished its operation, it sets Busy to
0 and Done to 1. The case of Busy and Done both
set to 1 is a meaningless situation and will pro-
duce unpredictable results.

The format for the I/O instructions is illustrated
below.

AC IOP CODE ICONTROLI DEVICE CODE]
0 I 2 3 4 5 6'7 8 9 10 Il 12 13 14 15

Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the
Busy and Done flags in the device, and bits 10-15
specify the code of the device. The six bits pro-
vided for the device code in the I/0 format mean
that 64 unique device codes are available for use.
Some of these device codes, however, are reserved
for the CPU and certain processor options. The
remaining device codes are available for referenc-
ing I/O units. Some of the codes have been assigned
to specific devices by Data General and the assem-
bler recognizes mnemonics for these devices. A
complete listing of device codes, the devices as-
signed to these codes, and the mnemonics assigned
to the devices is available in Appendix A.

IV-1o0of 6

OPERATION OF 1/0O DEVICES

In general, the operation of all I/O devices is done
by manipulation of the Busy and Done flags. In
order to operate a device, the program must first
ensure that the device is not currently performing
some operation. After the program has deter-
mined that the device is available, it can start an
operation on the device by setting Busy to 1 and
Done to 0. Once a device has completed its opera-
tion, and set Busy to 0 and Done to 1, it is avail-
able for another operation. The program can
determine this condition in one of two ways. By
using the I/O SKIP instruction, the program can
test the status of the Busy and Done flags. Another
way is to utilize the interrupt system that is stan-
dard on the NOVA line of computers. The inter-
rupt system is made up of an interrupt request line
to which each I/O device is connected, an Interrupt
On flag in the CPU, and a 16-bit interrupt priority
mask. The Interrupt On flag controls the status of
the interrupt system. If the flag is set to 1, the
CPU will respond to and process interrupts. If the
flag is set to 0, the CPU will not respond to any
interrupts. An interrupt is initiated by an I/O de-
vice when it completes its operation. Upon com-
pleting the operation, the device sets Busy to 0 and
Done to 1. At this time, the device also places an
interrupt request on the interrupt request line,
provided that the bit in the interrupt priority mask
which corresponds to the priority level of the de-
vice is 0. If the mask bit is 1, the device sets
Busy to 0 and Done to 1, but does not place an in-
terrupt request on the interrupt request line.

If the Interrupt On flag is 1 at the time the proces-
sor completes execution of any instruction, the pro-
cessor honors any request on the interrupt request
line. If the Interrupt On flag is 0, the CPU does
not look at the interrupt request line; it just goes
on to the next sequential instruction. The CPU
honors an interrupt request by setting the Interrupt
On flag to 0 so that no interrupts can interrupt the
first part of the interrupt service routine. If no
program map is enabled, the CPU places the up-
dated program count in physical memory location
0 and executes a ''jump indirect' to physical mem-
ory location 1. It is assumed that location 1 con-

Rev. 02
OPERATION OF 1/O DEVICES

tains the address, either direct or indirect, of the
interrupt service routine. If a MAP program map
is enabled, it is disabled and the interrupt process
continues as outlined above. If a MMPU program
map is enabled, the updated program counter is
placed in logical memory location 0, the map is
disabled, and the CPU executes a ''jump indirect"
to physical memory location 1. If a MMU program
map is enabled, it is inhibited; the updated program
counter is placed in physical memory location 0
and the CPU executes a "'jump indirect' to physical
memory location 1.

Once the CPU has transferred control to the inter-
rupt service routine, it is up to that routine to
save any accumulators that will be used, save the
carry bit if it will be used, determine which device
requested the interrupt, and then service the inter-
rupt. The determination of which device needs
service can be done by I/0O SKIP instructions or the
routine can use the INTERRUPT ACKNOWLEDGE
instruction.

The INTERRUPT ACKNOWLEDGE instruction re-
turns the 6-bit device code of the device requesting
the interrupt. If more than one device is request-
ing service, the code returned is the code of that
device requesting an interrupt which is physically
closest to the CPU on the I/0O bus. After servicing
the device, the interrupt routine should restore all
saved values, set the Interrupt On flag to 1, and
return to the interrupted program. The instruction
that sets the Interrupt On flag to 1 (INTERRUPT
ENABLE) allows the processor to execute one more
instruction before the next interrupt can take place.
In order to prevent the interrupt service routine
from going into a loop, this next instruction should
be the instruction that returns control to the inter-
rupted program. Since the updated value of the
program counter was placed in location 0 by the
CPU upon honoring the interrupt, all the interrupt
routine has to do, after restoring the AC's and the
carry bit, is execute an INTERRUPT ENABLE in-
struction, a "JMP@0" instruction and control will
be returned to the interrupted program.

Rev. 02

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 through the in-
terrupt service routine, the interrupt routine can-
not be interrupted and there is only one level of
device priority. This level is determined by either
the order in which the I/O SKIP instructions are
issued or (if INTERRUPT ACKNOWLEDGE is used)
by the physical location of the devices on the bus.
In a system with devices of widely differing speed,
such as a teletypewriter versus a fixed head disc,
the programmer may wish to set up a multiple level
interrupt scheme. Hardware and instructions are
available that allow the implementation of sixteen
levels of priority interrupts.

Each of the I/0 devices is connected to a bit in the
16-bit priority mask. Devices which operate at
roughly the same speed are connected to the same
bit in the mask. Even though the standard mask
bit assignments have the higher numbered bits as-
signed to lower speed devices, no implicit priority
ordering is intended. The manner in which these
priority levels are ordered is completely up to the
programmer. The listing of device codes in
Appendix A also contains the standard Data General
mask bit assignments.

The condition of the priority mask is altered by
the MASK OUT instruction. If a bit in the priority
mask is set to 1, then all devices in the priority
level corresponding to that bit will be prevented
from requesting an interrupt when they complete
an operation. In addition, all pending interrupt
requests from devices in that priority level are
disabled.

To implement a multiple priority level interrupt
handler, the interrupt handler must be written in
such a way that it may be interrupted without dam-
age. For this to be possible, the main interrupt
routine must save the state of the machine upon re-
ceiving control. The state of the machine consists
of the four accumulators, the carry bit, and the
return address. This information should be stored
in a unique place each time the interrupt handler is
entered so that one level of interrupt does not over-
lay the return information that belongs to a lower
priority level. After saving the return information,
the interrupt routine must determine which device
requires service and jump to the correct service
routine. This can be done in the same manner as
for a single level interrupt handler.

After the correct service routine has received con-
trol, that routine should save the current priority
mask, establish the new priority mask, and enable
the interrupt system with the INTERRUPT ENABLE
instruction. After servicing the interrupt, the
routine should disable the interrupt system with the
INTERRUPT DISABLE instruction, reset the pri-
ority mask, restore the state of the machine, en-
able the interrupt system, and return control to the
interrupted program.

V-2

DATA CHANNEL

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater trans-
fer rates the NOVA line contains a data channel
through which a device, at its own request, can
gain direct access to memory using a minimum of
processor time.

When a device is ready to send or receive data, it
requests access to memory via the channel. At the
beginning of every memory cycle the processor
synchronizes any requests that are then being
made. At certain specified points during the exe-
cution of an instruction, the CPU pauses to honor
all previously synchronized requests. When a re-
quest is honored, a word is transferred directly
via the channel from the device to memory or from
memory to the device without specific action by the
program. All requests are honored according to
the relative position of the requesting devices on
the I/O bus. That device requesting data channel
service which is physically closest on the bus in
serviced first, then the next closest device, and
so on, until all requests have been honored. The
synchronization of new requests occurs concur-
rently with the honoring of other requests, so if a
device continually requests the data channel, that
device can prevent all devices further out on the
bus from gaining access to the channel.

Following completion of an instruction, the proces-
sor handles all data channel requests, and then
honors all outstanding I/O interrupt requests.

After all data channel and I/0 interrupt requests
have been serviced, the processor continues with
the next sequential instruction. The data channel
is fully described in the " Programmer's Reference
Manual for Peripherals', ordering number
015-000021.

CODING AIDS

The set of 1/0 instructions has options that can be
obtained by appending mnemonics to the standard
mnemonic. These optional mnemonics and their
result are given below.

CLASS CODED RESULT
ABBREVIATION | CHARACTER BITS OPERATION
f (option omitted) 00 Does not affect the
Busy and Done flags.
S 01 Start the device by
setting Busy to 1 and
Done to 0.
C 10 Idle the device by set-

ting both Busy and Done
to 0.

Pulse the special in-out
bus control line. The
effect, if any, depends
upon the device.

1/O INSTRUCTIONS
DATA IN A

DIA<f> ac,device

lo 1 1] acJo o u] F _DEVICE CODE |

0O I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The contents of the A input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of

the device. Bits in the AC that do not receive
data are set to 0.

DATAIN B

DIB<f> ac,device

o t t] ac o 1t 1] F | DEvicE cooe |

0 | 2 3 4 5 & 7 8 9 10 Il 12 13 14 15

The contents of the B input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of

the device. Bits in the AC that do not receive
data are set to 0.

DATAIN C

DICLf> ac,device

Olllll AC]llOIII F

o + 2 3 4 5 6 7 8 9 10 1

DEVICE CODE
2° 13 14 15

The contents of the C input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device. Bits in the AC that do not receive data
are set to 0.

Rev. 02
1/0O INSTRUCTIONS

DATA OUT A

DOA<f> ac,device

[0+, 1] ac [o, 1 of F | EVICECODE,
0'f 2z 3 ' 4 5 6 7 8 9 10 1 12 13 14 15

The contents of the specified AC are placed in the

A output buffer of the specified device.

After the

data transfer, the Busy and Done flags are set
according to the function specified by F. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the

device.
DATA OUT B

DOB<f> ac,device

ot 1] acfr,oof g [oevcecope, |
o

o] | 2 3 4 5 6 7 8 9

112 13 14 15

The contents of the specified AC are placed in the

B output buffer of the specified device.

After the

data transfer, the Busy and Done flags are set
according to the function specified by F. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the

device.

DATA OQUT C

DOC<f> ac,device

ot 1] ac Jr v of F | oevicEcopE |
o' ! 2 3 4 5 & 7 8 9 10 Il 1213 14 15

The contents of the specified AC are placed in the

C output buffer of the specified device.

After the

data transfer, the Busy and Done flags are set

according to the function specified by F.

The con-

tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the

device.

Rev. 02

The I/0 SKIP instruction en;bles the programmer
to make decisions based upon the values of the

Busy and Done flags.

Which test is performed is

based upon the value of bits 8-9 in the instruction.
Bits 8-9 can be set by appending an optional mne-

monic to the I/O SKIP mnemonic.

The optional

mnemonics and their results are given below.

CLASS CODED RESULT
ABBREVIATION| CHARACTER| BITS OPERATION
t BN 00 Tests for Busy = 1.
BZ 01 Tests for Busy = 0.
DN 10 Tests for Done = 1.
DZ 11 Tests for Done = 0.
I/0O SKIP
SKP<{> device
|o ! ||o o[| I II T DEVICE CODE
| | 1 1 } I 1 1 } 1 1
0'1 2 3 4 5 6 ' 7 8 9 10 Il 12 13 14 15

If the test condition specified by T is true, the
next sequential instruction is skipped.

NO 1/0 TRANSFER

NIO<f> device

|°.'.'|°.°l°.°.°

F
1

DEVICE CODE]
1 1 .] 1

o' I 2 3'"4 5 6'7

8

9

o 1 1213 14 15

The Busy snd Done flags in the specified device
are set according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

I/0 instructions with a device code of 77 perform
a number of special functions rather than control-
ling a specific device. In all but the I/0O SKIP in-
struction, I/0 instructions with a device code of
77 use bits 8-9 to control the condition of the
Interrupt On flag. An I/O SKIP instruction with a
device code of 77 uses bits 8-9 to either test the
state of the Interrupt On flag or to test the state of
the Power Fail flag. The mnemonics are the same
as for normal I/0 instructions. . The table below
gives the result of these bits for instructions with
a deviee code of 7.

CLASS CODED RESULT
ABBREVIATION | CHARACTER BITS OPERATION
f (omitted) 00 Does not affect the
state of the Interrupt
On flag.
S 01 Set the Interrupt On
flag to 1.
C 10 Set the Interrupt On
flag to 0.
P 11 Does not affect the
state of the Interrupt
On flag.
t BN 00 Tests for Interrupt
On =1.
BZ 01 Tests for Interrupt
On = 0.
DN 10 Tests for Power
Fail = 1.
DZ 11 Tests for Power
Fail = 0.

The device code of 77 deals mainly with proces-
sor functions and has, therefore, been given the
mnemonic of CPU. In addition, many of the I/O
instructions that reference this device code have
been given special mnemonics. While these
special mnemonics are functionally equivalent to
the corresponding I/0 instructions with a device
code of 77, there is the following limitation; the
mnemonics for controlling the state of the Inter-
rupt On flag cannot be appended to them. If the
programmer wishes to alter the state of the Inter -
rupt On flag while performing a MASK OUT in-
struction, for example, he must issue the
appropriate I/0 instruction (DOB<f> ac,CPU)
instead of the corresponding special mnemonic
(MSKO ac). If the special mnemonic is used, bits
8-9 are set to 00. In describing the instructions,
the special mnemonic for the corresponding I/O
instruction will be given first, followed by the I/0
instruction.

Iv-5

INTERRUPT ENABLE

INTEN

NIOS CPU

o 1 t]o olo o ofo [1 1 1 1
o'l 2 3 4 5 6 7 8 9 10 Il 12 13 14 IS

The Interrupt On flag is set to 1. If the state of
the Interrupt On flag is changed by this instruction,
the CPU allows one more instruction to execute
before the first I/0 interrupt can occur.

INTERRUPT DISABLE

INTDS

NIOC CPU

o 1 1]o olo o o] o]t 1 1 1
0O+ 2 3 4 5 6 7 8 9 10 Il 12 i3 14 15

The Interrupt On flag is set to 0.
READ SWITCHES
READS ac

DIA<f> ac,CPU

o 1t 1]ac]oo v F i v i

I 1 1 H ! i 1
T

0O I 2 3 4 5 6 7 8 9 10 It 12 13 14 |5

The setting of the console data switches is placed
in the specified AC. After the transfer, the Inter-
rupt On flag is set according to the function speci-
fied by F.

INTERRUPT ACKNOWLEDGE
INTA ac

DIB<f> ac,CPU

[0 v, [a ot 1] £]
0O I 2 3 4 5 6 7T 8 9

1 4 L 1
|

1213 14 15

' 1
10 1
The six-bit device code of that device requesting an
interrupt which is physically closest to the CPU on
the bus is placed in bits 10-15 of the specified AC.
Bits 0-9 of the specified AC are set to 0. After the
transfer, the Interrupt On flag is set according to
the function specified by F.

Rev. 02
CENTRAL PROCESSOR FUNCTIONS

MASK OUT HALT

MSKO ac HALT

DOB<f> ac,CPU DOC<f> ac,CPU

(o iTa ool ¢ [] [o,] a [o[& v 111
0’1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 0'1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

The contents of the specified AC are placed in the
priority mask. After the transfer, the Interrupt
On flag is set according to the function specified by
F. The contents of the specified AC remain un-
changed.

NOTE A 1 in any bit disables in-
terrupt requests from de-
vices in the corresponding
priority level.

The Interrupt On flag is set according to the func-
tion specified by F and then the processor is
stopped.

NOTE If the mnemonic DOC is used
to perform this function, an
accumulator must be coded to
avoid assembly errors. Dur-
ing execution of this instruc-
tion, the AC field is ignored.

I/O RESET CPU SKIP
IORST SKP<t> CPU
DIC<f> ac,CPU

= — IOIIII|OIOI|I|A|IT ll'lll'llll]
o v 1fa [r o [F [v 01 2z 3'4a 5 6 7 6 9 10 1 1213 1a 15
o1 2z 374 s = t7 & s 0o 2 13 & 15 If the test condition specified by T is true, the next

The Busy and Done flags in all I/O devices are set
to 0. The 16-bit priority mask is set to 0. The
Interrupt On flag is set according to the function
specified by F.

NOTE For the NOVA 3 series of com-
puters, if the RESET jumper is
installed in the CPU, the instruc-
tion DOA<f> ac,CPU is equiv-
alent to DIC<f> ac,CPU.

If either the mnemonic DIC or
the mnemonic DOA isused to per-
form this function, an accumula-
tor must be coded to avoid
assembly errors. Regardless of
howthe instructioniscoded, dur-
ing execution, the AC field is ig-
nored and the contents of the AC
remain unchanged.

Rev. 02

IV-6

sequential instruction is skipped.

SECTION V
PROCESSOR OPTIONS

INTRODUCTION

Optional equipment for the NOVA line computers
includes a power monitor with the facility for auto-
matic restart after a power failure, multiply/divide,
real-time clock, memory address translation, and
floating point arithmetic.

POWER FAIL

In the NOVA line, when power is turned off and
then on again, core memory is unaltered. How-
ever, when the power is turned on, the state of the
accumulators, the program counter, and the var-
ious flags in the CPU is indeterminate. The power
fail option provides a ' fail-soft' capability in the
event of unexpected power loss.

In the event of power failure, there is a delay of
one to two milliseconds before the processor shuts
down. The power fail option senses the imminent
loss of power, sets the Power Fail flag, and re-
quests an interrupt. The interrupt service routine
can then use this delay to store the contents of the
accumulators, the carry bit, and the current pri-
ority mask. The interrupt service routine should
also save location 0 (to enable return to the inter-
rupted program), put a JUMP to the desired re-
start location in location 0, and then execute a
HALT. One to two milliseconds is enough time to
execute 200 to 1500 instructions depending on the
processor, so there is more than enough time to
perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail option
depends upon the position of the power switch on
the front panel. If the switch is in the "on" posi-
tion, the CPU remains stopped after power is re-
stored. If the switch is in the ''lock' position,
then 50ms after power is restored, the CPU exe-
cutes a ""JMP 0" instruction, restarting the inter-
rupted program.

The power fail option has no device code and no
interrupt disable bit in the priority mask. It does
not respond to the INTERRUPT ACKNOWLEDGE
instruction. The Power Fail flag can be tested by
the CPU SKIP instruction. Testing of the Power
Fail flag is described below.

V-1 of 30

SKIP IF POWER FAIL FLAG IS ONE

SKPDN CPU
lo IIIIO o|| I ||| o[t 1+ 1+ 1 1 q
0O I 2 3 4 5 6 T 8 9 10 Il 1213 14 Is

If the Power Fail flag is 1 (i.e., power is failing),
the next sequential instruction is skipped.

SKIP IF POWER FAIL FLAG IS ZERO

SKPDZ CPU

[Olllllololllllllll llllllllllll

|
I 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

If the Power Fail flag is 0 (i.e., power is not fail-
ing), the next sequential instruction is skipped.

MULTIPLY/DIVIDE

Multiplication can be performed on the NOVA line
by software routines that utilize the standard in-
struction set, but if many of these operations are
required, a loss of efficiency can result, The
multiply/divide option provides the capability of
performing these operations in hardware, with a
corresponding increase in CPU efficiency and
utilization. Two versions of this option are avail-
able: one for the NOVA computer, and one for the
rest of the computers in the NOVA line. The two
versions of this option and the instructions for each
are described below.

NOVA Multiply /Divide

The multiply/divide option for the NOVA computer -
is an I/O device and is controlled by I/0 instruc-
tions. The device code for the NOVA computer
multiply/divide option is 1. It has no Busy and
Done flags and does not respond to the INTERRUPT
ACKNOWLEDGE instruction. It has three buffers:
A, B, and C that can be written and read using stand-
ard I/0 instructions. Multiplication and division is
controlled by the setting of the control field in the
I/0 instruction. The control field setting and the
resulting operation are described below.

Rev. 02
POWER FAIL

POWER

OFF@

RUN 10N
INSTRUCTION [}] o [} o | o [} o | o 2 [}
FETCH EXECUTE
ADDRESS l o o o | ¢ o o | ¢ o o | o © o | o o o ° °
Lo DEFER
DATA © ° | ©] o | © ° o | o o o | o [} o | o o [°
3 4] 7 [] ® © nooor 3 14 s
cAnRY o \ 2 s och "
©® PP PO PP PR PO ° e

pEPOBIT MO AC) A2 AC3 RESET START OEPONT EXAMINE MEMORY STEP PROGRAM LOAD
O cund® © © o+ © © © © © © O
svor CONTINUE DEPOSIT NEXT MEXT INST STEP CHAMNEL START
[(G DATA GENERAL CORPORATION [NOVA| |
DG-01872 -
NOVA
OVERLAP PROTECT RUN 10N
POWER INSTRUCTION o | o o o | o o o | o o o o o
oN T T T FETCH EXECUTE
ADDRESS | o] o | o o [} | o o o | o o o | o o o ° °
nrrt@ Lo oata © o | o o o | 6 © © | © © o | © o ©° | o o ° DESE"
CARRY [+ 1 2 3 4 5 [7 [] 9 10 \h} 12 = 14 13 ocH L
©® @@ PG OO PO OO °
DERFOSIT ACO ACt AG2 AC3 RESET START DEPO@SIT méﬂ! UEKM@YST!P PROGRAM LOAD
© EME‘} @ @ @+ ﬂ@OP M@llul DEPOSIT NEXT NEXT INST STEP CHANNEL START ©
[G DATA GENERAL CORPORATION | SUPERNOVA] |
DG - 01871
SUPERNOVA
— = e e (=1 (=Y|(=="] — —11(—] = || = {[e==2] RUN iON
FoweR o o o o [} o) '—o.]) o ° o o o
oM = ool |=llaalles | lc=llc=alle=| Feren oerer execure
OFF@ LOCK o o o o [+] o o o o o o o o [} Q [+
el 999 @9 |9 0|9 9ol
.’
peposir . AGO Ach Acz Acs RESET STARY DEPOSIT EXAMINE MEMORY STEP PROGRAM LOAD
O cumd® © © ©t © © © © ©]
STOP CONTINUE DEPOSIT NEXT EXAMINE NEXT INST STEP
u 07 DATA GENERAL CORPORATION l NOVA 2]

DG-01870

Rev. 02

NOVA 800/1200 and NOVA 2

VI-2

POWER

Sl resom y . F OFF 22\
| (oo L IO ‘ : ©)

W rioap .t et st BT

op. CONT - - '3 8

———— - -
= = - -
,'J 4+ -+ - P JF 1 P J-1 b] 1 Jl 1 1
DG-01867 e e e e p—
NOVA 3
- 3
POWER
ON
OFF@ LOCK
RUN PROGRAM LOAD START
@) o ©
CONTINUE RESET
i (o ©ATA oEnNERAL cORPORATION

D6-01669

NOVA TURNKEY

MEMORY POWER
RUN POWER ON

ollollo]] "®”

D)

POWER

CONTINUVE

0D6-0/868

NOVA 3 TURNKEY

Rev. 02

DATA SWITCHES

Beneath the data lights is a row of 16 switches.
These switches are used to enter either data or ad-
dresses and can be read using the READ SWITCHES
instruction. Only switches 1-15 are used for enter-
ing addresses. When these switches are in the up
position, they represent a 1; when down, they re-
present a 0.

CONSOLE SWITCHES

In addition to the data switches, there are a number
of function switches. These switches are spring
loaded. When pushed up, they perform the function
labeled above the switch, and when pushed down,
they perform the function labeled below the switch.
When released, these switches return to a neutral
"off'' position. The switches and their functionus
are explained below.

Accumulator Deposit--Examine

On all consoles except the NOVA 3 consoles, the
left-hand four switches reference the four CPU
accumulators. The switches are numbered 0-3
from left to right. Each switch affects only its
corresponding accumulator. When one of these
switches is pushed up, the current setting of the
data switches is deposited into the corresponding
accumulator. The data lights display the informa-
tion placed in the AC. When one of these switches
is pushed down, the contents of the corresponding
accumulator are displayed in the data lights.

Reg Dep -- Reg Exam

For the NOVA 3 computers, the accumulator deposit
and examine functions are performed by the com-
bination of one function switch and a 7-position
rotary switch. The seven registers available for
depositing and examining are the four accumulators,
the stack pointer, the frame pointer, and the pro-
gram counter. When the function switch is pushed
up, the contents of the data switches are deposited
into the register indicated by the current setting of
the rotary switch. As long as the switch is pushed
up, the value indicated by the data switches is dis-
played in the lights. When the switch is released,
the program counter is displayed in the lights.

Rev. 02

Vi-4

When the function switch is pushed down, the con-
tents of the register indicated by the current setting
of the rotary switch are displayed in the lights. As
long as the switch is held down, the value is dis-
played in the lights. When the switch is released,
the program counter is displayed in the lights.

Reset--Stop

When this switch is pushed up, the RESET function
is performed and an I/O RESET instruction is exe-
cuted. The CPU is stopped after completing the
current processor cycle. The Interrupt On flag,
the 16-bit priority mask, and all Busy and Done
flags are set to 0.

When this switch is pushed down, the STOP function
is performed. The CPU is stopped after complet-
ing the current instruction and before executing the
next instruction. If an I/O device requests an in-
terrupt during the execution of the current instruc-
tion, it is honored before the CPU is stopped. All
outstanding data channel requests are honored be-
fore the CPU is stopped. For the NOVA 3 series
of computers, data channel requests are honored
while the machine is in the stopped state. After the
CPU is stopped, the address lights display the ad-
dress of the next instruction to be executed and the
data lights display the current contents of the mem-
ory bus.

Start--Continue

When this switch is pushed up, the START function
is performed. The address indicated by data
switches 1-15 is placed in the program counter and
sequential operation of the processor begins with
the word addressed by the updated value of the pro-
gram counter.

When this switch is pushed down, the CONTINUE
function is performed. Sequential operation of the
processor continues from the current state of the
machine.

Deposit--Deposit Next

When this switch is pushed up, the DEPOSIT func-
tion is performed. The current setting of the data
switches is placed into the word addressed by the
current value of the program counter. The up-
dated value of the altered word is displayed in the
data lights.

When this switch is pushed down, the DEPOSIT
NEXT function is performed. The program counter
is incremented by one and the current setting of the
data switches is placed into the word addressed by
the updated value of the program counter. The up-
dated value of the program counter is displayed in
the address lights and the updated value of the al-
tered word is displayed in the data lights.

NOTE For the NOVA 3 computers, these
functions are performed by the
MEMORY DE P--DEP NEXT switch.
As long as the switch is held in
either the up or down position, the
value indicated by the data switches
is displayedin the lights. When the
switch is released, the program
counter is displayed in the lights.

Examine--Examine Next

When this switch is pushed up, the EXAMINE func -
tion is performed. The address indicated by data
switches 1-15 is placed in the program counter,
This value is displayed in the address lights. The
contents of the word addressed by the program
counter are then read and displayed in the data
lights.

When this switch is pushed down, the EXAMINE
NEXT function is performed. The current value
of the program counter is incremented by one and
the new value is displayed in the address lights.
The contents of the word addressed by the updated
value of the program counter are then read and
displayed in the data lights.

NOTE For the NOVA 3 computers, these
functions are performed by the
MEMORY EXAM--EXAM NEXT
switch. As long as the switch is
held in either the up or down posi-
tion, the value contained inthe mem-
ory location is displayed in the
lights. Whenthe switchis released,
the program counter is displayed in
the lights.

Memory Step--Inst Step

When this switch is pushed up, the MEMORY STEP
function is performed. The CPU performs a single
processor cycle and stops. After the processor
stops, the lights indicate the next cycle to be
executed.

When this switch is pushed down, the INSTRUC-
) TION STEP function is performed. The instruc-
tion contained in the word addressed by the current

VI-5

value of the program counter is executed and then
the CPU is stopped. The address lights display
the updated value of the program counter and the
data lights display the contents of the memory bus.

Program Load

In the NOVA 1200, NOVA 800, and NOVA 2 com-
puters, when this switch is pushed up, the PRO-
GRAM LOAD function is performed if the Program
Load option is installed on the machine. The con-
tents of the bootstrap read-only memory are placed
in memory location 0-37g and a "JMP 0" instruc-
tion is performed. If the option is not installed,
this switch has no effect.

In the SUPERNOVA computer, when this switch is
pushed up, the PROGRAM LOAD function is per-
formed. Thirty-three words are read from the de-
vice whose device code is set in data switches

10-15 on the console. These words are placed in
locations 0-40g of main memory. After the last
word is read, a "JMP 40" instruction is performed.

NOTE For the NOVA 3 computers, the
MEMORY STEP function has been
deleted. The PROGRAM LOAD
and INSTRUCTION STEP functions
share the same function switch.

Channel Start

When this switch is pushed down, the CHANNEL
START function is performed. A "JMP 377" in-
struction is placed in location 377g of main mem-
ory. Then a DATA IN A with a Start (DIAS)
instruction is issued to the device whose device
code is set in data switches 10-15 on the console.
After the instruction is issued, a "JMP 377" in-
struction is performed.

Power

The POWER switch is a three position key switch.
The three positions are labeled "OFF', "ON", and
"LOCK''. With the switch in the OFF position all
power to the CPU is shut off and the machine will
not run. Turning the switch to the ON position
turns on the power and enables all the switches.

Turning the switch to the LOCK position enables the
key to be removed. While the CPU is processing
and the switch is in the LOCK position, all console
functions are disabled. If the switch is turned to
the LOCK position while the CPU is stopped or if
the CPU executes a HALT instruction while the
switch is in the LOCK position, all the function
switches are enabled.

Rev. 02
CONSOLE SWITCHES

PROGRAM LOADING

Before a program can be executed, it must be
brought into memory. This requires that a loading
program already reside in memory. In the event
that there is no loading program in memory, a
small, specialized loading program is normally
placed in memory and used to read in the loading
program. This small loading program is called a
"bootstrap loader'. The function of the bootstrap
loader is to read in a more general-purpose load-
ing program which can be used to load the user's
programs. Two methods are available for entering
a bootstrap loader into memory. The operator can
either enter it via the data switches and the deposit
switch, or, if the computer is so equipped, he can
use the program load option or the channel start
feature.

Manual Loading

When using a NOVA computer or a computer from
the NOVA 800, NOVA 1200, NOVA 2 series or
NOVA 3 series without the program load option, a
bootstrap loader must be entered into memory
manually using the switches on the console. The
following loader is the bootstrap loader designed
by DGC for use with binary loader #091-000004.

LOCATION CONTENTS

X7757 126440 GET: SUBO 1,1 :CLEAR AC1 AND

: CARRY
X7760 0636-- SKPDN -- :DEVICE BUSY?
X7761 000777 JMP . =1 YES
X17762 0605-- DIAS 0, -~ :READ FRAME
. FROM DEVICE
X7763 127100 ADDL 1,1 (SHIFT AC1 LEFT
;2 BITS
X7764 127100 ADDL 1,1 (SHIFT AC1 LEFT
. 2 BITS
X7765 107003 ADD 0,1,SNC :ADD IN NEW
: FRAME
X7766 000772 JMP GET+1 :GET NEW FRAME
X767 001400 JMP 0,3 ;FULL WORD--
: RETURN
X7770 0601 -- BSTRP: NIOS -- :PRIME THE DE-
. VICE
X771 004766 JSR GET :GET A WORD
X772 044402 STA L+2 :STORE IT
X7173 004764 JSR GET :GET ANOTHER
;. WORD

This loader reads in a specially formatted tape
from either the paper tape reader or the reader on
the console teletypewriter. This tape has only 4
bits per frame and the loader assembles these
frames into complete words. This bootstrap should
be placed in memory starting at that location which
is 20g less than the highest available memory loca-
tion. In other words, for the "X" in the LOCA-
TION column, substitute a 0 for a 4K system, a

1 for an 8K system, a 2 for a 12K system, and so
on. For the dashes in the CONTENTS column,
substitute 10g if the console teletypewriter is being
used, or 12g if the paper tape reader is being used.
After the bootstrap is entered, start it at location
XT7710.

Rev. 02

Avutomatic Loading

When using a SUPERNOVA computer, a loading
program can be placed in memory by using either
the PROGRAM LOAD function or the CHANNEL
START function available on the console. The
PROGRAM LOAD function reads 66 bytes of data
from the device whose device code is set in data
switches 10-15. These 66 bytes are compressed
into 33 16-bit words and placed in memory loca-
tions 0-40g. The first two bytes read are placed
in location 0, with the first byte read being placed
in bits 0-7, and the second byte read being placed
in bits 8-15. This process continues until a word
is placed in location 404. After a word has been
stored into location 40g, a '""JMP 40" instruction
is executed.

This sequence is designed to be used with binary
loader #091-000041.

Alternatively, when using a SUPERNOVA computer,
the CHANNEL START function can be used to bring
in a loading program. The CHANNEL START func-
tion places a ""JMP 377" instruction in location
377g and then issues a DIAS instruction to the de-
vice whose device code is set in data switches
10-15. After issuing the DIAS instruction, a

"JMP 377" instruction is executed. This sequence
initiates a data channel transfer from the device to
memory beginning at memory location 0. The CPU
will continue to execute the ""JMP 377" instruction
until the data channel places a word in that location.
After a word has been placed in location 377g, it is
executed as an instruction. Typically, this word is
either a HALT or a JUMP into the data that the data
channel has placed in the first 3778 memory
locations.

When using a computer from the NOVA 800, NOVA
1200, NOVA 2 series, or NOVA 3 series with the
program load option, a loading program can be
placed in memory by using the PROGRAM LOAD
function available on the console.

To enter a loader program,' the operator must
first set up the device that is to be used and set its
octal device code into data switches 10-15. If the
device is a data channel device, set data switch 0
to 1. If the device is a low-speed device, set data
switch 0 to 0. After this is done, push the
PROGRAM LOAD switch to the up position. The
bootstrap loader will be deposited into memory
locations 0-3'78 and started at location 0.

The bootstrap loader reads the data switches, sets
up its own I/O instructions with the specified de-
vice code, and then performs a program load pro-
cedure depending upon the state of data switch 0.

If the switch is a 1, the bootstrap loader starts the
device for data channel storage beginning at loca-

VIi-6

tion 0 and then loops at location 377g until a data
channel transfer places a word into that location.

After a word has been placed in location 377g, it
is executed as an instruction. Typically, this
word is either a HALT or a JUMP into the data
that the data channel has placed in the first 3778
memory locations.

If data switch 0 is a 0, the bootstrap loader reads
the loader program via programmed I/O. The
device must supply 8-bit data bytes, and each pair
of bytes is stored as a single word in memory;
wherein the first and second bytes read become
the left and right halves of the word. To simplify
the positioning of the tape in the reader, the boot-
strap loader ignores leading null characters. It
does not begin storing any words until it reads a
non-zero synchronization byte. The first word
following this synchronization byte must be the

BOOTSTRAP LOADER

;NO, GO TO 377 AND WAIT FOR CHANNEL

;STORE STARTING AT 100 2's COMPLEMENT OF WORD COUNT

;YES - LOCATION COUNTER AND JUMP TO LAST WORD

;ADD 2 FRAMES SWAPPED - GOT SECOND?

BEG: IORST :RESET ALL I/0
READS 0 ;READ SWITCHES INTO ACO
LDA 1,CT7 ;GET DEVICE MASK (000077)
AND 0,1 ;ISOLATE DEVICE CODE
coM 1,1 ;- DEVICE CODE -1
LOOP: 1ISZ OP1 ;COUNT DEVICE CODE INTO ALL
1SZ OP2 ;1/O0 INSTRUCTIONS
ISZ OP3
INC 1,1,SZR ;DONE?
JMP LOOP ;NO, INCREMENT AGAIN
LDA 2,C377 ;YES, PUT JMP 377 INTO LOCATION 3177
STA 2,377
OP1: 060077 ;START DEVICE: (NIOS 0) - 1
MOVL 0,0,SZC ;LOW SPEED DEVICE? (TEST SWITCH 0)
Cc371:. JMP 3717
LOOP2: JSR GET+1 ;GET A FRAME
MOVC 0,0,SNR ;IS IT NON-ZERO?
JMP LOOP2 ;NO, IGNORE AND GET ANOTHER
LOOP4: JSR GET ;5YES, GET FULL WORD
STA 1,@C1
; (AUTOINCREMENT)
ISZ 100 ;COUNT WORD - DONE?
JMP LOOP4 ;NO, GET ANOTHER
CT7: JMP (ki
GET: sSUuBZ 1,1 ;CLEAR AC1, SET CARRY
OP2:
LOOP3: 063577 ;:DONE?: (SKPDNO) -1
JMP LOOP3 ;NO, WAIT
OoP3: 0604177 ;YES, READ IN ACO: (DIAS 0,0) -1
ADDCS 0,1,SNC
JMP LOOP3 ;NO, GO BACK AFTER IT
MOVS 1,1 ;5YES, SWAP THEM
JMP 0.3 ;RETURN WITH FULL WORD
0 ;PADDING

negative of the total number of words to be read,
including the first word. The number of words to
be read, including the first word may not be
greater than 192,,. The bootstrap loader stores
these words beginning at memory location 100,.
After storing the last word read, it transfers
control to that location.

NOTE For proper program loading
via the data channel, the de-
vice used must be initiated for
readingby an I/ORESET fol-
lowed by an NIOS instruction.
Inaddition, it is up to the de-
vice to stop reading after 256
words have been read.

Listed below is the standard 32 word bootstrap
loader. This program is capable of loading in
either of the manners described above.

VI-T

Rev. 02
PROGRAM LOADING

This page intentionally left blank.

APPENDICES

I/O DEVICE CODES AND
DATA GENERAL MNEMONICS

OCTAL AND HEXADECIMAL
CONVERSION

ASCIl CHARACTER CODES

DOUBLE PRECISION ARITHMETIC
INSTRUCTION USE EXAMPLES

INSTRUCTION EXECUTION TIMES

A-lof4

APPENDIX A
1/0 DEVICE CODES AND DATA GENERAL MNEMONICS

OCTAL
DEVICE PRIORITY
CODE MNEMONIC MASK BIT DEVICE NAME
00 ———— -~ Unused
01 MDV -- Multiply/Divide
02 MMU } -- Memory Management Unit
03 MMU1
02 MMPU -- Memory Management and Protection Unit
022 MAPO
03 MAPI1
04 MAP2 |
05
06 MCAT 12 Multiprocessor adapter transmitter
07 MCAR 12 Multiprocessor adapter receiver
10 TTI 14 TTY input
11 TTO 15 TTY output
12 PTR 11 Paper tape reader
13 PTP 13 Paper tape punch
14 RTC 13 Real-time clock
15 PLT 12 Incremental plotter
16 CDR 10 Card reader
17 LPT 12 Line printer
20 DSK 9 Fixed head disc
21 ADCV 8 A/D converter
22 MTA 10 Magnetic tape
23 DACV -- D/A converter
24 DCM 0 Data communications multiplexor
25
26
27
30 QTY 14 Asynchronous hardware multiplexor
302 SLA 14 Synchronous line adapter
31 IBM1 .
39 IBM2 } 13 IBM 360/370 interface
33 DKP T Moving head disc
34 CAS 10 Cassette tape
342 MX1 o ’
35 MX2 } 11 Multiline asynchronous controller
36 IPB 6 Interprocessor bus--half duplex
37 IVvT 6 IPB watchdog timer
40 DPI 8 IPB full duplex input
41 DPO 8 IPB full duplex output
403 SCR 8 Synchronous communication receiver
414 SCT 8 Synchronous communication transmitter
42 DIO 7 Digital 1/0
43 DIOT 6 Digital 1/0 timer
D6-0/932

2Code returned by INTA
3Can be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

Rev. 02

A-2

APPENDIX A (Continued)

1/0 DEVICE CODES AND
DATA GENERAL MNEMONICS

OCTAL
DEVICE PRIORITY
CODE MNEMONIC MASK BIT DEVICE NAME

44 MXM 12 Modem control for MX1/MX2
45
46 MCATI1 12 Second multiprocessor transmitter
47 MCARI1 12 Second multiprocessor receiver
50 MMI1 14 Second TTY input
51 TTO1 15 Second TTY output
52 PTRI1 11 Second paper tape reader
53 PTP1 13 Second paper tape punch
54 RTC1 13 Second real-time clock
55 PLT1 12 Second incremental plotter
56 CDR1 10 Second card reader
57 LPT1 12 Second line printer
60 DSK1 9 Second fixed head disc
61 ADCV1 8 Second A/D converter
62 MTA1 10 Second magnetic tape
63 DACV1 -- Second D/A converter
642 FPUL)
65 FPU2 5 Alternate location for floating point
66 FPU f .
67
70 QTY1 14 Second asynchronous hardware multiplexor
702 SLA1 14 Second synchronous line adapter
;; } 13 Second IBM 360/370 interface
73 DKP1 7 Second moving head disc
742 CAS1 10 Second cassette tape
;g } 11 Second multiline asynchronous controller
742 FPUL
75 FPU2 5 Floating point
76 FPU)
M CPU -- Central processor and console functions

2Code returned by INTA
3Ca.n be set up with any unused even device code equal to 40 or above

4Ca.n be set up with any unused odd device code equal to 41 or above

Rev. 01

This page intentionally left blank

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to
decimal, locate in each column of the appropriate
table the decimal equivalent for the octal or hex
digit in that position. Add the decimal equivalents
to obtain the decimal number

To convert a decimal number to octal or hexa-
decimal:

1. Locate the largest decimal value in the
appropriate table that will fit into the
decimal number to be converted;

2. note its octal or hex equivalent and column
position;

3. find the decimal remainder.

Repeat the process on each remainder. When the

remainder is 0, all digits will have been generated.

8° g 8* 82 | 8! | g°
0 0 0 0 0 0
1 32,768 4,096 512 | 64 1
2 | 65,53 | 8,192 | 1,024 | 128 | 16 | 2
3 | 98,304 | 12,228 | 1,536 | 192 | 24 | 3
4 | 131,072 | 16,384 | 2,048 | 256 | 32 | 4
5 | 163,840 | 20,480 | 2,560 | 320 | 40 | 5
6 | 196,608 | 24,576 | 3,072 | 384 | 48 | 6
7 | 229,376 | 28,672 | 3,584 | 448 | 56 | 7

16° 16 | 16° | 162 [16! |16°
0 0 0 0 ol oo
1] 1,048,576 | 65,536 | 4,006 | 256 | 16| 1
2 | 2,097,152 [131,072 | 8,192 | 512 32| 2
3 | 3,145,728 | 196,608 [12,288 | 768 | 48 | 3
4 | 4,194,304 | 262,144 | 16,384 |1,024 | 64 | 4
5 | 5,242,880 | 327,680 | 20,480 {1,280 | 80 | 5
6 | 6,291,456 393,216 | 24,576 | 1,536 | 96 | 6
7 | 7,340,032 | 458,752 | 28,672 | 1,792 112 | 7
8 | 8,388,608 | 524,288 | 32,768 | 2,048 |128 | 8
o | 9,437,184 | 589,824 | 36,864 |2,304 |144 | 9
A |10, 485,760 | 655,360 | 40, 960 | 2,560 |160 |10
B |11,534,336 | 720,896 | 45,056 | 2,816 |176 |11
c | 12,582,912 | 786,432 | 49,152 | 3,072 |192 |12
D |13,631,488 | 851,968 | 53,248 | 3,328 |208 |13
E 14,680,064 | 917,504 | 57,344 | 3,584 |224 |14
F | 15,728,640 | 983,040 | 61,440 | 3,840 |240 |15

B-1 of 2

This page intentionally left blank.

APPENDIX C
ASCIll CHARACTER

CODES

To Produce
ASCI Control On TTY Mod 33, 35 Even Parity
Decimal Octal Hex Character Function Cntrl Shift Char 8-bit code
0 000 00 NUL Null v v P 00
1 001 01 SOH Start of Heading v A 81
2 002 02 STX Start of Text v B 82
3 003 03 ETX End of Text v C 03
4 004 04 EOT End of Transmission v D 84
5 005 05 ENQ Enquiry v E 05
6 006 06 ACK Acknowledge v F 06
7 007 07 BEL Bell v G 87
8 010 08 BS Backspace v H 88
9 011 09 HT Horizontal Tab v I 09
10 012 0A NL New Line line feed 0A ;
v J 0A]
v line feed gal
11 013 0B VT Vertical Tab v K 8B
12 014 oC FF Form Feed v L oC
13 015 0D RT Return return 8D
v M 8D
v return OD1
14 016 0E SO Shift Qut v N 8E
15 017 OF SI Shift In v (0] OF
16 020 10 DLE Data Link Escape v P 90
17 021 11 DC1 Device Control 1 v Q 11
18 022 12 DC2 Device Control 2 v R 12
19 023 13 DC3 Device Control 3 v S 93
20 024 14 DC4 Device Control 4 v T 14
21 025 15 NAK Negative Acknowledge v U 95
22 026 16 SYN Synchronous Idle v A% 96
23 027 17 ETB End Transmission Block v w 17
24 030 15 CAN Cancel v X 18
25 031 19 EM End of Medium v Y 99
26 032 1A SUB Substitute v Z 9A
27 033 1B ESC Escape esc 1B
v v K 1B
28 034 1C FS File Separator v v L 9C
29 035 1D GS Group Separator v v M 1D
30 036 1E RS Record Separator v v N 1E
31 037 1F Us Unit Separator v v (o) 9F
32 040 20 Sp Space space A0
33 041 21 ! v 1 21
34 042 22 " v 2 22
35 043 23 # v 3 A3
36 044 24 $ v 4 24
37 045 25 % v 5 Ab
38 046 26 & v 6 A6
39 047 27 ! v 7 27
40 050 28 (v 8 28
41 051 29) v 9 A9
DG-07939
1On even parity TTY's, these codes are odd parity
Rev, 02

C-10f 4

APPENDIX C (Continued)
ASCIl CHARACTER CODES

To Produce
ASCII On TTY Mod 33, 35 Even Parity
Decimal Octal Hex Character Cntrl Shift Char 8-bit code
42 052 2A * VR AA
43 053 2B + v 2B
44 054 2C , Ly 2C
45 055 2D - - 2D
46 056 2E . . 2E
47 057 2F / / AF
48 060 30 0 0 30
49 061 31 1 1 Bl
50 062 32 2 2 B2
51 063 33 3 3 33
52 064 34 4 4 B4
53 065 35 5 5 35
54 066 36 6 6 36
55 067 37 7 7 B7
56 070 38 8 8 B8
57 071 39 9 9 39
58 072 3A : : 3A
59 073 3B ; ; BB
60 074 3C < v 36
61 075 3D = vooo- BD
62 076 3E > v . BE
63 077 3F ? v / 3F
64 100 40 @ v P Cco
65 101 41 A A 41
66 102 42 B B 42
67 103 43 C C C3
68 104 44 D D 44
69 105 45 E E C5
70 106 46 F F C6
71 107 47 G G 41
72 110 48 H H 48
73 111 49 I I C9
74 112 4A J J CA
75 113 4B K K 4B
76 114 4C L L CcC
M 115 4D M M 4D
78 116 4E N N 4E
79 117 4F (o] O CF
80 120 50 P P 50
81 121 51 Q Q D1
82 122 52 R R D2
83 123 53 S S 53
84 124 54 T T D4
DG-01939

Rev. 02

ASCIl CHARACTER CODES

APPENDIX C (Continued)

To Produce
ASCII On TTY Mod 33, 35 Even Parity
Decimal Octal Hex Character Cntrl Shift Char 8-bit code
85 125 55 U - U 55
86 126 56 A" v 56
817 127 57 w w D7
88 130 58 X X D8
89 131 59 Y Y 59
90 132 5A V4 A 5A
91 133 5B [v K - DB
92 134 5C \ v L 5C
93 135 5D] v M DD
94 136 5E A v N DE
95 137 5F - v 0 5F
96 140 60 A 60
97 141 61 a El
98 142 62 b E2
99 143 63 c 63
100 144 64 d E4
101 145 65 e 65
102 146 66 f 66
103 147 67 g E7
104 150 68 h E8
105 151 69 i 69
106 152 6A j B6A
107 153 6B k EB
108 154 6C 1 6C
109 155 6D m ED
110 156 6E n EE
111 157 6F o) 6F
112 160 70 p FO
113 161 71 q 71
114 162 72 r 72
115 163 73 s F3
116 164 74 t 74
117 165 75 u F5
118 166 76 v Fé
119 167 m w mm
120 170 78 X 78
121 171 79 y F9
122 172 TA z FA
123 173 B | B
124 174 C FC
125 175 7D } 7D
126 176 TE ~ TE
127 177 TF DEL rubout FF
DG-0/939

Rev. 02

This page intentionally left blank.

APPENDIX D
DOUBLE PRECISION ARITHMETIC

A double length number consists of two words con-
catenated into a 32-bit string wherein bit 0 is the
sign and bits 1-31 are the magnitude in two's com-
plement notation. The high-order part of a nega-
tive number is therefore in one's complement form
unless the low-order part is null (at the right only
0's are null regardless of sign). Hence, in pro-
cessing double length numbers, two's complement
operations are usually confined to the low-order
parts, whereas one's complement operations are
generally required for the high-order parts.

Suppose we wish to negate the double length num-
ber whose high and low-order words respectively
are in ACO and AC1. We negate the low-order part,
but we simply complement the high-order part
unless the low order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP ;LOW ORDER ZERO
CoMm 0,0 ;LOW ORDER NON-ZERO

Note that the magnitude parts of the sequence of
negative numbers from the most negative toward
zero are the positive numbers from zero upward.
In other words, the negative representation -x is
the sum of x and the most negative number. Hence,
in multiple precision arithmetic, low-order words
can be treated simply as positive numbers. In
unsigned addition a carry indicates that the low-
order result is just too large and the high-order
part must be increased. We add the number in
AC2 and AC3 to the number in ACO and AC1.

ADDZ 3,1,SZC
INC 0,0
ADD 2,0

In two's complement subtraction a carry should oc-
cur unless the subtrahend is too large. We could
increment as in addition, but since incrementing

in the high-order part is precisely the difference
between a one's complement and a two's comple -
ment, we can always manage with only two instruc-
tions. We subtract the number in AC2 and AC3
from that in ACO and AC1.

SUBZ 3,1,SZC
SUB 2,0,SKP
ADC 2,0

D-1of 2

This page intentionally left blank.

APPENDIX E

INSTRUCTION USE EXAMPLES

On the following pages are examples of how
the instruction set of the NOVA line of com-
puters may be used to perform some com-

mon functions.

1. Clear an AC and the carry bit.

SUBO AC,AC

2. Clear an AC and preserve the carry bit.

3. Generate the indicated constants.

4. Let ACX be any accumulator whose contents are zero.

SUBC AC,AC

SUBZL AC,AC
ADC AC,AC
ADCZL AC AC

;GENERATE +1
:GENERATE -1
:GENERATE -2

Generate the indicated constants in ACX.

;GENERATE +2
;GENERATE +3

INCZL ACX, ACX
INCOL ACX,ACX

;GENERATE +4004

5. Subtract 1 from an accumulator without using a constant from memory.

6. Check if both bytes in an accumulator are equal.

INCS ACX,ACX
NEG AC,AC

COM AC,AC

MOVS ACS,ACD

SUB ACS, ACD, SZR
JMP -

;NOT EQUAL

;EQUAL

7. Check if two accumulators are both zero.

8. Check an ASCII character to make sure it is a decimal digit.
Accumulators ACX and ACY are destroyed.

;ACX=ASCII ZERO

destroyed by the test.

MOV ACS, ACS, SNR
SUB# ACS, ACD, SZR
JMP ---

LDA ACX, C60

LDA ACY,CT1
ADCZ# ACY,ACS,SNC
ADCZ# ACS,ACX,SZC
JMP o

C60: 60
cm: 71

9. Test an accumulator for zero.
MOV AC,AC,SZR
JMP -

Rev, 02

;NOT BOTH ZERO

:BOTH ZERO

;ACY=ASCII NINE

;SKIPS IF (ACS) > 9
;SKIPS IF (ACS) >0

;NOT DIGIT -

;DIGIT

;ASCII ZERO
;ASCII NINE

;NOT ZERO

;ZERO

E-10of 6

The character is in ACS and is not

10.

11.

APPENDIX E (Continued)

INSTRUCTION USE EXAMPLES

Test an accumulator for -1.

COM#
JMP

AC,AC,SZR

;NOT -1
;-1

Test an accumulator for 2 or greater.

MOVZR# AC,AC,SNR
JMP - :LESS THAN 2
- - ;2 OR GREATER

Assume it is known that AC contains 0, 1, 2, or 3. Find out which one.
MOVZR# AC,AC,SEZ

JMP THREE ;WAS 3
MOV AC,AC,SNR
JMP ZERO ;WAS O
MOVZR# AC,AC,SZR
JMP TWO ;WAS 2
-—— - WAS 1

Multiply an AC by the indicated value.
MOV ACX,ACX ;MULTIPLY BY 1
MOVZL ACX,ACX ;MULTIPLY BY 2
MOVZL ACX,ACY :MULTIPLY BY 3
ADD ACY,ACX
ADDZL ACX ACX ;MULTIPLY BY 4
MOV ACX,ACY ;MULTIPLY BY 5
ADDZL ACX,ACX
ADD ACY,ACX
MOVZL ACX,ACY ;MULTIPLY BY 6
ADDZL ACY,ACX
MOVZL ACX,ACY sMULTIPLY BY 7
ADDZL ACY,ACY
SUB ACX,ACY ;IN ACY
ADDZL ACX,ACX sMULTIPLY BY 8
MOVZL ACX,ACX
MOVZL ACX,ACY ;MULTIPLY BY 9
ADDZL ACY,ACY
ADD ACY,ACX
MOV ACX,ACY sMULTIPLY BY 1010

ADDZL ACX,ACX
ADDZL ACY,ACX

MOVZL ACX,ACY ;MULTIPLY BY 124,
ADDZL ACY,ACX
MOVZL ACX,ACX

MOVZL ACX,ACY ;MULTIPLY BY 18
ADDZL * ACY,ACY
ADDZL ACY,ACX

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

14. Perform the inclusive OR of the operands in ACO and AC1. The result is placed in AC1. The carry
bit is unchanged.
COM 0,0
AND 0,1
ADC 0,1

15 Perform the exclusive OR of the operands in ACO and AC1. The result is placed in AC1. The con-
tents of AC2 and the carry bit are destroyed.

’

MOV 1,2
ANDZL 0,2
ADD 0,1
SUB 2,1

16. Move 30 words from locations 2000g - 2035g to locations 3000g - 3035g. Two auto-increment loca-
tions are used to hold the source and destination addresses.

LDA 0, ADDRS ;SET UP SOURCE ADDRESS
STA 0,20
LDA 0, ADDRD ;SET UP DESTINATION ADDRESS
STA 0,21 .
LOOP: LDA 0,@20 ;INCREMENT SOURCE ADDRESS AND GET WORD
STA 0,@21 ; INCREMENT DESTINATION ADDRESS AND STORE WORD
DSZ CNT ;s DECREMENT COUNT
JMP LOOP ;GO BACK FOR NEXT WORD
;SKIP HERE WHEN COUNT IS ZERO
ADDRS: 1777 ;SOURCE ADDRESS MINUS ONE
ADDRD: 2771 ;DESTINATION ADDRESS MINUS ONE
CNT: 36 ;WORD COUNT——368 EQUALS 304

17. Perform the following unsigned integer comparisons.
SUB# ACS,ACD,SZR ;SKIP IF CONTENTS OF ACS

CONTENTS OF ACD

SUB# ACS, ACD,SNR ;SKIP IF CONTENTS OF ACS # CONTENTS OF ACD -
ADCZ# ACS,ACD,SNC ;SKIP IF CONTENTS OF ACS < CONTENTS OF ACD
SUBZ# ACS,ACD,SNC ;SKIP IF CONTENTS OF ACS CONTENTS OF ACD
SUBZ# ACS,ACD,SzZC ;SKIP IF CONTENTS OF ACS > CONTENTS OF ACD
ADCZ# ACS,ACD,SZC SKIP IF CONTENTS OF ACS > CONTENTS OF ACD
18. Compare the signed, two's complement
integer contained in ACS to 0.
MOV# ACS,ACS,SZR ;SKIP IF CONTENTS OF ACS EQ
MOV# ACS, ACS,SNR ;SKIP IF CONTENTS OF ACS NE

ADDO# ACS, ACS, SBN ;SKIP IF CONTENTS OF ACS GT
MOVL# ACS, ACS,S8ZC ;SKIP IF CONTENTS OF ACS GE
MOVL# ACS, ACS,SNC ;SKIP IF CONTENTS OF ACS LT
ADDO# ACS,ACS,SEZ ;SKIP IF CONTENTS OF ACS LE

OCOO0O0OO0COC

Rev. 02

| 19. Simulate the

. MPYU:
. MPYA:

.CB99:

.CBO03:
.CB20:

| 20. Simulate the

. DIVI:
. DIVU:

.CC98:

. CC99:

.CCO03:
.CC20:

Rev. 02

| APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

operation of the MULTIPLY instruction.

SUBC 0,0 :CLEAR ACO, DON'T DISTURB CARRY

STA 3,.CB03 :SAVE RETURN

LDA 3,.CB20 :GET STEP COUNT

MOVR 1,1,SNC :CHECK NEXT MULTIPLIER BIT

MOVR 0, 0SKP :0 SHIFT

ADDZR 2,0 :1 - ADD MULTIPLICAND AND SHIFT

INC 3,3,SZR :COUNT STEP, COMPLEMENTING CARRY ON FINAL COUNT

JMP . CB99 :ITERATE LOOP

MOVCR 1,1 ‘SHIFT IN LAST LOW BIT (WHICH WAS COMPLEMENTED BY
;FINAL COUNT) AND

JMP @. CB03 :RESTORE CARRY

0

-20 1164 STEPS

operation of the DIVIDE instruction.

SUB 0,0 ;INTEGER DIVIDE CLEAR HIGH PART
STA 3,.CCO03 ;SAVE RETURN

SUB# 2,0,SZC ;TEST FOR OVERFLOW

JMP .CC99 ;YES, EXIT(ACO>AC2)

LDA 3,.CC20 ;GET STEP COUNT

MOVZL 1,1 ;SHIFT DIVIDEND LOW PART
MOVL 0,0 ;SHIFT DIVIDEND HIGH PART
SUB# 2,0,SzC ;DOES DIVISOR GO IN?

SUB 2,0 ;YES

MOVL 1,1 ;SHIFT DIVIDEND LOW PART
INC 3,3,SZR ;COUNT STEP

JMP CcC98 ; ITERATE LOOP

SUBO 3,3,SKP ;DONE, CLEAR CARRY

SUBZ 3,3 ;SET CARRY

JMP @. CCO03 ;RETURN

0

20 ;1619 STEPS

| 22.

APPENDIX E (Continued)

INSTRUCTION USE EXAMPLES

Load a byte from memory. The routine is called via a JSR. The byte pointer for the requested byte
is in AC2. The requested byte is returned in the right half of ACO. The left half of ACO is set to 0.
AC1, AC2, and the carry bit are unchanged. AC3 is destroyed.

LBYT: STA
LDA
MOVR

MOVS
LDA
AND

MOVS

MOVL

JMP
LRET: 0
MASK: 371

3,LRET :SAVE RETURN ADDRESS
3, MASK
2,2,SNC :TURN BYTE POINTER INTO WORD ADDRESS AND SKIP IF

; REQUEST BYTE IS RIGHT BYTE

3,3 :SWAP MASK IF REQUESTED BYTE IS LEFT BYTE

0,0,2 ;PLACE WORD IN ACO

1,0,SNC :MASK OFF UNWANTED BYTE AND SKIP IF SWAP IS NOT
; NEEDED

0,0 :SWAP REQUESTED BYTE INTO RIGHT HALF OF ACO

2,2 ;:RESTORE BYTE POINTER AND CARRY

@LRET ;RETURN

;RETURN LOCATION

Store a byte in memory. The routine is called via a JSR. The byte to be stored is in the right half
of ACO with the left half of ACO set to 0. The byte pointer is in AC2. The word written is returned
in ACO0. AC1, AC2, and the carry bit are unchanged. AC3 is destroyed.

SBYT: STA
STA
LDA
MOVR

MOVS
MOVS
LDA
AND
ADD
STA
MOVL
LDA
JMP
SRET: 0
SAC1: 0
MASK: 371

3,SRET :SAVE RETURN

1,SAC1 :SAVE AC1

3, MASK

2,2,SNC ;CONVERT BYTE POINTER TO WORD ADDRESS AND SKIP IF

; BYTE IS TO BE RIGHT HALF

;SWAP BYTE AND LEAVE MASK ALONE
;SWAP MASK

;LOAD WORD THAT IS TO RECEIVE BYTE
;MASK OFF BYTE THAT IS TO RECEIVE NEW BYTE
;ADD MEMORY WORD ON TOP OF NEW BYTE
;STORE WORD WITH NEW BYTE

;RESTORE BYTE POINTER AND CARRY
;RESTORE AC1

;RETURN

;RETURN LOCATION

v
N
g

-

NMNOOH O WO

oo DN

- e e W e

B NO WM WO
>
Q
=

2]
ey
=
-

E-5 Rev. 02

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

|23. The transfer of control between routines is made easier and more orderly by using the stack facility
of the NOVA 3 series of computers.

The basic method of transferring control to a subroutine is via a JUMP TO SUBROUTINE instruction.
The subroutine executes a SAVE instruction at the subroutine entry point and returns control via the
RETURN instruction.

;CALLING PROGRAM

CALL: JSR SUBR
;SUBROUTINE

SUBR: SAVE

RETRN: RET

This method has the following characteristics:

1. AC3 of the calling program is destroyed by the JSR.

2. The call is only one word.

3. Upon return to the calling program, AC3 contains the calling program’s frame pointer.
4, A SAVE instruction is required at each entry point.

5. Arguments are easily passed on the stack because SAVE sets up the frame pointer for the
called routine and RETURN places the frame pointer of the calling routine in AC3.

Rev. 02

APPENDIX F
INSTRUCTION EXECUTION TIMES

SUPERNOVA read-only time equals semiconductor time, except
add 0. 2 for LDA, STA, ISZ, and DSZ if reference is to core.
NOVA times are for core; for read-only subtract 0. 2 except
subtract 0.4 for LDA, STA, ISZ, and DSZ if reference is to
read-only memory. When two numbers are given, the one at
the left of the slash is the time for an isolated transfer,

the one at the right is the minimum time between consecutive
transfers. All times are in microseconds.

SUPERNOVA 1200 800, 820 NOVA 2
NOVA sC CORE | SERIES 840 830 8K 16K
LDA 5.2 1.2 1.6 2.55 1.6 2.0 1.6 2.0
STA 5.5 1.2 1.6 2.55 .6 2.0 1.6 2.0
1SZ, DSZ 5.2 1.4 1.8 3.15 1.8 2.2 1.7 2.1
JMP 5.6 0.6 0.8 1.35 0.8 1.0 0.8 1.0
JSR 3.5 1.2 1.4 1.35 0.8 1.0 1.1 1.2
COM, NEG, MOV, INC 5.6 0.3 0.8 1.35 0.8 1.0 0.8 1.0
ADC, SUB, ADD, AND 5.9 0.3 0.8 1.35 0.8 1.0 0.8 1.0
Each level of @, add 2.6 0.6 0.8 1.2 0.8 1.0 0.8 1.0
Each autoindex, add 0.0 0.2 0.2 0.6 0.2 0.2 0.5 0.5
Base register addr, add 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
If skip occurs, add 0.0 * 0.8 1.35 0.2 0.2 0.3 0.2
1/0 input (except INTA) 4.4 2.8 2.9 2.55 2.2 2.4 1.4 1.5
INTA 4.4 3.6 3.1 2.55 2.2 2.4 1.4 1.5
1,0 output 4.7 3.2 3.3 3.15 2.2 2.4 1.6 1.7
NIO 4.4 3.2 3.3 3.15 2.2 2.4 1.6 1.7
1/0 skips 4.4 2.8 2.9 2.55 1.4 1.6 1.1 1.2
If skip occurs, add 0.0 0.0 0.0 0.0 0.2 0.2 0.3 0.2
For S, C, or P; add 0.0 0.0 0.0 0.0 0.6 0.6 0.3 0.3
MUL
Average 11.1 3.7 3.8 3.75 8.8 9.0 6.1 6.2
Maximum 11.1 5.3 5.4 3.75 8.8 9.0 6.1 6.2
DIV .
Successful 11.9 6.8 6.9 4.05 8.8 9.0 6.4 6.5
Unsuccessful 11.9 1.5 1.6 2.55 1.6 2.0 6.4 6.5
P.I. CYCLE 5.2 1.8 2.2 3.0 1.6 2.0 2.2 2.5
INTERRUPT LATENCY
With MUL /DIV 12.0 9.0 9.0 7.0 10.6 12.0 5.8 5.9
Without MUL /DIV 12.0 5.0 5.0 7.0 4.6 6.0 1.9 2.3
DATA CHANNEL
Input 3.5 2.3 2.3 1.2 2.0 2.2 2.0 2.1
Output 4.4 2.8 2.8 1.2,1.8 2.0 2.2 2.1 2.2
Increment 4.4 2.8 2.8 1.8/2.4 2.2 2.4 2.2 2.3
Add to memory 5.3 2.8 2.8 -— -———- N,/A --- ---
Latency*
With MUL/DIV 17.3 11.8 11.8 9.4 5.8 6.4 5.2 5.3
Without MUL /DIV 17.3 7.8 7.8 9.4 5.8 6.4 5.2 5.3
HIGH SPEED DATA CHANNEL
Input N/A 0.8 0.8 N/ A 0.8 1.0 0.810.9/1.0
Output 0.8/1.0{0.8/1.0 0.8,1.0|1.01.2| 1.2 1.3
Increment 1.0/1.2 |1.0/1.2 1.0/1.2 11.2°1.4] 1.3 1.4
Add to memory 1.0/1.2 |1.0/1.2 - -—-- N,/A --- -
Latency+*
With MUL /DIV 5.7 5.7 4.8 5.4 4.3 4.4
Without MUL /DIV 3.7 3.7 3.2 3.6 4.3 4.4

*If 2AC-multiple operation instruction is skipped, add 0. 3; otherwise add 0.86.

+For highest priority peripheral on I/0 bus.

DG-01/31 Rev. 01
F-1of 4

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

Floatine Point Unit Instruction Execution Times*

— T

1 TOTAL EXECUTION TIME
FPU BASE TIME FOR NOVA 800 WITH HIGH
INSTRL'C'I‘_ION 3 (I\Iig‘x'}jsg('(_)nds) SPEED DATA CHANNEL

- MAXIMUM 1 MINIMUNM ~ MAXIMUM MINIMUM

b i T 4 s ,,,,,,L,_
i

_FLDS 1.2 1.2 6.3 ‘ 6.3
.FLDD 0.8 0.8 7.9 ' 7.9
. FSRS 0.4 0.4 5.4 5 5.4
.FSRD 0.0 0.0 7.1 : 7.1
.FAS 3.8 3.7 8.3 8.2
_FAD 3.4 3.3 9.9 l 9.8
.Fss 3.8 3.7 8.9 i 8.8
.FsD 3.4 3.2 10.5 | 10. 4
.FMS 6.9 e 12.0 12.0
.FMD 12.0 12.9 20.0 20.0
.FDS 10.1 9.3(2.0)"* 15.2 14.47.)"~
_FDD 16.1 15.3(1.6) 23.2 22.4(8.7
_FMFT 1.0 0.9 3.8 ‘ 3.7
. FMTF 1.0 0.9 3.8 * 3.7
_FATS 3.6 3.4 ! 5.8 i 5.6
.FATD ‘ 3.6 3.4 ‘ 5.8 ; 5.6
CFSTS : 3.6 3.4 ! 6.4 i 6.2
.FSTD 3.6 3.4 | 6.4 | 6.2
.FMTS 6.7 6.6 f 9.5 9.4
. FMTD 13.1 ! 13.0 ; 15.9 15.8
 FDTS 9.9 ! 9.0(1. 7y | 12.7 11.8(4.5)**
_FDTD | 16.3 15.4(1.7) | 19.1 18.2(4.5)
_FABS | 1.0 0.9 | 3.8 SN
.FCLR : 1.0 i 0.9 | 3.8 ; 3.7
.FLDX | 1.0 : 0.9 ! 3.8 ; 3.7
.FNEG | 1.0 0.9 ! 3.8 3.1
.FNRM 1.1 1.0 ; 3.9 3.8
.FSCL 1.1 1 1.0 ; 3.3 3.2

| . FHWD 0.0 | 0.0 | 2.2 2.2

| _FRST ’ 0.0 0.0 | 2.8 2.8

] .FWST | 0.0 0.0 } 2.2 2.8

*Total Exccution time - Base time - I O instruction time + Data Channel time (if any).
**Times in parentheses are times if "divide -by-zero” 1s sensed.
D5-C1355

Rev, 01 F-2

APPENDIX F (Continued)
INSTRUCTION EXECUTION TIMES

NOVA 3 INSTRUCTION EXECUTION TIMES

8K CORE 16K CORE SEMICONDUCTOR

INSTRUCTION MIN | MAX MIN | MAX MIN [MAX

LDA 1.3 1. 1.5 1.1 1.
STA 1.3 1. 1.5 1.1 1,
ISZ, DSZ 1.7+ | 2, 1. 9* 1.6*| 2.
JMP .8 .9 .1
JSR 1.1 1. 1.2 1.0 1.
COM, NEG, MOV, INC . 8% . 9% LT
ADC, SUB, ADD, AND LT
Each level of @, add .5
Each autoindex, add 1.
*If skip occurs, add
I/0 input (except INTA)
INTA
NIO
I/O output
1/O skips
*If skip occurs, add
For §, C, or P, add

MUL

DIV
Successful
Unsuccessful

PSHA
POPA
SAV

RET

MTFP
MTSP
MFFP
MFSP
TRAP 2.

INTERRUPT LATENCY
With MUL/DIV 10.
Without MUL/DIV 9.

DATA CHANNEL
Input
Qutput 2.
Latency

HIGH-SPEED DATA CHANNEL
Input 1.0 1.2 1.
Qutput 1. .
Latency .6 4.5

*
*
¥*

»*
©
*
*
*

[e0]
*
Fed ek pb ek et 4 DO DD DD

*
*

X OWOOOOOWW-T~T~TO I M NN

DD DD DN

. DD DN
WO O Wt =tk pd =t O =t o]
DD DN -t
O OWiHENMEHEEHMEMWN OO MEMRIOODD
DD DN DN -
NN DN
O OCQWNNNNNDNNSGEOOONMOROO
X OWOOOOO W™
et

O O WMNDMNDNDNDND DN D

()]
()]
[=2]
[$)]

Ul U == =D
SNOl = =D
DDA = =D
DO O OO B UM
o Ol ek ek e D
S U et s s D

W OWOW O bWt
O OO O
SJJ:—‘:—!I—‘P—‘O)O)MM —_
WO OOO LU~ W
QO -3 =T ~J=-JODN =T .
D~ I -J=-TODN =1L =]

—
—

&> 0o
fo—y
[a—y
o =3
—
Nel=)
-

—

O

P

[e e}

DN —
—

—
—
[y
i

DD =
—

O W
—

DO O

[

Do

06-01873

Rev. 02

This page intentionally left blank

F-4

CUT ALONG DOTTED LINE

READERS COMMENT FORM

DOCUMENT TITLE:

Your comments, accompanied by answers to the Did you find the material:

Sfollowing questions, help us improve the quality e Useful . YES () NO ()

and uscfulness of our publications. If your answer « Complete. YES () NO ()

to a question is “mo” or requires qualification, e Accurate. YES () NO ()

please explain. o Well organized........ .. YES () NO (}
. . . . o Well wntten............. .. YES () NO ()

How did you use this publication: e Well illustrated...... . YES () NO {)

(} As an introduction to the subject. e Well indexed......... . . YES () NO ()

()} As an aid for advanced knowledge. o Easy to read............. .. YES () NO ()

{) For information about operating procedures. ¢ Easy to understand..... YES () NO ()

() To instruct in a class.

() As a student in a class. We would appreciate any other comments; please

() As a reference manual. label each comment as an addition, deletion, change,

() Other .. . or error and reference page numbers where applicable

COMMENTS

PAGE| COL |PARA| LINE FROM TO

From

NAME ... TITLE oo Data General Corporation

FIRM .. DIV, e ENGINEERING PUBLICATIONS

ADDRESS ..ottt st te ettt en et e COMMENT FORM

CITY o STATE.............. ZIP......... DG-00935

TELEPHONE ..., DATEccvvrvrieereiirrrreecnens

FOLD DOWN FIRST FOLD DOWN

FIRST CLASS
PERMIT NO. 26

SOUTHBORO
MASS. 01772

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

BUSINE REPLY MAIL 1
:]
Postage will be paid by: N
| ———
5 DataGeneral —
| €Y. ——
Southboro, Massachusetts 01772 I
ATTENTION: Engineering Publications
: ..
| FOLD UP SECOND FOLD UP

STAPLE

